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REPORT

De Novo Pathogenic Variants in N-cadherin Cause
a Syndromic Neurodevelopmental Disorder with Corpus
Callosum, Axon, Cardiac, Ocular, and Genital Defects

Andrea Accogli,1,2,3,23 Sara Calabretta,4,23 Judith St-Onge,5 Nassima Boudrahem-Addour,5

Alexandre Dionne-Laporte,6 Pascal Joset,7 Silvia Azzarello-Burri,7 Anita Rauch,7 Joel Krier,8

Elizabeth Fieg,8 Juan C. Pallais,8 Undiagnosed Diseases Network, Allyn McConkie-Rosell,9

Marie McDonald,9 Sharon F. Freedman,10 Jean-Baptiste Rivière,5 Joël Lafond-Lapalme,5

Brittany N. Simpson,11 Robert J. Hopkin,11 Aurélien Trimouille,12,13 Julien Van-Gils,12,13

Amber Begtrup,14 Kirsty McWalter,14 Heron Delphine,15 Boris Keren,15 David Genevieve,16

Emanuela Argilli,17 Elliott H. Sherr,17 Mariasavina Severino,18 Guy A. Rouleau,6,19 Patricia T. Yam,4

Frédéric Charron,4,20,21,22,* and Myriam Srour1,5,19,*

Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain

of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin

molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in

neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neuro-

developmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine

individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability,

variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac,

and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr];

c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of

highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site

in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion;

this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants

(c.2563_2564delCT [p.Leu855Valfs*4]; c.2564_2567dupTGTT [p.Leu856Phefs*5]) are predicted to lead to a truncated cytoplasmic

domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in

a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac,

ocular, and genital defects).
Cell-cell adhesion is a dynamic and tightly regulated pro-

cess involved in key biological processes, from tissue

morphogenesis during early stages of development to the

maintenance of adult tissue integrity.1,2 The cadherin

superfamily is one of the major families of cell-adhesion

molecules and mediates cell adhesion in a calcium (Ca2þ)-
binding-dependent manner. Cadherins are classified into

classical cadherins (type I and II), desmosomal cadherins,

protocadherins (clustered and non-clustered), and atypical
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members, including FATs, flamingos or celsrs, and calsyn-

tenins.3 They are typically characterized by one to 34

extracellular cadherin (EC) domain repeats, which are

responsible for the adhesive properties of the molecules.4

Classical cadherins are composed of an adhesive extracel-

lular domain, a transmembrane region, and a cytoplasmic

tail.4 The extracellular domain consists of five EC repeats

(EC1–5) that mediate cell adhesion through the formation

of a lattice both in cis (between molecules of the same cell)
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and in trans (between molecules of apposed cells) interac-

tions to form adherens junctions.4,5 The intracellular

domain binds to p120 and b-catenin which, in turn,

connects via alpha-catenin to the actin cytoskeleton,

enabling multiple signaling cascades that control cell dif-

ferentiation, proliferation, migration, and apoptosis.6

Consistent with these pleiotropic functions, abnormalities

in critical domains of cadherins have been associated with

a number of human diseases,7 such as cancer8 and neuro-

developmental disorders, including intellectual disability

(ID),9–11 autism spectrum disorder (ASD),12 attention

deficit hyperactivity disorder (ADHD),13 epilepsy,14 and

psychiatric disorders.15 Some of these have been recog-

nized as Mendelian disorders, linked to pathogenic vari-

ants in the following cadherins: CDH1 (blepharocheilo-

dontic syndrome [MIM: 119580], gastric cancer [MIM:

137215], breast cancer [MIM: 114480]), CDH3 (ectodermal

dysplasia, ectrodactyly, and macular dystrophy [MIM:

225280], congenital hypotrichosis with juvenile macular

dystrophy [MIM: 601553]), CDH11 (Elsahy-Waters syn-

drome [MIM 211380]), PCDH12 (microcephaly, seizure,

spasticity and brain calcifications [MIM: 251280]),

PCDH19 (early infantile epileptic encephalopathy [MIM:

300088]) and CDH23 (autosomal recessive deafness

[MIM: 601386], Usher syndrome type 1D/F [MIM:

601067], pituitary adenoma [MIM: 617540]). CDH2 en-

codes cadherin-2, a type I (classical) cadherin, also known

as N-cadherin because of its high level of expression in

neural tissue, where it was first identified.16 N-cadherin

has an important role in the early steps of neural develop-

ment, including in the proliferation and differentiation of

neural progenitor cells,17 the formation of the neural

tube,18 synaptogenesis,19,20 neuronal migration, and

axon elongation.21,22 In recent years, rare single-nucleo-

tide polymorphisms (SNPs) in CDH2 have been suggested

to confer susceptibility to psychiatric disorders.23–25 N-cad-

herin is also widely expressed inmany other tissues outside

the nervous system; such tissues include the heart,26 where

it plays a crucial role in mechanical coupling and chemical

communication between cardiomyocytes.27 Recently, two

rare heterozygous CDH2 variants encoding ectodomain

residues have been linked to arrhythmogenic cardiomyop-

athy.28,29 Furthermore, several somatic CDH2 variants are

reported in COSMIC, a database of somatic mutations

found in human cancer.30

Despite its significant biological role in neurodevelop-

ment, CDH2 has not yet been directly associated with a

Mendelian neurodevelopmental disorder. In this study,

we report on nine subjects harboring de novo heterozygous

CDH2 variants, causing a syndromic neurodevelopmental

disorder whose main clinical features are global develop-

mental delay (GDD) and/or ID; corpus callosum agenesis

or hypoplasia; craniofacial dysmorphisms; and ocular, car-

diac, and genital anomalies.

In a Montreal Children’s Hospital research program

dedicated to investigating individuals affected by brain

malformations, whole-exome sequencing (WES) was per-
The America
formed in a child with agenesis of the corpus callosum

(ACC); interhemispheric cyst; mild ID and ASD; Duane

anomaly (i.e., characteristic abnormal eye movements

due to aberrant innervation); craniofacial dysmorphic fea-

tures; cryptorchidism; and mild tricuspid regurgitation

(Figures 1I and 1J and subject 2 in Tab1e 1 and Table S1).

The child was previously reported in a case series of indi-

viduals with ACC and interhemispheric cysts.31 This study

was approved by the Montreal Children’s Hospital ethics

committee, and informed consent was obtained from

parents.

Genomic DNA extracted from blood samples of the

affected child and his parents was captured with the Agi-

lent SureSelectXT CRE kit and sequenced on the Illumina

HiSeq platform at the McGill University and Genome

Québec Innovation Center. Sequence processing and

alignment to GRCh37, variant annotation, filtering, and

prioritization were performed via an in-house imple-

mented pipeline that includes publicly available tools

and was done according to the GATK’s best practices. We

performed segregation and filtering analyses by using an

in-house script to retain non-synonymous exonic and

splicing variants with a minor-allele frequency (MAF) %

0.001 in the gnomAD database. For compound heterozy-

gous variants, we considered variants with a MAF %

0.005. The list of all rare variants is available in Table S2.

This stepwise filtering failed to identify pathogenic vari-

ants in any OMIM genes, despite the fact that we consid-

ered all possible patterns of inheritance. On the basis of

our suspicion of an axon pathfinding defect in our subject

presenting with ACC and Duane anomaly, we next priori-

tized variants in genes known to have important functions

in neuronal development. Accordingly, we retained a

de novo heterozygous CDH2 variant (GenBank: NM_

001792.5: c.1789G>A [p.Asp597Asn]) that was absent in

gnomAD. Sanger sequencing confirmed that it was hetero-

zygous in the proband and absent in his parents. This

missense variant results in the substitution of a phyloge-

netically conserved amino acid (Figure 2B) and is predicted

to result in a deleterious effect according to in silico tools

(Table S3). Furthermore, the CDH2 gnomAD Z score pre-

dicts intolerance for missense variations (2.09) (positive

Z scores indicate increased constraint and therefore intol-

erance to variation), in line with a residual variation intol-

erance score (RVIS) (%ExAC v2 RVIS:�1.0396 [12.3558%])

(a negative score means that less common functional var-

iations are observed in this gene than would be expected,

suggesting that it is intolerant to variation and is among

the 12.3558% most intolerant of human genes), and

CDH2 is predicted to be potentially associated with domi-

nant conditions according to a linear discriminant analysis

(LDA) score of 3.5 (> 0.8 corresponds to a ‘‘very likely

dominant’’ class) by the DOMINO algorithm.32

We next queried CDH2 in GeneMatcher, a freely acces-

sible website that enables the identification of individuals

with variants in candidate genes,33 and ascertained

eight additional cases, all of whom had an overlapping
n Journal of Human Genetics 105, 854–868, October 3, 2019 855



Figure 1. Neuroradiologic and Facial Features of Individuals with De Novo CDH2 Variants
BrainMRI, sagittal T1-weighted (A) and axial T2-weighted (A0) images of a normal subject. BrainMRIs from subject 1 at 7 years (B and B0),
subject 2 at 2 years (C and C0), subject 3 at 13 days (D and D0), subject 4 at 4 years (E and E0), subject 5 at 6 months (F and F0), subject 8 at
26 years (G and G0), and subject 9 at 5 months (H and H0) show complete agenesis (B, C, D, E, G, and H) or mild hypoplasia (F) of the
corpus callosum; there is an interhemispheric cyst communicating with the III ventricle in two subjects (asterisks in [B] and [D]). In addi-
tion, there is hypo-dysplasia of the tentorium in four cases (C, D, E, and G, empty arrows) associated with an atretic parietal cephalocele
in one subject (E, arrow). Note the hypothalamic adhesion in subjects 1, 2, 4, 8 and 9 (B, C, E, G, and H, arrowheads), as well as the
megacisterna magna in subjects 3 and 8 (D and G). Axial T2 images reveal multiple nodular periventricular heterotopias in four subjects
(C0, D0, E0, and G0, arrows), and mild frontal ventriculomegaly in one subject (F0, empty arrows). Photographs of subjects 2 (I and J) and 4
(K and L) demonstrate prominent forehead and frontal bossing, downslanting palpebral fissures, a thin upper lip, and low-set and thick
helices. Subject 4 (M) also has Peters anomaly with clouding of the cornea, as well as hypertelorism and epicanthal folds. Subjects 5 (N)
and 9 (S and T) have thick earlobes but other major dysmorphisms. Subjects 7 (O and P) and 8 (Q and R) show common craniofacial
features, including deep-set eyes, a thin upper lip, a pointed chin, and slightly low-set and posteriorly rotated ears with attached earlobes.
phenotype (Table 1, Table S1, and Supplemental Note). All

CDH2 variants were found by clinical (subjects 3, 4, 5) or

research (subjects 1, 6, 7, 8, 9) exome sequencing accord-

ing to standard protocols, after written informed consent

was obtained from probands and/or families. In all sub-

jects, WES data analysis excluded the presence of other

functionally relevant variants compatible with known

Mendelian disorders, except that subject 4 carried a

maternally inherited pathogenic GALT variant (GenBank:

NM_000155.3, c.1802A>C [p.Ser135Leu]), responsible for

the autosomal recessive Galactosemia (MIM: 230400) and

that subject 1 harbored a de novo DNM1 variant (GenBank:

NM_004408, c.400C>A [p.Leu134Met]), associated with

an autosomal dominant epileptic encephalopathy (MIM:

616346). Although the DNM1 variant is classified as

pathogenic according to the ACMG guidelines, it was felt

not to explain subject 1’s phenotype because the major

DNM1-encephalopathy-associated features, such as ID,

epilepsy, and microcephaly,34 were absent (Table 1 and
856 The American Journal of Human Genetics 105, 854–868, Octobe
Table S1). All subjects harbored de novo CDH2 variants,

which included six missense (c.1057G>A [p.Asp353Asn];

c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr];

c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly];

and c.2027A>G, [p.Tyr676Cys]) and two distal frame-

shift (c.2563_2564delCT [p.Leu855Valfs*4] and c.2564_

2567dupTGTT [p.Leu856Phefs*5]) variants, all of which

are absent in gnomAD and are predicted to have a delete-

rious effect by several bioinformatics tools (Table S3).

CDH2 consists of 906 amino acids and is structurally

divided into a cadherin pro-region; five EC repeats of about

110 residues, each of which fold into seven anti-parallel b

strands arranged into two b sandwich folds; a transmem-

brane region; and a cytoplasmic tail. Three Ca2þ ions

bind to the highly conserved linker domains between

each EC domain, stabilizing the whole structure and

ensuring its proper conformation. This facilitates trans in-

teractions with other cadherin molecules from apposing

membranes.35,36 N-cadherin binding capacity is highly
r 3, 2019



Table 1. Clinical and Neuroradiological Features of Individuals with De Novo CDH2 Pathogenic Variants

Subjects Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

CDH2 variant
(GenBank:
NM_001792.5)

c.1057G>A
p.Asp353Asn

c.1789G>A
p.Asp597Asn

c.1789G>T
p.Asp597Tyr

c.1802A>C
p.Asn601Thr

c.1839C>G
p.Cys613Trp

c.1880A>G
p.Asp627Gly

c.2027A>G
p.Tyr676Cys

c.2563_2564delCT
p.Leu855Valfs*4

c.2564_2567dup
p.Leu856Phefs*5

Inheritance de novo de novo de novo de novo de novo de novo de novo de novo de novo

Gender female male female female male male male female male

Current age, years
(deceased)

13 8 (2 months) 5 3.5 11 23 37 12

Neurodevelopment Gross and
fine motor
delay

GDD � GDD GDD GDD GDD GDD fine motor and
language delay

Intellectual disability borderline or
low average IQ

mild ID � moderate ID moderate ID no no low average IQ mild ID

Neuropsychiatric
issues

þ þ � þ þ þ þ þ �

Epilepsy � � � þ þ � � � �

Head circumference þ3.3 SD þ0.9 SD �0.5 SD þ2.6 SD �0.5 SD þ2.4 SD NA þ3.3 SD �1.7 SD

Axial hypotonia � þ � � þ þ � � �

Appendicular
hypertonia

� þ � � þ þ � � �

Hyposmia þ � � � � � þ þ �

Sensorineural
hearing loss

� þ � � � � � � þ

Roving eye
movements

� � þ � þ � � � �

Dysmorphisms � þ þ þ minor þ þ þ minor

ACC þ þ þ þ mild CC
hypoplasia

þ � þ þ

Hypothalamic
adhesion

þ þ � þ � � � þ þ

Interhemispheric
cyst

� þ þ � � � � � �

PNH � þ þ þ � � � þ �

(Continued on next page)
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Table 1. Continued

Subjects Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

Tentorium hypo�
dysplasia

� þ þ þ � � � þ �

Cardiovascular
abnormalities

þ
AV canal defect

þ
mild tricuspidal
regurgitation

þ
AV canal defect,
mild hypoplastic
aortic arch

� þ
dextrocardia,
right pulmonary
artery hypoplasia,
atrial flutter

� þ
small pericardial
effusion

þ
aortic coarctation

þ
aortic coarctation

Eye abnormalities þ
strabismus, bilateral
cataracts

þ
Duane anomaly,
right ptosis,
bilateral upgaze
limitation

� þ
Peters anomaly,
right esotropia

� þ
Peters anomaly,
strabismus,
nystagmus

þ
myopia

þ
strabismus, mild
hyperopia

þ
astigmatism,
hyperopia

Urogenital
malformations

� micropenis � � � right
cryptorchidism

bilateral
cryptorchidism

� bilateral
cryptorchidism

Other salt hypogenusia,
C5-C6 partial fusion,
imperforate anus.
de novo missense in
DNM1 (p.Leu134Met)

� � aplasia cutis
congenita at
vertex, shoulder
Sprengel type
deformity

pulmonary
sequestration

� mirror movements,
umbilical and
inguinal hernias,
bilateral absence
of shoulder muscles,
hip dysplasia,
scoliosis, hyperlordosis,
joint hypermobility,
pes planus

scapular winging,
right shoulder
Sprengel type
deformity, mild
scoliosis, noise
sensitivity

Abbreviations are as follows: ADHD, attention deficit hyperactivity disorder; AV, atrioventricular; GDD, global developmental delay; ID, intellectual disability; CC, corpus callosum; ACC, agenesis of corpus callosum; PNH,
periventricular nodular heterotopia; NA, not available; SD, standard deviation.
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A

B

Figure 2. Localization and Conservation of De Novo Variants in CDH2
(A) A schematic depiction of CDH2 shows the cadherin-Pro region (Pro), five extracellular cadherin domain repeats (EC-1 to EC-5), the
transmembrane region (TM), and the cytoplasmic tail (C). Arrowheads above the protein show the positions of the variants.
(B) The HomoloGene-generated amino acid alignment of human CDH2 and its predicted orthologs shows the conservation of the
affected residues.
sensitive to extracellular Ca2þ concentration changes, as

revealed by the partial loss of homophilic interaction

upon rapid removal of extracellular Ca2þ.37

Remarkably, six of the seven missense variants we identi-

fied (c.1789G>A [p.Asp597Asn], c.1789G>T [p.Asp597Tyr],

c.1802A>C [p.Asn601Thr], c.1839C>G [p.Cys613Trp],

c.1880A>G [p.Asp627Gly], and c.2027A>G [p.Tyr676Cys])

affect residues of the EC4-EC5 linker region and EC5, which

are highly conserved among vertebrate orthologs (Figures

2A and2B). Three variants result in aminoacid substitutions

that are in the calcium-binding site between EC4 and EC5,

whereas the other three are in EC5 (Figure 2A). These amino

acid changes lie in protein regions that are intolerant to

missense variations according to the tolerance landscape

of CDH2 variants, as depicted by MetaDome38 (Figure S1).

To assess the clustering of these variants, we calculated their
The America
geometric mean distance.39 Compared to the gnomAD-re-

ported mutational density of variants along the transcript,

the observed variants in the EC4-EC5 calcium-binding site

and EC5 are significantly clustered (p ¼ 1.37 3 10�4), sug-

gesting that there is a common effect onN-cadherin activity

and that this effect is critically related to a region spanning

about 80 amino acids.

The c.1057G>A (p.Asp353Asn) missense variant affects

an EC2 residue that is highly conserved among vertebrate

orthologs (Figure 2B). The proximal region of EC2 along

with EC1 has been largely studied in the homophilic inter-

action of opposing cadherins5,40 and together they consti-

tute the ‘‘minimal essential unit’’ for CDH2-mediated

cell adhesion.41 The two frameshift variants (c.2563_

2564delCT [p.Leu855Valfs*4] and c.2564_2567dupTGTT

[p.Leu856Phefs*5]) are predicted to result in a truncated
n Journal of Human Genetics 105, 854–868, October 3, 2019 859



A B

C D

Figure 3. N-cadherin Variants Have
Impaired Cell-Cell Adhesion and Reduced
trans Adhesion to N-cadherin-WT
(A) Schematic representation of the cell-
aggregation assay. L cells were transfected
with empty GFP, N-cadherin-WT, and
N-cadherin variants. Aggregation was then
performed for 30 min in the presence of
calcium.
(B) Bar graph of the mean 5 SE of the in-
dex of aggregation for N-cadherin-WT
(black) and N-cadherin variants (gray)
(n ¼ 5 experiments). Cell aggregation
was evaluated after 30 min of aggregation
(T30) by the index (N0-N30)/N0, where N0

is number of GFP-positive cells or aggre-
gates at T0, and N30 is the number of
GFP-positive cells or aggregates at T30.
The N-cadherin-GFP variants have a lower
index of aggregation than N-cadherin-
WT-GFP cells do. One-way ANOVA post-
tests were performed for each variant
versus N-cadherin-WT (****p % 0.0001;
***p % 0.001; **p % 0.01; *p % 0.05).
(C) Schematic representation of the mixed-
cell aggregation assay evaluating trans
interaction with N-cadherin-WT. L cells
were transfected with empty GFP, N-cad-
herin-WT, and N-cadherin variants or
with N-cadherin-WT-MycþmCherry. Cells
were then mixed in a 1:1 ratio, and aggre-
gation was performed for 30 min in the
presence of calcium.
(D) Bar graph of the mean5 SE of the frac-
tion of mixed aggregates for N-cadherin-
WT (black) and N-cadherin (gray) variants
(n ¼ 3 experiments). The fraction of mixed
aggregates was evaluated after 30 min of
aggregation (T30) by the following index:
number of mixed aggregates/number of to-
tal aggregates. Cells expressing N-cadherin
WT-mycþmCherry form mixed aggregates
with cells expressing N-cadherin-WT-GFP,
but they form fewer mixed aggregates
with cells expressing the N-cadherin vari-
ants. One-way ANOVA post-test were
performed for each variant versus N-cad-
herin-WT (***p % 0.001; *p % 0.05).
protein with a shortened cytoplasmic tail. The variants

encode mRNAs that are not predicted to undergo mRNA

decay according to the 50-nucleotide rule.42 The cyto-

plasmic tail of classical cadherins, including N-cadherin,

is well known to stabilize cadherins on the cell surface

through its link to the actin cytoskeleton; it thereby en-

sures proper cell adhesions and clustering.43–45

To test whether the variants lying in the EC4-EC5 linker

region and EC5 could affect N-cadherin-mediated cell

adhesion, we generated an N-cadherin-GFP fusion protein

with the GFP tag at the C-terminal of the protein; this tag

does not alter the cis and trans binding capability of the

protein.36,41 We then used the N-cadherin-GFP construct

to generate five of the six point mutations identified in

the subjects by PCR mutagenesis. p.Asp597Tyr was not

generated because the same amino acid is substituted in

(p.Asp597Asn). To investigate whether the N-cadherin var-
860 The American Journal of Human Genetics 105, 854–868, Octobe
iants affect cell adhesion, we performed an aggregation

assay (Figure 3A). We transfected L cells with one of the

following constructs: N-cadherin-WT-GFP or the variants

N-cadherin-Asp597Asn-GFP, N-cadherin-Asn601Thr-GFP,

N-cadherin-Cys613Trp-GFP, N-cadherin-Asp627Gly-GFP,

or N-cadherin-Tyr676Cys-GFP. Similar protein amounts

of N-cadherin-WT-GFP or the variants were observed by

immunoblot analysis (Figure S2A), as well as similar cell-

surface protein amounts, as assessed by immunofluores-

cence under non-permeabilizing conditions (Figure S2B).

48 h after transfection, we assessed the cell-aggregation

capability in the presence of Ca2þ (Figure S3A). Expression

of the N-cadherin-WT-GFP promoted the formation of ag-

gregates in relation to the GFP negative control. However,

cells expressing the N-cadherin variants displayed reduced

aggregation capabilities in comparison to N-cadherin-WT-

GFP. Cells expressing N-cadherin variants formed smaller
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aggregates than those expressing N-cadherin-WT-GFP

(Figure S3A), resulting in a significantly lower index of

aggregation than that for cells expressing N-cadherin-

WT-GFP (p value % 0.05) (Figure 3B). These results indi-

cate that the N-cadherin variants have defective self-

interaction.

Next, to determine whether the variants had impaired

binding in trans with N-cadherin-WT-GFP, we performed

a mixed aggregation assay. We transfected L cells with

N-cadherin-WT-MycþmCherry or with N-cadherin-WT-

GFP, N-cadherin-Asp597Asn-GFP, N-cadherin-Asn601Thr-

GFP, N-cadherin-Cys613Trp-GFP, N-cadherin-Asp627Gly-

GFP, or N-cadherin-Tyr676Cys-GFP variants. 48 h

post-transfection, cells expressing N-cadherin-WT-Myc

þmCherry were mixed in a 1:1 ratio with the cells express-

ing N-cadherin-WT-GFP or N-cadherin-variants and cell

aggregation capability was assessed (Figure 3C). N-cad-

herin-WT-MycþmCherry formed mixed aggregates with

N-cadherin-WT-GFP. In contrast, when we mixed N-cad-

herin-WT-MycþmCherry cells with cells expressing N-cad-

herin-variants, fewer mixed aggregates were formed

(Figure S3B). As expected, N-cadherin-WT-MycþmCherry

cells still formed clusters of self-aggregates. Analysis of

the fraction of mixed aggregates showed that all the

CDH2 substitutions had significantly reduced adhesion

in trans with the N-cadherin-WT-MycþmCherry, with

respect to the N-cadherin-WT-GFP (p value % 0.05)

(Figure 3D). Taken together, these findings indicate that

the CDH2 variants impair the cell-adhesion function of

N-cadherin by affecting both self-binding and trans-bind-

ing with N-cadherin-WT.

Our results indicate that the EC4-EC5 region of N-cad-

herin is important for cell adhesion. Multiple studies

have identified the distal EC1 domain as being critical for

trans interactions between cadherins on opposing mem-

branes and for cell-cell adhesion.46,47 In contrast, little is

known about the functional role of the proximal EC do-

mains, EC4, and EC5 in the cis and trans cadherin

interaction.

To visualize the identified amino acid substitutions and

predict their effect on 3D protein structure, we generated

a CDH2 model by using SWISS-MODEL and displayed

the amino acids by using Chimera UCSF (Figures S4 and

S5). Three amino acid substitutions in the calcium binding

site (p.Asp597Asn, p.Asp597Tyr, and p.Asn601Thr) and

one in EC5 (p.Asp627Gly) were predicted to modify the

calcium-binding pocket compared to the that in the

wild-type residues and thereby to potentially alter the ecto-

domain stability mediated by the calcium ions (Figures

S4E, S4I, S4M, and S4N). The substitutions of the polar

and charged Asp597 by either the uncharged Asn or the

aromatic Tyr were predicted to abolish the H bond that

the wild-type Asp597 forms with Asp629 and Asn633

and to interfere with Arg561 (Figures S4M and S4N). The

substitution of the Asn601 by the Thr in the loop between

EC4 and EC5 (Figures S4H and S4I) is also predicted to alter

the Ca2þ-binding pocket. Similar findings are observed
The America
when Asp627 is substituted by the small glycine (Figures

S4D and S4E). Our results implicating changes in Ca2þ

binding are consistent with E-cadherin studies showing

that disruption of the calcium binding site between EC4

and EC5 is sufficient to disrupt the trans association be-

tween E-cadherin of apposing cells.36

Cys613 and Tyr676 are in EC5, and the substitution of

the small Cys with the aromatic Trp at position 613 is pre-

dicted to interfere with Cys701 and disrupt the H bond

formed by the wild-type Cys613 and Cys701 (Figures S4F

and S4G). The substitution of Tyr676 with Cys is predicted

to disrupt the H bond between the wild-type Tyr676 and

Glu672 (Figures S4B and S4C). Altogether, these changes

might result in altered protein conformation and explain

the defective adhesion observed in L cells expressing

N-cadherin mutants.

Although Asp353 lies 20 amino acids from the EC2–3 in-

terdomain, the predicted folding of CDH2 in 3D modeling

(Figure S5) shows that it is proximal to the calcium-binding

site of the EC1-EC2 interdomain. The substitution of the

negatively charged Asp353 with the neutral Asn is pre-

dicted to abolish the H bond between the wild-type Asp

and Asn261 without altering the calcium binding pocket.

A summary of the clinical features of affected individuals

is presented in Table 1, Table S1, and the Supplemental

Note. All subjects exhibited developmental delay, and

half (4/8) had mild to moderate ID. Two individuals met

diagnostic criteria for ASD, one displayed self-injurious be-

haviors, and another had several neuropsychiatric issues,

including auditory hallucinations. Seven of nine subjects

had ACC, which was prenatally diagnosed in all cases

(Figure 1). One individual had corpus callosumhypoplasia.

Additionally, periventricular nodular heterotopias were

detected in four subjects. Hypothalamic adhesion was

identified in five subjects, and two individuals had

an intherhemispheric cyst communicating with the III

ventricle. Four subjects had hypo-dysplastic tentorium,

two subjects had megacisterna magna, and another

showed an atretic parietal cephalocele. Only one subject

had a normal brainMRI. Awide range of congenital cardiac

defects were found in the majority of individuals (6/9);

such defects include a defect of the atrioventricular canal

(n ¼ 2), aortic coarctation (n ¼ 2), dextrocardia with right

pulmonary artery hypoplasia (n ¼ 1), and tricuspid regur-

gitation (n ¼ 1). Five of seven of these congenital cardiac

defects were diagnosed prenatally. In addition, one subject

had pericardial effusion. Two individuals developed sei-

zures. Half of the cohort exhibited congenital eye defects,

including Peters anomaly (n ¼ 2), unilateral ptosis with

Duane anomaly (n ¼ 1), congenital cataracts (n ¼ 1), and

strabismus (n ¼ 3), all requiring surgical intervention. Hy-

posmia was reported in three subjects, one of which also

had hypogeusia. Interestingly, subject 7 had congenital

mirror movements (MMs), which are involuntary move-

ments that occur on one side of the body but that mirror

voluntary movements made on the opposite side.48 MMs

reflect aberrant neuronal wiring and axon guidance.49,50
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Three individuals showed shoulder deformities (bilateral

absence of shoulder muscles [n ¼ 1] and Sprengel type

deformity [n¼ 2]). All but onemale had genital anomalies,

including cryptorchidism (n ¼ 3) and micropenis (n ¼ 1).

Four subjects hadmacrocephaly, and one had relative mac-

rocephaly at last evaluation. Consent for published images

(Figure 1) was obtained from all parents and legal guard-

ians. In those for whom photos were available, common

craniofacial dysmorphisms in two subjects (2, 4) included

a broad and prominent forehead, downslanting palpebral

fissures, thin upper lips, and low-set ears with thick helices

and earlobes, whereas subjects 7 and 8 displayed deep-set

eyes, slightly low-set and posteriorly rotated ears with

attached earlobes, thin upper lips, and a pointed chin.

Two subjects (5 and 9) did not show major craniofacial

dysmorphisms.

Of note, subject 1, who was found to also harbor a

de novo variant in DNM1, displayed an overlapping

phenotype with our cohort. It remains to be determined

whether the imperforate anus and vertebral anomalies

observed in this individual are features of the CDH2 spec-

trum; they are not usually observed in the DNM1 epileptic

encephalopathy.

We have identified de novo pathogenic variants in CDH2

in nine individuals with a strikingly similar clinical and

radiologic phenotype characterized by developmental

delay/ID (8/8), callosal malformations (8/9), cardiac (7/9)

and ocular (7/9) abnormalities, and characteristic facial

dysmorphisms. Six of the seven missense variants, of

which two affect the same amino acid, cluster in the

same protein region, namely EC4-EC5. Our in vitro assays

demonstrated that the EC4-EC5 variants result in defective

CDH2 function, supporting a possible dominant-negative

effect (DNE). Our cohort also includes one individual

with a missense variant in EC2 and two individuals with

distal and neighboring frameshift variants leading to a pre-

mature stop of translation of the cytoplasmic tail and pre-

dicted to result in a truncated CDH2 protein. On the basis

of previous evidence supporting the DNE of truncating

variants affecting the cytoplasmic domain of other cadher-

ins51 or other proteins,52 we speculate a similar pathome-

chanism for our variants, though a loss of function mech-

anism is also possible. Given that the EC2 domain is

critical for N-cadherin-mediated adhesion,41 the EC2

missense variant is likely to also act through a DNE.

The neurodevelopmental features of the affected indi-

viduals, including ACC, periventricular nodular heteroto-

pias, hyposmia, MMs, and Duane anomaly, support previ-

ous evidence regarding the critical role of CDH2 in

neuronal migration and axon pathfinding. Indeed, N-cad-

herin is essential for establishing dynamic adhesions be-

tween migrating neurons and radial glial cells during

glia-dependent migration.53,54 Knockdown studies in vivo

either by RNAi53 or by in utero electroporation55 have

shown that depletion of N-cadherin impairs the neuronal

attachment of migrating neurons along the radial glial fi-

bers in the mouse developing cerebral cortex. N-cadherin
862 The American Journal of Human Genetics 105, 854–868, Octobe
overexpression also perturbs neuronal migration.55 N-cad-

herin knock-out mice die during embryonic stages;56 how-

ever, mice with a conditional inactivation of N-cadherin in

the cerebral cortex display cortical disorganization and

lack a corpus callosum,57 paralleling the ACC and periven-

tricular nodular heterotopias observed in our subjects. In

addition, N-cadherin plays a critical role for the proper di-

rection and collective migration of facial branchiomotor

neurons from the developing hindbrain.58 Lastly, knock-

down of N-cadherin in the developing chicken optic

tectum affects axonal length, formation of multipolar neu-

rons, and neuronal migration.22 Taken together, the

impaired cell-cell adhesion that we observed in vitro most

likely underlies a neuronal migration or axon pathfinding

defect in vivo during early development and results in ACC,

hyposmia, Duane anomaly, abnormal shoulder muscle

innervation, nodular heterotopia, and MMs in our sub-

jects. MMs have been linked to genes (DCC,59 NTN1,60

DNAL4,61 RAD5162) encoding axon-guidance receptors

and ligands that tightly regulate the spatiotemporal devel-

opment of corticospinal tract and corpus callosum. Mono-

allelic DCC variants can cause congenital MMs (MIM:

157600) in association with abnormal midline crossing

of the corticospinal tract, isolated ACC (MIM: 217990),

or both.59,63 These features partly overlap the neuroradio-

logical features and movement disorders of our subjects.

Although CDH2 and MM genes have been linked so far

to distinct pathways and gene regulatory networks (ac-

cording to KEGG, geneMANIA, STRING, and TRUUST

databases),64–67 a previous study revealed that overexpres-

sion of truncated DCC constructs in neuroblastoma cells

diminished N-cadherin protein amounts (together with

alpha- and beta-catenin) and impaired calcium-dependent

cell adhesion, pointing to a possible functional link be-

tween DCC and the activity of N-cadherin and catenin.68

Further studies will shed light on the regulatory framework

and the possible interaction between CDH2 and MM

genes.

The presence ofmild tomoderate ID and/or ASD in three

subjects is consistent with the pivotal role of the cadherin

superfamily in synapse structure, stability, and plas-

ticity.69–71 Dendrite and synapse morphogenesis are in

fact key determinants of neuronal connectivity, whose

impairment underlies the pathogenesis of many neurode-

velopmental disorders, such as ID, ASD, and epilepsy.72,73

N-cadherin is known to regulate presynaptic function at

glutamatergic synapses74 and control presynaptic-vesicle

clustering through a trans-synaptic mechanism, promot-

ing postsynaptic accumulation of synaptic organizing

molecules, such as neuroligin-1.75 Although some knock-

down studies of N-cadherin19,74–76 showed defects in syn-

apse structure, others revealed an imbalance between

excitatory and inhibitory synaptic markers,57,77 suggesting

a critical role for N-cadherin in maintaining synaptic ho-

meostasis and plasticity.77 Furthermore, it has recently

been revealed that CDH2 cooperates with other synaptic

organizers to stimulate both presynaptic and postsynaptic
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differentiation.20 After the association of canine compul-

sive disorder with its orthologous CDH2,23 a few CDH2

SNPs were identified in humans with obsessive compulsive

disorder and Tourette disorder23–25 and were shown to

reduce CDH2 protein amounts in HEK293 cells.23 Among

the CDH2 variants related to neuropsychiatric disorders,

only c.2118C>A (p.Asn706Lys; rs775358499) is rare

(MAF < 0.001, allele count in gnomAD is 1) and lies be-

tween EC5 and the transmembrane domain. Altogether,

the neurodevelopmental features of our subjects are

consistent with the important role of CDH2 in synapto-

genesis, expanding the list of cadherin superfamily genes

associated with neurodevelopmental disorders.15

Interestingly, seven of nine individuals showed eye

anomalies. Although ptosis and Duane anomaly could be

explained by an axon-guidance defect,78 Peters anomaly

(found in two out of six individuals) is consistent with

N-cadherin’s pivotal role in the development of the

anterior segment of the eye.79,80

Moreover, the muscle anomalies observed in three sub-

jects most likely reflect an axon-pathfinding defect that re-

sults in a failure of proper innervation.81 Furthermore, the

finding of hyposmia in three subjects might point to an

axon-pathfinding role of CDH2 in the olfactory system,

as previously suggested82 and is consistent with the fact

that other adhesion molecules have key roles in the guid-

ance of olfactory neurons.83 In addition, CDH2 is required

for the proper axon-axon interactions between atonal and

amos olfactory receptor neurons (ORNs) in Drosophila,84

suggesting a role for CDH2 in glomeruli homeostasis.

Heterozygous variants affecting ectodomains of CDH2

have been recently associated with arrhythmogenic right

ventricular cardiomyopathy (ARVC), an inherited cardio-

myopathy that is characterized by fibrofatty replacement

of the right ventricular myocardium and that predis-

poses individuals to ventricular arrhythmia and sudden

death.85,86 ARVC is primarily caused by pathogenic vari-

ants in genes encoding proteins of the desmosomes,87 a

type of intercellular junction that, along with adherens

and gap junctions, forms intercalated discs within

cardiomyocytes. A missense CDH2 variant (c.686A>C

[p.Gln229Pro]) was first identified by WES in multiple

individuals with ARVC in a three-generation family.29

Subsequently, another missense variant, c.1219G>A

(p.Asp407Asn), was found in several ARVC-affected sub-

jects from two unrelated families,28,29 further supporting

the candidate role of CDH2 in ARVC pathogenesis. These

findings are in line with the critical role of CDH2 in cardiac

development and function, as shown by N-cadherin

knockout mouse models that display dissolution of the ad-

herens junctions in the intercalated discs and develop

dilated cardiomyopathy and ventricular arrhythmia.88

Accordingly, it is not surprising that seven of nine subjects

in our cohort display a wide range of cardiac abnormalities,

including complete atrioventricular canal defect (subjects

1 and 3), aortic coarctation (subjects 8 and 9), dextrocardia

and right pulmonary artery hypoplasia (subject 5), pericar-
The America
dium effusion (subject 7), and mild tricuspid regurgitation

(subject 2). Of note, the finding of dextrocardia in subject 5

is consistent with the pivotal role of CDH2 in establishing

the left-to-right axis during gastrulation of chicken em-

bryos.89 Subject 3 died after pulseless electrical activity at

eight weeks of life, and subject 5 experienced atrial flutter

requiring extracorporeal circulation at birth. Although

the other two individuals had no cardiac abnormalities, pe-

riodic cardiac reassessment, including electrocardiogram

and standard echocardiogram, becomes strongly war-

ranted in all subjects with pathogenic CDH2 variants, ac-

cording to the recent updated guidelines for ARVC.90

Interestingly, three of fivemales showed cryptorchidism,

and one showed micropenis. Of note, CDH2 is highly ex-

pressed in the testis,91 where it is known to mediate Sertoli

cell-germ cell adhesion.92 Remarkably, mice with a condi-

tional knockout of CDH2 in Sertoli cells showed compro-

mised blood-testis barrier function and spermatogenesis

failure, suggesting a crucial role of CDH2 in the function

of Sertoli cells.93

The finding of hearing loss in two subjects (2 and 9)

further supports previous evidence regarding a CDH2 role

in the morphogenesis of the otic vesicle in zebrafish.94

Furthermore, the well-known association of cadherins

with cell migration and invasion in many types of cancers

unavoidably raises the question whether germline CDH2

variants could confer susceptibility to malignancy. To

date, 499 somatic CDH2 variants have been reported in

COSMIC. Among these, two affect the same residues

of subject 1 and 6 but result in different amino acid

changes (c.1057G>T [p.Asp353Tyr] [COSM: 1236400]

and c.1879G>A [p.Asp627Asn] [COSM: 3524707], respec-

tively). Several studies, mainly focused on transcriptional

or post-transcriptional regulation, showed that CDH2

upregulation leads to transepithelial spreading of mela-

noma,95 hematological malignancies,96 and high histo-

pathological grade of glioma.97 High CDH2 protein

amounts are also a poor prognostic factor in pancreatic

and gallbladder cancer.98,99 Further studies are needed to

shed light on the possible oncologic risk in patients

harboring germline CDH2 variants.

Overall, the association of callosal anomalies, congenital

heart defects, and ocular and urogenital anomalies with

variants in CDH2 suggests that pathogenic variants in

CDH2 are causative of a recognizable syndrome, for which

we suggest the name ACOG syndrome (agenesis of corpus

callosum, axon pathfinding, cardiac, ocular, and genital

defects). Moreover, the prenatal diagnosis of ACC in asso-

ciation with congenital heart defects should motivate cli-

nicians to consider CDH2 in the differential diagnosis of

ACC spectrum,100 and this should orient them toward

providing prompt prenatal genetic counselling.

In summary, our study demonstrates that de novo

heterozygous variants in CDH2 result in a multisystemic

developmental disorder, primarily involving the nervous,

cardiac, ophthalmologic, and genital systems. Many of

these pathogenic variants cluster between the EC4 and
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EC5 domains and result in defective CDH2-mediated cell-

cell adhesion, suggesting a previously unrecognized critical

role of this region in CDH2 function. Future clinical, ge-

netic, and functional studies are warranted to delineate

the phenotypic spectrum and provide further insights

into the pathogenic mechanisms related to CDH2 variants.
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