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Abstract 

Variable Angle Correlation Spectroscopy 

by 

Young K. Lee 

In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable 

angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in 

rapidly rotating samples. These experiments focus on one of the basic problems in solid 

state NMR: how to extract the wealth of information contained in the anisotropic 

component of the NMR signal while still maintaining spectral resolution. Analysis of the 

anisotropic spectral patterns from poly-crystalline systems reveal information concerning 

molecular structure and dynamics, yet in all but the simplest of systems, the overlap of 

spectral patterns from chemically distinct sites renders the spectral analysis difficult if not 

impossible. One solution to this problem is to perform multi-dimensional experiments 

where the high-resolution, isotropic spectrum in one dimension is correlated with the 

anisotropic spectral patterns in the other dimensions. The V ACSY technique incorporates 

the angle between the spinner axis and the static magnetic field as an experimental 

parameter that may be incremented during the course of the experiment to help correlate the 

isotropic and anisotropic components of the spectrum. 

The two-dimensional version of the V ACSY experiments is used to extract the 

chemical shift anisotropy tensor values from multi-site organic molecules, study molecular 

dynamics in the intermediate time regime, and to examine the ordering properties of 

partially oriented samples. The V ACSY technique is then extended to three-dimensional 

experiments .to study slow molecular reorientations in a multi-site polymer system. 
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Chapter 1. Background Theory 

I will discuss in this chapter some of the basic principles of Fouri_er and NMR 

theory that will be used throughout this thesis. 

1.1 Fourier Transformation and Theorems 

Since its first introduction into NMR 1 and development of its possible 

applications, 2 the Fourier transformation has become the basis of modern NMR 

spectroscopy and imaging. Since much of this thesis is concerned with the generalizations 

of the Fourier transformation and uses of Fourier theorems in developing novel NMR 

techniques, I will first briefly review some of these theorems. 

The Fourier transform off(x) is defined as 

( 1.1) 

To note the reversibility of Eq. 1.1, the transformation equations are usually written in 

pairs. In n dimensions, the Fourier transform pairs are: 

00 

F(y) = J f(x)e-ix-y dx 

.( 1.2) 

where the vectors x and y are both n dimensional vectors and define the conjugate Fourier 

spaces. Generally in NMR spectroscopy, the Fourier vectors x and y are represented by 

1 



the frequency and time vectors, iiJ and t, and by having the time domain signal and the 

spectrum form the Fourier transform pair, all of the mathematical properties and theorems 

associated with the Fourier transformation may be used to extract precisely the information 

desired from the experimental data. In the following,fix) and F(y) are a Fourier transform 

pair obeying Eq. 1.2. 

The similarity theorem 

If the Fourier variable xis scaled by a constant factor a then f(ax) will have the 

Fourier transform lar1 
F(y 1 a): 

j f(ax)e-ixydx = _!_ j f(ax)ei<ax)(yla)d(ax) 
-oo jal_oo 

1 
= -

1 
F(yfa). 

a! 

Generalized to higher dimensions, Eq. 1.3 becomes 

( 1.3) 

(1.4) 

where A is a matrix that creates a ge~eral transformation of the vector x, "T" represents 

transpose, and IAI is the determinant of the matrix. For the special case of orthogonal 

transformations, 

( 1.5) 

· This leads to the important conclusion that if the coordinates of one Fourier space are 

rotated, 

2 



x'=A·x 
' 

(1.6) 

the conjugate Fourier space coordinates are rotated in the identical manner: 

y' =A ·Y. (1.7) 

The shift theorem 

Displacements in one Fourier dimension correspond to phase shifts in the conjugate 

dimension: 

00 00 

Jf( ) -ixvdx jJ( ) -i(x-a)v -iavd( ) x-ae · = x-ae ·e · x-a 
(1.8) 

= e -iay F(y ). 

Equation 1.8 easily generalizes to higher dimensions as 

j(x- a)= e-ia·y F(y). (1.9) 

The shift theorem is most commonly applied as first order phase correction to NMR 

spectra. 

The convolution theorem 

Given that g(x) and G(y) also form a Fourier transform pair, the convolution 
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theorem states: 

f(x)* g(x) = F(y)G(y), (1.10) 

where the convolution of f(x) and g(x) is defined by the integral 

~ 

f(x)* g(x) = J f(x')g(x- x')dx'. (1.11) 

This can be seen by Fourier transforming the right hand side of Eq. 1.11: 

jJit ( x ')g( x - x')tb:'] e -a, tb: 

= If(x'{ I g(x - x'V"' tb:] tb:'. 
(1.12) 

Then using the shift theorem (Eq. 1.3), the integral becomes 

~ 

J f(x')G(y)e-ix'ydx' = F(y)G(y). ( 1.13) 

Equation 1.13 may easily be generalized to higher dimensions by defining a multi-

dimensional convolution: 

~ 

f(x)* g(x) = J f(x')g(x- x')dx' 
(1.14) 

= F(y)G(y). 

4 
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Projection slice theorem 

Given that j(x) and F(y) form a 2D Fourier transform pair, the Fourier 

transformation of a cross sectional slice in one Fourier space is equal to the projection onto 

an axis of the same orientation in the conjugate Fourier space. First consider a projection 

of a 2D function j(xpx2) onto the x1 axis: 

00 

Px, (x2) = J f(xpx2)dx1. ( 1.15) 

Its Fourier transformation then becomes the slice of F(y1, y2 ) at y1 = 0: 

00 

Px, (y2) = f Px
1 
(x2)e-ixzyzdx2 

( 1.16) 

The result of Eq. 1.16 may be generalized to projections onto an axis of arbitrary 

orientation by considering the same equations for a new set of coordinates, 

x'=Ax 

y' = Ay, 
(1.17) 

where 

A= 
[cosO 
-sinO 

sin OJ 
cosO 

( 1.18) 
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The theorem may then be quickly generalized to higher dimensions by writing x', y' as n 

dimensional vectors and A as an n x n qrthogonal rotation matrix. 
\~ 

1.2 Classical Theory of NMR 

All the experiments discussed in this thesis have been performed on isolated spin t 

systems and may be described purely by classical means. Thus I will only discuss the 

classical theory of spin evolution; the complete quantum mechanical description of NMR 

may be found in several books3·5. 

The equation of motion describing a classical spin system is given by the 

phenomenological Bloch equation: 

dM ' 
-= YnMxB, 
dt 

( 1.19) 

where M is the macroscopic magnetization vector due to the alignment of the nuclear spins, 

Yn is the nuclear gyromagnetic ratio, and B is the magnetic field. 

Equation 1.19 may be more conveniently expressed in a rotating coordinate system. 

Such a transformation can be understood by considering infinitesimal changes in the 

magnetization vector. The change in the magnetization vector as seen from the laboratory 

frame, ( dM) L, is due to the change in the magnetization seen from the rotating frame, 

(dM)R, plus the change in the magnetization du~ to the rotation of the coordinate system 

(dM)RCS" 

(1.20) 

The last term in Eq. 1.20 can be simply expressed as6 

6 



(dM)Rcs = dcpn x M, ( 1.21) 

where n is the direction of the rotation axis, and dq> is the infinitesimal change in the angle 

due to the rotation of the coordinate system. Equation 1.20 may then be written in terms of 

time derivatives as 

(dM) = (dM) + WRCS X M, 
dt L dt R . 

( 1.22) 

where mRcs is the frequency vector of the rotating coordinate system. Substituting Eq. 

1.19 for the left hand side, we obtain 

(dM) = M X ( YnB + WRcs)· 
dt R 

( 1.23) 

The magnetization, evolves under the influence of main static magnetic field, B0 , 

and a smaller field B Jnr due to local interactions. Equation 1.23 then becomes 

Larmor frequency cancels and Eq. 1.23 becomes 

(dM) =mint X M. 
dt R 

( 1.24) 

( 1.25) 

In NMR experiments, the rf signal is generally mixed down to audio frequencies before it 

is detected, which corresponds to recording of the signal in the rotating frame. In addition, 

7 



since the information desired from the experiment is contained in iiJ1nr, from both the 

experimental and theoretical viewpoint, it is more convenient to discuss the NMR signal in 

the rotating frame. For the rest of the thesis, evolution in the rotating frame at the Larmor 

frequency will be assumed and all subscripts will be dropped. 

The equation of motion takes on a simple form for magnetization transverse to a 

constant magnetic field. For iiJ = (O,O,ro) and M(t) = (M0 ,0,0) Eq. 1.25 becomes 

which may be readily solved as 

Mx = wMY 

M.,. = wMx. 

Mx(t) = M0 cos(wt) 

MY(t) = -M0 sin( rot). 

(1.26) 

( 1.27) 

Since quadrature detection records both the Mx and M.,. components of the magnetization, 

it is convenient to superimpose the two components onto a complex plane and define 

( 1.28) 

Then the signal or free induction decay (FID) of the magnetization evolving with a single 

frequency becomes 

S(t) = M 0 exp[ -iwt], ( 1.29) 

In NMR we are not usually dealing with .single isochromats but rather systems 

evolving with a distribution of frequencies. The key relationship of the NMR signal and 

the spectrum through a Fourier transformation is due to the fact that a spin system may be 

8 
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considered a linear system where the signal from each isochromat may be added to form the 

total signal. . 
For a frequency distribution I ( w), Eq. 1.29 for the NMR signal becomes 

-
S(t) = J I(w)exp[-iwt]dw, 

which may be inverted to obtain 

/(ro) = -
1 J- S(t)exp[iwt ]dt; 

2TC 

thus S(t) and /(ro) form a Fourier transform pair. 

1.3 NMR Hamiltonians 

( 1.30) 

( 1.31) 

The physical origin of the interaction frequency introduced in the previous section is 

the NMR Hamiltonian which has the general structure: 

H =CI·R·S 
3 

= ciiiRijsj, 
i ,j=l 

( 1.32) 

where I and S are two vectors coupled to each other by a second rank tensor, R, and the 

coupling constant, C, is determined by the physical origin of the Hamiltonian. The vector 

I represents the nuclear spin vector; S may represent the same nuclear vector (quadrupole 

interactio~). another nuclear vector ( J and dipole coupling), or a static field (chemical 

shift). The same Hamiltonian may also be written as a product of two second rank 

Cartesian tensors 

9 



3 

H = IcRijTij' ( 1.33) 
i.j=l 

where Tij is a dyad product of the vectors I and S,7 or in terms of irreducible spherical 

tensors8 

I 

H = C:I L(-l)m Rl-mT/m. ( 1.34) 
1=0,2 m=-1 

1.3.1 Coordinate Rotations 

The Cartesian tensor R represents the physical interaction that couples the two 

vectors. The coupling tensor has its simplest form in the principle axis system (PAS) 

frame where R becomes diagonal4 

( 1.35) 

The components of the tensor in Eq. 1.35 are labeled with the convention 

( 1.36) 

where R = t Tr R. The interaction tensor in an arbitrary frame can be obtained through 

orthogonal coordinate transformations 

( 1.37) 

10 
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z 

z 

Figure 1.1. Euler angle rotations in transforming from the (x,y ,z) coordinate axes system 
to the (x', y', z') coordinates. The sequence of rotations starts with a rotation of angle a 
about the z axis, transforming the system in to a set of intermediate coordinates 
( x1, y 1 , Z1). Next the system rotates through the angle ~ about the x1 axis into the second 

intennediate coordinates ( x2 , y2' z2 ). Finally, a rotation of angle y about the z2 axis 

completes the transfonnation into the (x',y',z') coordinate axes system. 

where D(.Q) orthogonal rotation matrices and .Q represents the set of Euler angles (X., ~, 

and y (Fig. 1.1 ). Likewise the spherical tensor R,m also takes o~ a simple form in the PAS 

frame with only the m = 0, ± 2 terms being nonzero. The tensor components R1m in the 

PAS frame are usually represented by Ptm and are related to the Cartesian tensor 

components by 

Poo = t(Rxx+ R)Y + Rzz) = R 

P1o = {f(Rzz- R) = {f8 

Pz±z = 1{ R,~,- Rxx) = t 1JD. 

fl 

( 1.38) 



For spherical tensors, coordinate rotation from the ·PAS frame to an arbitrary frame is ., 

obtained by Wigner rotation matrices 

I 

Rim= I,D~.m(Q)plm' 
m=-1 ( 1.39) 

The reduced Wigner rotation matrix elements, d~.m (/3), are tabulated in several books8•9 

and will not be presented here. 

Often, consecutive rotations are required, for example to connect the PAS, rotor, 

and lab frames. Such coordinate rotations, shown in Fig. 1.2, can be represented using the 

addition theorem of Wigner rotation matrices:8•9 

I 

D~.m(a,f3, y) = 2,D~'m"(apf3p Y1 )D~,m(a2 ,/32 , Y2 ). 

m"=-1 

S' 
/ " (al, Pu Y1) (a2, P2, Y2) 

/ "' s ... S" 
(a, p, y) 

Figure 1.2. Consecutive coordinate transformations relating the S frame with the S" 
frame. The sets of Euler angles (a,, /3,. y,) and (a, {3, y) define the relative orientations 

of the S' and S" frames with respect to the S frame. The set of Euler angles ( a 2 , {32 , y2 ) 

define the orientation of the S" frame with respect to the S' frame. 

12 
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The consecutive coordinate rotations are demonstrated in Fig. 1.2. The Euler angles 

(a,f3, r) and (apf3p rl) are defined with respect to the originals frame while (a2,f32, r2) 

are defined with respect to the intermediate S' frame. 

1.3.2 Chemical Shift Hamiltonian 

The experiments presented in this thesis take into account only the chemical shift 

(CS) interaction. Thus none of the other NMR Hamiltonians will be discussed here; a 

more complete discussion can be found elsewhere.5 There are two physical origins of the 

CS Hanultonian. First is the diamagnetic effect from the electrodynamic interaction due to 

the motion of the electrons. The diamagnetic effect acts to decrease the overall magnetic 

field at the nuclei. The second is the paramagnetic effect from the alignment of excited 

electrons with the static field; this effect acts to increase the overall magnetic field at the 

nuclei. The CS Hamiltonian can be obtained by defining the tensor terms for the general 

Hamiltonian given in Eq. 1.34 with the static magnetic field placed along the z axis, 

B0 = Boi.. Following Haeberlen's notation, the spin tensor terms are:4 

T~s = Bolz 

T;s = .JfBolz 

TCS_IBJ 
2±1 - .fi 0 ±I 

Ti;2 = 0, 

and the coupling tensor terms in the PAS frame are: 

p~ = t (a xx + an. + a zz) = a 

Pi;= {f( azz- a)= {f8 

Pi;2 = t( a~Y- axx) = t 7]8. 
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In addition, Cis defined as he nuclear gyromagnetic ratio, Yn . Keeping only the first order 

terms in the CS Hamiltonian that commutes with the Zeeman Hamiltonian, 

( 1.43) 

and using Eq. 1.39 for the coordinate transformation from the CS PAS frame to an 

arbitrary reference frame, the CS frequency becomes 

. (1.44) 
m 

where o/ is the isotropic frequency and is defined as o/ = YnB0a, while W0 = YnB0 • 

1.4 Multi-Dimensional NMR 

1.4.1 Experimental ·Procedure 

The general scheme for 2D experiments are shown in Fig. 1.3. After the initial 

excitation, the spin system evolves during the t1 evolution period with a frequency 

distribution in W1• The system is then altered through combinations of rf pulses, time 

delays, or sample reorientations. In the final step, the FID is detected during t2 with the 

spin system evolving (in general) with a different frequency distribution in ro2 • Several 

FIDs are acquired for different t1 delays. The complete signal may then be represented as 

( 1.45) 
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Evolution Detection 

--- tl---l•~lf---- t2 • 
0 • • 
0 • • 

2DFf 0)1 

~ • • 

0)2 

Figure 1.3. Experimental procedure for conventional 2D NMR experiments. The spin 
system is manipulated so that the signal is governed by two different frequency 
distributions during the evolution and detection periods. The signal is acquired in t 2 for 
varying increments of t,. The final 2D spectrum correlates the two frequency 
distributions. 

where l(mpm2 ) is the 2D spectrum correlating the frequency distributions in m1 and m2 • 

If the complete 2D signal is acquired using fixed time increments (dwell times) in both t1 

and t2 , the entire data set may be placed on a regular 2D grid as shown in Fig. 1.3. This 

effectively corresponds to evolving the signal orthogonally along each Fourier dimension 

defined by the Cartesian coordinates ( t1, t2 ). The main advantage of having signal data 

points form a regular grid of evenly spaced points is that a fast Fourier transform (FFT) 

algorithm may be used to invert Eq. 1.45 and obtain the 2D spectrum I ( ml' m2 ). 

This same procedure easily generalizes to higher dimensions by defining additional 

time evolution periods where the spin system evolves with different frequency 

distributions. For an n-dimensional experiment there are n- 1 evolution periods; the FID 
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is then detected during tn. The complete multi-dimensional data set is acquired by 

incrementing each time variable independently. The signal may then be written as 

(1.46) 

and placed on evenly spaced grid points of an n-dimensional matrix. 

1.4.2 Lineshapes 

The complete spectral information may not always be available in an NMR 

experiment due to truncation of the signal and relaxation of the spin system; the final 

experimental spectrum is the convolution of the spectral intensity distribution and a point 

spread function (PSF) that takes into account truncation and line broadening effects (I will 

only consider Lorentzian line broadening here). 

First, consider the 1D NMR signal in Eq. 1.30. If we assume causality and only 

allow signal for t > 0 and also assume that all spectral components have the same 

Lorentzian line broadening, the signal may be considered to have been multiplied by a 

function h 

h(t) = {
0, 

. exp(-A.t], 
t <0}· 
t;::: 0 

( 1.47) 

According to the convolution theorem, this corresponds to a convolution of the ideal 

spectrum in the frequency domain by a Lorentzian point spread function (PSF), P( m): 

I' ( m) = I ( m )* P( m ), ( 1.48) 
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'. 

a(ro) d(ro) 

Figure 1.4. Absorption, a(w), and dispersion, d(w), Lorentzian lineshapes. 

The PSF is given by 

~ 

P(m)= Jexp[(-ll-im)t]dt 
0 

( 1.49) 

= a(m}- id(m). 

where 

ll 
a( m) = ll2 2 

+(J) 
( 1.50) 

(J) 

d(m) = ll2 2. 
+m 

The functions a( m) and d( m) are referred as the absorption and dispersion Lorentzian 

lineshapes5 (Fig. 1.4). Both these function contain the same information and may be 

transformed into one another through Kramer-Kronig relationships;5 however their 

functional forms are c6mpletely different. . The dispersive component, d( m), is a broad 

antisymmetric function, while a( m) is a symmetric function. a( m) is identical in form to 
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the lineshape obtained when no truncation is assumed and the time integral in Eq. 1.47 

extended from -oo to +oo, since then the asymmetric, dispersive term cancels and . 
00 

J exp[(-A- ia>)ltl]dt = 2a(a>). ( 1.51) 

Thus we see that in 1 D experiments, the same information may be obtained by truncating 

the signal for positive time. This is due to the redundancy of half of the time domain signal 

S(t) = S( -t)*. ( 1.52) 

However, in 2D experiments, ifwe truncate the signal for positive t1 and t2 , the 

signal will only span. t of the Fourier space. In this case the complete information 

available from spanning the entire Fourier space is no longer available. The final 2D 

spectrum can be written as a 2D convolution of the ideal spectrum with a 2D Lorentzian 

PSF: 

(1.53) 

Defining the functions 

( 1.54) 
d ) - (02 

2 ( a>2 - A. 2 2 • 
2 + (02 

the 2D PSF may be calculated as 
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c 
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b 

Figure 1.5. 2D Lorentzian lineshapes. (a) and (b) are the pure absorption and dispersion 
lineshapes, a, ( ro, )a2 (ro2 ) and d, ( ro, )d2 ( ro2 ). (c) and (d) are the mixed phase lineshapes, 
a, ( ro, )a2 ( ro2 )- d, ( ro, )d2 ( ro2 ) and a, ( ro, )d2 ( ro2 ) + d, ( ro, )a2 ( ro2 ). 

~ ~ 

P( m1, m2 ) = J exp[ ( -ll1 - im1 )t1 ]dt1 J exp[ ( -ll2 - im2 )t2 ]dt2 

0 0 

= [at ( mt) - idt ( mt) ][ a2 ( m2) - id2 ( m2)] 

= [at ( mt )a2 ( m2) - dt ( mt )d2 ( m2)] 

- i[ at( mt )d2 ( m2) + a2 ( m2 )dt ( mt) ]. 

(1.55) 

Equation 1.55 shows that by truncating both the t1 and t2 dimensions, a pure absorptive 

lineshape, a1 ( m1 )~ ( m2 ), is not possible; both the real and imaginary components of 

P( mp m2 ) contain absorption and dispersion terms and are often called "mixed phased" or 

"phase twist" lineshapes (Fig. 1.5). Such lineshapes can create severe distortions in the 

final spectrum, and thus the problem has been thoroughly studied in multi-dimensional 

NMR and several methods have been developed to remove these distortions and obtain 

19 



"pure-phase" lineshapes. 10- 12 Similar lineshape distortion in relation to the V ACSY 

experiments will be discussed in chapter 3. 
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Chapter 2 2D V ACSY 

2.1 Introduction . 

Much of the success in interpretation of NMR experiments relies upon the ability to 

resolve distinct resonant frequencies for each chemical site. The high resolution provided 

by technical advances in high-field superconducting magnets and the development of multi­

dimensional techniques has made possible NMR studies of increasingly complex biological 

molecules in solution. 1 High resolution NMR in solids has similarly led to studies of more 

complex systems. However, unlike liquid-state NMR, where the fast tumbling motions of 

molecules provide a high resolution spectrum naturally, solid-state NMR requires 

experimental averaging techniques to remove the broad, orientation-dependent components 

of the spectrum. 2•3 The removal of these anisotropic components, however, has the 

unfortunate consequence of also removing structural and dynamical information, which 

makes the ability to selectively reintroduce anisotropic spectral information an important 

aspect of solid-state NMR. Experiments may be designed to yield both the high resolution 

needed to study complex systems and the anisotropic information needed to characterize the 

structural and dynamical properties of molecules. Useful techniques of this type include 

2D and 3D experiments where high resolution, isotropic frequencies along one dimension 

are correlated with broad, anisotropic frequency distributions in the other dimensions.4· 10 

An alternative 2D technique, variable angle correlation spectroscopy (V ACSY), 11 is 

presented in this and the following chapters. An important feature of V ACSY is its 

experimental simplicity; no synchronized multiple pulse sequences or rapid sample 

reorientations are required for correlating isotropic and anisotropic frequencies. Figure 2.1 

shows the basic principle behind the V ACSY technique: the anisotropic frequency scales 
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Figure 2.1. Rotation axis angle dependent scaling of an anisotropic pattern with 
1J = 0.5. As e, the angle between the spinning axis and the static magnetic field changes, 

the isotropic shift remains invariant while the anisotropic pattern scales by the second 
Legendre polynomial, P2 (cos 9). 

with the change in the rotation axis angle, 8, while the isotropic frequency is left invariant. 

This allows a set of variable-angle-spinning (VAS) FIDs to be rearranged on a 2D grid 

such that a Fourier transformation directly yields the isotropic to anisotropic correlations. 

The general theory and methodology of 2D VACSY will be discussed in this 

chapter; linear prediction with singular value decomposition to remove phase artifacts in 2D 

V ACSY will be presented in chapter 3; and applications of 2D V ACSY will be presented in 

chapter 4. Extension of the 2D VACSY technique to three dimensions for the study of 

slow molecular exchange will be presented in chapter 5. 

2.2. General VACSY Theory 

V ACSY experiments are based on the generalization of the Fourier transformation 

and data acquisition in NMR spectroscopy. As discussed in chapter 1, 
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conventional multi-dimensional NMR spectroscopy methods involve incrementing n time 

variables independently and placing the acquired signal, S(tpt2 , ••• ,tn), on evenly spaced 

Cartesian grid points in an n-dimensional matrix. An FFT routine may then be used to 

obtain the spectrum, l(mpm2 , ... ,mn). This method of using time increments and 

Cartesian data' acquisition has been extended and generalized in NMR imaging. · For 

example, it is often advantageous in NMR imaging to evolve the Fourier phase by 

incrementing the magnitude of the magnetic field gradient rather than time. 12 There are also 

several NMR imaging methods that take advantage of non-Cartesian data acquisition where 

experimental data points no longer fall a rectangular grid, but where gradients are 

manipulated so that the signal forms radial, 13•14 skewed 15 or even spiral 16 trajectories in 

the signal Fourier space. Non-Cartesian sampling of the Fourier space, however, usually 

requires subsequent interpolation in order to use the FFT or to display the image. 

Therefore, while the usual methods of incrementing time and acquiring data 

orthogonally along each Fourier dimension are often experimentally convenient and 

facilitate the use of the FFT, they are not fundamental requirements for multi-dimensional 

NMR experiments. The important requirement is that the phase which the system acquires 

during the experiment must be separable as a sum of individual terms, each expressible as a 

product of two variables: 17 

n n 

<I>=~ <1>. = ~ (J).'r.. L..J I L..J I I 
(2.1) 

i=l i=l 

Each <I>; represents the phase acquired by the system along one Fourier dimension. The 

frequency variables, m;, define the coordinate axes for the spectral intensity distribution, 

and the "generalized time" variables, r;. have units of time and define the coordinates for 

the signal acquisition Fourier space. These latter variables are under experimental control 
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and are varied during signal evolution and detection. The signal for an n-dimensional 

experiment is now redefined as 

(2.2) 

and integrating over the variables 'r;, the spectrum I(m"m2 , ••• ,mn) can be obtained 

through a Fourier transformation. This generalization of time variables and signal 

acquisition phase space can become a powerful tool, allowing the use of new experimental 

parameters and procedures to extract precisely the information desired in the spectrum. The 

coordinates in ro space determine the variables to be correlated in the spectrum, while the 

coordinates in 't space specify how the FIDs should be placed in the signal acquisition 

phase space. An n -dimensional experiment still requires n experimental parameters that 

must be incremented independently to allow the signal phase space to be densely filled with 

data, but there is considerably more latitude in how they are chosen. 

In the V ACSY experiments, the angle of the spinning axis with respect to the static 

magnetic field, B0 , is one of the·variables that controls the phase that the signal acquires. 

, The pulse sequences and the angle profiles for three different V ACSY experiments are 

shown in Fig. 2.2; the Fourier variables and phases relevant to each experiment are listed in 

Table 2.1. The design of all three experiments follows the same procedure. First, the 

frequency variables must be chosen to provide the desired correlation information from the 

multi-dimensional spectrum. For the VACSY experiments, isotropic frequencies in one 

dimension are correlated with anisotropic frequencies in other dimensions, as shown in 

Column 4 of Table 2.1. Next, the phase acquired by the spin system during the time 

evolution periods is written in the same form as Eq. 2.1 by partitioning the phase along 

different dimensions (Column 2) such that the phase for each dimension may be factored 
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a 2DVACSY 

I3c· ~ t 
_ ____.1 CP 1._-:_-:_-:_-:_-:_-:__-:_-:_-:_-:_-:_-:_-:_:::::· 

~
+1.0 

P2(cosO) { 

~------------- ~5 

b 3D V ACSY -S Exchange 

13c tl 
1TI2 7T/2 

fCPl• ·n· tm ·n t2 

P2(cos0) { 
e. ]II[ 92 

C 3D V ACSY-T Exchange 
1TI2 7T/2 

fCPl tl ·n· tm ·n t2 

e 

Figure 2.2 Pulse sequences for three different V ACSY experiments. Below each pulse 
sequence is a graph of how P2(cos9) is varied. (a) 20 V ACSY experiment, used to 
correlate isotropic frequencies with lD anisotropic frequency distributions. FIDs are 
acquired at different P 2( cos9) values. (b) 3D V ACSY -S exchange experiment, used to 
correlate the isotropic frequencies with the anisotropic frequency distributions measured 
before and after the tm mixing delay. The angles el and e2 are varied independently 
during the experiment. (c) 3D V ACSY-T exchange experiment that obtains the same 
correlations as V ACSY -S but without the need for rapid sample reorientation. 20 
exchange experiments are acquired at different P2(cos9) values. Experiments (b) and (c) 
will be discussed in chapter 5. 
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Experiments 

2DVACSY 

3DVACSY-S 
Exchange 

N 
0"1 

3DVACSY-T 
Exchange 

Components of the Signal Phase Adjustable Correlated Data Coordinates in 
ci> = (i)."t Parameters Frequencies t Space 

ci>, = oJIP2(cos6)t e,t 
[ ~] = [ :] [ :: l = [ P2

(c;sO)t l 
Cl>2 = filt 

_) 

Cl>1 = ~Picos6 1 )t1 · e" e2, t2 

[~] = [;] 
[ t

1 l [P
2
(cos01)t

1 l 
Cl>2 = ~pi cose2)t2 :: = P2(c::02)t2 

Cl>3 = mit 2 

Cl>1 = ~Picos6)pt1 e, t" t2 

[~] = [;] 
[ t

1 l r2(cos0)pt1
] 

Cl>2 = ~Picos6)t2 t 2 = P2(cose)t2 
Cl>3 = fJt(pt I + t2) t3 (pt, + t2) 

Table 2.1 The partitioned Fourier phases and the conjugate Fourier variables for three V ACSY 
experiments. The variables designated as of are the anisotropic frequencies; of is the isotropic frequency; 
9, 91, 92 are the rotation axis angles with respect to the static magnetic field; P2(cos9) is the second 
Legendre polynomial; t, t1, and t2 are the time variables; and p is the sign of the t1 coherence pathway 
(discussed in chapter 5). 
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into the desired frequency variables, m;o and the generalized time variables, 'r;, (Column 

5). Each 'r; must be distinguished from the others through different combinations of 

independently adjustable parameters to ensure that the signal spans a significant portion of 

the multi-dimensional Fourier space. These parameters, listed in Column 3, are either time 

variables ( t, t1, t2 ) or the rotation axis angles ( 0, 01, 02 ). Finally, the FIDs are placed in 

't space according to coordinates that are linear functions of time, so that the FIDs form 

· linear trajectories whose orientations in 't space are determined by the rotation axis 

parameters. The data points are then interpolated onto a Cartesian grid and Fourier 

transformed. I will now discuss the specific experimental procedure of the 2D V ACSY 

experiment. The two 3D V ACSY experiments will be presented in chapter 5. 

2.3 2D VA CSY Theory 

2D VACSY will first be described for rapidly spinning samples evolving under the. 

chemical shift interaction. When the sample is rotated, the Euler angles for the chemical 

shift frequency in Eq. 1.44 gain a time dependence 

(2.3) 

Using the addition theorem of Wigner rotation Matrices (Eq. 1.40), the overall motion of 

the CSA tensor may be decomposed into two consecutive rotations: 

(J)cs = (J)i + # (1)0 L D'!nm.(a,f3, y)D~·o< m,t, {})pm' (2.4) 
m.m; 

where m, is the rotational frequency of the rotor. The first set of Euler angles, (a,f3, y), 

rotates the coordinate axes from the CSA tensor PAS frame to the rotor frame; the second 
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__ set of Euler angles rotates the coordinate axes from the rotor frame to the lab frame. Under 

rapid sample rotation, Eq. 2.4 simplifies to2 

m (2.5) 

where (J)
0 (a,{3), the anisotropic frequency defined with respect to the rotor axis frame, has 

the identical functional form as the anisotropic frequency of a static sample. The phase 

acquired by the system under VAS conditions may then be written as 

(2.6) 

The signal may be written in the same form as Eq. 2.1 if the phase along the two 

dimensions is partitioned as 

<1>1 = w"(a,{3)P2(cos8)t 

<1>2 = (J)it, 

(2.7) 

(2.9) 

( 

The two experimental parameters that are varied independently in 2D V ACSY are the angle 

(} and time t, i.e., FIDs are acqu__ired at different (} angles. Unlike conventional 2D NMR 

experiments where the signal S( t1, t2 ) is acquired by incrementing the time variables t1 and 

t2 independently, r 1 and r 2 for 2D VACSY are linearly dependent on each other. Thus 

VAS FIDs acquired for 2D V ACSY will evolve along both the r 1 and r 2 dimensions 

simultaneously, forming linear trajectories in r space whose slopes are determined by 
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Figure 2.3. Placement of FIDs according to the 't space coordinates defined·for the 2D 
V ACSY experiment. 

P2 (cos8) (Fig. 2.3). As a result, the data acquired in 2D VACSY will no longer 

necessarily fall on vertices of a Cartesian coordinate grid. Incrementing different values of 

8 scales the evolution along the r, dimension by P2(cos8) while having no affect on the 

evolution along r 2 ; this allows the data acquired at different values of 8 and t to span the 

2D Fourier space. 

All of the VAS FIDs are acquired using the same dwell time, t J. The spectral width 

along the isotropic ro2 dimension is then set by tJ, while the spectral width along the 

anisotropic m, dimension can be varied by placing the FIDs at different orientations in 't 

space. Let 81 and 82 represent the discrete grid increments along the r, and r2 
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'tl = t R=2 

R=l 

Figure 2.4. Two different coordinate mappings for the 20 V ACSY data with the 
condition, --0.5:5 P2 (cos 0) :5 0.5. The dark lines represent the trajectory of the FIDs, 

with each FID inclined at an angle a=tan-'[RP2 (cos0)]. The dots represent the 

experimental data points. The variables o, and 02 are unit grid increments in the r, and 
r 2 dimensions. 

dimensions, as shown in Fig. 2.4. If the spectral widths along the two dimensions are 

chosen the same, then both 81 and 82 represent time values of t11 , and the slopes of the 

FIDs placed in 'f space are determined only by P2(cos8). If the spectral width in the 

anisotropic ma dimension is chosen to be different, each 82 increment will still represent a 

time value of td, but 81 will represent a scaled time of t 11 j R, where R is ratio of the 

anisotropic to isotropic spectral widths, R = swu / s}'l/. Taking into account this scaling, 

Eq. 2.9 may be written in discrete index form as 
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(2.10) 

where n is an integer that indexes the grid increments. The orientation of each FID in the 1' 

space is then detennined by the angle 

a= tan-1
[ RP2 (cosfJ)], (2.11) 

as shown in Fig. 2.4. The figure also shows that for any given range of P2 (cosfJ), the 

experimental data spans a larger area of 't space for larger values of R. Since the dwell 

time for each FID is the same, all of the data points will map directly onto one of the evenly 

space grid lines perpendicular to the 1'2 dimension. As shown in Fig. 2.4, interpolation is 

only required along the 1'1 dimension to obtain data on a Cartesian grid required for the 

FFT. Only the grid points within the shaded boundary set by the FIDs with the maximum 

and minimum slopes (Fig. 2.4) will be interpolated. Each grid vertex, g, within this 

shaded region is bound by two experimental data points, e1 and e2 , as shown in Fig. 2.5. 

Figure 2.5. Interpolation procedure in 2D V ACSY. The solid lines are the FIDs; the 
dashed lines are the lines of the Cartesian grid. The two solid dots labeled e, and e2 are 
the nearest experimental points to the grid vertex g. All experimental data points lie on 
one of the grid lines parallel to the r, aixs; thus interpolation is only required along the 
r, dimension. The experimental points e, and e2 are used to interpolate g. 
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Linear or cubic spline interpolation along the r 1 dimension using the two nearest 

experimental data points usually suffices to obtain accurate intensities of for all of these grid 

points. The grid points outside of the shaded region are no longer bounded by 

experimental data points, and their intensities must either be set to zero or be extrapolated 

from the experimental data. Setting these grid points to zero will lead to phase distortions 

and other artifacts in the spectrum. The removal of these artifacts through extrapolation by 

linear prediction routines will be discussed in chapter 3. Figure 2.6 shows the three 

experimental stages of 20 V ACSY data: first, the directly acquired VAS FIDs; next the 

interpolated data in r space; finally, the 2D correlation spectrum obtained by Fourier 

transformation. 

2.4 Experimental 

The 2D V ACSY technique is demonstrated by 13C NMR experiments on some 

simple organic molecules. All experiments in this section were conducted with a home­

built spectrometer, using a 4.2 T superconducting magnet with a 13C resonance frequency 

of 45.2 MHz. The probe employed a double tuned circuit and a single coil wrapped around 

a moveable stator. The orientation of the stator is set by a stepper motor, located at the base 

of the magnet, and controlled by a computer. All the hardware designed for these 

experiments are described in chapter 6. 

A conventional CP sequence with phase inversion of the initial decoupler 90° pulse 

and flip-back pulse was used to acquire the signals. Hartmann-Hahn match condition was 

achieved at a nutation rate of 80kHz, using 200 Win the 13C channel and 100 Win the 'H 

channel. The rotation axis angle was referenced to the magic angle by maximizing the 

rotational echoes of the 81Br FID of solid KBr. Since the rf coil is fixed around the stator, 
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Figure -2.6 Simulated data showing the three stages of processing for 2D VACSY. (a) 
Series of variable angle spinning FIDs for P2(cos9) in the range of +0.5 and -0.5. (b) 
VACSY data after interpolation onto the 't space coordinates. (c) Isotropic- anisotropic 
correlated spectrum after Fourier transforming the 't space data in (b). 
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the strength of the excitation field scales as sin( 0). Thus the range of angles used in the 

experiment is restricted to -0.5 < P2 (cos0) < 0.5. 

Figure 2.7 shows the results of a 2D VACSY experiment on glycine. Altogether 75 

different rotation axis angles were sampled from 90° to 35.3°, and 256 points were 

acquired in each FID. The data were then interpolated and zero-filled onto a 512x512 grid 

as described earlier. A Fourier transformation and a magnitude calculation were then used 

to obtain the final spectrum. Figure 2.7a shows a normal CPMAS spectrum of glycine, 

and figure 2.7b shows a slice from the 2D V ACSY spectrum at (J)
0 = 0. Some resolution 

has been lost along the isotropic dimension due to the introduction of dispersive terms from 

the magnitude calculation. Figure 2.7c shows the slices from the 2D VACSY spectrum 

taken parallel to the (J)
0 axis at the three different sites of glycine. All three of the powder 

patterns reveal sharp singularities of the traceless CSA interaction. Note that even with the 

magnitude calculation, each of these sites appears to be in pure-absorption mode with sharp 

singularities. This will be discussed further in chapter 3. 

Fig. 2.8 shows the 2D correlation spectrum of a more complex system, p-anisic 

acid. Although in solution the 13C NMR spectrum displays six inequivalent carbon peaks, · 

solid-state effects introduce an additional splitting for the aromatic carbon resonances ortho 

to the -OCH3 group. The resulting seven resonances are clearly resolved, and the 

anisotropic spectrum for each site is shown in Fig. 2.9. The CSA tensor elements can be 

obtained by measuring the singularities of each experirpental powder pattern; these 

parameters are then used to simulate the powder patterns. The nonprotonated carbon sites, 

f, d, and g show the largest deviations from ideal powder lineshapes. · Thus we attribute 

these distortions to cross polarization efficiency rather than the experimental technique. 

The tensor parameters are listed in Table 2.2. 
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Figure 2.7 (a) MAS spectrum of glycine. (b) Slice taken along the 
isotropic axis from the 20 VACSY spectrum. (c) Anisotropic slices 

'taken from the 20 V ACSY spectrum. 
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Figure 2.8 2D isotropic-anisotropic correlation spectrum of p-anisic acid, showing the 

isotropic projection and the assignment of the peaks for each site of the molecule 
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Figure 2.9 Experimental and simulated line shapes of anisotropic slices from 
the 2D V ACSY spectrum of p-anisic acid. Each pair of spectra corresponds to 
the carbon labeled with the same letter in Figure 2.8. 
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Carbon atom o (ppm) 
a -42 
b -104 
c -46 
d -83 
e -126 
f -95 
g -65 

Table 2.2. 13C traceless CSA parameters of p-anisic acid 

2.5 Analysis of experimental errors 

0.16 
0.55 
0.72 
0.71 
0.63 
0.77 
0.63 

Due to the unconventional data processing in 2D VACSY, several new sources of 

experimental errors may degrade the quality of the 20 spectrum. Some of these errors will 

be analyzed with simulations in the following sections. 

2.5.1 Slow Spinning Effects 

Equation 2.5 for the CSA frequency assumes m, >> 8csa. When this condition no 

longer holds then all of the terms in Eq. 2.4 must be included in calculating the phase 

acquired by the system: 

<I>= m;t+ P2(cos8)m"t 

+ E I,.Am.(a,,B, y)exp(-im'm,t')dt', 
m'=±l.±2 . 

(2.12) 

where 
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1 
I 

2 

Am.(a,/3, Y) = ~ (J)o LD~m.(a,{3, Y)Pm· (2.13) 
m=-2 

However, one of the dimensions may still be defined as a "high-resolution" dimension by 

partitioning the phase as 

<1>1 =P2(cos0)mat 

<1>2 = (J)it +I: LAm.(a,f3, y)exp( -im' m,t')dt'. 
m'=±l.±2 

(2.14) 

Now, the ro2 dimension can no longer be considered an isotropic dimension since <1> 2 

de.pends on the Euler angles (a,f3, y), but <1> 2 is simply the phase acquired in an MAS 

experiment with rotational echoes. Thus by using the same definition of '! coordinates and 

the same interpolation procedure, the high resolution MAS spectrum in the m2 dimension is 

correlated with the broad frequency distributions in ro1• The resolution of a 2D V ACSY 

experiment in the m2 dimension Is degraded by the addition of the time dependent terms in 

<1> 2 which contributes spinning sidebands to the spectrum, but this is the same resolution 

available in an MAS experiment at the same spinning speed. Figure 2.10 shows 

simulations of 2D V ACSY spectra at different rotational frequencies. Figure 2.11 shows 

that despite the lineshape deformations, the CSA tensor values may still be obtained from 

the spectrum. 

2.5.2 Interpolation Error 

The number of VAS FIDs required for 20 VACSY depends on the width of the 

anisotropic patterns. As the number of sampled rotation axis angles decreases, the average 

distance from each grip point to the nearest experimental data points increases, resulting in 
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Figure 2.10 Simulations of 2D V ACSY spectra at different spinning speeds. 
All simulations were made with o = -2 kHz and Tl = 0. The axes are labeled 
in kHz. 
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Figure 2.11. Anisotropic slices from the 2D V ACSY spectra in Fig. 2.1 0. 

interpolation errors. Figure 2.12 shows the lineshape distortions that can appear when the 

number of acquired FIDs becomes too small. A general "rule-of thumb" in doing the 

V ACSY experiments is to use at least 31 different angles when the largest anisotropic 

pattern in the spectrum is about half of the isotropic spectral width. 

2.5.3 Random Angle Missettings 

As discussed above, the placement of each FID in r space is determined by 

P2 (cos 8), so any error in the angle settings will degrade the spectrum. Both systematic 

and random errors can occur. Systematic angle errors may come about from the initial 
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Figure 2.12 20 VACSY simulations with different numbers of sampled angles, Na. The 
two sets of simulations are for o = 1 kHz and 2 kHz, both with 11 = 0.5. Each simulated 
data set corresponds to an even sampling of P2 values in the range of +0.5 and -0.5. The 
line shape distortions for decreasing Na become much more severe for the set of 
simulations with the larger anisotropy. 
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Figure 2.13 Line shape distortions caused by random angle error, ~e. The 
simulations were made for a CSA tensor characterized by o=5 kHz and 11 = 0.6. 
Errors in the spinning angles for each of the 64 FIDs were introduced using a 
random-number generator. 
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missetting of the magic-angle. However, by using standard references for setting the 

magic angle, this error can be minimized to less than 0.1° and should be insignificant. 

Random errors in the angle settings are introduced because of the inability of the apparatus 

to reproduce the required discrete angle increments. With the system used in our 

experiments, this error is again minimized to about 0.1°. Figure 2.13 shows the results of 

random angle missettings using simulations. Lineshapes distortions can be seen when • 

angle errors exceed 2°; however, the positions of the singularities remain constant. · 

2.5.4 Random Phase Error 

Equation 2.6 assumes the phase contains terms only due to the dynamic evolution 

of the spin system under the CSA Hamiltonian. Thus in principle, each VAS FID must be 

first Fourier transformed into (J) space where the zero and first order phase effects may be 

corrected and then inverse Fourier transformed back into r space for interpolation. Correct 

phasing is especially important when a pure-phase (chapter 3) spectrum is desired. If a 

magnitude calculation is used to obtain the final spectrum, a constant phase applied to all of 

the FIDs will have rio effects on the spectrum, and a first order phase shift due to one or 

two missing points in the FID will have minimal effects. 
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Chapter 3 Absorption-Mode 2D VACSY Using 
Linear Prediction with Singular Value 

Decomposition 

As discussed in the previous chapter, one disadvantage of conventional 20 V ACSY 

is that pure-absorption-mode spectra cannot be obtained because of phase-twist artifacts 

inherent to the experiment; the resulting loss of resolution and lineshape distortions may 

impede spectral analysis. 1 The removal of such artifacts becomes especially important 

when there are partially overlapping or a continuous distribution of isotropic shifts, or 

when accurate lineshape analysis is required as in the study of intermediate dynamics or 

partial molecular ordering. In this chapter, linear prediction with singular value 

decomposition (LPSVD) is used to obtain absorption-mode 20 V ACSY free of spectral 

artifacts. 

3.1 Phase artifacts in conventional 2D NMR Spectroscopy 

Phase artifacts in an NMR spectrum can be seen as truncation effects due to 

incomplete sampling of the time domain Fourier space. In chapter 1, I discussed some of 

the problems associated with truncating the 20 time domain signal. Equation 1.55 shows 

that a pure:..absorption Lorentzian lineshape, a1 ( m1 )a2 ( m2 ), cannot be obtained from a 20 

Lorentzian point spread function (PSF), P( ml' m2 ), when both t 1 and t2 are truncated for 

negative times. This corresponds to acquiring data in only one of the four quadrants in the 

20 Fourier space (Fig. 3.1 b). If, however, half the Fourier space is acquired by truncating 

the signal only for t2 < 0, P( m1, m2 ) becomes: 

P( m1, m2 ) = 2a1 ( m1 )[ a2 ( m2) + id2 ( lU2)] 

= 2[ al (lUI )az ( m2) + ial ( ml )d2 ( (1)2) ], 

(3.1) 
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a 

b 

c 

Figure 3.1 2D Lorentzian point spread function (PSF), P(ro1,<00. (a) The signal acquired 
for all four quadrants of the time domain Fourier space. P(ro1,00z) is a real absorption 2D 
Lorentzian lineshape. (b) The signal acquired in two of the four quadrants. The real 
comp~nent of P(ro1,<00 remains an absorption Lorentzian lineshape, while the imaginary 
compontent is a dispersion Lorentzian lineshape. (c) The signal acquired for only one of 
the quadrants. P(ro1,<00 contains a mixture of absorptive and dispersive terms in both the 
real and imaginary components. 
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Thus just as in the example of the 1 D signal the pure-absorption lineshape, a1 ( m1 )a2 ( m2 ), 

can be obtained by sampling only half of the full Fourier space (Fig. 3.lc). This is again 

due to the redundancy in half of the 2D NMR signal: 

(3.2) 

Of course similar results may be obtained by truncating the signal along the t1 dimension 

rather than t2 • Conventional methods of obtaining pure-absorption-mode 2D spectra 

include acquiring echoes in either the t1 or t2 dimension2, or acquiring, both the + 1 and -1 

coherence pathways in the t1 dimension 1 •3• Both these methods ensure that the signal 

effectively spans two of the four quadrants in the 2D Fourier space. 

3.2 Phase Artifacts in 2D VA CSY 

With the 'l" space coordinate definitions in Eq. 2.9 two of the quadrants may be 

partially acquired since P2 (cos8) can take on both positive and negative values. However 

with the trajectories of the FIDs restricted to the angles given in Eq. 2.11, the two 

quadrants can never be completely filled with data since that would require R ~ oo. 

Artifacts inherent to the 2D VACSY spectrum are due to data missing from these two 

quadrants. Consider the PSF, P( m1, m2 ), for R = 2, and -0.5 ::; P2 ::; +0. 5. Since a then 

ranges from -45° to +45°, the total area of the Fourier space spanned by the V ACSY 

signal is equivalent to one quadrant. Thus P(mpm2 ), shown in Fig. 3.2a, is similar in 

form to the PSF of Fig. 3.1c but rotated by 45,''. The difference between the two PSFs is 

due to the star shape of the 2D Lorentzian function. Had we used a cylindrically symmetric 

lineshape function, such as a 2D Gaussian function, the two PSFs would differ only by the 
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a 'tl 

R=2 

b 

R=4 

c 

R=l 

Figure 3.2 2D Lorentzian PSF, P(ro1,000 for 2D VACSY experiments. (a) All functions 
are caluclated using -0.5 ::;; P2 ::;; +0.5. The different values for R determine the overall 
area of the time domain Fourier space covered by the data, as shown by the shaded 
regions. (a) V ACSY PSF with R = 2. The total area containing data is equivalent to one 
quadrant. The VACSY PSF is similar in form to the PSF in Fig. 3.lc but rotated by 45°. 
(b) VACSY PSF with R = 4. The intensity of the ridge artifacts decrease as a larger area 
of the time domain Fourier space is filled with data. (c) VACSY PSF with R = 1. The 
PSF shows more intense artifact ridges. 
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rotation. The artifact ridges, become less intense when R increases and a larger area of the 

Fourier space contains data, as shown in Fig. 3.2b. Unfortunately this is achieved at cost 

of spectral resolution in the anisotropic dimension, and increased interpolation error. In 

addition, rearrangement of the FIDs will never completely remove the phase artifacts, since 

according to the Fourier projection slice theorem (Eq. 1.16), the projection of the 2D 
' 

V ACSY spectrum onto the anisotropic m1 axis is equal to the Fourier transformation of the 

slice along the 't'1 axis. The -r1 axis, however, contains only one dat'! point at 't'1 = 0, and 

its Fourier transformation is a constant function. Figure 3.3 shows that a 2D V ACSY 

spectrum must contain negative lobes to cancel out all spectral features in the projection 

onto the anisotropic C01 axis. Similarly, the projection on to the isotropic m2 axis will 

result in a pure absorption MAS spectrum despite the phase artifacts. 

These spectral artifacts are unique to 2D VACSY experiments due to the 

unconventional truncation of the interpolated time domain data. Since the FIDs are placed 

symmetrically about the 't'2 axis, the slice of the V ACSY PSF along the m1 axis contains 

no dispersive terms, while the width of the lineshape varies depending on the level of 

truncation determined by R (Fig. 3.2). Thus even with a magnitude calculation, each 

anisotropic pattern appears absorptive provided there is no significant interference of the 

ridge artifacts from the different isotropic sites in the spectrum. Often these artifacts may 

be ignored, particularly when the spectrum is dominated by broad anisotropic patterns; 

since then the artifacts also broaden, and the interference between different sites becomes 

small. This explains the success of 2D V ACSY despite the artifacts inherent to the 

technique. However, these artifacts can become a serious problem when the spectrum 

contains closely spaced isotropic shifts with small anisotropies. The ridge artifacts 

emerging from a narrow site may interfere with the anisotropic patterns of neighboring 

sites, causing lineshape distortions. 

Artifacts in 2D V ACSY spectra can be minimized if the missing points in the signal 
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Figure 3.3 Simulation of 2D V ACSY spectra. The simulations are made using R = 2, 
td = 200 JlS, -0.5 ~ P2 ~ +0.5 and three sites with the chemical shift tensors: 
(axx, <fyy, a,J = (0.3,1.0,2.3), (-0.5,-0.5,-1.5), (-2.5,-2.0,-1.0) (kHz). The area outside the 
shaded region is set to zero. The 2D spectrum reveals the phase artifacts inherent to the 
normal 2D V ACSY experiment. The projection onto the anisotropic 001 axis yields a 
constant function, while the projection onto the isotropic ~axis yields a pure-absorption 
MAS spectrum. 
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~1 

~2 

Figure 3.4 2D V ACSY spectrum obJained by using LPSVD extrapolation and Fourier 
transformation of the same time domain data used for Fig. 3.3. The shaded region of 't 
space corresponds to the interpolated experimental data, while the dark arrows 
correspond to the extrapolated data for each slice parallel to the 't2 axis. The phase 
artifacts are eliminated from the 20 spectrum, and the projection onto the w, axis gives 
an overlap of the traceless anisotropic patterns. 

52 



Fourier space can extrapolated from the experimental data. However, due to the large 

number of missing data points, the extrapolation technique must maintain accuracy over 

several cycles of the signal. Linear prediction with singular value decomposition (LPSVD) 

is one such technique which has been used for extrapolation and spectral estimation in 

NMR to improve resolution and signal to noise.4•5 Figure 3.4 shows the spectrum after 

using LPSVD on the same time domain V ACSY data as in Fig. 3.3. The ridge artifacts in 

Fig. 3.3 are completely removed and the projection onto the anisotropic axis results in the 

overlap of traceless anisotropic patterns. 

The LPSVD method presented in the following sections is due to the original work 

of Kumaresan and Tufts6. The technique was introduced to the NMR community by 

Barkhuijsen et al.,4 and has since been widely applied as an extrapolation and spectral 

estimation technique to improve resolution and SNR. Descriptions of this method may be 

found in reviews5•7 and in Kay's book8 under the heading of "Prony's method". 

3.3 Linear Spectral Estimation 

3.3.1 Linear Spectral Models 

I will first discuss some background theory of linear prediction (LP) and its 

relationship to other linear spectral models. 

A causal discrete linear system can be described by a constant coefficient linear 

difference equation 

L M 

I,.bkYn-k = I,.ckx,._k' (3.3) 
k=O k=O 
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where xn is the discrete input series and ~n is the discrete output series. Both sides of Eq. 

3.3 can be recognized as a discrete convolution. Thus by taking the z transform of both 

sides and using the z transform version of the convolution theorem9 Eq. 3.3 becomes 

L M 

Y(z) Lbkz-k = X(z) Lckz-k, (3.4) 
k=O k=O 

where z is a complex number, and X(z) and Y(z) are z transforms of the series xn and 

Yn· The system function is defined as the ratio 

(3.5) 

This system function along with an input series, xn, of white noise forms the most general 

of the linear spectral estimation models and is called the auto regressive moving average 

model (ARMA). 

Assuming b0 = 1, Eq. 3.3 can be written in terms of a linear filter difference 

equation for the time series Yn: 

L M 

Yn =-LbkYn-k + LCkXn-k · (3.6) 
k=l k=O 

One special case of the ARMA model is when bk = 8k0 , then the system function becomes 

M 

H(z) = Lckz-k, (3.7) 
k=O 

and the time series, 
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M 

Yn = L,ckxn-k • 
k=O 

(3.8) 

now only depends on the input white noise X
11

• This model is dilled the moving average 

(MA) or the all zero model since the roots of the polynomial in Eq. 3. 7 correspond to zeros 

of the system response function. The MA model has been shown most useful for 

estimating spectra with broad features.8•10 

Another special case is when ck = Oko; the system response function then becomes 

H(z) = --.,...L --

1 + L,bkz-k 
k=l 

and the time series equation becomes 

L 

Yn =-LbkYn-k + x" · 
k=l 

(3.9) 

(3.10) 

Several names, auto regressive (AR), all poles model, linear prediction, and maximum 

entropy method, are used to describe this model. The roots of the polynomial in the 

denominator of Eq. 3.9 correspond to the poles of H(z), making the AR model particularly 

useful for estimating spectra with sharp narrowfeatures;8·10 because of this, the AR model 

has been thoroughly studied in liquid state NMR. 

3.3.2 Linear Prediction 

Although the different names for the time senes m Eq. 3.10 are used 

interchangeably in the literature, linear prediction gives slightly different interpretation to 
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the terms in the equation. In forward LP the nth term of the time series is estimated .from a 

linear sum of the previous L output data points 

L 
LP _ ""'b/ Yn - -£..J k Yn-k • (3.11) 

k=l 

The error in the prediction is defined as 

(3.12) 

so that 

L 

Y" =-Lbf Yn-k +en. (3.13) 
k=l 

Clearly if the prediction error en is assumed to be white noise, Eq. 3.13 is identical to Eq. 

3.1 0, and the coefficients for forward LP are identical to the coefficients fo~ the AR model. 

The LP time series equation may also be set up in backwar~ mode where the nth term of the 

time series is estimated from the following L data points: 

L 

Yn =-Lb:yn+k +en. (3.14) 
k=l 

It can be shown that the forward and backward LP coefficients are related as 8 

(3.15) 

Conventional LP methods involve finding the LP coefficients in Eq. 3.13 or Eq. 3.14 by 

least-square minimization of the prediction error, en. Up to this point we have not required 

56 



our output data, Yn, to have any particular functional form; the only requirement was that 

the time series lead to a spectrum with sharp features. The LPSVD method presented in the 

next section, however, uses the backward LP equation to model a signal as a sum of 

complex exponentials. 

3.4 Linear Prediction with Singular Value Decomposition 

3.4.1 Backward Linear Prediction Data Matrix 

In LPSVD, the data are assumed to have the form 

M 

Yn = L amz;+u + w/1 n = 0,1, ... ,N -1, (3.16) 
m=l 

where 

(3.17) 

am, mm, Am are the complex amplitude, frequency, and damping factor, respectively, of 

each exponential term; M is the total number of exponential components; tu is the dwell 

time of the time series signal; N is the total number of points in the time series; and d'is an 

arbitrary integer that shifts the time origin of the series. Using the N data points in Eq. 

3.16 and the backward LP time series (Eq. 3.14), a matrix equation may be constructed as 

yl Y2 YL b" 0 Yo 

Y2 Y3 YL+l b" Y1 I (3.18) =-

YN-L YN-L+l YN-1 b~-1 YN-L-1 
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or in short form as 

Ab=-h, (3.19) 

/ 

where A is an {N- L) x L data matrix, his the data vector with N- L components, and b 

is the vector of the backward LP coefficients. The prediction order, L, corresponds to the 

number of LP coefficients used and is bounded by the condition M ~ L ~ N- M, but is 

usually set to 0.75N. 6 

All of the data points Yn in Eq. 3.18 are known; the only unknowns are the 

backward LP coefficients, b;b. These coefficients may be obtained by inverting the matrix 

A through singular value decomposition. But first we should note some of the important 

properties of A. First, all the cross diagonal terms of the matrix are the same; this is 

referred to as Hankel structure. Next consider the form of A when the time series in Eq. 

3.16 contains only one exponential component and no noise: 

Zt z~ ZtL 

z~ 3 ZtL+t 

AI= atz'' 
Zt 

(3~20) 

N-L 
Zt 

zi'-L+t N-l 
Zt 

A given row, labeled by the index i, differs from its neighboring row, i+l, only by a factor 

z. Thus A1 contains only one linearly independent row (the same conclusion can be drawn 

for the columns), which means A1 is a rank 1 matrix. Now when the signal is composed 

of M exponential terms, A may be written as 

M 

A= Ia;A;. (3.21) 
i=l 
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All of the matrices in the summation are rank 1 matrices and have the same form as A1 in 

Eq. 3.20. Thus we see that when the signal contains no noise, A has a rank equal to the 

number of sinusoidal components in the signal. When noise is added to the signal, 

however, the linear dependence of rows and columns in Eq. 3.20 is destroyed and A 

becomes full rank regardless of the number of sinusoidal components: 
I 

rank(A) = min[L,N- L]. (3.22) 

However, as long as the SNR is not too low, we can still define an approximate rank 

which equals M. Thus by assuming the signal is formed of a sum of exponentials, it is still 

possible to obtain information on the number of exponential terms in the signal through a 

rank analysis of the backward LP data matrix, A. 

3.4.2 Singular Value Decomposition 

Singular value decomposition not only provides a method for inverting Eq. 3.19 

but also for doing a rank analysis of the matrix A and separating the parameters due to the 

signal and those due to noise. Any matrix can be factorized by SVD as8 

(3.23) 

where U and V are unitary matrices of dimensions (N- L) x (N- L) and L x L, 

respectively; "t" denotes Hermitian conjugate; S is a diagonal matrix with the singular 

values, { ak,k = 1,2,-··min(L,N- L)}, as its diagonal elements; and 0 is a null matrix. 

The structure of the matrix multiplication for L > N - L and N- L > L are shown in Fig. . 

3.5. The number of nonzero singular values is equal to the rank of A; thus for noiseless 
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data, there will only be M nonzero singular values (Fig. 3.6a). When there is noise, A 

becomes full rank; however, if t~e SNR is not too low, a jump in the magnitude of the 

singular values can be seen at the Mth singular value (Fig. 3.6b). Thus it is possible to 

keep only the large singular values, { ak, k = 1, 2, · · · M}, and truncate the matrix product in 

Eq. 3.21 (Fig. 3.7), since the other singular values are those associated with the noise. 

This allows an overall increase in SNR in the final spectrum. Since M represents the 

number of exponential components in the time series, if the SNR is high enough, M should 

be chosen as the total number of peaks in the spectrum; if SNR is lower, M may be chosen 

as a higher value.7 Denoting the column vectors of the matrices U and V by 

{upu2,··,uN-L} and {vpv2,···,vJ, the truncated linear prediction coefficients are 

a 

b 

Figure 3.5. Structures of matrix A after SVD. U and V are (N- L) x (N- L) and 
L x L matrixes. The matrix 0 is a null matrix, and the shaded regions contain the matrix 
elements that contribute to the matrix elements of A. (a) When L > N- L the matrix S 
is a diagonal matrix with the singular values {a,. 0"2 , ••• , a N-J. (b )When N- L > L: the 

matrix S is a diagonal matrix with the singular values {a,, 0"2, ... , a L}. 
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Figure 3.6 The singular values, CJ;, obtained from a simulated time series with three 
exponential components. A total of 32 CJ; values are shown in descending order of 
magnitude. (a) Time series with no noise. There are only three nonzero CJ; values. (b) 
All CJ; values are nonzero; however, a jump . in the magnitude of the CJ; can be seen at 
i= 3. 

Figure 3.7 ·The same matrices in Fig. 3.5 have now been truncated at the Mth singular 
value. The dark shaded regions now contain the matrix elements that will contribute to 
the elements of matrix A. 
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computed as 

(3.24) 

Once the backward LP coefficients are known, the time series in Eq. 3.16 may be 

extrapolated to the time origin, where n + d = 0: 

L 

Yn =-Ibkyn+k 
k=l 

n = ( -1, - 2 ... -d). (3.25) 

However, extrapolation at this point would not be making full use of the LPSVD method. 

A potential increase in the SNR can be obtained by relating the LP coefficients to the signal 

parameters in Eq. 3.17. 

3.4.3 Spectral Parameter Calculation 

First we define a complex polynomial, 

M 

<l>(z) = IJ (z- Zm), (3.26) 
m=l 

that has M roots at the zm values of Eq. 3.16. Without loss of generality, the same 

polynomial may be expanded as a power series, 

M 

<l>(z) = L CkzM-k , (3.27) 
k=O 

where C" are complex coefficients with C0 = I . 
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Now by multiplying Eq. 3.16 by Ck (assuming no noise) and shifting the data 

index from n to n - k, we obtain 

(3.28) 

and by rearranging terms and summing over the index k, 

(3.29) 

With the substitution z;-k+d = z;+d-M z:-k, Eq. 3.29 becomes 

(3.30) 

but the last summation is Eq. 3.27 solved at its roots; thus the RHS is equal to zero, 

M 

LCkYn-k =0. (3.31) 
k=O 

Using C0 = 1, we obtain the equation for forward linear prediction, 

M 

Yn =-L CkYn-k" (3.32) 
k=l 

Thus the complex coefficients in Eq. 3.27 are the forward LP coefficients of the time 

series. 

To calculate the spectral parameters, the backward LP coefficients, b~ must first be 

calculated from Eq. 3.24; then the M roots of the polynomial 
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M 

<l>(z) = L,(b!)* ZM-m (3.33) 
m=l 

must be solved. When the linear prediction equation is written in backward mode (as 

opposed to forward mode) theM roots of the polynomial corresponding to the signal fall 

outside of the complex unit circle, whereas the L-M extraneous roots fall inside.6 This 

allows for easy separation of the desired signal roots. Each signal root zm is related to the 

spectral parameters Am and rom by 

(3.34) 

The rest of the spectral parameters contained in the complex amplitudes, a,, can be 

obtained by substituting Am and rom into Eq. 3.18. 

3.5 LPSVD on V ACSY Data 

The 2D V ACSY signal after interpolation may be written in the same discrete time­

series form as Eq. 3.16: 

M 

S(~pn2 ) = .L,am.n, exp[im~tdn2 +Am]' (3.35) 
m=l 

where 

00 

am.n, =I I(m~,(l)")exp[iw"tdnJR]dw". I (3.36) 
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Here, l(m~. ma) is the isotropic-anisotropic correlation spectrum, n1 and n2 specif~ the 

discrete time increments in the '!1 and '!2 dimensions, and M is the total , number of 

isotropic resonances. Since the V ACSY spectrum correlates isotropic frequencies with 

distributions of anisotropic frequencies, the time domain signal can be considered as a sum 

of discrete exponentials only along the '!2 dimension. Thus LPSVD must be applied to 

each slice parallel to the r 2 axis to extrapolate the missing data or to completely reconstruct 

the FID through the calculated spectral parameters, thereby completely filling two of the 

quadrants of the time domain Fourier space. Figure 3.4 shows the schematic for the 

LPSVD procedure. 

The advantages of using LPSVD with experimental 2D V ACSY data are 

demonstrated by 13C NMR of solid lauric acid. Lauric acid poses a particularly difficult 

problem for the VACSY technique due to the combination of a large spectral width and 

small chemical shift anisotropies of the aliphatic sites. Four isotropic resonances are 

completely resolved in the MAS spectrum which contains the carboxyl resonance at 181 

ppm and three aliphatic resonances centered about 24 ppm (Fig 3.8). The assignments 

shown in the figure were based on liquid state 13C NMR spectra. 11 Thirty-one VAS FIDs 

were acquired, each containing 512 points and using angles restricted to the range 

-0.5 :5 P2 (cos 8) :5 0. 5. After interpolation onto a 128x512 grid, LPSVD computations 

were carried out with MATLAB-SGI (version 4.0), using matrix software developed by 

the LINPACK 12 and EISPACK 13 projects. The signal parameters for each anisotropic 

slice were obtained using N = 512 + n1 - 65 for n1 :5 65 and N = 512 - n1 + 65 for n1 > 65 

and L=284. Figure 3.9 shows a graph of the singular values obtained for different slices 

parallel to the r2 axis. As the SNR decreases for slices further away from the MAS slice 

( n1 = 65), the singular values due to noise and those due to the signal become harder to 

discriminate. Thus the profile of the M values (Fig. 3.1 0) used in the computations to 
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Figure 3.8 Isotropic and anisotropic spectra obtained from a 2D V ACSY spectrum of 
lauric acid. The MAS spectrum shows four completely resolved sites. Site a corresponds 
to the carboxyl carbon 1; site b to carbons 4-10, and 2; site c, to carbons 3 and 11; and 
sited, to the methyl carbon 12. The anisotropic patterns in column I were obtained by 
Fourier transforming the interpolated data with zeroes outside the region spanned by the 
FIDs. The anisotropic patterns in column II were obtained, using LPSVD to construct a 
data set that completely spanned two of the four quadrants in the time domain Fourier 
space. 
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Figure 3.9 Singular values, <r;. from the experimental lauric acid data. 32 singular values 
are shown for each slice in descending order of magnitude. n1 labels the time domain 
slices taken parallel to the t 2 axis. n1 = 65 corresponds to the MAS FID at t 1 = 0. 
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Figure 3.10. M values used for each of the n, slices parallel to the ~2 axis in processing 
the lauric acid V ACSY data. 

truncate the matrix equation 3.23, was determined empirically by comparing Fourier 

transformations of several slices at different n1 values with and without LPSVD to ensure 

that the LPSVD method was always generating all of the isotropic peaks. 

Figure 3.8 shows' the anisotropic patterns obtained from 2D VACSY spectra 

processed using direct Fourier traqsformation (Column I) and including LPSVD 

extrapolation (Column II). Fourier transformation directly after interpolation results in 

severe artifact interference among the aliphatic carbon resonances b, c, and d, making 

examination of individual anisotropic patterns difficult. The ridge artifacts from site b can 

even be seen in the anisotropic spectrum of the carboxyl carbon, appearing as lobes on both 

· sides of the powder pattern. These spectral artifacts are significantly reduced using LPSVD 

as shownin Column II. LPSVD also has the effect of smoothing spectral features 14 as 

seen in the carboxyl powder pattern, a. Comparable results (not shown) have also been 

obtained using the commercial LPSVD routine in the FELIX data processing software 

(Biosym Technologies). Further analysis.and interpretation of the anisotropic lineshapes of 

lauric acid in an inclusion compound will be presented elsewhere. 15 
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3.6 Conclusion 

In summary, 2D VACSY artifacts are seen to have the same origin as the phase­

twist artifacts observed in conventional 2D NMR experiments. These artifacts may be 

removed by using linear prediction with singular value decomposition (LPSVD) to fill in 

missing data in the time domain Fourier space. The resulting pure-absorption spectrum 

eliminates resolution problems associated with closely spaced isotropic lines and 

interference of phase artifacts. This should allow 2D VACSY to be applied to investigate a 

wider range of complex systems. Similar spectral analysis methods may be applicable to 

the 3D V ACSY exchange experiments, discussed in chapter 5, that also suffer from 

artifacts due to holes in the time domain Fourier space . 
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Chapter 4 2D VACSY Applications 

In chapter 2, resolved powder patterns were used to extract the CSA tensor values 

for each chemical site. However, analysis of CSA patterns may provide further 

information about the microscopic structure and dynamics of molecules. In this chapter 

two additional applications of 2D V ACSY for the study of intermediate dynamics and 

molecular ordering will be explored. 

4.1 Intermediate dynamics 

In solid state NMR, there are three motional time regimes where dynamical 

information may be obtained from the spectrum. First, in the "fast" regime, where the 

correlation time, rc, is of the order of the Larmor frequency, measurements of the spin-

lattice relaxation times are useful for determining motional rates. Second, in the 

"intermediate" regime, where rc is of the order of the inverse width of the anisotropic 

frequency distribution, rc -1/ t1w" ' the spectral lineshapes become altered; in favorable 

cases motional ipformation may be extracted by computer-simulated fits to the anisotropic 

patterns. 1 Finally, in the "slow" regime, where rc >> 1/ L1w", a 2D exchange experiment 

can be used to correlate the molecular orientations at two different times. 

For both the intermediate and slow regimes, the motional information is contained 

in the anisotropic component of the spectrum. Thus studies of either time regimes suffer 

from resolution problems due to overlapping spectral patterns unless an isotropic chemical 

shift dimension is added to the experiments to separate the patterns from each chemical site. 

The application of the VACSY technique in 3D experiments to study slow molecular 

motion will be discussed in chapter 5. The rest of this section will be concerned with the 

application of 2D V ACSY to study intermediate dynamics. 
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4.1.1 Theory 

With the condition for intermediate motion, 't'c - 1/ ~m" , a significant amount of 

molecular reorientation occurs while the signal is being acquired. This motion alters the 

anisotropic component of the chemical shift frequency (Eq. 2.5) and will create distortion 

in the powder patterns shown in chapter 2. These distortions are dependent on the 

dynamics of the system~ thus by using computer simulations, the dynamical information 

may be extracted from the lineshapes. 

The Chemical Shift Frequency for Intermediate Motion 

In order to the describe the chemical shift frequency for a system undergoing 

intermediate motion, it is helpful to define coordinate frames with respect to the molecule. 

The frames Mol1 and Mol2 , shown in Fig. 4.1 correspond to the frames fixed with respect 

to the molecule before and after the exchange reorientation. Using the addition theorem of 

Wigner rotation matrices (Eq. 1.39), the coordinate transformation from the chemical shift 

PAS frame to the lab frame may be broken down into consecutive rotations 

m.m'. 
m".m~· 

which simplifies under fast sample spinning to 

m.m'. 
m" 
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R(Qt)~ R(Q2)~ 

PAS Mol1 

Bo 

R(Q3)~ R(rot,S)~ 

Mol2 Rotor Lab 

Figure 4.1. Coordinate transformations rotating the coordinate axes from the CSA PAS 
frame to the lab frame. Mol, and Mol 2 frames define the coordinate axis with respect to 
the molecule before and after reorientation. R represents the rotation transformations 
from one coordinate frame to the next, and n, are the sets of Euler angles relating the 
coordinate systems. 

Figure 4.1 shows the coordinate rotations defined for the sets of Euler angles !21 , !22 , and 

.Q3 • From Eq. 1.42, the chemical shift (CS) frequency may be written as 

m,m'. 
m" 

(4.3) 

\ " If the molecular reorientation only occurs about one axis, the frequency equation may be 

simplified as 

a>cs =a>;+ ,flm0P2(8) LD?,m.(Q1 )exp[im' a2 ]D;,.0 (Q3 )Pm 

m.m' (4.4) 

=a>;+ ,flm0P2(8) Ld~.(,81 )d;,.0 (,83 )exp[ima1 + im'(y1 + a2 + a 3 ) ]Pm. 
m.m' 
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The angles a 1 and {31 determine the orientation of the PAS frame with respect to the 

molecule, a2 is the molecular reorientation angle, and a 3 and {33 determine the orientation 

of the molecule with respect to the rotor frame and are the powder average angles used in 

the spectral simulations. 

As in the examples from the previous chapter, the term for the anisotropic 
-

frequency in Eq. 4.4 is identical to the frequency for a static sample except for the 

P2 (cos 0) scaling factor. Thus the phase due to chemical shift evolution may again be 

written as 

(4.5) 

where 

ma = ,Hm" I,d;,.({31)d;.0 (/33 )exp[ima1]exp[im'(y1 + a 2 + a 3 ))pm. (4.6) 
m.m' 

Since the width of the anisotropic spe9tral pattern is scaled by a constant P2 (cos 0) term, 

the same 2D V ACSY technique described in the previous chapters to separate the isotropic 

and anisotropic interactions also applies to systems undergoing intermediate motion. 

Signal for Intermediate Exchange 

Even though the chemical shift frequency has the same form as. in the examples 

from the previous chapter, when the frequency is modulated by molecular motion during 

signal detection, the frequen~y gains a time dependence and the equation for the signal is no 

longer given by Eq. 1.30. The complete signal now becomes2 

(4.7) 
a 
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where Sa(t) is the signal component with a well define frequency wa at timet. 

A functional form for Sa(t) can be obtained by assuming the molecular 

reorientation to be a stationary Markov process where the molecular orientation at any given 

time tis independent of the previous orientations. 2 With this condition, the probability that 

the system will be evolving with a frequency OJ2 at a time t + dt given that it was evolving 

with OJ1 at time t can be written for small dt as 

(4.8) 

where 

(4.9) 

and nw •. w
2 

is the exchange matrix describing the jumping process ~etween the frequencies. 

The signal from each frequency component may then be described by 

S13 (t + dt) = exp[iw13dt ]L Sa(t)P( walw13 ;dt). (4.10) 
a 

Forsmall &, 

(4.11) 

Substituting Eqs 4.8 and 4.11 into Eq. 4.10, 

s/3 (t + dt) = s/3 (t + dt)( 1 + iOJpdl) + dt L 1r(l)a .Wp Sa(t), (4.12) 
a 
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( 

which may be written in differential form as 

(4.13) 

or in terms· of matrices as 

dS s(· _ _) 
dt = l(}) + 7r ' (4.14) 

where iiJ is a diagonal matrix with elements ma, iris the exchange matrix with elements 

lr(J)a,(J)fl, and S is the signal vector with components Sa(t). Equation 4.14 may be 

integrated, and using Eq. 4.7, the complete signal becomes 

S(t) = 1· exp(i( iiJ + ir)t] ·S(O), (4.15) 

where 1 is the unit matrix, and S(O) is the vector representing the relative contributions by 

each signal components to the total signal at t = 0. By diagonalizing the exponential phase 

in Eq. 4.15, the signal may be written as 

S(t) = 1· A· exp[iDt] ·A -I· S(O) 

= L(1· A)1 exp[iD} ](1· A -I )i' (4:16) 

j 

where Dis the diagonal eigenvalue matrix, D1 are the eigenvalues, and 

A-1 ·(iiiJ+ ir)·A =D. (4.17) 
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Signal for Two Site Exchange 

In the example of two site exchange, the signal (Eq. 4.16) may be readily written in 

analytical form~ Assuming equal rate constants for going from one site to the other, the 

exponential phase becomes 

. - _ ·(ml zm + n= z 
0 

0 J + k(- Y2 Y2 J . 
Wz Y2 - Y2 

Diagonalizing Eq. 4.18, we obtain the eigenvalues 

and matrices 

where 

D1 =-1C-k+i-t(m1 +m2 ) 

D2 = 1 C- k + i H W1 + W2 ) 

[ 

-2k 

A = C + i( ~' - w2 ) 
-2k l -c + i( ~'- w,) 

k -2e 
C -C2 + iC(m1 - W2 ) 

A-1 = 
k 2e 
C C2 + iC(m1 - W2 ) 

c-(4e-m 2 +2mm -m 2 )Y2 - I I 2 2 ' 
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The VAS signal for two site exchange may now be obtained by substituting Eqs. 4.19 and 

4.20 into Eq. 4.16 and by using the chemical shift frequency, Eq. 4.5 with a 2 = 0°, 180° 

for m1 and W2 • 

There is however an important difference between the anisotropic lineshapes 

obtained from a VAS signal and the lineshapes obtained for the same dynamical system 

under static conditions. The distortions in the powder patterns depend on the jump rates 

relative to the width of the patterns. Thus as the angle is varied in the V ACSY experiment 

and the width of the anisotropy is reduced due to the P2 (cos fJ) scaling factor, the 

distortion in the lineshape due to molecular motion becomes more prominent. Figure 4.2 

shows the changes in the simulated anisotropic lineshapes of a rapidly spinning 

dimethylsulfone (discussed below) at various different values of P2(cos8). Since the 

lineshape changes at the different angles (J in the 20 VACSY experiment, the overall 

·anisotropic patterns obtained after interpolation and Fourier transformation will be a 

weighted average of the anisotropic patterns at the different angles. Despite these 

differences, the dynamical information may· be obtained from V ACSY anisotropic 

lineshapes through comparisons with simulations as long as the entire set of VAS FIDs are 

simulated and processed in the same manner as the experimental data. 

4.1.2 Experimental 

All the Experiments in this section were performed by Dr. L. Frydman and S. 

Vallabhaneni at the University of Illinois at Chicago. Samples of dimethylsulfone (OMS) 

and tyrosine ethyl ester were obtained from Aldrich. The experiments were carried out on a 

home-built spectrometer with a 13C Larmor frequency of 75.78 MHz. The probe and 

variable temperature system are described in chapter 6. High-power decoupling fields are 
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Figure 4.2. Variations in the simulated anisotropic lineshapes of dimethylsulfone under 
rapid sample rotation at various different P2 (cos fJ) values with an exchange rate of I 
kHz. 

essential for retrieving undistorted CSA lin~shapes from protonated solids reorienting in the 

intermediate exchange regime. ·Hartmann-Hahn matching conditions were therefore 

achieved using over 300 W in both the transmitter and decoupler channels, corresponding 

to proton nutation rates ranging between 93 and 55 kHz depending on the rotation axis 

angle. In the DMS VACSY experiment, FIDs were acquired at 31 different angles within 

the range --0.5 S P2(cos0)::; 0.5. The tyrosine ethyl ester VACSY experiment used the 

same number of FIDs but the range in angles were reduced to --0.25 S P2(cos0) S 0.25. 

Data sets for both samples were interpolated onto a 256 x 64 time domain grid before being 

Fourier transformed. 
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108 ° reorientation 

Figure 4.3. Reorientation of solid DMS. 180° flips along the main molecular symmetry 
axis exchange the relative orientations of the carbon sites (filled circles, left) at 
temperature dependent rates k = 5. 44 x I 0 13 exp( -760 1/T) Hz. These molecular motions 

result in mutual 108° rotations of the 13C chemical shift tensors around their x-axes, as 
shown on the right. 

4.1.3 Results 

Dimethylsulfone 

Dimethylsulfone (DMS) was used as a test study to examine the potential 

usefulness of 20 V ACSY for investigating molecular motions in the intermediate regime. 
\ 

OMS was initially studied by Solum et a/. 3 and has since served extensively as model 

system for dynamic solid-state NMR analyses. OMS possesses two chemically equivalent 

carbon sites; thus the anisotropic CSA pattern can be obtained simply from a static 

experiment without problems of resolution due to overlapping patterns, allowing direct 

comparison of static and V ACSY anisotropjc patterns. With increasing temperatures, DMS 

undergoes 180° reorientations about its main symmetry axis (Fig. 4.3), produc~ng well-

defined changes in the 13C NMR powder lineshapes. From the analysis of these 

lineshapes, both the kinetics and geometries of the reorientation process have been 

accurately extracted, -providing a model case of intermediate dynamics where all the 

parameters involved are known. 
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Figure 4.4 shows a series of 2D V ACSY spectra of DMS as a function of 

temperature. All spectra reveal a high-resolution isotropic dimension and an anisotropic 

dimension that shows the distinct changes in the lineshapes with the changes in 

temperature. Comparisons of the anisotropic lineshapes obtained from static and V ACSY 

experiments on DMS clearly show sensitivity to different NMR time scales for the two 

experiments (Fig. 4.5). At room temperature for instance, the static spectrum shows little 

evidence of molecular reorientations, whereas the V ACSY patterns are already considerably­

distorted due to the effects of motions. Likewise, the V ACSY experiment yields a 

motionally averaged pattern at 55 °C whereas the static lineshape at the same temperature is 

still well in the intermediate exchange regime. However, as discussed above, molecular 

reorientation information can still be obtained from the V ACSY lineshapes by simulating 

the entire 2D V ACSY spectrum. The exchange rates obtained from simulations of the 

VACSY anisotropic patterns (shown in Fig. 4.5) are in good agreement with the motional 

rates obtained for similar temperatures in the static spectrum. 

Tyrosine Ethyl Ester 

\ 

To investigate the full potential of the 2D V ACSY experiment for studying 

intermediate motion, we examined the dynainics of a multi-site system, tyrosine ethyl ester. 

The 13C CPMAS spectra of this crystalline solid show a marked dependence on 

temperature.4 Whereas the spectra recorded below 0 °C clearly exhibit one isotropic peak 

for each of the eleven inequivalent carbon sites in the molecule, a dynamic process makes 

the protonated phenyl carbons ortho to both the hydroxyl and the alkyl groups equivalent as 

the temperature is increased (Fig. 4.6). The splittings observed at low temperatures are 

characteristic of an -OH group whose fast rotation around the C-0 bond is quenched in the 

solid. In crystalline compounds where dynamic processes rarely disturb the translational 
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Figure 4.4. 20 V ACSY spectra of OMS recorded as a function of temperature. 

82 



Experiment 

Static 

5 

VACSY 

5 

0 
kHz 

-5 

0 -5 
kHz 

Simulation 

5 

5 

0 
kHz 

-5 

0 -5 
kHz 

Figure 4.5 Comparisons of experimental and simulated lineshapes of DMS for static and V ACSY 
experiments. The experimental lineshapes are labeled by the temperature at which the data were 
recorded, while the simulations are labeled by the exchange rates used in the computations. 
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symmetry of the lattice, the merging of peaks observed as temperature increases can 

originate either from the onset of 180° rotations of the -OH groups around their C-0 bonds, 

from synchronized H · · · 0- H · · · 0-H H - 0· · · H - 0· · · intermolecular hydrogen transfer 

processes, or from sudden 180° reorientations of the phenyl rings about their para-axes. 

These three different processes cannot be unambiguously distinguished by monitoring the 

~hanges in the isotropic 13C chemical shifts of the molecule. The last type of motion, 

however, common in both crystalline and polymeric materials, can be discriminated from 

the others by measuring the variations taking place in the CSA parameters of the protonated 

aromatic carbons. The processes involving hydroxyl group dynamics will change the 

anisotropic shifts of these sites by an amount comparable to the splittings observed in the 

low-temperature MAS spectra (ca. 3 ppm); phenyl ring reorientations on the other hand will 

be associated with much larger changes (ca. 50 ppm) arising from the mixing of the in­

plane components of their CSA tensors. 

In studying the molecular dynamics, we focused on peak e, the clearly resolved 

signal from the carbons ortho to the hydroxyl group. The CSA lineshapes as a function of 

temperature were obtained from the VACSY experiments and are illustrated on the left-hand 

column of Fig. 4.7. The averaging observed among the least shielded components of the 

chemical shift tensor as temperature is increased reflect 180° ring flip rotations. Such 

motions can be characterized by comparing experimental V ACSY results with simulated 

lineshapes. To carry out the simulations, the principal shielding components of site e,were 

obtained from low-temperature 13C anisotropic lineshapes. Following single-crystal and 

theoretical guidelines, we placed the most shielded component of the tensor perpendicular 

to the aromatic ring, and least shielded direction along the C-H bond. The effects of the 

180° ring flips were then taken into account by assuming mutual exchange processes 

between two classical sites whose CSA frequencies are related by 120° rotations of their 
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Figure 4.6 MAS spectra of tyrosine ethyl ester recorded at varying temperatures 
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Figure 4.7 Comparison between VACSY experimental and simulated lineshapes for site e of 
tyrosine ethyl ester. The simulations were calcuated assuming 180° flips of the aromatic 
rings at the indicated exchange rates. This reorientation brings about 120° rotations of the 
CSA tensors around their z-axes as shown i!l the diagram on top. 
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tensors about the z-axes. Complete dynamic V ACSY time-domain simulations were 

carried out as described above by integrating the signals arising from the exchanging sites 

over a solid sphere as a function of the macroscopic spinning angle. Figure 4.8 shows 

good agreement between the simulated spectra and the V ACSY lineshapes, lending support 

to the presence of ring-flip dynaniic processes for tyrosine ethyl ester in the solid phase. 

4.2 ·Molecular Ordering 

In many polymer systems, the microscopic ordering of the molecules plays an 

important role in many of the material's properties such as tensile strength, refractive index 

and Young's modulus.5 Multi-dimensional NMR experiments have proven useful in 

revealing important quantitative information on the nature and level of ordering in polymer 

fibers and films.6•8 In this section I will discuss the application of 2D VACSY to obtain 

the orientation distribution of ordered isotactic polypropylene (iPP). 

When the distribution of crystallites in a system is no longer isotropic, the powder 

spectral patterns seen in chapter 2 become altered. Since the features of these patterns are 

characteristic of the level of ordering in the system, V ACSY may be applied as in the 

previous example to resolve the anisotropic pattern for each chemical site, and computer 

simulated fits can be used to obtain information on the molecular ordering in the system. 

4.2.1 Molecular Ordering Theory 

In describing the partial orientation of molecules, it is useful to define a director 

frame in which primary sample order direction is along the ZD axis. As in the case of 

molecular dynamics, the transformation from the PAS frame to the laboratory frame may 
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Figure 4.8. Coordinate transformations rotating the coordinate axis from the CSA PAS 
frame to the lab frame for an ordered system. The Z,, axes of the director frame 
designates the primary order direction. 

then be broken down into consecutive transformations as shown in Fig. 4.8. Using the 

addition theorem of Wigner rotation matrices, the chemical shift frequency for an ordered 

system by be written in the identical manner as Eq. 4.2; but now, the sets of Euler angles 

il1, il2 , and !l3 are defined by the transformations shown in Fig. 4.8. 

If we assume the sets of Euler angles !l3 and n, to be constant for each isotropic 

site, the lD anisotropic spectrum for the given site may be written as 

(4.22) 

P(il2 ) is the orientation distribution function, and P(il2 )d!l2 defines the fraction of 

molecules with an orientation between n2 and n2 + d!l2 with respect to the director frame. 

The simplest model for P(il2 ) is a spherical Gaussian distribution,8 
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P(02 ) =;= exp( -sin2 a2/(2a~) ]exp[-sin2 ,82/(2,8; )] 

xexp(-sin2 Y2/(2r~)], 
(4.23) 

where the full width at half maximum for a particular angular distribution is defined as 

.1a = 2"-'2ln2 aa and similarly for .1,8 and .1y. 

Alternatively order parameters and moments can be used to describe the orientation 

distribution: 9 

00 -/ 

P(OJ = L L P1mnD~n(02 ), (4.24) 
1=0 m.n=l 

where P1mn are moments of the distribution. Order parameters are defined as 

(4.25) 

and are related to the moments by 

(4.26) 

Case of Uniaxial Symmetry 

In certain cases, the symmetry of the ordering can be used to simplify the equations 

presented above. Well defined helical structure qf molecular chains leads to a microscopic 

axial symmetry in the orientation distribution, while the large diameter of the drawn 

samples leads to a macroscopic axial symmetry. Thus the orientation distribution is , 

constant in two of the three Euler angles (transverse isotropy). 10 Equation'4.23 then 

simplifies to 
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Figure 4.9. Simulations of 11 = 0. 5 lineshapes for different levels of molecular ordering. 
A one-dimensional Gaussian orientation distribution function is used in the simulations 
with the zf) axis set 90° from the static field. 

for the Gaussian distribution, while Eq. 4.24 simplifies to 

00 

P(/32 ) = I(2l + l)(P,(cos/32 ))P,(cos/32 ) 

1=0 

with 

(4.27) 

(4.28) 

(4.29) 

Figure 4.9 shows changes in the simulated lineshapes for different levels of ordering, 

using Eq. 4.27 as the orientation dsitribution function. 
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3.2.2 Experimental 

The 13C 2D VACSY experiments were performed on ordered isotactic 

polypropylene (iPP, [-CH2CH-(CH3)-]J obtained from Hoechst AG (Frankfurt, 

Germany). This polymer exhibits sharp X-ray diffraction peaks arising from well-defined 

crystalline regions in which two symmetry-related polypropylene chains are helically 

arranged, each one possessing three monomers per unit cell ( 31 helix). II· I 2. The ordering 

of the sample is characterized by a single draw axis, and the sample was cut into disks and 

placed inside the rotor with the draw axis perpendicular to the spinning axis. The CSA 

tensor values and orientations for each of the three carbon sites were obtained from 

literature13 and are shown in Fig. 4.10. and are listed in Table 4.1. 

The iPP spectra were recorded at 7.07 T with a carbon resonant frequency at 75.74 

MHz, using the conventional cross polarization pulse sequence described previously in 

chapter 2. 

Figure 4.1 0. The orientation of the CSA tensors in the molecular frame. The tensors for 
the methine (b) and methyl (a) carbons are nearly axially symmetric so only one axis is 
required to describe the orientations for these tensors. The CJ:.:. of the methine carbon is 
placed along the C- H bond. The CJ:.:. of the methyl carbon is placed along the 
CH- CH 3 • The CJu of the methylene carbon is perpendicular to the H- C- H plane, 
while the CJ y;· axis is offset from bisecting the H- C- H angle. 
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group 

.26 

21 

32 

44 

21 

32 

65 

38 

3 

Table 4.1. CSA parameters for the three sites of iPP. The tensor values are in ppm from 
TMS. 

Thirty-one different rotation axis angles in the range 90° :::; 8:::; 35.3° were used and the 

complete data set was interpolated onto a 128 x 128 grid. 

3.2.3 Results and Discussion 

The anisotropic patterns obtained from the 2D VACSY experiments on ordered and 

disordered iPP show significant changes in the powder patterns for all three sites due to 

sample ordering (Fig. 4.11). To obtain quantitative information on the level of ordering, 

iterative computer simulated fits were made to the experimentallineshapes using Powell's 

minimization method. 14 The anisotropic patterns were calculated assuming transverse 

isotropy and weighted by the orientation distributions given in Eqs. 4.27 and 4.28. To 

obtain the computational speed required for the iterative fitting, weighted orientation 

averaging was made using method the proposed by Alderman et al.. 15 

Figure 4.11 shows the simulated lineshapes using a Gaussian orientation 

distribution with a FWHM of 15°. S.imilar lineshapes were also obtained using Eq. 4.28 

for the orientation distribution, with the order parameters listed in Table 4.2. 
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Figure 4.11 Anisotropic 13C spectral patterns for the three sites of iPP. The spacing of 
the tick marks corresponds to I kHz. (a) Powder patterns obtained from a 20 V ACSY 
experiment on a non-ordered sampled of iPP. (b) Anisotropic patterns obtained from a 
20 VACSY experiment on a partially ordered sample of iPP. (c) Simulated spectral 
patterns using a 10 spherical Gaussian orientation distribution function with ~a= 15° 
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l 2 4 6 8 10 

(P1(cos8)) 0.45 0.34 0.2 0.03 0.05 

Table 4.2 Order parameters for the iPP orientation distribtution function. 

However the fits to the experimental data were not improved significantly, suggesting the 

ordering of the polymer is mainly a Gaussian distribution. 

References 

1. H. W. Spiess, Dynamic NMR Spectroscopy in Solids; Springer-Verlag, Berlin, 1978. 

2. A. Abragam, Priciples of Nuclear Magnetism; Clarendon Press, Oxford, 1961. 

3. M. S. Solum, K. W. Zilm, J. Michl, and D. M. Grant, J. Phys. Chern., 87, 2940 

(1983). 

4. A. Schmidt, intermed exchange of tyrosine ethyl ester, The Weizmann Institute of 

Sciences, Rehovot, Israel, 1989. 

5. I. M. Ward, Structure and Properties of Oriented Polymers; Applied Science Publishers 

Ltd., London, 1975. 

6. P. M. Henrichs, Macromolecules, 26, 2099 ( 1987). 

7. K. Schmidt-Rhor, M. Hehn, D. Schaefer, and H. W. Spiess, J. Chern. Phys., 97, 

2247 (1992). 

8. B. F. Chmelka, K. Schmidt-Rohr, and H. W. Spiess, Macromolecules, 26, 2282 

(1993). 

9. R. Hentschel, J. Schlitter, H. Sillescu, and H. W. Spiess, J. Chern. Phys., 68, 56 

(1978). 

10. G. S. Harbison, V. Vogt, and H. W. Spiess, J. Chern. Phys., 86, 1206 (1987). 

11. Z. Mencik, J. Macromol. Sci., Phys., B6, 101 (1972). 

93 



12. A. Bunn, M. E. A. Cudby, R. K. Harris, K. J. Packer, and B. J. Say, Polymer, 23, 

694 (1982). 

13. T. Nakai, J. Ashida, and T. Terao, Mag. Res. Chern., 27, 666 (1989). 

14. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical 

Recipes in C; Cambridge University Press, Cambridge, 1992. 

15. D. W. Alderman, M. S. Solum, and D. M. Grant, J. Chern. Phys., 84, 3717 (1985). 

94 



Chapter 5 3D V ACSY Exchange 

In the previous chapter, 2D VACSY was applied to examine molecular dynamics in 

the intermediate time regime. In this chapter, 3D experiments that incorporate the VACSY 

technique will be used to examine slow molecular motions in polymers. 

Molecular dynamics play an important role in determining macroscopic mechanical 

properties of polymers. Both amorphous and crystalline polymers exhibit distinct 

temperature dependent mechanical relaxation properties. The different relaxation processes 

are labeled a, ~. y etc., with a being associated with the highest temperature process and 

the other processes being associated with decreasing temperatures. These relaxation 

processes are directly related to microscopic molecular motions. For example in many 

polymers, the a relaxation process is associated with slow, large-scale motions of polymer 

chains. 1 •2 Such motions can be studied by solid-state 2D exchange experiments that 

correlate the molecular orientations at two different times, separated by a long mixing 

period to allow for molecular motion. The resulting 2D exchange spectrum directly reflects 

the probability distribution f~nction for molecular reorientation.3 However, just as in the 

previous chapters, where overlapping i D anisotropic line shapes impede spectral analysis, 

the overlapping 2D exchange patterns limit the application of solid-state exchange 

experiments to simple or labeled systems. 

In this chapter, I will present two different 3D experiments that incorporate the 

V ACSY technique to separate 13C exchange spectra according to their respective chemical 

sites. These experiments are used to examine the helical jum motions in isotactic 

polypropylene (iPP). 
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Figure 5.1 Pulse sequences and rotation axis angle profiles for 2D and 3D solid-state 
exchange experiments. In all sequences, 13C magnetization is created by cross 
polarization from 1H ·magnetization, and 1H decoupling is applied throughout except 
during tm and t1wp delays. (a) 2D exchange sequence. The evolution and detection periods, 
t 1 and t2, are separated by a long mixing delay, tm. (b) Extension of the 2D seq!lence to a 
high resolution 3D experiment by the conventional NMR method of adding a high 
resolution time dimension. Evolution during t 1 and t2 occurs with the sample spinning 
about 91= 0°, while detection occurs with e2= 54.74°. (c) 3D VACSY-S exchange pulse 
sequence. The initial time delay, t 1, is a constant time delay, while e. and 92 are varied 
independently. (d) 3D VACSY-T exchange pulse sequence. The normal 2D exchange 
sequence in (a) is applied at different angles e. 
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5.1 2D Exchange 

The 3D V ACSY exchange experiments are based on the three-pulse sequence (Fig. 

5.la) that has been extensively used in 2D 13C exchange experiments to study slow 

molecular reorientation in the time scale of 0.1 Hz to 1 kHz.4 A similar sequence may also 

be used for 2 H NMR exchange· experiments. The initial 13C magnetization is created by 

cross polarization from 1H magnetization. The 13C magnetization of a particular 

isochromat then evolves during t1 with a CS frequency 

(5.1) 

where 0 1 specifies the set of Euler angles, ( a 1 ,/31), that rotate the coordinate axes from the 

PAS frame of the CSA tensor to the lab frame, and u/ is the isotropic chemical shift 

frequency. The second pulse stores one component of the magnetization parallel to B0 for 

the duration of the mixing period, tm, and the third pulse returns the magnetization to the 

transverse plane for detection during t2 • If molecular reorientation occurs during tm, a new 

set of Euler angles, .Q2 , defines the relative orientation of the CSA tensor frame and the lab 

frame. The frequency of the same isochromat during t2 detection then becomes 

2 

Wcs(.QJ = m; + {fmo I,n,;,o(.Q2)Pm' (5.2) 
m=-2 

where the isotropic frequency, m;, is assumed unchanged during tm. The complete 2D 

NMR signal may be written as an ensemble average over all possible isochromats, 

S(tp t2 ; tm) = ( exp( imcs ( 0 1 )t1] exp( imcs( 0 2 )t2 ]) 

= JJ P(.Qp.Q2;t'" )exp[imc5 (01 )t1 ]exp[imc5 (02 )<Jd01d02 , 

(5.3) 
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where P(Q1,Q2 ;tm) is the joint probability distribution of the orientations of the CSA 

tensors before and after the delay tm. P(Q.,Q2 ;tm) is related to the 2D spectrum by 

The ability to obtain detailed information about P(Q1 ,Q2 ;tm) directly from spectrum makes 

NMR unique in its ability to examine not only the time scale of the motions but also the 

geometry of the reorientations. 

P(Q1 ,Q2 ;tm) may also be written in terms of conditional probabilities as 

Q5.5) 

where P(Q1) is the probability distribution for the initial orientation of the PAS frame, and 

P(Q21Q1;tm) is the conditional probability for the PAS frame to have the orientation 

defined by n2 after the mixing delay' given that its initial orientation was defined by nl. 

For a sample with an isotropic, powder distribution of crystallites, P(Q1) is constant; for 

an oriented sample, P(Q1) may be obtained experimentally as a sum of weighted 

subspectra as discussed in chapter 4. The conditional probability P(Q21Q1 ;tm) depends on 

the motional model for molecular reorientation. One such model is random jump 

reorientations between n equivalent sites;3.4 P(Q21Q1 ;tm) is then a solution to a set of 

differential equations describing a stationary Markov process, 

(5.6) 

where C1 is the jump probability between any two sites. From Eq. 5.6, the solution for 

the joint probabilities becomes 
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P(.Q;I.Q;;tm) = (1/n)[l + (n -1)exp(-nC1tm)] 

P(.Q;I.Qj;tm) = (1/n)[l-exp(-nC,tm)], i * j. (5.7) 

Figure 5.2 shows simulations of possible 20 exchange patterns for rotational diffusion and 

discrete random jumps. For rotational diffusion, the diagonal ridge broadens out to off­

diagonal intensities; in the limit of tmDR .-7 oo, the diagonal.ridge disappears and the off-

diagonal intensity completely fills up the spectral area accessible by random molecular 

reorientation (Fig. 5.2a). In contrast, the exchange patterns for discrete jump motions 

reveal distinct elliptical ridge patterns (Fig. 5.2b) that become more prominent as 

When 1J = 0, the exchange pattern only depends on the distribution of the 

reorientation angle, {3, which may be obtained directly from the geometry of the exchange 

pattern without the assumption of a motional model.5•6 When 1J * 0, as is generally the 

case in 13C NMR, extracting quantitative information becomes more difficult since the 

exchange pattern now depends on all three of the reorientation angles; however, important 

qualitative information such as limits in the jump angle amplitudes and the number of jump 

sites may still be obtained directly from the spectrum.4 Such information can be used to 

limit the number of possible motio~al mechanisms involved in the reorientation process. 

Since their original introduction, 20 solid-state exchange experiments have been 

used extensively in both 2 H and 13C NMR to study the motional mechanisms of various 

different systems.4•6•7 However, while these studies are potentially very powerful, they 

are limited in that 2H NMR requires isotopic labeling and natural abundance 13C NMR is 

rendered impractical in all but the simplest systems due to overlapping patterns from 

chemically distinct but unresolved sites. 
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a b 

Figure 5.2 20 exchange patterns for 11 = 0.0 line shapes. (a) Exchange patterns for 
rotational diffusion. DR is the rotational diffusion constant. (b) Exchange patterns for 
discrete jump motions among three equivalent sites. The simulations involved 
reorientations of the unique axis of the anisotropy tensor by ± 120°. C1 is the jump 
probability. 

100 



To overcome this problem of overlapping exchange patterns, a 3D experiment is 

required to separate the anisotropic exchange patterns according to isotropic chemical 

shifts. Figure 5.1 b shows how this may be accomplished by the conventional 

multidimensional NMR method of simply adding an extra time dimension. A normal 2D 

exchange experiment is performed on a spinning sample with the rotor axis parallel to the 

B0 field, 81 = 0°. The magnetization is then stored while the rotor is hopped to the magic 

angle ( 82 = 54.74 °) and detection during t3 occurs with the spin system evolving with only 

the isotropic chemical shift frequency. Although the extension of the experiment to three 

dimensions is straightforward, it involves a significant loss in the signal intensity; the extra 

storage of the magnetization reduces the signal by a factor of .fi, and T 1 relaxation further 

reduces magnetization during the hopping storage delay. The experiments presented below 

incorporate the V ACSY technique and offer altern'ative methods of obtaining high-

resolution 3D exchange correlations without the signal losses associated with extra 

magnetization storage sequences. 

5.2 Structure and Helical Motion of iPP 

The potential applications of the 3D V ACSY exchange experiments were examined 

by analyzing the motional behavior of isotactic polypropylene 

( iPP, [ -CH2CH- (CH3)-L). The structure of this polymer and the orientation of CSA 

tensors for each 13C site have been discussed' in section 4.2.2. A side view of the helix is 

shown in Fig. 5.3a, and the view along the helix axis with the methyl groups pointing 

outward is shown in Fig 5.3b. Mechanical and dielectric measurements on iPP have 

shown that slow motion in the range of 1 Hz to 1 kHz occurs at elevated temperatures. 8 

13C and 2H NMR studies have shown that iPP undergoes discrete threefold 120° jumps 

_ about the helix axis4·9 (Fig. 5 .3b ), and the correlation times strongly indicate that this 

helical motion is responsible for' the a relaxation process. 
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Figure 5.3 (a) Side view of the iPP helix. (b) View of the molecule along the helix axis. 
The three-fold helical jump motion is illustrated by the highlighted (-CH-CH3) group 
that undergoes a 120° rotation. (c) Orientation of the CSA tensors in the molecular frame 
are described in section 3.2.2. 
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5.3 3D Switched-Angle VACSY (V ACSY -S) Exchange 

5.3.1 Theory 

Iri order to apply the V ACSY technique to the solid-state exchange experiments 

described above, we must consider molecular reorientation with respect to the rotor frame 

rather than the lab frame. This is done in the identical manner as for 2D V ACSY in Eqs. 

2.4 and 2.5 by using the addition theorem for Wigner rotation matrices and incorporating 

an additional rotation from the PAS frames to the rotor frame and then rotating from the 

rotor frame to the lab frame. For a fast spinning sample, Eqs. 5.1 and 5.2 become 

where 

w, = w; +P2 (cos0)w~(.Q1 ) 
w2 = w; + P2 (cos0)w~(.Q2 ), 

2 

(L)~ (.Q,) = r.fiwo L D;ocn, )Pm 
m=-2 

1 

2 

W~(.Q2) = r.fiwo LD,;,o(.Q2)p,, 
m=-2 

(5.8) 

(5.9) 

are the anisotropic frequencies; the sets of Euler angles n, and .Q2 relate the two PAS 

frames with the rotor axis frame. 

The correlations desired in a high resolution 30 exchange experiment are 

(5.10) 
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Figure 5.lc shows a pulse sequence that obtains these correlations by incorporating the 

V ACSY technique and a hop of the rotor during tm .1 0 This experiment will be referred to 

as 3D switched-angle VACSY (VACSY-S) exchange. According to Fig. 5.1c the 

magnetization evolves for afzxed time t1 at a specified rotation axis angle 81• During the 

mixing period, tm, the rotation axis angle is changed to 82,and the signal is acquired 

during t2 with a total phase, 

(5.11) 

The phase may be written in the form of Eq. 2.1 by partitioning along three-dimensions as 

<I> I = (L)~ (.Q1 )P2 (COS 81 )t1 

·<1>2 = m;(.Q2)P2(cos82)t2 

<1>3 = (L);t2 

and defining the 'C space coordinates as 

(5.12) 

(5.13) 

The two angles 81 and 82 are incremented independently in the course of the experiment. 

These two angles and the signal d~tection time, t2 , make up the three adjustable 

experimental parameters required for the 3D experiment. Note that since t1 is a constant 
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Figure 5.4. Trajectories of FIDs for the 3D V ACSY -S exchange experiment. When 
P2 (cos 9,) = 0 the signal evolves on the r, = 0 plane ~n the identical manner as in the 
20 V ACSY experiment. When P2 (cos 9,) ':1: 0 the signal acquires a additional phase shift 

8<I>=P2 (cos9,)t,ro~ that results in a translation of the 20 VACSY plane along the r, 
dimension, filling the three-dimensio'nal phase space. 

time variable, o/t1 is simply a correctable first order phase shift and is thus not included in 

the partitioned phase in Eq. 5.12. 

The FIDs acquired with P2(cos 81) = 0 form trajectories on the 

-r1 = P2 (cos 81 )t1 .= 0 plane (Fig. 5.4) with the coordinates, [0, P2 (cos 82 )t2 , t2 ], which are .~ 

identical to those of 2D VACSY. The only difference in this experiment is that when 

p2 (cos el) * 0' the magnetization acquires a phase shift, 

~<I> = m~ P2 c cos e1 )r1, (5.14) 

during t1 evolution. This effectively translates the 2D V ACSY planes along the 
·, 

'l"1 = P2 (cos 81 )t1 axis, filling the 3D phase space, as shown in Fig. 5 .4. Thus each -r2 , -r3 

plime must be interpolated in an identical manner to 20 V ACSY (Eq. 2.10) with the 

discrete coordinates, 
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r 2 = RP2 (cos 02 )nt d 

1'3 = ntd, 
(5.15) 

where now R ~ sw; / sw;, with sw; being the spectral width in the anisotropic m; 
dimension and sw; being the spectral width in the isotropic m; dimension; and td is the 

dwell time. After interpolation the 3D matrix is Fourier transformed to obtain the 

correlation spectrum. 

The correlations in Eq. 5.10 could also have been obtained by incrementing t1 and 

keeping 81 constant; however, there are some distinct advantages to incrementing 01 and 

using a constant time evolution during the first frequency encoding period. In direct 

analogy to "spin-warp" imaging techniques, higher sensitivity is obtainable by using 

constant time evolution. 11 By incrementing 01 the signal may span both positive and 

negative T1 values; the resulting echo provides a simple method for removing phase 

artifacts from the final spectrum. Finally, since P2 (cos 01 ) does not modulate the isotropic 

frequency, m; only appears in the m3 dimension, leaving traceless anisotropic patterns in 

the other two dimensions; this allows for more efficient data encoding and storage. 

s:3.2 Experimental 

The experimental set up for V ACSY -S exchange was identical to that used for 2D 

V ACSY, except that the spectrum was recorded on a 7.07 T magnet with a 13C frequency 

of75.74 MHz. The sample of powdered iPP was obtained from Aldrich Chemicals. Both 

01 and 02 were incremented independently through 31 different angles within the bounds 

-o.5 $; P2 (cos0;) $; 0.5. The experiment was performed at room temperature with the 

sample temperature being elevated by about T K due to the frictional heating of the 

spinning rotor. All FIDs were acquired with a dwell time 166.7 J.Ls; the constant delay t 1 

was set to 5 ms corresponding to a spectral width of 6 kHz in both the m1 and m2 
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dimensions; both the mixing delay, tm, and the recycle delay was set to Is. The total data 

acquisition time was 5 days. All data processing was done on a Stardent 3000 Titan 

computer. Each plane perpendicular to r 1 was interpolated onto a 128x64 grid in the same 

manner as described in chapter 2. The entire data set was then zero-filled to a 1283 matrix 

and then Fourier transformed. 

5.3.4 Results and Discussion 

In agreement with the results from previous 13C and 2H studies, the spectra from 

3D V ACSY -S exchange experiment, shown in Fig. 5.5, reveal off-diagonal exchange 

intensities for each of the chemical sites of iPP. 10 But due to the weak intensity of off­

diagonal patterns, direct comparisons with simulations and motional models are difficult. 

The exchange patterns from the 3D experiment are, however, comparable to the patterns 

obtained from a 2D exchange experiment shown in Fig. 5.6. Thus_ we conclude that the 

poor quality of the exchange patterns is due to the weak intensity of the off-diagonal ridges 

at the temperature used in the experiment, rather than the methodology of the V ACSY -S 

experiment. 

The main feature of the VACSY-S exchange experiment in comparison to the 

conventional 3D exchange experiment is that by incorporating the hop of the rotor axis into 

the mixing delay, an extra storage sequence is removed which leads to signal to noise 

enhancement for the 3D experiment. 

However, one disadvantage of the 3D V ACSY -S exchange experiment is that a 

sudden reorientation of the rotor durin.g the mixing delay is still required. I will present in 

the next section an alternative 3D V ACSY exchange experiment that removes all 

requirements for the sudden rotor axis reorientation. 
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Figure 5.5 Results of the 3D V ACSY -S Exchange experiment on isotactic 
polypropylene. The ID plot on the left is the isotropic projection of the full 3D data set; 
the 2D correlation spectra on the right correspond to slices extracted at the isotropic shifts 
of the different sites. The data was acquired with t, = I s. All markers are I kHz apart. 
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Figure 5.6. 2D exchange spectrum of iPP obtained by using the pulse sequence shown in 
Fig. 5.1 a. The mixing period t., =I s, and all markers are I kHz apart. 

5.4 3D Total VACSY (VACSY-T) Exchange 

In contrast to VACSY-S, which requires a series of phase modulated 2D VACSY 

data sets, the V ACSY-T experiment (Fig. 5.1 d), requires a series of 2D exchange 

experiments, each recorded at a different rotation axis angle. We refer to this experiment as 

3D total VACSY (VACSY-T) exchange to draw on the direct analogies to the original2D 

V ACSY experiment. Just as 2D V ACSY uses the scaling of one-dimensional powder 

patterns at each angle to separate the isotropic and anisotropic chemical shifts, 3D V ACSY-

T uses the scaling of two-dimensional anisotropic patterns at each angle for the isotropic 

separation (Fig. 5.7), and both the 2D VACSY and 3D VACSY-T have the advantage that 

they require incremental changes in the rotor axis only at the end of the complete pulse 

sequence. 
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Figure 5.7 Scaling of the anisotropic patterns of three different chemical sites at different 
rotation axis angles, e. Simulations of I D spectra and 20 exchange spectra, 
corresponding to evolution at different angles, e, are shown. The anisotropic components 
of the spectra are scaled by the second Legendre polynomial, P2(cose), while the 
isotropic components are left invariant. This scaling of the anisotropic frequency causes 
overlapping of the spectral patterns from the three sites for all but the P2(cose) = 0 
spectra. 
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Figure 5.8. Coherence pathways for the two sets of data acquired in the 3D V ACSY-T 
exchange experiment. The echo data are acquired using the p = -1 t, coherence pathway, 
while the anti-echo data are acquired using the p =+I t, coherence pathway. 

5.4.1 V ACSY-T Exchange: General Theory 

The frequency variables correlated in V ACSY-T are identical to those of V ACSY -S 

and are given in Eq. 5.10. The three adjustable parameters in this experiment are the angle 

(}, and the two time variables t1 and t2 • In addition, signal for both the p = + 1 and 

p = -1 t1 coherence pathways are acquired (Fig. 5.8); the p = -1 signal forms stimulated 

echoes during t2 , while the p = + 1 signal forms anti-echoes. 12 This separate detection of 

both coherence pathways is reminiscent of the States acquisition method where cosine and 

sine amplitude modulated data are acquired separately to obtain a pure-phase 2D 

spectrum. 13 Here, it provides access to larger areas of r space and reduces truncation 

artifacts in the line shapes. The total phase, 

(5.16) 

acquired in each variable-angle spinning 2D exchange experiment, is partitioned into three 

dimensions, 
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<1> 1 = w~P2 (cos0)pt1 
<1> 2 = w; P2 (cos O)t2 

<I> 3 = (J)i (ptl + !2 ). 

(5.17) 

To obtain the desired frequency correlations, the 't space coordinate axes are defined as 

(5.18) 

Even though these coordinates appear similar to those that define 't space for V ACSY -S 

(Eq. 5.13), because different parameters are being incremented, the FIDs for this 

experiment form entirely different trajectories. 

The placement of the FIDs in 't space can be clarified by considering the geometric' 

patterns generated by different subsets of the data. The set of data points for t 2 = 0 (the 

first points of all the FIDs) maps onto the 'r2 = 0 plane with the phase space coordinates 

[P2(cos0)ptp 0, pt1]. Aside from the sign factor in p, these coordinates on the r 2 = 0 

plane are once again identical to those of 2D V ACSY. The p = + 1 signal forms rays on the 

plane in the familiar 2D V ACSY pattern, while the p =, -1 signal forms rays below the 

'r3 = 0 plane in an inverted 2D VACSY pattern, as illustrated in Fig. 5.9. For t2 > 0, the 

FIDs emerge from the rays on this plane to fill the 3D phase space. 

The set of data points for t 1 and t2 evolution at one specific angle 0; will map onto 

a skewed plane in the three dimensional phase space as shown in Fig. 5.1 0. These points 

correspond to the data acquired at the angle 0; during a complete 2D exchange experiment. 

The data points on the r 2 = 0 plane form a ray inclined at an angle' 
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p= + 1 t1 pathway data 

p= -I t1 pathway data 

Figure 5.9 Mapping of all ~ = 0 data points in the 3D V ACSY-T experiment onto the 'tz = 0 plane. 
All the data points map onto the plane with the coordinates [P2(cos9)pt1,0,ptil· The p = +1 t1 

pathway data points are placed on the plane in the same manner~ in the 2D V ACSY experiment 
(Fig. 2.4). The p = -1 t1 pathway data points are placed below the 't:3 = 0 plane in an inverted 2D 
V ACSY pattern. 

't3 

Figure 5.10 Trajectories of3D VACSY-T data for t1 and t2 evolution at one particular rotation axis 
angle 9;. The t1 evolution at 9; for ~ = 0 is represented by one of the rays from Fig. 5.9. The ray 
makes an angle a.1 = tan-1[R1Picos9;)] with respect to the isotropic 't:3 axis, with half of the ray 
above the 't:3 plane. Wi~ t2 increments, the FIDs emerge from this ray at an . angle 
~ = tan-l(R~2(cos9;)] with respect to the 't:3 axis. Thus the 2D exchange signal acquired at one 
angle 9; maps onto a skewed plane in the 3D phase space. 
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(5.19) 

with respect to the isotropic -r3 axis, where R1 = sw~ /swi, with sw~ being the spectral 

width in the anisotropic w~ dimension, and swi being the spectral width in the isotropic CiJi 

dimension (Fig. 5.10). This ray of data corresponds to one of the rays in Fig. 5.9. With 

increasing t2 , evolution not only occurs along the anisotropic 'l"2 dimension but also along 

the isotropic -r3 dimension. Thus, unlike conventional 3D NMR experiments, the FIDs do 

not emerge from the -r2 = 0 plane in a perpendicular trajectory, but at an angle, 

(15.20) 

with respect to the isotropic axis, where ~ = sw; / swi, and sw~ is the spectral width in the 

anisotropic w; dimension (Fig. 5. 10). Figure 5.11 shows how the data acquired at other 

rotation axis angles form trajectories in similar 2D planes but skewed at different angles, 

a 1 and a 2 • Note that when (}i =54. 74° (the magic angle), the entire plane collapses on to 

the isotropic axis, since at this angle, P2 = 0, and no anisotropic evolution occurs. This 

change in the orientation of !he 2D exchange data planes for different (}i allows the 3D 't 

space to be densely filled with data. 

In the final processing step all data points that map below the -r3 = 0 piane are 

complex conjugated and spatially inverted into the upper four octants where the data are 

interpolated onto a Cartesian matrix. The interpolation is simplified when t1 and t2 

increments are identical. Then R1 = ~, and all of the data points lie on equally spaced 

Cartesian planes perpendicular to the isotropic -r3 axis. In this case, 2D interpolation is 

required on each of these planes, while no interpolation is required along the isotropic 

dimension. Figure 5.12 shows the patterns made by the experimental data on some of the , 
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't3 

54.74° 

Figure 5.11 Trajectories of VACSY-T data for t1 and t,. evolution at three different rotation axis 
angles. At different rotation angles 9;. the angles <X1 and ~ defining the orientation of the data 
plane in the 3D phase space changes, allowing the full 3D phase space to be filled with data At 
9; =54.74°, <X1 = ~ = 0, and the 2D data plane collapses onto the isotropic axis. 
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a 

c 

b 

'tl 

Figure 5.12 1be patterns made by data points on different isotropic planes perpendicular to the 't:J 
axis. For these patterns, all the data have been mapped onto the 3D phase space. Data points 
originally below the 't:J plane have been complex conjugated and spatially invened into the upper 
half of the phase space. (a) 't:J = 0 plane. Only a single ray of data exists on this plane along the 
't:J = -t1 line. 1be rest of the area on the plane contains no data, and thus all the points outside of 
the line are set to zero. 1be data on this plane correspond to the stimulated-echo tops. (b) and (c) 
show the data mappings for higher 't3 planes. As 't:J increases, the ponions of the phase space 
containing data (the shaded regions) also increases; the regions outside of this area are set to zero 
(d) 1be data mapping onto the highest isotropic plane at 't3 =Nt", where N+ I is the total number of 
data points in each FID. The data on this plane occupies only two of the quadrants. 
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-r3 planes. Further details of the coordinate calculations and the interpolation procedure are 

given in following section. After interpolation, a 3D Fourier transformation yields the final 

spectrum. 

The data rearrangement procedure required for both 3D V ACSY exchange 

experiments is an extension of the procedure used in 2D V ACSY. All three experiments 

require tracing out linear trajectories of FIDs in 't space tilted at angles determined by the 

rotation axis orientations and the relative anisotropic and isotropic spectral widths. In fact 

an excellent check of the interpolation routine for 3D V ACSY-T exchange is to examine the 

't'1 = 0 or the 't'2 = 0 planes in the 3D time domain data matrix after interpolation. Since the 

coordinates for the data on these planes are identical to those of 2D V ACSY, a Fourier 

transformation of the time domain data from these planes gives the same spectrum as the 

2D V ACSY experiment. 

5.4.2 Coordinate Mappings for VACSY-T Coordinates 

General Properties of the VA CSY-T Coordinates 

During t2 evolution, the p = -1 t1 pathway signal forms stimulated echoes while 

the p = + 1 t1 pathway signal forms anti-echoes. The data are thus separated into 4 arrays, 

D;, D;, v;, and D;, depending on the sign of the parameters during acquisition. The + 

and- superscripts designate the sign of P2 , while a and e subscripts designate the sign of 

the t1 pathway. The array elements are specified by i, j, and k indices; i denotes the 

angle at which the experiment took place, j denotes the ! 1 increment, and k denotes the t2 

increment. These indices have the following bounds: 

1$ i $ Nu 

0 :Sj :S N1 

0 :S k :S N2 , 
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Figure 5.13. Labeling of the octants in the 3D phase space. All the octants of the 3D 
cube are shown and numbered except octant 7 which is hidden in the perspective shown in 
the figure. 

where Na is the number of different angles used in the experiment, N1 + 1 is the number of 

t1 points, and N2 + 1 is the number of t2 points. For notational simplicity, we will assume 

Using the labeling of the octants in Fig. 5.13, the data contained in each of the 

four arrays can be shown to map into different regions of the phase space listed in Table 

5.1. Since the anti-echo signal evolves with r 3 = t{ + t2 , the n; and n: data points map 

p (t1 path) P2 (cosf3) Data Array Mapping Region 
+1 + v:u.j,k) octant 1 

+1 D:(i.j,k) octant 3 

-1 + v; (i,j,k) octants 2, 6 

-1 n; (i,j,k) octants 4, 8 

Table 5.1. Regions of the Fourier space mapped by each of the four data arrays. The 
octants are defined in Fig. 5.13. The integers i, j. and k index the rotation axis angle, t, 

and t 2 increments, respectively. 
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only above the -r3 = 0 plane. When P2 > 0, the anti-echo signal evolves along the +-r, and 

+'l'2 axes, which restricts the mapping of the v; data points to octant 1. Likewise, when 

P2 < 0 the anti-echo signal evolves along the -'l'1 and -'l'2 axes, restricting the mapping of 

the v: data points to octant 3. In contrast the echo signal evolves with -r3 = -t1 + t2 ; thus 

the v; and D; data points map above and below the -r3 = 0 plane. The -r3 = 0 plane itself 

contains all of the stimulated echo tops. When P2 > 0 the echo signal evolves along the 

-'l'1 and +'l'2 axes, which restricts the mapping of the v; data points to octant 6 if -r3 < 0 

and to octant 2 if -r3 > 0. When P2 < 0 the echo signal evolves along the +'l'1 and -'l'2 

axes, which restricts the mapping of the D; data points to octant 8 if -r3 < 0 and to octant 4 

if -r3 > 0. As mentioned above, all of the data points that map below the -r3 = 0 plane are 

complex conjugated and spatially inverted to the upper four octants. Thus the data points 

originally mapping into octant 6 will end up in octant 4, while the points originally mapping 

into octant 8 will end up in octant 2. 

The 't space coordinates for 3D V ACSY-T exchange in Eq. 5.18 may be written in 

discrete index form by substituting t 1 = pjtu and t2 = ktu. With an additional index l 

defining the isotropic 'l'3 increments, 

I= pj+k, (15.22) 

and using the condition R, = ~ = 1, we obtain 

-r, = P2(cos(};)pjtu 

-r2 = P2(cos(J;)(l- pj)tcl (5.23) 

'l'3 = ltd, 

where the bounds in I are set to - N S I S N. As described above, all the data points lie on 

one of the equally spaced isotropic planes indexed by the integer I, and from Eq. (5.23), 
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index j locates the data points within each of these planes. The calculation of the r 1 and r 2 
( 

coordinates, required for interpolation on these planes, will now be discussed. 

Mapping of the Anti-echo Data 

All of the anti-echo data v; map into octant 1 (Fig. 5.-14) and are acquired with 

p = + 1, so Eq. (5.22) becomes 

l=j+k. (5.24) 

On the l = 0 'plane (Fig. 5.14a), only j = 0 satisfies Eq.(5.24) and the bounds in Eq. 

(5.21 ). thus all of the data points v; (i, 0, 0) map into the same coordinate on the l = 0 

plane: 

(5.25) 

These points correspond to the data acquired with zero time evolution in both t1 and t2 • 

On the 1=1 plane (Fig. 5.14b), the Eqs. (5.21) and (5.24) are satisfied for 

j = 0, 1. Substituting j = 0 into Eq. (5.23), the coordinates for D;(i,O,l) become 

r 1 =0 

r 2 = P2(cos8;)tJ. 

Likewise, substituting j = 1, the D; (i, 1, 0) coordinates become 

r 1 = P2(cos8;)tJ 

r 2 =0. 
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a 

c 

I= 0 

T=l 'tt 

I= 2 

T=l 

b 

d 

I= 1 

T=2 
T=l 

I= 5 

'tl 

Figure 5.14 Mapping of data onto t3 planes in octant 1. The planes are shown in ascending order 
starting from the 1 = 0 plane. This portion of the phase space is mapped by the anti-echo data with 
P2 ~ 0 contained in the anay D a+. The bold lines represent the rays of experimental data points that 
are placed in each of the planes. The rays of data are labeled by the index r and are nwnbered 
counter clockwise starting from the 't1 axis. The specific coordinates and data points mapping into 
this octant are given in Table 52 and are discussed in the text (a) 1 = 0 plane. There is only a 
single point in this plane corresponding to zero evolution in both t 1 and ~- (b) 1 = 1 plane. The data 
map onto two rays, one along each of the two anisotropic axes on the plane. The data correspond 
to the signal obtained from a single dwell time increment in either t1 or ~- Each of the two rays 
contains Na data points. (c) 1 = 2 plane. There are three rays of data on this plane corresponding to 
three different combinations of t1 and ~ dwell time increments to obtain i + j = 2. (d) 1 = 5 plane. 
With each higher increment of the 't:3 plane, one additional ray of data appears and the portion of the 
phase space covered by the data increases. There are six rays of data on this plane. Altogether, 
plane 1 contains 1+ 1 rays of data, with each ray containing Na data points. 
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These points form two rays, one along each of the axes in the plane, with each ray 

containing Na data points. 

On the 1 = 2 plane (Fig. 5.14c) there are three rays of data corresponding to 

j = 0, 1, 2 . The coordinates on this plane are obtained in the same manner as above and are 

listed in Table 5.2 In general the 1 = n plane has n + 1 rays of data. With the rays indexed 

by the integer r and numbered counter clockwise from the 'l'1 axis (Fig. 5.14 ), each ray 

contains the data points v;(i,n + 1....: r,r -1) with the coordinates 

'l'1 = P2(cos 8;)(n + 1- r)t" 

'l'2 = P2 (cos 8;)(r -1)t". 
(5.28) 

The data points in D; map into 'l' space in the identical manner as described above 

except that since P2 S 0, the data maps into octant 3, and all the·coordinates undergo a sign 

inversion ( 'l'p 'l'2 ) ~ ( -'l'p-'l'2 ). ·Table 5.2 summarizes the results of this subsection. 

1=j+k r "~ = P2jt" 'l'2 = P2kt"· Data Points 

v;u.j,k) 
0 1 0 0 v:u.o.o) 
1 1 Pi" 0 v:u.t.o) 
1 2 0 P2tu v;u.o,1) 
2 1 P22t" 0 D;{i,2,0) 
2 2 Pi" P2t" D;{i,1,1) 
2 3 0 P22t" D;(i,0,2) 
n· 1Sr P2 [ n + 1 - r ]t" P2[r-1]t" v:u.n + 1- r, 

Sn+1 r -1) 

Table 5.2. Coordinates for the anti-echo data points that map directly into octant I. 
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Mapping of the Echo Data 

The mapping for the echo data differs from the anti-echo mapping in that the echo 

data points map both above and below the I = 0 plane. The points that originally mapped 

into the lower half of the phase space are inverted into the upper half before interpolation 

and Fourier transformation. Thus, two sets of data appear on each plane (Fig. 5.15); set a 

corresponds to the data points that map directly onto the plane; set b corresponds to the 

points that map through spatial inversion. According to Table 5.1, set a of octant 2 

contains n; data points, while set b contains n;· data points that originally mapped into 

octant 8 but were complex conjugated and inverted into octant 2. Likewise, set a of octant 

4 contains D; data points, while set b contains v;·. The echo data mapping also differs in 

that the plane with the fewest data points is the highest isotropic plane (Fig. 5.15a), so we 

will begin analysis of the echo data coordinates by examining the mapping onto octant 2 

'with l = N and proceeding to lower l planes. 

For the echo data p = -1, so Eq. 5.22 becomes 

l =-j+k. (5.29) 

On the l = Nplane (Fig. 5.15a), n; data points in set a satisfy Eqs. 5.21 and 5.28 only if 

j = 0. Substituting j = 0 into Eq. 5.23, the coordinates for D;(i,O,N) on the plane 

become 

r, =0 

r2 = P2(cos 8)NtJ. 
(5.30) 
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a. l=N 

rb= 1 set b 

c. 

rb= 3 

rb=2 

l=N-2 

,-a= 1 
set a 

rb = 1'1 ::--.......;;;:::::::~ 

b. 
l=N-1 

d. 
l=N-5 

Figure 5.15 Mapping of the echo data D,-• and D,+ onto octant 2. The planes are shown in 
descending order from the highest isolropic plane at l = N. The data in this octant are separated into 
two sets. Set a contains the D,+ data that map directly onto the octant Set b contains the D,-• data 
that map into octant 2 through complex conjugation and spatial inversion of D,- that originally 
mapped into octant 8. The rays of data in set a are indexed by ra and are. numbered 
counterclockwise starting from the ~ axis; the rays in set b are indexed by rb and are numbered 
clockwise starting from the -'t1 axis. The data points that map onto this octant and their coordinates 
are given in Tables 5.3 and 5.4 and are discussed in the text (a) l = N plane. Two rays of data 
appear on this plane. The D,+ data that have evolved with j = 0 and k = N map onto the +'t:z axis. 
The D,-• data that have evolved withj =Nand k = 0 map onto the -'t1 axis. (b) l = N- 1 plane. 
Two rays appear on this plane for each set of data. The two rays in set a correspond to the two 
possible combinations of t1 and ~ dwell times that satisfies the condition -j + k = N- 1. The two 
rays in set b require the dwell time combinations to satisfy -j + k = -(N- 1). (c) l = N- 1 plane. 
There are three rays for each set of data. The three rays in set a correspond to the three possible 
combinations of t1 and ~ dwell times that satisfy -j + k = N- 2. The three rays in set b require the 
dwell time combinations to satisfy -j + k = -(N- 2). (d) l = N- 1 plane. With each decrement of 
l, an additional ray appears for each set of data However the area of phase space the data covers 
becomes smaller at the lower planes until at l = 0 all the rays collapse onto a single line at 't:z = -'t1• 
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The data points in set b originally mapped into the I= -N plane of octant 8, requiring 

j = N and the coordinates 

-r1 = NIP2(cos8;)ltJ 

't'2 =0. 
(5.31) 

With complex conjugation and spatial inversion of coordinates, 

(-r.,-r3 ,-r3 )~(--r.,--r3 ,--r3 ), the D;*(i,N,O) points map onto the l=N plane with the 

final coordinates 

r 1 = -NjP2(cos8)jtJ 

r 2 =0. 
(5.32) 

The data in set a can be seen in Fig. 5.15a to form a ray along the -r2 axis, while the data in 

set b forms a ray along the - r 1 axis. 

On the I= N -1 plane (Fig. 5.15b), set a contains two rays of data corresponding 

to j = 0, 1. For j = 0, D;(i,O,N -1) map onto this plane with the coordinates 

r 1 =0 

r2 = P2 (cos8;)(N -1)tJ, 

while for j = 1, v; ( i, I, N) have the coordinates 

r 1 =-P2 (cos8;)tJ 

-r2 = P2(cos 8;)NtJ. 

(5.33) 

(5.34) 

Likewise, set b on this plane also contains two rays of data, corresponding to the points 

that originally mapped into the l = -(N -1) plane with j = N -1, N. After the final 

transformation, v;· (i, N -l, 0) map onto the l = N- 1 plane with the coordinates 
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' 1 = -IP2 (cos8JICN -l)tJ 

'2 = 0, 

while n;· (i,N,l) have the coordinates 

' 1 = -IP2 (cosOJINrJ 

f'2 = IP2(cos8JitJ. 

(5.35) 

(5.36) 

On the l = N- 2 plane (Fig. 5.15c ), set a contains three rays of data corresponding 

to j = 0, 1, 2, and set b also contains three rays of data corresponding to 

j = N- 2,N -l,N. The data points and coordinates on this plane are given in Tables 5.3 

and 5.4. In general the l = n plane has a total of N- n + 1 rays of data for each of the two 

sets, a and b. Fig 5.15 shows the rays of data in set a indexed by r" and numbered 

counter-clockwise from the +'l'2 axis; rays in set b are indexed by rh and numbered 

clockwise from the -r1 axis. In the l = n plane, each ray in set a contains the data points 

o; (i, r" - 1, n - 1 + r") with the coordinates 

'l'1 = -P2(cos8;)(r" -l)tJ 

f'2 = P2 (cos O;)(n + r" -1)tJ, 

while each ray in set b contains De-• (i,n -1 + rh, rh -1) with the coordinates 

'l'1 = -IP2 (cos 8;)l(n + rh -1)tJ 

f'2 = IP2 (cos8JI(rh -l)tJ. 
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l=-j+k r" -r. = -P2jtd -r2 = P2ktd Data Points 
n;(i,j,k) 

N 1 0 P2Ntd D;(i,O,N) 

N-1 1 0 P2[N -1]td n;(i,O,N -1) 

N-1 2 -P2td P2Ntd n;u.1,N) 

N-2 1 0 P2[N -2]td n;(i,O,N- 2) 
N-2 2 -P2tJ P2[N-1]tJ n;u,1,N -1) 

N-2 3 -P22td P2Ntd n;(i,2,N) 

n 1 S r" -P2[r" -1]tJ P2[n+r" -l]tJ n;u,r" -1, 

SN-n+l n + r" -1) 

Table 5.3. Coordinates for the echo data points with P 2 2!: 0 that map directly into octant 2. 

l=-j+k rb -r. = -IP2litd 't'2 = IP2lktd 
Data Points 
n;·u,j,k) 

N 1 , -IP2jNtd 0 n;·(i,N,O) 

N-1 1 -jP2j[N -1]td 0 n;·u,N -1,0) 

N-1 2 -IP2jNtd IP2ltd n;·u,N,1) 

N-2 1 -IP21[ N- 2]td 0 n;· (i,N- 2,0) 

N-2 2 -IP2j[N -1]td IP2ltd n;·u,N -1,1) 

N-2 3 -IP2jNtd IPzl2rJ · v-·c N 2) 
e l, ' 

n 1 S rb -jP2j[ n + rh -1 ]tJ jP2j[rh -1]tJ v-·c· h 1 t,n+ r - , 
' e . 

SN-n+1 rh''_ 1) 

Table 5.4. Coordinates for the echo data points with P1 :::; 0 that map into octant 2 through complex 
conjugation and spatial inversion. 
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The mapping into octant 4 is identical to that of octant 2 except that the arrays are 

swapped, v;· ~ v;· and v; ~ D;, and the coordinates undergo a sign change 

( 'l'p 't'2 ) ~ ( -'t'l' -'t'2 ). Tables 5.3 and 5.4 summarize the results of this subsection. 

Interpolation 

Once the coordinates are calculated, the experimental data on each isotropic plane must be 

interpolated onto a Cartesian grid. Only the points within the shaded bounds of Fig. 5.12 

are interpolated. Any Cartesian grid point p within this region is bounded by two rays of 

data, and thus four nearest neighbor experimental data points can be obtained, two on each 

ray (Fig. 5.16). Any combination of three of these data points forms a plane in the 3D 

spaces defined by the coordinates (ReD, 'l'p T2 ) and (ImD, 'l'p -r2 ), where 

't2 ~ 

.I , 
r1 

C' p ...,v 
I r;;(_ ~ 

I 
'f. v ., 

t-~ 

Figure 5.16. Interpolation of the data points onto a Cartesian grid. All the data points 
lie on one of the t2 + t 1 planes. So a 2D interpolation is required on each of the planes. 
Only the points within the shaded regions of Fig. 5.12 are interpolated. In this region, 
each point on the Cartesian grid is bounded by two rays of experimental data. Four 
nearest neighbor points are chosen from the two rays to interpolate the Cartesian point p 
as discussed in the text. 
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ReD and ImD are the real and imaginary parts of the complex data points. By 

successively ignoring one of the extra points of the original four, real and imaginary planes 

may be constructed in four ways. The interpolated value at point p is assigned the average 

complex value of the intersecting real and imaginary planes at the coordinates of point p. 

5.4.3 Experimental 

The 3D V ACSY-T exchange spectrum was recorded on a 7.07 T, home built 

spectrometer, interfaced to a TECMAG pulse programmer. Modifications were made to the 

basic variable angle probe design 14 to allow for variable temperature control, as described 

in chapter 6. The angle of the spinner axis was adjusted by a Whedco stepping motor and a 

computerized motor controller that allowed angles to be set to within 0.1°. 

A sample of ordered iPP (Hostalen PP) ([ -CH2CH- (CH3)-1n) was obtained 

from Hoechst AG (Frankfurt, Germany). The sample was cut into discs and placed inside 

the spinner with the draw axis perpendicular to the axis of rotation. 

Each variable angle spinning exchange experiment was obtained at 360 OK with a 

mixing time of 1 s and a recycle delay of 1 s. A conventional 13C cross-polarization 

sequence was used with 1H decoupling during the t, and t2 time periods. 15 Phase 

cycling16 was used to select the -1 ~ 0 ~ +1 and +1 ~ 0 ~ +1 pathways, and the data 

sets were recorded separately. The rotation axis angle, e, was again restricted to the range 

90° ~ e ~ 35.3°. Altogether 31 different 2D exchange experiments were recorded at angles 

corresponding to the P2 values of 

k = 1, ... ,31. ' (5.39) 
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Both t1 and t2 dwell time increments were set to 166.7 J.Ls. 128 points were acquired in t2 

while the number of points acquired in t1 varied with the angle at which the 2D exchange 

experiment took place. For the experiments recorded in the range 59° 2:: () 2:: 52 °,. 128 t1 

points were acquired, while for the experiments in the ranges 51° 2:: () 2::35.3° and 

90° 2:: () 2:: 60°, 64 t1 points were acquired, since the FIDs decay faster at these latter 

angles. Only one FID is required at the magic angle, ()=54. 74°, where all the anisotropic 

terms disappear. Each FID was signal averaged for 40 scans, and the total data acquisition 

time for the 3D experiment was four days. The data were then transferred to a Silicon 

Graphics R4000 computer where each 2D experim~nt was zero-filled to a 128x128 matrix 

and then mapped and interpolated onto a 1283 cube. The data was then Fourier 

transformed to obtain the 3D exchange spectrum. 

5.4.4 Results 

Ordered iPP was used to enhance the appearance of the off-diagonal exchange 

patterns in demonstrating the 3D VACSY-T exchange experiment. The ordering of the 

sample is reflected in distinct anisotropic line shapes that are modified from powder 

patterns as discussed in chapter 4. 

. The effect of molecular reorientation on the 2D exchange patterns for each carbon 

site of iPP is clearly seen in Figs. 5.17a and 5.17b, which were obtained using mixing 

times of 1 ms and ls respectively. Since no significant molecular reorientation has 

occurred during the short mixing delay, the spectra in Figs. 5.17a show only diagonal 

ridges. Note that such short mixing delays are not technically achievable in the V ACSY -S 

experiment due to the duration of the rotor flips during the mixing time. The spectra in 

Figs. 5.17b reveal distinct off-diagonal ridge patterns, reflecting the molecular reorientation. 
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b c 
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Figure 5.17 Experimental 2D exchange patterns for the three sites of ordered iPP 
obtained from the 3D VACSY-T exchange experiment at T = 360° K. (a) 3D VACSY-T 
exchange data with tm = lms. (b) 3D VACSY-T exchange data with tm = Is. (c) 
Simuiations of 2D exchange patterns for each site of iPP, using 120° jumps about the 
helix axis with a correlation time 'tc < tm. 
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which occurred during the long mixing delay. Simulations shown in Fig. 5.17c, using 

120· helical jumps with '!c < tm, show good agreement with the experimental data. In 

particular both the experimental and simulated spectra for the methylene and methine 

carbons reveal the elliptical ridge patterns indicative of discrete molecular motion. 17 The 

exchange pattern for the methyl carbon shows significant discrepancy between experiment 

and simulation. However, the methyl line shape distortion is also seen in the 2D VACSY 

patterns (not shown) obtained by Fourier transforming either the '!1 = 0 or the '!2 = 0 slice 

from the full 3D V ACSY-T time domain matrix as discussed above. Thus we attribute the 

distortion in the methyl carbon exchange pattern is not due to the procedure of the 

experiment but rather due to a strong spectral component from the amorphous regions of 

the polymer at higher temperatures. 9 

Artifacts that appear as ridges along the diagonal in the exchange patterns, however, 

are inherent to the experiment and arise from incomplete sampling of the Fourier space, as 

seen in Fig. 5.12. Filling these holes would require refocusing only the anisotropic 

frequency during t2 evolution and would involve a hop of the rotor in between the t 1 and 

t2 evolution periods, nullifying the main advantage of the 3D V ACSY-T exchange 

experiment. Artifacts due to incomplete sampling of Fourier space are also seen in 2D 

V ACSY, but these artifacts can be removed by using linear prediction to fill in the missing 

data as shown in chapter 3. We are currently exploring other processing methods that may 

be suitable for improving the quality of the 3D V ACSY-T exchange spectrum. However, 

despite the artifacts, distinct patterns revealing discrete jump motions can be clearly seen in 

the exchange spectrum for two of the three chemical sites in iPP in good agreement with 

simulations. The quality of the spectra is such that, in the case of an unknown motional 

mechanism, the spectral patterns can be used, in conjunction with simulations, to identify 

incorrect motional models and verify the correct mechanisms. 
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5.4.5 Conclusion and Outlook 

We have demonstrated a new extension of the VACSY technique for higl:t 

resolution studies of slow molecular motion which eliminates the need for rapid 

reorientation of the sample rotor. This new technique is based on the same basic principle 

as the original 2D V ACSY and 3D V ACSY -S exchange experiments: the change in the 

rotation axis of a rapidly spinning sample with respect to the static magnetic field, Bo, 

scales the anisotropic frequencies but leaves the isotropic frequencies invariant. By 

acquiring a series of 2D exchange experiments at different rotation axes, the time domain 

data may be mapped onto a 3D matrix such that a fast Fourier transformation directly yields 

isotropic-anisotropic correlations. There are two main features particular to 3D V ACSY-T 

exchange. By removing the requirement for the rotor hop, experimental difficulties have. 

been shifted from the hardware and mechanical aspects of the experiment to the software 

and data processing, which is generally preferable given continued advances in software 

and computer technology. The experiment also removes restrictions on the length of the tm 

mixing delay and opens up the possibility for studying the full range of dynamical rates in 

the slow motional regime. This study also further demonstrates how a redefinition of the 
. ' 

generalized time variables, 'r;, in terms of adjustable experimental parameters can lead to 

novel experimental approaches. 
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Chapter 6 Hardware 

6.1 Epsilon Spectrometer 

6.1.1 Homodyne and Heterodyne Architecture 

The Epsilon, unlike most NMR spectrometers, incorporates a homodyne rather than 

a heterodyne architecture. The basic difference between these two systems is illustrated in 

Fig. 6.1. In a heterodyne system, most of the signal manipulation occurs at a set 

intermediate frequency (IF). The IF signal is amplified and phase shifted in the transmitter 

then mixed with a local oscillator (LO) signal such that one of the resultant rf frequencies, 

a 

Figure 6.1. Two different NMR spectrometer architectures. HPA and PA are the high 
power amplifier and the pre-amp. IF, LO, and RF are the intermediate frequency, local 
oscillator, and the radio frequency (resonant frequency) signal generators, respectively (a) 
Heterodyne spectrometer. (b) Homodyne spectrometer. 
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is the nuclear resonant frequency. On the receiver side of a heterodyne system, the signal 

from the pre-amp is mixed back to the IF for further amplification and filtering. Thus only 

the high-power amplifier and the pre-amp are required to be broadband in order for the 

spectrometer to observe different nuclei. In contrast, a homodyne system has no IF or LO 

frequencies. All high frequency amplification, filtering and phase shifting occurs at the 

resonant frequency; thus all rf components must be broadband. 

The main advantage of a homodyne system is its inherent simplicity; fewer rf _ 

components are needed and since only one rf signal should be in the system, debugging 

and removal of parasitic signals are simplified. The main disadvantage of a homodyne 

system is the broadband requirement for all rf components, making some of the 

components more expensive and some of the rf signal procedures such as phase shifting 

more difficult. In addition, since there is no active filtering in the broadband receiver, care 

must be taken to ensure that transient signals do not saturate the rf components. 

Figure 6.2 shows a block schematic of the Epsilon spectrometer set up for double 

resonance experiments with observation of the X channel frequency. Further details on 

each of the stages of the spectrometer will be presented in the following sections. 

6.1.2 Transmitter 

Proton Channel Transmitter 

A block diagram of the H transmitter is shown in Fig. 6.3. The rf signal from the 

PTS 500 frequency generator is split by a Mini-Circuits ZDC 10-1 directional coupler. The 

output terminal of the coupler is connected to the receiver, while the couple terminal is 

connected to the quadrature phase shifter (described below). Two amplifiers, 
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Figure 6.2 Block schematic of the Epsilon homodyne spectrometer. The diagram shows 
the spectrometer set up for double resonance and observation on the X channel. a 1/4 
wave A. cable and a set of signal cross diodes to ground act as a duplexer to protect the 
pre-amp from high power rf radiation. 
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Figure 6.3. Block diagram of the Proton channel transmitter. 

the Anzac AMC 147 (17dB) and the Motorola MHW590 (34 dB), are used in the low 

power amplification stages of the transmitter. The rf switches, Watkins-Johnson WJSll 

and MA-Com SW229, provide a combined isolation of 90 dB. Two Trilithic rotary rf 

attenuators control the amplitude of the transmitter signal; the RA51 varies from 0 to 70 dB 

in steps of 10 dB; the RA50 varies from 0 to 10 dB in steps of 1dB. The final high power 

amplification is provided by a class A broadband ENI 5100L amplifier (2-500 MHz, 50dB, 

lOOW). An additional fixed attenuator, Mini-Circuits CAT-10 (10 dB), ensures that the 

maximum input into the 51 OOL never exceeds 1 v rms. A high power K&L BLP300 

bandpass filter, removes the broadband noise from the 51 OOL before the rf signal is sent to 

the probe. Often the 51 OOL cannot provide the decoupling power needed; in this case, a 

Creative Electronics CE300 (5dB, 500 W) tuned amplifier is added after the bandpass 

filter. Five TTL lines control the H transmitter: four lines control the rf phase, and the fifth 

controls the rf switches. 
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Figure 6.4. Block diagram of the X channel transmitter. 

X Channel Transmitter 

The same rf components in the H transmitter are also used in the low power stages 

of the X transmitter (Fig. 6.4 ). The only difference is that the frequency is generated by a 

PTS 160 and only one amplifier and rf switch is used. The high power amplifier is an 

AMT M3426 (2-100 MHz, 60 dB, 1000 W). As with the H transmitter, five TTL lines 

control the rf phases and switch. An additional TTL lin.e is used to gate the M3426 to 

minimize the amplifier noise output during detection. A set of signal cross diodes further 

reduces the amplifier noise. 

Quadrature Phase Shifter 

Broadband phase shifting in increments of goo is obtained by a home built 

quadrature phase shifter (Fig. 6.5). Details of the phase shifter design have been presented 

elsewhere. 1 Only the principles of the phase shifter and present circuit diagrams which 

have been slightly modified from the original design will be reviewed here. A broadband 

quad splitter (Olectron 0-13-2061) separates the input rf signal into oo and goo components. 

The amplitude of each of the components is controlled by a DC voltage supplied to the IF 
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Figure 6.5 Block diagram of the quadrature phase shifter 

Figure 6.6 Phase diagram of the rf output of the quadrature phase shifter. The larger, A, 
component of the signal determines the overal amplitude of the rf signal. The smaller, 
orthogonal, P, component adjusts the phase of the signal. 
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port of a Mini-Circuits SRA-lH double balanced mixer (DBM). Here, the DBMs act as 

voltage controlled variable attenuators. One of the mixers is driven strongly and provides a 

large rf output; the other is driven weakly and provides a small rf output orthogonal to the 

stronger signal. Figure 6.6 shows that when the two orthogonal outputs of the mixers are 

then combined vectorially through a Mini-Circuit PSC-2-1 splitter, the stronger component 

(designated in the figure by A) provides the overall amplitude, while the weaker component 

(designated in the figure by P) controls the overall phase of the signal. As long as the P 

component remains much smaller than the A component, the amplitude and phase of the 

signal are controlled independently by each mixer. 

The DC amplitude and phase control circuits used to drive the mixers are shown in 

Fig. 6.7. To minimize drift in the rf phase and amplitude, Analog Devices AD584 

precision voltage references are used to maintain DC voltages for both the amplitude and 

. phase control circuits. Figure 6.7a shows the Ax and AY voltages are controlled with the 

AD584 set to +10 V, while the A_x and A_-" voltages are controlled with the AD584 set to 

-10 V. Figure 6.8 shows the circuits used for each of the voltage references to obtain the 

desired output voltage. Conventional voltage followers (National Semiconductor LM310) 

are used to buffer the DC circuit. Figure 6.9 shows the wiring for the LM310 in a booster 

circuit to allow for larger negative current swings under load. The outputs of the LM31 Os 

are also shunted to ground through 0.1 JlF capacitors to remove transients. 

To allow for quick switching of the rf phases needed in multiple pulse experiments, 

fast switches (Harris Hl-201 HS), with on-off times < 50 ns and buffers CElantec 

ELH0033) with rise times < 2 ns are used in the switching circuit shown in Fig. 6.10. The 

Hl-201 HS operates on inverse logic: 

Logic Switch 

0 on 

off 
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a Amplitude Control Voltages 

b 

IOk.O IOtum 

5.1W 

Phase Control Voltages. 
lOk.O lOtum 

Figure 7. Control voltage circuits for the quadrature phase shifter. The DC voltage is 
provided by high precision AD584 voltage regulators, wired as shown in Fig. 8 to 
provide the different voltages. The LM3l0 buffers are wired with the booster circuit 
shown in Fig. 9. (a} Amplitude control voltages. Ax and Ay voltages are supplied with 
the AD584 set to ~10 V, w~ile A-x and A-y voltages are supplied with the AD584 set to 
-10 V. (b) Phase control voltages. The output phase voltages may be positive or negative 
and the magnitues of the voltages will be smaller than those of the amplitude voltages. 
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-lOV 
+lOV 

-15 

-SV 
+2.5V 

Figure 6.8 Circuits for the high precision voltage references, AD 584, used to provide 
±lOV, +2.5V and -5V for the control voltage circuits shown in Fig. 7. 

-15V 

in 

5.1 kfl 

IOOkfl 

-15V 

Figure 6.9 Booster circuit for the LM31 0 follower. The booster circuit allows for larger 
swings of negative current. 
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Hl201HS Hl201HS 
Py Ay 

P_y A_y 
1 len 

A_x P_x 
to90°DBM 

Ax Px 

Switch Select 
Lines 

Figure 6.10 Diagram of the switching circuit for the quadrature phase shifter. The 
inputs into the HI 201HS switches are represented by the amplitude and phase voltages 
from Fig. 9. The switches are operated by inverted pulse programmer TIL pulses 
represented by the phase of the rf vector in the rotating frame (X,Y ,-X,-Y). The outputs 
of the EI 0033 buffers are taken into the IF terminal of the double balanced mixers 
(DBM) shown in Fig. 5. 

Pulse Programer 0° IF 90° IF RFPhase 
TTL Logic Voltage Voltage 

-t:x 

X=l Ax Px -f-+t 

Y=l Py Ay + 
-X= I A._x P_x t+ 
-Y=l P_y A._y i 

Table 6.1 Pulse programmer TIL pulses and their corresponding output voltages. 
When the particular TIL line in column 1 is set high all the others are set low. In all 
cases the paired amplitude and phase voltages from the buffers shown in Fig. 10 are 
output into the IF terminal of the DBMs. Column 3 shows the phase of the rf vector in 
the rotating frame, similar to Fig. 6.6. 
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Thus it was convenient to invert the TTL signal from the pulse programmer with hex 

inverters (Texas Instruments SN75404). The voltages supplied to the 0° and 90° mixers 

depending on the pulse programmer TTL logic are shown in Table 6.1. 

Although the quadrature phase shifter operates broadband, the amplitudes and 

phases change for different frequencies. Thus the phase shifters should be calibrated for 

each frequency with a vector volt meter. Multiple pulse sequences are also available for 

more accurate calibrations. 2 

6.1.3 Receiver 

Figure 6.11 shows the block diagram for the receiver. To minimize noise in the 

detected signal a Mitec AU 1114 pre-amp with a noise figure of 2.0 dB is placed at the base 

of the magnet. A high isolation (90 dB) low transient Daico switch is used to keep the rest 
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generator 
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rf frequency 
generator 
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rfswitch 
WJSII 

rf var.atten. 
RA51 
70dB 

rf var.atten. 
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in directional coupler 
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cpl to phase 
box 

outr----__..J 

in directional coupler 
ZDC 10-1 

cpl to phase 
box 

rf splitter 

PSC-2-1 

1------' 

rf atten. 
CAT-10 

IOdB 

Figure 6.11. Block diagram of the Epsilon receiver. 
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of the receiver circuit from saturating during the high power rf pulses. Further 

amplification and attenuation are obtained by the MHW590 amp, RA51, and RA50 

attenuators described in the transmitter section. Because the MHW590s are broadband 

amplifiers, any transient signal is amplified creating potential problems with saturation and 

receiver ring down. In such cases a low pass filter such as the Mini-Circuits BLP-100 

before one or both of the MHW590s may help in removing the transient signal. The 

detected signal is then divided along the real and imaginary channels by a Mini-Circuit 

PSC-2-1 splitter. This rf signal must now be mixed with the observe frequency signal to 

remove the rf carrier frequency. The observe frequency signal is obtained from the output 

terminal of the directional coupler connected to either the H or X frequency generator. A 

BNC cable is used to switch between the two frequency generators. The observe 

frequency signal is then amplified and split in quadrature by a broadband Olectron 0-13-

2061 splitter. The output of the 0° terminal is mixed with the real channel signal (in a Mini­

Circuits SRA-IH), while the output of the 90° terminal is mixed with the imaginary 

channel. The audio outputs of the mixers are then amplified by a low noise audio op-amp 

shown in Fig. 6.12. Three potentiometers control the audio amplifier circuit: R1 controls 

the relative amplitude of the real and imaginary signal; ~ and R3 control the de offsets for 

the real and imaginary channels respectively. After the audio amplifier, the signal is filtered 

by a Wavetek audio filter and then sent to the signal averager. 

6.1.4 Pulse Programmer 

A TECMAG Inc. pulse programmer, PULSkit, is used to control all of the TTL 

logic lines. The pulse programmer, originally for use with a DEC Micro VAX II computer, 

was modified to allow operations with a Macintosh II FX computer. PULSkit executes 
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Figure 6.12. Audio amplifier Circuit. The potentiometer R, determines the relative 
amplitude of the real and imaginary channels. R2 and R1 determine the DC offset of the 
real and imaginary channels, ~espectively. 

each step in a pulse sequence through a 128-bit microword, shown in Fig. 6.13 (if the 

pulse length is longer than 430s, two or more microwords will designate a single event). 

PUL~kit can hold up to 2048 microwords in its memory for execution. Of the 128 bits, 68 

are user defined and can be used for general operation of the spectrometer. The functions 

of the microword bits have been described fully elsewhere, 3 and I 'will only discuss the 

user control bits in the microword that are currently defined on the Epsilon spectrometer. 

The TTL outputs of PULSkit are sent through a signal distribution box where they 

are connected to 74LS128 son line drivers to allow access to the TTL lines through son 

BNC cables. The line driver circuit previously described4 has been modified for the X and 

H phase bits to comply with the convention used by the MacNMR software. MacNMR 

uses two bits to designate the quadrature phases (0, 1 ,2,3), while the signal distribution 
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Figure 6.13 Microword bit assignments. Bits assigned in A Channel and B Channel are 
connected to line drivers and are available for general use. The bits designated as 
"Undefined" or "U" are user bits that are not currently connected to line drivers. 
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Figure 6.14. Circuit to convert from 2-bit logic to 4-bit logic. The 74128 chip is used 
to invert the TIL output of the 74LS 139. 

Enable B A Y1 Y2 Y3 Y4 

1 X X 1 1 

0 0 0 0 

0 0 0 

0 0 0 

0 1 0 

Table 6.2. Input and output TtL for the 74LS139. 

box, originally built to work with the Micro Vax II, assumes 4 bit logic for the phases 

(1,2,4,8). Thus a 74LS139 chip (Fig. 6.14 and Table 6.2) is added prior to the line driver 

circuit to convert from 2 bit logic to 4 bit logic. The bits in the regions labeled as A 

Channel and B Channel are attached to drivers in the signal distribution box and are 

available for general purpose use on the spectrometer. The specific labeling of these bits 

corresponds to the labeling on the outputs of the signal distribution box. The bits labeled 
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row row microword number future icon 
label number starting bit of bits ex2ansion label S~trometer function 

H 1 24 1 0000 TX H transmitter switch 

Hph 2 20 2 0000 PH H quadrature phases 

X 3 4 1 0000 TX X transmitter switch 

X ph 4 0 2 0000 PH X quadrature phases 

R 5 5 1 0000 TX Receiver blanking 

A1 6 25 1 0000 TX High power transmitter blanking 

A2 7 26 1 0000 TX general TfL 

A3 8 27 1 0000 TX generallTL 

B1 9 6 1 0000 TX generallTL 

B2 10 7 1 0000 TX generallTL 

RX 11 96 0000 RX Constant receiver phase 

SAr 12 87 0000 TX Siganl averager reset 

Mot 13 8 5 0000 GR Stepper motor profile logic 

Xtr 14 117 1 0000 TX external Eulse Erogram trigger 

Table 6.3. The current Config.con file used to define the microword bits for the Epsilon 
spectrometer. 

"unused" may also be made available by constructing additional drivers for the pulse 

programmer. 

All of the microword bits in current use on the Epsilon spectrometer are defined in 

the "config.con" file (Table 6.3) which must be contained in the MacNMR folder. The 

"SAr" row in Table 6.3 corresponds to the "PPG3" bit in Fig. 6.13 and is used to zero the 

signal averager memory. The "Mot" row corresponds to bits B3-B7 in Fig. 6.13 and are 

used to specify the motor profiles described below~ The "Mot" line can be assigned any 

value from 0 to 31, and because it is defined by a "GR" (gradient) icon, its assigned value 

may be read in from a file (for further descriptions see the MacNMR manual). 
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6.2. Double-Tuned Hopping-Coil Probe 

6.2.1 Probe Spinning Assembly 

All of the V ACSY experiments described in the previous chapters used a double­

tuned hopping-coil design. 5 This design allows for higher sensitivity and rf field strength 

efficiency than the static-coil dynamic-angle-spinning probe design. 6 

The probe head consists of a kel-F stator housing mounted between two supports 

on glass bearing races. A 7 mm zirconia stator from Doty Scientific is placed inside the 

housing, as shown in Fig. 6.15. The high pressure air enters the housing from the sides 

through the supports. The air from one side enters the rotor bearing cavity, while the air 

from the other side enters the rotor drive cavity. The two cavities are sealed by three o­

rings. The rf coil wraps directly around the stator and exits the housing through copper 

pins which are then sealed by solder. The coil is connected to the rest of the rf circuit by 

strips of 0.05 mm beryllium copper shims. A pulley on one side of the housing is attached 

through kevlar strings to an identical pulley connected to a stepper motor mounted on the 

base of the probe. The watch-spring motion of the beryllium copper leads (Fig. 6.16) 

allows the rotation axis angle to be changed during the course of the experiment while 

maintaining a resonant circuit. 

6.2.2 Variable Temperature Control 

The temperature variability is obtained by heating the bearing and drive air, 

independently in glass Dewars built into the base of the probe. The air from the heaters is 

transferred through stainless-steel Dewared lines into the rotor housing. The temperature is 

monitored by a an Omega programmable temperature controller and a thermocouple placed 
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Figure 6.15. Cutaway view of the stator housing. (a) Bearing air channel (dotted hidden 
lines). (b) Drive air channel (dotted hidden lines). (c) rf coil, in bearing air cavity. (d) 
Stator. (e) 0-rings separating bearing and drive air supplies. 

Figure 6.16. End-on view of the stator housing, showing the watch spinning-like 
motion of the beryllium copper leads when the angle between the spinning axis and the 
vertical is varied from 0° to 90°. 
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on the bearing line just before entry into the spinner assembly. 

Due to the. friction caused by the spinning rotor, the temperature read by the 

thermocouple is not identical to the sample temperature. The temperature calibration was 

obtained by recording a series of dimethylsulfone spectra with the sample spinning at 90° 

with respect to the static B0 field. Since the motions of dimethylsulfone and their 

dependence on temperature is well known, 7 comparisons of simulations and experiment 

allowed the temperature of the sample and the temperature read by the thermocouple to be 

related in oc as 

T( of sample) = 2.5 + 1.20 * T( of thermocouple). (6.2) 

6.2.3 Double Tuned Lumped Element Circuit 

The double-tuned circuit used in the probe is based on the design by Doty et al.,s 

and is shown in Fig. 6.17. Polyflon NRP-VC-10-12-36A capacitors (10 turn, 1-10 pF, 

1600V) are used for the tune and match on both the H and X sides of the circuit. A 

Voltronics V2102 capacitor is used in the trap circuit to filter out the H frequency signal on 

the X channel side. 

X frequency H frequency 

Figure 6.17. RF circuit for the double-tuned hopping-coil probe. 
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Since the rf coil moves with the stator housing, the rf pulse width scales as 

p(O)= p(9oo)/sin0 (6.3) 

where p( 0) is the pulse width at an angle 0 with respect to B0 , and p( 90°) is the pulse 

width at 0 = 90°. In addition, the motion of the stator housing causes the beryllium copper 

leads attached to the capacitors to move which results in _a tuning shift of the resonant 

circuit; however the shift can be reduced to less than ±200 kHz in the range of 

35° :s; 0 :s; 90° by adjusting the position of the leads. 

6.3 Stepper Motor and Controller 

The angle of the spinner axis is controlled by a Whedco stepper motor and 

computerized controller. A BEl optical encoder is used to feed back the position of the 

motor and correct for any errors in the motor steps. 

The motor controller is operated by the pulse programmer in "stand alone" mode, 

which is enacted by setting the profile enable toggle to 1 (PE = 1 ). In this mode, pre­

programmed commands contained in the profiles may be executed during the pulse 

sequence. The profi~es may be read and executed in either the "non-encoded" or the 

"encoded" setting (note that the "encoded" setting is not related to the use of the optical 

encoder). In the non-encoded setting, one specified profile becomes activated and executed 

by a TTL pulse. In the encoded setting (used for all the VACSY experiments), up to 31 

different profiles may be executed based on a 5 bit TTL input into profile lines 1 through 5. 

The TTL lines B3-B7 defined in the "Mot" icon line in the config.con file are connected to 

the profile lines 1-5 as: 
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' .., 

.. 

Microword Profile 
Bits Lines 
B3 ___... 1 
B4 ___... 2 
B5 ___... 3 
B6 ___... 4 
B7 ___... 5 
A2 ___... 6 

A number, ranging from 0 to 31, designated inthe "Mot" icon (or a gradient file defined for 

the "Mot" icon) is converted into a 5 bit binary number represented by the TTL lines B3-

B7. The TTL lines then enable one of the 31 profiles. When a TTL pulse is sent to A2 

(profile line 6), the motor controller executes the specified profile. Typically about 2 ms is 

required to set the 5 TTL profile lines and another 2 ms is required to execute the specified 

profile with a pulse on A2. Thus in order to use the motor controller in encoded mode, the 

pulse program should be written with the sequence of pulse events shown in Fig 6.18. 

The resolution of the motor positioning is determined by the number of steps in the 

motor (typically 400 steps) and the fractional step sizes used by the controller. The 

fractional step sizes available range from 1 to lj32 steps and are set by. one of the dip 

switches shown in Table 6.4. The total number of motor steps in one motor revolution is 

Time 2ms 2ms 

Mot n n 

A2 

Figure 6.18. Pulse sequence events used to operate the motor controller in the "encoded" 
profiles mode. n is an integer from 0 to 31. The initial "Mot" pulse converts n to 5 bit 
logic and chooses the motor profile to execute. The second pulse executes the pulse with 
A2 executes the profile. 
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switch switch 
Switch Function number setting 

1 R } 2 L Fractional motor step sizes set to 1/32. 

3 R 
4 R Set to use the optical encoder feedback. In this setting the position of the motor is determined 

SW1 by the number of lines .in the encoder and the encoder multiplier 
(SW2-9,10). This switch has no relation to SW2-8 and "encoded" profiles. 

5 L 

} 6 L 
Set to use maximum current (5A). 

7 L 
8 L 

1 L } 2 L 
Motor unit address labeled as "0". May be set to a different number up to "7" if more than 
one motor controller is used. 

3 L 
4 R Motor controller set a.~ "ma.~ter"'. 

SW2 5 R Echo command mode. 

6 L Baud rate = 1200. 

7 R Serial port set as RS232C. 

8 R Controller used in "encoded" profile mode. This switch ha.~ no relation to the optical encoder 
andSWI-4. 

9 L } Optical encoder step multiplier set to 4. 
10 R 

Table 6.4. Dip switch settings for the Whedco motor controller used in the V ACSY 
experiments. 

T 1 M S 
{number of steps in motor) . 

ota otor teps = . 
(fractional step size) 

(6.4) 

For example, a 400 step motor using lf32 step sizes will give a motor position resolution 

of 0.0281 o per motor step. 

When an optical encoder is used, the motor still moves with the defined motor steps 

in Eq. 6.4, but the controller will determine the motor position by increments of the optical 

encoder. T~e resolution of the encoder steps is determined by the number of lines in the 

encoder (typically 1024) and the encoder multiplier value. The multiplier can take on 
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motor 
par. 

ER 
PE 
PC 
DF 
CT 
ss 
SP 
AC 

Pll!· setting 

6400 
1 
1 
0 

1-10 

100} 
500 
100 

Parameter Function 

Ecoder ratio set according to Eq. 4 for a 400 step motor and I 024 line encoder. 

Profile enable. Allows the motor controller to run in''stand alone" mode. 

Position correction. Allows motor controller to use encoder feedback to corrects its position. 

Deadband Fault. Faults the motor on position error. Set to 0 to allow for position correction. 

Correction time. Time delay before each position correction in units of milliseconds. 

Parameters controlling the motion of the motor: stan-stop speed, speed, and acceleration, in 
units of motor pulses/second. There parameters must be set to higher values for hopping 
experiments. 

Table 6.5. Some of the motor control constants and motor parameters used in the 
V ACSY experiments. 

values of 1, 2, and 4 and are set by dip switches shown in Table 6.4. The total number of 

encoder steps in one motor revolution is 

Total Encoder Steps = . x (encoder multiplier) (
number of lines in ) 

the optical encoder 
(6.5) 

For example, a 1024 line encoder with a multiplier of 4 will have a motor position 

resolution of 0.0879° per encoder step. 

The motor controller requires a parameter, the encoder ratio (ER), to be set in order 

to detennine the relative resolution of the motor and encoder steps. ER is defined as 

ER = Total Motor Steps x 4096 . 
Total Encoder Steps 

(6.6) 

If the optical encoder is used, and ER < 4096, the encoder resolution exceeds the motor 

position accuracy, and the motor controller will detect errors when an encoder position is 

called for that is not accessible by the motor. This can be avoided by making sure that the 
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multipliers and fractional step sizes are set such that ER ;;?: 4096. If the optical encoder is 

not used, ER = 4096. 

Typical dip switch settings and the corresponding motor controller parameters are 

shown in Table 6.4 and 6.5. 
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