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Neuroimaging-based classification of PTSD using data-driven 
computational approaches: A multisite big data study from the 
ENIGMA-PGC PTSD consortium

A full list of authors and affiliations appears at the end of the article.

Abstract

Background: Recent advances in data-driven computational approaches have been helpful in 

devising tools to objectively diagnose psychiatric disorders. However, current machine learning 

studies limited to small homogeneous samples, different methodologies, and different imaging 

collection protocols, limit the ability to directly compare and generalize their results. Here we 

aimed to classify individuals with PTSD versus controls and assess the generalizability using a 

large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group.

Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 

1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with 
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PTSD from controls using traditional machine learning methods. Second, we assessed the utility 

of the denoising variational autoencoder (DVAE) and evaluated its classification performance. 

Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out 

cross-validation procedure for each modality.

Results: We found lower performance in classifying PTSD vs. controls with data from over 

20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to 

other studies run on single-site data. The performance increased when classifying PTSD from HC 

without trauma history in each modality (75 % AUC). The classification performance remained 

intact when applying the DVAE framework, which reduced the number of features. Finally, we 

found that the DVAE framework achieved better generalization to unseen datasets compared with 

the traditional machine learning frameworks, albeit performance was slightly above chance.

Conclusion: These results have the potential to provide a baseline classification performance 

for PTSD when using large scale neuroimaging datasets. Our findings show that the control 

group used can heavily affect classification performance. The DVAE framework provided better 

generalizability for the multi-site data. This may be more significant in clinical practice since the 

neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering 

them more generalizable.

Keywords

Posttraumatic stress disorder; Multimodal MRI; Machine learning; Deep learning; Classification

1. Introduction

Posttraumatic stress disorder (PTSD) is a prevalent and debilitating disorder, with a world-

wide prevalence rate of 3.9 % (Kessler et al., 2017; Koenen et al., 2017). Current clinical 

assessments of PTSD rely solely on reported subjective experiences, overlooking objective 

biomarkers, which may lead to many cases of PTSD being undetected or misdiagnosed 

(Sumpter and McMillan, 2005). Recent advances in computational power and data-driven 

computational approaches, especially supervised machine learning, have been helpful in 

devising tools to objectively diagnose psychiatric disorders (Liu et al., 2015; van Loo et 

al., 2012; Bzdok and Meyer-Lindenberg, 2018). These approaches improve diagnosis by 

mining neuroimaging datasets, generating clinically relevant inferences at the individual 

level (Lama et al., 2017; Steardo et al., 2020; Gao et al., 2018). In recent years, the 

number of supervised machine learning studies in translational neuroimaging has grown 

dramatically (Woo et al., 2017), but many challenges still remain. First, most extant studies 

are single-site studies of small homogeneous samples. Although efforts have been made to 

deal with overfitting (Srivastava et al., 2014; Ying, 2019), single-site studies still tend to 

yield better performance than studies of larger samples, due to overfitting in the latter (Y 

Li et al., 2020; Lanka et al., 2020; Varoquaux, 2018). Second, methodological differences 

across these studies (e.g., machine learning approaches, scanners, acquisition parameters, 

and data processing pipelines) limit the ability to directly compare their results. Third, most 

studies estimated classification performance via cross-validation (i.e., all samples are used in 

building the prediction model), without testing classification performance using independent 

yet-to-be-seen test data. For example, a recent review in depression has shown that only 
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4 of 66 studies evaluated classification performance using a holdout dataset, with all four 

containing less than 200 samples (Gao et al., 2018). However, for machine learning models 

to be useful in real-world clinical settings, predictive models need large samples that enable 

the evaluation of model performance on an unseen holdout dataset or independent cohorts. 

In PTSD, only a handful of studies exist, with none exploring the reproducibility of findings 

using multimodal brain imaging across multiple sites.

In addition to the above-described challenges, the selection of reliable and sensitive 

biomarkers to classify patients relative to controls is also crucial. In PTSD, most studies 

conduct group-level univariate analysis to identify PTSD-related biomarkers using one, 

and rarely two imaging modalities (Ben-Zion et al., 2020). No published studies thus far 

have explored three common imaging modalities of structural Magnetic Resonance Imaging 

(s-MRI), resting state functional MRI (rs-fMRI), and diffusion MRI (d-MRI), each tapping 

specific facets of structure or function to provide comprehensive information about the 

brain. S-MRI provides information on regional tissue volume of gray or white matter. In 

PTSD, structural abnormalities have been reported in the hippocampus, amygdala (Morey 

et al., 2020), prefrontal cortex, anterior cingulate cortex (O’Doherty et al., 2017) and 

insula (Siehl et al., 2020). Rs-fMRI measures the functional connectivity (FC) between 

brain regions. FC abnormalities in PTSD have been reported mainly in the default mode 

network (DMN), ventral attention network (VAN), executive control network (ECN) and 

salience network (SN) (Koch et al., 2016; Daniels et al., 2010). Finally, D-MRI provides 

information on white matter microstructure and the brain’s structural connectivity. White 

matter abnormalities in PTSD have been reported within the hippocampus, corpus callosum 

(Dennis et al., 2021), cingulate gyrus (CG), uncinate fasciculus (O’Doherty et al., 2018), and 

inferior fronto-occipital fasciculus (McCunn et al., 2021; Ju et al., 2020). However, as results 

from all three modalities are based on group-level analysis between PTSD and healthy 

controls (HC), or trauma exposed healthy controls (TEHC), it remains unclear whether 

PTSD can be discriminated at the single-subject level. Finally, most studies used only a 

single imaging modality among small samples (Liu et al., 2015; Im et al., 2017; Gong et al., 

2014; Zilcha-Mano et al., 2020), limiting their broad-scale implications (Liu et al., 2015; Im 

et al., 2017; Li et al., 2014).

Recently, deep learning methods have received increasing attention in psychiatry because 

they are capable of learning subtle, latent patterns from high dimensional neuroimaging 

data. Deep learning methods have the potential to automatically diagnose different clinical 

disorders (Kim et al., 2016; Zhao et al., 2017), including PTSD (Sheynin et al., 2021), 

advancing the understanding of the neural basis of neuropsychiatric disorders (Arbabshirani 

et al., 2017). Of specific interest is autoencoder, which is a type of artificial neural network 

that seeks to learn the most efficient representations of the data at the individual level 

(Pinaya et al., 2019). Several neuroimaging studies show promising results for autoencoders 

in the classification of Alzheimer’s disease (Suk et al., 2015; Ju et al., 2019), attention 

deficit hyperactivity disorder (ADHD) (Liu et al., 2021), autism spectrum disorder (ASD) 

(Eslami et al., 2019), and schizophrenia (Pinaya et al., 2019; G Li et al., 2020). Yet, the 

potential of autoencoders for multi-site classification of PTSD remains unknown.
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To address the gaps in knowledge, here we used machine learning approaches in large-scale 

multimodal datasets from a heterogenous sample that obtained through the Enhancing 

Neuro-Imaging Genetics through Meta-Analysis (ENIGMA) PTSD and Psychiatric Genetics 

Consortium-(PGC) consortium PTSD working groups. First, we assessed classification 

performance between PTSD and controls using traditional machine learning methods; 

2) assess the utility of the denoising variational autoencoder (DVAE) and evaluated its 

classification performance; and 3) assess the generalizability and reproducibility of both 

models for each modality.

More specifically, first, we assessed the utility of neuroimaging biomarkers from s-MRI, 

rs-fMRI, and D-MRI in classifying PTSD from healthy controls, both with and without 

trauma exposure, as previous research has suggested unique neural signatures associated 

with trauma-exposure that are not present in trauma-unexposed individuals (Weng et al., 

2019; Ke et al., 2018). To achieve this goal, we first identified the brain features that best 

distinguish PTSD from all non-PTSD controls. Next, we assessed the common and distinct 

neural features of PTSD versus controls with (TEHC) and without (HC) trauma exposure. 

Such information may provide valuable insight into underlying neural mechanisms in the 

pathophysiology of PTSD, and provide a baseline for machine learning classification of 

PTSD using large-scale data.

Second, we assessed the utility of deep learning models as a feature reduction method 

to improve classification performance. Neuroimaging studies usually make the predictive 

modeling task challenging because of the high dimensional feature set and relatively small 

sample size (Mwangi et al., 2014). Feature reduction methods can reduce feature dimensions 

to avoid overfitting, without losing important information needed for classification. 

Autoencoder approaches have an advantage over traditional feature reduction in suppressing 

noise from the input signal, leaving only a high-value representation of the input. Such 

an approach can automatically identify ways to transform raw imaging features into latent 

space variables, which are more suitable for machine learning algorithms, as well as capture 

the nonlinear representations of the input data. In this study, we built a DVAE for high 

dimensionality data reduction (Han et al., 2019). The latent variables were used as new 

features and input into traditional machine learning approaches for classification. Instead 

of developing a system capable only of classifying individuals into patients and controls, 

we sought to capture the key feature information in the latent space using the DVAE 

model. We first trained the model using controls, and subsequently applied the model to 

data from PTSD patients. Our intent was that the model would first learn the features 

representing healthy brain function and then retrieve the latent variables in PTSD patient 

data for capturing deviation of brain features from controls (Pinaya et al., 2019).

Third, we assessed the generalizability and reproducibility of the classification model 

across heterogeneous datasets from multiple sites. The generalizability of machine learning 

to classify neuroimaging data is of great concern. Tremendous variability across studies 

inhibits the creation of a clear body of reliable knowledge from distinct studies (Cai et 

al., 2020). The ENIGMA-PGC consortium combines multimodal imaging and clinical data 

from multiple sites, enabling the development of models based on large samples. This 

offers an unprecedented opportunity for testing the generalizability and reproducibility of 
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classification models to unseen datasets with vastly different characteristics compared to 

the sample used for model building. We evaluated generalizability across sites by assessing 

the classification performance for each site, and then by using Leave-One-Site-Out Cross-

Validation (LOSOCV) to test how well the model generalized to independent cohorts.

2. Methods

2.1. Participants

Table 1 summarizes the descriptive information for each imaging modality. We analyzed 

brain MRI data from 7925 individuals (3477 structural-MRI; 2495 resting state-fMRI; and 

1953 diffusion-MRI). Of these 7925 individuals, 498 individuals had all 3 modalities, 736 

had 2 and 6691 only had 1 modality. Demographic information for each imaging modality 

are summarized in Supplemental Table 1~3. Inclusion and exclusion criteria for each cohort 

are summarized in Supplemental Table 4.

Depending on the cohort, current PTSD was diagnosed according to the Diagnostic and 

Statistical Manual of Mental Disorders (DSM) IV or V criteria, using the following 

standard instruments: Clinician-Administered PTSD Scale-IV (CAPS-IV), CAPS-5 (DSM-

V), Structured Clinical Interview (SCID-IV) (DSM-IV), Mini International Neuropsychiatric 

Interview (MINI) 6.0.0 (3 cohorts, DSM-IV), PTSD Checklist (PCL)-4 (DSM-IV), PCL-5 

(DSM-V), Davidson Trauma Scale (DTS) IV (1 cohort, DSM-IV), PTSD Symptom Scale 

(PSS) (DSM-IV), and Anxiety Disorders Interview Schedule (ADIS) (DSM-IV). All 

participating sites obtained approval from their local institutional review boards and ethics 

committees, and all study participants provided written informed consent.

2.2. Image preprocessing

The brain features included in machine learning analysis are presented in Fig. 1. All imaging 

data were acquired at the contributing sites and processed with standardized protocols 

established by the ENIGMA Consortium (Nunes et al., 2020; Renteria et al., 2017). The 

specific set of imaging features used in this study are summarized in supplemental Table 

5~7.

S-MRI: T1-weighted images were processed using the FreeSurfer processing stream to 

create individual subject thickness maps (http://surfer.nmr.mgh.harvard.edu/). The cortex 

of each hemisphere was parcellated into 34 cortical regions of interest (ROIs) using 

the Desikan–Killiany atlas (Klein and Tourville, 2012). To match what we excluded for 

rs-fMRI data, 10 ROIs that are part of the motor or occipital lobes were removed from 

further analysis. The volume of an ROI was calculated by multiplying cortical thickness 

at each vertex in the ROI by the surface area across all vertices (Wang et al., 2021). 

ROI volumes and intracranial volume (ICV) were derived from subjects’ native spaces. 

Segmentations of gray and white matter and parcellations of ROIs were visually inspected 

using ENIGMA imaging quality control protocols (http://enigma.ini.usc.edu/protocols/). 

ROIs with segmentation or parcellation errors were excluded from the analysis. The final 

structural features included ROI cortical thicknesses (CT) and volumes for both left and 

right hemispheres, a total of 96 features (Supplemental Table 5).
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Rs-fMRI: Resting-state images were acquired at each site and preprocessed at 

a single location (Duke University). Preprocessing was implemented in ENIGMA 

HALFpipe workflow (https://github.com/HALFpipe/HALFpipe) based on fMRIPrep. 

Briefly, processing steps for T1w image include skull stripping, tissue segmentation, 

and spatial normalization to MNI space. Processing steps for functional images include 

motion correction using FSL MCFLIRT, slice time correction using AFNI 3dTshift for slice-

timing correction, susceptibility distortion correction, and co-registration to the reference 

T1-weighted image using FSL FLIRT, and spatial normalization and warping to the 

template space using the MNI_2009 template. Each voxel was smoothed using signal 

from neighboring voxels with AFNI 3dBlurInMask followed by weighting by an isotropic 

Gaussian kernel. This method was repeated for each timepoint in the time series.

To ensure good quality of RS data, visual inspection was carried out on image registration, 

segmentation and brain extraction. To control confounding effects of motion artifact, several 

strategies were implemented: First, the top five aCompCor components were removed 

(Behzadi et al., 2007); second, frame-wise displacement (FD) was computed for each run, 

and subjects with more than 30 % frames have high levels of gross motion were excluded 

(FD> 0.5 mm). Next, subjects with tSNR below 1.5 * IQR were excluded, and finally, 

subjects for whom more than 85 % of independent component analysis (ICA) components 

classified as noise were further removed. The ROI-to-ROI functional connectivity was 

calculated by extracting the average time series extracted from each of the 264 ROIs 

regions defined by the Power atlas (Jahanshad et al., 2013). A connectivity matrix between 

atlas regions was calculated using Pearson product moment correlation with PANDAS. 

We further reduced the number of features by only selecting 148 ROI regions that are 

part of known networks including default mode (DMN), ventral attention (VAN), frontal-

parietal (FPN), salience (SN), subcortical (SCN), dorsal attention (DAN), cingulo-opercular 

networks (CON) (Gao et al., 2018). The final functional connectivity feature set contained 

10,878 measures (Supplemental Table 6).

D-MRI: DTI data were preprocessed following ENIGMA-DTI protocols and quality control 

procedures at (Power et al., 2011). Processing steps include Eddy current correction, 

echo-planar imaging-induced distortion correction, motion correction, and tensor fitting. 

Fractional Anisotropy (FA) images generated from the estimated tensors were mapped to 

the ENIGMA DTI FA template and projected onto the skeleton FA template (FMRIB58_FA 

standard-space). FA values within ROIs were averaged within ROIs using JHU atlas for 

further analysis. 42 Tract-Based Spatial Statistics (TBSS) derived features of mean FA were 

extracted from D-MRI. Details and ROI abbreviations can be seen in Supplemental Table 7.

2.3. Data analysis

Overview: The overall analysis procedure is presented in Fig. 2. The analysis followed the 

structure of the three main aims and 2 supplementary aims of the paper. Goals 1 and 2 used 

data that was pooled across sites/scanners whereas goal 3 used site information to facilitate 

generalization performance assessment. Goal 1 investigated both Support vector machine 

(SVM) and random forest (RF) for classification of s-MRI data, which was repeated for 

rs-fMRI, and then for D-MRI. Goal 2 investigated DVAE in conjunction with SVM and in 
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conjunction with RF (DVAE+SVM/RF), first using s-MRI features and then using rs-fMRI 

features. Goal 3 investigated performance of SVM or RF on single site data that was 

tested separately on s-MRI, rs-fMRI, and D-MRI brain features. Goal 3 also investigated 

performance of LOSOCV tested separately on s-MRI (SVM, DVAE+SVM), and rs-fMRI 

(SVM, DVAE+SVM) brain features.

For classification using SVM or RF (Goal 1) and DVAE+SVM or DVAE+RF (Goal 2) 

(Kingma, 2013), we used aggregated pooling methods for each modality. Pooling methods 

refer to techniques used to aggregate or combine data from multiple sites, so that the 

model can leverage information from diverse resources or sites to improve the overall model 

performance, and generalize the learned patterns across different sites. In this analysis, 70 

% of all sites’ data was used for cross-validation, and 30 % of all sites’ data was used for 

independent testing. For the generalization test (Goal 3), we first tested the classification 

performance for each site across all three modalities, and then used LOSOCV procedure 

for each modality. In addition, we tested the impact of site, age and sex on classification 

performance.

3. Classification

We built three models for classifying PTSD relative to 1) all controls (HC and TEHC), 2) 

healthy controls with no trauma history (HC), and 3) those previously exposed to trauma 

who did not develop PTSD (TEHC) for each modality.

SVM and RF algorithms were used for classification (Supplemental Material Methods). 

Machine learning algorithms and Gridsearch were implemented in Python, and are 

available as part of the scikit-learn library (https://scikit-learn.org/stable/about.html#citing-

scikit-learn). Our first task was to train classifiers that can differentiate patients with PTSD 

from control subjects using pooling methods. We randomly split all imaging data into two 

subsets: 70 % of the data was used for training and validation (cross-validation), and the 

remaining 30 % was used as a hold-out test dataset. The labeled training+validation data 

is used to train a machine learning model through cross-validation. The validation data, 

which is separate from the training data, is used for hyperparameter tuning and assessing 

the model’s performance during the cross-validation training process. The independent-test 

data is entirely separate from the training+validation data and is never involved in model 

training phase. Brain features with 30 % of missing data were dropped from further 

analysis (Madley-Dowd et al., 2019). RobustScaler from the scikit-learn library was used 

to scale the data for each modality, and missing values were imputed with the mean of 

the training dataset. The same scaling method was applied to the test set (Pedregosa et al., 

2011). Gridsearch with stratified 10-fold cross-validation was used to select hyperparameters 

for both classifiers and to validate performance. Based on previous research (Gao et 

al., 2018), we used 10-fold cross validation, which generally provides better and more 

stable performance across different datasets, compared to Leave-One-Out Cross-Validation 

(LOOCV). To achieve an equal number of samples for each group, random under-sampling 

was applied to the imbalanced groups, with the under-sampling transform applied to 

the training dataset on each split of a repeated 10-fold cross-validation. The model’s 

performance during training phase was evaluated by averaging across its the performance 
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in the 10 fold. After model training, and the selection of the best hyperparameters, its 

performance is also assessed on the independent test set. Classification performance was 

measured using standard metrics including accuracy, sensitivity, specificity, and area under 

the receiver operating characteristic curve (ROC-AUC), which summarizes sensitivity and 

specificity at different thresholds.

Denoising variational autoencoder (DVAE):

In our study, the feature dimension was very high for rs-fMRI data (148 ROIs, 10,878 ROI-

to-ROI connectivity pathways), and relatively high for s-MRI data (96 regions). Researchers 

often use various feature reduction techniques for better performance and efficiency. Here, 

we implemented DVAE models using the PyTorch library (https://arxiv.org/abs/1912.01703). 

Gaussian noise with a mean of 0 and a standard deviation of 0.1 was applied to the input 

data. Our goal was to induce the model to learn to find more robust features of the data that 

are tolerant to noise and thus be able to reconstruct the noiseless data from noisy input data. 

This was the denoising aspect of the DVAE (Pinaya et al., 2019; Du et al., 2017).

Model Architecture: The autoencoder consists of an encoder and a decoder 

(Supplemental Fig. 1). The encoder has one input layer, x, one hidden layer, ℎ1, and an 

encoding layer, z. The decoder consists of one hidden layer, ℎ2, and one output layer x̂. The 

size of h1, h2, and z was varied depending on the modality used. For s-MRI, a size of h1 

= h2 = 250 and size of z = 5 were chosen. For rs-fMRI, a size of h1 = h2 = 400 and a size 

of z = 10 was chosen. The sizes of the respective layers were chosen by performing a sparse 

grid search for each of the layers’ sizes independently and evaluating the performance of 

the model both with respect to the loss function and classification accuracy (Sheela, 2013). 

The grid search parameters for s-MRI and rs-fMRI included activation function (tanh, selu), 

latent size (Koenen et al., 2017; van Loo et al., 2012; Woo et al., 2017; Varoquaux, 2018; 

Koch et al., 2016; Kim et al., 2016), and hidden layer size ((Jahanshad et al., 2013), 100, 

150, 200, 250, 400, 500).

The encoding layer z is referred to as the latent space of the model. This layer 

stores the model’s reduced feature representation of the input data. In a general VAE 

framework, the features of the latent space z, referred to as latent variables, are drawn 

from Gaussian distributions determined by learned parameters μ, log σ2 . These Gaussian 

distributions comprise an estimated distribution q z x  to approximate the true underlying 

prior distribution p z . Once the encoded representation z is sampled, the values are 

reparameterized and fed into the decoder network. The decoder network then tries to 

reproduce the input using the reparameterized encoded data. The activation function for 

the layers was chosen as scaled exponential linear units (SELU) (Pinaya et al., 2019).

Loss Function of Model: For an autoencoder, the loss is usually determined solely by 

L = MSE x, x  where MSE is the mean squared error loss. This makes the autoencoder’s 

sole objective to maximize its reconstruction accuracy. For a VAE the Kullback-Leibler 

Divergence DKL  is added to the loss function. The DKL term is used to determine how much 

q z x  and p z  differ. This constrains the way in which the parameters for the Gaussian 
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distributions are updated and regularizes the latent space. Thus for a VAE, the loss function 

is generally

L = MSE x, x + DKL q x ∥ p z .

For p z , usually the unit Gaussian or N 0, 1  is chosen. This was the choice for our model as 

well.

Training of the DVAE model: The model was trained with ADAM optimizer (Kingma, 

2014) using rs-fMRI or s-MRI data from controls only. Our intent was that the model would 

first learn the features representing salient aspects of healthy brain function and use the same 

features to represent PTSD. Prior to feeding the data to the model, the data was standardized 

by median and interquartile range. The total control sample was split into training (70 

%) +validation (30 %) data. The labeled training data is used to train the VAE model. 

The validation data, which is separate from the training data, is used for hyperparameter 

tuning and assessing the model’s performance in each epoch. The independent-test data 

is completely separate from the training+validation data and is never involved in model 

training. It is used to evaluate the generalization of the trained model to unseen PTSD 

data. Each epoch, the samples were fed as mini batches of size 128 to the network. L2 

regularization (regularization parameter = 0.1) was applied to penalize high values of the 

network’s weights and to avoid overfitting. The model was then trained for 500 epochs with 

the training+validation data. Once the training was completed, the model’s performance 

was evaluated on the independent-test data, which provides an unbiased estimate of how 

the model generalizes to unseen data. The resulting VAE model learned to encode healthy 

patterns from the input brain features into its latent representation. Later, the brain features 

from patients with PTSD (PTSD test set) were input into the same VAE model, and the 

latent variables were extracted as new features for classification analysis (Fig. 3).

Convergence was measured by evaluating the per-feature loss, which we defined as L/n
where n is the number of features of the input. This was done so as to be able to roughly 

compare the loss for models from different modalities, as each had a different number of 

features.

Encoding and Classification: After training the model, we used it to encode and 

reconstruct the data from both control subjects and the individuals with PTSD. For each 

subject, the values for their latent distributions, μ, log σ2 , were computed and extracted. 

Second, we compared the performance of the encoded features (DVAE+SVM/RF) to the 

original features using the SVM and RF classifiers (SVM/RF).

Calculating feature importance:

To find features that are most predictive of PTSD, we used a permutation-based feature-

importance method on a RF classifier (Altmann et al., 2010; Breiman, 2001). After choosing 

the best RF model, we permuted the values of each feature and recomputed the accuracy. 

Predictor importance was then described by the difference between the baseline accuracy of 

the classifier and the difference in accuracy after permuting the feature. This method, while 
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slower to compute, is more robust than the Gini importance (GI) method, which is a more 

commonly used method to calculate feature importance.

4. Generalization

Single Site:

We evaluated the same SVM or RF parameterization used in previous analyses on each 

site’s data, to shed light on its replicability. However, this method requires each site’s 

sample size to be large enough to appropriately fit a machine-learning model. Thus, we only 

included sites that had more than 20 subjects in each group (PTSD and all control). For sites 

that have imbalanced samples, a down sampling approach was used to have a distributed 

sample across the two groups. To maximize generalizability and avoid overfitting, we 

applied the SVM or RF for each site using the default parameters, without grid search 

for optimal parameters, or feature reduction and selection. This method is stratified insofar 

as the proportion of cases and controls (in respective folds) is similar in both training and 

validation sets. The SVM or RF model was trained and evaluated using a 10-fold cross 

validation, and predictive performance was evaluated based on the cross validation.

Leave-one-site-out cross-validation (LOSOCV):

Sites with sample size greater than 20 in each group were included in this analysis. In each 

fold of cross-validation, we used the DVAE trained latent features as described above. The 

DVAE model was trained based on control subjects’ data only (exclude the controls from 

the independent test site), then the brain features from patients with PTSD across all sites 

were input into the same VAE model, and the latent variables were extracted as new features 

for machine learning analysis. Thus, the hold-out site was completely left out from the 

training procedure. For machine learning analysis (SVM),), in each iteration, one site was 

left out as test set, data from the rest of the sites was used in training procedure through 

10 folds cross-validation. The training set was further randomly partitioned into 10 folds 

for cross-validation. Model performance was evaluated on the data from the hold-out site. 

The goal of this procedure was to assess the generalizability of the classifier to a totally 

independent data set that was sampled from a different sample and scanner. The LOSOCV 

performance was compared with an aggregated pooling method, in which data from all sites 

were included in training process.

ComBat:

For a large multi-site study, it is important to consider whether a classifier can generalize 

well to new data coming from a different scanner or site. We used the ComBat method 

(Radua et al., 2020) to remove the site-specific information from the data and to test the 

generalizability of our classifier. The ComBat method models each imaging measure as a 

combination of three parts: variation of Y captured by the covariates such as age and sex, 

mean differences across sites, and the error term that contributes a different normal from 

each sites. Then the ComBat harmonized data can remove these additive and multiplicative 

effects due to site differences.
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Biologically relevant covariates:

To evaluate the contribution of confounding factors (age and sex) on the classification 

performance, we included age and sex as features and tested the impact on the overall 

performance.

5. Results

5.1. Classification performance between PTSD and controls for each imaging modality 
using traditional SVM and RF

The CV AUC and test AUC using RF and SVM are presented in Fig. 4 for brain features 

from s-MRI, rs-fMRI, and D-MRI modalities respectively. The performance for RF was 

similar to SVM. Accuracy, Sensitivity and Specificity are reported in the Supplemental 

Table 8 and the receiver operating characteristic curve (ROC curve) are reported in the 

Supplemental Figures 2–4. First, our findings show that RF and SVM achieved similar 

performance when classifying PTSD from controls. Second, our models showed balanced 

CV AUC and test AUC, indicating that our models can generalize to an independent test 

set, which was not involved in model training, with no overfitting in these models. Third, 

all three modalities achieved comparable performance (using SVM: s-MRI: test AUC=0.60, 

Cohen’s d = 0.354; rs-fMRI: test AUC=0.59, Cohen’s d = 0.325; D-MRI: test AUC=0.56, 

Cohen’s d = 0.212). Among the three contrasts (PTSD vs. HC; PTSD vs. TEHC; PTSD 

vs Controls), the performance of classifying PTSD from HC was the best across all three 

modalities (SVM: s-MRI: test AUC=0.72, Cohen’s d = 0.82; rs-fMRI: test AUC=0.75, 

Cohen’s d = 0.948; D-MRI: test AUC=0.78, Cohen’s d = 1.09) (see Supplemental Table 8).

Some common and distinct features (Supplemental Fig. 5) that differentiate PTSD from both 

HC and TEHC are presented in Supplemental Results.

5.2. Classification performance between PTSD and controls using deep learning 
framework

Applying DVAE to rs-fMRI data reduced the number of features from 10,878 (latent 

variables) to 10. The performance of DVAE+SVM was CV AUC mean=0.60, std=0.045; 

test AUC=0.62, Cohen’s d = 0.424. Compared with the performance (CV AUC) using SVM 

of all features, the performance of DVAE+SVM or DVAE+RF (CV AUC) significantly 

improved (SVM: t (O’Doherty et al., 2017)=2.56, p = 0.016; RF: t (O’Doherty et al., 

2017)=4.158, p = 0.0006). The classification performance between PTSD and controls using 

SVM was presented in Fig. 5, which achieved similar results. We also applied DVAE 

to s-MRI data (feature size: 96), which reduced the features to 5 latent variables. The 

performance of DVAE+SVM was CV AUC mean=0.60, std=0.045; test AUC=0.62, Cohen’s 

d = 0.424. Compared with the performance (CV AUC) using SVM or RF of all features, 

the performance of DVAE+SVM or DVAE+RF (CV AUC) significantly improved (SVM: t 

(O’Doherty et al., 2017)=1.55, p = 0.019; RF: t (O’Doherty et al., 2017)=2.56, p = 0.0196).

The reconstruction loss function was used to assess whether the DVAE is a good predictor 

for classification of controls vs PTSD. The loss function during the training process for each 

modality is reported in Fig. 6.
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5.3. Generalization and reproducibility

5.3.1. Assessing the classification performance for each site—S-MRI: The CV 

AUC in individual sites ranged from 0.36 to 0.83 using SVM. The average of individual 

site results yielded a CV AUC of 0.55 (std: 0.11) using SVM.Rs-fMRI: The CV AUC in 

individual sites ranged from 0.39 to 0.69 using SVM. The average of individual site results 

yielded a CV AUC of 0.54 (std: 0.08). D-MRI: The CV AUC of individual sites ranged 

from 0.24 to 0.68 using SVM. The average of individual site results yielded a CV AUC of 

0.53 (std: 0.11) (Fig. 7, and Supplemental Table 9). We also assessed the CV AUC using RF. 

There is no statistical differences between the CV AUC results using RF or SVM (s-MRI p = 

0.97; rs-fMRI p = 0.32; D-MRI p = 0.65).

We further assessed the correlation between the sample size at each individual site and the 

CV AUC. No significant correlation was found, for all three modalities.

5.3.2. Leave one site out cross validation (LOSOCV)—The LOSOCV 

performance was compared with an aggregated pooling method (as in Results Section 1). 

For all three MRI modalities (s-MRI, rs-fMRI, and D-MRI), LOSOCV provided chance 

level classification (s-MRI: test AUC=0.56, Cohen’s d = 0.212; rs-fMRI: test AUC=0.47, 

Cohen’s d = 0; D-MRI: test AUC=0.49, Cohen’s d = 0) (Supplemental Table 10), and 

performed worse than the aggregate pooling method (Fig. 8). In s-MRI and rs-fMRI, 

we also compared LOSOCV and pooling methods using DVAE features, and assessed 

their generalizability. The DVAE achieved the same performance between LOSOCV and 

the pooling method, indicating a good generalization to unseen dataset using DVAE. 

Specifically, the LOSOCV method using SVM yielded an averaged test AUC of 0.61 

(std:0.064) for s-MRI; and an averaged test AUC of 0.62 (std: 0.052) for rs-fMRI 

(Supplemental Fig. 6).

5.3.3. Effects of site, age, and sex—We evaluated the impact of site by first 

harmonizing each site using ComBat (Pomponio et al., 2020), and then assessed the 

classification performance between PTSD and all controls using RF and SVM. The site 

harmonization did not impact the classification performance using RF, but the performance 

dropped using SVM (s-MRI: before: test AUC=0.60, Cohen’s d = 0.354; after: test 

AUC=0.52, Cohen’s d = 0.071; rs-fMRI: before: test AUC=0.59, Cohen’s d = 0.325; after: 

test AUC=0.46, Cohen’s d = 0; D-MRI: before: test AUC=0.56, Cohen’s d = 0.212; after: 

test AUC=0.52, Cohen’s d = 0.071) (Supplemental Fig. 7).

We also evaluated the impact of age and sex on classification performance by including age 

and sex as features in the classification models. Age and sex did not impact the classification 

performance using either RF or SVM (Supplemental Fig. 8).

6. Discussion

The primary focus in the present study was to use machine learning techniques to create 

classifiers that leverage the complex multivariate patterns of structural and functional 

brain deficits. Specifically, we rigorously tested the classification performance on both 

cross-validation AUC and test AUC, in which a fully independent portion of the data was 
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left out when selecting the model (both architectures and parameters). We found relatively 

poor classification performance in classifying PTSD vs. controls (60 % test AUC for s-MRI, 

59 % for rs-fMRI and 56 % for D-MRI using SVM). This is lower than top-performing 

studies conducted at a single site, with sample size ranging from N = 30 to 89. These 

studies achieved accuracy ranging between 55.56 % (Y Li et al., 2020) and 97.1 % (Lanka 

et al., 2020) for rs-fMRI, and between 73 % (Im et al., 2017) and 80 % (Li et al., 2014) 

for studies focusing on multimodal biomarkers. Our single-site performance is comparable 

to other single-site studies (Fig. 7). Yet, single-site studies show poor generalization to 

independent datasets (Pereira et al., 2009), suggesting that performance might be adversely 

affected by small sample sizes, high-dimensional features, and use of complex models with 

a large number of parameters. Good performance on training data, with poor performance 

on test data, suggests overfitting, as most machine-learning studies are evaluated only on 

the basis of cross validation. Therefore, while our accuracy is relatively low (Y Li et al., 

2020), the strength of our methods and sample size support the importance of our findings. 

Conversely, the present results are comparable with machine-learning studies using large 

scale imaging datasets in other psychiatric disorders based on s-MRI data – 65 % accuracy 

when classifying MDD from HC (Gao et al., 2018); 65.2 % accuracy in differentiating 

bipolar disorder from controls (Nunes et al., 2020); and a CV AUC of 0.57–0.61 when 

classifying OCD from controls (Bruin et al., 2020). Exploring the utility of a DVAE, 

improved classification results emerged as compared to traditional ML approaches. The 

DVAE successfully reduced feature dimensions, e.g. reduced the rs-fMRI features from 

10,878 features to 10 latent variables, without losing information important for classification 

(SVM test AUC=59 %, Cohen’s d = 0.325 using 10,878 features; test AUC=62 %, Cohen’s 

d = 0.424 using 10 latent variables). Thus, the present results have the potential to provide a 

baseline classification performance for PTSD when using large scale imaging datasets.

When considering HCs and TEHCs as separate control groups, our results yielded a 

markedly improved discrimination standard (test AUC in the range of 72 % to 78 %) across 

the three modalities, with the discrimination between PTSD and HC outperforming that of 

PTSD and TEHC. These findings are in line with previous studies showing greater similarity 

in underlying neural circuits between PTSD and TEHC participants (Belleau et al., 2020; 

Sheynin et al., 2020), than when comparing PTSD to HC with no trauma exposure.

Evaluating the generalizability by assessing the model performance for each site and 

each modality, showed that the classification AUC at the individual sites across all three 

imaging modalities ranged from 40 % to 82 % using SVM. However, such a wide range 

in the performance across individual sites is expected in large-scale multi-site studies, 

also shown in other disorders (Nunes et al., 2020; Bruin et al., 2020), as samples are 

highly heterogeneous due to between-site differences (e.g., inclusion/exclusion criteria, 

demographic characteristics, clinical profiles, scanner used and scanning parameters, etc.). 

Furthermore, to avoid overfitting, we limited the scope of default parameters to SVM only, 

without hyperparameter tuning, which may have impacted the range of site performances 

compared to fine-tuning models using cross validation (Nunes et al., 2020).

Our results also indicated that LOSOCV performed using traditional machine learning 

and the aggerated pooling method performed worse than the performance using DVAE 
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framework, as typically LOSOCV using traditional machine learning may result in large 

between-sample heterogeneity between training and test sets, resulting in roughly chance-

level classification. Thus, imaging features do not provide strong biomarkers that enable 

generalization to new sites using traditional machine-learning methods. Previous studies 

have made an attempt at LOSOCV, yielding average accuracies of around 75.0 % 

schizophrenia using s-MRI (Rozycki et al., 2018; Skatun et al., 2017), and an accuracy 

of 58.67 % when assessed LOSOCV in bipolar disorder (Nunes et al., 2020). These 

studies, however, used relatively small number of sites (3 to 5) for LOSOCV test, while 

we tested generalizability in 28 sites (s-MRI). Conversely, when extracting s-MRI and 

rs-fMRI features using DVAE models based on controls’ data only, the LOSOCV method 

achieved the same performance as the pooling method, demonstrating better generalizability 

using the DVAE framework. Importantly, the LOSOCV may be more significant in clinical 

practice because when multi-site data is used for model training, the final neuroimaging-

based diagnostic classification models are much less site-specific, rendering them more 

generalizable. Indeed, the VAE framework has been used for site harmonization and 

produced promising results. Site specific information can then be added to the latent 

representations to reconstruct the MRI data (Moyer et al., 2020; Dinsdale et al., 2021).

Assessing the effect of site on classification performance showed that discrimination 

remained the same when using a random forest classifier, and dropped when using the 

SVM classifier, and after site harmonization with ComBat. Previous literature suggests that 

statistical harmonization methods developed to reduce data heterogeneity have the potential 

to improve accuracy, but at the cost of generalizability. Such approaches may compromise 

the train/test separation and introduce additional assumptions. Our findings demonstrate that 

DVAE may be able to capture differences across sites, and can be better generalized to 

new sites data. More importantly, the DVAE model does not require a priori knowledge of 

site information. Taken together, our findings support reproducibility of the DVAE across 

heterogeneous datasets from multiple sites. Testing generalizability, we also assessed the 

effect of age and sex on performance by adding them as features to the model (Bruin 

et al., 2020), which did not affect classification performance. Neither did they emerge as 

informative features in classifying patients with PTSD from controls. Future studies should 

further assess the specific effects of age and sex on PTSD classification.

Several challenges still remain to be explored. First, combining biomarkers from different 

modalities with data fusion approaches is still in its infancy, and should be considered 

in future analyses to better detect potentially weak or latent effects hidden within high-

dimensional datasets. Most deep-learning models are still being applied as black boxes, 

but serious efforts are underway to visualize latent variables and therefore improve 

the interpretability of results. Second, neuropsychiatric comorbidity was not consistently 

recorded across participating sites, so we could not evaluate it in the present study. 

Future studies should rectify this by also assessing comorbid conditions, exploring the 

underlying brain features that discriminate PTSD patients with and without comorbidity. 

Third, due to limited data of neurocognitive performance, we were not able to link emergent 

brain biomarkers to neurocognitive performance associated with the same brain circuits 

and/or regions. Fourth, while deep learning models typically give better performance than 

traditional machine learning, they are still perceived as black-box models, as they do 
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not readily provide corresponding interpretations. However, deep learning need not be 

uninterpretable - as witnessed by the rapid expansion of methods for explainable deep 

learning (Bai et al., 2021; Singh et al., 2020), which uses new forms of visualization 

and representations of model outcomes. For example, VAE offers several advantages over 

the autoencoder and can be used for better interpretation of the latent representations. 

Specifically, VAE models the latent space as a probability distribution, thus it can generate 

new data by sampling from different parts of the latent distribution. This allows for 

meaningful interpolation and exploration of the latent space. Future studies should explore 

the latent representation discovered in this study. Fifth, the deep learning models were 

trained using data from all controls, not HC; future studies could generate separate models 

using HC and TEHC, and further explore the difference in latent variables generated by 

different control groups (HC and TEHC). Sixth, this study only used the DVAE model 

for ML classification. Future studies can assess different variations of autoencoder models 

such as VAE, sparse autoencoder, and adversarial autoencoder. Lastly, although our study 

benefited from a large sample size and advanced analytics, its value in predicting disease 

progression and treatment response needs to be investigated by future studies.

Taken together, our findings highlight the promise offered by machine learning and deep 

learning methods in diagnosing patients with PTSD using multimodal brain imaging 

data. Our findings show that the control group used can heavily affect classification 

performance. We also demonstrate the possibility of improving generalizability using DVAE 

models, which may provide valuable insight into the neural mechanisms underlying the 

pathophysiology of PTSD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Brain features from structural MRI (s-MRI), resting state fMRI (rs-fMRI), and DTI (d-MRI) 

used in this study. T1-weighted images were processed using the FreeSurfer pipeline, the 

final s-MRI features included 96 ROI cortical thicknesses (CT) and volumes for both left 

and right hemispheres. Rs-fMRI images were preprocessed using ENIGMA HALFpipe 

workflow, the final rs-fMRI features included 10,878 ROI-to-ROI functional connectivity 

measures. DTI data were preprocessed following ENIGMA-DTI protocols, 42 Tract-Based 

Spatial Statistics (TBSS) derived features of mean FA were included in the analysis.
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Fig. 2. 
Overall analysis procedure. The analysis followed the structure of the three main aims and 

2 supplementary aims of the paper. Goals 1 and 2 used data that was pooled across sites/

scanners whereas goal 3 used site information to facilitate performance assessment. Goal 1, 

investigated both Support vector machine (SVM) and random forest (RF) for classification 

of s-MRI data, which was repeated for rs-fMRI, and then for D-MRI. Goal 2 investigated 

DVAE in conjunction with SVM and in conjunction with RF (DVAE+SVM/RF), first using 

s-MRI features and then using rs-fMRI features. Goal 3 investigated performance of SVM 

or RF on single site data that was tested separately on s-MRI, rs-fMRI, and D-MRI brain 

features. Goal 3 also investigated performance of LOSOCV tested separately on s-MRI 

(SVM, DVAE+SVM), rs-fMRI (SVM, DVAE+SVM), and D-MRI (SVM) brain features. S-

MRI: structural MRI; RS-fMRI: resting state fMRI; D-MRI: diffusion MRI; SVM: support 

vector machine; RF: random forest; DVAE: Denoising variational autoencoder.
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Fig. 3. 
Denoising Variational Autoencoder analysis pipeline: The model was trained using rs-fMRI 

or s-MRI data from controls only. The samples were then split into a training+validation 

(70 %) and independent-test (30 %) data. Then 20 % of the training data was set aside 

for validation and hyperparameter tuning. Once the training+validation was completed, 

the model’s performance was evaluated on the independent-test data, which provides an 

unbiased estimate of how the model generalizes to unseen data. The resulting VAE model 

learned to encode healthy patterns from the input brain features into its latent representation. 

Later, the brain features from patients with PTSD (PTSD test set) were input into the 

same VAE model, and the latent variables were extracted as new features for classification 

analysis.
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Fig. 4. 
The overall classification performance (measured by cross validation AUC [CV AUC], and 

test AUC) between PTSD and all controls, between PTSD and HC, and between PTSD and 

TEHC, for s-MRI, rs-fMRI, and D-MRI. Error bar represents standard deviation of the 10 

fold cross validation results.
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Fig. 5. 
Compare classification performance between PTSD and Controls using all features (labeled 

as RF or SVM) and DVAE-based latent variables (labeled as DVAE+RF or DVAE+SVM) in 

s-MRI (A) and rs-fMRI (B). Compared with the performance (CV AUC) using SVM of all 

features, the performance of DVAE+SVM (CV AUC) significantly improved for both s-MRI 

and rs-fMRI.
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Fig. 6. 
The reconstruction loss function of the Denoising Variational Autoencoder model for s-MRI 

(A), rs-fMRI (B), and D-MRI (C), blue line: loss for the training set (from control data), 

orange line: loss for the validation set (from control data), green line: loss for the validation 

data (from PTSD data).
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Fig. 7. 
s-MRI, rs-fMRI, and D-MRI single site performance for classification of PTSD from 

controls using SVM. The classification performance was measured by cross validation (CV) 

AUC, the dot indicates the average of the AUC of each fold in cross validation for each site, 

the line indicates the standard deviation of each fold in cross validation for each site. The 

boxplots were made by utilizing the boxplot() function from the seaborn library in Python. 

The box encompasses the interquartile interval, or the middle 50 % of the dataset. The upper 

and lower whiskers represent data points located in the top and bottom 25 % of the dataset. 

Data that fall outside this range are considered outliers and are plotted individually.
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Fig. 8. 
The comparison of Leave One Site Out Cross Validation (LOSOCV) performance with 

aggregated pooling method on the independent-test data using SVM for classification 

between PTSD and Controls across s-MRI (T1), rs-fMRI (RS), LOSOCV: In each iteration, 

one independent test site was completely left out from the training partition. Then the 

training set was further randomly partitioned into 10 subfolds for cross validation. Predictive 

performance was evaluated on the data from the hold-out site (presented light gray in 

the figure). Aggregated pooling method: data from all sites was included in the training 

process. We randomly split all imaging data into two subsets: 70 % of the data was used 

for training+validation (cross validation), and the remaining 30 % was used as independent 

test data. Random under-sampling was applied to the imbalanced groups, with the under-

sampling transform applied to the training dataset on each split of a repeated 10-fold cross 

validation. Predictive performance was evaluated on the data from the independent test set 

(presented dark gray in the figure).
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