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Summary

Relationships between the genome, transcriptome, and metabolome underlie all evolved 

phenotypes. However, it has proved difficult to elucidate these relationships because of the high 

number of variables measured. A recently developed data analytic method for characterizing the 

transcriptome can simplify interpretation by grouping genes into independently modulated sets 

(iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of 

causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. 
coli strains that tolerate high levels of the redox cycling compound paraquat, which produces 

reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to 

elucidate six interacting stress tolerance mechanisms: 1) modification of transport, 2) activation of 

ROS stress responses, 3) use of ROS-sensitive iron regulation, 4) motility, 5) broad transcriptional 

reallocation toward growth, and 6) metabolic rewiring to decrease NADH production. This work 

thus demonstrates the power of iModulon knowledge-mapping for evolution analysis.
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eTOC

Adaptive laboratory evolution can reveal novel stress tolerance mechanisms, but typical methods 

struggle to interpret the rich information in transcriptomes of evolved strains. Rychel et al. 

evolved strains with high paraquat tolerance, and revealed six tolerance mechanisms by integrating 

iModulon-based transcriptomic analysis with other systems biology tools.

Introduction

Adaptive laboratory evolution (ALE) is an excellent tool for discovery in biology. The 

experimental procedure is to grow a microbial starting strain in a selected condition 

for many generations, propagating when flasks reach a targeted density during repeated 

batch growth. This allows selection to enrich for mutant strains with improved fitness 

under the chosen condition6. A tolerization ALE uses this procedure with increasing 

stressor concentrations, pushing cells to amplify stress tolerance mechanisms7, thereby 

generating unique strains which are stress tolerance specialists. Analysis of ALE strains 

is highly informative for improving gene annotations, identifying fundamental biological 

principles and tradeoffs, designing bioproduction strains, and understanding antimicrobial 

resistance6,8,9.

Using ‘omics technology, we can globally characterize evolved strains from ALE studies. 

Typically, DNA resequencing and mutation calling algorithms8,10 are used to enumerate 

all changes to the genome in each strain. Then, researchers perform a literature search 
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to map knowledge onto the mutated genes and make predictions about the mechanisms 

underlying the ALE. Researchers test those mechanisms with further experiments, and 

they employ a variety of other tools such as metabolic modeling2,3,11–15 to discover new 

biological details about the strain and condition of interest. For example, Sandberg et al.16 

evolved Escherichia coli to grow well at elevated temperatures, and found genes that were 

consistently mutated in parallel. By relating these mutations to heat sensitive properties, 

the ALE analysis provides a clearer overall picture of the major weaknesses of the cell 

to heat stress. This understanding can then be applied for design of tolerant strains for 

bioproduction, and contribute to our understanding of the role of each gene in biological 

systems.

Several prior ALE studies have employed transcriptomics as part of the characterization 

tool kit. In principle, this data should be highly informative. Unlike the genome, the 

transcriptome is condition-specific. In addition, mutations can often have little or no 

effect17, but coordinated changes in gene expression often have a strong effect on 

phenotypes. However, the knowledge-mapping step, in which the transcriptome is mined 

for biological insights, is often challenging. The typical method for transcriptional analysis, 

differentially expressed gene (DEG) analysis, often returns a large number of DEGs, and 

determining their upstream regulation or downstream effects at large scales is daunting. 

We seek to integrate signals from the transcriptome with mutations in the genome via 

biologically meaningful relationships, which is difficult if we do not decrease the number of 

transcriptomic variables and map those variables to established knowledge from literature. 

This work would add global transcriptional analysis to the toolkit for understanding ALE 

strains.

iModulon analysis is a transcriptional analysis technique which has emerged as an effective 

way to reduce the number of transcriptomic variables and map knowledge onto them20,21. 

It uses independent component analysis (ICA) of large compendia of transcriptomic data to 

group genes into independently modulated sets (iModulons). iModulons are comparable 

to regulons. Regulons are the sets of genes that respond to a particular regulator as 

determined by bottom-up methods such as chromatin immunoprecipitation and regulator 

knock-outs18,19, whereas iModulons are determined from the top-down by analyzing only 

trends in transcriptomes. iModulons are therefore more flexible, and can capture the effects 

of regulatory changes along with other signals, like genomic deletions. They are also more 

amenable to computation: they are based on matrix decomposition, and each iModulon has 

an activity level in each sample, which can be combined with gene weightings to calculate 

the expression of the set of genes. By comparing iModulons with regulon annotations22, 

each iModulon is manually curated with predicted regulators and functions, bridging 

between the statistical patterns in data and existing literature. iModulon activity levels can 

be used to infer the activity of their underlying regulators, and thus enable quantitative 

interrogation of the cell’s sensory systems. This approach has provided valuable insights into 

E. coli20,23 and several other organisms24–31. iModulon analysis is supported by a publicly 

available codebase and online knowledgebase (iModulonDB.org)21,32.

We have recently updated our iModulon structure for E. coli using a dataset with over 

1,000 samples, called PRECISE-1K23. Data from the present study was included in this 
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dataset, which computed and characterized 201 signals in the transcriptional regulatory 

network (TRN) and reported details on iModulonDB.org. In this study, we demonstrate 

the usefulness of this knowledge-enriched representation by iteratively characterizing each 

significant transcriptional signal (iModulon) that changed over the course of an ALE. We 

identify relationships between mutations, iModulons, the ALE condition, and other results 

such as physiological measurements and metabolic models. Though iModulons have been 

used in past ALE studies11,12,33–35, no other study has iterated through each significant 

signal in the transcriptome in a way that mirrors the iterative interpretation of each mutation. 

Inference from the transcriptome reveals a large set of phenotypic predictions, many of 

which are more complex than would be identifiable by previous methods. This motivates 

further use of the iModulon framework as an important new part of the ALE analysis toolkit.

We used ALE to generate E. coli strains which are specialized to tolerate a common 

herbicide, the redox cycling compound paraquat (PQ). Redox cycling compounds generate 

large amounts of reactive oxygen species (ROS) by stripping electrons from cellular electron 

carriers, such as NADH and NADPH, and reducing oxygen; this generates destructive 

superoxide ROS and regenerates the oxidizing agent to re-initiate the cycle36–38. The ROS 

are particularly damaging to iron-containing enzymes and DNA. They decrease activity of 

important pathways, challenge the integrity of the genome, and inhibit growth3,37,39–42.

Though the ROS response of E. coli is well understood and ROS are often delivered in 

the laboratory by PQ40, some questions remain about how high levels of tolerance can 

be achieved: (i) In addition to the known proteins, which transporters and enzymes are 

involved in PQ cycling? (ii) What transcriptional alterations, specifically with respect to 

stress responses, metal homeostasis, and redox balance, are optimal? (iii) How can cells 

balance a tradeoff between generating NAD(P)H for energy and decreasing its production to 

prevent redox cycling36–38? Through our unique combination of systems biology techniques 

and new emphasis on iModulon knowledge-mapping, we are able to shed new light on 

these questions. Their answers are informative for the fundamental biology of stress and 

metabolism, and for applications in pathology, antimicrobial design, and biomanufacturing.

This work provides a blueprint for combining iModulon analysis with ALE. We begin by 

characterizing the strains and presenting an overview of the genomic and transcriptional 

changes. We then show the effects of large DNA changes and TF mutations on the 

transcriptome. We also find an unexpected non-TF mutation that regulates motility 

regulons in our strains. Next, we disentangle the large fraction of the transcriptome which 

responds to changes in stress and growth phenotypes. Finally, we propose and model a 

metabolic mechanism for PQ tolerance involving several mutations and broad transcriptional 

reallocation. We show that the evolved strains employ a multi-pronged strategy of: (i) 

modifying membrane transport, (ii) using the SoxS and OxyR regulons to ensure stress 

readiness, (iii) allowing ROS-sensitive iron-sulfur (Fe-S) clusters to play a larger role 

in regulation of metal homeostasis, (iv) increasing motility, (v) shifting transcriptional 

allocation toward growth, and (vi) using fermentation to avert the PQ cycle.
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Results

Laboratory evolution increased tolerated PQ levels by 1000%

We evolved strains aerobically in minimal media with glucose under increasing PQ stress 

(Figure 1A). Our starting strain (0_0) was a derivative of E. coli K-12 MG1655 which had 

been pre-evolved to grow in minimal media with glucose43. By using this media-adapted 

starting strain, the subsequent ALEs were enriched for mutations which improve stress 

tolerance, since the mutations that promote rapid growth under the culture conditions were 

already fixed (Table S1). ALE was performed by steadily increasing PQ concentrations, 

first in three parallel first generation ALEs (1_0, 2_0, 3_0) and followed by eleven second 

generation ALEs (1_1, 1_2, …, 2_1, etc.) (Figure 1A–B). Parallelizing ALE replicates 

generated diverse strains and allowed for identification of common mutation targets which 

are more likely to be causal.

After evolution, growth rates for each endpoint under different PQ concentrations were 

measured (Figure 1C). The starting strain’s growth was severely impaired by low PQ 

concentrations, with no growth at 250 μM PQ. The evolved strains showed a dramatic 

increase in the concentration of PQ they can tolerate while still growing; some endpoint 

strains tolerated 2500 μM. There was a fitness cost to the PQ tolerance, however: the strains 

no longer grew as well in the absence of PQ as the starting strain. This observation is 

consistent with the tradeoffs of the PQ tolerization mechanisms.

Adaptive mutations reflect effects of PQ

Across the entire set of evolved endpoint strains in the PQ ALE, a total of 222 mutations 

were observed, representing 111 unique sequence changes. These totals include point 

mutations, indels, and amplifications as determined by the mutation caller. Each mutation 

was assigned to its closest gene in the case of intergenic mutations, and 72 total genes 

were affected. No new mutations in the previously mutated genes were observed, and 

none of the mutations reverted. Mutations were then categorized by their likely effects and 

visualized in a treemap where larger areas indicate genes that were more commonly mutated 

in the endpoint strains (Figure 1D, Table S2). The largest category of mutated genes was 

central and energy metabolism-related (35%), which reflect the metabolic effects of PQ on 

redox balance. Transporters were also frequently mutated (16%), likely to prevent influx 

or promote efflux of PQ or other ROS. Iron and iron-sulfur (Fe-S) clusters are sensitive 

to oxidative stress40, so we observed changes to iron regulators and Fe-S cluster synthesis 

genes (16%). Three large deletions were also notable (5%). Other mutations which were less 

convergent across endpoint strains (26%) were observed in ribosomal subunits, tRNAs, and 

lon protease, as well as across other parts of the metabolic network.

We performed DNA sequencing on several midpoint strains during the ALEs (Figure 1B), 

which provided insight into the most effective growth strategies since mutations tend to fix 

in the order of fitness benefit44. We note that emrE and aceE are among the first genes to be 

affected in all three of our first generation strains.

An interesting pattern arose in the observed single nucleotide polymorphisms (SNPs): 

compared to other ALE projects available on ALEdb8, they are highly enriched for changes 

Rychel et al. Page 5

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from guanine or cytosine to adenine or thymine (Figure 1E; Fisher’s exact test p = 

9.38*10−5). This enrichment was consistent with direct damage to DNA by ROS, since 

guanine is the most easily oxidized nucleotide39,45,46. Thus, these mutations might not only 

improve cellular fitness through genomic and transcriptomic changes, but also by physically 

tolerizing cellular DNA to oxidation.

iModulons enable analysis of complex transcriptomic changes

To identify transcriptomic adaptations, we performed RNAseq on the starting strain at 0 and 

250 μM PQ, and on each evolved strain at 0, 250, and 750 μM PQ. In a comparison between 

the stressed samples for the pool of all evolved strains vs. the starting strain, we found 

1,774 differentially expressed genes (DEGs) (Figure 1F), making detailed analysis using 

traditional transcriptomic methods challenging. Therefore, we applied iModulon analysis to 

enable interpretation.

The data was previously included in a large compendium of E. coli RNAseq data generated 

from a single wet lab protocol (PRECISE-1K23). By leveraging over 1,000 samples across 

diverse conditions, this dataset facilitated machine learning of global transcriptomic patterns. 

Following our pipeline32, ICA was performed on the full dataset. The result was a set of 

201 iModulons, independently modulated gene sets which have similar expression patterns, 

along with their activities in each sample. iModulons reflect signals of any source that 

may affect the transcriptome: ‘Regulatory iModulons’ are those that are likely regulated 

by a known regulator, ‘Biological iModulons’ are enriched for a biological function but 

no currently known regulator, ‘Genomic iModulons’ represent the transcriptomic effect of 

changes to the genome in some samples in the data, and ‘Uncharacterized iModulons’ 

may be the result of technical noise or other unknown signals20. Together, the iModulons 

constitute a quantitative regulatory structure which maps well to the known TRN, and can 

be used to reduce the dimensionality of the dataset. The set of PRECISE-1K iModulons 

was characterized in a separate study47, and the iModulon structure is available at 

iModulonDB.org under E. coli PRECISE-1K21. In the remainder of this paper, we show 

the usefulness of applying the iModulon knowledge-mapping performed in the previous 

study to gain detailed biological insights as part of an ALE analysis toolkit.

iModulons enabled a global characterization of changes in the transcriptome. They 

summarize expression of sets of genes in an activity level, where each gene is weighted 

based on the strength of its predicted association with the regulatory signal. The evolved 

strains’ gene expression under PQ stress against the starting strain had only 42 statistically 

significant differential iModulon activities (DiMAs) (Figure 1G). Compared to the hundreds 

of DEGs, these 42 iModulon changes made the analysis of the large-scale changes in the 

transcriptome tractable. We iteratively characterized and categorized each of the DiMAs 

and assigned mechanistic hypotheses which explain their changes (Table S3). We also 

summarized the explained variance in the transcriptome (Methods) in Figure 1H, where 

the transcriptome is first broken into significant iModulon signals that exhibit a change 

after ALE, insignificant iModulon changes, and variance not captured by the iModulon 

structure. The significant iModulon signals are further broken down into categories, where 

stress-related and metabolic signals reflect the largest changes in the data.
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Mapping between the genome and transcriptome reveals new insights

Modifications to the genome can affect the transcriptome in several ways: large deletions 

and duplications can directly alter the expression of genes involved, mutations in TFs 

can change the expression of their associated regulons, and the transcriptome can adjust 

due to changes in metabolites or other sensed processes that result from mutations. The 

latter type of alteration can be complicated by the fact that gene expression also regulates 

metabolite concentrations and sensed processes. In Figure 2A, we summarize how each of 

these types of relationships were observed in the evolved strains. Each relationship depicted 

in the figure was associated with evidence from our data and the literature, and several 

relationships are new; we provide all details in Table S4. iModulons play a central role 

in each highlighted mechanism, as evidenced by the full second column in Figure 2A. 

The combined analysis of genomic and transcriptional changes led us to six key cellular 

mechanisms of PQ tolerance (Figure 2B). We will now describe each of these relationships 

in order of increasing complexity.

Large amplifications and deletions in the genome affect membrane transport

‘Genomic iModulons’ are transcriptomic modules which capture the effect of large changes 

to the genome, so they are of primary interest for obtaining genome-to-transcriptome 

relationships. In the PQ tolerant strains, the major genomic iModulons happen to all be 

associated with alterations in membrane transport.

The first mutation in each of the first-generation strains affected emrE, a multidrug 

efflux pump which pumps out PQ48. In 1_0, 2_0, and their subsequent evolutions, DNA 

sequencing reads mapped increased approximately 42-fold in the region containing emrE 
(Figure 3A). This was likely caused by repeated duplication (amplification) which may have 

been mediated by the flanking DLP12 prophage insertion sequence (IS) genes, specifically 

the IS3 transposase elements insEF349. ICA of the transcriptome recovered the amplified 

genes as an independent signal in the dataset, which we named the emrE Amp iModulon 

(called ROS TALE Amp-1 in PRECISE-1K23 on iModulonDB.org21). This iModulon 

showed elevated activity levels in all affected strains regardless of PQ concentration (Figure 

3C). Thus, this case illustrates a relationship between the genome (gene amplification) 

and transcriptome (emrE Amp iModulon) with a likely beneficial phenotype (PQ efflux) – 

knowledge-mapping between these three levels to generate hypotheses like this one is the 

goal of our new approach (Figure 2A).

We discuss Del-1, and Del-2, large deletions that contain several transporters (Figure 3B, D, 

E), and additional transporter mutations of potential interest (Figure 3F) in Supplementary 

Data S1 – Note S1. We hypothesize that these mutations and their related genomic 

iModulons may have decreased influx of PQ or other oxidized molecules.

Mutations in TFs alter the regulation of stress responses and iron homeostasis

‘Regulatory iModulons’ are iModulons which are statistically enriched with genes from a 

specific regulon, and their activity level quantifies the activity of the underlying TF. Thus, 

iModulon analysis reveals the effects of TF mutations in a convenient way.
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The OxyR iModulon contains oxidative stress response genes, and its regulator, OxyR, 

responds to oxidative stress50. Thus, we expected its activity level to correlate with 

PQ level. We found that for most strains, this is the case (Pearson; p = 6.2*10−5). 

However, we observed three separate oxyR mutations which all fix OxyR iModulon activity 

levels at a level just below that of the stressed starting strain (Figure 4A), regardless 

of PQ concentration. We speculate that this level may be ideal because it enables quick 

detoxification of ROS, while higher levels would be proteomically expensive and/or induce 

growth-limiting levels of oxyS (which is regulated by OxyR and leads to growth arrest51). 

Previous iModulon work in other ALEs found that fixing OxyR in the active conformation 

provided a fitness benefit35. Without the OxyR iModulon to quantify OxyR activity, it would 

have been much more difficult to define the effect of these mutations.

Fur, the ferric uptake regulator, regulates two main iModulons (Fur-1 and Fur-2) whose 

activities have a nonlinear relationship52 (Figure 4B–D, S1A). Three separate strains 

acquired fur P18T, which appears to shift Fur’s preference above the trend line, towards 

Fur-2 (Figure 4E). They specifically upregulate the expression of feoABC, a ROS-sensitive 

iron transporter53 (Figure 4F). By using feoABC to strongly couple iron uptake to ROS 

levels, this mutation should prevent ROS-induced iron toxicity by preventing iron uptake 

under high stress (Supplementary Data S1 – Note S2; Figure 4G). This mutation is of 

interest for further study, since it modifies the TRN in a unique way, and promotes a strategy 

of ROS-sensitive iron uptake that may be useful for production strains that are hampered by 

ROS.

The TFs IscR and SoxS also provide important insights (Figure S1; Supplementary Data S1 

– Note S3).

These results highlight the efficacy of iModulon analysis for revealing TF mutational 

mechanisms. The Fur and IscR mechanisms predict that the ROS-sensitivity of Fe-S clusters 

can be used to couple iron uptake or utilization to ROS levels. The particular mutations 

ought to be introduced into production strains, where they could increase yields if ROS 

stresses are limiting.

An unexpected mutation in pitA upregulates motility

A frameshift in the phosphate transporter pitA led to a motile phenotype. This mutation 

occurred in 1_0 and its derivatives, and these strains also exhibited strong activation of 

motility-associated iModulons such as FliA (Figure 4H). There is no obvious connection 

between phosphate transport and motility, and the mutated strains were likely able to 

use the other phosphate transport system, pstABCS, to meet their phosphorus needs54. 

Interestingly, the 3_0 strain deleted pitA as part of Del-1 (Figure 3B), and it did not exhibit 

the motility phenotype. Thus, to understand this mutation, we generated two new strains: 

0_0::pitA* and 1_0::pitA, which added the mutation on its own to the starting strain and 

removed it in favor of the original pitA sequence in the evolved strain, respectively. We 

found that the mutation provided a growth advantage under PQ stress (Figure 4I). We 

also transcriptomically profiled the strains under the same conditions used for our other 

strains, and found that, particularly under PQ stress, the mutation exclusively perturbs the 

motility iModulons (Figure 4J). The change to the transcriptome was also reflected in the 
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phenotype, as the mutant strains swarmed on agar plates while the wild-type pitA strains did 

not (Figure 4K, S2). The detailed mechanism of action linking the pitA mutant to motility 

remains to be elucidated. There is also a possible connection to fermentation55 (Figure S2A, 

Supplementary Data S1 – Note S4).

This section illustrates the usefulness of our multilevel approach. After connecting mutations 

to their effects and predicting causes for DiMAs, we were left with an orphan mutation 

(pitA) and an unexplained DiMA (FliA). We predicted that the mutation caused the DiMA, 

and then we generated new strains to validate the prediction. The recapitulation of the 

expected iModulon change and swarming phenotype lends credibility to the iModulon 

method of elucidating mutational effects.

Shifting from stress to growth explains activity of several iModulons

Regulatory iModulons can be used not only to understand the direct effects of mutations as 

described above, but also effects of changes to the processes that TFs sense. We have divided 

these types of changes in the PQ tolerant strains into two categories: those that respond 

to stress and growth (21% of the variance in the transcriptome; Figure 1H), and metabolic 

changes (10%). In this section we describe the former.

An important global tradeoff in the E. coli transcriptome is between growth and general 

stress readiness, which is governed by complex regulation56,57. We previously described a 

‘fear-greed tradeoff’ between the RpoS and Translation iModulons, in which the activity 

levels of the two iModulons have a negative correlation; faster growing cells exhibit 

low RpoS and high Translation activity20,35,52,58–60. Mutations which downregulate the 

RpoS regulon have been known to increase growth in long term culture61. A similar 

tradeoff between stress readiness and nutritional competence has also been described62. 

This previous knowledge can be applied to the new ALE strains: the starting strain without 

stress is ‘greedy’, but it becomes ‘fearful’ upon addition of PQ, as expected (Figure 5A–B). 

The evolved strains, on the other hand, largely remain ‘greedy’ in the presence of PQ; 

they strongly downregulate RpoS (Figure 5A) and have higher translation activity than the 

stressed starting strain (Figure 5B). Translation activity is decreased relative to the starting 

strain in the absence of PQ, likely because of tradeoffs towards ROS stress readiness.

Despite the presence of stressors and the activation of specific ROS responses OxyR 

and SoxS, the general stress response is not activated in the evolved strains. The stress 

signals are downregulated by the success of the evolved tolerance strategies, and the 

growth-inhibiting effects of RpoS have selected against strains with high RpoS activity. 

This work agrees with previous findings that ALE shifts allocation toward ‘greed’20,35,58. 

The decoupling of the ROS and general stress responses makes these strains ROS-response 

specialists, constituting a valuable adaptation strategy.

Two DiMAs reflect a decrease in oxidative damage by sensing Fe-S-dependent metabolites. 

The Leucine iModulon (Figure 5D) encodes the leucine biosynthesis pathway, which 

requires an Fe-S cluster and other metal-dependent enzymes that are sensitive to oxidative 

stress63. Leucine feeds back to inhibit the iModulon’s expression64. In the starting strain 

with PQ, oxidative damage likely leads to a decrease in leucine concentrations and an 
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upregulation of the iModulon. By contrast, the evolved strains experience less stress, protect 

their Fe-S clusters, and therefore exhibit low Leucine iModulon activity. Similarly, the 

Biotin iModulon (Figure 5E) uses an Fe-S cluster in BioB to synthesize biotin65, which then 

controls iModulon activity via regulation by BirA66.

The activities of the ppGpp, Purine, Ribose, Cysteine-1, and Copper iModulons (Figure 5C, 

F–I) each also reflect decreased stress and a return to homeostasis in the evolved strains 

(Figure 5J; Supplementary Data S1 – Note S5).

Thus, iModulons measure the sensory output of the TRN and allow us to mine the 

transcriptome for insights into many cellular processes. Because we also have an 

understanding of the stress phenotype of our cells, we predicted reasons for a large fraction 

of transcriptional alterations. This approach would be useful to any researcher seeking to 

enumerate phenotypic alterations in novel strains using RNAseq data as a guide.

Mutating central and energy metabolism genes decreases PQ cycling

We now turn to metabolism, which involves a complex interplay of effects (Figure 2A). We 

show that enzyme mutations can suggest tolerance strategies, and then modeling can validate 

them. iModulon analysis reveals how those strategies are organized and regulated by the 

cell.

The main metabolic mutations occur in the tricarboxylic acid (TCA) cycle. The second 

gene to mutate in all strains was aceE (Figure 1B, D). aceE encodes a subunit of pyruvate 

dehydrogenase (PDH), the entry point into the TCA cycle. gltA, sucA, and icd also mutate 

often, with icd being affected by e14 deletion and SNPs68 (Figure 6A). These mutations 

would likely decrease the function of the enzymes, thus decreasing TCA cycle flux and 

production of NADH. These mutations suggest a tolerance benefit to decreasing NADH 

production. The likely reason for this benefit is that PQ uses electrons from NAD(P)H to 

reduce oxygen and generate stress69–71. These mutations decrease the available electrons 

to the PQ cycle and prevent stress generation. To decrease oxidative stress from PQ, the 

evolved strains perform less oxidative metabolism. The supplementary Fe-S and motility 

mechanisms (Supplementary Data S1 – Note S3, S4) also shift strains away from NADH 

production.

Loss of function (LOF) mutations in the TCA cycle come with a cost, since those pathways 

are the primary energy source for aerobic cells. Indeed, the evolved strains have decreased 

growth and translational activity under no stress relative to the starting strain, probably for 

this reason (Figure 1C, 5B). During ALE, the strains must therefore balance a tradeoff: 

generate enough NADH to grow and repair themselves, but not so much as to over-empower 

the PQ cycle. The tradeoff is embodied by an interesting interaction between mutations the 

aceE and glnX mutations, in which a tRNA mutation partially restored PDH activity (Figure 

6B; Supplementary Data S1 – Note S6).

We summarize all metabolic mutations in Figure S3 and Table S2. We also observe 

mutations in enzymes involved in the utilization of NADH (Figure S3A; Supplementary 
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Data S1 – Note S7). Next, we characterize the strains using a variety of tools to test this 

explanation for the selection for TCA cycle mutations.

Metabolic rewiring towards a lower aero-type decreases PQ sensitivity and flux in evolved 
strains

We quantified glucose uptake for each strain at various PQ levels (Supplementary Data S1 – 

Note S8), and generated a plot comparing biomass yield per gram of glucose to the glucose 

uptake rate (Figure 6C). This rate-yield plane has been characterized in past studies12,67, 

which revealed distinct energy generation strategies (aero-types) for each position in the 

plane. Samples with high biomass yields are in the highest aero-type (aero-type v), which 

represents efficient aerobic growth, whereas lower aero-types are associated with lower 

aerobicity and secretion of organic acids12.

In Figure 6C, we observe a switch to a lower aero-type in the starting strain upon PQ 

exposure, since ROS damage decreases growth rate and particularly damages respiration. 

In the evolved strains, the lower aero-type is maintained even when no PQ is present. The 

aero-type change is likely due to the TCA cycle-related mutations, which we predicted 

would decrease respiration. However, the evolved samples also shift rightward, increasing 

their glucose uptake and total metabolic flux, enabling them to maintain growth under stress. 

Their position in the plane doesn’t vary much with PQ concentration, indicating decreased 

sensitivity.

To characterize metabolism in silico, we used OxidizeME, a genome-scale computational 

model of E. coli metabolism and expression (ME) which incorporates ROS stress effects3. 

We constrained the model using growth rates, glucose uptake rates, and RNA expression, 

then simulated optimal steady states (Figure 6D, S4). Though we did not attempt to simulate 

the effects of mutations on the reaction rates, the optimal flux distributions in the evolved 

strains showed decreases in TCA cycle flux (Figure 6E), consistent with the predicted 

effects of the mutations.

In the absence of experimental methods for directly measuring PQ cycle flux, we 

computationally assessed the consequences of PQ cycle flux by varying it for the starting 

strain and a representative evolved strain (Figure 6F–G). Though total proteomic allocation 

to the TCA cycle was constrained to match the RNA expression, ROS damage to the Fe-S 

clusters in acnA, fumAB, and sdhABCD led to decreasing functional proteome fractions 

(Figure 6F). The starting strain relied more heavily on the TCA cycle; this made it more 

sensitive to PQ, as evidenced by the steeper slope in NADH production (Figure 6G). The 

starting strain was also able to grow at higher PQ fluxes, which is inefficient and exacerbates 

stress. Thus, tolerization both decreases sensitivity to lower PQ fluxes and prevents a steady 

state with high PQ flux.

The genome-scale OxidizeME model integrates the individual cellular processes and 

RNA expression changes which adjust the phenotype, and it elucidates key systems level 

tolerization strategies. Its results match expectations from mutational analysis.
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iModulon activities shift tolerant strains towards anaerobic metabolism and glycolysis

Finally, we discuss iModulons which regulate the metabolic rerouting presented above. The 

cellular oxidation state is sensed and regulated by ArcA and Fnr72, whose iModulons are 

differentially activated in the evolved strains (Figure 7A–D). Both TFs sense redox balance, 

which shifts towards reduction in the evolved strains due to the successful tolerization: ArcA 

represses when the electron transport chain is in a reduced state73, whereas Fnr repression 

ceases when Fe-S clusters are intact74 (Figure 7E). These transcriptional changes shift from 

aerobic respiration genes toward anaerobic fermentation genes72 (despite the aerobic ALE 

conditions). This strategy maintains a lower aero-type and decreases reliance on NADH. 

Thus, this mechanism reinforces the decreased reliance on the TCA cycle brought on by the 

mutations, ultimately slowing PQ cycling.

To meet energy needs with lower respiration, the cells increased their glycolytic activity, a 

change which is described by two DiMAs. Cra iModulon activity increases, indicating an 

increase in glycolytic flux (Figure 7F). Similarly, the Crp-2 iModulon returns to unstressed 

or intermediate levels in the evolved strains, which indicates a more active phosphotransfer 

system (Figure 7G). This transcriptomic change matches the rightward shift in the aero-type 

plot (Figure 6C). Finally, the LOF mutations downstream of pyruvate should increase 

pyruvate concentrations, which strongly upregulate the Pyruvate-2 iModulon (Figure 7H). 

More details for all transcriptional mechanisms in this section are provided (Supplementary 

Data S1 – Note S9).

In the past three sections, we showed that mutations and iModulon activity adjustments 

work together to enforce a low aero-type, PQ-tolerant metabolic network. The PQ tolerance 

stems from a decreased reliance on the TCA cycle and decreased NADH production, which 

leads to less total PQ cycling and makes the system less sensitive to small amounts of PQ 

cycling. It is often difficult to interpret biological systems when genes, gene expression, 

and metabolic flux are all changing, but our multilevel approach produced a consistent and 

comprehensive interpretation of multiple data types.

Discussion

We combined ALE with a detailed, systems-level transcriptomic analysis to reveal 

mechanisms underlying PQ tolerance. The approach spanned four ALE analysis tools 

(Figure 2A): (i) genetic alterations and their predicted effects, (ii) transcriptomic adaptations 

along with up- and downstream inferences about their regulatory causes and physiological 

impact, (iii) metabolic fluxes calculated from genome-scale metabolic models, and (iv) 

phenotypic changes such as swarming motility. We found iModulon analysis to be 

particularly revealing, as the TF activities could be readily quantified and utilized to infer 

a wealth of information about the phenotypic state. We combined these approaches to 

summarize a coherent set of PQ tolerization strategies.

The evolved strains achieved high tolerance through several mechanisms (Figure 2B). They 

promoted efflux of PQ via emrE segmental amplification, and precluded influx by mutating 

or deleting various other transporters. Inside the cells, PQ failed to generate as much ROS 

due to LOF mutations in and downregulation of NADH-producing pathways. To compensate 

Rychel et al. Page 12

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the decreased biomass yield of their metabolism, the cells increased glucose uptake and 

glycolytic flux. Since ROS interact with iron, some strains modified iron regulation via TF 

mutations that curtailed these systems when stress was high. These mutational and metabolic 

strategies led to a decrease in stress, which was sensed by the TRN and shifted various 

regulators toward faster growth.

The impact of this study is threefold. (i) We present biological insights of wide interest 

to researchers, including the growth/stress tradeoff of redox metabolism, the use of Fe-

S clusters as a brake on iron uptake and metabolism, and novel interactions such as 

those between pitA and motility and between aceE and glnX. (ii) Acquired mutations 

and iModulon activities can become design variables to mitigate oxidative stress for 

bioproduction applications. (iii) We demonstrate an approach that utilizes iModulons to 

reveal a novel integrated perspective on adaptation to stress by understanding transcriptomic 

allocation.

Taken together, our results demonstrate the usefulness of curated iModulon structures like 

PRECISE-1K as part of the hypothesis-generation toolkit for ALE strain analysis. We 

elucidate several systems-level strategies of ROS tolerization using genome-scale datasets, 

computational models, and detailed literature review. Given the falling cost of RNAseq, 

development of laboratory evolution, and the availability of this pipeline developed here, we 

expect that future ALE-derived and other strains can also be characterized from this new 

perspective, revealing novel cellular functions and adaptations.

Limitations of the study

The application of iModulon analysis to ALE as performed here has important limitations 

to note. Firstly, iModulons are not a perfect representation of the transcriptome: as 

described in other publications20,23, the ICA algorithm assumes that each regulator behaves 

independently, has a non-gaussian activity distribution in the dataset, and has a linear 

effect on genes. These assumptions enable a quantitative representation that is better than 

competing algorithms75, but may break down for the more complex regulons. Also, as with 

any dimensionality reduction, not all variance in expression is captured by the iModulons: in 

the samples discussed here, the iModulons explain 80.5% of the original expression dataset. 

In addition, the regulator annotations for each iModulon are statistically significant, but 

they may not accurately capture all of the regulation underlying each set of genes. For this 

reason, the more complicated observations were double-checked against the original data 

matrix, and we do not claim to mechanistically explain the entire transcriptome.

Another key limitation of the study is that the relationships put forward have not been 

rigorously tested. The scope of this work is to demonstrate how knowledge-mapping from 

major signals of the transcriptome leads to mechanistic predictions about a wide variety of 

systems in ALE. This gives this manuscript a broad scope, and we strongly encourage 

follow-up studies to rigorously test specific hypotheses. We clearly state the available 

evidence in the manuscript, supplemental notes, and Table S4.
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STAR Methods

Resource Availability

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Bernhard Palsson (palsson@ucsd.edu).

Materials availability—Strains generated in this study are available upon request.

Data and code availability—RNA-seq data have been deposited to GEO and are 

publicly available as of the date of publication, under accession numbers GSE134256 

and GSE221314. DNA-seq data are available from aledb.org under the project “ROS”. 

iModulons and related data are available from iModulonDB.org under the dataset “E. coli 
PRECISE-1K”.

All original code and data to generate figures are available at github.com/SBRG/ROS-ALE, 

which also links to the alignment, ICA, and iModulon analysis workflows32. It has been 

deposited at Zenodo and is publicly available as of the date of publication76. The DOI is 

10.5281/zenodo.7449004.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

Experimental Model and Subject Details

Microbial strains—The starting strain (0_0) was an MG1655 K-12 E. coli strain which 

had been evolved for optimal growth on glucose as a carbon source in M9 minimal media43. 

Mutations for the starting strain are given in Table S1, and mutations for all strains are listed 

on aledb.org and in Table S2.

Culture conditions—Strains were grown overnight in M9 minimal media with 0.4% w/v 

glucose as a carbon source. Fresh media was inoculated with the overnight culture at an 

initial 600 nm optical density (OD) of 0.025. Cultures were aerated with a stir bar at 1100 

rpm in a water bath maintained at 37°C until OD reached 0.5. 50 mM PQ was added to 

reach the desired concentration in stressed flasks. After 20 minutes, samples were harvested 

for transcriptomics or ribosome profiling.

Method Details

Adaptive laboratory evolution—ALE was performed using a similar protocol to 

Mohamad et al. 201777. Parallel cultures were started in M9 minimal medium by inoculation 

from isolated colonies. Evolution was performed in an automated platform with 15 mL 

working volume aerobic cultures maintained at 37°C and magnetically stirred at 1100 rpm. 

Growth was monitored by periodic measurement of the 600 nm OD on a Tecan Sunrise 

microplate reader, and cultures were passaged to fresh medium during exponential cell 

growth at an OD of approximately 0.3. Growth rates were determined for each batch by 

linear regression of ln(OD) versus time. At the time of passage, PQ concentration in the 

fresh medium batch was automatically increased if a growth rate of 0.08 h−1 had been met 
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for 3 consecutive flasks. Samples were saved throughout the experiment by mixing equal 

parts culture and 50% v/v glycerol and storing at −80°C.

DNA sequencing and mutation calling—DNA was isolated as described78. Total DNA 

was sampled from an overnight culture and immediately centrifuged for 5 min at 8,000 rpm. 

The supernatant was decanted, and the cell pellet was frozen at −80°C. Genomic DNA was 

isolated using a Quick-DNA Fungal/Bacterial Microprep Kit (Zymo Research) following the 

manufacturer’s protocol, including treatment with RNase A. Resequencing libraries were 

prepared using a Kapa Hyper Plus Kit (Roche Diagnostics) following the manufacturer’s 

protocol. Libraries were run on HiSeq and/or NextSeq (Illumina).

Sequencing reads were filtered and trimmed using AfterQC version 0.9.779. We mapped 

reads to the E. coli K-12 MG1655 reference genome (NC_00913.3) using the breseq 

pipeline version 0.33.110. Mutation analysis was performed using ALEdb8.

Physiological characterization—Growth curves and extracellular glucose and organic 

acid concentrations were obtained by inoculating cells from an overnight culture to a low 

OD using the same conditions as the ALE. For each strain, we started with 0 PQ. OD 

measurements and samples were taken at various time points until stationary phase was 

reached. We then passaged the cells into a new flask, stepped up the PQ concentration, and 

characterized the next curve, for concentrations 125, 250, 500, 750, 1500, and 2500 μM. 

We stopped if growth was not observed after 48 hours. For each flask, growth rates were 

determined by linear regression of ln(OD) versus time in the early exponential part of the 

curve.

We took cell culture samples at the same time as OD measurements for the starting strain 

at 0 and 125 μM PQ, and for the evolved strains at 0, 250, and 750 μM PQ. Samples 

were sterile filtered, and extracellular by-products were determined by high pressure 

liquid chromatography (HPLC). The filtrate was injected into an HPLC column (Aminex 

HPX-87H 125–0140). The concentrations of the detected compounds were determined by 

comparison to a normalized curve of known concentrations. Substrate uptake and secretion 

rates in the early exponential growth phase were calculated from the product of the growth 

rate and the slope from a linear regression of the grams (dry weight) (gDW) versus the 

substrate concentration. The biomass yield was calculated as the quotient of the growth rate 

and the glucose uptake rates during the exponential growth phase.

RNA Sequencing—3 mL of induced culture was added to 6 mL of RNAProtect Bacteria 

Reagent (Qiagen) and vortexed, then left at room temperature to incubate for 5 minutes. 

Cells were pelleted, resuspended in 400 μL elution buffer, and then split into two tubes with 

one kept as a spare. One pellet was then lysed enzymatically with addition of lysozyme, 

proteinase-K, and 20% SDS. SUPERase-In was added to maintain the integrity of the RNA. 

RNA isolation was then performed according to the RNeasy Mini Kit (Qiagen) protocol. 

rRNA was depleted using the Ribo-Zero rRNA Removal Kit for gram negative bacteria 

according to the protocol. Libraries were constructed for paired-end sequencing using a 

KAPA RNAseq Library Preparation kit. Reads were sequenced on the Illumina NextSeq 

platform.

Rychel et al. Page 15

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As part of the PRECISE-1K dataset47, transcriptomic reads were mapped using our pipeline 

(https://github.com/avsastry/modulome-workflow)32 and run on Amazon Web Services 

Batch. First, raw read trimming was performed using Trim Galore with default options, 

followed by FastQC on the trimmed reads. Next, reads were aligned to the E. coli K-12 

MG1655 reference genome (NC_000913.3) using Bowtie80. The read direction was inferred 

using RSeQC81. Read counts were generated using featureCounts82. All quality control 

metrics were compiled using MultiQC83. Finally, the expression dataset was reported in 

units of log-transformed transcripts per million (log(TPM)).

All included samples passed rigorous quality control, with “high-quality” 

defined as (i) passing the following FastQC checks: per_base_sequence_quality, 
per_sequence_quality_scores, per_base_n_content, adaptor content; (ii) having at least 

500,000 reads mapped to the coding sequences of the reference genome (NC_000913.3); 

(iii) not being an outlier in a hierarchical clustering based on pairwise Pearson correlation 

between all samples in PRECISE-1K; and (iv) having a minimum Pearson correlation 

between biological replicates of 0.95.

Ribosome profiling—Ribosome profiling libraries were created using a modified version 

of the protocol outlined in Latif et al.84. The protocol was modified to negate the effects 

of the addition of chloramphenicol by grinding frozen cells. 50 mL of cell culture was 

harvested by centrifugation for 4 minutes at 37°C in a 50 mL conical tube containing 0.4 g 

of sand. Supernatant was aspirated quickly and the pellet was flash frozen in liquid nitrogen. 

Pellets were transferred into a liquid nitrogen cooled mortar and pestle, 500 μL of lysis 

buffer was added, and the pellet was pulverized to lyse the cells. Lysate was transferred to a 

falcon tube to thaw on ice. The lysate was then centrifuged, and the supernatant was isolated 

to continue with the published protocol. Reads were sequenced on an Illumina HighSeq 

machine using a single end 50 bp kit.

Adaptors were removed from ribosome profiling reads using CutAdapt v1.885, then mapped 

to the E. coli K-12 MG1655 reference genome (NC_000913.3) using bowtie80. They were 

scored at the 3’ end to generate ribosome density profiles.

Generation of pitA mutant strains—The mutations referred to in Figures 4H–K and 

S2 were introduced into the starting (0_0) and evolved (1_0) genomes using a Cas9-assisted 

Lambda Red homologous recombination method. Golden gate assembly was first used to 

construct a plasmid vector harboring both Cas9 and lambda red recombinase genes under 

the control of an L-arabinose inducible promoter, a single guide RNA sequence, and a donor 

fragment generated by PCR which contained the desired pitA +T mutation and around 200 

bp flanking both sides of the Cas9 target cut site as directed by the guide RNA. After 

allowing cells harboring the plasmid to grow for 2 hours at 30°C, L-arabinose was added to 

the media and the cells were allowed to grow for 3 to 5 hours, at which time a portion of the 

culture was plated. Single colonies were screened using ARMS PCR. Amplicons spanning 

the mutation site, generated with primers annealing to the genome upstream and downstream 

of the sequence of the donor fragment contained in the plasmid, were confirmed with Sanger 

sequencing. Confirmed isolates were cured of the plasmid by growth at 37°C.

Rychel et al. Page 16

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/avsastry/modulome-workflow


Cell motility assay—We performed motility assays in duplicate for each of the conditions 

shown in Figure S2. We mixed a tryptone broth (13 g tryptone and 7 g NaCl per liter of 

media) with 0.25% agar and the desired PQ level. We autoclaved the broths, then poured 25 

mL into petri dishes and solidified them at room temperature overnight. Fresh colonies were 

spotted in the middle of the semi-solid agar with a toothpick. The plates were then incubated 

at 37°C for 6–8 hours and imaged on a Gel Imaging System.

Quantification and statistical analysis

iModulon computation and curation—The full PRECISE-1K compendium, including 

the samples for this study, was used to compute iModulons using our previously described 

method47,86. The log(TPM) dataset X was first centered such that wild-type E. coli 
MG1655 samples in M9 minimal media with glucose had expression values of 0 for all 

genes. Independent component analysis was performed using the Scikit-Learn (v0.19.0) 

implementation of FastICA87. We performed 100 iterations of the algorithm across a range 

of dimensionalities, and for each dimensionality we pooled and clustered the components 

with DBSCAN to find robust components which appeared in more than 50 of the 

iterations. If the dimensionality parameter is too high, ICA will begin to return single 

gene components; if it is too low, the components will be too dense to represent biological 

signals. Therefore, we selected a dimensionality which was as high as possible without 

creating many single gene components, as described86. At the optimal dimensionality, the 

total number of iModulons was 201. The output is composed of matrices M [genes x 

iModulons], which defines the relationship between each iModulon and each gene, and A 
[iModulons x samples], which contains the activity levels for each iModulon in each sample.

For each iModulon, a threshold must be drawn in the M matrix to determine which 

genes are members of each iModulon. These thresholds are based on the distribution of 

gene weights. The highest weighted genes were progressively removed until the remaining 

weights had a D’agostino K2 normality below 550. Thus, the iModulon member genes 

are outliers from an otherwise normal distribution. iModulon annotation and curation 

was performed by comparing them against the known TRN from RegulonDB22. Names, 

descriptions, and statistics for each iModulon are available from the PRECISE-1K 

manuscript47, iModulonDB21, and Table S3.

Differential iModulon activity analysis—DiMAs were calculated as previously 

described20,32. For each iModulon, a null distribution was generated by calculating the 

absolute difference between each pair of biological replicates and fitting a log-normal 

distribution to them. For the groups being compared, their mean difference for each 

iModulon was compared to that iModulon’s null distribution to obtain a p-value. The set 

of p-values for all iModulons was then false discovery rate (FDR) corrected to generate q-

values. Activities were considered significant if they passed an absolute difference threshold 

of 5 and an FDR of 0.1. The main comparison in this study was between the starting strain 

at 250 μM PQ (n = 2) and the combined set of all evolved strains at 250 and 750 μM 

PQ (n = 61). Performing the comparison using both concentrations of PQ ensures that our 

comparison captures all of the major effects of tolerization. The set of DiMAs was similar 

when performing the comparison at just one or the other concentration.
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We also performed a brief DEG analysis, which used the same algorithm as above but with 

individual gene expression values instead of iModulon activities. We used an FDR of 0.1 as 

above, and we scaled the fold change from its default value of 5 such that it was proportional 

to the range of values in the different matrices: scaled_thresh = default_thresh * (Xmax - 

Xmin) / (Amax - Amin) = 0.787.

iModulon explained variance calculation—The explained variance for each iModulon 

in this study was calculated using our workflow32. Since iModulons are built on a matrix 

decomposition, the contribution of each one to the overall expression dataset can be 

calculated. For each iModulon, the column of M and the row of A for the evolved samples 

in this study were multiplied together, and the explained variance between the result and 

the full expression dataset was computed. These explained variance scores were used to 

size the subsets of the treemap in Figure 1H. Note that the variance explained by ICA is 

‘knowledge-based’ in contrast to the ‘statistic-based’ variance explanation provided by the 

commonly used principal component analysis (PCA).

ME modeling—We used OxidizeME, a genome-scale model of metabolism and 

expression (ME) with ROS damage responses3. Models used for flux maps were 

constrained using phenotypic data (glucose uptake rate and growth rate) and expression 

data as previously described11,12. In order to force PQ cycling in the model, the 

lower bounds for the ‘PQ2RED_FWD_FLAVONADPREDUCT-MONOMER_mod_fad’ 

and ‘PQ1OX_FWD_SPONT’ were set to the same non-zero value and iterated over. 

Additionally, the former reaction was amended to accept NADH as an electron donor by 

editing the stoichiometry. PQ cycling sweeping calculations were performed by sampling 

various lower bounds to identify the range the model could support growth, and then 

sweeping 100 uniform values within that range. The total NADH produced through the 

TCA cycle was calculated by summing the fluxes for the ‘MDH’ and ‘AKGDH’ metabolic 

reactions. The percentage of the proteome allocated to the TCA cycle was calculated using 

the solutions from each model, specifically the translation fluxes:

%  Proteome Allocated to tℎe TCA cycle = ∑i mwi * V i
translation

∑j mwj * V j
translation

Where mwi and V i
translation represents the molecular weight and translation flux of the ith 

protein in the TCA cycle, and mwj and V j
translation represents the molecular weight and 

translation flux of the jth protein the entire model. The damaged portion of the proteome 

was calculated as follows:

%  Damaged Proteome Allocated to tℎe TCA cycle = ∑k mwk * V k
comeplexformation

∑j mwj * V j
translation

Where mwj and V j
translation are the same variables above, and mwk and V k

comeplexformation correspond 

to the kth protein in Table S5. The undamaged portion of the proteome allocated to the TCA 

cycle was calculated as the difference between the total proteome allocated and the damaged 

proteome allocated.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Adaptive laboratory evolution of E. coli generated strains which tolerate 

paraquat

• Mutation analysis revealed a high level of parallel evolution across the 

replicates

• iModulon analysis of transcriptomes provided detailed novel insights into 

evolution

• Six paraquat and ROS stress tolerance mechanisms from the strains were 

revealed
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Figure 1. ALE increases PQ tolerance via changes to the genome and transcriptome.
(A) Tolerization ALE process, showing mutant strains (cells with various appearances) in 

media with increasing stress concentrations (red). Example replicates are shown: 1_0 in the 

first generation and 1_1 in the second generation. (B) Points represent ALE flasks colored 

by PQ concentration. The first generation of ALEs (strains 1_0, 2_0, and 3_0) are shown 

with each flask’s growth rate in grams dry cell weight per liter per hour (gDCW/L/h). 

‘Cumulative cell divisions’ are estimated from the growth rate and time elapsed. Stars 

represent flasks that underwent DNA sequencing, and newly mutated genes are shown. 

Black colored genes are discussed in detail. (C) Growth rate for each strain at each PQ 

concentration. The starting strain cannot grow at 250 μM PQ, whereas some evolved strains 

reach up to 2500 μM PQ. Evolved strains grow slower than the starting strain in the absence 
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of PQ. (D) Treemap of mutations in all strains, grouped by gene with intergenic mutations 

assigned to nearest genes. UC: Uncharacterized. See Table S2, Methods. (E) Fraction of 

SNP types in this study compared with all public ALE studies on ALEdb (aledb.org; 

mean ± 95% confidence interval, n = 54). Each label corresponds to four of the twelve 

possible substitutions; for instance, “GC→AT” includes “G→A”, “G→T”, “C→A” and 

“C→T” substitutions. This study is enriched for mutations which decrease the GC content 

of the genome. (F-G) Comparison between the mean transcriptomes of the parent strain 

at 250 μM PQ vs. all evolved strains at 250 and 750 μM PQ. (F) DEG analysis with 

FDR = 0.1 and a minimum fold change of 0.78 (Methods), showing an intractably large 

number of DEGs. (G) Differential iModulon activity (DiMA) analysis, which compresses 

the differential transcriptomic changes into 42 DiMAs. DiMAs are colored by their category 

from panel (H). For more information about each iModulon, explore the PRECISE-1K E. 

coli dataset at iModulonDB.org and see Table S2. (H) Treemap of the explained variance of 

each iModulon in the transcriptome of the evolved strains (see Methods). The map is first 

broken into three parts: the colorful region, composed of iModulons that are differentially 

activated after the evolution and categorized, the light gray region composed of iModulons 

that do not show a significant trend with evolution, and the dark gray region, representing 

the error in the iModulon decomposition.
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Figure 2. Multilevel approach reveals mechanisms of PQ tolerance.
(A) Knowledge graph summarizing multilevel relationships between mutations, iModulons, 

metabolism, and phenotypes. Pie charts appearing in the two left columns indicate 

prevalence of given changes to the genome and transcriptome (legend in panel B), where 

wedges indicate strains. The protruding wedges correspond to the first generation of ALEs, 

with the wedges counterclockwise to them being their second generation descendants. For 

genes, green indicates the strain has mutations affecting it or its promoter. For iModulons, 

colors indicate the difference between the iModulon activity in the strain at 750 μM PQ 

and the starting strain at 250 μM PQ, normalized to the standard deviation of the iModulon 

Rychel et al. Page 30

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity across all of PRECISE-1K. Solid arrows represent hypothetical relationships with 

extensive experimental evidence, whereas dashed lines represent relationships for which 

there is little existing literature. Each arrow is labeled with a numeral corresponding to a row 

in Table S4 that describes the meaning, data evidence, literature evidence, and novelty of 

the corresponding relationship. (B) Phenotypic changes target specific processes involved in 

PQ and ROS stress. Lowercase letters indicate elements from the rightmost column of (A). 

Entities which glow are reduced, and red indicates stress-related molecules.
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Figure 3. Consequences of deletions and amplifications affecting membrane transport are found 
in both genomes and transcriptomes.
(A) Number of reads mapped to the region around emrE in strain 1_0, which is 

representative of strains containing the emrE amplification. Genes in the iModulon are 

labeled. (B) Number of reads from strain 3_0 mapped in the region of Del-1. Del-1 

iModulon genes are shown in black, with flanking non-deleted, non-iModulon genes in 

gray, and transporters in bold. (C-E) iModulon activities for selected genomic iModulons. 

Bars indicate mean ± 95% confidence interval. Individual samples are color-coded by 

PQ concentration. Upstream + and Δ indicate insertions and deletions, respectively. (F) 
Color-coded table showing all observed mutations related to transporter genes. Purple x: 

amplification; green: upstream insertion (+) or deletion (Δ); blue: indicated SNP; orange: 

frameshift mutation within gene; red delta: complete gene deletion (See Table S2 for more 

details on each mutation).
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Figure 4. Mutations regulate stress response, iron metabolism, and motility iModulons in novel 
ways.
Bars indicate mean ± 95% confidence interval. (A) OxyR iModulon activity is correlated 

with PQ in starting and evolved strains (Pearson R = 0.47, p = 6.2*1−5), except for the 

three strains which mutated oxyR. PQ colors in the legend also apply to panels (B, D, 

E-F, H). (B-D) Scatter plot of Fur-1 and Fur-2 iModulon activities with bar plots sharing 

axes. Light gray dots indicate other samples from PRECISE-1K. In (C), samples are colored 

by relevant mutations, and shapes indicate PQ concentrations according to the legends. A 

black arrow connects the starting strain samples between 0 and 250 μM PQ. In bar plots, 

point colors indicate PQ concentrations and label colors match with the scatter plots. The 

red trend line is a logarithmic curve fit to all samples in PRECISE-1K. Samples with the 

P18T mutation are above the trend line, indicating a preference for Fur-2. (E) Distances 

from each sample in this study to the trend line in (B), more clearly showing the preference 

for Fur-2 induced by P18T. (F) feoA expression, which is representative of the feoABC 
operon. Genes are upregulated by the fur P18T mutation. (G) Knowledge graph linking fur 

mutation to negative feedback which averts stress. (H) FliA iModulon activities by pitA 
mutation, showing an upregulation in the case of the frameshift pitA*, but not in the case 

of pitA deletion. (I) Growth curves for strains with and without the pitA* mutation as the 

only difference. The mutation contributes to higher final ODs under no stress, and shorter 

lag and faster growth under stress. (J) DiMA for strains 0_0 and 1_0 with and without the 

pitA frameshift mutation under PQ stress. Points indicate the mean of all relevant samples 

Rychel et al. Page 33

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(individual conditions in duplicate; n=6 per axis). The strains with the mutation significantly 

activate FliA, one of the motility iModulons. The point near FliA is FlhDC-2, the other 

major motility iModulon. (K) Representative images of swarming in the 0_0 strain with 

(bottom) and without (top) the pitA* frameshift. Scale bars: 1 cm. Additional plots: Figure 

S1; Images for all swarming experiments: Figure S2.
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Figure 5. Changes to stress and growth explain the changes to activity in several iModulons.
Mean iModulon activities ± 95% confidence interval; all plots use the legend in (D). 

P-values are false discovery rate corrected p-values from a DiMA comparison of stressed 

transcriptomes (250 and/or 750 μM PQ) between 0_0 and evolved strains. (A) RpoS activity, 

the general stress response, is downregulated (p = 0.017). (B) The Translation iModulon, 

ribosomes and translation machinery, is upregulated (p = 0.023). (C) The ppGpp iModulon, 

with many growth-related functions, follows a similar pattern to the Translation iModulon (p 

= 0.027). (D) The Leucine iModulon, which responds to leucine concentrations downstream 

of an Fe-S-dependent synthesis pathway, is downregulated after evolution, suggesting 

improved Fe-S metabolism (p = 0.0017). (E) The Biotin iModulon is downregulated after 

evolution. Biotin also depends on Fe-S-dependent synthesis (q = 0.017). (F-I) Ribose (p 

= 0.011), Purine (p = 0.036), Cysteine-1 (p = 0.025), and Copper (p = 0.034) iModulon 

activities behave differently in starting and evolved strains (Supplementary Data S1 – Note 

S5). (L) Knowledge graph connecting decreased oxidative stress to each of the iModulon 

changes shown.
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Figure 6. Mutations drive metabolic rerouting toward fermentation to avoid PQ cycling by 
decreasing NADH availability.
(A) Simplified metabolic map of the TCA cycle and fate of NADH. Reactions catalyzed 

by mutated enzymes are shown in red and labeled with a pie chart indicating which strains 

have a wild-type (WT) or mutant allele. First generation strains in the pie chart protrude, 

with their descendants following them counter-clockwise. (B) Ribosome readthrough ratio 

in aceE from ribosome profiling, means ± standard deviation, n = 3. The ratio B/A is the 

fraction of ribosomes bound downstream (B) vs. upstream (A) of the early amber stop codon 

(TAG) in aceE. The midpoint (MP) strain has aceE Q409* with WT glnX, whereas the 2_0 

strain has both aceE Q409* and the glnX anticodon mutation that enables ribosomes to read 

through the amber stop codon. In evolved strains such as 2_0, PDH levels are decreased but 

not zero. (C) Aero-type plot67 computed from measured growth rates and glucose uptake 

rates, where points represent means ± SEM (strains in duplicate; black n = 2, green n = 

26), with constant growth rate isoclines. Colored regions labeled with roman numerals are 

aero-type regions as defined previously12. Cells switch to a lower aero-type with PQ and 

increase their glucose uptake after evolution. (D) Flux differences from the OxidizeME 

model, comparing the starting strain with no PQ and a representative evolved strain at high 

PQ. Model was constrained by growth rate, glucose uptake rate, and RNAseq data (Figure 

S4). (E) Each point represents a TCA cycle reaction in the constrained OxidizeME models; 

models of evolved strains predict lower TCA cycle fluxes. (F-G) OxidizeME model results 

in mmol/gDCW/h for 0_0 and 1_0, constrained by growth rate, glucose uptake rate, and 
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RNA expression. (F) As PQ cycle flux increases, the damaged fraction (filled in) of the TCA 

cycle increases. (G) NADH production decreases with PQ, but is more sensitive in 0_0. 0_0 

can also carry more PQ cycle flux.
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Figure 7. Mutations and iModulon reallocation drive metabolic rerouting toward fermentation 
to avoid PQ cycling.
Bars indicate mean iModulon activities ±95% confidence interval. P-values are false 

discovery rate corrected p-values from a DiMA comparison of stressed transcriptomes 

(250 and/or 750 μM PQ) between 0_0 and evolved strains. (A) ArcA iModulon activities 

are mostly decreased after evolution, except in the case of mutations to arcAB (p = 

0.035). ArcA contains aerobic metabolism genes. (B-D) Fnr controls three iModulons 

with anaerobic metabolism genes, all of which are upregulated (p = 0.034, 0.030, 0.023). 

(E) Knowledge graph describing changes in the evolved strains connecting central carbon 

mutations to anaerobic and glycolytic gene expression, which decreases TCA cycle flux 

and ROS generation. (F) The Cra iModulon, which contains glycolytic genes that are 

repressed by Cra, is upregulated (p = 0.017). (G) The Crp-2 iModulon, which controls 

phosphotransferase systems, is upregulated (p = 0.022). (H) The Pyruvate-2 iModulon is 

upregulated (p = 0.012).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Glucose Optimized Escherichia coli K12 MG1655 SBRG, University of California San 
Diego

PMID: 25304508 A4 F237 
I1 R1

PQ Optimized Escherichia coli K12 MG1655 1_0 This paper A16 F32 I1 R1

PQ Optimized Escherichia coli K12 MG1655 2_0 This Paper A18 F36 I1 R1

PQ Optimized Escherichia coli K12 MG1655 3_0 This Paper A14 F27 I1 R1

PQ Optimized Escherichia coli K12 MG1655 1_1 This Paper A11 F83 I1 R1

PQ Optimized Escherichia coli K12 MG1655 1_2 This Paper A13 F87 I1 R1

PQ Optimized Escherichia coli K12 MG1655 1_3 This Paper A17 F104 I1 R1

PQ Optimized Escherichia coli K12 MG1655 1_4 This Paper A19 F91 I1 R1

PQ Optimized Escherichia coli K12 MG1655 2_1 This Paper A21 F97 I0 R1

PQ Optimized Escherichia coli K12 MG1655 2_2 This Paper A25 F111 I1 R1

PQ Optimized Escherichia coli K12 MG1655 2_3 This Paper A29 F119 I1 R1

PQ Optimized Escherichia coli K12 MG1655 3_1 This Paper A1 F112 I1 R1

PQ Optimized Escherichia coli K12 MG1655 3_2 This Paper A3 F76 I1 R1

PQ Optimized Escherichia coli K12 MG1655 3_3 This Paper A7 F103 I1 R1

PQ Optimized Escherichia coli K12 MG1655 3_4 This Paper A9 F77 I1 R1

Chemicals, Peptides, and Recombinant Proteins

Paraquat Dichloride Hydrate Sigma-Aldrich 36541–100MG

Deposited Data

DNAseq ALEdb.org ROS

RNAseq NCBI GEO GSE134256; GSE221314

PRECISE-1K iModulon Data iModulonDB.org; DOI: 
10.1101/2021.04.08.439047

E. coli PRECISE-1K

Oligonucleotides

Guide Sense Oligo Insert “T”: AGCGCCAGCAAACAAATGTAGcat IDT N/A

Guide Antisense Oligo Insert “T”: AAACatgCTACATTTGTTTGCTGG IDT N/A

Guide Sense Oligo Remove “T”: AGCGCAGCAAACAAATGTAAGcat IDT N/A

Guide Antisense Oligo Remove “T”: 
AAACatgCTTACATTTGTTTGCTG

IDT N/A

DONOR Forward Primer: 
CCAGGTCTCAGTGCCGCACCAGCGCCTAT

IDT N/A

DONOR Reverse Primer: 
CCAGGTCTCAGAGCCGTCGGCAGCATATGCA

IDT N/A

Software and Algorithms

iModulon Computation DOI: 10.1101/2021.07.01.450581 https://github.com/avsastry/
modulome-workflow

OxidizeME model PMID: 31270234 https://github.com/SBRG/
oxidizeme

Other
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REAGENT or RESOURCE SOURCE IDENTIFIER

Code to generate all plots This Paper https://github.com/SBRG/
ROS-ALE
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