
UNIVERSITY OF CALIFORNIA,
IRVINE

On the Efficient Marginalization of Probabilistic Sequence Models

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Statistics

by

Alex Boyd

Dissertation Committee:
Professor Padhraic Smyth, Co-Chair

Associate Professor Stephan Mandt, Co-Chair
Professor Babak Shahbaba

2024

© 2024 Alex Boyd

DEDICATION

To my fiancée and parents.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

VITA xiii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Motivating Use Cases . 4
1.2 Contributions and Dissertation Outline . 6

2 Background 9
2.1 Notation . 9
2.2 Relevant Probability Theory . 10
2.3 Expectation Approximation Techniques . 16
2.4 Sequential Models . 19

2.4.1 Autoregressive Modeling of Categorical Sequences 20
2.4.2 Marked Temporal Point Processes . 22
2.4.3 Continuous-Time Stochastic Jump Processes 29

3 General Probabilistic Query Estimation for Discrete Time Models 34
3.1 Related Work . 35
3.2 Probabilistic Queries . 38
3.3 Querying Markov Models . 45

3.3.1 Queries for Homogeneous First Order Markov Models 46
3.3.2 General Queries and Higher Order Markov Models 47

3.4 Query Estimation Methods . 49
3.4.1 Proposal Distribution . 49
3.4.2 Estimation Techniques . 51
3.4.3 Saving Computation on Multiple Queries 57

3.5 Experiments and Results . 58

iii

3.5.1 Experimental Setting . 58
3.5.2 Results . 62

3.6 Conclusion . 67

4 Hitting Time and Related Query Approximation for Marked Temporal
Point Processes 69
4.1 Related Work . 71
4.2 Preliminaries . 73

4.2.1 Notation for Event Sequences . 73
4.2.2 Marked Temporal Point Processes . 74

4.3 Querying MTPPs . 75
4.3.1 Directly Tractable Queries . 77
4.3.2 Naive Estimation of Queries . 78
4.3.3 General Restricted-Mark Queries . 79
4.3.4 Practical Estimation of Complex Queries 84

4.4 Experiments . 87
4.4.1 Real-world Experiments . 88
4.4.2 Synthetic Experiments . 91

4.5 Conclusion . 94

5 Marginalization of Marked Temporal Point Processes to Account for Cen-
soring 95
5.1 Related Work . 96
5.2 Mark-Censored Temporal Point Processes 98

5.2.1 Problem Statement . 99
5.2.2 Censored Intensity Function . 99
5.2.3 Tractable Estimation of Censored Intensity 103

5.3 Experiments . 109
5.3.1 Experiments on Synthetic Data . 112
5.3.2 Experiments on Real-World Data . 116

5.4 Conclusion . 117

6 Generalized Hitting Times and their Approximated Distributions for Stochas-
tic Jump Processes 119
6.1 Related Work . 120
6.2 Preliminaries & Setting of Interest . 123

6.2.1 Stochastic Jump Process . 123
6.2.2 Random Times . 124
6.2.3 Objective . 128

6.3 Naive Empirical Estimators . 130
6.4 Tower Rule Estimators . 132
6.5 Importance Sampling Estimators . 136

6.5.1 Altering Jumps . 138
6.5.2 Alternative Approach . 140

6.6 Compositions of Generalized Hitting Times 142

iv

6.6.1 Hitting Time Ordering . 142
6.6.2 Joint Hitting Time Distributions . 144

6.7 Experiments . 147
6.7.1 First Passage Time . 147
6.7.2 First Exit Time . 150
6.7.3 Cover Time . 151
6.7.4 Joint Hitting Time Distributions . 154

6.8 Conclusion . 158

7 Conclusion 159
7.1 Reiteration of Contributions . 160
7.2 Future Research Directions . 160

Bibliography 163

Appendix A Supplemental Material for Chapter 3 177

Appendix B Supplemental Material for Chapter 4 199

Appendix C Supplemental Material for Chapter 5 210

Appendix D Supplemental Material for Chapter 6 219

v

LIST OF FIGURES

Page

3.1 (top) Illustration of a query for the probability of a given sentence “In my
opinion...” ending in K steps. (bottom) GPT-2 [Radford et al., 2019] hitting
time estimates for sentence ending across 4 prefixes with V = 50, 257, K ≤ 30.
Importance sampling query estimates maintain a 6x reduction in variance
relative to naive model sampling for the same computation budget. Open-
ended prefixes (top-left) generally possess longer-tailed distributions relative
to simple prefixes. Almost no probability mass is found for K = 1 due to the
extremely high likelihood that at least one more token succeeds the prompts
prior to ending in order to ensure proper grammar. Additional details provided
in Sections 3.4 and 3.5 and Appendix A.3.5. 36

3.2 (left) Tree diagram of the complete sequence space for a vocabulary X =
{a, b, c} and the corresponding query space Q (right) for when the first appear-
ance of a occurs on the third step (i.e., hit(a) = 3), defined as the set product
of restricted domains listed below the figure. 40

3.3 Median relative absolute error (RAE) between estimated probability and (sur-
rogate) ground truth for pθ(hit(·) = K) for importance sampling, beam search,
and the hybrid method. As query path space grows with K, beam search
quickly fails to bound ground truth while sampling remains robust, with the
hybrid consistently outperforming all other methods, especially for large values
of K. Ground truth values used to determine error are exact for K ≤ 4 and
approximated otherwise. 63

3.4 (a) RAE vs restricted entropy per query (with best linear fits), (b) Median
RAE versus model temperature T for Mobile App data. All errors computed
using the same queries as in Fig. 3.3. Beam search errors correlate highly
with model entropy even with the low-entropy Mobile Apps dataset, where
increasing temperature T directly induces this failure mode. 64

3.5 Median relative efficiency (over 1000 query histories and all vocabulary terms)
of importance sampling estimation of the K-step marginal distributions for
each dataset. The gray, dotted line represents 100% relative efficiency defined
by naive query estimation. Relative efficiency is documented for 4 ≤ K ≤ 15
to highlight the regime where ground truth cannot be tractably computed. . 66

vi

4.1 Example query space Q for the hitting time (first occurrence) of blue marks
being greater than some time t. Sequences shown, H(i), all belong to the query
space as they each do not contain a blue event occurring before time t. . . . 76

4.2 Three potential sequences H(i) that satisfies the condition of an example
restricted-mark query. The mark space M in this context is equivalent to
that in Fig. 4.1. 80

4.3 Results from 1000 different hitting time queries evaluated on models trained
on three different datasets. (a) Average relative absolute error for naive and
importance sampling shown in comparison to number of sampled sequences
used. (b) Estimated relative efficiency values for importance sampling versus
naive sampling plotted against ground truth hitting time query values. Gray
dashed lines indicate an efficiency of 1. Red lines with text box show the mean
multiplicative increase in computation time for importance sampling. 90

4.4 Same setup as seen in Fig. 4.3 with the same models and datasets only applied
to “A before B” queries. Results for (b) are presented as “variance reduction”
instead of “relative efficiency” since our derived estimator for importance sam-
pling is biased due to truncating the integral in Eq. (4.50). 92

4.5 Average wall-clock time taken to generate a single sample under naive and
importance sampling for hitting time queries with 1,000 randomly instanti-
ated parametric exponential-kernel Hawkes models with different scalings of
“interaction strength” (i.e., amount of modeled cross-mark interaction). . . . 93

5.1 Visualization of an example sequence with four possible marks. M is the
vocabulary of possible event types, Hk is the history of events with types equal
to k. Boxes over sequences represent different modes of censoring that could
occur during generation: (1) mark-agnostic censoring for a particular interval,
(2) censoring of green and red marks over an open interval, and (3) censoring
of blue and orange marks over a finite interval. The occurrence of an event or
the total count of events during an interval is not known, differentiating our
scenarios from the typical “interval censoring” in survival analysis or MTPPs. 97

5.2 Intensity visualizations (lines) alongside conditioned sequences (dots) for a
sequence sampled from a self-correcting point process (top), the same process
with blue marks censored from time 3 to 7 (middle), and the naive intensity
results for the censored sequence (bottom). The middle sequence displays both
the observed sequence as opaque dots and the various censored continuations
sampled from the importance distribution as transparent dots. Note that the
intensity of the censored mark (blue) after the censoring interval (at time 7)
does not necessarily equal the intensity before censoring (at time 3). 100

5.3 Distributions of likelihood ratios across number of marks censored for the
duration of the sequences used for synthetic experiments with self-correcting,
Hawkes (dense), and Hawkes (block-diagonal) models. Values greater than 1
indicate higher likelihoods under the mark-censored model. 113

vii

5.4 Distributions of likelihood ratios for a block-diagonal Hawkes model with
varying interaction strengths applied to off-diagonal α terms. Values greater
than 1 indicate higher likelihoods under the mark-censored model compared
to the baseline. 114

5.5 Same setup as Fig. 5.3 except with results produced on four real-world datasets
with trained neural Hawkes models. Note that we display the results with
respect to the absolute amount of marks censored rather than the percentage
censored as we suspect this has a more direct impact on the likelihood ratios,
especially when dealing with sequences that naturally have few unique marks
compared to the total mark space M—as is typical in real datasets. 115

6.1 Estimates for the distribution of the hitting time of entering the region [c,∞)
with Xt from Eq. (6.95) are shown in the top plot where c corresponds to
the different colored lines in the plots ranging from 1.25 to 10. Bottom three
plots show estimated relative efficiencies comparing naive (NE), tower rule
(TR), and importance sampling (IS) estimators, with dashed horizontal lines
indicating an efficiency of 1. For plots labeled “XX v. YY”, efficiency values
greater than 1 favor the “YY” method. 149

6.2 Results shown in the same format as Fig. 6.1 for comparing different first exit
time distributions of the region [3,∞) over time t ∈ [0, 5] as they vary across
drift-rates b which range from 0 to 50 for Xt from Eq. (6.96). 152

6.3 For each temperature τ ∈ {0.1, 1, 10}, ten different processes defined by
Eq. (6.100) are initialized with random parameters according to details in
Section 6.7.3. Relative efficiencies between naive (NE), tower rule (TR), and
importance sampling (IS) are shown, similar to Fig. 6.1, for computing the
distribution of the cover time P(TG ≤ t) for t ∈ [0, 10]. Plotted lines start at
varying time t values due to the cover time for that sampled process requiring
being so rare that the estimators prior to that time all equal 0 exactly. . . . 155

6.4 Estimated values and efficiencies for the joint distribution P({TRi
≤ t}di=1)

for t ∈ [0, 10], with different colors for d = 1, . . . , 5, computed with naive
estimation (NE) and importance sampling (IS), both ordered and unordered,
all shown in a similar format as Fig. 6.1. Efficiency values sometimes start at
varying values of time t due to the same reasons as in Fig. 6.3. For that reason,
the relative efficiency between ordered and unordered importance sampling is
not shown due to a lack of sampled support. 157

viii

LIST OF TABLES

Page

3.1 List of example questions, corresponding probabilistic queries, and associated
costs of exact computation computation with an autoregressive model. The
cost of incorporating a history H is assumed to be an additive constant for all
queries. While Q4 extends to infinite time, the cost reported is for computing
a lower bound up to K steps. 41

4.1 Real-world Dataset Summary Statistics . 88

6.1 Examples of random times T and their classifications, with c > 0, A, A′, A1,
A2, · · · ⊂ X , and TA being the time of reaching state A for the first time by X.
The “; (·)” notation implies that unless the (·) is satisfied then T (ω) =∞. For
instance, the random time T = TA;TA′ < TA is concerned with the time the
process reaches A for the first time so long as it has reached A′ prior. Should
A be reached before A′, then T =∞. Likewise, T = TA;TA < TA′ covers the
other scenario of the process reaching A before A′ first. It should be noted
the minimum of these two random times is simply TA. 127

ix

LIST OF ALGORITHMS

Page
1 Thinning Procedure for Sampling from a MTPP [Ogata, 1981] 26

x

ACKNOWLEDGMENTS

I would first like to take the chance to sincerely thank my advisors, Padhraic Smyth and
Stephan Mandt. Both have been incredible mentors to me throughout my time here at UCI
and I am extremely grateful to have had the chance to learn and grow under them the past
several years. Their patience, availability, passion, and outlooks on research all facilitated
a wonderful environment for me to develop my own confidence and skill set as a researcher.
While having two advisors brings its own set of challenges (twice as many meetings, more
frequent tangent conversations in meetings, etc.), if I were to start my Ph.D. again I would
not change a thing. Being exposed to differing perspectives from my advisors throughout all
of my research endeavors encouraged me to actively think and come into my own. In the
future, I will look back fondly on all the times I walked into their offices to brainstorm and
provide progress updates. After all is said and done, I will consider myself fortunate should I
ever get the chance to collaborate with either of my advisors again after graduating. And to
Padhraic in particular, thank you for taking a chance and recruiting a fresh undergraduate
student without any research experience. Your endorsement of my potential at that time
meant more to me than I can express in words.

I would also like to thank Babak Shahbaba for serving on my defense committee. I had
the fortune of taking Babak’s Bayesian statistics class early on while at UCI, which was
foundational in the development of my statistical and probabilistic thinking. His continued
support throughout my Ph.D. and feedback for my dissertation have been invaluable.

Graduate school in general can be greatly enhanced by the company that is kept, and I
was tremendously lucky to be surrounded by incredibly bright, passionate, and personable
labmates and friends. To Catarina Belém, Yuxin Chang, Chis Galbraith, Disi Ji, Markelle
Kelly, Gavin Kerrigan, Aodong Li, Robert Logan, Rachel Longjohn, Yang Meng, Giosue
Migliorini, Kushagra Pandey, Jihyun Park, Tuan Pham, Sam Showalter, Prakhar Srivastava,
Justus Will, Eliot Wong-Toi, Shang Wu, Ruihan Yang, and Yibo Yang, thank you all
for providing countless stimulating conversations and making working out of the office an
enjoyable experience every day. In particular to Sam and Yuxin, I thank you both for your
energy and excitement during our frequent collaborations. Working on our projects together
was never difficult due to how natural it felt to bounce ideas off of one another, trouble shoot
error messages together, and buckle down when deadlines approached. I am thankful for the
opportunities we had to research together as I sincerely believe that our experiences led me
to growing stronger as a collaborator, and I hope that I was able to have a fraction of an
positive impact on both of you as the two of you had on me.

Those who knew me prior to graduate school would know that attending it in general, let
alone acquiring a Ph.D., was not a goal of mine until late into my undergraduate education;
at least not until Dennis Sun, my undergraduate advisor, encouraged me to consider this
pursuit. Were it not for him, I would not have even applied to any Ph.D. programs in the first
place. I sincerely thank Dennis for our long meetings (that often bled into his office hours)
where he convinced me that I was capable and could indeed succeed at this. I fully attribute
the start of my long journey towards understanding the foundations of “why machine learning

xi

works” to Dennis igniting my curiosity. Alongside Dennis were other professors and mentors
that encouraged me pursue this path and supported my endeavors. To Alex Dekhtyar, Monte
LaBute, and Teng Qu, thank you all for believing in me and helping me recognize my own
potential. You all never shied away from the myriad of questions I had throughout my
learning process; your patience is much appreciated. I am also grateful to Kyle Vigil and
especially Nick Russo for their continued interest in my success and reliable assistance during
both the highs and lows of graduate school.

I was lucky to have had internships at NVIDIA, Microsoft Research, and Apple during time
as a Ph.D. student, and I would like to thank my hosts and mentors Bryan Catanzaro,
Mohammad Shoeybi, Mostofa Patwary, Chris Meek, Alex Polozov, Yang Song, and Shiwen
Shen for taking a chance on me and showing me a completely different side to machine
learning research that can only be found in industry. While the internships were only ever
for three months at a time, I consistently felt a significant acceleration in my growth as a
researcher after each one.

Finally, on a more personal note I would like to thank my friends and family. To Sierra,
Ian, Alex, Minnal, and Andrew, thank you for your patience whenever I would disappear for
months at a time to dive deep into research. I could always count on you being there when
I would come back up for air. To my parents, thank you for always being there for me and
simply encouraging me to try my best regardless of the situation. Consistently striving for
my best inevitably got me to where I am now, and I could not be more thankful for your
support and your love. Last but not least, to Shannon, thank you for your understanding
and unwavering encouragement. Were it not for you, I would have not been able to finish
out strong. This milestone is as much my achievement as it is yours. I am, and always will
be, thankful to have you in my life.

The material presented in this dissertation was funded in part by the National Science
Foundation (NSF) through a Graduate Research Fellowship Program (GRFP) grant DGE-
1839285, the National Institute of Health (NIH) under award 1OT2OD032581-01, and the
Patient-Centered Outcomes Research Institute® (PCORI®) award ME-1602-34167. The
views expressed are those of the author and do not reflect the official policy or position of
the funding agencies.

xii

VITA

Alex Boyd

EDUCATION

Doctor of Philosophy in Statistics 2024
University of California, Irvine Irvine, CA

Bachelor of Science in Software Engineering 2018
California Polytechnic State University San Luis Obispo, CA

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2024
University of California, Irvine Irvine, CA

Applied Machine Learning Researcher, Intern 2021
Apple Cupertino, CA

Deep Learning Researcher, Intern 2020
Microsoft Research Redmond, WA

Applied Deep Learning Researcher, Intern 2019
NVIDIA Santa Clara, CA

TEACHING EXPERIENCE

Teaching Assistant 2018, 2023
University of California, Irvine Irvine, CA

xiii

REFEREED CONFERENCE PUBLICATIONS

Sam Showalter∗, Alex Boyd∗, Padhraic Smyth, and Mark Steyvers. Bayesian online learning
for consensus prediction. To appear in Proceedings of The 27th International Conference
on Artificial Intelligence and Statistics, 2024

Yuxin Chang, Alex Boyd, and Padhraic Smyth. Probabilistic modeling for sequences of sets
in continuous-time. To appear in Proceedings of The 27th International Conference on
Artificial Intelligence and Statistics, 2024

Alex Boyd, Yuxin Chang, Stephan Mandt, and Padhraic Smyth. Inference for mark-censored
temporal point processes. In Proceedings of the Thirty-Ninth Conference on Uncertainty
in Artificial Intelligence, volume 216 of Proceedings of Machine Learning Research, pages
226–236. PMLR, 2023

Alex Boyd, Yuxin Chang, Stephan Mandt, and Padhraic Smyth. Probabilistic querying of
continuous-time event sequences. In International Conference on Artificial Intelligence
and Statistics, pages 10235–10251. PMLR, 2023

Alex Boyd∗, Sam Showalter∗, Stephan Mandt, and Padhraic Smyth. Predictive querying for
autoregressive neural sequence models. In Advances in Neural Information Processing
Systems, volume 35. Curran Associates, Inc., 2022

Antonios Alexos∗, Alex Boyd∗, and Stephan Mandt. Structured stochastic gradient MCMC.
In Proceedings of the 39th International Conference on Machine Learning, volume 162,
pages 414–434. PMLR, 2022

Aodong Li, Alex Boyd, Padhraic Smyth, and Stephan Mandt. Detecting and adapting to
irregular distribution shifts in Bayesian online learning. In Advances in Neural Information
Processing Systems, volume 34, pages 6816–6828. Curran Associates, Inc., 2021

Preston Putzel, Hyungrok Do, Alex Boyd, Hua Zhong, and Padhraic Smyth. Dynamic
survival analysis for EHR data with personalized parametric distributions. In Proceedings
of the 6th Machine Learning for Healthcare Conference, volume 149, pages 648–673. PMLR,
2021

Alex Boyd∗, Raul Puri∗, Mohammad Shoeybi, Mostofa Patwary, and Bryan Catanzaro. Large
scale multi-actor generative dialog modeling. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 66–84. Association for Computational
Linguistics, 2020

Alex Boyd, Robert Bamler, Stephan Mandt, and Padhraic Smyth. User-dependent neural
sequence models for continuous-time event data. In Advances in Neural Information
Processing Systems, volume 33, pages 21488–21499. Curran Associates, Inc., 2020

∗ denotes shared first-authorship

xiv

ABSTRACT OF THE DISSERTATION

On the Efficient Marginalization of Probabilistic Sequence Models

By

Alex Boyd

Doctor of Philosophy in Statistics

University of California, Irvine, 2024

Professor Padhraic Smyth, Co-Chair
Associate Professor Stephan Mandt, Co-Chair

Real-world data often exhibits sequential dependence, across diverse domains such as human

behavior, medicine, finance, and climate modeling. Probabilistic methods capture the inher-

ent uncertainty associated with prediction in these contexts, with autoregressive models being

especially prominent. This dissertation focuses on using autoregressive models to answer

complex probabilistic queries that go beyond single-step prediction, such as the timing of

future events or the likelihood of a specific event occurring before another. In particular,

we develop a broad class of novel and efficient approximation techniques for marginalization

in sequential models that are model-agnostic. These techniques rely solely on access to

and sampling from next-step conditional distributions of a pre-trained autoregressive model,

including both traditional parametric models as well as more recent neural autoregressive

models. Specific approaches are presented for discrete sequential models, for marked temporal

point processes, and for stochastic jump processes, each tailored to a well-defined class of

informative, long-range probabilistic queries.

xv

Chapter 1

Introduction

In real-world settings, data rarely arises instantaneously and independently. Instead, systems

and individuals typically evolve over time, generating data that is ordered sequentially. While

this order may be disregarded in specific contexts, understanding its significance often leads to

richer insights. Ignoring the temporal evolution of a population’s characteristics, for example,

might simplify analysis but risks overlooking valuable information.

More significantly, sequential data allows for future prediction, a capability far more impactful

than static analysis. This applies to diverse domains, ranging from individual health outcomes

[Clark et al., 2003, van Houwelingen and Putter, 2011, Haider et al., 2020], shopping behavior

[Rendle et al., 2010, Guidotti et al., 2018, Shou et al., 2023], and technology interactions

[Quadrana et al., 2018, Aliannejadi et al., 2021] to large-scale phenomena like climate patterns

[Besse et al., 2000, Ise and Oba, 2019] and financial market dynamics [Kijima, 2002, Rolski

et al., 2009, Sezer et al., 2020]. In all of these cases, modeling outcomes from a sequential

perspective can unlock significant predictive power.

Probabilistic approaches address this by capturing the joint distribution of the entire se-

1

quence, e.g., P(X1, X2, . . . , XN) for the random sequence X1, X2, . . . , XN . This framework

encompasses diverse modeling techniques, regardless of whether time is treated continuously

[Capasso and Bakstein, 2021] or discretely [Rajarshi, 2014], or whether measurements are

sparse [Hamilton, 2020] or dense [Daley and Vere-Jones, 2003].1 By far, the most common

way of modeling the joint distribution of sequences, especially when focusing on future predic-

tion, is to use an autoregressive approach. This involves decomposing the joint distribution

and directly model the distributions of the next values in a sequence given the prior val-

ues.2 For example, an autoregressive model factorizes the joint distribution P(X1, . . . , XN)

as
∏N

i=1 P(Xi |X1, . . . , Xi−1), where each conditional probability P(Xi |X1, . . . , Xi−1) for all

i ∈ N becomes the target for modeling.

Autoregressive models, by capturing the joint distribution of random sequences, hold insights

into various future possibilities beyond just the next single value. Instead of merely predicting

the immediate successor for a sequence, we may be interested in the timing of a specific

value’s next appearance or the likelihood of one value occurring before another. This work

focuses on answering such probabilistic queries using autoregressive models. Quantifying these

probabilities often involves marginalizing over intermediate elements in a sequence, the specific

ones depending on the query itself. For instance, understanding the distribution of X10 |X1

requires marginalizing out all potential realizations and combinations of X2, X3, . . . , X9 to

follow X1 prior to X10.

Efficient computation of probabilistic queries and general marginalization have been active

research areas in machine learning and AI, dating back to exact inference methods in multi-

variate graphical models [Pearl, 1988, Koller and Friedman, 2009]. Traditionally, two types

1By sparse, we are referencing scenarios with individual events that occur at varying points in time. An
example is the history of earthquakes, both when and where they occur, in a given geographical area. In
contrast to this, dense information is often in reference to a system with values of interest defined at any
given time and are regularly measured. Temperature measurements over time are a classic example of this.

2Autoregressive models originally were defined in the time-series literature as a method of regressing future
values of a sequence based on past values (hence the “auto” in the name); however, in recent years this term
has generalized past time-series into a general framework as described in this work [Hamilton, 2020, Murphy,
2022, Gregor et al., 2014].

2

of queries dominated the research: conditional probability queries and assignment queries.

This dissertation focuses on the former.

Conditional probability queries aim to estimate the distribution of a specific subset of vari-

ables (X) conditioned on observed values for another subset (Y = y). Marginalization over

the remaining variables (Z) is required to achieve this. Graphical models facilitate these

computations by leveraging assumed conditional independence relationships between X, Y,

and Z (e.g., see Koster [2002]).

For models with sparse Markov dependence structures, efficient inference algorithms exploit

this structure, especially for sequential models where recursive computation is advantageous

[Koller and Friedman, 2009, Bilmes, 2010]. However, neural network-based autoregressive

models inherently violate the Markov assumption due to their hidden states encoding the

entire sequence of previous events. Consequently, assignment and conditional probability

queries become computationally intractable (NP-hard), rendering techniques like dynamic

programming (which are effective in Markov models) inapplicable in this more general setting

[Chen et al., 2018].

Despite analytical solutions existing for specific model settings and parameterizations, the

recent success of neural network-based autoregressive models across diverse domains necessi-

tates efficient and tractable methods for extracting probabilistic information from them. This

dissertation proposes novel techniques that achieve this goal with minimal assumptions about

the underlying prediction model, ensuring broad applicability without requiring additional

training or learning.

3

1.1 Motivating Use Cases

Before detailing the contributions of this dissertation, we will first examine contexts where

autoregressive models have proven successful and highlight their potential benefit from ex-

tracting longer-range distributional information about future trajectories.

Contextual Queries Understanding customer behavior through population-level statis-

tics, such as consumption patterns, is crucial for business decisions. Large user behavior

databases allow companies to estimate general purchase tendencies, like the likelihood of

users buying item A before item B or the frequency of users purchasing item C in a specific

time frame. However, predicting such tendencies for individual customers based on their

unique past actions becomes challenging. With limited data points for each user, direct

statistical computations become unreliable.

This motivates the use of autoregressive models trained on the entire customer dataset. These

models learn to predict a user’s next action based on their historical sequence of events. Once

trained, they can be used to answer contextual queries specific to each user, conditioned on

their unique history. This is achieved by marginalizing over all possible behavior sequences

leading to the query instance (e.g., all possible sequences where a user purchases item A

before B).

Chapters 3, 4, and 6 explore various techniques for tractably achieving this in various modeling

settings.

Forecasting Long range predictions, or forecasting, is a crucial task in various domains,

including web server load management [Santana et al., 2011, Hu et al., 2019], anticipating

economic trends in business and finance [Franses, 1998, Elliott and Timmermann, 2008],

predicting long-range climate trends [Barnett, 1995, Shukla, 1998, Troccoli, 2010], and more

4

[Abraham and Ledolter, 2009, Petropoulos et al., 2022]. In web server load management

for example, accurate forecasts are essential to anticipate usage spikes and proactively scale

resources, preventing downtime and ensuring optimal system performance. Traditionally,

autoregressive time series models are employed for such purposes. In load management, these

models utilize past load data, potentially combined with aggregate activity information, to

predict the immediate next load value. While some approaches offer limited multi-step ahead

forecasts, they are often inflexible and do not directly address the critical concern of server

overload.

An alternative approach leverages the existing autoregressive model with a predefined server

usage threshold. By marginalizing over potential future trajectories exceeding this threshold,

we can extract the distribution of when such overload is predicted to occur. This distribution

then can inform proactive resource allocation decisions, determining if, when, and by how

much resources should be scaled to accommodate anticipated usage. Techniques for addressing

this use case are developed in Chapters 3, 4, and especially 6 for a variety of different settings.

Missing Data Marginalization of sequences need not encompass only future trajectories;

it can also be applied to internal segments within existing sequences. This capability proves

particularly valuable when dealing with unobserved or censored portions of data.

Consider the previously discussed load forecasting scenario. Real-world systems are prone

to intermittent outages and equipment failures, which may affect data collection services

that record pertinent information for server load forecasting. However, halting production

during such events is often impractical. In such situations, marginalizing over the missing

past information becomes crucial to accurately account for its potential impact on future

predictions.

Another relevant application arises in medical settings. Imagine training a model to capture

5

the dynamics between events of interest and various medical measurements. This model

might then be deployed in hospitals lacking the full set of equipment used for data collection

during training, resulting in missing information at inference time. Rather than retraining the

model entirely, marginalization offers a more practical and cost-effective solution to address

the missing information. By marginalizing, the model can leverage the available data for

accurate inference, maintaining its predictive and analytical capabilities. Methods to account

for missing information are the sole focus of Chapter 5.

1.2 Contributions and Dissertation Outline

This dissertation presents novel and efficient approximation techniques for marginalization

in sequential models, applicable to various classes of models without requiring particular

parameterizations or model-specific modifications. These techniques rely solely on access

to and sampling from the next-step conditional distributions of a pre-trained autoregressive

model.

Chapter 2 provides essential background information and establishes the notation used

throughout the dissertation.

Chapter 3 focuses on probabilistic query estimation for discrete-time sequential models with

a finite vocabulary. Key contributions include:

• Formalization of all possible queries in this setting and an accompanying notation

system for their representation.

• Analytical solutions for query estimation in nth-order Markov models.

• A sequential importance sampling approximation technique using a novel query-specific

proposal distribution.

6

• Computable lower-bounds for query probabilities using beam search combined with

query-derived heuristics.

• A hybrid method combining importance sampling and beam search for improved re-

source efficiency.

• Systematic experiments on four real-world datasets, investigating the efficiency of the

proposed algorithm compared to simpler baselines.

Chapter 4 extends the methods to sparse continuous-time sequential models where events

occur at random times with varying time gaps. The contributions include:

• Extension of the class of discrete-time queries to the continuous-time setting, encom-

passing queries like hitting times of specific events.

• Adaptation of the importance sampling approach with a novel proposal marked temporal

point process.

• Theoretical guarantee of improved sample efficiency compared to naive counting-based

methods.

• Empirical demonstration of significant efficiency gains, often exceeding three orders of

magnitude in variance reduction for certain queries, across three different real-world

datasets.

Chapter 5 addresses marginalization of missing or censored information in the same modeling

setting as Chapter 4. The contributions include:

• A novel principled approach for marginalizing over missing information in arbitrary

temporal point processes by characterizing the intensity of observed events.

7

• Tractable estimation procedure for this observed intensity through using importance

sampling in conjunction with the proposal process from Chapter 4 and justified via the

point process superposition property.

• Analysis of bias and variance of derived estimators, exploration of resource-saving

variants, and empirical validation in real-world settings.

Chapter 6 further generalizes the results to dense continuous-time models and expands the

considered class of queries. The contributions include:

• Characterization of a query class for stochastic jump processes, including a new kind

of random times.

• Extension of importance sampling estimation techniques to this more general class of

processes.

• Development of explicit estimators for joint distributions of the proposed random times.

• Empirical demonstrations of improved computation efficiency of proposed techniques

for a variety of different queries on stochastic jump processes.

Chapter 7 concludes the dissertation with potential future research directions and final

thoughts.

8

Chapter 2

Background

This chapter lays the foundation for the subsequent chapters by providing essential back-

ground information in three key areas: probability theory, methods for approximating ex-

pected values, and probabilistic autoregressive modeling of sequential data (both classical

and modern approaches). Additionally, we introduce the notation employed throughout the

dissertation. We assume the reader possesses an undergraduate-level understanding of linear

algebra and machine learning, as well as familiarity with graduate-level statistics, particu-

larly measure-theoretic probability. For readers seeking a more comprehensive treatment of

these topics, we recommend Macdonald [2010] for linear algebra, Murphy [2022] and Murphy

[2023] for machine learning, Casella and Berger [2021] statistical theory, and Klenke [2013]

for probability theory.

2.1 Notation

This dissertation employs a consistent notation system to enhance clarity and readability.

For random variables, capital letters denote the variable itself (e.g., X), while corresponding

9

lowercase letters represent specific values (e.g., x). Matrices, vectors, and scalars lack a

predefined formatting style; their dimensions and properties will be explicitly declared upon

introduction (e.g., vector x ∈ Rd or matrix-valued random variable X ∈ Rn×m). Greek

letters serve as constants or functions, with their specific meaning clarified upon first use.

Notably, θ and Θ consistently represent parameter values and the parameter space of a model,

respectively. Sets are denoted by uppercase script letters (e.g., S).

Central to this work are sequences of random variables and their realized values. We dif-

ferentiate them from individual random variables by using bold uppercase letters (e.g., X).

These sequences represent ordered collections of random variables, defined as X := (Xi)i∈I ≡

{Xi | i ∈ I} where I ⊆ R is the indexing set. Subsets of the indexing set define specific por-

tions of the sequence (e.g., X<t ≡ {Xi | i ∈ I and i < t}, X[a,b) ≡ (Xi)i∈I∩[a,b) for continuous

I, and Xn:m ≡ {Xi | i = n, n + 1, . . . ,m} for discrete I). Similarly, realized sequences are

denoted by bold lowercase letters (e.g., x).

It is important to note that these random sequences are also known as stochastic processes.

This term and sequential model may be used interchangeably depending on the context.

2.2 Relevant Probability Theory

Probability and Random Variables

Within this work, we operate within the framework of a probability space (Ω,F ,P). This

space consists of three key elements:

• the sample space Σ, a set encompassing all possible outcomes of a random experiment

or system,

• the event space F , a σ-algebra comprising all collections of outcomes or events consid-

10

ered, and

• the probability measure P : F → [0, 1], a mapping of events in F to their corresponding

probabilities ranging from 0 to 1.

While a probability space fully captures the random behavior of a system, the sample space

itself can be too abstract for practical inference. To bridge this gap, we utilize random

variables. A random variable, denoted by X : Ω → X , is a measurable mapping from

abstract sample outcomes, ω ∈ Ω, to more concrete and interpretable values within the

measurable space X . For instance, consider the outcome of rolling a six-sided die. Here,

X = {1, 2, 3, 4, 5, 6} represents the possible values a roll can produce, while X(ω) assigns the

specific number rolled for a particular sample outcome ω ∈ Ω.

This work employs probability statements of the following form:

P(X ∈ A) := P(X−1(A)) := P({ω ∈ Ω |X(ω) ∈ A}) (2.1)

where X−1(A) ∈ F . For a random variable X, we denote the cumulative distribution

function (CDF) as FX(x) := P(X ≤ x) and pX as either the probability density function

(PDF), pX(x) := P(X ∈ [x, x + dx)), if X is continuous or the probability mass function

(PMF), pX(x) := P(X = x), if X is discrete.1 While the CDF exists for any random variable,

the PDF/PMF may not.

To facilitate calculation, we often relate general probability statements to known measures

through expectation. Recall the expected value of h(X) is:

EP [h(X)] :=

∫
Ω

h(X(ω))dP(ω) ≡
∫
Ω

h(X)dP (2.2)

1We refer to a random variable as continuous when its CDF FX(x) is continuous with respect to x.
Likewise, it is discrete when the CDF is a step function (with either a finite or countably infinite amount of
steps). It is possible for a random variable to be neither, e.g., a mixture distribution between a continuous
distribution and a point mass.

11

=

∫
X
h(x)dFX(x) (2.3)

=


∫
X h(x)pX(x)dx if X is continuous∑
x∈X h(x)pX(x) if X is discrete

(2.4)

where h is some measurable function of X. Equations 2.4 simplify the general integral in

Eq. (2.2) using the Lebesgue measure for continuous X or the counting measure for discrete

X as the reference measure. We often need to find the expected value of an expression

involving multiple random variables while “marginalizing out” one of them. This is defined

as:

EP
X [h(X, Y)] :=

∫
X
h(x, Y)dFX(x) (2.5)

where Y is another random variable under the same probability space as X and h is a

measurable function of both X and Y .2 This operation effectively transforms Y into a new

random variable based on its relationship with X.

The expectation definition of a probability statement provides a valuable interpretation:

P(X ∈ A) := EP
X [1(X ∈ A)] (2.6)

where 1 denotes the indicator function, which in this case returns 1 if X ∈ A and 0 otherwise.

Intuitively, this relationship reveals one perspective of the underlying meaning of P(X ∈ A).

It expresses the probability as the expected value of the indicator function, representing the

proportion of times X falls within set A over an infinitely large number of random draws.3

2More often, we marginalize out a variable while using its conditional distribution with respect to the
other variables, i.e., X |Y , which will be more precisely defined in Eq. (2.9).

3It is worth noting that this interpretation of probability is specifically a frequentist one. This is the
perspective adopted for this dissertation as it complies with all the methods derived; however, there do exist
alternative interpretations as well, e.g., Bayesian probability theory. For a more philosophical discussion on
various interpretations, please refer to Hájek [2023].

12

Conditioning and Organization of Information

This work frequently encounters the need to condition on existing information before as-

sessing the probability of future events. In the context of sequential modeling, this often

involves conditioning on a portion of a sequence to improve predictions for future occurrences.

Formally, a conditional expectation is itself a random variable, where the randomness stems

from the information used for conditioning.

σ-algebras are commonly interpreted as representations of potential information, based on

how finely they distinguish individual events within them. Consequently, the dynamics of

this random variable are governed by a sub-σ-algebra, denoted F ′ ⊆ F , which captures the

relevant events via:

∫
A

EP [h(X) |F ′] dP =

∫
A

h(X)dP for all A ∈ F ′. (2.7)

While the equation might seem complex, it essentially highlights how F ′ determines the level

of aggregation for h(X). To better understand this concept, consider two extreme edge-cases:

• Conditioning on no information, where F ′ := {∅,Ω}, enforces that EP [h(X) |F ′] =

EP [h(X)], or rather the mean value of h(X).4

• Conditioning on all relevant information, where F ′ := σ(X) which encompasses all

events generated by X, yields the function itself with EP [h(X) |F ′] = h(X). This

makes sense, as knowing the exact value of X reveals the value of h(X).

These examples illustrate how the choice of the sub-σ-algebra determines the level of detail

we consider when calculating the conditional expectation. It’s akin to focusing on specific

aspects of the available information to make more targeted predictions.

4Technically, EP [h(X) |{∅,Ω}] is a random variable, but it is a degenerate one with 100% of its mass on
a single value: EP [h(X)].

13

While mathematically rigorous, conditioning on arbitrary σ-algebras can be conceptually

challenging. Our primary interest lies in conditioning on random variables, as it offers a more

intuitive understanding. However, it’s essential to remember that, ultimately, conditioning

always occurs on a specific σ-algebra. Consider the conditional probability P(X ∈ A | Y),

often written for convenience. This concise notation actually translates to the more precise

statement:

P(X ∈ A |Y) ≡ P(X ∈ A |σ(Y)) (2.8)

= EP
X [1(X ∈ A) |σ(Y)] by Eq. (2.6). (2.9)

This highlights that the conditional probability is equivalent to the conditional expectation

of the indicator function for event X ∈ A, given the σ-algebra generated by Y .

A common application of conditional expectations is through the law of iterated expectations,

also known as the tower rule in stochastic process literature [Casella and Berger, 2021]. This

law helps us compute marginal expectations using readily available conditional representations.

For any two sub-σ-algebras F ′′ ⊆ F ′ ⊆ F , the law is defined as:

EP [h(X) |F ′′] ≡ EP [EP [h(X) |F ′] |F ′′] almost surely. (2.10)

The most common application involves F ′′ := {∅,Σ}, resulting in the expansion EP [h(X)] =

EP
[
EP [h(X) |F ′]

]
.

While the provided definition of conditional expectations is valuable, it’s not necessarily

conducive to direct computation. For practical applications, we typically require knowledge

of the conditional distribution of X given Y , represented by either the conditional CDF

FX |Y (x |y) or the conditional PDF/PMF pX |Y (x |y). These allow for the following tractable

14

formulas:

P(X ∈ A |Y) =

∫
A

dFX |Y (x |Y) (2.11)

=


∫
A
pX |Y (x |Y)dx if X is continuous∑
x∈A pX |Y (x |Y) if X is discrete

(2.12)

Due to this relation to conditional distributions, we will often denote these as expectations

via EP
X |Y [1(X ∈ A)].

When working with sequences of random variables, we often deal with varying information

levels depending on the subsequence length. For example, (X1, X2, X3) clearly offers more

information than (X1, X2). This progression is formally captured by filtrations, which are

a collection of nested sub-σ-algebras: (Ft)t∈I where Ft ⊆ Ft′ ⊆ F for t < t′. Intuitively,

Ft represents the current information available at time t, and in our context is commonly

equivalent to σ(X≤t). If A ∈ Ft, then the event A can be determined to have occurred (or

not) at or before time t within the system.

While filtrations are essential for conditioning on past information, their notation can be

cumbersome. Depending on the context, we might opt for clearer notation by directly writing

the conditional with the relevant subsequence, e.g., P(· |X1, X2, X3) instead of P(· | F3) :=

P(· | σ(X1, X2, X3)). This will be further discussed in Section 2.4 for each specific type of

sequential model considered.

Limiting Theorems

This work heavily relies on several fundamental theorems from statistics and probability

theory. To enhance clarity, we restate them below and provide interpretations of their

meanings and applications.

15

Theorem 2.1. [Casella and Berger, 2021] Let X,X1, X2, . . .
iid∼ FX where µ = EP [X] exists

and is finite, and denote the sample mean as Xn := 1
n

∑n
i=1Xi. By the strong law of large

numbers it follows that P
(
limn→∞ Xn = µ

)
= 1, or rather that Xn → µ almost surely when

n→∞.

The strong law of large numbers establishes the consistency of the sample mean as an

estimator for the population mean µ. This concept becomes instrumental when discussing

techniques for approximating expectations.

When developing estimators and bounds, it’s crucial to determine when we can interchange

the order of operations involving limits and integrals. The following two theorems justify

swapping an expectation with a limit and swapping two nested expectations, respectively.

Theorem 2.2. [Klenke, 2013] Let X1, X2, . . . be random variables that converge in proba-

bility to the random variable X as n→∞. The dominated convergence theorem states

that should there exist some random variable Y where EP [|Y |] <∞ and for all n ∈ N it holds

that |Xn| ≤ Y , then limn→∞ EP [Xn] = EP [limn→∞Xn] = EP [X].

Theorem 2.3. [Klenke, 2013] Let (Ω1,F1,P1) and (Ω2,F2,P2) be probability spaces with

(Ω,F ,P) := (Ω1 ×Ω2,F1 ×F2,P1 × P2) be the product probability space between the two. Let

X : Ω1 × Ω2 → [0,∞) be a non-negative random variable defined on the product probability

space. If
∫
Ω1

X(ω1, ω2)dP1(ω) is measurable with respect to ω2 and
∫
Ω2

X(ω1, ω2)dP2(ω), then

by Fubini’s theorem it follows that
∫
Ω1

∫
Ω2

XdP2(ω2)dP1(ω1) =
∫
Ω2

∫
Ω1

XdP1(ω1)dP2(ω2) =∫
Ω1×Ω2

XdP(ω1, ω2).

2.3 Expectation Approximation Techniques

This work focuses on estimating CDF values for various distributions. To achieve this, we

leverage Monte Carlo methods, a class of sampling-based techniques.

16

A fundamental principle of the Monte Carlo method involves estimating the expected value

µ := EP
X [h(X)] using a computable sample mean. This requires drawing n i.i.d. samples

X1, . . . , Xn ∼ FX from the target distribution and calculating the same mean of the function

h(X) at each sample: µ̂ := 1
n

∑n
i=1 h(Xi). Due to the linearity of the expectation operator,

the estimator possesses the attractive property of being unbiased:

EP [µ̂] =
1

n

n∑
i=1

EP
Xi

[h(Xi)] (2.13)

=
1

n

n∑
i=1

EP
X [h(X)] (2.14)

= µ. (2.15)

Furthermore, by virtue of the strong law of large numbers, this estimator is also consistent,

meaning it converges to the true value µ as the sample size n tends to infinity.

The variance of the estimator depends on the variance of the transformed random variable

h(X) and the number of samples used:

VarP [µ̂] =
1

n2

n∑
i=1

VarPXi
[h(Xi)] (2.16)

=
1

n2

n∑
i=1

VarPX [h(X)] (2.17)

=
1

n
VarPX [h(X)] . (2.18)

The direct variance of h(X), σ2 := VarPX [h(X)], can be approximated as a Monte Carlo

estimate itself, reusing the same samples for µ̂: σ̂2 := 1
n−1

∑n
i=1(Xi− µ̂)2. The normalization

by n−1 instead of n is crucial to mitigate bias introduced by using the same samples for both

estimating µ̂ and its variance. However, for large sample sizes, this distinction has negligible

practical impact.

When selecting between two unbiased Monte Carlo estimators for the same target value, a

17

critical factor is the computational cost required to achieve low estimator variance. Typically,

this translates to comparing their variances when using the same number of samples. However,

computational complexity per sample also plays a role. Therefore, a comprehensive evaluation

involves assessing both sample efficiency and runtime performance.

Sample efficiency is quantified by the ratio of variances between two unbiased estimators:

eff [µ̂1, µ̂2] := VarP [µ̂2] /VarP [µ̂1] where the number of samples n is the same for both estima-

tors Casella and Berger [2021]. Values greater than 1 indicate µ̂1 is more efficient, meaning

fewer samples are needed to achieve the same variance as µ̂2. For instance, eff = 100 signifies

that using one sample for µ̂1 is as informative as using 100 samples for µ̂2. In such cases,

significant efficiency gains may outweigh any discrepancies in runtime.

This text focuses on improving the variance per sample, as more samples always improve

estimates. One technique to achieve this is importance sampling [Robert and Casella, 2004].

Its aim is to change the probability measure governing the expectation E [h(X)] from P to

proposal probability measure Q to reduce estimator variance.

Importance sampling first identifies a random variable L : Ω→ [0,∞] with specific properties:

EP [L] = 1 and that L < ∞ almost surely with respect to P(· | h(X) ̸= 0). Informally, the

second condition ensures L is finite where P either assigns non-zero probability or results

in h(X) = 0. Should h(X) = 0, then L can be any value in the range [0,∞]. When these

conditions hold, L can be interpreted as the likelihood ratio between P and Q: L(ω) = dP
dQ

∣∣
ω
.5

This allows changing the measure in the expectation:

EP [h(X)] ≡ EQ [L · h(X)] . (2.19)

Rather than determining Q directly, a change of measure can be induced by altering the

distribution of a specific variable, e.g., swapping PDF/PMF functions pX with proposal

5We assign the value of ∞ to L over regions of Ω with no Q-support.

18

distribution qX . This results in L being a transformation of X yielding:

EP
X [h(X)] ≡ EQ

X [L(X)h(X)] (2.20)

for L(x) :=
LP(X = x)

LQ(X = x)
(2.21)

=
pX(x)

qX(x)
when pX and qX exist (2.22)

where LP and LQ are likelihood functions under P and Q respectively.6 Under importance

sampling, we refer to the integrand L(X)h(X) as the estimator taken with respect to Q.

Monte Carlo estimates based on importance sampling remain unbiased, but their variance

differs due to the changed distribution. The natural question arises: what is the optimal

choice of Q? It turns out, choosing a Q such that LQ(X) is proportional to |h(X)|LP(X)

minimizes the estimator variance. However, this distribution requires knowledge of the target

value EP [h(X)], which we aim to estimate in the first place. Nonetheless, knowing the form

of this optimal distribution guides us in designing other effective proposal distributions based

on the specific task. These details will be elaborated on later in the dissertation.

2.4 Sequential Models

Sequential models seek to learn and represent the probability distribution of sequential data.

As introduced in Section 2.1, we denote such random sequences as X := (Xi)i∈I ∈ X I ,

where I is the index set and each element Xi lies in a common state space X . This work

focuses on a specific class of sequential models known as autoregressive models. These models

parameterize the joint distribution of entire sequences X as a product of individual conditional

distributions for each element Xi given its predecessors X<i. The specific characteristics of

6Likelihood functions in this context can be treated as generalized probability density/mass functions
that account for some random variables belonging to mixture distributions. When appropriate, they reduce
to the variable’s corresponding PDF or PMF.

19

the sequences and the model parameterizations are discussed in detail below.

2.4.1 Autoregressive Modeling of Categorical Sequences

Chapter 3 focuses on the simplest setting of sequential modeling: discrete time. In this

setting, the index set I is the set of natural numbers N. We specifically handle categorical

data, meaning each element Xi in the sequence takes on of v possible values within the state

space X := {1, . . . , v}. This setting is relevant for various tasks, including natural language

processing and user behavior analysis.

While filtrations are typically used to represent conditional history in sequential models, they

become cumbersome in the discrete time setting. Instead, we directly condition on past

segments of the sequence using notation like P(· |X1:n) and P(· |X<i). Our focus lies on

autoregressive sequential models that factorize the joint distribution of sequences as:

LP(x1:n; θ) := Pθ(X1:n = x1:n) := pθ(x1:n) :=
n∏

i=1

pθ(xi |x<i) (2.23)

where n is the length of a given sequence and pθ is a function parameterized by θ which

represents the PMF of Xi given its preceding context X<i (i.e., pXi |X<i
) for all i ∈ N. Specific

definitions for pθ will be provided later.

Model training typically involves maximizing the likelihood of a dataset D := {xj}Nj=1 con-

taining N sequences (possibly of varying lengths). This is often achieved by using (stochastic)

gradient optimization methods to maximize the log-likelihood:

ℓ(θ;D) :=
∑

x1:n∈D

logLP(x1:n; θ) =
∑

x1:n∈D

log pθ(x1:n). (2.24)

Note that maximizing the log-likelihood is equivalent to minimizing the Kullback–Leibler

(KL) divergence between the data probability measure that D was sampled with respect to

20

and the parameterized measure Pθ [Murphy, 2023].

Example Models

We list below brief descriptions of two different parameterizations of discrete time, autore-

gressive models used for categorical sequences.

Markov Models A classic model employed for categorical sequences is the nth order Markov

model [Howard, 2012]. These models are characterized by exhibiting the Markov property. A

process that respects this property implies that the future trajectory of the process is solely

determined by its current state (or last n states for n > 1). Formally, this means

Pθ(· |X1:N) = Pθ(· |XN−n+1:N) (2.25)

for all values of N > 0. The dynamics of the model can be further restricted by assuming the

transition probabilities do not depend on the current timestep. Models that respect this are

referred to as time-homogeneous Markov models [Howard, 2012]. These are simply parame-

terized by a transition matrix P ∈ Rvn×v wherein each entry Pij describes the probability of

transitioning from some unique state x
(i)
1:n ∈ X n to xn+1 = j.

Recurrent Neural Networks The main downsides to Markov models are their fixed

context window and inability to share information across different states. This is remedied

by more modern neural network approaches, such as the recurrent neural network. While

there are many variations that exist, the typical model usually complies with the following

setup:

zt := fθ(xt−1, zt−1) (2.26)

21

pθ(xt |x<t) := Cat(xt; softmax(gθ(zt))) (2.27)

for t = 1, 2, . . . , where the functions fθ : X × Rd → Rd and gθ : Rd → Rv are parameterized

by θ and d describes the dimensionality of the hidden state zt ∈ Rd. Typically, the initial

hidden state z0 is set to some fixed value, e.g., z0 = 0. Here, the hidden state zt is entrusted

with retaining information from x<t that is pertinent not only to the immediate next step of

xt, but also for states further in the future. Specific forms of fθ and gθ, collectively referred

to as recurrent cells in the literature, have been proposed to encourage and more easily learn

this behavior during model training. Details about specific variants can be found in Yu et al.

[2019].

2.4.2 Marked Temporal Point Processes

Chapters 4 and 5 focus on continuous-time event sequences with potentially varying intervals

between events. Similar to the discrete time setting, sequences in this space retain the index

set I := N. However, the state space expands to represent both the event time and additional

information associated with each event, often referred to as a mark. We denote this extended

space as X := [0,∞) ×M, where [0,∞) contains possible timings of events and M is the

mark space for additional information. Similar to the discrete time case, we often focus on a

categorical mark space, M := {1, . . . , v}. This chapter will assume M is discrete. For more

general treatments of the mark space, please consult Daley and Vere-Jones [2003].

A random sequence X := (Xi)i∈I in this setting consists of pairs (Ti,Mi), where Ti is the

occurrence time of the ith event and Mi is its associated mark. We enforce Ti < Tj for i < j

to ensure temporal order and no simultaneous occurrence of events. Additionally, we assume

a finite number of events occur within any finite time interval.

Since events occur in continuous time, history is indexed by time t rather than event count.

22

The history filtration is defined as (Ht)t≥0, where Ht := σ({Xi | i ∈ N and Ti ≤ t}). Similarly,

Ht− denotes the history over [0, t) and more generally H[a,b] for the σ-algebra generated by

events occurring over the time range [a, b].

The literature uses the same Ht notation for both the filtration and the random subset

representing a time-based subsequence, e.g., {Xi | i ∈ N and Ti ≤ t} (which is not a σ-

algebra). While not equivalent, we adopt this practice for consistency, but differentiate them

when ambiguity arises. Often, random subsets are paired with realizations, ht := {(ti,mi) | i ∈

N and ti ≤ t}, whereas filtrations are exclusively used for conditioning, such as P(· |Ht). In

either case, |Ht| (or |ht| for realized sequences) denotes the sequence length at time t.

Models capturing the dynamics of such sequences are called marked temporal point processes

(MTPPs). MTPPs are typically specified by the marked intensity function λk(t |Ht−) which

describes the expected instantaneous rate of occurrence for events with mark k at a given

point in time t given the past history Ht− [Daley and Vere-Jones, 2003]. This is formally

defined by

λk(t |Ht−) := lim
∆↓0

1

∆
EP [1(Ti ∈ [t, t + ∆),Mi = k) |Ht−] where i− 1 = |Ht−| (2.28)

= lim
∆↓0

1

∆
P(Ti ∈ [t, t + ∆),Mi = k |Ht−) (2.29)

= lim
∆↓0

1

∆
P(Ti ∈ [t, t + ∆) |Ht−)P(Mi = k |Ti ∈ [t, t + ∆),HTi−1

) (2.30)

= lim
∆↓0

1

∆
P(Ti ∈ [t, t + ∆) |Ti /∈ (Ti−1, t),HTi−1

)P(Mi = k |Ti ∈ [t, t + ∆),HTi−1
)

(2.31)

= lim
∆↓0

1

∆

P(Ti ∈ [t, t + ∆), Ti /∈ (Ti−1, t) |HTi−1
)

P(Ti /∈ (Ti−1, t) |HTi−1
)

P(Mi = k |Ti ∈ [t, t + ∆),HTi−1
)

(2.32)

= lim
∆↓0

1

∆

P(Ti ∈ [t, t + ∆) |HTi−1
)

1− P(Ti ≤ t |HTi−1
)

P(Mi = k |Ti ∈ [t, t + ∆),HTi−1
). (2.33)

Since the intensity is always conditional, we denote it as λ∗
k(t) := λk(t | Ht−) for brevity.

23

When evaluated on a partial sequence x<i, the marked intensity λ∗
k(t) can be decomposed

into individual distribution functions for Ti and Mi:

λ∗
k(t) :=

pTi |HTi−1
(t |x<i)

1− FTi |HTi−1
(t |x<i)

pMi |Ti,HTi−1
(k | t,x<i). (2.34)

The total intensity function λ∗(t), also known as the ground intensity, describes the overall

expected event occurrence rate regardless of mark. It is equivalent to the sum of all marked

intensities: λ∗(t) :=
∑

k∈M λ∗
k(t). The total intensity is further linked to the general event

occurrence by noting that the expected value of the compensator for a point process at time

t, or rather the integrated total intensity Λ∗(t) :=
∫ t

0
λ∗(s)ds, is equivalent to the expected

number of events to have occurred by time t: EP [Λ∗(t)] ≡ EP [|Ht|] [Daley and Vere-Jones,

2003].

From Eq. (2.34), it follows that pMi |Ti,HTi−1
(k | t,x<i) = λ∗

k(t)/λ∗(t). This is further justified by

the superposition property of MTPPs [Daley and Vere-Jones, 2003]. This property states that

the superposition of any MTPPs results in another MTPP, with the resulting intensity being

the sum of the individual intensities. Furthermore, the ratio of individual intensities to total

intensity defines the probability an event was produced by a given individual MTPP, assuming

it belongs to the superposition. Therefore, each marked intensity λ∗
k can be seen as describing

an individual point process with the total intensity λ∗ describing their superposition.

MTPPs often directly parameterize and represent the marked intensity function λ∗
k for all

marks as the primary output and inference target. This is convenient from a modeling

perspective as the only restriction that must be made for the parameterization is that λ∗
k(t)

must be non-negative for all values of t and k. Furthermore, using Eq. (2.34), we can derive:

p∗Ti
(t) = λ∗(t) exp

(
−
∫ t

Ti−1

λ∗(s)ds

)
(2.35)

and F ∗
Ti

(t) = 1− exp

(
−
∫ t

Ti−1

λ∗(s)ds

)
, (2.36)

24

for i ∈ N.7

Let hτ := (ti,mi)
n
i=1 be a sequence of length n observed over the time window [0, τ]. The

likelihood of this sequence is defined as:

LP(Hτ = hτ) := (1− F ∗
Tn+1

(τ))
n∏

i=1

p∗Ti
(ti)p

∗
Mi |Ti

(mi | ti) (2.37)

= exp

(
−
∫ τ

tn

λ∗(s)ds

) n∏
i=1

λ∗(ti) exp

(
−
∫ ti

ti−1

λ∗(s)ds

)
λ∗
ki

(ti)

λ∗(ti)
(2.38)

=

[
n∏

i=1

λ∗
ki

(ti)

]
exp

(
−
∫ τ

0

λ∗(s)ds

)
(2.39)

where t0 = 0. Note that we only write the likelihood LP and not also as P(H = h), unlike in

Eq. (2.23), because the probability mass of any specific sequence in this space is 0 due to the

continuous components.8 Training MTPPs involves maximizing the likelihood over a dataset

D of sequences with (potentially) varying lengths and observation windows. Stochastic

gradient optimization is often used to maximize the the log-likelihood:

ℓ(θ;D) :=
∑
hτ∈D

logLP(Hτ = hτ), (2.40)

where θ represents the model parameters (often used to define the marked intensity functions).

While direct sampling of MTPPs is generally not feasible (except for a few parametric

forms, such as constant λ∗(t)), rejection sampling remains a viable option for sampling from

any arbitrary intensity-based MTPPs. The employed technique, often called the thinning

procedure, leverages the superposition property of MTPPs in conjunction with forms of

MTPPs that can be directly sampled [Ogata, 1981].

7Similar to the notation for the conditional intensity functions, we use p∗Ti
(t), p∗Mi |Ti

(k | t), and F ∗
Ti
(t) as

shorthand to refer to pTi |HTi−1
(t |x<i), pMi |Ti,HTi−1

(k | t,x<i), and FTi |HTi−1
(t |x<i) respectively.

8Technically speaking, there actually is one sequence that can have a non-zero probability mass assigned
to it: the sequence where no events occur over the observable time window. The probability for that sequence
is equivalent to P(T1 > τ).

25

Let the MTPP with intensity λ to sample be A. The core idea of the thinning procedure is

there exists some MTPP B, such that the superposition MTPP C yields a constant total

intensity, say of value c. Proposal times are drawn directly from MTPP C until the desired

time window [0, τ] is covered. Each proposed time is then randomly accepted sequentially

with probability λ∗(t)/c. If accepted, the time of occurrence originated from MTPP A and

is added to the sampled history. Furthermore, the mark is then sampled from p∗M |T using

the accepted time to condition on. This procedure requires c to dominate λ∗ for all times

to ensure the intensity for MTPP B is non-negative. A formal description of this sampling

procedure can be found in Algorithm 1.

Algorithm 1 Thinning Procedure for Sampling from a MTPP [Ogata, 1981]

Require: Start Time t ≥ 0, End Time τ > t, Partial History ht

Ensure: Dominating Rate c > λ∗

while t < τ do
t′ ∼ t + Exponential(c) ▷ Sample candidate time
u ∼ Uniform[0, 1] ▷ Sample acceptance rate

if u < λ∗(t′)
c

and t′ < τ then ▷ New event occurs at time t′

m ∼ Cat
([

λ∗
1(t

′)

λ∗(t′)
, . . . ,

λ∗
K(t′)

λ∗(t′)

])
▷ Draw associated mark

ht′ ← ht ∪ {(t′,m)} ▷ Append to accumulated realized history
else ▷ Candidate event is rejected

ht′ ← ht

end if
t← t′ ▷ Advance forward in time

end while

Example Models

We list four different examples of (marked) temporal point processes, commonly used across

a variety of different real-world settings.

Poisson Process The simplest of temporal point processes is the widely known Poisson

process [Daley and Vere-Jones, 2003]. A homogeneous Poisson process is characterized by

26

a counting process (Nt)t≥0 with constant intensity λ ∈ [0,∞) which satisfies the following

properties:

• N0 = 0 almost surely.

• (Nt2 −Nt1) is independent of (Nt4 −Nt3) for all 0 ≤ t1 < t2 ≤ t3 < t4.

• Nt+∆ −Nt ∼ Poisson(λ∆) for ∆ > 0.

Likewise, an inhomogeneous Poisson process allows the intensity λ(t) to vary with respect

to time, but not the history of events. It shares the same properties in general as the

homogeneous Poisson process, with the exception that Nt+∆ − Nt ∼ Poisson(
∫ t+∆

t
λ(s)ds).

Note that one can interpret an inhomogeneous Poisson process, or really any temporal point

process with conditional intensity λ∗(t), as resembling a homogeneous Poisson process with

intensity λ∗(t) over the small interval of time [t, t+ dt). Put differently, every temporal point

process resembles a Poisson process locally in time.

Hawkes Process Self-exciting temporal point processes, or as they are more commonly

referred to as Hawkes processes, are designed to model clusters of events where one occurrence

encourages additional events to happen [Hawkes, 1971]. While several variations exist, we will

present one specific form that allows for cross-excitation between events of differing marks:

λ∗
k(t) := µk(t) +

∑
(T,M)∈Ht−

ϕM,k(t− T), (2.41)

for k ∈ M where ϕi,j is a kernel describing the effect that events of type i have on events

of type j and µk describes the background expected rate of occurrence for events of type k.

One common form of this is exponential kernel: ϕi,j(z) = αi,j exp(−βi,jz) with parameters

αi,j, βi,j > 0 for i, j ∈M.

27

Self-Correcting Process Standing in opposition to Hawkes processes are self-correcting

processes [Isham and Westcott, 1979]. Instead of encouraging clustering of events, this process

inhibits it by decrementing the intensity whenever an event occurs, only to have it slowly

build back up over time. Typically described for the non-marked setting, we have adapted

the typical intensity parameterization here to account for cross-inhibition between events of

differing marks:

λ∗
k(t) := exp

ηkt−
∑

(T,M)∈Ht−

δM,k

 (2.42)

for k ∈ M where parameters ηk > 0 determine the rate of compounding growth for the

intensity and δi,j > 0 describes the inhibition that prior events of type i have on future events

of type j.

Neural MTPPs Recently, many different neural-network based approaches to modeling

MTPPs have been proposed. While some choose to model the next event densities [Shchur

et al., 2020], or the compensator Λ∗(t) :=
∫ t

0
λ∗(s)ds [Omi et al., 2019], or eschew distributions

entirely for an implicit approach [Xiao et al., 2018, Lin et al., 2022], the majority parameterize

the intensity function directly [Du et al., 2016, Mei and Eisner, 2017, Jia and Benson, 2019,

Xiao et al., 2017, Zuo et al., 2020, Zhang et al., 2022].

Neural approaches to representing the intensity function can be roughly summarized in the

following representation:

zi := fθ(zi−1, ti,mi) (2.43)

z(t) := gθ(zi, t) for ti < t ≤ ti+1 (2.44)

λ∗
k(t) := hθ(z(t)) (2.45)

for t ≥ 0 and k ∈M where the functions fθ : Rd× [0,∞)×M→ Rd, gθ : Rd× [0,∞)→ Rd,

28

and hθ : Rd → [0,∞) are parameterized by θ and d describes the dimensionality of the hidden

state z ∈ Rd. For details on the specifics of these functions for various proposed approaches,

refer to Shchur et al. [2021].

2.4.3 Continuous-Time Stochastic Jump Processes

Chapter 6 delves into the most general class of sequential models considered in this work:

continuous-time stochastic jump processes. These processes, denoted by X := (Xt)t∈I , take

values Xt for each continuous point in time t ∈ I := [0,∞].9 They exhibit both continuous

variations over time segments and discontinuous jumps at finitely many points within a finite

time range. As such, it is helpful to conceptualize this not as a single process but rather as

a pair of processes: one component governs the continuous segments, often described by a

stochastic differential equation, while the other controls the jumps, typically modeled by a

temporal point process.

This topic, like the broader literature surrounding it, can be dense and require specific

prior knowledge. While essential terms and concepts will be formally defined, complete

understanding might require additional background. For an exhaustive explanation, we

highly recommend consulting Woyczyński [2022].

Setting Let (Ω,F ,P) be a probability space equipped with a complete filtration (Ft)t≥0

such that F∞ := F . A stochastic process is defined as a function X : Ω× [0,∞]→ X where

X is the domain of the process and the process will be referred to as either Xt(ω) or Xt for

t ∈ [0,∞] and ω ∈ Ω. For our purposes, the process domain X is assumed to be Rd. Unless

stated otherwise, we assume that a process X is predictable and adapted to the filtration

9In earlier settings, we commonly represented sequences or portions thereof with bold characters (e.g.,
X1:N := (X1, . . . , XN)); however, in the stochastic process literature a more functional perspective tends to
be preferred where a process X is really a random function draw where time t is an argument to the function.
As such, when in this setting, we will not bold the process as a whole to comply with those standards.

29

(Ft)t≥0, meaning Xt is Ft−-measurable. This implies that the natural filtration of a process,

FX
t := σ(Xs |s ≤ t), is a subset of Ft.

Jump Stochastic Differential Equations We focus on càdlàg processes, meaning they

are right-continuous with well-defined left-limits. Formally, Xt = Xt+ = lims↓t Xs for all

t ≥ 0, but not necessarily Xt = Xt− with Xt− = lims↑t Xs. Jumps, denoted by ∆, are defined

as:

(∆X)t ≡ ∆Xt := Xt −Xt−. (2.46)

Jump times ({t |∆Xt ̸= 0}) are assumed to occur randomly and be finite in number over any

finite time window.

A general class of stochastic processes satisfying these constraints are jump stochastic dif-

ferential equations (jump SDEs). These processes can be decomposed into two components:

continuous segments and discontinuous jumps.

Brownian Motion Before characterizing the continuous segments, we introduce the

quintessential continuous-time stochastic process driving them: Brownian motion, also known

as the Wiener process [Woyczyński, 2022]. Denoted by W := (Wt)t≥0, Brownian motion

satisfies four conditions:

1. W0 = 0 almost surely.

2. Wt(ω) is almost surely continuous in t for fixed ω ∈ Ω.

3. Wt is independent of Wt′ for all t, t′ ∈ [0,∞).

4. Wt −Wt′ ∼ N (0, t− t′) for all 0 ≤ t < t′.

30

It should be noted that this describes scalar-valued Brownian motion. This generalizes to

d-dimensional Brownian motion by having each coordinate be driven by an independent

scalar-valued Brownian motion.

While Brownian motion is suitable for describing various systems, including natural phenom-

ena like particle movement in fluids, it can be too limited in expressivity for our purposes.

Similar to how Poisson processes generalize to more complex temporal point processes, Brow-

nian motion can be generalized to more expressive continuous stochastic processes.

Continuous Segments Assuming no jump occurs at time t, the continuous change in the

process X at time t follows:

dXt = µ(t,Xt−)dt + σ(t,Xt−)dWt (2.47)

for drift µ : [0,∞) × Rd → Rd and scaling σ : [0,∞) × Rd → Rd×d functions. W is a

Brownian motion of the same dimensionality as X and is adapted to (Ft)t≥0. Using left-

limits for arguments to µ and σ ensures predictability of the entire process. Note that this

representation can be thought of as the continuous-time equivalent of the reparameterization

of the Normal distribution, i.e., if X ∼ N (µ, σ) then X = µ + Wσ for W ∼ N (0, 1).

If no jumps occur almost surely, then X described by Eq. (2.47) becomes a diffusion process,

known to possess the Markov property.

Instantaneous Jumps Consider a marked temporal point process over the time interval

[0,∞), with a mark-spaceM and marked counting process N .10 The process is characterized

10To be clear, the mark-spaceM in this setting could be discrete, continuous, or a combination thereof.

31

by the conditional intensity function:

λt(m)dtdm = P(N(dt× dm) = 1 |Ft−), (2.48)

for m ∈M. This definition is similar to Eq. (2.28) with two distinct nuances:

• In the stochastic process literature, λ is often considered a stochastic process itself,

hence the time t is the subscript rather than the mark m.11 Conditioning on past events

is therefore implicit.

• Here, M is allowed to be discrete, continuous, or a mixture thereof. Because of this,

dm corresponds to an appropriate reference measure over this space.

Should the point process dynamics be independent of the continuous segments, then it is

sufficient for the intensity to condition on solely generated MTPP events Ht− instead of the

more complete Ft−.

The MTPP drives both the timing and value of the instantaneous jumps in X:

d∆Xt := ν(t,Xt−,MNt)dNt (2.49)

with jump strength ν : [0,∞] × Rd ×M → Rd and where Mi is the MTPP’s ith sampled

mark. Both the continuous diffusion process and the MTPP are assumed predictable and

adapted to the same filtration. A common choice of jump mapping is ν(t,Xt−,MNt) = MNt

with M ≡ X , i.e., the marks are the jumps. Under this setting, if Nt is a Poisson process

and Mi are i.i.d. for all i > 0, then ∆X becomes a compound Poisson process.

11Technically speaking, jump SDEs also require λ to be described via a differential equation; however, this
dissertation lifts this restriction and considers more general, but still predictable and adapted to (Ft)t≥0,
intensity functions.

32

Full Model Definition From Eq. (2.46), we have Xt = ∆Xt + Xt− and likewise dXt =

d∆Xt +dXt−. Combining Eq. (2.47) and Eq. (2.49), the full jump SDE governing our process

of interest becomes:

dXt = µ(t,Xt−)dt + σ(t,Xt−)dWt + ν(t,Xt−,MNt)dNt. (2.50)

Equivalently, we can express the process as:

Xt = X0 +

∫ t

0

µ(t,Xt−)dt +

∫ t

0

σ(t,Xt−)dWt +
Nt∑
i=1

ν(Ti, Xti−,Mi). (2.51)

where Ti are the random jump times and X0 is the initial value of the process (often assumed

to be a constant value in X).

33

Chapter 3

General Probabilistic Query

Estimation for Discrete Time Models

One of the major successes in machine learning in recent years has been the development of

neural sequence models for categorical sequences, particularly in natural language applications

but also in other areas such as automatic code generation and program synthesis [Shin et al.,

2019, Chen et al., 2021], computer security [Brown et al., 2018], recommender systems [Wu

et al., 2017], genomics [Shin et al., 2021, Amin et al., 2021], and survival analysis [Lee

et al., 2019]. Many of the models (although not all) rely on autoregressive training and

prediction, allowing for the sequential generation of sequence completions in a recursive

manner conditioned on sequence history.

A natural question in this context is how to compute answers to probabilistic queries that

go beyond traditional one-step-ahead predictions. Examples of such queries are “how likely

is event A to occur before event B?” and “how likely is event C to occur (once or more)

within the next K steps of the sequence?” These types of queries are very natural across

a wide variety of application contexts, for example, the probability that an individual will

34

finish speaking or writing a sentence within the next K words, or that a user will use one

app before another. See Fig. 3.1 for an example.

In this chapter we develop a general framework for answering such predictive queries in

the context of autoregressive (AR) neural sequence models. This amounts to computing

conditional probabilities of propositional statements about future events, conditioned on the

history of the sequence as summarized by the current hidden state representation. We focus

in particular on how to perform near real-time computation of such queries, motivated by

use-cases such as answering human-generated queries and utilizing query estimates within

the optimization loop of training a model. Somewhat surprisingly, although there has been

extensive prior work on multivariate probabilistic querying in areas such as graphical models

and database querying, as well as for restricted types of queries for traditional sequence models

such as Markov models, querying for neural sequence models appears to be unexplored. One

possible reason is that the problem is computationally intractable in the general case (as we

discuss later in Section 3.2), typically scaling as O
(
V K−1

)
or worse for predictions K-steps

ahead, given a sequence model with a V -ary alphabet (e.g. compared to O(KV 2) for Markov

chains).

3.1 Related Work

Research on efficient computation of probabilistic queries has a long history in machine

learning and AI, going back to work on exact inference in multivariate graphical models [Pearl,

1988, Koller and Friedman, 2009]. Queries in this context are typically of two types. The

first are conditional probability queries, which are the focus of our attention here: computing

probabilities defined for a subset X of variables of interest, conditioned on a second subset

Y = y of observed variable values, and marginalizing over the set Z of all other variables.

The second type of queries can broadly be referred to as assignment queries, seeking the

35

Figure 3.1: (top) Illustration of a query for the probability of a given sentence “In my
opinion...” ending in K steps. (bottom) GPT-2 [Radford et al., 2019] hitting time estimates
for sentence ending across 4 prefixes with V = 50, 257, K ≤ 30. Importance sampling
query estimates maintain a 6x reduction in variance relative to naive model sampling for
the same computation budget. Open-ended prefixes (top-left) generally possess longer-tailed
distributions relative to simple prefixes. Almost no probability mass is found for K = 1 due
to the extremely high likelihood that at least one more token succeeds the prompts prior
to ending in order to ensure proper grammar. Additional details provided in Sections 3.4
and 3.5 and Appendix A.3.5.

36

most likely (highest conditional probability) assignment of values x for X, again conditioned

on Y = y and marginalizing over the set Z. Assignment queries are also referred to as most

probable explanation (MPE) queries, or as maximum a posteriori (MAP) queries when Z is

the empty set [Koller et al., 2007].

For models that can be characterized with sparse Markov dependence structure, there is a

significant body of work on efficient inference algorithms that can leverage such structure

[Koller and Friedman, 2009], in particular for sequential models where recursive computation

can be effectively leveraged [Bilmes, 2010]. However, autoregressive neural sequence models

are inherently non-Markov since the real-valued current hidden state is a function of the entire

history of the sequence. Each hidden state vector induces a tree containing V K unique future

trajectories with state-dependent probabilities for each path of length K. Techniques such

as dynamic programming (used effectively in Markov-structured sequence models) are not

applicable in this context, and both assignment queries and conditional probability queries

are NP-hard in general Chen et al. [2018].

For assignment-type queries there has been considerable work in natural language process-

ing with neural sequence models, particularly for the MAP problem of generating high-

quality/high-probability sequences conditioned on sequence history or other conditioning

information. A variety of heuristic decoding methods have been developed and found to be

useful in practice, including beam search [Sutskever et al., 2014], best-first search [Xu et al.,

2022], sampling methods [Holtzman et al., 2019], and hybrid variants [Shaham and Levy,

2022]. However, for conditional probability queries with neural sequence models (the focus

of this chapter and to a large degree this dissertation as a whole), there has been no prior

work in general on this problem to our knowledge. While decoding techniques such as beam

search can also be useful in the context of conditional probability queries, as we will see later

in Section 3.4, such techniques have significant limitations in this context, since by definition

they produce lower-bounds on the probabilities of interest and, hence, are biased estimators.

37

3.2 Probabilistic Queries

Notation Let X1:N := [X1, X2, . . . , XN] be a sequence of random variables with arbitrary

length N .1 This can be considered a truncation of the more general stochastic process

X := (Xi)i∈N. Additionally, let x1:N := [x1, x2, . . . , xN] be the respective observed values of

the random variables where each xi takes on values from a fixed vocabulary X := {1, . . . , V }

of size V . Examples of these sequences include sentences where each letter or word is a

single value, or streams of discrete events generated by some process or user. We will

refer to individual variable-value pairs (Xi, xi) in the sequence as events. Recall that the

filtration (Hi)i∈N where Hi := σ({Xj | j = 1, . . . , i}) captures all measurable events up to

step i generated by the sequence X1:i and is the formal way of conditioning on portions of

a sequence; however, for clarity we will often opt for conditioning on the sequence directly,

e.g., (−|X1:i).

We consider an autoregressive model pθ(xN | x<N) that is able to condition on realized

sequences x<N of arbitrary length N − 1 and produce the conditional PMF values for the

next event in the sequence over all possible vocabulary values, e.g., pXN |X1:N−1
(xN |x1:N−1)

for each xN ∈ X . Note that this factorization fully defines the probability measure Pθ

over all events generated by the stochastic process X, i.e., H∞ := ∪i∈NHi. This implied

probability measure and event space contain measurable events of interest to us; however, the

probability values assigned to them are not always readily accessible should they not comply

with the autoregressive nature of the model pθ. We consider the only readily accessible

probability statements from the model include the originally mentioned conditional PMF

values, pXN |X1:N−1
(xN |x1:N−1) := pθ(xN |x1:N−1), and the joint PMF over an entire sequence

pX1:N
(x1:N) :=

∏N
i=1 pθ(xi |x<i). When appropriate, we will opt for using the model pθ instead

of the implied measure Pθ when the statement is in a readily accessible form.

1We will also use the notation X<N := [X1, . . . , XN−1] depending on which is more convenient.

38

For brevity, the methods presented in the remainder of the chapter consider sequences starting

from time step 1 and do not condition on any additional information. That being said, it

is often the case that a practitioner will want to contextualize a query by conditioning on

the history up to a given point and then ask about potential future trajectories. All of the

formulas that will be derived can be adapted to this scenario easily by simply remapping

the indexing values such that H0 contains all realized conditional information and Xi for

i = 1, 2, . . . will all take place in the future. Then, all probability statements can condition

on H0 without any other changes to make the methods compliant with this contextual

information.2 We will use H0 to reference to this history of fixed events, with the knowledge

that it could contain no events in the use case of wanting unconditional queries.

Defining Probabilistic Queries Given a specific history of events H0, there are a variety

of different questions one could ask about the future beyond where the history ends: (Q1)

What event is likely to happen next? (Q2) Which events are likely to occur K > 1 steps

from now? (Q3) What is the distribution of when the next instance of a ∈ X occurs? (Q4)

How likely is it that we will see event a ∈ X occur before b ∈ X ? (Q5) How likely is it for

a ∈ X to occur n times in the next K steps?

We define a common framework for such queries by defining probabilistic queries to be of

the form Pθ(X1:K ∈ Q) with Q ⊂ XK . This can be extended to the infinite setting (i.e.,

Pθ(X ∈ Q) where Q ⊂ X∞). Exact computation of an arbitrary query is straightforward to

represent:

Pθ(X1:K ∈ Q) =
∑

x1:K∈Q

pθ(x1:K) =
∑

x1:K∈Q

K∏
k=1

pθ(xk |x<k). (3.1)

Depending on number of different sequences in the query space, |Q|, performing this calcula-

2For example, say we know X1:3 = x1:3 and are concerned with the event 3 more steps in the future, X6.
This results in the query pX6 |H3

(x6 |x1:3); however, we can alternatively represent this via pX′
3 |H′

0
(x′

3 |x′
<1)

where X ′
i = Xi+3 and similarly for x′ and H′.

39

Figure 3.2: (left) Tree diagram of the complete sequence space for a vocabulary X = {a, b, c}
and the corresponding query space Q (right) for when the first appearance of a occurs on the
third step (i.e., hit(a) = 3), defined as the set product of restricted domains listed below the
figure.

40

Question Probabilistic Query Cost (K · |Q|)
Q1 Next event? Pθ(X1 = x1) O(1)

Q2 Event K steps from now? Pθ(XK = xK) O
(
V K−1

)
Q3 Next instance of a? Pθ(hit(a) = K) O

(
(V − 1)K−1

)
Q4 Will a happen before b? Pθ(hit(a) < hit(b)) O

(
(V − 2)K

)†
Q5 How many instances of a in K steps? Pθ(Na(K) = n) O

((
K
n

)
(V − 1)K−n

)
Table 3.1: List of example questions, corresponding probabilistic queries, and associated costs
of exact computation computation with an autoregressive model. The cost of incorporating a
history H is assumed to be an additive constant for all queries. While Q4 extends to infinite
time, the cost reported is for computing a lower bound up to K steps.

tion can quickly become intractable, motivating lower bounds or approximations (developed

in more detail in Section 3.4). In this context it is helpful to impose structure on the query

Q to make subsequent estimation easier, in particular by breaking Q into the following

structured partition:

Q = ∪iQ(i) where Q(i) ∩Q(j) = ∅ for i ̸= j (3.2)

and Q(i) = V(i)
1 × V(i)

2 × · · · × V(i)
K where V(i)

k ⊆ X for k = 1, . . . , K. (3.3)

In words, this means a given query Q can be broken into a partition of simpler queries Q(i)

which take the form of a set cross product between restricted domains V(i)
k , one domain for

each token Xk.3 An illustration of an example query set can be seen in Fig. 3.2. A natural

consequence of this is that:

Pθ(X1:K ∈ Q) =
∑
i

Pθ

(
X1:K ∈ Q(i)

)
=
∑
i

Pθ

(
∩Kk=1Xk ∈ V(i)

k

)
, (3.4)

which lends itself to more easily estimating each term in the sum. This will be discussed in

Section 3.4.

3Ideally, the partitioning is chosen to have the smallest number of Q(i)’s needed.

41

Queries of Interest All of the queries posed earlier in this section can be represented

under the framework detailed in Eq. (3.2) and Eq. (3.3), as illustrated in Table 3.1.

Q1 The query Pθ(X1 = x1) for x1 ∈ X can be represented with Q = {x1} and is already

naturally in a form that our model can directly estimate due to the autoregressive factorization

imposed by the model: pX1(x1) := pθ(x1). Furthermore, if we are interested in any potential

continuing sequence X1:K = x1:K this can easily be computed via Pθ(X1:K = x1:K) =∏K
k=1 pθ(xk |x<k) as discussed earlier.

Q2 The query Pθ(XK = xK) for some xK ∈ X and K > 1 can be represented with

Q = XK−1 × {a}. In order to evaluate Pθ(XK = xK), the previous terms X<K need to be

marginalized out. This is naturally represented as

Pθ(XK = xK) = EP
X<K

[pθ(xK |x<K)] =
∑

x<K∈XK−1

pθ(x1:K). (3.5)

It is helpful to show both the exact summation form as well as the expected value represen-

tation as both will be useful in Section 3.4.

Q3 The probability of the next instance of a ∈ X occurring at some point in time K ≥ 1,

Pθ(hit(a) = K) where hit(·) is the hitting time, can be represented as Q = (X \{a})K−1×{a}.

Evaluating the distribution of the hitting time with our model can be computed as

Pθ(hit(a) = K) = Pθ(XK = a,X<K ̸= a) (3.6)

=
∑

x<K∈(X\{a})K−1

pθ(XK = a,X<K = x<K). (3.7)

The value a ∈ X can be easily replaced with a set of values A ⊂ X in these representations:

Pθ(hit(A) = k) = Pθ(XK ∈ A,X<K ∈ (X \ A)K−1) (3.8)

42

=
∑

x<K∈(X\A)K−1

∑
a∈A

pθ(XK = a,X<K = x<K), (3.9)

with Q = (X \ A)K−1 × A.

Q4 The probability of a ∈ X occurring before b ∈ X , Pθ(hit(a) < hit(b)), is represented

as Q = ∪∞i=1Q(i) where Q(i) = (X \ {a, b})i−1 × {a}. To evaluate Pθ(hit(a) < hit(b)), we

must consider the possible instances where this condition is fulfilled. In doing so, we end up

evaluating multiple queries similar in form to Q3, in the following manner:

Pθ(hit(a) < hit(b)) =
∞∑
k=1

Pθ(hit(a) = k, hit(b) > k) (3.10)

=
∞∑
k=1

Pθ(Xk = a,X<k ∈ (X \ {a, b})k−1) (3.11)

In practice, computing this expression exactly is intractable due to it being an infinite sum.

There are two potential approaches one could take to address this. The first of which is to

ask a slightly different query:

Pθ(hit(a) < hit(b) |hit(a) ≤ K) =
Pθ(hit(a) < hit(b), hit(a) ≤ K)

Pθ(hit(a) ≤ K)
(3.12)

=

∑K
k=1 Pθ(Xk = a,X<k ∈ (X \ {a, b})k−1)∑K

k=1 Pθ(hit(a) = k)
(3.13)

=

∑K
k=1

∑
x<k∈(X\{a,b})k−1 pθ(x1:k)∑K

k=1 Pθ(hit(a) = k)
, (3.14)

where xk = a and the denominator can be decomposed as shown in Eq. (3.7).

The other option is to produce a lower bound on this expression by evaluating the sum in

Eq. (3.11) for the first K terms. We can achieve error bounds on this estimate by noting

that Pθ(hit(a) < hit(b)) +Pθ(hit(a) > hit(b)) = 1. As such, if we evaluate Eq. (3.11) up to K

terms for both Pθ(hit(a) < hit(b)) and Pθ(hit(b) < hit(a)), the difference between the sums

will be the maximum error either lower bound can have.

43

Similar to Q3, we can also ask this query with sets A,B ⊂ X instead of values a, b, so long

as A ∩B = ∅:

Pθ(hit(A) < hit(B)) =
∞∑
k=1

Pθ(hit(A) = k, hit(B) > k) (3.15)

=
∞∑
k=1

∑
a∈A

Pθ(Xk = a,X<k ∈ (X \ (A ∪B))k−1). (3.16)

Q5 The probability of a ∈ X occurring n times in the next K steps, Pθ(Na(K) = n),

is represented as Q = ∪C(K,n)
i=1 Q(i), where Na(K) is a random variable for the number of

occurrences of events of type a from steps 1 to K and Q(i)’s are defined to cover all unique

permutations of orders of products composed of: {a}n and (X \ {a})K−n.

Evaluating Pθ(Na(K) = n) also involves decomposing this value of interest into statements

involving hitting times. Let hit(l)(a) be the lth hitting time of a specific event of interest a.

In other words, the time of the lth occurrence of a. Assuming n ≤ K:

Pθ(Na(K) = n) (3.17)

=
∑

i1<···<in≤K

Pθ(hit(1)(a) = i1, . . . , hit(n)(a) = in, hit(n+1)(a) > K) (3.18)

=
∑

i1<···<in≤K

Pθ({Xj = a |j = i1, . . . , in}, {Xj ̸= a |j ∈ {1, . . . , K} \ {i1, . . . , in}) (3.19)

For brevity, we will not decompose this further into tractable model calls pθ(xi |x<i); however,

it should be clear that this falls into the typical query decomposition due to term-wise

vocabulary restrictions. Additionally, similar to earlier query types this can easily be extended

for A ⊂ X .

Query Complexity From Eq. (3.1), exact computation of a query involves computing

K · |Q| conditional distributions (e.g., pθ(xk|x<k)) in an autoregressive manner. Under the

44

structured representation, the number of conditional distributions needed is equivalently∑
i

∏K
k=1 |V

(i)
k |. Non-attention based neural sequence models often define pθ(xk|x<k) :=

fθ(hk) where hk = RNNθ(hk−1, xk−1) is the result of a recurrent neural network (RNN) cell

parameterized by θ that takes as input the previous hidden state hk−1 and event xk−1. As such,

the computation complexity for any individual conditional distribution remains constant with

respect to sequence length. We will refer to the complexity of this atomic action as being O(1).

Naturally, the actual complexity depends on the model architecture and has a multiplicative

scaling on the cost of computing a query. The number of atomic operations needed to

exactly compute Q1-Q5 for this class of models can be found in Table 3.1. Should pθ be an

attention-based model (e.g., a transformer [Vaswani et al., 2017]) then the time complexity

of computing a single one-step-ahead distribution becomes O(K), further exacerbating the

exponential growth of many queries. Note that some particular parametric forms of pθ

admit more efficient query computation. The next section will explore one specific setting of

this with Markov models.

3.3 Querying Markov Models

Certain models pθ allow for computing various queries directly as a function of the parameters

and specifics of the query of interest. One particular class that allows for this are Markov

models. Markov models of the mth order are characterized by only depending on the m

previous terms in a sequence to determine the distribution for the immediate next step. We

will first derive more efficient representations for some of the specifically introduced query

classes for a 1st order homogeneous Markov model, and then will generalize to generic queries

with higher order models.

45

3.3.1 Queries for Homogeneous First Order Markov Models

Let pθ be a first order ergodic homogeneous Markov model characterized by a transition

matrix (πi,j)i,j∈X where pθ(xk |x<k) := πxk−1,xk
for all k ∈ N with steady state probabilities

(πi)i∈X .4 Using basic results from the theory of finite Markov chains, e.g., see [Kemeny and

Snell, 1983], we analyze below the complexity of three of the previously introduced queries

conditioned on the current observation X0 = x0 for x0 ∈ X .

Q2 The kth marginal query, Pθ(Xk = xk | X0 = x0), can be computed recursively by

computing the conditional distribution pX1 |X0(x1 | x0) = πx0,x1 , then pX2 |X0(x2 | x0) =∑
x1∈X πx1,x2πx0,x1 , and so on, resulting in k matrix multiplications, with complexity O(kV 2).

Q3 The hitting time of a ∈ X at time k query, Pθ(hit(a) = k |X0 = x0), can be computed

for all values k′ ≤ k using k − 1 matrix multiplications where, at each step k′ = 2, . . . , k − 1,

all events except a are marginalized over. This results in a complexity of O(kV 2).

In general it is straightforward to show that

Pθ(hit(a) = k |X0 = x0) =


πx0,a for k = 1

πx0,�a
π
�a,a

πk−2

�a,�a
for k > 1

(3.20)

where πx0,�a
=
∑

i ̸=a πx0,i is the probability of transitioning to a state other than a from

x0, π
�a,�a

=
∑

i ̸=a π�a,i is the probability of remaining not at state a, and lastly π
�a,a

is the

probability of transitioning to state a from not a. Computation of π
�a,a

requires knowledge of

the steady-state probabilities of the chain πa and π
�a

=
∑

i ̸=a πi. Computing the steady-state

probabilities requires inversion of a V × V matrix, with a complexity of O(V 3). This general

4There are various ways that Markov models handle beginnings of sequences where there are fewer events
to condition on than the model’s order. A common way of accommodating this is to append the vocabulary
X with a special beginning of sequence value and enforce that xi takes on this value for i < 1. Our derivations
in this section will always assume that we are contextualizing our query with enough information to not have
to worry about this edge case.

46

solution will be faster to compute than the version using matrix multiplication (up to horizon

k) whenever k > V .

Q4 The probability of a ∈ X occurring before b ∈ X , Pθ(hit(a) < hit(b) |X0 = x0), can be

computed exactly for a 1st order Markov model. Let ��ab represent the state of not being a or

b, i.e., some element of X \ {a, b}.

Let c be the set of all states (events) in X except for a and b. It is straightforward to show

that

Pθ(hit(a) < hit(b) |X0 = x0) = πx0,a + πx0,��ab
π��ab ,a

π��ab ,a + π��ab ,a
(3.21)

and Pθ(hit(b) < hit(a) |X0 = x0) = πx0,b + πx0,��ab
π��ab ,b

π��ab ,a + π��ab ,a
(3.22)

where π��ab ,a and π��ab ,b are the probabilities of transitioning to a and b, respectively, given

that the system is currently in a state that is neither a or b. Computing these probabilities

again requires knowledge of the steady-state probabilities πa, πb, π��ab , resulting in O(V 3) time

complexity.

3.3.2 General Queries and Higher Order Markov Models

For simplicity, we will assume that a query takes the form Q = V1 × · · · × VK and we

are interested in Pθ(X1:K ∈ Q |H0) for a mth-order Markov model pθ. This model can be

defined with an (m + 1)-dimensional tensor Π ∈ RV×···×V with elements πi1,...,im,im+1 such

that
∑V

j=1 πi1,...,im,j = 1 for all i1, . . . , im ∈ X . Alternatively, πi1,...,im,im+1 = Pθ(Xj+m+1 =

im+1 |Xj+1:j+m = i1:m) for j ≥ 0.

To marginalize out Xm+1 and compute the conditional distribution Pθ(Xm+2 = xm+2 |X1:m =

47

x1:m) requires the following computation:

Pθ(Xm+2 = xm+2 |X1:m = x1:m) =
∑
v∈X

Pθ(Xm+2 = a,Xm+1 = v |X1:m = x1:m) (3.23)

=
∑
v∈X

pθ(Xm+2 = xm+2 |Xm+1 = v,X2:m = x2:m)pθ(Xm+1 = v |X1:m = x1:m) (3.24)

=
∑
v∈X

πx2,...,xm,v,aπx1,...,xm−1,xm,v (3.25)

If we perform this operation over all values of x1:m, we can construct a new transition tensor

representing Pθ(Xm+2 |X1:m) in general. We will denote this new tensor as being equal to

Π ⊗ Π where (Π⊗ Π)i1,...,im,v = p(Xj+m+2 = v | Xj+1:j+m = i1:m). This operation has a

computation complexity of O(V m+1).

This special product can be carried out repeatedly to marginalize out further into the future.

For instance, performing this operation on Π (n− 1)-times results in (Π⊗ · · · ⊗Π)i1,...,im,v =

p(Xj+m+n = v |Xj+1:j+m = i1:m), thus marginalizing out n− 1 terms: Xj+m+1:j+m+n−1.

Transitioning into a restricted space V can be done easily by defining a restricted transition

tensor ΠV such that (ΠV)i1,...,im,v ∝ πi1,...,im,v if v ∈ X , otherwise (ΠV)i1,...,im,v = 0 for all

i1, . . . , im, v ∈ X .

With this, we have everything we need to compute p(X1:K ∈ Q|H). If the last m-values of

the history H are equal to i1, . . . , im, then:

Pθ(X1:K ∈ Q|H0) =
K∏
k=1

Pθ(Xk ∈ Vk |X<k ∈ V1 × · · · × Vk−1) (3.26)

=
K∏
k=1

∑
v∈Vk

Pθ(Xk = v|X<k ∈ V1 × · · · × Vk−1) (3.27)

=
K∏
k=1

∑
v∈Vk

(ΠV1 ⊗ · · · ⊗ ΠVk
)i1,...,im,v . (3.28)

While this result is derived for homogeneous Markov models, a similar form exists for non-

48

homogeneous variants as well. Assuming that the time-dependent transition matrices are

known ahead of time, and denoted as π(i) for describing the transition to state Xi, it follows

then that Pθ(X1:K ∈ Q|H0) =
∏K

k=1

∑
v∈Vk

(
Π

(1)
V1
⊗ · · · ⊗ Π

(k)
Vk

)
i1,...,im,v

.

The dominant factor in the computational complexity of Eq. (3.28) is computing all of the

special products of Π. As such, this has a total computational complexity of O((k−1)V m+1).

The key difference here is that once the computation is done for a query of length k, then it

takes very little additional computation to evaluate similar queries on different contexts H0

as the tensor products can be reused. For comparison, recall that for general autoregressive

models the complexity of analytically solving queries in the same form is O(V k) (assuming

the parametric form of the model affords no simplifications).

The next section will discuss various methods for estimating probabilistic queries in the

setting where analytically computing the answer is not tractable.

3.4 Query Estimation Methods

Since exact query computation can scale exponentially in K for generic autoregressive models

pθ, it is natural to consider approximation methods. In particular we focus on importance

sampling, beam search, and a hybrid of both methods. All methods will be based on a novel

proposal distribution, discussed below.

3.4.1 Proposal Distribution

For various estimation methods which will be discussed later, it is beneficial to have a

tractable proposal distribution q over X that we can sample from with an implied measure

Q whose support matches that of the query Q. For importance sampling, we will need

49

this distribution as a proposal distribution. We will also use it as our base model for

selecting high-probability sequences in beam search. We would like the proposal distribution

to resemble our original model while also respecting the query. One thought is to have

Q(X1:K = x1:K) = Pθ(X1:K = x1:K |X1:K ∈ Q); however, computing this probability involves

normalizing over Pθ(X1:K ∈ Q) which is exactly what we are trying to estimate in the first

place. Instead of restricting the joint distribution to the query, we can instead restrict every

conditional distribution to the query’s restricted domain. To see this, we first partition

Q = ∪iQ(i) and define an autoregressive proposal distribution for each Q(i) =
∏K

k=1 V
(i)
k as

follows:

Q(i)(X1:K = x1:K) :=
K∏
k=1

q(i)(xk |x<k) (3.29)

q(i)(xk |x<k) := Pθ

(
Xk = xk |X<k = x<k, Xk ∈ V(i)

k

)
(3.30)

=
pθ (xk |x<k)1

(
xk ∈ V(i)

k

)
∑

v∈V(i)
k

pθ(v |x<k)
(3.31)

where 1(·) is the indicator function. That is, we constrain the outcomes of each conditional

probability to the restricted domains V(i)
k and renormalize them accordingly. To evaluate the

proposal distribution’s probability, we multiply all conditional probabilities according to the

chain rule. Since the entire distribution is computed for a single model call pθ(−|x<k), it is

possible to both sample a K-length sequence and compute its likelihood under q(i) with only

K model calls. Thus, we can efficiently sample sequences from a distribution that is both

informed by the underlying model pθ and that respects the given domain Q. As discussed

in the next section, this proposal will be used for importance sampling and for the base

distribution on which beam search is conducted.

50

3.4.2 Estimation Techniques

Sampling

One can naively sample any arbitrary probability value using Monte Carlo samples to estimate

Pθ(X1:K ∈ Q) = EPθ [1(X1:K ∈ Q)]; however, this typically will have high variance. This

can be substantially improved upon by exclusively drawing sequences from the query space

Q through a proposal distribution using importance sampling. For brevity, assume that

Q := V1 × · · · × VK .5 Here, we derive the importance sampling equivalent form of the

probabilistic query utilizing the proposal distribution q for query space Q with measure Q

defined in Eq. (3.30):

Pθ(X1:K ∈ Q) = EQ
[
pθ(X1:K)

q(X1:K)
1(X1:K ∈ Q)

]
(3.32)

= EQ

[
K∏
k=1

pθ(Xk |X<k)

q(Xk |X<k)

]
(3.33)

= EQ

[
K∏
k=1

pθ(Xk |X<k)
∑

v∈Vk
pθ(v |X<k)

pθ(Xk |X<k)1(Xk ∈ Vk)

]
(3.34)

= EQ

[
K∏
k=1

∑
v∈Vk

pθ(v |X<k)

]
(3.35)

≈ 1

M

M∑
m=1

K∏
k=1

∑
v∈Vk

pθ(v |x(i)
<k), (3.36)

where the indicators disappeared due to them equaling 1 almost-surely under Q and x
(i)
1:k−1 for

i = 1, . . . ,M are concrete samples drawn iid from q.6 It is worth noting that this estimator

could be further improved by augmenting the sampling process to produce samples without

replacement from q (e.g., [Meister et al., 2021, Kool et al., 2019, Shi et al., 2020]); in this

5Should the query space be the more general form Q := ∪iQ(i), then simply apply the methods derived on
each individual sub-query, Pθ(X ∈ Q(i)), then sum together to get the total probabilistic query Pθ(X ∈ Q).

6While sometimes in the literature p(X) is used to designate the abstract notion of the “distribution of
X,” in this context it is used as a literal function of X. This should be interpreted in the same way as f is
used in E[f(X)].

51

chapter we restrict the focus to sampling with replacement.

Search

An alternative to estimating a query by sampling is to instead produce a lower bound,

Pθ(X1:K ∈ Q) =
∑

x1:K∈Q

pθ(x1:K) ≥
∑

x1:K∈B

pθ(x1:K), (3.37)

where B ⊂ Q. In many situations, only a small subset of sequences x1:K in Q have a non-

negligible probability of occurring due to the vastness of the total path space V K for large

V . As such, it is possible for |B| ≪ |Q| while still having a minimal gap between the lower

bound and the actual query value.

One way to produce a set B ⊂ Q is through beam search [Russell and Norvig, 2010]. To

ensure that beam search only explores the query space, instead of searching with pθ, we utilize

q for ranking beams. Since beam search is a greedy algorithm and for a given conditional

q(a |x<k) ∝ pθ(a |x<k) for a ∈ Vk, the rankings will both respect the domain and be otherwise

identical to using pθ to rank. Typically, the goal of beam search is to find the most likely

completion of a sequence without having to explore the entire space of possible sequences.

This is accomplished by greedily selecting the top-B most likely next step continuations, or

beams, at each step into the future. Rather than finding a few high-likelihood beams, we are

more interested in accumulating a significant amount of probability mass and less interested

in the specific quantity of beams collected.

Traditional beam search has a fixed beam size B; however, this is not ideal for accumulating

probability mass. As an alternative we develop coverage-based beam search where at each

step in a sequence we restrict the set of beams being considered not to the top-B but rather to

the smallest set of beams that collectively exceed a predetermined probability mass α, referred

52

to as the “coverage”.7 More specifically, let Bk ⊂ {x1:k |x1:K ∈ Q} be a set containing |Bk|

beams for subsequences of length k. For brevity, we will assume that Q = V1×· · ·×VK .8 Bk+1

is a subset of Bk × Vk+1 and is selected specifically to minimize |Bk+1| such that Q(X1:k+1 ∈

Bk+1) ≥ α. It can be shown that Pθ(X1:K ∈ Q)− Pθ(X1:K ∈ BK) ≤ 1−Q(X1:K ∈ BK) (and

is often significantly less).

Theorem 3.1. For a given set of decoded sequences B ⊂ Q with coverage Q(X1:K ∈ B),

the error between the true probabilistic query value Pθ(X1:K ∈ Q) and the lower bound

Pθ(X1:K ∈ B) is bounded above by the complement of the coverage: 1−Q(X1:K ∈ B).

Proof. For brevity, we will assume that Q = V1 × · · · × VK (although this can easily be

extended to the general case). Since q(xk |x<k) = pθ(xk |x<k)1(xk∈Vk)
Pθ(Xk∈Vk |X<k=x<k)

and pθ(·) ≤ 1, it follows

that q(xk |x<k) ≥ pθ(xk |x<k). This becomes a strict inequality should Pθ(Xk ∈ Vk |X<k =

x<k) < 1 (which is often the case should Vk ⊂ X). Since this holds for arbitrary k and xk,

it then follows that q(x1:K) ≥ pθ(x1:K) for any x1:K ∈ Q.9 This inequality becomes strict

should any sequence not in the query set have non-zero probability, i.e., pθ(x1:K) > 0 for any

x1:K ∈ XK \ Q.

The target value that we are estimating can be broken up into the following terms:

Pθ(X1:K ∈ Q) = Pθ(X1:K ∈ B) + Pθ(X1:K ∈ Q \ B). (3.38)

Rearranging these terms yields us the error of our lower bound. We can easily derive an

upper bound on the error for an arbitrary set B:

Pθ(X1:K ∈ Q)− Pθ(X1:K ∈ B) = Pθ(X1:K ∈ Q \ B) (3.39)

7This is similar to the distinction between top-K and top-p / nucleus sampling commonly used for natural
language generation [Holtzman et al., 2019].

8If Q requires partitioning into multiple Q(i)’s, we apply beam search to each sub query pθ(X1:K ∈ Q(i)).
9This can be seen by comparing their autoregressive factorizations term by term.

53

=
∑

x1:K∈Q\B

pθ(x1:K) (3.40)

≤
∑

x1:K∈Q\B

q(x1:K) (3.41)

= Q(X1:K ∈ Q \ B) (3.42)

= Q(X1:K ∈ Q)−Q(X1:K ∈ B) (3.43)

= 1−Q(X1:K ∈ B) ≤ 1− α (3.44)

where α is the targeted coverage probability used to find B with coverage-based beam search.10

This inequality becomes strict should any sequence not in the query set have non-zero

probability, i.e., pθ(x1:K) > 0 for any x1:K ∈ XK \ Q.

There is one slight problem with having α be constant throughout the search. Since we are

pruning based on the joint probability of the entire sequence, any further continuations of

Bk will reduce the probability Q(X1:k+1 ∈ Bk+1). This may lead to situations in which every

possible candidate sequence is kept in order to maintain minimal joint probability coverage.

This can be avoided by filtering by αk where α1 > · · · > αK = α, e.g., the geometric series

αk = αk/K .

A Hybrid Approach

Importance sampling produces an unbiased estimate, but can still experience large variance

in spite of a good proposal distribution q when pθ is a heavy tailed distribution. Conversely,

the beam search lower bound can be seen as a biased estimate with zero variance. We

can remedy the limitations of both methods by recognizing that since Pθ(X1:K ∈ Q) =∑
x1:K∈BK

pθ(x1:K) +
∑

x1:K∈Q\BK
pθ(x1:K), where BK is the set of sequences resulting from

beam search, we can use importance sampling on the latter summation. The only caveat to

10Note that Q(X1:K ∈ Q) = 1 because by design q(x1:K) = 0 for every x1:K /∈ Q.

54

this is that the proposal distribution must match the same domain of the summation: Q\BK .

To keep all of the nice properties of our original proposal distribution described previously, we

will use qB(x1:K) :=
∏K

k=1 qB(xk |x<k) with implied measure QB where QB(X1:K = x1:K) :=

Q(X1:K = x1:K | X1:K /∈ BK) as our proposal distribution for the hybrid setting. While

this does require marginalization over more than just the immediate next step, this can be

accomplished through a reuse of computation done during the initial beam search phase. The

steps to do so are described below. For a more in depth analysis into the resulting estimator

variance for the hybrid approach and how it compares to regular importance sampling, please

refer to Appendix A.1.

Viewing XK and pθ as Trees In the space of all possible sequences of length K, X1:K ∈

XK , one can represent these sequences as paths in a tree. Each node in this tree represents

a single element in a sequence Xk ∈ X with depth k, with parent and children nodes

representing previous and potential future values in the sequence respectively. The root node

either represents the very beginning of a sequence, or a concrete history H to condition on.

See Fig. 3.2 for an example visualization.

This tree can be augmented into a probabilistic one by defining edges between nodes as the

conditional probability of a child node being next in a sequence, conditioned on all ancestors

of that child. These probabilities are naturally determined by pθ(xk |x<k) where xk is the

child node value and x<k are the ancestors’ values.

Building the Tree Any subset of XK can also be represented as a tree, and in fact will

be a sub-tree of the one that represents XK . As such, there exists a tree that represents

Q. Our usual proposal distribution q is a natural source of conditional probabilities for the

edges. While none of these trees with their edge weights are fully known ahead of time, we

do explore and uncover them through the process of beam search. As such, during the beam

55

search phase of the hybrid method we keep track of any conditional distributions q(xk |x<k)

that are computed and use them to construct a partial view of the tree for Q. Note that the

end result of this process is a tree that will likely have many paths that do not fully reach

depth K; however, there will be at least |B| many that do.

For our purposes, it is also useful to keep track of pθ(xk |x<k) over this restricted set, as well

as model byproducts such as hidden states to reduce computation redundancy later.

Pruning the Tree After beam search has completed, we are left with a resulting set of

beams B and a partial tree with weights corresponding to conditional probabilities from q.

We would now like to alter this tree such that its weights represent qB(X1:K = x1:K) :=

Q(X1:K = x1:K |X1:K /∈ BK). This alteration can be accomplished by adjusting the edge

weights in the tree recursively as detailed below. New weight assignments will be denoted

by qB to differentiate from old weights q. The steps to the procedure are defined as follows:

1. At the final depth K, assign edge weights qB(xK |x<K) = 0 for all x1:K ∈ BK . All other

edge weights in the final depth will have new weights qB(xK |x<K) = q(xK |x<K).

2. At the next layer above with depth k = K − 1, assign edge weights as qB(xk | x<k) =

q(xk |x<k)
∑

v∈X qB(v |x≤k = x≤k) for all sub-sequences x1:k ∈ Bk.

3. Repeat step 2 iteratively for k = K − 2, K − 3, . . . , 2, 1.

4. Finally, normalize every conditional distribution for every node whose children edges

were altered such that they each sum to 1.

After these steps are completed, qB(x1:K) =
∏K

k=1 qB(xk |x<k). Note that weights related to

sequences that were not discovered during beam search, and are thus not in the tree, are not

altered and still match the original proposal distribution q. As such, to sample sequences from

the tree, we start at the root node and sample from each successive conditional distribution

56

until either depth K or a leaf node at depth k < K is reached. In the former scenario, the

sampling is complete. In the latter, the remaining values of the sequence are sampled from

q(· |x≤k) like usual.

Beam Search Heuristic Lastly, since our ultimate goal is to sample from the long tail of

pθ, targeting a specific coverage α during beam search is no longer effective since achieving

meaningfully large coverage bounds for non-trivial path spaces is generally intractable. In-

stead, we propose tail-splitting beam search to better match our goals. Let w
(i)
k = pθ(x

(i)
1:k+1)

for x
(i)
1:k+1 ∈ Bk×Vk+1 such that w

(i)
k ≥ w

(j)
k if i < j. In this regime, Bk+1 = {x(i)

1:k+1}Bi=1 where

B = arg minb σ(w
(1:b)
k) + σ(w

(b+1:|Bk×Vk+1|)
k) and σ(w

(u:v)
k) is the empirical variance of w

(i)
k for

i = u, . . . , v. This can be seen as performing 2-means clustering on the wk’s and taking the

cluster with the higher cumulative probability.

3.4.3 Saving Computation on Multiple Queries

Should multiple queries need to be performed, such as pθ(hit(a) = k) for multiple values of

k, then there is potential to be more efficient in computing estimates for all of them. The

feasibility of reusing intermediate computations is dependent on the set of queries considered.

For simplicity, we will consider two base queries Q = V1 × · · · × VK and Q′ = V ′
1 × · · · × V ′

K′

where K < K ′. Due to the autoregressive nature of pθ, if Vi = V ′
i for i = 1, . . . , K − 1 then

all of the distributions and sequences needed for estimating Pθ(X1:K ∈ Q) are guaranteed

to be intermediate results found when estimating Pθ(X1:K′ ∈ Q′). To be explicit, when

estimating the latter query with beam search the intermediate BK is the same as what would

be directly computed for the former query. Likewise, for importance sampling if X1:K′ ∼ q

using Eq. (3.30) over Q′ then the subsequence X1:K is also distributed under q for query space

Q. This does not apply when the sample path domain is further restricted, such as with the

hybrid approach, in which case we cannot directly use intermediate results to compute other

57

queries for “free.”

3.5 Experiments and Results

3.5.1 Experimental Setting

We investigate the quality of estimates of hitting time queries across various datasets, com-

paring beam search, importance sampling, and the hybrid method. We find that hybrid

systematically outperforms both pure search and sampling given a comparable computation

budget across queries and datasets. We also investigate the dependence of all three methods

on the model entropy.

It is worth noting that we focus almost exclusively on hitting time queries in our primary

experiments, as more complex queries often decompose into operations over individual hitting

times as demonstrated previously in Section 3.2.

Datasets

We evaluate our query estimation methods on three user behavior and two language datasets.

We provide details on the preparation and utilization of each below. For all datasets, users

are associated with anonymous aliases to remove personally identifiable information (PII).

Reviews [Ni et al., 2019] contains sequences of 233 million timestamped Amazon product

reviews spanning from May 1996 to October 2018, with each product belonging to one of 30

product categories. We restrict our consideration of this dataset to reviews generated by users

with at least 15 product reviews and products with a defined category, retaining 63 million

reviews on which the model was trained. The product category of a review is taken to be

58

the event value X, and after filtering to the restricted set of users there are V = 29 possible

categories to model. This dataset is publicly available under the Amazon.com Conditions of

Use License.

Mobile Apps [Aliannejadi et al., 2021] consists of 3.6 million app usage records from 200

Android users from September 2017 to May 2018, where each event is an interaction of an

individual with an application. User behavior spans V = 88 unique applications, which we

use as the vocabulary for events for our experiments. This dataset is released under the

Creative Commons License, and all users contain at least 15 mobile app interactions so no

data was removed before training.

MOOCs [Kumar et al., 2019] is a dataset of sequences of anonymized user interactions

with online course materials from a set of massive open online courses (MOOCs). In total,

the dataset includes V = 98 unique types of interactions which we take the be the event

values. Data from users with fewer than 15 interaction events are not considered, resulting in

a dataset of 72% of users and 93% of the events (350,000 interactions) of the original dataset.

The MOOCs dataset is available under the MIT License.

Shakespeare We also examine character-level language models, using the complete works

of William Shakespeare [Shakespeare], comprising 125,000 lines of text and V = 67 unique

characters and released under the Project Gutenberg License. The specific characters in a

sequence we what we model.

WikiText The WikiText-v2 dataset [Merity et al., 2016] includes word-level language data

from ”verified Good” and featured articles of Wikipedia. The tokenization scheme used for

GPT-2 enforces a vocabulary size of V = 50257 for this dataset, each representing a word

59

or word-piece. All sentences are provided in English and the dataset is available under the

Creative Commons Attribution-ShareAlike License.

Base Models

For all datasets except WikiText (word-level language), we trained a 2-layer long short-term

memory (LSTM) network with a dropout rate of 0.3 and the ReLU activation function, e.g.,

ReLU(z) := max{0, z} [Hochreiter and Schmidhuber, 1997, Srivastava et al., 2014]. Each

network was trained against cross entropy loss with the Adaptive Moments (Adam) optimizer

initialized with a learning rate of 0.001. A constant learning rate decay schedule and 0.01

warm-up iteration percentage was also used. All LSTM models use a hidden state size of

512 except the model for Shakespeare, which uses a smaller hidden state size of 128 which

is more appropriate give the size of the dataset. Model checkpoints were collected for all

models every 2 epochs, and the checkpoint with the highest validation accuracy was selected

to be used for query estimation experiments. All models were trained on NVIDIA GeForce

2080ti GPUs.

For WikiText-v2, we leveraged the GPT-2 [Radford et al., 2019] medium (350 million param-

eters) architecture from HuggingFace with pre-trained weights provided by OpenAI [Wolf

et al., 2020]. The WikiText-v2 dataset was preprocessed using the tokenization scheme

provided by HuggingFace for GPT-2, assigning numeric token indices to work pieces. No

finetuning of GPT-2 is conducted.

Experimental Methods

We investigate computation-accuracy trade-offs between 3 estimation methods (beam search,

importance sampling, and the hybrid) across all datasets. Query histories H are defined by

randomly sampling N = 1000 sequences from the test split for all datasets except WikiText,

60

https://huggingface.co/

from which we sample only N = 100 sequences due to computational limitations. For each

query history and method, we compute the hitting time query estimate Pθ(hit(a) = K) over

K = 3, . . . , 11, with a determined by the Kth symbol of the ground truth sequence.

To ensure an even comparison of query estimators, we fix the computation budget per query

in terms of model calls pθ(−|x<k) to be equal across all 3 methods, repeating experiments

for different budget magnitudes roughly corresponding to O(10), O(102), O(103) model calls.

This can be controlled directly for all of the methods except the hybrid approach. For this

reason, in our experiments we typically use fix the number of samples S for the importance

sampling component of the hybrid method, where S is the number of samples used by the

hybrid method after conducting tail-splitting beam search. We then use the resulting number

of total model calls used by the hybrid method (including both beam search and sampling

with S samples) to determine a fixed computation budget (number of model calls to compute

pθ(−|x<k)) for all other methods. Should the hybrid method not be used in an experiment,

the budget is set by determining the number of model calls used in drawing S samples for

importance sampling. We intentionally select relatively small computation budgets per query

to support systematic large-scale experiments over multiple queries up to relatively large

values of K. Results for queries with GPT-2 are further restricted because of computational

limits and are reported separately below.

To evaluate the accuracy of the estimates for each query and method, we compute the true

probability of K using exact computation for small values of K ≤ 4. For larger values of

K, we run importance sampling with a large number of samples S, where S is adapted per

query to ensure the resulting unbiased estimate has an empirical variance less than ϵ ≪ 1

(see Appendix A.2). This computationally-expensive estimate is then used as a surrogate for

ground truth in error calculations.

Coverage-based beam search is not included in our results: we found that it experiences

exponential growth with respect to K and does not scale efficiently due to its probability

61

coverage guarantees. Additional details are provided in Appendix A.3.3.

3.5.2 Results

Accuracy and Query Horizon

Using the methodology described above, for each query, we compute the relative absolute

error (RAE) |p− p̂|/p, where p̂ is the estimated query probability generated by a particular

method and p is the ground truth probability or the surrogate estimate using importance

sampling. For each dataset, for each of the 3 levels of computation budget, for each value of

K, this yields N = 1000 errors for the N queries for each method.

Fig. 3.3 shows the median RAE of the N queries, per method, as a function of K, for

each dataset, using the medium computation budget in terms of model calls. Across the 4

datasets the error increases systematically as K increases. However, beam search is signif-

icantly less robust than the other methods for 3 of the 4 datasets: the error rate increases

rapidly compared to importance sampling and hybrid. Beam search is also the most variable

across datasets relative to other methods. The hybrid method systematically outperforms

importance sampling along across all 4 datasets and for all values of K. In Appendix A.3

we provide additional results; for the lowest and highest levels of computational budget, for

mean (instead of median) RAEs, and scatter plots for specific values of K with more detailed

error information. The qualitative conclusions are consistent across all experiments.

The Effect of Model Entropy

We conjecture that the entropy of the proposal distribution q conditioned on a given history

HQ(X1:K) = −EQ[log q(X1:K)], which we refer to as restricted entropy, is a major factor in

the performance of the estimation methods. Fig. 3.4(a) shows the RAE per query (with a

62

Figure 3.3: Median relative absolute error (RAE) between estimated probability and (surro-
gate) ground truth for pθ(hit(·) = K) for importance sampling, beam search, and the hybrid
method. As query path space grows with K, beam search quickly fails to bound ground
truth while sampling remains robust, with the hybrid consistently outperforming all other
methods, especially for large values of K. Ground truth values used to determine error are
exact for K ≤ 4 and approximated otherwise.

63

Figure 3.4: (a) RAE vs restricted entropy per query (with best linear fits), (b) Median RAE
versus model temperature T for Mobile App data. All errors computed using the same
queries as in Fig. 3.3. Beam search errors correlate highly with model entropy even with
the low-entropy Mobile Apps dataset, where increasing temperature T directly induces this
failure mode.

64

linear fit) as a function of estimated restricted entropy for importance sampling and beam

search. The results clearly show that entropy is driving the query error in general and that

the performance of beam search is much more sensitive to entropy than sampling. The

difference in entropy characteristics across datasets explains the differences in errors we see

in Fig. 3.3. In particular, the Mobile Apps dataset is in a much lower entropy regime than

the other three datasets.

To further investigate the effect of entropy, we alter each model by applying a temperature

T > 0 to every conditional factor: pθ,T (xk |x<k) ∝ pθ(xk |x<k)1/T , effectively changing the

entropy ranges for the models. Fig. 3.4(b) shows the median RAE, for query pθ,T (hit(·) = 4),

as a function of model temperature for the Mobile Apps data. As predicted from Fig. 3.4(a),

the increase in T , and corresponding increase in entropy, causes beam search’s error to

converge to 1, while the sampling error goes to 0. As T increases, each individual sequence

will approach having 1/|Q| mass, thus needing many more beams to have adequate coverage.

Results for other queries and the other three datasets (in Appendix A.3) further confirm the

fundamental bifurcation of error between search and sampling (that we see in Fig. 3.4(b)) as

a function of entropy.

Relative Efficiency of Proposal Distribution over Naive Query Estimation

We also examine the relative efficiency improvements of our proposal distribution against

naive Monte Carlo sampling:

pθ(X1:K ∈ Q) = EP[1(X1:K ∈ Q)] (3.45)

Our relative efficiency calculations in Fig. 3.5 represent the variance ratio of naive query

estimates and estimates from our query proposal distribution. As shown, all datasets witness

65

Figure 3.5: Median relative efficiency (over 1000 query histories and all vocabulary terms)
of importance sampling estimation of the K-step marginal distributions for each dataset.
The gray, dotted line represents 100% relative efficiency defined by naive query estimation.
Relative efficiency is documented for 4 ≤ K ≤ 15 to highlight the regime where ground truth
cannot be tractably computed.

66

improvement over naive sampling efficiency and often by a significant margin. We also observe

that relative efficiency is largest for shorter query horizons, approaching naive sampling

efficiency as K increases.

Queries with a Large Language Model

We further explore entropy’s effect on query estimation with GPT-2 and the WikiText dataset

for N = 100, K = 3, 4, across 3 computation budgets. With a vocabulary 500x larger than

the other models, GPT-2 allows us to examine queries relevant to NLP applications. The

resulting high entropy causes beam search to fail to match surrogate ground truth given the

computation budgets (consistent with earlier experiments), with a median RAE of 82% (for

K = 4 and a budget of O(103)). By contrast, importance sampling’s median RAE under the

same setting is 13%, a 6x reduction. Additional results are in Appendix A.3.5.

3.6 Conclusion

In this chapter, we formally defined a general class of probabilistic queries for discrete

sequence models and derived analytical solutions for computing them for nth degree Markov

models. Additionally, techniques were developed using importance sampling and beam

search to approximate these queries for instances where analytic solutions are not possible

or impractical. Extensive experiments were conducted to verify the potential to save on

resources when using these methods compared to naive alternative approaches.

The text of this chapter is based on the publication:

Predictive querying for autoregressive neural sequence models [Boyd et al., 2022].

Primary authorship was shared between the author of this dissertation and Samuel Showalter.

67

Overall conception of the project and some of the writing was shared among all authors. The

author of this dissertation determined the problem area and scope for the work, alongside

deriving all analytical results. The author also developed the novel proposal distribution and

importance sampling approximation technique as well as the initial coverage-based beam

search method. Credit for the other heuristics for the beam search approaches, the hybrid

method as a whole, and the experimental design are shared between the author and Showalter

collectively. Showalter deserves credit for implementing and executing the majority of the

experiments with minor oversight from the author.

68

Chapter 4

Hitting Time and Related Query

Approximation for Marked Temporal

Point Processes

Stochastic models for event data evolving in continuous time are typically referred to as

temporal point processes. An important class within this general family is marked temporal

point processes (MTPPs), where each event in time is associated with a random outcome

known as a mark. In general, the mark can either be discrete or continuous; in this work

we focus on discrete marks. The flexibility of MTPPs has allowed them to be applied to a

broad range of applications, including medical diagnosis [Islam et al., 2017, Nagpal et al.,

2021, Chiang et al., 2022], epidemic spread models [Marmarelis et al., 2022], environmental

data analysis [Brillinger, 2000], financial data prediction [Zhu et al., 2021, Shi and Cartlidge,

2022, Bacry et al., 2012, Hawkes, 2018], communication network modeling [Mishra and

Venkitasubramaniam, 2013], user behavior analysis [Mishra et al., 2016, Kumar et al., 2019,

Yang et al., 2021, Hatt and Feuerriegel, 2020], misinformation spread models [Zhang et al.,

69

2021], and activity prediction [Fortino et al., 2020].

The foundations for MTPP models have their origins in the statistical literature (e.g., Cox

and Lewis [1972], Daley and Vere-Jones [2003], Andersen et al. [2012]), with subsequent

development of specific classes of MTPPs such as multivariate self-exciting Hawkes processes

[Hawkes, 1971] and multivariate self-correcting processes [Zheng and Vere-Jones, 1991]. More

recently, there has been significant activity in the development of machine learning methods

for MTPPs, with a significant emphasis on approaches that take advantage of neural repre-

sentation learning, such as recurrent MTPPs [Du et al., 2016], neural Hawkes processes [Mei

and Eisner, 2017], stochastic variants of deep MTPPs [Hong and Shelton, 2022], scalable deep

MTPPs [Türkmen et al., 2020], as well as general approaches to forecasting with deep MTPP

models [Deshpande et al., 2021]. These MTPP modeling frameworks provide a general and

flexible setup for making one-step-ahead predictions such as the timing and/or type of the

next event time, conditioned on a partial history of sequence.

In this chapter we look beyond one-step ahead predictions and instead investigate how to

efficiently answer queries that involve more complex statements about future events and their

timing. Such queries include hitting time queries (“what is the probability that at least one

event of type A will occur before time t”), queries of the form “what is the probability that

A will occur before B,” as well as computing the marginal distribution of event types for the

nth next event (irrespective of time). These types of queries are useful across a variety of

applications, such as making predictions conditioned on a patient’s medical and treatment

history, or conditioned on a customer’s page view and purchase history.

However, exact computation of such queries is intractable in general except in the case of

simple parametric models, such as Poisson processes. For a standard MTPP model to directly

answer such queries requires that all intervening events (from current time to the event(s)

of interest in the query) are marginalized over. In particular, this involves marginalizing

over both the combinatorially-large space of possible event types as well as the uncountably

70

infinite space of possible event timings. While direct simulation of future trajectories from a

model provides one avenue for answering such queries (e.g., see Daley and Vere-Jones [2003])

these “naive” methods can be very inefficient (both statistically and computationally), as

we will demonstrate later in the chapter. More efficient alternative approaches (to the naive

simulation method) appear to be completely unexplored (to our knowledge), for both neural

and non-neural MTPP models.

We develop a general query framework based on importance sampling that enables efficient

estimates of various types of queries. In our approach, we first transform each query into uni-

fied forms and then derive the distribution of interest as functions of type-specific intensities

(expected instantaneous rates of occurrence). Our proposed novel marginalization scheme

empowers real-time computation of probabilistic queries, with proven higher efficiency com-

pared to naive estimates. Furthermore, experiments on three real-world datasets in different

domains demonstrate that our proposed estimation method is significantly more efficient

than the naive estimate in practice. For example, for hitting time queries with neural Hawkes

processes, we show an average magnitude of 103 reduction in estimator variance.

Our approach for answering probabilistic queries is general-purpose in the sense that it can

be integrated with any intensity-based black-box MTPP model, either parametric or neural.

4.1 Related Work

A large variety of MTPP models have been developed over recent decades, aimed at modeling

sequences of marked event data with varying sorts of behaviors. This behavior has been both

explicitly modeled with parametric MTPP models [Isham and Westcott, 1979, Daley and

Vere-Jones, 2003], and implicitly modeled using neural network-based methods [Du et al.,

2016, Biloš et al., 2019, Shchur et al., 2020, Enguehard et al., 2020, Zuo et al., 2020]. Of

71

particular note in these categories are the self-exciting Hawkes process [Hawkes, 1971, Liniger,

2009] and the neural Hawkes process [Mei and Eisner, 2017]. The majority of neural MTPP

models utilize some form or extension of recurrent neural networks to model conditional

intensity functions (or equivalent transformations thereof). MTPP models have been broadly

applied to next event prediction across a number of different application areas: seismology

[Ogata, 1998], finance [Bacry et al., 2012, Hawkes, 2018], social media behavior [Mishra

et al., 2016, Rizoiu et al., 2017], and medical outcomes [Cox, 1972, Andersen et al., 2012].1

Neural-based methods have also been successful at additional tasks such as imputing missing

data [Shchur et al., 2020, Mei et al., 2019, Gupta et al., 2021], sequential representation

learning [Shchur et al., 2020, Boyd et al., 2020], and long-term forecasting [Deshpande et al.,

2021].

Answering probabilistic queries in some capacity has been previously explored at a model-

specific level. Primary examples include continuous-time Markov processes [Shelton and

Ciardo, 2014], continuous-time Bayesian networks [Nodelman et al., 2002, Fan et al., 2010],

and Markovian self-exciting processes [Oakes, 1975]. In this prior work, the assumed paramet-

ric form of the model allows for analytic forms of specific queries under certain conditions. For

instance, the Markovian self-exciting process provides a representation that makes estimating

hitting time queries directly tractable.

However, to the best of our knowledge, apart from the naive sampling approach (e.g., Daley

and Vere-Jones [2003]), there is no existing work on answering general probabilistic queries

(such as hitting time of a collection of event types) for black-box MTPP models, which is the

focus of this chapter. For discrete-time models, estimating these queries has been investigated

in our prior work [Boyd et al., 2022], and while there does not exist a direct mapping of those

techniques to continuous time, this previous work will serve as a large source of inspiration

for what we propose in this chapter.

1Survival analysis is a special case of temporal point processes where the event of interest can only occur
once.

72

4.2 Preliminaries

4.2.1 Notation for Event Sequences

Let T1, T2, · · · ∈ R≥0 be a sequence of continuous random variables with the constraint that

∀i : Ti < Ti+1. These represent the time of occurrence for events of interest. Each event has

an associated categorical value, such as a label or a location, that is referred to as a mark.

An event Xi ∈ X := R≥0×M is jointly represented as (i) a time of occurrence Ti and (ii) an

associated mark random variable Mi ∈M. In this work we will focus on the finite discrete

setting of a fixed vocabulary for marks: M = {1, 2, . . . , K}, although more generally the

mark space M can be defined on a variety of different domains.

Sequences of fixed number of n events can be represented via X1:n; however, we are of-

ten more so interested in the events that span a given range of time. A random sequence

that spans the time range [a, b] ⊂ R≥0 will be denoted as

H[a,b] = {(Ti,Mi) |Ti ∈ [a, b] for i ∈ N} (4.1)

with similar definitions for H(a,b] and H[a,b) over time ranges (a, b] and [a, b) respectively. For

simplicity, we will let Ht and Ht− be shorthand for H[0, t] and H[0, t) such that Xi ∈ HTi
and

Xi /∈ HTi−. The point process literature uses this notation for sequences often interchangeably

with filtrations. For all intents in purposes, for this chapter we can interpretH to be a random

sequence. Please refer back to Section 2.4.2 for more discussion on this topic.

We will use Hk and HA for k ∈ M and A ⊂ M to refer to mark-specific sequences, i.e.,

Hk
t = {(Ti,Mi) ∈ H(t) |Mi = k} and HA

t = {(Ti,Mi) ∈ Ht |Mi ∈ A}. Realizations of these

sequences of events are referred to as marked temporal point patterns and represented with

lower-case letters that mirror the notation used for random sequences, i.e., ht = {(ti,mi) | ti ∈

73

[0, t] for i ∈ N}.

4.2.2 Marked Temporal Point Processes

The generative mechanism for these point patterns are generally referred to as marked

temporal point processes (MTPPs). MTPP models fully define a probability measure P over

the possible events generated by the stochastic process X, i.e., F := σ(X). Because of this,

they are capable of modeling the likelihood L of a given sequence hτ of N events over a time

period of [0, τ] and are typically constructed in an autoregressive fashion,

L(Hτ = hτ) (4.2)

= P(TN+1 > τ |HTN
= hTN

)
N∏
i=1

pTi |HTi−1
(ti |hti−1

)pMi |Ti,HTi−1
(mi | ti,hti−1

) (4.3)

:= P(TN+1 > τ |HTN
= hTN

)
N∏
i=1

p∗Ti
(ti)p

∗
Mi |Ti

(mi | ti) (4.4)

where the ∗ notation is used for brevity to indicate conditioning on the relevant preceding

events. The distribution for the next event (Ti,Mi) conditioned on the preceding terms is

often modeled with the expected instantaneous rate of change for each mark. This is referred

to as the marked intensity function and is defined formally as

λk(t |Ht−)dt := EP [
1(|Hk

[t,t+dt)| = 1) |Ht−
]

(4.5)

where 1(·) is the indicator function and EP is the expected value with respect to distribution

p.2 For brevity, we typically use the ∗ notation to suppress the conditional: λ∗
k(t) := λk(t |Ht−).

Note that these functions not only condition on the preceding events, but also on the fact that

no events have occurred since the last event up until time t, i.e., P(· |H[0,t)) ̸= P(· |H[0,Ti−1]).

2It is worth noting that the expectation defined in Eq. (4.5) is tractable due to MTPPs being predictable
processes by construction, meaning that Ht |Ht− is measurable.

74

The total intensity function, λ∗(t) :=
∑

k∈M λ∗
k(t), is sufficient to describe the timing of the

next event Ti. The distribution of the mark conditioned on the timing of the next event is

naturally described as p∗Mi |Ti
(k | t) ≡ λ∗

k(t)

λ∗(t)
. We will be assuming that the native output of any

model we are working with will produce a vector of marked intensity functions over the mark

space M evaluated at time t. Any MTPP with a defined set of marked intensity functions

can be easily sampled from by utilizing a thinning procedure [Ogata, 1981], if not directly.

Lastly, the likelihood of a given sequence H of length N over an observation window [0, τ]

can be computed in terms of intensity values:

LP(Hτ = hτ) =

(
N∏
i=1

λ∗
mi

(ti)

)
exp

(
−
∫ τ

0

λ∗(s)ds

)
. (4.6)

4.3 Querying MTPPs

We are interested in evaluating probabilistic statements, or rather queries, on any MTPP

model, e.g., a model trained from data. Furthermore, we are interested in evaluating queries

that are conditioned on a partially observed sequence (e.g., “what is the likelihood that at

least one event of type A will occur in the next year given a patient’s medical history?”).

Formally, we define a probabilistic query as a probability statement of the form

P(H ∈ Q) where Q ⊂ ΩH ≡ Sample Space of H, (4.7)

where P is the implied probability measure defined by a given MTPP model’s distribution

over future event sequences.3 We refer to Q as the query space. The contents of the query

3Similar to the previous chapter, we make a distinction between the model itself, which gives us tractable
access to λk(t), and the probability measure that this implies. Some forms of queries to the measure are
equivalently represented directly by the model; however, there are far more queries that are not immediately
answerable by direct model output. The latter of which are the kinds of queries we are most interested in.

75

Figure 4.1: Example query space Q for the hitting time (first occurrence) of blue marks being
greater than some time t. Sequences shown, H(i), all belong to the query space as they each
do not contain a blue event occurring before time t.

space naturally will vary depending on the query at hand. An example query space and a

subset of associated valid sequences can be seen in Fig. 4.1. It is worth noting that in most

contexts, the cardinality of Q will be uncountably infinite.

This section will begin by discussing what probabilistic queries are readily available and

tractable for a given model. Following this, we will present a novel class of queries, of

which include hitting time and marginal mark queries, as well as an importance sampling

estimation procedure. Finally, we will discuss “A before B” queries and how to efficiently

estimate them under our novel framework. Without loss of generality, we suppress the notation

for conditioning on partially observed sequences and present all derivations and notations for

unconditional queries.

Contextualizing Queries While we would like to be able to answer complex queries, we

additionally would like to do so while conditioning on some partial sequence of previously

realized events Ht. In effect, this contextualizes whatever query is being asked. An example

of this would be asking how likely a patient will experience a heart attack in the next year,

conditioned on their personal medical history.

All of the methodology developed in this work allows for this. For the sake of brevity and

76

consistent notation, we will be presenting all queries as not conditioning on any prior events;

this allows for all queries to take place in the future over time t ∈ [0,∞) and all future events

to start with index i = 1. Note that all derived results can easily be extended to conditioning

on sequences of realized events, as will be demonstrated empirically in Section 4.4, simply

by shifting the end of the realized window to end at t = 0 and reset the index of events to

end with i = 0.

4.3.1 Directly Tractable Queries

Due to the model’s autoregressive nature, queries about the immediate next event of a

sequence are the only types of queries that can be directly evaluated without marginalization.

We will now present the two main types for MTPPs.

Marginal Distribution of Next Event Time In general, it can be shown that λ∗(t) =

p∗Ti
(t)

1−F ∗
Ti

(t)
where t ∈ (Ti−1, Ti], p

∗
Ti

is the probability density function (PDF) of Ti conditioned

on HTi−1
, and F ∗

Ti
is the cumulative density function (CDF) of Ti also conditioned on HTi−1

.

By recognizing that λ∗(t) = − d
dt

log(1 − F ∗
Ti

(t)), we find that the CDF of the next event

timing T1 is

P(T1 ≤ t) := FT1(t) = 1− exp

(
−
∫ t

0

λ∗(s)ds

)
. (4.8)

Differentiating this result with respect to t yields the PDF: fT1(t) = λ∗(t) exp
(
−
∫ t

0
λ∗(s)ds

)
.

Note that we only immediately have access to the analytical form of the first future event

timing T1. To achieve the same results for Ti with i > 1 in general would require marginalizing

over all i− 1 events, which ranges from being either cumbersome or intractable to do exactly

depending on the analytic form of λ.

77

Marginal Distribution of Next Mark Let A ⊂M. It follows then that the probability

of the first event having a mark in A is computed as follows:

P(M1 ∈ A) =

∫ ∞

0

P(M1 ∈ A |T1 = t)fT1(t)dt (4.9)

=

∫ ∞

0

λ∗
A(t)

λ∗(t)
λ∗(t) exp

(
−
∫ t

0

λ∗(s)ds

)
dt (4.10)

=

∫ ∞

0

λA(t) exp

(
−
∫ t

0

λ∗(s)ds

)
dt, (4.11)

where λ∗
A(t) =

∑
k∈A λ∗

k(t). Replacing the outer integration bounds of [0,∞) with [a, b] gives

the joint query P(T1 ∈ [a, b],M1 ∈ A).

Both of these different queries can potentially be computed analytically if the form of λ∗

permits, otherwise they can be estimated using approximate integration techniques.

4.3.2 Naive Estimation of Queries

When considering more complex queries, for example those that deal with sequences of events

or those far in the future, it becomes necessary to rely on simulating potential trajectories in

order to estimate their values. This is due to the fact that exactly representing a probabilistic

query in terms of intensity values involves many nested integrals (for each potential interim

event), potentially an infinite amount of them depending on the query.

The de facto method for approximating arbitrary probabilistic queries involves generating

sequences and computing the relative frequency for which the query condition is met in the

sampled sequences [Daley and Vere-Jones, 2003]. This can be seen as a Monte Carlo estimate

with the following formulation:

P(Hτ ∈ Q) = EP [1(Hτ ∈ Q)] , (4.12)

78

where 1(·) is the indicator function. We refer to this procedure as “naive” estimation because

this does not take into account any information about the query when sampling.

4.3.3 General Restricted-Mark Queries

One way to improve upon the naive procedure is to leverage information about the query in

a proposal distribution in conjunction with importance sampling. To do so though, we must

first constrain ourselves to a specific class of query being considered. Additionally, this class

of interest should take into account different aspects of sampling sequences using MTPPs for

our proposal distribution. Namely, these models can easily be forced to not sample events of

specific types over a period of time (e.g., set λ∗
A(t) := 0 for some time interval). Conversely,

it is not immediately obvious how to encourage or force an event to occur within a specified

time range.

As such, a natural class of queries can be seen in which over one or more specified spans of

time we restrict what types of events are allowed and not allowed to occur. We term this

class as “general restricted-mark queries.”

We will now more formally define this class of queries. Consider positive real values α1, . . . , αn

such that αi < αi+1. These values naturally split the timeline R≥0 into n + 1 spans:

[0, α1], (α1, α2], . . . , (αn−1, αn], (αn,∞). Furthermore, let the subsets Mi ⊆ M for i =

1, . . . , n represent restricted mark spaces for the first n spans. The class of queries is con-

cerned with how likely sequences spanning [0, αn] respect the restricted mark spaces in each

associated interval:

P (∪ni=1{No events with types Mi in t ∈ (αi−1, αi]})

= P
(
∧ni=1∀(T,M)∈H(αi−1,αi]

M /∈Mi

)
with α0 = 0. (4.13)

79

Figure 4.2: Three potential sequencesH(i) that satisfies the condition of an example restricted-
mark query. The mark space M in this context is equivalent to that in Fig. 4.1.

See Fig. 4.2 for an illustrated example query. This is a very flexible class of queries that

includes many meaningful individual queries, which will be further discussed in Section 4.3.4.

Importance Sampling and Proposal Distribution Let Q be a proposal measure with

support over at least the intersection of the support of P and the query space Q (i.e.,

supp(Q) ⊇ supp(P) ∩ Q). Recall that under the right conditions importance sampling

allows us to convert expectations of one measure to another, e.g., EP[f(X)] = EQ[L(X)f(X)]

for L(X) = LP(X)
LQ(X)

with likelihood functions LP and LQ—see Section 2.3 for more details. It

then follows that

EP [1(Hτ ∈ Q)] = EQ
[
1(Hτ ∈ Q)

LP(Hτ)

LQ(Hτ)

]
. (4.14)

It can be shown that the optimal proposal measure (i.e., lowest estimator variance) yields

the following likelihood over sequences [Robert and Casella, 2004]:

LQoptimal(Hτ) :=
|1(Hτ ∈ Q)|LP(Hτ)

EP[|1(Hτ ∈ Q)|] (4.15)

= LP(Hτ |Hτ ∈ Q), (4.16)

80

however, this is not immediately usable since it involves computing and normalizing over the

exact query that we are trying to estimate in the first place.

The more our actual proposal distribution q resembles qoptimal, the more efficient our estimation

procedure will be. Since conditioning on future events is difficult for neural autoregressive

models, and for that matter most MTPPs in general, we can instead only apply immediate

“local” restrictions on the trajectory such that a sequence will remain within Q. This can be

accomplished by letting Q be a measure implied by a MTPP with intensity

µ∗
k(t) = 1(k /∈Mi)λ

∗
k(t) (4.17)

for k ∈ M and t ∈ (αi−1, αi]. Note that this can be seen as the natural extension of

the proposal distribution in Section 3.4.1 to continuous time. This naturally leads to the

likelihood of any sequence generated under Q as being

LQ(Hτ) =

(
N∏
i=1

µ∗
Mi

(Ti)

)
exp

(
−
∫ τ

0

µ∗(s)ds

)
(4.18)

=

(
N∏
i=1

λ∗
Mi

(Ti)

)
exp

(
−

n∑
i=1

∫ αi

αi−1

λ∗
M\Mi

(s)ds

)
(4.19)

where N = |Hτ |. This proposal distribution was constructed so that every sample generated

will always belong to the query space, which allows for the simplified form presented in

Eq. (4.19). Applying this to Eq. (4.14) yields

P(Hτ ∈ Q) = EQ
[
1(Hτ ∈ Q)

LP(Hτ)

LQ(Hτ)

]
(4.20)

= EQ


(∏N

i=1 µ
∗
Mi

(Ti)
)

exp
(
−
∫ τ

0
µ∗(s)ds

)(∏N
i=1 λ

∗
Mi

(Ti)
)

exp
(
−
∫ τ

0
λ∗(s)ds

)
 as Ht ∈ Q under Q (4.21)

= EQ


(∏N

i=1 λ
∗
Mi

(Ti)
)

exp
(
−∑n

i=1

∫ αi

αi−1
λ∗
M\Mi

(s)ds
)

(∏N
i=1 λ

∗
Mi

(Ti)
)

exp
(
−
∫ τ

0
λ∗(s)ds

)
 (4.22)

81

= EQ

[
exp

(
−

n∑
i=1

∫ αi

αi−1

λ∗
Mi

(s)ds

)]
. (4.23)

Any query in this class can now be estimated in an unbiased fashion by using Monte Carlo

estimation on Eq. (4.23).

Estimator Efficiency Since both the naive and importance sampled estimators are unbi-

ased, whichever has lower variance can be seen as the more efficient estimator.

Assume that Q belongs to a general restricted-mark query and that π = P(Hτ ∈ Q). Let

π̂Naive(Hτ) = 1(Hτ ∈ Q), (4.24)

π̂Imp.(Hτ) = exp

(
−

n∑
i=1

∫ αi

αi−1

λ∗
Mi

(s)ds

)
, (4.25)

where both are unbiased estimators of π under P and Q respectively. Note that π̂Imp.(·) ∈ [0, 1]

as λ∗
k(·) ≥ 0. Finally, let relative efficiency of the two estimators be defined as

eff(π̂Imp., π̂Naive) :=
VarP [π̂Naive(Hτ)]

VarQ [π̂Imp.(Hτ)]
. (4.26)

Theorem 4.1. If π ∈ (0, 1) and λ∗(t) <∞ for all t ∈ [0, τ], then eff(π̂Imp., π̂Naive) > 1. In

other words, under these conditions π̂Imp. is always more efficient than π̂Naive.

Proof. Since the naive estimator is unbiased and binary, then it follows that π̂Naive(Hτ) ∼

Bern(π). Thus, VarP [π̂Naive(Hτ)] = π − π2.

To approach the variance of the importance sampling estimator, we note that

VarP [π̂Imp.(Hτ)] = EQ [π̂2
Imp.

]
− EQ [π̂Imp.]

2 (4.27)

= EQ [π̂2
Imp.

]
− π2 (4.28)

82

≤ EQ [π̂Imp.]− π2 since π̂Imp. ∈ [0, 1] (4.29)

= π − π2 (4.30)

The equality only holds if π ∈ {0, 1} or π̂Imp. ∼ Bern(π). The latter condition is due to the

fact that for [0, 1] bounded random variables with mean π, if the variance is equal to π − π2

then this implies it is Bernoulli (see Lemma 4.1 below). However, when π ∈ (0, 1) then unless

λ∗(t) =∞ for some subset of [0, τ] it is impossible for π̂Imp.(Hτ) to equal 0. Thus, outside of

those circumstances the inequality is strict and eff(π̂Imp., π̂Naive) > 1.

Lemma 4.1. If a bounded random variable X ∈ [0, 1], with mean π and variance π(1− π),

then X ∼ Bern(π).

Proof. Let X be a random variable with support [0, 1] on the probability space (Ω,F ,P)

with known mean EP[X] = π and variance VarP[X] = π(1− π). It then follows that:

VarP [X] = E
[
X2
]
− E [X]2 (4.31)

=⇒ π(1− π) = E
[
X2
]
− π2 (4.32)

=⇒ π = E
[
X2
]

(4.33)

=

∫
[0,1]

x2dFX(x) (4.34)

=

∫
{0,1}

x2dFX(x) +

∫
(0,1)

x2dFX(x) (4.35)

= P(X = 1) +

∫
(0,1)

x2dFX(x) (4.36)

∫
(0,1)

x2dFX(x) > 0 if and only if P(X ∈ (0, 1)) > 0. If we assume that P(X ∈ (0, 1)) > 0,

then it follows that:

π = P(X = 1) +

∫
(0,1)

x2dFX(x) (4.37)

< P(X = 1) +

∫
(0,1)

xdFX(x) (4.38)

83

= P(X = 1) + (π − P(X = 1)) (4.39)

= π, (4.40)

however, π ≮ π. Hence, by contradiction P(X ∈ (0, 1)) = 0 which implies that P(X = 1) = π

and P(X = 0) = 1− π since EP [X] = π. Thus, it can be concluded that X ∼ Bern(π).

4.3.4 Practical Estimation of Complex Queries

We will now apply our findings from Section 4.3.3 to produce estimators for three different

complex, probabilistic queries.

Marginal Distribution of Hitting Time Let A ⊂M and A ̸= ∅. The first occurrence

of an event with type k ∈ A, regardless of events of other types, is referred to as the hitting

time of A or hit(A). The probabilistic query of the CDF of the hitting time of A at a specific

time t can be seen as a query under the general restricted-mark class:

P(hit(A) ≤ t) = 1− P(hit(A) > t) (4.41)

= 1− P({No events of types A in [0, t]}) (4.42)

= 1− P(∀(T,M)∈HtM /∈ A)

= 1− EQ
[
exp

(
−
∫ t

0

λ∗
A(s)ds

)]
. (4.43)

Note that this derivation relies on this query being a special case of the general framework

outlined in Eq. (4.13) where n = 1, α0 = 0, α1 = t, and M1 = A. Interestingly, the

importance sampled result of this query greatly resembles the CDF of the general first event

timing: FT1(t) = 1 − exp
(
−
∫ t

0
λ∗(s)ds

)
.4 Furthermore, should A = M then we recover

4It is important to remember that in the general case, we must marginalize over possible trajectories for
other types of events A′ as these can all either potentially influence the intensity of events of type A.

84

FT1(t) as the estimator becomes deterministic (due to µ∗(t) = 0 =⇒ q(H) ∝ 1(H = ∅)).

Marginal Distribution of nth Mark Let A ⊂ M and n ≥ 1. The distribution of the

marginal nth mark describes how likely it is that the nth event has a mark k ∈ A, irrespective

of the timing of itself or of any of the n− 1 events that occurred prior. In contrast to hitting

time queries, we do not fix the integration bounds but rather sample them to be the timings

of the Tn−1 and Tn. In doing so, this query falls under the general mark-restricted framework:

P(Mn ∈ A) = P({No events of types A′ in (Tn−1, Tn]}) (4.44)

= P(∀(T,M)∈H(Tn−1,Tn]
M /∈ A′) (4.45)

= EQ
[
exp

(
−
∫ Tn

Tn−1

λ∗
A′(s)ds

)]
(4.46)

where A′ =M\A. This can be seen as a special case under Eq. (4.13) where α0 = 0, αi = Ti

for i = 1, . . . , n,M1, . . . ,Mn−1 = ∅, andMn = A′. Tying the values of the boundaries αi to

the random event times Ti effectively ensures that each span with a restricted vocabularyMi

only pertains to the occurrence of one event. In doing so, we actually recover the ability to

estimate queries purely concerning the marks, similar to the discrete sequence setting [Boyd

et al., 2022].

It is worth noting that, interestingly, we can also compute the complement under the same

framework as P(Mn ∈ A) = 1− EQ
[
exp

(
−
∫ Tn

Tn−1
λ∗
A(s)ds

)]
.

“A before B” Queries The last class of queries we will discuss are what we refer to as “A

before B” queries. To be precise, we are interested in the probability of an event with some

type k ∈ A occurring before an event with some type k ∈ B where A∩B = ∅ and non-empty

A,B ⊂M. In math, this is formally represented as P(hit(A) < hit(B)).

Surprisingly, with our previous developments we can actually estimate this query using im-

85

portance sampling in conjunction with proposal distribution Q. For the proposal distribution,

let µ∗
k(t) = 1(k /∈ A ∪B)λ∗

k(t). It then can be shown that

P(hit(A) < hit(B)) (4.47)

= 1− EQ
[∫ ∞

0

λ∗
B(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

]
(4.48)

= EQ
[∫ ∞

0

λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

]
(4.49)

with both expressions being equal due to the complement 1− P(hit(A) > hit(B)) also being

estimable under this derivation. See Appendix B.1 for the derivations of this expression.

Interestingly, just like the parallels between the hitting time CDF and the first event time

CDF, there exist similar comparisons for Eq. (4.49) and the analytical form of the marginal

distribution for the first mark P(M1 ∈ A) =
∫∞
0

λ∗
A(t) exp

(
−
∫ t

0
λ∗(s)

)
dt. Additionally,

should B = A′ then the estimator becomes deterministic and we recover the form of P(M1 ∈

A).

Note that the expectations in Eq. (4.49) are with respect to H∞ ∼ Q, which is naturally not

possible to evaluate; however, since the integrands are non-negative we can compute natural

lower and upper bounds by sampling Hτ ∼ Q and integrating over [0, τ] instead of [0,∞).

Lastly, since these bounds utilize the same proposal distribution, we can actually compute

both at the same time for a little extra computation. It then follows that a good estimate

for P(hit(A) < hit(B)) would be an average of the upper and lower bounds:

P(hit(A) < hit(B)) ≈ 1

2
+ EQ

[∫ τ

0

λ∗
A(t)− λ∗

B(t)

2
exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

]
, (4.50)

where τ > 0 can either be set as a constant or could be dynamically determined on a per

sequence basis based on some precision threshold. It should be noted that because τ < ∞

and the integration bounds are truncated, this estimate is no longer unbiased.

86

4.4 Experiments

We investigate the effectiveness of our novel importance sampling regime in the context

of estimating hitting time, “A before B,” and marginal mark distribution queries, while

conditioning on partially observed sequences. We find that across both synthetic and real

settings as well as parametric and neural-network-based models that our importance sampling

estimator dramatically reduces variance compared to naive sampling and results in a much

lower error on average. Furthermore, we demonstrate that, on average, these gains in

performance outweigh any potential increases in computation time.

Ground Truth Computation of any arbitrary query P(Hτ ∈ Q) to arbitrary precision is

intractable in the general case. Given this, in our experiments we compute our queries with

an unbiased estimator to high precision using a large amount of computation, with much

higher precision than any of the methods and scenarios evaluated for a given experiment. We

refer to the result of this high-precision computation as “ground truth” below.

Metrics of Interest There are two primary metrics with which we judge query estimation

procedures: mean relative absolute error and relative efficiency (or variance reduction should

one of the estimators be biased). The former is defined as the mean of |π − π̂|/π, where

π = P(Hτ ∈ Q) and π̂ is some estimator of π, over different queries (and potentially models).

This particular form of error is chosen to offset the fact that π ∈ [0, 1], which can lead

to naturally closer estimates should π be close to 0 or 1. The latter metric of interest is

the relative efficiency (or variance reduction) of importance sampling compared to naive

sampling. This is calculated by dividing the variance of the naive estimator (calculated using

ground truth: π(1 − π)) by the variance of the importance sampled estimator (calculated

empirically). As an example, a value of 5 for this metric indicates that, on average, 5 times

as many samples are needed for naive estimation to achieve an estimator variance as low as

87

Table 4.1: Real-world Dataset Summary Statistics

Dataset # Sequences τmax # Marks

MovieLens 34,935 43,000 182
MOOC 6,863 715 97
Taobao 17,777 192 1,000

that of importance sampling.

4.4.1 Real-world Experiments

Datasets We conduct our real-world experiments on three sequential user-behavior datasets.

In all three, a sequence is defined as the records generated by a single individual. The

MovieLens 25M dataset [Harper and Konstan, 2015] contains records of user-generated

movie reviews alongside a rating. Marks represent the categories under which a reviewed

movie can be classified as. The MOOC dataset [Kumar et al., 2019] is a collection of online

user-behaviors for students taking an online course. Marks represent the type interaction a

student has performed. Lastly, the Taobao user behavior dataset [Zhu et al., 2018] contains

page-viewing records from users on an e-commerce platform. Marks are defined as the

category of the item being viewed, with categories outside of the top 1,000 most frequent

being discarded. All datasets were split into 75% training, 10% validation, and 15% test

splits for model fitting and experiments. Summary statistics for these datasets can be found

in Table 4.1. All preprocessing details for these three datasets can be found in Appendix B.2.

Models All real-world experiments use neural Hawkes models [Mei and Eisner, 2017], one

trained for each dataset. Each model was trained to convergence on the training split with

stability/generality ensured via the validation split. All training and model details can be

found in Appendix B.2.

88

Hitting Time Queries: For each dataset, we randomly sample 1,000 different sequences

Hτ . For each sequence, we condition on the first five events,H[0,T5], and evaluate a hitting time

query for the remaining future.5 The specific hitting time query asked is P(hit(k) ≤ t |H[0,T5])

where k := M6 and t := 10× T6 for (T6,M6) ∈ H(T).

We compared estimating this query with naive sampling and importance sampling using

varying amounts of samples: {2, 4, 10, 25, 50, 250, 1000}. Mean RAE compared to ground

truth (estimated using importance sampling with 5000 samples) can be seen in Fig. 4.3a. We

witness roughly an order of magnitude of improvement in performance for the same amount

of samples. Primarily, we attribute this improvement to the fact that naive sampling only

collects binary values, whereas our proposed procedure collects much more dense information

over the entire span [T5, t].

We also analyze the relative efficiency of our estimator compared to naive sampling. For

each query asked, the efficiency was estimated using 5000 importance samples. The results

can be seen in Fig. 4.3b. We achieve a dramatic decrease in variance by several orders of

magnitude, in the majority of contexts, across all datasets. Interestingly, it appears that the

efficiency is correlated with the underlying ground truth value π. We believe this may be

due to the form of the importance sampling estimator: 1 − exp
(
−
∫ t

0
λ∗
k(s)ds

)
. Since the

intensity function is non-negative, it is simple for the model to produce estimates close to 0;

however, to producing values close to 1 requires the integral to tend towards infinity.

“A before B” Queries: Similar to the hitting time experiments, for “A before B” queries

we similarly sample 1000 random test sequences and condition on the first five events H[0,T5].

Then, we estimate the query P(hit(A) < hit(B) |H[0,T5]) where A and B are randomly chosen

to contain one third of the mark space M.

We compared estimating this query with naive sampling and importance sampling using

5All experiments evaluate necessary integrals with the trapezoidal rule. For more details, see Appendix B.2.

89

Figure 4.3: Results from 1000 different hitting time queries evaluated on models trained
on three different datasets. (a) Average relative absolute error for naive and importance
sampling shown in comparison to number of sampled sequences used. (b) Estimated relative
efficiency values for importance sampling versus naive sampling plotted against ground truth
hitting time query values. Gray dashed lines indicate an efficiency of 1. Red lines with text
box show the mean multiplicative increase in computation time for importance sampling.

90

varying amounts of samples: {2, 4, 10, 25, 50, 250}. We utilized the truncated importance

sampled estimator, Eq. (4.50), where τ is chosen dynamically for each sequence such that

a maximum difference of 0.01 is allowed between the upper and lower bounds. Mean RAE

compared to ground truth (estimated using naive sampling with 5,000 samples) can be

seen in Fig. 4.4a.6 Like the hitting time results, we can see roughly an order of magnitude

improvement in performance. Some results indicate that the limiting factor is the precision

threshold for choosing τ (e.g., see MovieLens results). We also see a similar variance reduction

relative to previous experiments, shown in Fig. 4.4b. Here, the runtime cost is much greater

as we have to accumulate an integral over an indefinite amount of time; however, we can see

that on average it is still very much “worth it” to utilize this framework over naive sampling

as evidenced by all of the blue dots above the red line.

Marginal Mark Distribution Queries: We additionally performed nth marginal mark

distribution queries in much the same vein as the hitting time queries. Due to space limita-

tions, the majority of the details and results can be found in Appendix B.2. That being said,

we found that the resulting relative efficiencies for these queries to be much less than those

of the other queries, but still more efficient than naive as Theorem 4.1 suggests. Across the

datasets, the median relative efficiency ranged from 1.9 to 2.7. We speculate this to be due

to the fact that the bounds of integration in the estimator are tied to sampled event times

rather than being static values, inducing quite a lot of potential variance in the estimator.

4.4.2 Synthetic Experiments

For artificial experiments, we wanted to investigate the trends of our estimation procedures

for a variety of queries over many different models—something that is difficult to do with

6Importance sampling would have been used for ground truth here; however, it is more sound to use an
unbiased estimator for ground truth.

91

Figure 4.4: Same setup as seen in Fig. 4.3 with the same models and datasets only applied to
“A before B” queries. Results for (b) are presented as “variance reduction” instead of “relative
efficiency” since our derived estimator for importance sampling is biased due to truncating
the integral in Eq. (4.50).

92

Figure 4.5: Average wall-clock time taken to generate a single sample under naive and
importance sampling for hitting time queries with 1,000 randomly instantiated paramet-
ric exponential-kernel Hawkes models with different scalings of “interaction strength” (i.e.,
amount of modeled cross-mark interaction).

real-world data as we typically only have access to one model trained on a given dataset. As

such, we primarily focus on randomly instantiated parametric Hawkes processes with both

exponential kernels and Gamma decay kernels. Under this setting, we were able to recreate

similar findings in terms of estimation error and efficiency for the types of queries evaluated

with real-world data. Refer to Appendix B.2 for more details and in depth results.

In addition to these expected results, we also sought to investigate how different aspects of

the underlying model affect the estimation procedure. In particular, we measured the average

wall-clock time taken to generate samples for naive estimation and importance sampling as a

function of how much cross-mark interaction is present. We modulate the interaction strength

in these generated models by changing the scale of the randomly generated mark-to-mark

intensity parameters. The results can be seen in Fig. 4.5 where we evaluated both estimation

procedures on random hitting time queries for 1,000 different generated models with each

across a span of interaction strengths. As more cross-mark excitement is encouraged by a

model, the runtime it takes to sample a sequence over the same observation window becomes

93

much longer in general; however, importance sampling counters this trend due to zeroing out

(potentially several) marked intensities via Q, thus barring events from happening. From

these results, we can see that our importance sampling procedure is more robust to the

underlying dynamics of a model over sampling windows fixed in time.

4.5 Conclusion

In this chapter, we extended the class of queries described in Chapter 3 to the continuous-

time setting. Additionally, a similar importance sampling technique was also introduced

for marked temporal point processes with relative efficiency guarantees derived. Extensive

experiments were conducted that showcase a definitive reduction in estimator variance, often

with several orders of magnitude difference compared to naive approaches.

The text of this chapter is based on the publication:

Probabilistic Querying of Continuous-Time Event Sequences [Boyd et al., 2023a].

The author of this dissertation is the primary author for this publication, and was responsible

for all theoretic contributions. Additionally, the author was responsible for implementing

and executing all experiments that involved neural MTPPs. Yuxin Chang contributed the

implementation and execution of the classical parametric-based MTPPs with oversight from

the author. Overall conception of the project and some of the writing was shared among all

authors.

94

Chapter 5

Marginalization of Marked Temporal

Point Processes to Account for

Censoring

An important practical aspect of working with real-world event data is that censoring of

observations can occur in a number of different ways. For example, a common example

of right-censoring often occurs in survival analysis (a sub-field of temporal point processes)

in which a patient’s event of interest is unobserved due to the end of a data collection

period. This particular type of censoring is well-studied and there are well-known methods

for accommodating this during training and inference. More recently, there has been work

on handling broader categories of censoring for neural MTPP models, for example, censoring

where each event has a type-specific probability of being missing [Mei et al., 2019].

In this chapter we focus on a different problem, the problem of making predictions when

some, or all, marks are censored over (potentially open-ended) intervals of time, i.e., there

is partial censoring of a specific subset of marks. We will refer to this type of censoring

95

as mark-censoring. To our knowledge, there has been no prior work that addresses this

problem of adapting MTPPs to mark-censored sequences at inference time. The problem is

motivated by the real-world scenario where an MTPP model has been trained on a known

set of marks with fully-observed data, but where at prediction time some of the marks (and

their associated timing) are no longer observable. For example, in medical data analysis,

certain types of events that were measured in the training dataset at a particular hospital

might no longer be recorded when the model is deployed at a different hospital. Or, in system

monitoring, all events of a certain type could be censored over a window of time due to events

such as network and power outages, and accommodating such gaps is important for modeling

future dynamics once outages are resolved.

Previous work such as Linderman et al. [2017] focuses on special cases of missingness patterns

and/or only applies to specific model architectures (as will be discussed in more detail in

Section 5.1). In contrast, our work is able to handle all of the scenarios shown in Figure 5.1.

The basis of our approach is a novel marginalization technique that can correct the intensity

for the censoring of marks. Our proposed method is model-agnostic in that it can be applied

to any MTPP with a well-defined intensity function. We demonstrate this by employing

our method on different types of MTPP models and evaluating predictive performance and

simulation behavior under a censored-mark regime.

5.1 Related Work

A broad range of temporal censoring scenarios have been studied in the literature, such as

asynchronous event times [Upadhyay et al., 2018, Trouleau et al., 2019] and interval-censored

point process data [Fan, 2009, Rizoiu et al., 2022]. Here we focus the discussion of related

work to MTPPs where the marks are from a fixed vocabulary. Existing work on missingness

in this context can broadly be divided into three categories.

96

Figure 5.1: Visualization of an example sequence with four possible marks. M is the
vocabulary of possible event types, Hk is the history of events with types equal to k. Boxes
over sequences represent different modes of censoring that could occur during generation:
(1) mark-agnostic censoring for a particular interval, (2) censoring of green and red marks
over an open interval, and (3) censoring of blue and orange marks over a finite interval.
The occurrence of an event or the total count of events during an interval is not known,
differentiating our scenarios from the typical “interval censoring” in survival analysis or
MTPPs.

The first category considers various incomplete intervals, regardless of event types, and focuses

on novel tasks such as imputing missing events and sequential representation learning. For

example, Shchur et al. [2020] proposed a flow-based mixture model that enables closed-form

sampling and handles missing data through imputation. Xu et al. [2017] assumes that a

proportion of each short doubly-censored event sequence is observed, and in turn proposes a

sampling-stitching data synthesis method based on parametric Hawkes processes to sample

long training sequences that improve predictions.

The second category considers the scenario in which each individual event, regardless of mark

or time of occurrence, has a chance of being censored. For the Hawkes process, for example,

sampling methods were developed to identify latent structure in the data [Shelton et al.,

2018] or to correct for biased marks that are underrepresented [Zhou and Sun, 2021]. In

neural settings, Gupta et al. [2021, 2022] proposed the use of two MTPPs to model missing

events in order to make better predictions. Mei et al. [2019] proposed bidirectional-LSTM

97

models that are conditioned on future observations to apply particle smoothing to impute

unobserved events.

The third category of prior work assumes that events are observed but the mark and/or the

exact event time is unknown. For instance, Deutsch and Ross [2020] developed an approximate

Bayesian algorithm to fit Hawkes processes in the presence of noisy event times, and Calderon

et al. [2021] addressed partially interval-censored Hawkes processes, where the total event

counts on the censored intervals are available. For the case of Hawkes models, Linderman

et al. [2017] imputed latent marks and developed a sequential Monte Carlo approach for

latent Hawkes processes that can also be applied to multiple types of censoring.

In summary, previous approaches to censoring in MTPPs either focus on specific types of

missingness mechanisms during training time or focus on one specific type of model such as

parametric or neural Hawkes process models. In contrast, our approach considers a broad

range of interval- and mark-censoring mechanisms (see Fig. 5.1) and is model-agnostic in

that it can work with any MTPP model with a marked intensity function at prediction time.

Furthermore, the results of our method yield a well-defined intensity function of a MTPP that

can be used just the same as any other MTPP, meaning various statistics can be computed

such as expected next event (time and mark), log likelihood of partially observed sequences,

etc.

5.2 Mark-Censored Temporal Point Processes

For relevant preliminary information such as notation and details on marked temporal point

processes (MTPPs), please refer to Section 4.2.

98

5.2.1 Problem Statement

Assume that we have access to a trained MTPP with intensity functions λ∗
k(t) for k ∈ M

which defines a probability measure P. We are interested in performing inference on such a

model in the presence of censoring. In particular, we are interested in a type of censoring

we term mark-censoring in which only events of types k ∈ O ⊂ M are observed, while all

events of types k ∈ C :=M\O are censored and unobserved. In particular, we assume in

mark-censoring that we know (a) the time-interval where censoring occurs and (b) which

kinds of marks are missing (e.g., knowing the time intervals and colors of marks in the

censoring boxes displayed in Fig. 5.1). Below we develop the framework for the case when

censoring takes place over all of time (i.e., t ∈ [0,∞)); however, as we will discuss later in

this section, the general approach can be directly applied to a range of more complicated

censoring schemes (such as those illustrated in Fig. 5.1).

On Censoring The term “censoring” can be quite a loaded concept with regards to

statistical models. In our work we assume the absence of certain marks over a time interval

to correspond to missing completely at random (MCAR) [Heitjan and Basu, 1996], i.e., we

assume that the realized sequenceH (both observed and unobserved portions) are independent

of why it is censored in the first place. We leave handling of more informative censoring to

future work.

5.2.2 Censored Intensity Function

Since we have access to the original MTPP, which models the entire distribution for event

sequences as a whole, embedded within this model is a well-defined sub-process that represents

an MTPP that only observes events of types k ∈ O. We refer to this embedded model as a

mark-censored sub-process. This sub-process can be thought of as the original model with the

99

Figure 5.2: Intensity visualizations (lines) alongside conditioned sequences (dots) for a se-
quence sampled from a self-correcting point process (top), the same process with blue marks
censored from time 3 to 7 (middle), and the naive intensity results for the censored sequence
(bottom). The middle sequence displays both the observed sequence as opaque dots and the
various censored continuations sampled from the importance distribution as transparent dots.
Note that the intensity of the censored mark (blue) after the censoring interval (at time 7)
does not necessarily equal the intensity before censoring (at time 3).

100

censored information marginalized out of it. Had this sub-process been our intended model

from the beginning, we could have achieved comparable results by censoring the original

training data and training a model on what remains. There is one key difference, however,

which is that the mark-censored sub-process still allows for conditioning on events of types C

even if they are censored moving forward in time (e.g., in the case that the censoring interval

only started at time t > 0 instead of at t = 0—see case 3 in Fig. 5.1).

The censored sub-process is a fully-fledged MTPP, and as such it has its own set of marked

intensity functions. We will denote these as λ∗
k(t) for k ∈ O (should k ∈ C then λ∗

k(t) = 0).

Likewise, the total intensity for a censored sub-process is defined as λ∗(t) := λ∗
O(t). These

will be referred to as the censored intensity from here forward. Note that for any MTPP with

well-defined intensity functions λ∗
k, by the point process superposition property it is justified

for the censored intensity λ∗
k to exist for any arbitrary censoring [Daley and Vere-Jones, 2003].

High Level Intuition for Censored Intensity Later in this section we will present a

formal definition of the censored intensity, as well as a tractable estimator for it that solely

relies on the original underlying MTPP with likelihood LP and intensity λ∗
k(t) functions for

k ∈ M. However, prior to presenting these, we will first give an informal overview to help

understand the arguments at a high level.

We start by recognizing that we are interested in obtaining the intensity at time t for a

censored point process where we only observe events of types k ∈ O and no events of

types k ∈ C. To accomplish this, we would prefer to directly marginalize out all possible

sequences of HC
t ; however, for most MTPPs this is unobtainable analytically. Instead, we

can approximate the censored intensity λ∗
k(t) for k ∈ O with the original intensity by simply

sampling a possible sequence H̃C
t− from the original point process:

λ∗
k(t) ≈ λk(t |HO

t−, H̃C
t−), (5.1)

101

where H̃C
t− ∼ P(· |HO

t−). Naturally, we cannot directly perform this sampling, so we will do

the next best thing and simply sample from the model as usual except that we will prevent

any new event with types k ∈ O from occurring (i.e., set λ∗
k(t) = 0 when sampling).

To get a better approximation, this should be done many times with different sampled

trajectories: H̃C,(i)
t− for i = 1, . . . , n. One could simply compute a standard average where

λ∗
k(t) ≈ 1/n

∑n
i=1 λk(t |HO

t−, H̃C,(i)
t−); however, since we did not sample H̃C,(i)

t− perfectly from

the model without adjustments we must account for the fact that some samples will be more

likely under the original model than others.

As such, we can instead perform a weighted average:

λ∗
k(t) ≈

∑n
i=1 λk

(
t |HO

t−, H̃C,(i)
t−

)
ω
(
H̃C,(i)

t−

)
∑n

i=1 ω
(
H̃C,(i)

t−

) (5.2)

where ω(·) determines the weight of a sampled trajectory. We define this weight to be the

probability of the imposed sampling restriction (i.e., no new events of types k ∈ O allowed)

being satisfied under the original model. This can be computed for a given sample and is

equal to

ω(H̃C
t−) = exp

(
−
∫ t

0

λO(s |HO
s−, H̃C

s−ds

)
. (5.3)

As an illustration of this censored intensity λ∗
k(t), Fig. 5.2 shows the original, censored, and

naive intensities for an example sequence sampled from a self-correcting process. After the

censoring interval (in gray) ends at t = 7, the censored intensity tracks the original true

intensity (top) much more closely than the naive intensity (bottom) does. In this context,

naive intensity is referring to the original intensity being computed while treating the partially

observed sequence HO as if it were the fully observed sequence H.

102

The approximation of λ∗
k(t) is for finite samples and is a ratio estimator [Tin, 1965]. Taking

the limit as n → ∞ converts each summation into an expected value with respect to the

proposal distribution, as ratio estimators are consistent. This description matches what will

formally be derived below in Eq. (5.22).

Formal Definition of λ Without loss of generality, we will assume that any prior events

being conditioned on have been shifted to end at t = 0 such that H0 contains all of the

previous events. It can be shown that the censored intensity function for the sub-process is

just a specific marginalization of the original intensity function:

λ∗
k(t) := λk(t |H0,HO

(0,t) = ∅) for k ∈ O (5.4)

= lim
∆↓0

1

∆
P(hit(k) ∈ [t, t + ∆) |H0,HO

(0,t) = ∅) (5.5)

= lim
∆↓0

1

∆
EP

HC
(0,t)

|H0,HO
(0,t)

=∅
[
P(hit(k) ∈ [t, t + ∆) |H0,HO

(0,t) = ∅,HC
(0,t))

]
(5.6)

= lim
∆↓0

1

∆
EP

Ht− |H0,HO
(0,t)

=∅ [P(Ti ∈ [t, t + ∆),Mi = k |Ht−)] , where |Ht−| = i− 1 (5.7)

= EP
Ht− |H0,HO

(0,t)
=∅

[
lim
∆↓0

1

∆
P(Ti ∈ [t, t + ∆),Mi = k |Ht−)

]
by DCT (5.8)

= EP
Ht− |H0,HO

(0,t)
=∅ [λ∗

k(t)] (5.9)

where in this context, hit(k) refers to the first occurrence time of event k after t = 0, and

Ht− := H0∪HO
(0,t)∪HC

(0,t). The Dominated Convergence Theorem (DCT) holds true because

we assume that there exists some value D that is greater than λ∗
k(t) for any given t. Note

that this assumption is typically made to sample from arbitrary MTPPs.

5.2.3 Tractable Estimation of Censored Intensity

To approximate the censored intensity function λ∗
k(t), we need to perform a Monte Carlo

estimation on the above derived expected value, EP
Ht− |H0,HO

(0,t)
=∅ [λ∗

k(t)]. The only issue is

103

that we cannot directly sample Ht− |H0,HO
(0,t) = ∅ under P due to the autoregressive nature

of MTPPs.1

Consider the proposal measure Q defined by a MTPP with intensity function

µ∗
k(t) =


0 if k ∈ O and t ≥ 0

λ∗
k(t) otherwise.

(5.10)

This can essentially be thought of as the original MTPP prior to censoring, and then during

sampling it only produces sequences of events that cannot be observed. The likelihood for a

sequence under this distribution is computed as follows:

LQ(Ht− |H0) (5.11)

=

[
N∏
i=1

µ∗
Mi

(Ti)

]
exp

(
−
∫ t

0

µ∗(s)ds

)
(5.12)

=

[
N∏
i=1

λ∗
Mi

(Ti)1(Mi ∈ C)
]

exp

(
−
∫ t

0

λ∗
C(s)ds

)
(5.13)

where |H(0,t)| = |HC
(0,t)| = N . Note that the proposal distribution has the same support as P

for Ht− |H0,HO
(0,t) = ∅.2

Using importance sampling with this proposal distribution, we can see that the censored

intensity becomes tractable:

λ∗
k(t) = EP

Ht− |H0,HO
(0,t)

=∅ [λ∗
k(t)] (5.14)

= EQ
Ht− |H0

[
λ∗
k(t)
LP(Ht− |H0,HO

(0,t) = ∅)
LQ(Ht− |H0)

]
(5.15)

= EQ
Ht− |H0

[
λ∗
k(t)

1(HO
(0,t) = ∅)LP(Ht− |H0)

P(HO
(0,t) = ∅|H0)LQ(Ht− |H0)

]
(5.16)

1Due to the conditionals, sampling Ht− |H0,HO
(0,t) = ∅ is equivalent to sampling HC

(0,t) |H0,HO
(0,t) = ∅.

2It follows that EQ
Ht− |H0

[
1(HO

(0,t) = ∅)
]
= 1, which becomes useful for subsequent derivations.

104

=

EQ
Ht− |H0

[
λ∗
k(t)

[
∏N

i=1 λ
∗
Mi

(Ti)] exp(−
∫ t
0 λ∗(s)ds)[∏N

i=1 λ
∗
Mi

(Ti)1(Mi∈C)
]
exp(−

∫ t
0 λ∗

C(s)ds)

]
P(HO

(0,t) = ∅|H0)
(5.17)

=
EQ

Ht− |H0

[
λ∗
k(t) exp

(
−
∫ t

0
λ∗
O(s)ds

)]
P(HO

(0,t) = ∅|H0)
. (5.18)

Now the expected value can be approximated with easy-to-access Monte Carlo samples. The

only immediate problem is evaluating P(HO
(0,t) = ∅|H0) as this does not have a closed form

solution; however, this statement takes the form of a restricted-mark probabilistic query

introduced in Section 4.3.3. Conveniently, we can actually utilize the exact same proposal

measure Q as specified in Eqs. (5.10) and (5.11) to represent P(HO
(0,t) = ∅|H0) as a tractable

expected value:

P(HO
(0,t) = ∅|H0) = EP

Ht− |H0

[
1(HO

(0,t) = ∅)
]

(5.19)

= EQ
Ht− |H0

[
1(HO

(0,t) = ∅)L
P(Ht− |H0)

LQ(Ht− |H0

)

]
(5.20)

= EQ
Ht− |H0

[
exp

(
−
∫ t

0

λ∗
O(s)ds

)]
. (5.21)

Thus, the censored intensity can be ultimately represented as a ratio of two expected values:

=⇒ λ∗
k(t) =

EQ
Ht− |H0

[
λ∗
k(t) exp

(
−
∫ t

0
λ∗
O(s)ds

)]
EQ

Ht− |H0

[
exp

(
−
∫ t

0
λ∗
O(s)ds

)] . (5.22)

In practice, this censored intensity can be approximated using Monte Carlo (MC) estimates

for both the numerator and denominator.

It is worth reiterating that this estimator, which accounts for the censoring of marks C at

inference time, only requires a trained MTPP along with samples from it. No further training,

additional models, or specific architectures are required to properly deal with the censoring.

105

More Complex Censoring Regimes All of the derivations thus far have been focused

on having a static set of marks C being censored for an indefinite amount of time; however,

there are many other types of censoring that can occur for a given MTPP. For example,

the censoring could occur over a specific window of time for either some or all marks M.

This could occur, for instance, in settings where the connection is briefly lost to some or

all sensors in a system. Furthermore, censoring could occur multiple times over different

windows, and the marks being censored across each window need not be the same from

censoring to censoring. See Fig. 5.1 for example censoring scenarios.

We can easily extend our previous results to cover the most general case allowing for censoring

over arbitrarily many time windows and arbitrarily different censored marks. To do so, first

we will define the censoring schedule. The observed and censored marks, O and C, are

no longer static and will potentially change over time. This will be represented via the

set-valued functions O(t), C(t) ⊂ M for t ≥ 0. This results in the proposal MTPP now

being characterized by the intensity function µ∗
k(t) = λ∗

k(t)1(k ∈ C(t)). Lastly, the resulting

censored intensity estimate also accommodates this dynamic censoring:

λ∗
k(t) =

EQ
Ht− |H0

[
λ∗
k(t) exp

(
−
∫ t

0
λ∗
O(s)(s)ds

)]
EQ

Ht− |H0

[
exp

(
−
∫ t

0
λ∗
O(s)(s)ds

)] . (5.23)

This result is achieved effectively for free as the censored intensity λ∗
k(t) in the static setting

is technically defined individually for any given moment in time t, making the swap from O

to O(t) and C to C(t) for each t well defined.

More Complex Mark Spaces M Our setting of interest has the marks being modeled

come from some discrete, finite mark space M := {1, . . . ,M}; however, that does not have

to be the case. We can easily extend our method to apply for more complex mark spaces.

Consider an arbitrary mark spaceM which could be finite, continuous, high-dimensional, etc.

106

and let ν be a reference measure for M (e.g., the Lebesgue measure for M ≡ R). Assume

we have a MTPP model with marked intensity function λ∗(t,m) for m ∈M, and that under

our framework we know the observed and censored portions of the mark space at any given

time, O(t) ⊂M and C(t) :=M\O(t) respectively. From this, the censored intensity defined

in Eq. (5.22) can be readily used by letting λ∗
O(t)(t) :=

∫
O(t)

λ∗(t,m)dν(m) which can either

be computed analytically or estimated with Monte-Carlo samples. The proposal distribution

stays the same as previously defined and samples from it can be achieved easily using either

rejection sampling on top of the typical thinning procedure.

Bias and Variance Analysis of Censored Intensity Estimator In practice, the nu-

merator and denominator of Eq. (5.22) are estimated with Monte-Carlo samples, resulting

in the following approximation:

λ∗
k(t) ≈

1
M

∑M
i=1 λk(t |H(i)

t) exp
(
−
∫ t

0

∑
k′∈O λk′(s |H(i)

s)ds
)

1
M ′

∑M ′

j=1 exp
(
−
∫ t

0

∑
k′∈O λk′(s |H(j)

s)ds
) (5.24)

where H(i)
t ,H(j)

t
iid∼ LQ for i = 1, . . . ,M and j = 1, . . . ,M ′.3 For simplicity, we typically set

M = M ′. This estimator is what is typically referred to as a ratio estimator, and while it is

consistent unfortunately for finite samples it is biased.

To see in what way this is biased, we will recast this form into a more general format. Consider

random variables X, {Xi}Mi=1, {X ′
j}M

′
j=1

iid∼ pX with support X under measure P, and functions

f : X → R+,0 and g : X → [0, 1]. We assume the mean and variance of both f(X)g(X) (µfg

and σ2
fg respectively) and g(X) (µg and σ2

g) exist and that µfg > 0 and µg ∈ (0, 1). This

implies that the quantity of interest
µfg

µg
:= E[f(X)g(X)]

E[g(X)]
is well defined. We now can investigate

the bias of a finite sample ratio estimator through a second-order Taylor series expansion

3These are complete histories and the notation for indexing different samples should not be confused with

the notation for mark-specific histories. To be explicit, H(i)
t ≡ HM,(i)

t .

107

around
µfg

µg
:

EP

[
1
M

∑M
i=1 f(Xi)g(Xi)

1
M ′

∑M ′

j=1 g(X ′
j)

]
≈

EP
[

1
M

∑M
i=1 f(Xi)g(Xi)

]
EP
[

1
M ′

∑M ′

j=1 g(X ′
j)
]

−
CovP

(
1
M

∑M
i=1 f(Xi)g(Xi),

1
M ′

∑M ′

j=1 g(X ′
j)
)

EP
[

1
M ′

∑M ′

j=1 g(X ′
j)
]2

+
VarP

(
1
M ′

∑M ′

j=1 g(X ′
j)
)
EP
[

1
M

∑M
i=1 f(Xi)g(Xi)

]
EP
[

1
M ′

∑M ′

j=1 g(X ′
j)
]3 (5.25)

=
µfg

µg

−
∑M

i=1

∑M ′

j=1 CovP (f(Xi)g(Xi), g(X ′
j)
)

MM ′µ2
g

+
VarP (g(X))µfg

M ′µ3
g

(5.26)

=
µfg

µg

+
σ2
gµfg

M ′µ3
g

since Xi ⊥ X ′
j (5.27)

Likewise, the variance of the ratio estimator can also be approximated with a second-order

Taylor series expansion around
µfg

µg
:

VarP

(
1
M

∑M
i=1 f(Xi)g(Xi)

1
M ′

∑M ′

j=1 g(X ′
j)

)
≈

VarP
(

1
M

∑M
i=1 f(Xi)g(Xi)

)
EP
[

1
M ′

∑M ′

j=1 g(X ′
j)
]2

−
2CovP

(
1
M

∑M
i=1 f(Xi)g(Xi),

1
M ′

∑M ′

j=1 g(X ′
j)
)
EP
[

1
M

∑M
i=1 f(Xi)g(Xi)

]
EP
[

1
M ′

∑M ′

j=1 g(X ′
j)
]3

+
VarP

(
1
M ′

∑M ′

j=1 g(X ′
j)
)
EP
[

1
M

∑M
i=1 f(Xi)g(Xi)

]2
EP
[

1
M ′

∑M ′

j=1 g(X ′
j)
]4 (5.28)

=
σ2
fg

Mµ2
g

−
2µfg

∑M
i=1

∑M ′

j=1 CovP (f(Xi)g(Xi), g(X ′
j)
)

MM ′µ3
g

+
σ2
gµ

2
fg

M ′µ4
g

(5.29)

=
σ2
fg

Mµ2
g

+
σ2
gµ

2
fg

M ′µ4
g

since Xi ⊥ X ′
j. (5.30)

It can be tempting to consider reusing samples for both the numerator and the denominator

(i.e., M = M ′ and Xi = X ′
i for i = 1, . . . ,M) as this would save in the amount of computations

108

needed for computing the ratio estimate. This would result in the following expected value

and variance of the estimator:

EP

[
1
M

∑M
i=1 f(Xi)g(Xi)

1
M

∑M
j=1 g(Xj)

]
(5.31)

≈ µfg

µg

−
∑M

i=1

∑M
j=1 CovP (f(Xi)g(Xi), g(Xj))

M2µ2
g

+
σ2
gµfg

Mµ3
g

(5.32)

=
µfg

µg

− CovP (f(X)g(X), g(X))

Mµ2
g

+
σ2
gµfg

Mµ3
g

(5.33)

VarP

(
1
M

∑M
i=1 f(Xi)g(Xi)

1
M

∑M
j=1 g(Xj)

)
(5.34)

≈
σ2
fg

Mµ2
g

−
2µfg

∑M
i=1

∑M
j=1 CovP (f(Xi)g(Xi), g(Xj))

M2µ3
g

+
σ2
gµ

2
fg

Mµ4
g

(5.35)

=
σ2
fg

Mµ2
g

− 2µfgCovP (f(X)g(X), g(X))

Mµ3
g

+
σ2
gµ

2
fg

Mµ4
g

. (5.36)

Either forms of the expected values of the estimators can be used to help us correct for the

bias by simply moving all terms on the right that are not
µfg

µg
to the left. Interestingly, we

can see that there is potential for reusing samples to not only save on computation, but to

also reduce the variance of the estimator. Should CovP(f(X)g(X), g(X)) > 0, which is often

the case in practice, then the variance will be reduced.

5.3 Experiments

We investigate experimentally the impact that mark-censoring has on various MTPP models

and the ability of our proposed marginalization method to handle such censoring relative

to baseline. Our investigations are carried out across both classical parametric models and

neural network-based models on both synthetic and real-world data, respectively. We find, as

a whole, that in the presence of mark-censoring, the inference ability of a model (i.e., assigning

109

likelihood to observed sequences) suffers significantly in comparison to properly accounting

for the missing data via our method. Not surprisingly, we also find that our method yields

larger improvements as the information being censored becomes more influential with respect

to the information observed.

We also investigate the effect that mark-censoring has on next event (time and mark) pre-

diction. We observe in general systematic differences that our mark-censored model has on

these predictions, with positive improvements in real-world settings. Lastly, we also perform

a sensitivity analysis on the effect of both the number of sequences sampled as well as the

resolution used in estimating integrals has on our method. We find that our method is

typically fairly robust to these hyperparameters. More details and exact results for both of

these experiments can be found in Appendix C.1.

Censoring In each of the experiments, we analyze the performance of models using various

sequences Hτ of differing lengths τ . For the synthetic setting, we utilize sequences that have

been drawn from the given models. For the real-world data, we use held-out sequences from

the dataset that a given model was trained on.

For every sequence being used, we filter out events according to a particular censoring scheme

that is selected for each sequence individually to produce HO
τ . To ensure that the chosen

censoring scheme is relevant for a given sequence, we randomly select a non-empty subset

C(t) of the unique marks that actually appear in Hτ for t ∈ [0, T]. The proportion of marks

to censor, relative to the total number of unique marks in each sequence Hτ , which we will

refer to as γ, is varied based on the particular sequence for the experiment being conducted.

It is important to note that since information in Hτ is informing the censoring scheme C that

we technically no longer have data that is MCAR. As we will see, in spite of violating this

assumption the mark-censored model still yields substantial performance gains.

110

Methods & Metric of Interest For the main set of experiments, we primarily compared

two approaches. Both rely on an existing MTPP and are used to calculate the likelihood of

a given observed sequence HO
τ .4

The first approach is our proposed mark-censored model, using λ∗
k for k ∈ O. Since this is

a well-defined MTPP, we can calculate the likelihood of HO
τ using Eq. (4.4) in conjunction

with the censored intensity. Results for this method will be labeled as “Censored.” Synthetic

and real-world experiments use 128 and 64 MC samples to estimate the censored intensity

respectively; both use 1024 integration points for numerically estimating integrals.

The second approach is a baseline method for comparison, based on a slight adaptation to

the original model that takes advantage of knowing what marks are being censored for a

given sequence. This method uses the original intensity λ∗
k(t) for k ∈ O and sets the intensity

to be 0 when k ∈ C. Results for this method will be labeled as “Baseline.” In general, we

expect the two methods to be comparable should P(HC
τ = ∅ |HO

τ) ≈ 0 as the two methods

would produce similar intensity values.

We do not include results where we evaluate the likelihood of the observed sequence HO
τ as if

it were a fully observed, uncensored sequence under the original model. Since intensity values

are always non-negative, likelihood values using this approach will never be better than the

baseline. Because of this, we only compare against the baseline as it effectively captures the

original model’s inference capabilities while still managing to leverage information about the

mark-specific censoring scheme to some degree. Note also that none of the methods discussed

earlier in Related Work are used as baselines since none are applicable to mark-censoring

and model-agnostic.

Results are reported as likelihood ratios between the censored method and the baseline

4Previous works are not compared against in these experiments due to them largely having different goals
and setups (such as learning from censored data during training time or imputing missing data), as well as
typically not having a proper likelihood.

111

method for individual observed sequences. These ratios directly quantify how much more

likely the censored method perceives a sequence to be relative to the baseline. Values above

1 are evidence in favor of the censored method, and below 1 for the baseline. It should be

noted that the sequences used in these experiments are censored over the entire observation

window [0, τ].

5.3.1 Experiments on Synthetic Data

Models We evaluate our method on randomly instantiated parametric MTPPs including

Hawkes processes [Hawkes, 1971] and self-correcting processes [Isham and Westcott, 1979]

(also known as stress release model [Zheng and Vere-Jones, 1991]), where the sampled se-

quences are evaluated on the same model.

For Hawkes processes with exponential kernels, the intensity has the form λ∗
k(t) = µk +∑

T,M∈Hτ
ϕM,k(t − T). The kernel can be expressed as ϕi,j(z) = αij exp(−βijz), where

parameters αij, βij > 0 for i, j ∈M specify the excitation effects and decay rates respectively

that events of type i have on events of type j. We consider two different instantiations of this

type of model; both with 20 marks. We refer to the first type as “Hawkes (dense)” with all

parameters drawn from the following distributions: αij
iid∼ Unif[0.075, 0.2], βij

iid∼ Unif[0.4, 1.2],

and µk
iid∼ Unif[0.1, 0.5]. To better emulate realistic settings in which events correlate strongly

with other events of certain types, we also consider a sparsely-parameterized version which we

refer to as “Hawkes (block-diagonal)” [Wu et al., 2021]. This model is instantiated by drawing

αij
iid∼ Unif[0.3, 0.8] when ⌊ i−1

5
⌋ = ⌊ j−1

5
⌋ and αij = 0 otherwise.5 This effectively imposes a

block-diagonal structure on the matrix {αij}, resulting in four subgroups of correlated marks.

Values for µ and β are drawn similarly to the dense model.

5Note that different ranges of values were chosen for α between the dense and block-diagonal Hawkes
models to normalize the effective rate of events overall. This is done by, in expectation, having the same
values for

∑
i∈M αij .

112

5 10

100

105

1010

L
ik

el
ih

o
o
d

R
a
ti

o Self-Correcting

5 10 15

100

102

104

L
ik

el
ih

o
o
d

R
a
ti

o Hawkes
(dense)

5 10 15
Marks Censored

100

102

L
ik

el
ih

o
o
d

R
a
ti

o Hawkes
(block-diagonal)

Figure 5.3: Distributions of likelihood ratios across number of marks censored for the duration
of the sequences used for synthetic experiments with self-correcting, Hawkes (dense), and
Hawkes (block-diagonal) models. Values greater than 1 indicate higher likelihoods under the
mark-censored model.

113

0.0 0.2 0.4 0.6 0.8 1.0
Interaction Strength c

100

105

1010

L
ik

el
ih

o
o
d

R
a
ti

o

Hawkes (block-diagonal)

Figure 5.4: Distributions of likelihood ratios for a block-diagonal Hawkes model with varying
interaction strengths applied to off-diagonal α terms. Values greater than 1 indicate higher
likelihoods under the mark-censored model compared to the baseline.

In contrast, self-correcting processes are characterized by a growing intensity that is damp-

ened when an event occurs. This is formally defined by the intensity function λ∗
k(t) =

exp
(
ηkt−

∑
T,M∈Hτ

δMk

)
, where δMk > 0 determines the inhibition that past events of type

M have on future events of type k. The model used for this class also has 20 marks and is

instantiated by drawing weights δij
iid∼ Unif[0.3, 0.8]. Values for η are drawn similarly to µ.

Results We evaluated the likelihood ratio of 1000 censored sequences on all three models

with interaction strength fixed at 0.5 (a scalar that controls the interaction between events

of different types) for each value γ ∈ {0.2, 0.4, 0.6, 0.8}. Each sequence prior to censoring

was sampled from each model (self-correcting, Hawkes (dense), and Hawkes (block-diagonal))

over the time window t ∈ [0, 2] and contains at most 200 events. These results are shown

in Fig. 5.3, where the likelihood ratio of the censored method compared to the baseline is

visualized with respect to the number of marks censored. We see a systematic improvement in

the estimated likelihood when using the mark-censored model. Furthermore, the improvement

increases as more information is censored; however, it is clear that the improvement depends

114

Figure 5.5: Same setup as Fig. 5.3 except with results produced on four real-world datasets
with trained neural Hawkes models. Note that we display the results with respect to the
absolute amount of marks censored rather than the percentage censored as we suspect this
has a more direct impact on the likelihood ratios, especially when dealing with sequences
that naturally have few unique marks compared to the total mark spaceM—as is typical in
real datasets.

115

on the relationship between events and the underlying model dynamics (i.e., the form of λ)

as noted by the difference in results between models.

To further investigate this, for the block-diagonal Hawkes model we artificially modulate

the interaction strength between events of different types. To do this, we performed the

same likelihood ratio evaluation on 1000 sequences with γ = 0.5 using the same block-

diagonal Hawkes model but with α′
ij := cαij if i ̸= j and αij otherwise for each value of

c ∈ {0.1, 0.2, . . . , 1.0}. This results in 10 different models that have the same diagonal values

in α but different scales of off-diagonal values. The results in Fig. 5.4 clearly demonstrate

that properly accommodating mark-censored sequences yields the biggest impact when there

is high correlation between observed and censored events.

5.3.2 Experiments on Real-World Data

Models Many real-world data involve working with large vocabularies of possible marks,

|M| = K. Because of this, it can often be more parameter efficient to train a neural network

based MTPP rather than a classical parametric one. The model architecture of choice for our

experiments is the neural Hawkes process, a continuous-time RNN that takes inspiration from

the parametric Hawkes process [Mei and Eisner, 2017]. Details on model hyperparameters,

optimizer, training regime, etc. can be found in Appendix C.1.

Datasets We evaluate our censoring method on neural Hawkes models that have been

trained individually on four different datasets. The Taobao user behavior dataset [Zhu et al.,

2018] contains page-viewing records of different categories (K = 1000) from users on an e-

commerce platform. The Reddit dataset [Baumgartner et al., 2020] contains comments that

users have made on various communities (K = 1000) on the social media website reddit.com.

MemeTracker [Leskovec et al., 2009] contains records of what websites (K = 5000) a

116

reddit.com

common phrase, or meme, was mentioned on over time. Lastly, the Email [Paranjape

et al., 2017] dataset contains sequences of sender addresses of incoming emails (K = 808) for

each recipient within a research organization. More information on various aspects of these

datasets and details of data preprocessing can be found in Appendix C.1. The following

results are achieved using models that have been sufficiently trained on their respective

datasets.

Results We evaluated the likelihood ratio of 1000 held out, censored sequences for each

dataset for each value γ ∈ {0.2, 0.4, 0.5, 0.6, 0.8}. The results are shown in Fig. 5.5. Similar

to the results in the synthetic experiments, we see a systematic trend towards a large

improvement in likelihood over censored sequences across the board. This improvement

increases significantly as more marks are censored.

5.4 Conclusion

In this chapter, we derived a tractable method for marginalizing over missing information

with MTPPs which is the first to do so for generic intensity-based MTPPs. Empirical

investigations were conducted to confirm the predictive abilities of MTPPs when adjusting

for missing information.

The text of this chapter is based on the publication:

Inference for mark-censored temporal point processes [Boyd et al., 2023b].

The author of this dissertation is the primary author for this publication, and was responsible

for all theoretic contributions. Additionally, the author was responsible for implementing

and executing all experiments that involved neural MTPPs. Yuxin Chang contributed the

implementation and execution of the classical parametric-based MTPPs with oversight from

117

the author. Overall conception of the project and some of the writing was shared among all

authors.

118

Chapter 6

Generalized Hitting Times and their

Approximated Distributions for

Stochastic Jump Processes

Many real-world phenomena exhibit both continuous trends and sudden jumps. For example,

stock prices often display gradual fluctuations with occasional spikes or dips due to economic

events. Similarly, molecular simulations track particle movements and energy states over time

with sudden changes exhibited during chemical reactions or phase transitions. Climate trends

demonstrate comparable patterns, with gradual variations punctuated by natural disasters

causing drastic and immediate shifts in measurement readings. Stochastic jump processes

model these dynamics, combining continuous processes for the ”between-jump” periods with

marked temporal point processes for the jumps themselves. Within these various fields,

understanding long-term dynamics is crucial for various forecasting and prediction tasks.

Traditional hitting times provide valuable insights, but their limitations often oppose a more

comprehensive analysis.

119

This chapter introduces generalized hitting times, extending their scope and expressiveness

for autoregressive models like stochastic jump processes. Following prior work from earlier

chapters on hitting times, we address their inability to capture diverse events like the nth

passage time or exiting a region of interest. We propose novel estimators, including extensions

of the importance sampling techniques from previous chapters, to answer various queries

involving these generalized hitting times. These queries can even involve compositions of

hitting times, allowing us to estimate, for example, the likelihood of specific regions being

hit in a particular order. Notably, we achieve tractable estimation of joint distributions over

multiple hitting times.

Building upon the efficient estimation methods developed in this dissertation, this chapter

significantly expands the range of information accessible from autoregressive models. The

framework and results presented here pave the way for deeper exploration of complex dynamics

in various real-world applications. Crucially, as with prior results, all proposed estimators

only require access to the predicted next-step distributions and the ability to sample from

the process itself, ensuring applicability without introducing additional learning or training

burdens.

6.1 Related Work

Stochastic Jump Processes Due to their inherent expressivity and flexibility, stochas-

tic jump processes have been found to be useful across a variety of diverse domains. By

encompassing both continuous stochastic processes and marked temporal point processes

as special cases, they offer a powerful framework for modeling phenomena exhibiting both

smooth trends and abrupt jumps [Woyczyński, 2022].

Some prominent examples include:

120

• Finance: Analyzing stock prices and options leverage jump processes to capture sudden

fluctuations and market crashes [Kijima, 2002, Rolski et al., 2009, Platen and Bruti-

Liberati, 2010, Zhu et al., 2021].

• Molecular Biology: Simulating molecular and particle interactions utilize jump pro-

cesses to model discrete events like chemical reactions and phase transitions [Goss and

Peccoud, 1998, Gillespie, 2007, Székely Jr and Burrage, 2014, Ganguly et al., 2015].

• Climate Science: Predicting climate and weather patterns employs jump processes

to represent sudden shifts due to extreme events like storms or heatwaves [Majda et al.,

2008, Tang and Chang, 2016, Alinsato et al., 2023].

• Network Science: Forecasting network usage benefits from jump processes to model

bursts and congestion [Frost and Melamed, 1994, Klemm et al., 2003].

• Transportation Engineering: Modeling traffic and transportation flow often involves

jump processes to represent accidents, lane changes, and other discrete events [Li et al.,

2014, Antoine Tordeux and Lassarre, 2014].

• Epidemiology: Understanding epidemic outbreaks utilizes jump processes to capture

the discrete nature of transmission events [Greenwood and Gordillo, 2009, Dieu et al.,

2020, Albani and Zubelli, 2024].

Analysis of Stochastic Processes Hitting Times Hitting times, also known as first

passage times, are the random moments when a process enters a specified region for the first

time. While some works focus on the moments of hitting times (e.g., Weiss et al. [1983],

Schäl [1993], Aspandiiarov et al. [1996], Gitterman [2000], Szpruch and Higham [2010]), many

tackle the more difficult task of analyzing their distribution across time.

For specific classes of stochastic processes, analytical solutions or bounds exist (e.g., Ricciardi

and Sato [1988], Salminen [1988], Rogers and Williams [2000], Byczkowski et al. [2013],

121

Aurzada and Kramm [2016], Lefebvre [2023]). However, for many other types of stochastic

processes, analytical solutions or bounds are not available. For instance, hitting time densities

in diffusion models can be expressed as Volterra integral equations, which lack guaranteed

solutions [Jáimez et al., 1995, Gutiérrez et al., 1997, Lipton and Kaushansky, 2020]. In

stochastic jump processes, analytic solutions are even rarer beyond exceptional cases like

single and double exponential jump diffusions [Lefebvre, 2021, Kou and Wang, 2003].

Similar to hitting times, exit times capture the first departure from a previously entered

region. Their analysis is even more complex due to dependence on the process history.1

This often necessitates additional assumptions for obtaining analytical or numerical results

[Gärtner, 1982, Yin et al., 2013, Burch et al., 2014].

Numerical approaches become necessary where analytics fail. Existing methods often impose

restrictive assumptions: enforcing independence between continuous segments and jumps

[Herrmann and Massin, 2023], limiting the class of process considered [Metwally and Atiya,

2002, Ross and Ghamami, 2010, Zhang and Geng, 2017], assuming full processes are fully

Markov [Pollock, 2013], or excluding jumps entirely [Maćıas-Dı́az, 2020].

To our knowledge, no general framework aside from naive Monte Carlo simulation exists for

numerically estimating hitting time distributions in stochastic jump processes, nor for exit

times (leaving a region after entering it) and other more complex random times. This chapter

bridges this gap by proposing sampling-based estimation procedures applicable to a broad

range of stochastic jump processes with minimal assumptions made.

1One can see this dependence by noting that a process cannot leave a region that it has not entered before.

122

6.2 Preliminaries & Setting of Interest

6.2.1 Stochastic Jump Process

Let (Ω,F ,P) be a probability space equipped with a complete filtration (Ft)t≥0 such that

F∞ := F . Under this probability space, let X : Ω× [0,∞]→ X be a predictable stochastic

jump process adapted to (Ft)t≥0 where X is the domain of the process (typically finite and

real-valued, e.g., Rd). The process itself will be referred to as either Xt(ω) or Xt for t ∈ [0,∞]

and ω ∈ Ω.

We focus on a specific class of stochastic jump processes. These processes exhibit continuous

segments described by stochastic differential equations (SDEs) and discrete jumps governed by

marked temporal point processes. Mathematically, the instantaneous changes are represented

by:

dXt := µ(t,Xt−)dt + σ(t,Xt−)dWt + ν(t,Xt−,MNt)dNt. (6.1)

Here, µ denotes the drift function, σ the scaling function, and ν the jump function. The

process X is driven by Brownian motion W := (Wt)t≥0 with the same dimensionality as the

state space |X |. Additionally, it is influenced by the counting process N := (Nt)t≥0 which

generates a mark Mi ∈M at jump time Si for i ∈ N. The counting process corresponds to a

marked temporal point process with a marked intensity process λ(m) := (λt(m))t≥0 defined

for m ∈M within mark-spaceM. We posit that the intensity process, like X, is adapted to

the filtration (Ft)t≥0. The process X as a whole can be similarly described via

Xt = X0 +

∫ t

0

µ(s,Xs−)dt +

∫ t

0

σ(s,Xs−)dWt +
Nt∑
i=1

ν(Si, XTi−,Mi) (6.2)

123

where X0 is the initial value of the process which we assume to be constant.2

6.2.2 Random Times

A random time, denoted by T (ω), is a random variable defined on the time domain [0,∞].

We often encounter random times associated with an existing stochastic process X, where

XT carries specific meaning (e.g., the first time the process reaches a specific value). If the

condition defining the random time is never met for a given realization ω ∈ Ω (e.g., the

process never reaches the desired value), we set T =∞. Importantly, T is always measurable

with respect to F .

Stopping Times Stopping times are a specific type of random time. They possess the

unique property that, based solely on the process history up to time t, we can determine

whether the stopping time has occurred (i.e., if the process has “stopped”). Mathematically,

a random time T is a stopping time if and only if:

{ω ∈ Ω |T (ω) ≤ t} is Ft measurable for all t ≥ 0. (6.3)

This implies that knowing the process behavior from time 0 to time t allows us to determine

if the stopping time T falls within the interval [0, t] or not.

Hitting Times Hitting times, also known as first passage times, form a subclass of stopping

times. They represent the specific times at which a process first reaches a particular state or

value. Formally, for a measurable set A ⊂ X , the hitting time of A is defined as:

TA(ω) = inf{t |Xt(ω) ∈ A}. (6.4)

2In prior chapters, the random event times modeled by a MTPP were denoted as Ti instead of Si; however,
we reserve Ti for random times which are described in the next subsection.

124

While the stochastic process literature typically defines hitting times as random variables

adapted to the same filtration as the underlying process, it is important to note that they

can be equivalently considered as functionals of the stochastic process: TA = TA[(Xt)t≥0] =

inf{t |Xt ∈ A}.

Some transformations of hitting times are themselves hitting times. For instance, the mini-

mum of countably many hitting times is itself a hitting time:

min
i
{TAi

(ω)} = inf{t |Xt(ω) ∈ A1 or Xt(ω) ∈ A2 or ...} (6.5)

= inf{t |Xt(ω) ∈ ∪iAi} (6.6)

= inf{t |Xt(ω) ∈ A} (6.7)

= TA(ω) (6.8)

for A := ∪iAi.

Generalized Hitting Times While hitting times capture important information for a

process, they are often a bit limiting in what events they can capture. That being said,

there are many other random times of interest where after the process satisfies a sufficient

number of conditions the random times resemble a hitting time in how it is realized. For

instance, consider the time T defined to be the maximum of two hitting times for regions

A and B where A ∩ B = ∅. This random time captures the time at which the process has

visited both regions A and B at least once. This clearly is not a hitting time; however, after

the process has first visited one of the regions, say A, then the actions the process need

to take to realize T are identical to the actions needed for a typical hitting time of region

B. Put differently and in a slightly more general way, max{TA, TB} is a hitting time after

conditioning on Fmin{TA,TB} with a hitting region of either A or B depending on which has

not been visited yet.

125

This example random time and many others are formalized under a new class of random

times we call generalized hitting times, which exists as a subclass of stopping times and a

superclass of hitting times. Taking inspiration from the original definition of the hitting time

in Eq. (6.4), consider a random time T defined as

T (ω) = inf{t |Xt(ω) ∈ At(ω)} (6.9)

where A : Ω × [0,∞] → σ(X) (or put differently, for t ∈ [0,∞] and ω ∈ Ω, At(ω) is a

measurable subset of X). A can be thought of as a set-valued stochastic process.

We say that T is a generalized hitting time if and only if A satisfies the following properties:

1. At(ω) ⊂ As(ω) for t ≤ s with the exception of and At(ω) = ∅ for T (ω) < t.

2. There exist a collection of K random times, T1, . . . , TK , such that:

(a) Tk(ω) < T (ω) for all k = 1, . . . , K and ω ∈ Ω.

(b) Each Tk for k = 1, . . . , K is either a hitting time or another generalized hitting

time.

(c) Let T(k)(ω) be the kth largest time of the collection for a given ω ∈ Ω. It is required

that At(ω) ≡ ATk(ω)(ω) for ω ∈ Ω and T(k)(ω) ≤ t < T(k+1)(ω) where T(K+1) :=∞.

3. Lastly, At(ω) ̸= ∅ for T(K)(ω) ≤ t ≤ T (ω) and ω ∈ Ω.

More intuitively, a generalized hitting time T can be thought of as a random time for a process

where after reaching some other predictable time T ′, specifically T(K) from 2(c) above, then

the conditional T |FT ′ becomes a standard hitting time. Put even more plainly, after t = T ′,

the condition that T needs to realize involves the process reaching some hitting region At.

Table 6.1 illustrates examples of random times that correspond to each of these different

classes. Most often, we consider the simpler case of At = ∅ for t < T(K); however, certain

126

Example Random Time Stopping Time Gen. Hitting Time Hitting Time

T = arg maxt Xt ✓ ✗ ✗ ✗

T = TA + c ✓ ✓ ✗ ✗

T = TA ✓ ✓ ✓ ✓

T = TA − c ✓ ✗ ✗ ✗

T = mini TAi
✓ ✓ ✓ ✓

T = maxi TAi
✓ ✓ ✓ ✗

T = TA;TA′ < TA ✓ ✓ ✓ ✗

T = TA;TA < TA′ ✓ ✓ ✓ ✗

Table 6.1: Examples of random times T and their classifications, with c > 0, A, A′, A1,
A2, · · · ⊂ X , and TA being the time of reaching state A for the first time by X. The “; (·)”
notation implies that unless the (·) is satisfied then T (ω) = ∞. For instance, the random
time T = TA;TA′ < TA is concerned with the time the process reaches A for the first time
so long as it has reached A′ prior. Should A be reached before A′, then T = ∞. Likewise,
T = TA;TA < TA′ covers the other scenario of the process reaching A before A′ first. It
should be noted the minimum of these two random times is simply TA.

compositions of generalized hitting times are also generalized hitting times, such as the

minimum of multiple generalized hitting times.

Additional Extensions Sometimes there are random times that by themselves cannot

be considered generalized hitting times, but they can be converted to one by transforming

the process that they correspond to. For example, consider the stopping time T (ω) =

inf{t |Xt(ω) ∈ [t,∞]}. While this could be considered as a first passage time with a moving

boundary, it does not strictly fall under the definition given above in Eq. (6.4) as the hitting

state A is constantly changing. It can, however, be straightforwardly converted to a hitting

time (under definition in Eq. (6.4)) by transforming the associated process:

T (ω) = inf{t |Xt(ω) ∈ [t,∞]} ≡ inf{t |Xt(ω)− t ∈ [0,∞]}. (6.10)

Similar transformations can be carried out when the random time itself is being shifted:

T (ω) = inf{t |Xt(ω) ∈ A}+ c for some c ∈ R (6.11)

127

= inf{t + c |Xt(ω) ∈ A} (6.12)

= inf{t |Xt−c(ω) ∈ A}. (6.13)

In this example, T as defined with (Xt)t≥0 and A is not a hitting time, but it is equivalent

to the hitting time of A with process (Xt−c)t≥c. Both of these types of transformations hold

for both hitting times and generalized hitting times.

For all generalized hitting times T considered in this chapter, we assume there are no shifts

to the time itself (meaning c = 0 as used in the example previously) and that the associated

set-valued process A := (At)t≥0 either directly satisfies the previous three conditions outlined

or it does so after applying a simple transformation Yt := Xt + f(t) with respect to t.

6.2.3 Objective

Our goal henceforth is given an arbitrary stochastic jump process X and generalized hitting

time T , find a pair of stochastic processes F := (Ft)t≥0 and f := (ft)t≥0 that affords us

unbiased and efficient estimates of the distribution of T via Monte Carlo samples:

P(T ≤ t) = EP [Ft] ≈
1

N

N∑
i=1

F i
t (6.14)

and P(T ∈ [t, t + dt)) = EP [ft] dt ≈
1

N

N∑
i=1

f i
tdt (6.15)

where F and f are adapted to the natural filtration of our process of interest X. We denote

realized samples of these processes as F i
t

iid∼ P(Ft) and f i
t

iid∼ P(ft) for i = 1, . . . , N . Given

the connection to the cumulative distribution function (CDF) and probability distribution

function (PDF) of T , F and f will be referred to as the CDF and PDF processes henceforth.

This connection affords us the perspective that f can be considered the partial derivative of

128

F with respect to time t (i.e., ∂Ft(ω)
∂t

= ft(ω)). It should be noted that the main goal is to

find an appropriate CDF process F as the corresponding PDF process f may not always be

well defined, e.g., see Section 6.3. These processes will sometimes be referred to as estimator

processes due to their finite sample average being an unbiased estimate of the probability

statements of interest, P(T ≤ t) and P(T ∈ [t, t + dt)).

Estimator Efficiency Naturally, given enough time and resources any unbiased estimator

can reach arbitrary precision due to the law of large numbers; however, there can be a vast

disparity in the rate at which different estimators converge. For our purposes, we will focus on

estimators that converge more quickly and will quantify this comparison between estimators

via relative efficiency. Since we are primarily considering unbiased estimators for P(T ≤ t),

say between CDF processes F and F , the relative efficiency of the finite sample estimates is

the ratio of variances of the processes:

eff(Ft, F t) :=
VarP

(
1
N

∑N
i=1 F

i
t

)
VarP

(
1
N

∑N
i=1 F

i
t

) (6.16)

=
VarP (F t)

VarP (Ft)
. (6.17)

If eff(Ft, F t) > 1, the estimator Ft is more efficient (i.e., converges more quickly) than F t.

Note that it need not be the case that the efficiency stays the same value, or even consistently

above or below 1, across different values of t.

Outline First, we investigate simple empirical estimators utilizing indicator functions for

these distributions in Section 6.3 and discuss why these are not optimal.

Next, these indicator-based estimators are extended using the tower rule in conjunction with

the fact that stochastic jump processes possess an intensity function in Section 6.4. The

intensity function encodes the infinitesimal likelihood of the process jumping to other values,

129

which when accumulated over time for jumps that lead the process to the hitting region

yields a potentially lower variance estimator.

Unfortunately, while this extension has the potential to be more efficient it also can be worse

due to being unbounded. To remedy this, we further apply importance sampling on this

estimator in Section 6.5 to accumulate the hitting probability over time by actively preventing

the process from reaching the hitting region of interest in the first place. In doing so, the

importance weights contain the probability of these restricted outcomes and ensure that the

estimator remains both unbiased and bounded, leading to improved estimator variance.

Restricting specific outcomes of the process at hand is also advantageous for other scenarios,

namely for estimating distributions of different compositions of generalized hitting times. Ex-

tensions to the importance sampling estimator are proposed in Section 6.6 for both orderings

of hitting times and joint distributions.

All of the estimators proposed in this chapter are explored empirically in Section 6.7 for

various use cases. The results in this section illustrate in general that for estimator effi-

ciency, the proposed importance sampling estimators are significantly more efficient than the

simple indicator-based estimators and more reliable than the tower rule-derived unbounded

estimators.

6.3 Naive Empirical Estimators

To the best of our knowledge, computing P(T ≤ t) for most stochastic processes X and some

stopping time T is typically done either one of two ways. The first is to leverage the specific

forms of T and X in order to analytically determine the distribution of T . This often only

works for a narrow class of processes and times and needs to be considered on a case-by-case

basis. The second approach is to use what we will refer to as naive empirical estimators,

130

which relies on the empirical cumulative distribution function:

FNE
t (ω) := 1(T (ω) ≤ t) (6.18)

for ω ∈ Ω where 1 is the indicator function returning 1 when the argument is true and 0 when

false. Note that to evaluate FNE
t for a given sample ω, we do not need to know the exact value

of T (ω) but rather just if by time t the process has stopped or not (i.e., if T ≤ t or T > t).

Since T is a stopping time, by definition this can be determined purely via (Xs(ω))0≤s≤t.

Because of this, we can often more explicitly write what the naive empirical estimator is as a

transformation of X. Take for example having T represent the hitting time of reaching the

state A ⊂ X for the first time. In this scenario, the exact form of the estimator would be

FNE
t := 1(∃s∈[0,t]Xs ∈ A). (6.19)

In the naive setting, there is not a well-defined corresponding PDF process fNE—at least

not one that is useful for working with empirically. Mathematically, the corresponding fNE

would be defined as a Dirac-delta process δ(T (ω)− t) which for finite samples will return 0

almost surely for any predefined time t.

Estimator Variance As mentioned previously, estimator efficiency is the primary means

for evaluating different estimators. Since FNE
t is unbiased with respect to P(T ≤ t), we only

need to quantify the variance of the process to compare it to other estimators in later sections.

We can easily determine the variance of the naive estimator CDF process:

VarP
(
FNE
t

)
= VarP(1(T ≤ t)) (6.20)

= P(T ≤ t)− P(T ≤ t)2 (6.21)

131

with the last statement being true due to FNE
t being binary-valued and unbiased, i.e., FNE

t ∼

Bern(P(T ≤ t)). The variance of the process reaches a maximum value of 0.25 when

P(T ≤ t) = 0.5 and is minimized to a value of 0 when P(T ≤ t) ∈ {0, 1}. We can see

that the variance of the estimate itself (with any estimator, not just the naive one) scales

O (N−1):

VarP

(
1

N

N∑
i=1

F i
t

)
=

1

N2

N∑
i=1

VarP
(
F i
t

)
(6.22)

=
1

N
VarP (Ft) . (6.23)

6.4 Tower Rule Estimators

The naive estimator CDF process FNE is our starting point in this work. While simple, it

is an important foundation to build from. This is due to the fact that it produces unbiased

estimates of P(T ≤ t). Through careful manipulation and further derivations of this process

we can remain unbiased yet construct estimators with potentially lower variances.

Our first step in order to construct low-variance estimators lies in recognizing that the process

X can jump at random times offers a unique characteristic not present in typical continuous

stochastic processes. Namely, with the presence of jumps it is no longer guaranteed that the

left and right limits of a process will be equivalent, either marginally or conditionally:

P(Xt− ̸= Xt) > 0 and P(Xt− ̸= Xt |Ft−) > 0 for all t > 0 such that λt > 0. (6.24)

Recall that in our model, when a jump occurs at some time t there is an associated mark m

that accompanies this event. Furthermore, we define the resulting change in the process Xt

at a jump time via ∆Xt := ν(t,Xt−,m). Also recall that for the generalized hitting time T

there is a time- and history-dependent hitting region At that once reached by the process X

132

at time t indicates T = t. Correspondingly, for every time t, we can define a random subset

of the mark-space Bt(ω) ⊆M that all elements in it m ∈ Bt would lead to Xt− immediately

realizing the hitting time T via Xt− + ν(t,Xt−,m) ∈ At. We denote the total intensity of all

jumps at time t that lead to this realization via

λT
t (ω) := λt(ω,Bt(ω)) ≡

∫
Bt(ω)

λt(ω,m)dm for ω ∈ Ω (6.25)

Since T is a predictable random time, this quantity can be interpreted as a valid intensity for

T ’s associated counting process, NT
t := 1(T ≤ t), and as such holds the following equivalence:

λT
t dt ≡ P(T ∈ [t, t + dt) |Ft−). (6.26)

From here, we have all the tools we need to extend our previous estimator; however, we first

start by deriving a tractable density estimator first:

P(T ∈ [t, t + dt)) = EP [1(T ∈ [t, t + dt))] (6.27)

= EP [1(T ∈ [t, t + dt))1(T /∈ [0, t))] (6.28)

= EP [EP [1(T ∈ [t, t + dt)) |Ft−]1(T /∈ [0, t))
]

by Tower Rule (6.29)

= EP [P(T ∈ [t, t + dt) |Ft−)1(T /∈ [0, t))] (6.30)

= EP [λT
t 1(T /∈ [0, t))

]
dt (6.31)

=⇒ fTR
t (ω)dt := λT

t (ω)1(T (ω) /∈ [0, t))dt for ω ∈ Ω. (6.32)

Due to the use of the tower rule in the derivation, we will refer to this as the tower rule

estimator process [Casella and Berger, 2021]. Note that technically, the indicator in this

estimator process fTR is unnecessary as the hitting time intensity process λT
t is equal to 0

for t > T . That being said, we still include the indicator to emphasize this fact.

From here, we can derive the corresponding tower rule cumulative distribution estimator

133

process:

P(T ≤ t) =

∫ t

0

P(T ∈ [s, s + ds)) (6.33)

=

∫ t

0

EP [fTR
s

]
ds (6.34)

=

∫ t

0

EP [λT
s 1(T /∈ [0, s))

]
ds (6.35)

= EP
[∫ t

0

λT
s 1(T /∈ [0, s))ds

]
by Fubini’s Theorem (6.36)

= EP
[∫ t∧T

0

λT
s ds

]
(6.37)

=⇒ FTR
t (ω) :=

∫ t∧T (ω)

0

λT
s (ω)ds for ω ∈ Ω (6.38)

where t ∧ T is the minimum of t and T . The tower rule cumulative distribution estimator

process FTR
t can be described as the stopped compensator for the generalized hitting time

(i.e., FTR
t (ω) ≡ ΛT

t∧T (ω)(ω)).3 Put more plainly, prior to the process X entering the hitting

region At (for t < T), the tower rule estimator process accumulates all of the infinitesimal

likelihoods (λT
t) of opportunities that the process had to jump into the hitting region. When

these estimator processes are averaged over many trajectories, they yeild an unbiased estimate

of the true underlying CDF of the generalized hitting time T .

Estimator Variance As the cumulative distribution P(T ≤ t) is our primary object of

interest, we will limit our analysis to just the associated estimator and not the estimator for

the density.

It should be noted that the form of the tower rule estimator was defined in a way to be the

most clear in terms of its properties; however, it is perfectly acceptable to also write it in the

3The compensator of a temporal point process is the cumulative intensity: Λt(ω) :=
∫ t

0
λs(ω)ds [Daley

and Vere-Jones, 2003]. For more details on this, please refer back to Chapter 2.

134

following form:

FTR
t (ω) :=

∫ t

0

λT
s (ω)ds ≡ ΛT

t (ω) for ω ∈ Ω. (6.39)

This is true due to the fact that λT
t = 0 for t > T and that the generalized hitting time is

assumed to only be able to occur once (these two facts are actually one and the same). It

then follows that

VarP
(
FTR
t

)
= VarP

(
ΛT

t

)
(6.40)

= EP [(ΛT
t)2
]
− EP [ΛT

t

]2
(6.41)

= EP [(ΛT
t)2
]
− EP [NT

t

]2
by properties of compensators (6.42)

= EP [(ΛT
t)2
]
− EP [1(T ≤ t)]2 (6.43)

= EP [(ΛT
t)2
]
− P(T ≤ t)2, (6.44)

where NT
t is the associated counting process for the generalized hitting time T . Comparing

this to the variance of the naive estimator FNE
t , we can see that they differ solely in the

first term: EP
[
(ΛT

t)2
]

versus P(T ≤ t). Depending on the model and hitting time, either

term could be dominant; however, it is worth noting that the second moment for the hitting

time compensator is unbounded and thus has the potential to result in a significantly worse

variance than the naive estimator, i.e., in practice the relative efficiency of the tower estimator

to the naive estimator may be less than 1, which is undesirable. Luckily, both estimators

utilize the same sampling distribution, so we can efficiently compute both with the same

samples and select which one to use post-hoc based on estimates of the sample variance.

135

6.5 Importance Sampling Estimators

As mentioned, the potential gains in efficiency when using the tower rule estimator over the

naive estimator are dampened due to the former being unbounded compared to the latter

being bounded between 0 and 1. Because of this, it is clear that there are samples that are

a detriment to the resulting estimator variance, and specifically they are the samples that

result in values FTR
t > 1. This can occur for realizations in which the hitting time was likely

to occur earlier (i.e., higher intensity values λT
t) but did not due to random chance.

One potential way to eliminate this effect would be to apply importance sampling and

limit the range of behaviors the process can exhibit when sampling. In doing so, we can

potentially rein in these detrimental occurrences while possibly also achieving a bounded

estimator. One might think that a good approach to achieve this should be to enforce that

T < t during sampling; however, this has a number of drawbacks:

1. Properly enforcing this requires marginalizing over future events, which would lead to

inefficient sampling. Put differently, we could no longer simply sample future trajectories

autoregressively.

2. Any samples drawn would be done so with respect to a specific point in time t, which

means that getting a sense of the distribution over a set of values t ∈ [a, b] would require

many independent estimations.

Counterintuitively, we can still employ importance sampling with our original plan in mind

and avoid both of these issues—the trick is to prevent the hitting time from occurring instead

of enforcing it to (in a manner similar to what we did in Chapters 3 and 4 for other processes

earlier in this thesis). Preventing an action can be done through immediate intervention,

not requiring information of future events. Furthermore, sampling a sequence with an event

136

prevented over times [0, a] is a prerequisite to sampling over [a, b] so the samples can be

reused over multiple different values of t for P(T ≤ t), leading to potentially significant gains

in computational efficiency.

Let Q be a measure that is a part of a probability space (Ω,F ,Q) and is equipped with a

complete filtration F := (Ft)t≥0. Under this measure exists another process which we will

refer to as X := (X t)t≥0 and is defined to belong to the same class of processes as X does

under P:

X t := X0 +

∫ t

0

µ(t,X t−)dt +

∫ t

0

σ(t,X t−)dWt +
Nt∑
i=1

ν(Si, X ti−,M i) (6.45)

where Si and M i are times and marks generated by an associated marked counting process N t

characterized by intensity λt. Let T be a generalized hitting time with the same restrictions

for X under Q as it is for X under P. Our goal is to appropriately define µ, σ, ν, and λ such

that

P(T ≤ t) = 1− EP [1(T > t)] (6.46)

= 1− EQ [Lt1(T > t)] where EP [Lt] = 1 (6.47)

≈ 1− 1

n

n∑
i=1

L
(i)
t 1(T (i) > t) where (L

(i)
t , T (i))

iid∼ Q (6.48)

and ideally that Lt1(T > t) has low variance under Q. Lt is referred to as the likelihood

ratio process and can be thought of as dP
dQ((Xs)0≤s≤t) ≡ Lt. Note that we are now working

with the complement of P(T ≤ t) as we are aiming to enforce that T occurs less often (ideally

never almost surely) and thus we prevent some scenarios where the expectant would be equal

to 0. Additionally, Eq. (6.47) relies implicitly on the fact that there exists a well-defined

likelihood ratio dP
dQ(X) to allow for the change of measures in the first place.

137

When our process X progresses forward in time, the hitting condition of the generalized

hitting time can be triggered in one of two ways—the process could either (i) jump directly

into the hitting region or (ii) it could continuously drift into the region. The next two

subsections will focus on designing a valid proposal measure Q such that neither situation

is possible. Preliminary experiments indicate that choosing µ and σ to be something other

than the original µ and σ yield an increase in estimator variance. We suspect this is due to

the underlying distribution of T being shifted too much from the original under P, leading

to poor importance samples. As such, for this work we choose to leave these functions

untouched, relegating this direction for future work, and instead focus solely on altering the

jump distributions for the process at hand.

6.5.1 Altering Jumps

When altering how the model can jump in a trajectory, determining the forms of ν and λ

are immediately pertinent. Our primary goal is to prevent X from triggering the hitting

condition via jumping. Because of this, we do not need to change the effect that the jump

time Si and marks M i have on the process and can instead directly manipulate the underlying

intensity. This means that ν := ν.

The Girsanov Theorem states that for a counting process under P with intensity λ and

another under Q with intensity λ, the likelihood ratio dP
dQ over [0, t] is

Lt :=

[
Nt∏
i=1

λSi
(M i)

λSi
(M i)

]
exp

(∫ t

0

λs − λsds

)
(6.49)

with respect to Ft [Privault, 2022]. Now we must determine what exactly λ should be.

Earlier, for the base process X we denoted the intensity of the generalized hitting time

138

T to be λT
t . Naturally, this implies the existence of the corresponding counting process:

NT
t (ω) := 1(T (ω) ≤ t). (6.50)

A well known property of counting processes is that they can be aggregated and/or decom-

posed via the superposition property. This means that if we denote NZT
t as the counting

process for all jumps that did not trigger the generalized hitting time with intensity λZTt , then

it can be shown that:

Nt(ω) ≡ NT
t (ω) + NZT

t (ω) (6.51)

and λt(ω) ≡ λT
t (ω) + λZTt (ω). (6.52)

This decomposition is true also for our proposal intensity λt ≡ λT
t + λZTt . To prevent hitting

times being triggered via jumps, we zero out the appropriate intensity:

λT
t := 0 (6.53)

and λZTt := λZTt (6.54)

=⇒ λt := λZTt for all t ≥ 0 (6.55)

We do not alter λZT from the original λZT to try and make the proposal process resemble the

original as much as possible outside of prohibiting the undesirable jumps.

It should be noted that due to the previously noted decomposition, we really have only

performed a change of measure with respect to NT . As such, the resulting likelihood ratio

purely pertains to this subprocess:

Lt :=

NT
t∏

i=1

λtTi
(mi)

λT
ti

(mi)

 exp

(∫ t

0

λT
s − λT

s ds

)
(6.56)

139

= exp

(
−
∫ t

0

λT
s ds

)
since NT

t = 0 for all t ≥ 0 under Q. (6.57)

Should the counting process for the hitting time be Poisson (i.e., λT
s (ω) = f(s) for ω ∈ Ω),

then the likelihood ratio derived is exactly equal to P(NT
t = 0) ≡ P(T > t), assuming that

the process is not able to continuously walk into the hitting region, i.e., µ = σ = 0.

Using this likelihood ratio results in the following estimator process:

P(T ≤ t) = EQ [F IS
t

]
(6.58)

F IS
t := 1− Lt1(T > t) = 1− exp

(
−
∫ t

0

λT
s ds

)
1(T > t). (6.59)

This estimator, under Q, can be roughly thought of as one minus the probability of the

process not experiencing any jumps that result in the process X entering the hitting region

At.

6.5.2 Alternative Approach

We can utilize the same proposal distribution and measure to derive a different, unbiased

estimator by choosing a different starting point for our derivations. Recall that the Tower

Rule PDF estimator process takes on the form:

P(T ∈ [t, t + dt)) = EP [fTR
t

]
dt = EP [λT

t 1(T > t)
]
dt (6.60)

Coincidentally, just like in Eq. (6.46), fTR
t = 0 if T ≤ t. Because of this, we can apply the

same importance sampling change of measure as we did before. This yields the following

alternative importance sampling estimators that will be denoted by IS′:

P(T ∈ [t, t + dt)) = EQ [Ltλ
T
t 1(T > t)

]
dt (6.61)

140

:= EQ
[
f IS′

t

]
dt (6.62)

P(T ≤ t) =

∫ t

0

P(T ∈ [t, t + dt)) (6.63)

=

∫ t

0

EQ
[
f IS′

s

]
ds (6.64)

= EQ
[∫ t

0

f IS′

s ds

]
by Fubini’s Theorem (6.65)

= EQ
[∫ t∧T

0

Lsλ
T
s ds

]
:= EQ

[
F IS′

t

]
(6.66)

Curiously, should the proposal measure Q result in trajectories that never reach the hitting

state (i.e., 1(T > 1) = 1 almost surely), then it can be shown that F IS
t (ω) = F IS′

t (ω) for all

t > 0 and ω ∈ Ω. An example of this occurring is in pure jump processes where µ = σ = 0

as Q ensures that process will never jump into the hitting region of interest. Under this

condition, it follows then that

F IS′

t =

∫ t

0

Lsλ
T
s ds (6.67)

=

∫ t

0

λT
s exp

(
−
∫ s

0

λT
udu

)
ds (6.68)

= −
[
exp

(
−
∫ s

0

λT
udu

)]t
0

by Fundamental Theorem of Calculus (6.69)

= 1− exp

(
−
∫ t

0

λT
s ds

)
(6.70)

= 1− Lt (6.71)

= F IS
t . (6.72)

In practice, should this situation arise it is recommended to opt for F IS
t over F IS′

t to avoid

potential compounding errors from numerically approximating nested integrals.

141

6.6 Compositions of Generalized Hitting Times

The goal of this section is to illustrate that the previous derived estimators also have simple

extensions for estimating probabilistic statements involving compositions of multiple gener-

alized hitting times. Some compositions are directly estimable due to the composition itself

being a generalized hitting time, e.g., min{T1, T2} or max{T1, T2}, whereas others require

a bit more manipulation. We will focus on two such cases: (i) comparisons or ordering of

hitting times P(T1 < T2) and (ii) joint distributions P(T1 < t1, T2 < t2). The latter of which

we will also consider the generalization to the joint distribution of n different generalized

hitting times.

6.6.1 Hitting Time Ordering

The probabilistic statement P(T1 < T2) is typically intractable for a generic process Xt, both

analytically and with unbiased estimations, due to the fact that T1 could potentially take

on values all across R>0 and still satisfy the statement T1 < T2. One approach to address

this issue is to estimate a slightly different statement: P(T1 < T2 ≤ t) := P(T1 < T2, T2 ≤ t),

where t ∈ R>0 determines the time to sample the underlying process out to. Naturally, we

recover the original query as t→∞.

Now, while there does exist a naive estimator for this statement, EP [1(T1 < T2 ≤ t)], it

is not clear how to manipulate this form directly to further apply importance sampling. From

our previous derivations in the prior section, we know that there are two conditions that

the integrand needs to satisfy in order to easily apply our strategy for importance sampling.

Namely, (i) preventing samples, all or a subset of them, from yielding an integrand of 0 should

be immediately actionable and (ii) if there are multiple conditions for integrands equal to 0

they must have an OR structure instead of an AND structure. The former condition simply

142

means that any change we impose must be done instantaneously and not condition on future

information. To give an example for the latter condition, say we have two expectations

that are equivalent: E[f1(X)] = E[f2(X)]. Furthermore, we assume that f1(X(ω)) = 0 if

ω ∈ A∪B and f2(X(ω)) = 0 if ω ∈ A∩B for A,B ⊂ Ω. Here, A and B represent actionable

conditions that can be immediately prevented. By (ii), it is straightforward to apply our im-

portance sampling approach to E[f1(X)]; however, it is non-trivial to do the same to E[f2(X)].

With this in mind, it becomes clear that the integrand 1(T1 < T2 ≤ t) violates condition (i), as

imposing T2 ≤ t is not immediately actionable. In other words, without conditioning on future

information, we cannot ensure that T2 occurs before time t through instantaneous interven-

tions.4 In Section 6.5, we initially got around this restriction by considering the complement

of the initial integrand. For this scenario, that would correspond to 1(T1 > T2 or T2 > t).

Unfortunately, this integrand violates condition (ii), as it is equal to 0 when T1 < T2 and

T2 ≤ t.

Taking a cue from Section 6.5.2, applying importance sampling becomes tractable if we

first start from a PDF process:

P(T1 < T2 ∈ [t, t + dt)) := P(T1 < T2, T2 ∈ [t, t + dt)) (6.73)

= EP [1(T1 < t, T2 ∈ [t, t + dt))] (6.74)

= EP [
1(T1 < t < T2)λ

T2
t

]
dt by Tower Rule (6.75)

= EQ [
1(T1 < t < T2)Ltλ

T2
t

]
dt (6.76)

P(T1 < T2 ≤ t) =

∫ t

0

P(T1 < T2 ∈ [s, s + ds)) (6.77)

4Note that technically from just a sampling point of view, we could ensure this by forcing T2 to occur
at time t if it had not already for a given sequence. This has a number of different consequences though.
Namely, it places a point-mass on the distribution of T2 at time t under the proposal measure, which would
make Q and P not absolutely continuous. Additionally, even if this property was not violated, implementing
this estimator in practice would be inefficient as it is not clear how to parallelize it for multiple values of t.

143

= EQ
[∫ t

0

1(T1 < s < T2)Lsλ
T2
s ds

]
by Fubini’s Thm. (6.78)

= EQ
[
1(T1 < T2)

∫ t∧T2

T1∧t
Lsλ

T2
s ds

]
, (6.79)

where the measure Q and L correspond to the proposal model with jumps that avoid the

hitting region for T2. This can be easily generalized to multiple orderings of hitting times:

P(T1 < T2 < · · · < TK ≤ t) = EQ

[
1(T1 < T2 < · · · < TK)

∫ t∧TK

TK−1∧t
Lsλ

TK
s ds

]
. (6.80)

where Q and L here correspond to avoiding the following hitting region process:

At :=


∪Ki=k+1A

Ti
t if k = 1, . . . , K − 1

ATK
t otherwise

(6.81)

where Tk−1 < t ≤ Tk for k = 1, . . . , K and T0 = 0. Note that this enforces sampled jumps to

respect the ordering of generalized hitting times (with the last, TK , never occurring) almost

surely. This is important as without this enforcement, we could produce a sample with the

hitting times out of the desired order, yielding an integrand value of 0 no matter how far

into the future we simulate. Practically speaking, for P(T1 < T2 < · · · < TK ≤ t) > 0, this

would lead to an (unbiased) estimator with higher variance.

6.6.2 Joint Hitting Time Distributions

Consider two generalized hitting times T1 and T2. We are interested in the joint CDF of the

two:

P(T1 ≤ t1, T2 ≤ t2) = EP [1(T1 ≤ t1, T2 ≤ t2)] . (6.82)

144

In general, t1, t2 ∈ [0,∞); however, we will assume 0 ≤ t1 < t2 <∞ without loss of generality.

For our purposes, we are interested in a form of an estimator for the joint CDF that can easily

produce multiple estimates for various values of t1 and t2, similar to the earlier estimators

in Section 6.5 allowed for multiple values of t for P(T ≤ t) by simply simulating further in

time. Since time is one-dimensional, that means for a given joint CDF estimate it stands to

reason that we will only be able to manipulate or restrict one of the hitting times in order

to satisfy our desiderata.

As a brief tangent, consider the CDF of the maximum of two hitting times: P(max{T1, T2} ≤

t). While it is true that the max of generalized hitting times is itself a generalized hitting

time, this CDF could also be separately estimated through compositions of orderings:

P(max{T1, T2} ≤ t) = P(T2 < T1 ≤ t) + P(T1 < T2 ≤ t). (6.83)

A very similar decomposition can be done for the joint CDF of hitting times:

P(T1 ≤ t1, T2 ≤ t2) = P(T2 < T1 ≤ t1) + P(T1 < t1, T1 < T2 ≤ t2). (6.84)

We can then perform importance sampling on each of these terms individually:

P(T1 < t1, T1 < T2 ≤ t2) =

∫ t2

0

P(T1 < t1, T1 < T2 ∈ [s, s + ds)) (6.85)

=

∫ t2

0

P(T1 < t1 ∧ s, T2 ∈ [s, s + ds)) (6.86)

=

∫ t2

0

EP [1(T1 < t1 ∧ s, T2 ∈ [s, s + ds))] (6.87)

=

∫ t2

0

EP [
1(T1 < t1 ∧ s, T2 > s)λT2

s

]
ds by Tower Rule (6.88)

=

∫ t2

0

EQ [
1(T1 < t1 ∧ s, T2 > s)Lsλ

T2
s

]
ds (6.89)

145

= EQ
[∫ t2∧T2

T1∧t2
1(T1 < t1)Lsλ

T2
s ds

]
by Fubini’s Theorem

(6.90)

where the Q and L in Eq. (6.89) correspond to the same used in Eq. (6.79).

Just as before for the ordered composition, the joint CDF estimator can be generalized

to K hitting times: P(T1 ≤ t1, . . . , TK ≤ tK). Deriving an estimator for this query can be

accomplished by considering all possible orderings of K hitting times:

P(T1 ≤ t1, . . . , TK ≤ tK) =
∑
π∈PK

P({Ti ≤ ti}Ki=1, Tπ1 < · · · < TπK
) (6.91)

P({Ti ≤ ti}Ki=1, Tπ1 < · · · < TπK
) = EQ

[∫ tπK∧TπK

TπK−1
∧tπK

1({Tπi
≤ tπi

}K−1
i=1)Lsλ

TπK
s ds

]
(6.92)

where PK is the set of all permutations of {1, . . . , K}, πi is the ith element of the permutation

π ∈ PK , and Q and L is the same used in Eq. (6.80) for the ordering of Tπ1 < Tπ2 < · · · < TπK
.

Note that to produce an estimate for this joint CDF will require K! individual estimates for

each of the potential orderings. One potential trade-off that can be made is to not enforce

the specific orderings of hitting times in Q and L, and instead just have them prevent the

final hitting time TπK
from occurring. This corresponds to the following decomposition:

P(T1 ≤ t1, . . . , TK ≤ tK) =
K∑
j=1

P({Ti ≤ ti}Ki=1,max
i
{Ti} = Tj) (6.93)

P({Ti ≤ ti}Ki=1,max
i
{Ti} = Tj) = EQ

[∫ tj∧Tj

maxi ̸=j{Ti}∧tj
1({Ti ≤ ti}i ̸=j)Lsλ

Tj
s ds

]
. (6.94)

This results in K different estimates for the different possible maximum hitting times. De-

pending on the query of interest, number of hitting times, and process may result in one of

these forms being more efficient usage of computing than the other.

146

6.7 Experiments

In this section, we present five different example scenarios involving different kinds of stochas-

tic jump processes and generalized hitting time-based queries. In particular, we investigate

the relative efficiencies of various approaches and demonstrate that overall our proposed

importance sampling approach is significantly more efficient than naive estimation and is

more reliable than using the tower rule estimators. While this selection of use cases and

results are by no means exhaustive, they do demonstrate the versatility and effectiveness of

the proposed techniques.

Experiments using purely point processes with no Brownian motion simulate trajectories

exactly using Algorithm 1 (either with the original process for naive and tower rule estimation

or the proposal MTPP for the importance sampling estimator). For those that do involve

Brownian motion, a simple Euler scheme is utilized as outlined in Bruti-Liberati and Platen

[2007].5 For all scenarios, a discretization time step ∆t of 0.01 is used for both simulating

trajectories with the Euler scheme and numerically approximating integrals for estimators.

6.7.1 First Passage Time

For this experiment, we utilize the Merton jump diffusion model [Matsuda, 2004], which is

commonly used for modeling stock options. The scalar-valued stochastic jump process is

defined by

dXt :=

(
r − 1

2
σ2 − λk

)
Xt−dt + σXt−dWt + (Yt − 1)Xt−dNt (6.95)

5Applying importance sampling in conjunction with the Euler discretization approach allows for preventing
samples from triggering hitting times almost surely under Q, unlike in continuous time where only jumps
can be prevented. More information on this can be found in Appendix D.1.

147

where log Yt ∼ N (µ, δ2) with Yt ⊥ Yt′ for t ̸= t′, k = exp
(
µ + 1

2
δ2
)
− 1, r is treated as the

risk-free rate of return for a stock, σ > 0 is interpreted as the stock volatility, and λ > 0

is the constant intensity for the Poisson counting process (Nt)t≥0. For experimental results

concerning this process, we will assume the following parameter values: X0 = 1, r = 0.02, µ =

0, δ = 0.3, λ = 1, and σ = 0.2.

We will investigate the efficiency of computing the time at which the process first crosses

over different fixed barriers (or prices) of cX0 for c ∈ {1.25, 1.5, 2, 3, 5, 7, 10}: P(inf{s |Xs ≥

cX0} ≤ t) := P(Tc ≤ t). Note that the queries can be interpreted as the distribution of when

a stock will multiply in price by c. We evaluate this query for t ∈ [0, 5] using naive (NE),

tower rule (TR), and importance sampling (IS) estimators to compare resulting estimator

variances. Each estimate was generated using 105 sampled trajectories.

Results for this experiment can be seen in Fig. 6.1. As a general trend, we note a large

reduction in variance, often many orders of magnitude, for both tower rule and importance

sampling estimators compared to naive estimation across all times and hitting regions with

higher relative efficiencies noted during particularly lower hitting time likelihoods. For

example, both estimators achieve the highest relative efficiencies for any barrier c when t is

close to 0, which prohibits the process from having any time to reasonably cross over the

boundary of interest. For barriers closer to the process’ starting point X0, it appears that

importance sampling is favored with lower variance, as seen in the bottom plot in Fig. 6.1;

however, for the barriers further out and closer to 10, it is less clear and the comparison

between the two is far more noisy.

148

0.0

0.2

0.4

0.6

C
D

F
E

st
im

at
e

Barrier c

1.25 1.5 2.0 3.0 5.0 7.0 10.0

102

105

108

R
el

at
iv

e
E

ffi
ci

en
cy

:
N

E
v
.

T
R

102

105

108

R
el

at
iv

e
E

ffi
ci

en
cy

:
N

E
v
.

IS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time t

10−2

10−1

100

101

R
el

at
iv

e
E

ffi
ci

en
cy

:
T

R
v
.

IS

Figure 6.1: Estimates for the distribution of the hitting time of entering the region [c,∞)
with Xt from Eq. (6.95) are shown in the top plot where c corresponds to the different
colored lines in the plots ranging from 1.25 to 10. Bottom three plots show estimated relative
efficiencies comparing naive (NE), tower rule (TR), and importance sampling (IS) estimators,
with dashed horizontal lines indicating an efficiency of 1. For plots labeled “XX v. YY”,
efficiency values greater than 1 favor the “YY” method.

149

6.7.2 First Exit Time

Consider the univariate stochastic jump process

dXt := btXt−dt + Xt−dWt −Xt−UtdNt (6.96)

where X0 = 1, Ut ∼ Uniform(0, 1) with Ut ⊥ Ut′ for t ≠ t′, b ≥ 0 is a constant drift-rate

of increase, and (Nt)t≥0 is the counting process to a self-correcting temporal point process

characterized by conditional intensity

λt := exp (t−Nt−) . (6.97)

This process can be described as a geometric Brownian motion with drift bt and jumps that

regress the process closer to 0.

We are interested not in the time at which the process first crosses over a boundary, but

rather the time at which it crosses back over. Put more plainly, for a boundary at value c > 1,

then Tc defines the time at which the process returns to the region [0, c) after first entering

[c,∞). We evaluate the query P(Tc ≤ t) for t ∈ [0, 5] with c = 3 using naive, tower rule,

and importance sampling estimators for different drift-rates b ranging from 0 to 50. Each

estimate was generated using 105 sampled trajectories.

Results are shown in Fig. 6.2 with specific rates for b can be seen in the legend. We see that

for both extremely low and extremely high values of b, the CDF plateaus early on in time.

For the former, this is due to the process not being likely to cross into [c,∞) in the first

place, whereas in the latter the process is unlikely to return to [0, c) after entering[c,∞) due

to the aggressive rate of growth. The resulting estimator efficiencies, for both tower rule and

importance sampling, do tend to correlate with this rate of growth with low b values yielding

low efficiencies and high b values yielding higher efficiencies. Interestingly, the estimators

150

relative efficiency is highest at both the beginning of time and when the CDF has saturated.

This can be seen by noting when both the CDF and the efficiency plots flatten out for a

given colored line.

Unlike in the previous experiment, there are instances where the tower rule estimator is less

efficient than naive estimation. However, in the worst case scenario for importance sampling

it is just as efficient as naive estimation. This is further exemplified in the bottom plot of

Fig. 6.2 where, after an initial turbulent period for small values of t, importance sampling is

favored over the tower rule estimator in general.

6.7.3 Cover Time

Consider a graph G = (V,E), which is finite and connected, and an accompanying stochastic

process (Xt)t≥0 that governs a random walk over the graph in continuous time. The cover

time of a graph is the time at which the random walk has visited each vertex in V . The cover

time of a graph is known to have connections to the coupon collector problem [Ferrante and

Saltalamacchia, 2014] and the (double) dixie cup problem [Newman, 1960]. Please refer to

[Lovász, 1993] for a more on these connections and details of cover times in general.

Letting TG denote the cover time for a graph G, this is appropriately decomposed as a

maximum over individual hitting times for each vertex Tv. Formally, this is defined as

TG := max{Tv |v ∈ V } (6.98)

Tv := inf{s |Xs = v} for v ∈ V. (6.99)

We assume the random walk to be a continuous-time Markov model that is described in the

151

0.0

0.2

0.4

0.6
C

D
F

E
st

im
a
te

Rate b

0.0

0.1

0.2

0.3

0.5

0.7

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

20.0

50.0

100

101

R
el

at
iv

e
E

ffi
ci

en
cy

:
N

E
v
.

T
R

100

101

R
el

at
iv

e
E

ffi
ci

en
cy

:
N

E
v
.

IS

0 1 2 3 4 5

Time t

10−1

100

101

R
el

at
iv

e
E

ffi
ci

en
cy

:
T

R
v
.

IS

Figure 6.2: Results shown in the same format as Fig. 6.1 for comparing different first exit
time distributions of the region [3,∞) over time t ∈ [0, 5] as they vary across drift-rates b
which range from 0 to 50 for Xt from Eq. (6.96).

152

following manner:

Xt := MNt (6.100)

λt(v) = µpXt,v (6.101)

where µ > 0 describes the base rate of a jump occurring and pi,j ∈ [0, 1] describes is probability

of transitioning from vertex i to vertex j during a jump. Note that the graph structure is

respected by forcing pi,j = 0 for when the edge (i, j) is not present in the graph; however, for

our experiments we will assume that the graph is complete which will allow the process to

jump from any vertex to any other vertex (including itself).

The query P(TG ≤ t) is evaluated for a fixed value t = 10, where the relative efficiency

between the naive and importance sampling estimator is measured across 100 different

processes, instantiated with parameters sampled according to pi,j =
exp(zi,jτ

−1)∑
j′∈V exp(zi,j′τ

−1)
for

zi,j ∼ Uniform[0, 1] for i, j ∈ V with temperature τ > 0 and µv = 1 for v ∈ V . While using

complete graphs with |V | = 6, we investigate the effect of sparsity in transitioning states

by setting temperature τ to 0.1, 1, and 10. Low temperature values yield sparser transition

probabilities and higher temperatures yield more uniform transition distributions. Each

estimate was generated using 104 sampled trajectories.

Resulting relative efficiencies for different temperatures τ across 10 different random instan-

tiations for each can be seen in Fig. 6.3. The relative efficiencies shown start at varying

time t values due to there being insufficient sampled support for variance estimates prior to

that time t.6 Similar to the basic hitting time experiment in Section 6.7.1, we see several

orders of magnitude improvement over naive estimation when using both the tower rule and

importance sampling estimators. Sparser transition matrices seem to lead to a bit more un-

predictable and chaotic estimator efficiencies, noted by the variety and jaggedness of results

6Given enough samples, the estimators will typically give non-zero estimates prior to these points in time;
however, it is difficult to know ahead of time just how many are necessary for this.

153

for τ = 0.1 compared to τ = 10. This is most likely due to there being less immediately

accessible possibilities for the process to jump from its current state to the last remaining

vertex when the transition matrix is sparser.

In summary, whether importance sampling or the tower rule approach is superior varies from

process to process across all temperatures. However, importance sampling is always better

than naive estimation which cannot be said for the tower rule estimator. Because of this,

importance sampling is likely to be a good default technique for this setting.

6.7.4 Joint Hitting Time Distributions

Let (Xt)t≥0 be a Hawkes process with 3-dimensional continuous-valued marks that follow the

following constraints:

Xt := MNt (6.102)

λt(m) := µ · N3(m; 0, 1) +
∑

(S,M)∈Ht−

exp (−(t− S))N3(m;M, (t− S)2) (6.103)

for m ∈ R3, N3(·; a, b) is the probability density function of a 3-dimensional normal distribu-

tion with mean a and covariance matrix bI. This marked intensity encourages new marks

to occur close to previous ones, so long as they happen also close enough in time. Previous

events have less influence on the timing and placement of future ones due to the exp(−(t−S))

scaling term and the variance (t − S)2 respectively. Note that this process is a variant of

ones commonly used for modeling earthquake and subsequent aftershocks [Ogata, 1998].

Consider the following subsets of R3:

R1 := [0.5,∞)× [0.5,∞)× [0.5,∞) (6.104)

R2 := (−∞,−0.5]× [0.5,∞)× [0.5,∞) (6.105)

154

100

103

106

109

R
el

at
iv

e
E

ffi
ci

en
cy

:
N

E
v
.

T
R

Temperature τ =0.1

101

103

105

Temperature τ =1.0

100

102

104

106

Temperature τ =10.0

101

103

105

107

R
el

at
iv

e
E

ffi
ci

en
cy

:
N

E
v
.

IS

100

101

102

103

104

100

101

102

103

104

0.0 2.5 5.0 7.5 10.0

Time t

10−5

10−1

103

107

R
el

at
iv

e
E

ffi
ci

en
cy

:
T

R
v
.

IS

0.0 2.5 5.0 7.5 10.0

Time t

10−4

10−2

100

102

104

0.0 2.5 5.0 7.5 10.0

Time t

10−4

10−2

100

102

104

Figure 6.3: For each temperature τ ∈ {0.1, 1, 10}, ten different processes defined by Eq. (6.100)
are initialized with random parameters according to details in Section 6.7.3. Relative efficien-
cies between naive (NE), tower rule (TR), and importance sampling (IS) are shown, similar
to Fig. 6.1, for computing the distribution of the cover time P(TG ≤ t) for t ∈ [0, 10]. Plotted
lines start at varying time t values due to the cover time for that sampled process requiring
being so rare that the estimators prior to that time all equal 0 exactly.

155

R3 := (−∞,−0.5]× (−∞,−0.5]× [0.5,∞) (6.106)

R4 := [0.5,∞)× (−∞,−0.5]× [0.5,∞) (6.107)

R5 := [0.5,∞)× (−∞,−0.5]× (−∞,−0.5] (6.108)

and let the associated hitting time of each region be denoted TRi
for i = 1, . . . , 5. We are

interested in calculating and comparing the joint CDFs of varying amounts of these hitting

times. Estimates are computed for P({TRi
≤ t}di=1) for d = 1, . . . , 5 and t ∈ [0, 10] using naive

and importance sampling estimators.7 As mentioned in Section 6.6, for importance sampling

we can either enforce all possible orderings of {TRi
≤ t}di=1 or simply enforce which hitting

time occurs last. We investigate the efficiency for both methods, and refer to these estimators

as “ordered importance sampling” and “unordered importance sampling” respectively. Each

estimate was generated using 3000 sampled trajectories.

The resulting CDF estimates and relative efficiencies for these three methods can be seen in

Fig. 6.4. It is worth noting that the two importance sampling procedures are identical for

d = 1 and d = 2, and that d = 1 is similar to the simple hitting time scenario explored in

Section 6.7.1. When d > 1, the relative efficiencies are only well-defined after some time t has

passed. This is due to there being insufficient support to estimate the estimators’ variance

from the finite set of samples generated over those regions. When they are well-defined, we

see similar relative efficiency values across values of d > 1 and for both importance sampling

estimators when compared against naive estimation. While this needs to be confirmed on

a case-by-case basis, this does suggest that the simpler and easier to implement unordered

importance sampling estimator is sufficient for efficient joint distribution estimation.

7In practice, we can actually estimate the joint CDF using different values of t for each individual hitting
time, such as P({TRi ≤ ti}di=1); however, for these results all ti’s are fixed to the same t for visualization
purposes.

156

0.0

0.1

0.2

0.3
J
o
in

t
C

D
F

E
st

im
at

e
d=1

d=2

d=3

d=4

d=5

103

107

1011

R
el

at
iv

e
E

ffi
ci

en
cy

:
N

E
v
.

U
n

or
d

er
ed

IS

0 2 4 6 8 10

Time t

103

107

1011

R
el

a
ti

ve
E

ffi
ci

en
cy

:
N

E
v
.

O
rd

er
ed

IS

Figure 6.4: Estimated values and efficiencies for the joint distribution P({TRi
≤ t}di=1) for

t ∈ [0, 10], with different colors for d = 1, . . . , 5, computed with naive estimation (NE) and
importance sampling (IS), both ordered and unordered, all shown in a similar format as
Fig. 6.1. Efficiency values sometimes start at varying values of time t due to the same
reasons as in Fig. 6.3. For that reason, the relative efficiency between ordered and unordered
importance sampling is not shown due to a lack of sampled support.

157

6.8 Conclusion

In this chapter, we generalize the approaches from Chapter 4 to apply to the more general

setting of stochastic jump processes. Additionally, estimators are derived for a novel class

of random times we termed generalized hitting times. Specific estimators are given for

compositions and joint distributions for these times. All of these results are empirically

verified in a variety of different use cases and settings, sometimes achieving orders of magnitude

reduction in estimator variance compared to naive Monte Carlo estimation.

158

Chapter 7

Conclusion

This dissertation explores the potential of extracting probabilistic beliefs from autoregressive

sequence models, extending their capabilities beyond immediate next-step predictions. As

modern machine learning models continue to evolve, fueled by increasing data availability

and enhanced computational power, we can build trust in their ability to capture longer-

range dependencies. This necessitates efficient methods for accessing these models’ “beliefs,”

enabling practitioners to expand their use cases and rely on models beyond their original

training objectives.

This work provides a direct solution to this need. Our methods empower practitioners to

leverage pre-trained autoregressive models and efficiently estimate their beliefs for various

probabilistic queries, without modifying the underlying architecture. This approach offers

significant financial and environmental benefits by utilizing existing models, eliminating the

need for additional resource-intensive training for specific queries.

159

7.1 Reiteration of Contributions

Chapter 3: We establish a framework for formulating diverse probabilistic queries on

discrete sequence models. We develop efficient estimation methods, leveraging importance

sampling and beam search, to answer these queries.

Chapter 4: We extend the importance sampling approach to marked temporal point

processes (MTPPs), while theoretically guaranteeing improved sampling efficiency. Empirical

results demonstrate significant variance reduction in query estimators across MTPP models.

Chapter 5: We utilize the proposal distribution from Chapter 4 to address missing in-

formation in MTPPs. This offers the first principled approach, independent of specific

parameterization, for handling missing data in MTPPs.

Chapter 6: We further extend our importance sampling methods to handle highly expres-

sive stochastic jump processes. This enables us to answer queries on a novel class of random

times termed ”generalized hitting times.” Notably, these methods generalize to Chapters 3-5

due to the inherent generality of stochastic jump processes.

By providing efficient and principled methods for extracting long-range probabilistic beliefs,

this work opens doors for broader and more informed applications of autoregressive models.

7.2 Future Research Directions

While the presented methods offer significant benefits, they also have limitations inherent

in both the underlying models and the approximation procedures. This section explores key

160

areas for future research to further expand the impact and applicability of this work.

Long-Range Belief Distillation Current methods require repeated sampling from the

autoregressive model for each query. For frequently asked queries, it might be more com-

putationally efficient to directly model the query instead of estimating it through sampling.

Knowledge distillation could be used, where the original model acts as a “teacher” and a new

model directly approximates the query as a “student” [Gou et al., 2021]. This would involve

sampling only during distillation, with the student model then providing faster estimates at

inference time. However, careful consideration is needed for student model parameterization

and the targeted query class.

Probabilistic Queries as Training Objectives This work focused on efficient extraction

rather than predictive performance of the resulting queries. Evaluating the quality of predic-

tions compared to real data is a crucial area for future research. If the goal is high-quality

predictions for a specific query class, incorporating this into training or fine-tuning stands

to significantly improve inference performance. For instance, instead of solely minimizing

the cross-entropy of the next-step distribution, the model could additionally be trained on

the hitting time distribution of specific events. However, current methods struggle with

non-differentiable samples from autoregressive models, posing a challenge for using them

as training objectives. New differentiable sampling techniques or alternative approaches,

potentially using reinforcement learning, are needed to overcome this hurdle.

Querying Higher Order Beliefs The current methods are limited in the granularity of

the modeling scope. For models handling fine-grained details, like individual characters in

text or DNA base pairs for genomic sequences, the estimable queries are not very informative.

For example, knowing when the next A-T pair appears in DNA is not particularly insightful.

Similarly, for character-level language models, knowing if a period will occur before an

161

exclamation point is not very helpful. Instead, we often want to ask questions about higher-

order semantics, such as when the mood or topic will shift in text or when cancer-associated

genes may appear next in an individual’s DNA. This requires methods that can handle softer

constraints and potentially incorporate other latent, semantic information.

Addressing these future research directions will further enhance the capabilities and impact

of extracting probabilistic beliefs from autoregressive models, enabling them to answer more

complex and informative questions across diverse applications.

162

Bibliography

Bovas Abraham and Johannes Ledolter. Statistical Methods for Forecasting. John Wiley &
Sons, 2009.

Vinicius VL Albani and Jorge P Zubelli. Stochastic transmission in epidemiological models.
Journal of Mathematical Biology, 88(3):1–32, 2024.

Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce Croft. Context-
aware target apps selection and recommendation for enhancing personal mobile assistants.
ACM Transactions on Information Systems, 39(3):1 – 30, May 2021.

Alastaire Sena Alinsato, Kora Hafiz Bete, and Nassibou Bassongui. A climate–economy
model in a stochastic differential equilibrium with fractional Brownian motions and Poisson
jumps. SN Business & Economics, 3(8):139, 2023.

Alan Amin, Eli N Weinstein, and Debora Marks. A generative nonparametric Bayesian model
for whole genomes. Advances in Neural Information Processing Systems, 34:27798–27812,
2021.

Per K Andersen, Ornulf Borgan, Richard D Gill, and Niels Keiding. Statistical Models Based
on Counting Processes. Springer Science & Business Media, 2012.

Jean-Patrick Lebacque Antoine Tordeux, Michel Roussignol and Sylvain Lassarre. A stochas-
tic jump process applied to traffic flow modelling. Transportmetrica A: Transport Science,
10(4):350–375, 2014. doi: 10.1080/23249935.2013.769648.

S Aspandiiarov, Roudolf Iasnogorodski, and M Menshikov. Passage-time moments for
nonnegative stochastic processes and an application to reflected random walks in a quadrant.
The Annals of Probability, 24(2):932–960, 1996.

Frank Aurzada and Tanja Kramm. The first passage time problem over a moving boundary
for asymptotically stable Lévy processes. Journal of Theoretical Probability, 29(3):737–760,
2016.

Emmanuel Bacry, Khalil Dayri, and Jean-François Muzy. Non-parametric kernel estimation
for symmetric Hawkes processes. Application to high frequency financial data. The
European Physical Journal B, 85(5):1–12, 2012.

Tim P Barnett. Monte Carlo climate forecasting. Journal of Climate, 8(5):1005–1022, 1995.

163

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn.
The Pushshift Reddit dataset. In Proceedings of the International AAAI Conference on
Web and Social Media, volume 14, pages 830–839, 2020.

Philippe C Besse, Hervé Cardot, and David B Stephenson. Autoregressive forecasting of
some functional climatic variations. Scandinavian Journal of Statistics, 27(4):673–687,
2000.

Jeff Bilmes. Dynamic graphical models. IEEE Signal Processing Magazine, 27(6):29–42,
2010.

Marin Biloš, Bertrand Charpentier, and Stephan Günnemann. Uncertainty on asynchronous
time event prediction. Advances in Neural Information Processing Systems, 32, 2019.

Alex Boyd, Robert Bamler, Stephan Mandt, and Padhraic Smyth. User-dependent neural
sequence models for continuous-time event data. In Advances in Neural Information
Processing Systems, volume 33, pages 21488–21499. Curran Associates, Inc., 2020.

Alex Boyd, Sam Showalter, Stephan Mandt, and Padhraic Smyth. Predictive querying for
autoregressive neural sequence models. In Advances in Neural Information Processing
Systems, volume 35. Curran Associates, Inc., 2022.

Alex Boyd, Yuxin Chang, Stephan Mandt, and Padhraic Smyth. Probabilistic querying of
continuous-time event sequences. In International Conference on Artificial Intelligence
and Statistics, pages 10235–10251. PMLR, 2023a.

Alex Boyd, Yuxin Chang, Stephan Mandt, and Padhraic Smyth. Inference for mark-censored
temporal point processes. In Robin J. Evans and Ilya Shpitser, editors, Proceedings
of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, volume 216 of
Proceedings of Machine Learning Research, pages 226–236. PMLR, 31 Jul–04 Aug 2023b.

David R Brillinger. Some examples of random process environmental data analysis. Handbook
of Statistics, 18:33–56, 2000.

Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. Recurrent neural network
attention mechanisms for interpretable system log anomaly detection. In Proceedings of
the First Workshop on Machine Learning for Computing Systems, pages 1–8, 2018.

Nicola Bruti-Liberati and Eckhard Platen. Approximation of jump diffusions in finance and
economics. Computational Economics, 29:283–312, 2007.

Nathanial Burch, Marta D’Elia, and Richard B Lehoucq. The exit-time problem for a Markov
jump process. The European Physical Journal Special Topics, 223(14):3257–3271, 2014.

Tomasz Byczkowski, J Ma lecki, and Michal Ryznar. Hitting times of Bessel processes.
Potential Analysis, 38(3):753–786, 2013.

Pio Calderon, Alexander Soen, and Marian-Andrei Rizoiu. Linking across data granularity:
fitting multivariate Hawkes processes to partially interval-censored data. arXiv preprint
arXiv:2111.02062, 2021.

164

Vincenzo Capasso and David Bakstein. Introduction to Continuous-Time Stochastic Pro-
cesses. Springer, 2021.

George Casella and Roger L Berger. Statistical Inference. Cengage Learning, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Eval-
uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent
neural networks as weighted language recognizers. In NAACL-HLT, pages 2261–2271, 01
2018. doi: 10.18653/v1/N18-1205.

Wen-Hao Chiang, Xueying Liu, and George Mohler. Hawkes process modeling of COVID-19
with mobility leading indicators and spatial covariates. International Journal of Forecasting,
38(2):505–520, 2022.

Taane G Clark, Michael J Bradburn, Sharon B Love, and Douglas G Altman. Survival
analysis part i: basic concepts and first analyses. British Journal of Cancer, 89(2):232–238,
2003.

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological), 34(2):187–220, 1972. ISSN 00359246.

D. R. Cox and P. A. W. Lewis. Multivariate point processes. In Proceedings of the Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, page 401. University of
California Press, 1972.

Daryl J Daley and David Vere-Jones. An Introduction to the Theory of Point Processes:
Volume I: Elementary Theory and Methods. Springer, 2003.

Prathamesh Deshpande, Kamlesh Marathe, Abir De, and Sunita Sarawagi. Long horizon
forecasting with temporal point processes. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages 571–579, 2021.

Isabella Deutsch and Gordon J Ross. Abc learning of Hawkes processes with missing or
noisy event times. arXiv preprint arXiv:2006.09015, 2020.

Nguyen Thanh Dieu, Takasu Fugo, and Nguyen Huu Du. Asymptotic behaviors of stochastic
epidemic models with jump-diffusion. Applied Mathematical Modelling, 86:259–270, 2020.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: embedding event history to vec-
tor. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1555–1564, 2016.

Graham Elliott and Allan Timmermann. Economic forecasting. Journal of Economic
Literature, 46(1):3–56, 2008.

165

Joseph Enguehard, Dan Busbridge, Adam Bozson, Claire Woodcock, and Nils Hammerla.
Neural temporal point processes for modelling electronic health records. In Machine
Learning for Health, pages 85–113. PMLR, 2020.

Chun-Po Steve Fan. Local Likelihood for Interval-Censored and Aggregated Point Process
Data. University of Toronto, 2009.

Yu Fan, Jing Xu, and Christian R. Shelton. Importance sampling for continuous time
Bayesian networks. Journal of Machine Learning Research, 11(72):2115–2140, 2010.

Marco Ferrante and Monica Saltalamacchia. The coupon collector’s problem. Materials
Matemàtics, pages 0001–35, 2014.

Giancarlo Fortino, Antonella Guzzo, Michele Ianni, Francesco Leotta, and Massimo Mecella.
Exploiting marked temporal point processes for predicting activities of daily living. In
2020 IEEE International Conference on Human-Machine Systems (ICHMS), pages 1–6.
IEEE, 2020.

Philip Hans Franses. Time series models for business and economic forecasting. Cambridge
university press, 1998.

V.S. Frost and B. Melamed. Traffic modeling for telecommunications networks. IEEE
Communications Magazine, 32(3):70–81, 1994. doi: 10.1109/35.267444.

Arnab Ganguly, Derya Altintan, and Heinz Koeppl. Jump-diffusion approximation of stochas-
tic reaction dynamics: error bounds and algorithms. Multiscale Modeling & Simulation,
13(4):1390–1419, 2015.

Jürgen Gärtner. Location of wave fronts for the multi-dimensional K-P-P equation and
Brownian first exit densities. Mathematische Nachrichten, 105(1):317–351, 1982.

Daniel T Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.,
58:35–55, 2007.

M. Gitterman. Mean first passage time for anomalous diffusion. Physical Review E, 62:
6065–6070, Nov 2000.

Peter JE Goss and Jean Peccoud. Quantitative modeling of stochastic systems in molecular
biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences,
95(12):6750–6755, 1998.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation:
a survey. International Journal of Computer Vision, 129:1789–1819, 2021.

Priscilla E Greenwood and Luis F Gordillo. Stochastic epidemic modeling. Mathematical
and Statistical Estimation Approaches in Epidemiology, pages 31–52, 2009.

166

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep
autoregressive networks. In Eric P. Xing and Tony Jebara, editors, Proceedings of the
31st International Conference on Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 1242–1250, Bejing, China, 22–24 Jun 2014. PMLR.

Riccardo Guidotti, Giulio Rossetti, Luca Pappalardo, Fosca Giannotti, and Dino Pedreschi.
Personalized market basket prediction with temporal annotated recurring sequences. IEEE
Transactions on Knowledge and Data Engineering, 31(11):2151–2163, 2018.

Vinayak Gupta, Srikanta Bedathur, Sourangshu Bhattacharya, and Abir De. Learning
temporal point processes with intermittent observations. In International Conference on
Artificial Intelligence and Statistics, pages 3790–3798. PMLR, 2021.

Vinayak Gupta, Srikanta Bedathur, Sourangshu Bhattacharya, and Abir De. Modeling
continuous time sequences with intermittent observations using marked temporal point
processes. ACM Transactions on Intelligent Systems and Technology (TIST), 13(6):1–26,
2022.

R. Gutiérrez, L. M. Ricciardi, P. Román, and F. Torres. First-passage-time densities for
time-non-homogeneous diffusion processes. Journal of Applied Probability, 34(3):623–631,
1997. ISSN 00219002.

Humza Haider, Bret Hoehn, Sarah Davis, and Russell Greiner. Effective ways to build and
evaluate individual survival distributions. The Journal of Machine Learning Research, 21
(1):3289–3351, 2020.

James D Hamilton. Time Series Analysis. Princeton university press, 2020.

F Maxwell Harper and Joseph A Konstan. The MovieLens datasets: history and context.
ACM Transactions on Interactive Intelligent Systems (TIIS), 5(4):1–19, 2015.

Tobias Hatt and Stefan Feuerriegel. Early detection of user exits from clickstream data: a
Markov modulated marked point process model. In Proceedings of The Web Conference
2020, pages 1671–1681, 2020.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90, 1971.

Alan G Hawkes. Hawkes processes and their applications to finance: a review. Quantitative
Finance, 18(2):193–198, 2018.

Daniel F Heitjan and Srabashi Basu. Distinguishing “missing at random” and “missing
completely at random”. The American Statistician, 50(3):207–213, 1996.

Samuel Herrmann and Nicolas Massin. Exact simulation of the first passage time through a
given level of jump diffusions. Mathematics and Computers in Simulation, 203:553–576,
2023.

167

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2019.

Chengkuan Hong and Christian Shelton. Deep Neyman-Scott processes. In International
Conference on Artificial Intelligence and Statistics, pages 3627–3646. PMLR, 2022.

Ronald A Howard. Dynamic Probabilistic Systems: Markov Models, volume 1. Courier
Corporation, 2012.

Zhengbing Hu, Ihor Tereikovskyi, Liudmyla Tereikovska, Mikola Tsiutsiura, and Kostiantyn
Radchenko. Applying wavelet transforms for web server load forecasting. In International
Conference on Computer Science, Engineering and Education Applications, pages 13–22.
Springer, 2019.

Alan Hájek. Interpretations of probability. In Edward N. Zalta and Uri Nodelman, editors,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
Winter 2023 edition, 2023.

Takeshi Ise and Yurika Oba. Forecasting climatic trends using neural networks: an ex-
perimental study using global historical data. Frontiers in Robotics and AI, page 32,
2019.

Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic Processes and
their Applications, 8(3):335–347, 1979.

Kazi T Islam, Christian R Shelton, Juan I Casse, and Randall Wetzel. Marked point process
for severity of illness assessment. In Proceedings of the Machine Learning for Healthcare
Conference (MLHC), pages 255–270. PMLR, 2017.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances
in Neural Information Processing Systems, 32, 2019.

R. Gutiérrez Jáimez, P. Román Román, and F. Torres Ruiz. A note on the Volterra integral
equation for the first-passage-time probability density. Journal of Applied Probability, 32
(3):635–648, 1995. ISSN 00219002.

John G Kemeny and J Laurie Snell. Finite Markov Chains. Springer, 3rd edition, 1983.

Masaaki Kijima. Stochastic Processes with Applications to Finance. Chapman and Hall/CRC,
2002.

Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization. Interna-
tional Conference on Learning Representations (ICLR), 2015.

Alexander Klemm, Christoph Lindemann, and Marco Lohmann. Modeling IP traffic using
the batch Markovian arrival process. Performance Evaluation, 54(2):149–173, 2003. ISSN
0166-5316. doi: 10.1016/S0166-5316(03)00067-1.

168

Achim Klenke. Probability Theory: A Comprehensive Course. Springer Science & Business
Media, 2013.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, MA, 2009.

Daphne Koller, Nir Friedman, Lise Getoor, and Ben Taskar. Graphical models in a nutshell.
In Introduction to Statistical Relational Learning. MIT Press, Cambridge, MA, 2007.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find
them: the Gumbel-top-k trick for sampling sequences without replacement. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 3499–3508. PMLR, 09–15 Jun 2019.

Jan TA Koster. Marginalizing and conditioning in graphical models. Bernoulli, pages
817–840, 2002.

Steven G Kou and Hui Wang. First passage times of a jump diffusion process. Advances in
Applied Probability, 35(2):504–531, 2003.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1269–1278. ACM, 2019.

Changhee Lee, Jinsung Yoon, and Mihaela Van Der Schaar. Dynamic-deephit: a deep
learning approach for dynamic survival analysis with competing risks based on longitudinal
data. IEEE Transactions on Biomedical Engineering, 67(1):122–133, 2019.

Mario Lefebvre. Exact solutions to optimal control problems for Wiener processes with
exponential jumps. Journal of Stochastic Analysis, 2(2):1, 2021.

Mario Lefebvre. First-passage times and optimal control of integrated jump-diffusion pro-
cesses. Fractal and Fractional, 7(2):152, 2023.

Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the dynamics of
the news cycle. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 497–506, 2009.

Yong Li, Depeng Jin, Zhaocheng Wang, Pan Hui, Lieguang Zeng, and Sheng Chen. A Markov
jump process model for urban vehicular mobility: modeling and applications. IEEE
Transactions on Mobile Computing, 13(9):1911–1926, 2014. doi: 10.1109/TMC.2013.159.

Haitao Lin, Lirong Wu, Guojiang Zhao, Liu Pai, and Stan Z Li. Exploring generative neural
temporal point process. Transactions on Machine Learning Research, 2022.

Scott W Linderman, Yixin Wang, and David M Blei. Bayesian inference for latent Hawkes
processes. Advances in Bayesian Inference Workshop, NeurIPS 31, 2017.

169

Thomas Josef Liniger. Multivariate Hawkes processes. PhD thesis, ETH Zurich, 2009.

Alexander Lipton and Vadim Kaushansky. On the first hitting time density for a reducible
diffusion process. Quantitative Finance, 20(5):723–743, 2020.

László Lovász. Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46):4,
1993.

Alan Macdonald. Linear and Geometric Algebra. Alan Macdonald, 2010.

Jorge E. Maćıas-Dı́az. A numerical scheme for the probability density of the first hitting
time for some random processes. Symmetry, 12(11), 2020. ISSN 2073-8994.

Andrew J Majda, Christian Franzke, and Boualem Khouider. An applied mathematics
perspective on stochastic modelling for climate. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 366(1875):2427–2453, 2008.

Myrl G Marmarelis, Greg Ver Steeg, and Aram Galstyan. A metric space for point process
excitations. Journal of Artificial Intelligence Research, 73:1323–1353, 2022.

Kazuhisa Matsuda. Introduction to Merton jump diffusion model. Department of Economics,
The Graduate Center, The City University of New York, New York, 2004.

Hongyuan Mei and Jason M Eisner. The neural Hawkes process: a neurally self-modulating
multivariate point process. Advances in Neural Information Processing Systems, 30:
6757–6767, 2017.

Hongyuan Mei, Guanghui Qin, and Jason Eisner. Imputing missing events in continuous-
time event streams. In International Conference on Machine Learning, pages 4475–4485.
PMLR, 2019.

Clara Isabel Meister, Afra Amini, Tim Vieira, and Ryan Cotterell. Conditional Poisson
stochastic beams. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 664–681. Association for Computational Linguistics, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. In International Conference on Learning Representations, 2016.

Steve AK Metwally and Amir F Atiya. Using Brownian bridge for fast simulation of jump-
diffusion processes and barrier options. The Journal of Derivatives, 10(1):43–54, 2002.

Abhishek Mishra and Parv Venkitasubramaniam. Anonymity of a buffer constrained chaum
mix: optimal strategy and asymptotics. In 2013 IEEE International Symposium on
Information Theory, pages 71–75. IEEE, 2013.

Swapnil Mishra, Marian-Andrei Rizoiu, and Lexing Xie. Feature driven and point process
approaches for popularity prediction. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages 1069–1078, 2016.

Kevin P Murphy. Probabilistic Machine Learning: An Introduction. MIT press, 2022.

170

Kevin P Murphy. Probabilistic Machine Learning: Advanced Topics. MIT press, 2023.

Chirag Nagpal, Vincent Jeanselme, and Artur Dubrawski. Deep parametric time-to-event
regression with time-varying covariates. In Survival Prediction-Algorithms, Challenges
and Applications, pages 184–193. PMLR, 2021.

Donald J Newman. The double dixie cup problem. The American Mathematical Monthly,
67(1):58–61, 1960.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 188–197, Hong Kong, China,
November 2019. Association for Computational Linguistics.

U. Nodelman, C.R. Shelton, and D. Koller. Continuous time Bayesian networks. In
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI),
pages 378–387, 2002.

David Oakes. The Markovian self-exciting process. Journal of Applied Probability, 12(1):
69–77, 1975. ISSN 00219002.

Yosihiko Ogata. On Lewis’ simulation method for point processes. IEEE Transactions on
Information Theory, 27(1):23–31, 1981.

Yosihiko Ogata. Space-time point-process models for earthquake occurrences. Annals of the
Institute of Statistical Mathematics, 50(2):379–402, 1998.

Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based model for
general temporal point processes. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
pages 601–610, 2017.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, De-
von K Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak,
John E Boylan, et al. Forecasting: theory and practice. International Journal of Forecast-
ing, 38(3):705–871, 2022.

Eckhard Platen and Nicola Bruti-Liberati. Numerical Solution of Stochastic Differential
Equations with Jumps in Finance, volume 64. Springer Science & Business Media, 2010.

Murray Pollock. Some Monte Carlo Methods for Jump Diffusions. PhD thesis, University
of Warwick, 2013.

171

Nicolas Privault. Introduction to Stochastic Finance with Market Examples. CRC Press,
2022.

Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware recommender
systems. ACM computing surveys (CSUR), 51(4):1–36, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019. URL https://openai.com/

blog/better-language-models/.

MB Rajarshi. Statistical Inference for Discrete Time Stochastic Processes. Springer Science
& Business Media, 2014.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
Markov chains for next-basket recommendation. In Proceedings of the 19th International
Conference on World Wide Web, pages 811–820, 2010.

Luigi M. Ricciardi and Shunsuke Sato. First-passage-time density and moments of the
Ornstein-Uhlenbeck process. Journal of Applied Probability, 25(1):43–57, 1988. ISSN
00219002.

Marian-Andrei Rizoiu, Lexing Xie, Scott Sanner, Manuel Cebrian, Honglin Yu, and Pascal
Van Hentenryck. Expecting to be hip: Hawkes intensity processes for social media
popularity. In Proceedings of the 26th International Conference on World Wide Web,
pages 735–744, 2017.

Marian-Andrei Rizoiu, Alexander Soen, Shidi Li, Pio Calderon, Leanne Dong, Aditya Krishna
Menon, and Lexing Xie. Interval-censored Hawkes processes. Journal of Machine Learning
Research, 23(338):1–84, 2022.

Christian P Robert and George Casella. Monte Carlo Statistical Methods, volume 2. Springer,
2004.

Leonard CG Rogers and David Williams. Diffusions, Markov Processes, and Martingales:
Volume 1, Foundations, volume 1. Cambridge university press, 2000.

Tomasz Rolski, Hanspeter Schmidli, Volker Schmidt, and Jozef L Teugels. Stochastic Pro-
cesses for Insurance and Finance. John Wiley & Sons, 2009.

Sheldon M Ross and Samim Ghamami. Efficient Monte Carlo barrier option pricing when
the underlying security price follows a jump-diffusion process. The Journal of Derivatives,
17(3):45–52, 2010.

Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. London,
2010.

Paavo Salminen. On the first hitting time and the last exit time for a Brownian motion
to/from a moving boundary. Advances in Applied Probability, 20(2):411–426, 1988.

172

https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/

Carlos Santana, Julius CB Leite, and Daniel Mossé. Power management by load forecasting
in web server clusters. Cluster Computing, 14:471–481, 2011.

Manfred Schäl. On hitting times for jump-diffusion processes with past dependent local
characteristics. Stochastic Processes and their Applications, 47(1):131–142, 1993. ISSN
0304-4149. doi: 10.1016/0304-4149(93)90099-P.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time
series forecasting with deep learning: a systematic literature review: 2005–2019. Applied
Soft Computing, 90:106181, 2020.

Uri Shaham and Omer Levy. What do you get when you cross beam search with nucleus
sampling? In Proceedings of the Third Workshop on Insights from Negative Results in
NLP, pages 38–45. Association for Computational Linguistics, May 2022.

William Shakespeare. The complete works of William Shakespeare: Project
Gutenberg. https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.

shakespeare.txt. Accessed: 2020-04-11.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal
point processes. International Conference on Learning Representations (ICLR), 2020.

Oleksandr Shchur, Ali Caner Turkmen, Tim Januschowski, and Stephan Günnemann. Neural
temporal point processes: a review. In IJCAI 2021, 2021.

Christian Shelton, Zhen Qin, and Chandini Shetty. Hawkes process inference with missing
data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Christian R Shelton and Gianfranco Ciardo. Tutorial on structured continuous-time Markov
processes. Journal of Artificial Intelligence Research, 51:725–778, 2014.

Kensen Shi, David Bieber, and Charles Sutton. Incremental sampling without replacement
for sequence models. In International Conference on Machine Learning, pages 8785–8795.
PMLR, 2020.

Zijian Shi and John Cartlidge. State dependent parallel neural Hawkes process for limit order
book event stream prediction and simulation. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 1607–1615, 2022.

Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, and Oleksandr Polozov. Program
synthesis and semantic parsing with learned code idioms. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, pages 10825–10835.
Curran Associates Inc., 2019.

Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana Simon,
Chris Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks. Protein design
and variant prediction using autoregressive generative models. Nature Communications,
12(1):1–11, 2021.

173

https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt

Xiao Shou, Tian Gao, Dharmashankar Subramanian, Debarun Bhattacharjya, and Kristin P
Bennett. Concurrent multi-label prediction in event streams. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 9820–9828, 2023.

Jagadish Shukla. Predictability in the midst of chaos: a scientific basis for climate forecasting.
Science, 282(5389):728–731, 1998.

Antońın Slav́ık. Product Integration, its History and Applications. Matfyzpress Prague,
2007.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems, 27:3104 – 3112, 2014.

Tamás Székely Jr and Kevin Burrage. Stochastic simulation in systems biology. Computa-
tional and Structural Biotechnology Journal, 12(20-21):14–25, 2014.

Lukasz Szpruch and Desmond J Higham. Comparing hitting time behavior of Markov jump
processes and their diffusion approximations. Multiscale Modeling & Simulation, 8(2):
605–621, 2010.

Wenguang Tang and Shuhua Chang. A semi-Lagrangian method for the weather options of
mean-reverting Brownian motion with jump–diffusion. Computers & Mathematics with
Applications, 71(5):1045–1058, 2016.

Myint Tin. Comparison of some ratio estimators. Journal of the American Statistical
Association, 60(309):294–307, 1965.

Alberto Troccoli. Seasonal climate forecasting. Meteorological Applications, 17(3):251–268,
2010.

William Trouleau, Jalal Etesami, Matthias Grossglauser, Negar Kiyavash, and Patrick Thiran.
Learning Hawkes processes under synchronization noise. In International Conference on
Machine Learning, pages 6325–6334. PMLR, 2019.

Ali Caner Türkmen, Yuyang Wang, and Alexander J Smola. Fastpoint: scalable deep
point processes. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings,
Part II, pages 465–480. Springer, 2020.

Utkarsh Upadhyay, Abir De, and Manuel Gomez Rodriguez. Deep reinforcement learning
of marked temporal point processes. Advances in Neural Information Processing Systems,
31, 2018.

Hans van Houwelingen and Hein Putter. Dynamic Prediction in Clinical Survival Analysis.
CRC Press, 2011.

174

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30:6000–6010, 2017.

George H Weiss, Kurt E Shuler, and Katja Lindenberg. Order statistics for first passage
times in diffusion processes. Journal of Statistical Physics, 31:255–278, 1983.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers:
state-of-the-art natural language processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45,
Online, October 2020. Association for Computational Linguistics.

Wojbor A Woyczyński. Diffusion Processes, Jump Processes, and Stochastic Differential
Equations. CRC Press, 2022.

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. Recurrent
recommender networks. In Proceedings of the tenth ACM international conference on web
search and data mining, pages 495–503, 2017.

Jing Wu, Anna L. Smith, and Tian Zheng. Diagnostics and Visualization of Point Process
Models for Event Times on a Social Network, chapter 7, pages 129–145. John Wiley &
Sons, Ltd, 2021. doi: 10.1002/9781119821588.ch7.

Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen Chu. Modeling the
intensity function of point process via recurrent neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 31, 2017.

Shuai Xiao, Hongteng Xu, Junchi Yan, Mehrdad Farajtabar, Xiaokang Yang, Le Song, and
Hongyuan Zha. Learning conditional generative models for temporal point processes. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Hongteng Xu, Dixin Luo, and Hongyuan Zha. Learning Hawkes processes from short
doubly-censored event sequences. In International Conference on Machine Learning, pages
3831–3840. PMLR, 2017.

Jiacheng Xu, Siddhartha Jonnalagadda, and Greg Durrett. Massive-scale decoding for text
generation using lattices. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 4659–4676. Association for Computational Linguistics, July 2022.

Kang Yang, Xi Zhao, Jianhua Zou, and Wan Du. ATPP: A mobile app prediction system
based on deep marked temporal point processes. In 2021 17th International Conference
on Distributed Computing in Sensor Systems (DCOSS), pages 83–91. IEEE, 2021.

175

Chuancun Yin, Ying Shen, and Yuzhen Wen. Exit problems for jump processes with
applications to dividend problems. Journal of Computational and Applied Mathematics,
245:30–52, 2013.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural
networks: LSTM cells and network architectures. Neural Computation, 31(7):1235–1270,
2019.

Lu-ning Zhang, Jian-wei Liu, Zhi-yan Song, and Xin Zuo. Temporal attention augmented
transformer Hawkes process. Neural Computing and Applications, pages 1–15, 2022.

Sumei Zhang and Junhao Geng. Efficiently pricing continuously monitored barrier options
under stochastic volatility model with jumps. International Journal of Computer Mathe-
matics, 94(11):2166–2177, 2017.

Yizhou Zhang, Karishma Sharma, and Yan Liu. VigDdet: Knowledge informed neural
temporal point process for coordination detection on social media. Advances in Neural
Information Processing Systems, 34:3218–3231, 2021.

Xiao-Gu Zheng and David Vere-Jones. Application of stress release models to historical
earthquakes from North China. Pure and Applied Geophysics, 135:559–576, 1991.

Zihan Zhou and Mingxuan Sun. Multivariate Hawkes processes for incomplete biased data.
In 2021 IEEE International Conference on Big Data (Big Data), pages 968–977. IEEE,
2021.

Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. Learning
tree-based deep model for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1079–1088, 2018.

Yada Zhu, Wenyu Chen, Yang Zhang, Tian Gao, and Jianbo Li. Probabilistic framework
for modeling event shocks to financial time series. In Proceedings of the Second ACM
International Conference on AI in Finance, pages 1–8, 2021.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
process. In International Conference on Machine Learning, pages 11692–11702. PMLR,
2020.

176

Appendix A

Supplemental Material for Chapter 3

A.1 Variance of Estimates from the Hybrid Method

We are assuming to be under the hybrid method regime where a collection of sequences B ⊂ Q

relevant to answering Pθ(X1:K ∈ Q) have been deterministically found and are interested

in using sampling methods to estimate the remainder Pθ(X1:K ∈ Q \ B). For brevity, we

will assume that Q = V1 × · · · × VK . As mentioned in the previous section, we leverage our

originally presented proposal distribution q by further restricting the domain to Q \ B in

order to be used in this scenario. This will be represented by

qB(x1:K) := Q(X1:K = x1:K |X1:K /∈ B) (A.1)

=
q(x1:K)1(x1:K ∈ Q \ B)

1−Q(X1:K ∈ B)
. (A.2)

Note that an associated autoregressive form qB(xk |x<k) exists and is well defined; however,

the exact definition is a bit unwieldy. Please refer to Section 3.4.2 for more details.

177

Using this proposal distribution, we can easily estimate the remaining probability:

Pθ(X1:K ∈ Q \ B) = EQB
x1:K

[
pθ(X1:K)

qB(X1:K)

]
(A.3)

≈ 1

M

M∑
m=1

pθ(X
(m)
1:K)

qB(X
(m)
1:K)

for X
(1)
1:K , . . . ,x

(M)
1:K

iid∼ qB. (A.4)

Let ωB(x1:K) := pθ(x1:K)
qB(x1:K)

and for brevity we will refer to Pθ(X1:K ∈ Q \ B) as ω̄B.

If we assume B′ = B ∪ {x̂1:K} for some x̂1:K ∈ Q \ B, then it is interesting to determine

when exactly there will be a reduction in sampling variance for Pθ(X1:K ∈ Q \ B′) versus

Pθ(X1:K ∈ Q\B) as this will give insight into when the hybrid method is successful. In other

words, we would like to show when the following inequality holds true:

∆Var := VarQB
X1:K

[ωB(X1:K)]− Var
QB′
X1:K

[ωB′(X1:K)] ≥ 0 (A.5)

If this is true for a given x̂1:K , then this finding can be applied recursively for more general

(but still possibly restricted) B′ ⊃ B.

VarQB
X1:K

[ωB(X1:K)] = EQB
X1:K

[
(ωB(X1:K)− ω̄B)2

]
(A.6)

= EQB
X1:K

[
ωB(X1:K)2

]
− ω̄2

B (A.7)

=
∑

x1:K∈Q\B

qB(x1:K)ωB(x1:K)2 − ω̄2
B (A.8)

It then follows that

∆Var = ω̄2
B′ − ω̄2

B +
∑

x1:K∈Q\B

qB(x1:K)ωB(x1:K)2 −
∑

x1:K∈Q\B′

qB′(x1:K)ωB′(x1:K)2

= (ω̄2
B′ − ω̄2

B) + qB(x̂1:K)ωB(x̂1:K)2+∑
x1:K∈Q\B′

[
qB(x1:K)ωB(x1:K)2 − qB′(x1:K)ωB′(x1:K)2

]
(A.9)

178

We will now analyze each of the three terms in Eq. (A.9) to determine when ∆Var ≥ 0. For

the first term, it follows that:

ω̄B′ + ω̄B = Pθ(X1:K ∈ Q \ B′) + Pθ(X1:K ∈ Q \ B)

= 2Pθ(X1:K ∈ Q \ B′) + pθ(x̂1:K)

ω̄B′ − ω̄B = Pθ(X1:K ∈ Q \ B′)− Pθ(X1:K ∈ Q \ B)

= −pθ(x̂1:K)

=⇒ ω̄2
B′ − ω̄2

B = −pθ(x̂1:K) (2Pθ(X1:K ∈ Q \ B′)− pθ(x̂1:K)) (A.10)

The other two terms in Eq. (A.9) must sum to a positive value with as large or larger

magnitude to Eq. (A.10) for ∆Var ≥ 0. Looking at the second term, we see that

qB(x̂1:K)ωB(x̂1:K)2 =
pθ(x̂1:K)2

qB(x̂1:K)
(A.11)

= pθ(x̂1:K)(1−Q(X1:K ∈ B))
K∏
k=1

∑
vk∈Vk

pθ(vk | x̂<k) ≥ 0. (A.12)

This inequality becomes strict should pθ(x̂1:K) > 0. We will now look at the final summation

in Eq. (A.9):

∑
x1:K∈Q\B′

[
qB(x1:K)ωB(x1:K)2 − qB′(x1:K)ωB′(x1:K)2

]
(A.13)

=
∑

x1:K∈Q\B′

(
pθ(x1:K)2

qB(x1:K)
− pθ(x1:K)2

qB′(x1:K)

)
(A.14)

=
∑

x1:K∈Q\B′

pθ(x1:K) (Q(X1:K ∈ B′)−Q(X1:K ∈ B))
K∏
k=1

∑
vk∈Vk

pθ(vk |x<k) (A.15)

= q(x̂1:K)
∑

x1:K∈Q\B′

pθ(x1:K)
K∏
k=1

∑
vk∈Vk

pθ(vk |x<k) (A.16)

=
pθ(x̂1:K)∏K

k=1

∑
vk∈Vk

pθ(vk | x̂<k)

∑
x1:K∈Q\B′

pθ(x1:K)
K∏
k=1

∑
vk∈Vk

pθ(vk |x<k). (A.17)

179

Since all terms in Eq. (A.9) have a common factor pθ(x̂1:K), we can see that ∆Var ≥ 0 iff the

following holds:

2Pθ(X1:K ∈ Q \ B′)− 1

ρ(x̂1:K)

∑
x1:K∈Q\B′

pθ(x1:K)ρ(x1:K)

≤ (1−Q(X1:K ∈ B))ρ(x̂1:K) + pθ(x̂1:K) (A.18)

for ρ(x1:K) =
∏K

k=1

∑
vk∈Vk

pθ(vk |x<k). Should this hold true, then by taking B′ instead of B

during the beam search segment of the hybrid approach would the variance of the sampling

subroutine reduce. Generalizing this further, it is not guaranteed that the hybrid estimate

will have a lower variance than regular importance sampling; however, our experimental

results across a variety of settings (see Fig. 3.3) seem to indicate that the variance is reduced

on average.

All of the terms to the left of the inequality in Eq. (A.18) are quantities that would require

either expansive computations or estimation in order to know their values. Conversely, all

the values to the right of the inequality are readily available as a byproduct of beam search.

Incorporating this into decision making for our hybrid method is left for future work.

A.2 Determining Ground Truth for Experiments

Exact computation of ground truth is intractable for queries with large path spaces. We

circumvent this issue via the law of large numbers by computing surrogate ground truth

query estimates with a large computational budget, leveraging the variance of the query’s

samples as a convergence criterion. Specifically, our algorithm is conducted as follows. We

first specify a minimum number of samples Slow = 10000 to be drawn for the surrogate

ground-truth estimate. Once Slow samples have been drawn, we compute the variance of our

180

estimate p̂∗θ(X1:K ∈ Q) := 1
S

∑S
i=1

p∗θ(X1:K=x
(i)
1:K)

q(X1:K=x
(i)
1:K)

for x
(1)
1:K , . . . , x

(S)
1:K

iid∼ q(X1:K):

V̂arq [p̂∗θ(X1:K ∈ Q)] =
1

S

S∑
i=1

(
p∗θ(X1:K = x

(i)
1:K)

q(X1:K = x
(i)
1:K)

− p̂∗θ(X1:K ∈ Q)

)2

(A.19)

We then evaluate V̂arq [p̂∗θ(X1:K ∈ Q)] every 1000 additional samples until either it drops below

tolerance δ = 1e−7 or S meets our maximum sample budget Shigh = 100000. This procedure

is done in all of our experiments in which a method’s performance is being compared to

a query’s ground truth value and exact ground truth cannot be computed due to resource

constraints (typically when K > 4).

A.3 Additional Experimental Details and Results

This section discusses additional experimental details and results that were not included

in section 5 of our main paper due to space constraints. In all experiments, all means

and medians reported are with respect to NQ = 1000 randomly selected sequence loca-

tions/histories/queries per datapoint in each plot, unless stated otherwise. For each randomly

selected current location, the event a used in the query for k steps ahead corresponds to the

actual observed event a for k steps ahead.

A.3.1 Query Estimation Error as a Function of Horizon K

Fig. 3 in the main paper shows the median relative absolute error (RAE) (across NQ = 1000

queries) as a function of query horizon K for 4 datasets, comparing beam search, importance

sampling, and the hybrid method, with a computation budget fixed at S = 100 hybrid

samples. Here we provide a number of extensions of these results.

181

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or

Reviews

Method

Importance Sampling

Beam Search

Hybrid

0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

Samples = 10

0.0

0.2

0.4

0.6

0.8

1.0

Shakespeare

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or

Reviews

0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

Samples = 100

0.0

0.2

0.4

0.6

0.8

1.0

Shakespeare

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or

Reviews

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

Samples = 1000

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

Shakespeare

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

Figure A.1: Median estimation error versus query horizon K: median relative absolute
error (RAE) between estimated probability and (surrogate) ground truth for Pθ(hit(·) = K),
for importance sampling, beam search, and the hybrid method, with varying computation
budgets determined by 10, 100, and 1000 samples for the hybrid method. Ground truth
values used to determine error in these plots are exact for K ≤ 4 and approximated otherwise.

.

182

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or Reviews

0.0

0.2

0.4

0.6

0.8

1.0

1.2 MOOCs

Samples = 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Shakespeare

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Mobile Apps

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or Reviews

0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

Samples = 100

0.0

0.2

0.4

0.6

0.8

1.0

Shakespeare

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or Reviews

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

Samples = 1000

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

Shakespeare

3 4 5 6 7 8 9 10 11

K

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

Method

Importance Sampling

Beam Search

Hybrid

Figure A.2: Mean estimation error versus query horizon K: same format as Fig. A.1.
Ground truth values used to determine error in these plots are exact for K ≤ 4 and approxi-
mated otherwise.

183

Figure A.3: Scatterplots of individual query estimates versus (surrogate) ground
truth, computation budget of 10 hybrid samples: Comparison of importance sampling
(I.S.), beam search (B.S.), and the hybrid method for the MOOCs dataset with the budget
determined by the hybrid method using 10 samples. The x-axis corresponds to the surrogate
ground truth values for a given query result. Density plots at the bottom are for the surrogate
ground truth values. Ground truth values used to determine error in these plots are exact
for K ≤ 4 and approximated otherwise.

Fig. A.1 shows the median RAE, for three levels of computation budget: S = 10, 100, 1000

and Fig. A.2 shows the same results but now reporting mean RAE on the y-axis. While

the details differ across different settings, the qualitative conclusions in these Figures agree

with those for Fig. 3 in the main paper, namely that beam search is more sensitive (in its

error) to both the horizon query K and to individual datasets, compared to both importance

sampling and the hybrid method. More granular perspectives of this information for one of

the datasets (MOOCs) can be seen in Figures A.3 to A.5 in the form of scatter plots of each

of the individual query estimates against (surrogate) ground truth for that query. Different

budgets are shown in different figures, and the results for K = 3, 5, 7, 9, 11 are shown in each

column.

184

Figure A.4: Scatterplots of individual query estimates versus (surrogate) ground
truth, computation budget of 100 hybrid samples: Same format as Fig. A.3.

Figure A.5: Scatterplots of individual query estimates versus (surrogate) ground
truth, computation budget of 1000 hybrid samples: Same format as Fig. A.3.

185

A.3.2 Query Estimation Error as a Function of Computation Bud-

get

In addition to identifying optimal query estimation methodologies for a low and fixed com-

putation budget, we also explore the impact of increasing computation budget for query

lengths K = 3, 7, 11, roughly corresponding to short, medium, and long horizon queries.

These experiments are conducted in the same manner as the query estimation experiments

with a fixed model budget, but are then repeated for many different budgets derived from

S = 10, 30, 50, 100, 300, 500, 1000, 3000, 5000, 10000 hybrid samples. The intention with these

experiments is to observe if any query estimation methods disproportionately benefit from

increased computation and exhibit behavior that was not present at lower computation bud-

gets. We also include two additional baselines. The full set of methods explored is listed

below.

1. Importance sampling (informative proposal distribution q derived from model pθ)

2. Beam search

3. Hybrid search and sampling

4. Monte-Carlo sampling with a uniform proposal distribution

5. Naive model sampling (direct MC sampling for EPθ1(X1:K ∈ Q))

As a clarifying point, naive sampling is conducted by sampling sequences from the model

and determining if they fall within the query set Q; the proportion of samples that exist in Q

serves as a naive means of determining the query estimate in question. In addition, Monte-

Carlo sampling with a uniform proposal distribution samples sequences in Q uniformly and

the estimates the query probability for that sample. These two methods were not included

in the main paper due to their consistently poor performance.

186

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or
fo

r
p∗ θ

(τ
(·)

=
3)

Reviews

Method

Importance Sampling Beam Search Hybrid MC Sampling Naive Sampling

0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

0.0

0.2

0.4

0.6

0.8

1.0

Shakespeare

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or
fo

r
p∗ θ

(τ
(·)

=
7)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or
fo

r
p∗ θ

(τ
(·)

=
11

)

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.6: Median estimation error versus model budgets: Median relative absolute
error (RAE) for importance sampling, beam search, the hybrid method, MC sampling, and
naive sampling across three different queries, Pθ(hit(·) = k), for k = 3, 7, 11, over all four
main datasets, as a function of different model budgets. For cases where the MC sampling
results are not visible (e.g., see rightmost plot on the bottom row), the results coincide with
the naive sampling results. Ground truth values used to determine error in these plots are
exact for K ≤ 4 and approximated otherwise.

187

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or

fo
r
p∗ θ

(τ
(·)

=
3)

Reviews

Method

Importance Sampling Beam Search Hybrid MC Sampling Naive Sampling

0.0

0.5

1.0

1.5

2.0

2.5

MOOCs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Shakespeare

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Mobile Apps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or

fo
r
p∗ θ

(τ
(·)

=
7)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n
R

el
at

iv
e

A
b

s.
E

rr
or

fo
r
p∗ θ

(τ
(·)

=
11

)

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 10
0

30
0

50
0

10
00

30
00

50
00

10
00

0

Model Budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure A.7: Mean estimation error versus model budgets: Same format as Fig. A.6.
Ground truth values used to determine error in these plots are exact for K ≤ 4 and approxi-
mated otherwise.

188

Fig. A.6 (median error) and Fig. A.7 (mean error), show that increasing the computation

budget by an order of magnitude roughly corresponds to a three times reduction in RAE for

both importance sampling and the hybrid method. Naive sampling sees almost no benefit

from the increased budget regardless of the size of the query path space. Monte Carlo sampling

sees some reduction in error from increased computation budget for some configurations, but

also often sees no benefit.

For the provided budgets, the query estimates resulting from naive model sampling are

consistently 0, resulting in an RAE of 1. While naive model sampling can be useful in

some contexts in general, these results indicate that it is not well-suited for estimating query

probabilities. This is likely because many of the ground truth probabilities for these queries

have values on the order of 10−1 or smaller. For queries that are highly unlikely under the

model, the probability of even a single sampled sequence belonging to Q is very low.

Monte-Carlo sampling also includes high error estimates, but for a different reason. Since the

Monte-Carlo estimate can be decomposed into an expectation over Pθ(X1:K = x1:K , x1:K ∈ Q)

that is then re-scaled by |Q| ≫ 0, the scaling term magnifies any error in the expectation

dramatically, inducing extremely high variance and the potential to produce query estimates

that exceed 1. This high variance can persist even for high computation budgets. By contrast,

beam search improves with an increased computational budget, but only as a function of the

total path space. The larger the path space and the higher the entropy of the distribution,

the worse the beam search estimates are as measured by RAE.

A.3.3 Coverage-based Beam Search Ablation

As described in the main paper, a variant of beam search well-suited to query estimation is

coverage-based beam search. However, this method was not explored further in our analysis

as it could not scale to non-trivial query types and large query path spaces. Depicted in

189

0

25000

50000

α = 0.95

0

25000

50000

N
u

m
b

er
of

B
ea

m
s

α = 0.75

2 3 4 5 6 7 8 9 10 11

K

0

25000

50000

α = 0.50

Figure A.8: Number of beams as a function of K steps into decoding sequences for coverage-
based beam search estimating Pθ(XK ∈ A) with α ∈ {0.95, 0.75, 0.5} over a variety of different
starting histories and subsets A ⊂ X in the Shakespeare dataset.

Fig. A.8, the minimum number of beams needed to cover 50%, 75%, and 90% of the query

path space increases exponentially with the query length K. Though coverage-based beam

search comes with desirable coverage guarantees and is a consistent (albeit biased) query

estimator, naively applying coverage-based beam search to queries of practical interest is

ill-posed and computationally intractable. However, the hybrid method preserves some of

beam search’s desirable traits while making it suitable for queries of practical interest. See

Section 3.4.2 for more information.

A.3.4 Long-horizon Query Estimation

The empirical results of our experiments tell us much of the general performance of the

proposed methods, but we still do not have clarity on the extent to which importance

sampling can yield low-error estimates in the limit of large sequence lengths. To that end,

we conducted an experiment to directly assess the performance of importance sampling

when estimating long horizons. Our primary conclusion was that (i) with reasonable sample

sizes the error remains below 25%, even at K = 100, and (ii) the error does not increase

substantially as K increases beyond K = 5.

190

In more detail, a set of 100 history sequences H of length 5 was collected from each dataset.

We then compute ground truth or pseudo ground truth (PGT) for query 2 (probability of

event at K without restriction) over sequence lengths K = [2, 5, 10, 20, 40, . . . , 100]. Pseudo-

ground truth estimates are generated with a tolerance δ = 1e−7 and a maximum sampling

budget of 250, 000. The same estimates are then computed using importance sampling with

sampling budgets [10, . . . , 10000]. Similar to the experiments in Section 5, we aggregate and

present the results as the median relative absolute error, shown in the tables below. Since

we are not focusing on a specific event type of interest, this median also marginalizes over

all event types in the vocabulary as well as the sampled query sequences. All results are

reported as percentages

Samples 2 5 10 20 40 60 80 100

10 31.35 40.33 44.39 43.48 45.98 45.84 49.44 50.05
100 13.29 17.12 18.73 19.46 20.41 21.65 21.82 21.86
1000 4.94 6.38 7.06 7.33 7.26 6.99 7.13 6.82
10000 1.60 2.05 2.21 2.34 2.20 2.13 2.06 2.10

Table A.1: Median RAE across query estimations methods (1000 samples) and query horizons
K = 2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for Amazon Reviews.

Samples 2 5 10 20 40 60 80 100

10 66.21 84.93 92.92 96.96 98.41 99.00 99.19 99.32
100 62.36 80.94 89.79 94.00 96.16 97.05 97.38 97.66
1000 47.96 59.14 69.10 75.45 74.79 71.34 65.12 59.75
10000 15.21 20.51 23.38 24.00 20.66 18.78 16.48 15.55

Table A.2: Median RAE across query estimations methods (1000 samples) and query horizons
K = 2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for Mobile Apps.

In general, we see (not surprisingly) that the increase in sequence length leads to a consistent

and non-trivial increase in error for most sampling budgets. In addition, as expected the

increase in sampling budget consistently reduces the query estimation error. However, we

do witness the interesting phenomenon that the error occasionally decreases as the sequence

length increases. We conjecture that this may be happening because as the sequence length

191

Samples 2 5 10 20 40 60 80 100

10 79.84 79.99 83.53 85.29 83.53 84.00 85.82 85.15
100 28.66 32.85 39.25 40.66 38.78 41.51 39.71 40.07
1000 8.61 10.99 13.29 13.52 13.78 13.89 13.64 14.10
10000 2.77 3.48 4.28 4.34 4.32 4.33 4.34 4.30

Table A.3: Median RAE across query estimations methods (1000 samples) and query horizons
K = 2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for Shakespeare.

Samples 2 5 10 20 40 60 80 100

10 89.62 97.30 98.73 99.19 99.08 99.06 98.91 98.87
100 63.80 83.34 84.77 79.15 66.89 62.99 60.28 61.30
1000 30.39 43.37 36.32 26.07 19.78 18.11 17.53 17.38
10000 11.92 15.15 11.35 7.86 5.90 5.66 5.43 5.40

Table A.4: Median RAE across query estimations methods (1000 samples) and query horizons
K = 2, 5, 10, 20, ..., 100 and sample budgets 10, 100, 1000, 10000 for MOOCs.

increases, the relevance of the history context H decreases and the distribution may regress

to a base stationary distribution (as if no history context were provided at all) indicating

that the conditional model entropy may be the main driving factor in estimation complexity.

This intuition is further supported by the fact that in many datasets, budgets exist where

query estimation error first increases but then begins to decrease again. Regardless, as the

largest budget of 10, 000 we witness that median RAE remains at or under 25% in all cases,

often significantly so.

A.3.5 Query Estimation with Large-Scale Language Models

In order to explore the feasibility of applying our query estimation methods to real-world

sequence data, we also analyze a subset of our query estimation methods against GPT-2 and

WikiText language data. GPT-2 decomposes English words into V = 50257 work pieces, a

vocabulary over 500 times larger than our other datasets. For this reason, we only conduct

experiments using only 100 sequence histories per dataset due to computational limitations.

192

K Importance Samp. Beam Search MC Samp. Entropy Entropy %

3 11.41 51.25 99.36 12.89 41.28
4 13.35 82.42 99.95 19.09 40.74
5 13.53 93.59 99.99 25.23 40.38

Table A.5: Median RAE across query estimations methods (1000 samples) and
query horizons K = 3, 4, 5 for GPT-2 and Wikitext. Entropy values estimated as
the mean (over 100 queries) of the restricted proposal q and entropy % is the entropy in
percentage relative to its potential maximum value Klog(V).

For the same reason, we do not explore the hybrid method and restrict ourselves to analyzing

the following query estimators:

1. Importance sampling (informative proposal distribution q derived from model pθ)

2. Beam search

3. Monte-Carlo sampling with a uniform proposal distribution

Fixed-budget query experiments with GPT-2 are conducted identically to those on the other

4 datasets. We find query estimation error closely mirrors the results we see in datasets with

smaller vocabulary sizes, suggesting our findings may generalize well to practical domains.

Our analysis is reported in Table A.5 and includes estimates of the restricted model entropy

H(q) for different query lengths K, with the entropy increasing much faster than small-

vocabulary models, as expected. With that said, there is still much exploration to be done

on large-scale sequence models and is a promising avenue for future work.

A.3.6 Entropy Relationship with Query Estimation Error

Fig. 4(b) in the main paper demonstrated how indirectly controlling the entropy of a

given model through an applied temperature affected the performance of beam search and

importance sampling. In Fig. A.9 we can see similar plots for all of four of our main datasets.

193

0.5 0.75 1.0 1.25 1.75 2.0 3.0 4.0 5.0 10.0
0.0

0.2

0.4

0.6

0.8

1.0
M

ed
ia

n
R

el
at

iv
e

A
b

s.
E

rr
or Reviews

Method

Importance Sampling

Beam Search

0.5 0.75 1.0 1.25 1.75 2.0 3.0 4.0 5.0 10.0
0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

0.5 0.75 1.0 1.25 1.75 2.0 3.0 4.0 5.0 10.0

Temperature T

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
el

at
iv

e
A

b
s.

E
rr

or Shakespeare

0.5 0.75 1.0 1.25 1.75 2.0 3.0 4.0 5.0 10.0

Temperature T

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

Figure A.9: Error as a function of entropy: Median relative absolute error for estimating
Pθ,T (hit(·) = 4) over all four datasets for a variety of imposed temperatures T . Shaded regions
indicate interquartile ranges.

A.3.7 Investigation of Query 4 (“A” before “B”)

Most of our analysis was conducted on hitting time queries, and justifiably so as more

advanced queries decompose into individual operations on hitting times. This includes Q4,

colloquially stated as the probability an item from token set A occurs before an item in token

set B. More formally:

Pθ(hit(A) < hit(B)) =
∞∑
k=1

Pθ(hit(A) = k, hit(B) > k) (A.20)

=
∞∑
k=1

∑
a∈A

Pθ(Xk = a,X<k ∈ (X \ (A ∪B))k−1) (A.21)

While this cannot be computed exactly, a lower bound can. The other option is to produce a

lower bound on this expression by evaluating the sum in Eq. (A.21) for the first K terms. We

can achieve error bounds on this estimate by noting that Pθ(hit(A) < hit(B)) + Pθ(hit(A) >

hit(B)) = 1. As such, if we evaluate Eq. (A.21) up to K terms for both Pθ(hit(A) < hit(B))

and Pθ(hit(A) > hit(B)), the difference between the sums will be the maximum error either

194

1 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

U
n

ac
co

u
n
te

d
P

ro
b

ab
il

it
y

Reviews

1 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

MOOCs

1 5 10 15 20 25 30

Bound Evaluated to K Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
U

n
ac

co
u

n
te

d
P

ro
b

ab
il

it
y

Shakespeare

1 5 10 15 20 25 30

Bound Evaluated to K Steps

0.0

0.2

0.4

0.6

0.8

1.0

Mobile Apps

Method

Importance Sampling

Beam Search

Figure A.10: Mean unaccounted probability (1−(P̂θ(hit(A) < hit(B))+P̂θ(hit(B) < hit(A))))
when evaluating the pair of queries for hit(A) < hit(B) and hit(B) < hit(A) up to K steps
into the future over all four main datasets. Shaded regions indicate 99% confidence intervals
and estimates were computed with a fixed model budget based on 1000 samples.

lower bound can have. This difference will be referred to as unaccounted probability and will

approach 0 as K →∞.

A natural question to ask is what is the minimum value of K sufficient to compute these

lower bounds to in order to have negligible unaccounted probability. Though this will surely

vary based on the entropy of the model and the specific query in question, we explore this

question across all datasets except WikiText and note some general trends.

Fig. A.10 plots the unaccounted probability 1− P̂θ(hit(A) < hit(B))− P̂θ(hit(A) > hit(B)) as

a function of query length K. We observe that for many datasets, a query horizon of k = 30

is largely sufficient to reduce the remaining probability to under 10%. One notable exception

is the Mobile Apps dataset, which, due to its lower entropy and high self-transition rate,

maintains a much longer query horizon. This discovery implies that a successful partition of

probability space with a given Q4 query can be sensitive to the model distribution, but also

195

that approximate partitions are possible for relatively low values of K.

A.3.8 Linearly Compounding Errors in Complex Query Estima-

tion

Hitting time queries can often be seen as components of more involved queries, such as

“a” before “b” queries Pθ(hit(a) < hit(b)) or counting-style queries Pθ(Na(K) = n). These

queries can be rewritten as summations of more basic hitting time queries. For instance,

Pθ(hit(a) < hit(b)) =
∑∞

k=1 Pθ(hit(a) = k, hit(b) > k). In practice, each summand probability

is estimated using our proposed techniques so it can be seen that the error compounds

additively with respect to the different basic hitting time queries.

More generally, our framework proposes representing general queries asQ = ∪iQi = ∪i
∏

j V
(i)
j

such that the Qi’s form a minimal partition on Q. With this representation, we can see that

for an arbitrary query, the error when estimating will compound additively and scale linearly

with respect to the number of different Qi. Note that the actual values of Pθ(X ∈ Qi) do have

an impact on the errors when estimating due to the values ∈ [0, 1]. Lastly, as mentioned in

the paper we can additionally control this error either by utilizing the coverage-based beam

search, or by leveraging the Central Limit Theorem with importance sampling.

A.3.9 Qualitative Exploration and Practical Applications

In addition to systematic quantitative analysis of query estimators, we also qualitatively

explore specific applications of our methods that lend practical insights. First, we consider

the question of “given a partial sentence, predict when the sentence will end”. Using our

query estimation methods, we can not only answer this question with relatively low error

but also effectively re-use intermediate computational results. This necessarily correlates

196

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Social Media Percentage of User’s History

0.0

0.2

0.4

0.6

0.8

1.0
E

st
im

at
ed

P
ro

b
ab

il
it

y
Will a user use social media before

directly communicating with someone?

Figure A.11: A case study of evaluating how likely it is that a mobile app user will use social
media before they directly communicate with someone via text messaging, email, phone
call, etc. as a function of how much of their recent history consists of social media usage.
This is a Pθ(hit(A) < hit(B)) type query that has been estimated and averaged over 500
different histories for each social media history percentage. Error bars indicate 90% confidence
intervals.

query estimates over steps K, but this confers little negative impact upon the analysis since

our sampling methods are unbiased estimators and beam search, though biased, offers a

deterministic lower bound. The results of our analysis are seen in Fig. 1 in the main paper

and align with basic intuition about English sentences, with open ended prefixes possessing a

long-tailed end-of-sentence probability distribution relative to more structured and declarative

phrases.

A second practical question that can be asked with our query estimation methods utilizes

the Mobile Apps dataset: given someone’s mobile usage history, predict what will occur first:

the individual will go on social media or directly interact with someone via video chat, call,

text, or email. This question is a practical application of query 4, Pθ(hit(a) < hit(b)). Other,

equally interesting equivalents of this question include “will an online shopper purchase

something before leaving the website?”. Below, we have conducted an experiment where

we synthetically generate mobile app behavior histories with specific percentages of social

media activity present. By computing these queries over several histories and then averaging

the estimates, we obtain the results seen in Fig. A.11. As expected, we see a clear linear

197

trend between a user’s social media usage and the likelihood they will return to it before

conducting other tasks like directly communication. Such a result, though contrived and

purely demonstrative in this setting, could be applied to many practical applications that

analyze the characteristics of online user behavior.

198

Appendix B

Supplemental Material for Chapter 4

B.1 Deriving “A before B” Estimator

Let A,B ⊂ M and A ∩ B = ∅. Recall that HA
[0,t] := HA

t is the sequence of events over

times [0, t] with the restriction that the marks must all belong to A. Finally, let Q describe

a proposal distribution with µ∗
k(t) = 1(k /∈ A ∪ B)λ∗

k(t). With this in mind, we derive the

expected value expression for the “A before B” queries:

P (hit(A) < hit(B)) =

∫ ∞

0

P (hit(A) < hit(B), hit(A) ∈ [t, t + dt))

=

∫ ∞

0

∑
k∈A

P
(
|Hk

[t,t+dt)| = 1,HA
t− = ∅,HB

t− = ∅
)

=

∫ ∞

0

∑
k∈A

P
(
|Hk

[t,t+dt)| = 1,HA∪B
t− = ∅

)
=

∫ ∞

0

∑
k∈A

EP
Ht−

[
P
(
|Hk

[t,t+dt)| = 1,HA∪B
t− = ∅ |Ht−

)]
=

∫ ∞

0

∑
k∈A

EP
Ht−

[
P
(
|Hk

[t,t+dt)| = 1 |HA∪B
t− = ∅,Ht−

)
P
(
HA∪B

t− = ∅ |Ht−
)]

=

∫ ∞

0

∑
k∈A

EP
Ht−

[
P
(
|Hk

[t,t+dt)| = 1 |Ht−
)
1
(
HA∪B

t− = ∅
)]

199

=

∫ ∞

0

∑
k∈A

EP
Ht−

[
λ∗
k(t)1

(
HA∪B

t− = ∅
)]

dt

=

∫ ∞

0

EP
Ht−

[
λ∗
A(t)1

(
HA∪B

t− = ∅
)]

dt

=

∫ ∞

0

EQ
Ht−

[
λ∗
A(t)1 (HA∪B(t) = ∅)

LP (Ht−)

LQ (Ht−)

]
dt

=

∫ ∞

0

EQ
Ht−

[
λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)]
dt

=

∫ ∞

0

EQ
H∞

[
λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)]
dt

= EQ
H∞

[∫ ∞

0

λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)]
dt

where the last line is justified due to the Dominated Convergence Theorem. The prerequisites

for this theorem are satisfied by noting that:

∫ ∞

0

λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt ≤

∫ ∞

0

λ∗
A∪B(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

= −
∫ ∞

0

d

dt
exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

= exp

(
−
∫ 0

0

λ∗
A∪B(s)ds

)
− exp

(
−
∫ ∞

0

λ∗
A∪B(s)ds

)
= 1− exp

(
−
∫ ∞

0

λ∗
A∪B(s)ds

)
≤ 1.

B.2 Further Experimental Details and Results

B.2.1 Dataset Preprocessing

We evaluate our methods for probabilistic querying on three real-world user-behavior datasets

in different application domains that are publicly available. All datasets do not include

personally identifiable information, where users are identified by unique integer IDs. For all

200

our experiments, sequences are defined as the event histories of each user, where events have

timestamps in seconds. We changed the time resolution from seconds to hours for better

interpretability of our query implications. Additionally, we only consider sequences with at

least 5 events and at most 200 events. We use 75% of the sequences for training, 10% for

validation, and 15% for testing.

MovieLens The MovieLens 25M dataset [Harper and Konstan, 2015] contains 25 million

movie ratings by 162,000 users. The movie category (genre) associated with each rating is

modeled as marks, and the exact rating value is ignored.1 For each sequence, the start and

the end time are defined as the first and the last event time of each user respectively, because

the time span for different users ranges from seconds to years. The first event is discarded in

the sequence of history and is only used to indicate t = 0. For consistent dynamics across

the dataset, we filter the data to only contain reviews at or after the year 2015. This leaves

34,935 remaining sequences, each from a unique user.

MOOC The MOOC user action dataset [Kumar et al., 2019] represents user activities on

a massive open online course (MOOC) platform. It consists of 411,749 course activities in 97

different types modeled as marks for 7,047 users, out of which 4,066 users dropped out after

an activity. Timestamps are standardized to start from timestamp 0. We use the last event

time for drop-out users as the end of their sequences, and the maximum timestamp for the

other users.

1A single movie in this dataset can possibly have multiple categories associated with it. To accommodate
this, if a movie has multiple categories we randomly select a subset of two categories to represent the movie.
Note this highlights the benefits of formulating queries as sets of marks instead of just singular marks. To
evaluate the hitting time of the next “comedy” movie reviewed, then we would need to evaluate the hitting
time of the set of all pairs of categories where one element is the comedy genre. This is essentially describing
marginalizing over a hierarchical structure for the marks.

201

Table B.1: Model Hyperparameters for Real-World Datasets

Hyperparameter MovieLens MOOC Taobao

Training Epochs 100 100 300
Mark Embedding Size 32 32 64
Recurrent Hidden State Size 64 64 128

Taobao The Taobao user behavior dataset [Zhu et al., 2018] was originally intended for rec-

ommendations for online shopping, which includes four behaviors: page viewing, purchasing,

adding items to the chart, and to wishlist. We focus on page viewing of users as events, and

model the item category as the event mark, which has marketing implications such as click

through rate of recommending some types of items. Due to the large scale of the dataset, we

use a subset of 2,000,000 events on 8 consecutive calendar days inclusive (November 25th,

2017 - December 2nd, 2017), as well as the most frequent 1,000 marks (item categories) to

demonstrate query answering. All user sequences have the same length.

B.2.2 Modeling Details

For each of the real-world datasets, a neural Hawkes process model [Mei and Eisner, 2017]

was trained with a batch size of 128, a learning rate of 0.001, a linear warm-up learning

rate schedule over the first 1% of training iterations, a max allowed gradient norm of 104 for

training stability, and the Adam stochastic gradient optimization algorithm [Kingma and Ba,

2015] with default hyperparameters. Specific datasets had specific model hyperparameters

due to differences in the amount of data and total possible marks. The details for these can

be found in Table B.1. All models were trained for a fixed amount of epochs; however, each

one was confirmed to have converged based on average held-out validation log-likelihood.

202

B.2.3 Integration Approximation

For the real-world experiments, many integrals need to be evaluated in order to produce

estimates for various queries. Since we use essentially black-box MTPP models, we do not

have access to an analytical form for integration. As such, we must estimate every integral

at play.

To do this, we utilize the trapezoidal rule. For reference, this involves estimating integrals

with the following summation:

∫ b

a

f(x)dx ≈
N∑
i=1

(f(xi) + f(xi−1))
xi − xi−1

2

where the points xi−1 < xi span the interval [a, b] with x0 = a and xN = b. For hitting

time queries and marginal mark queries, we utilize N = 1000 integration points with equal

spacing. It is likely that we could get by with much less for these queries, however, for the

sake of high precision for experimental results we utilized a large amount of sample points.

For the “A before B” queries, we found that the resolution at which the estimator is evaluated

at is of much more importance than the other queries. As such, for this query we estimate

integrals in an online fashion during the sampling procedure for each proposal distribution

sample sequence in conjunction with a very high proposal dominating rate (see Ogata [1981]

for details). This allowed for a much more efficient procedure (in both computation and

memory consumption) compared to integrating results after sampling.

B.2.4 Marginal Mark Query Experiments

Similar to the hitting time experiments, for the marginal mark queries we similarly sample

1000 random test sequences and condition on the first five events HT5 . Then, we estimate

203

the query P(M8 ∈ A |Hτ5) where A is a randomly selected subset of all of the unique marks

that appear in the entire sequence H. This is done to ensure that A contains relevant marks

for the given sequence.

We compared estimating this query with naive sampling and importance sampling using

varying amounts of samples: {2, 4, 10, 25, 50, 250, 1000}. Mean RAE compared to ground

truth (estimated using importance sampling with 5,000 samples) can be seen in Fig. B.1a.

We witness roughly 1.5 to 3 times improvement in performance for the same amount of

samples. Similar to hitting time query results, we attribute this improvement to the fact that

naive sampling only collects binary values, whereas our proposed procedure collects much

more dense information over the entire span from T5 to T8 ∼ q.

We also analyze the relative efficiency of our estimator compared to naive sampling. For each

query asked, the efficiency was estimated using 5,000 importance samples. The results can be

seen in Fig. B.1b. We achieve a decent decrease in variance, in the majority of contexts, across

all datasets. Like the hitting time query results, we also note a pretty strong correlation

between underlying ground truth values and the relative efficiency of this estimator.

Notably, these results do not appear to be as drastic as the hitting time query results. We

believe this is due to the fact that the estimator’s bounds of integration are sampled from

the proposal distribution to be between τN−1 and τN for each sequence (whereas the bounds

for the hitting time query p(hit(k) ≤ t) is always the span of [0, t]). This added variability

seems to dampen the impact of the integration in the first place.

B.2.5 Synthetic Data Experiments

We also perform experiments on hitting time queries and “A before B” queries using self-

exciting parametric Hawkes processes [Hawkes, 1971]. The intensity for Hawkes processes

204

Figure B.1: Results from 1,000 different marginal mark queries evaluated on models trained
on three different datasets. (a) Average relative absolute error for naive and importance
sampling shown in comparison to number of sampled sequences used. (b) Estimated relative
efficiency values for importance sampling compared to naive sampling plotted against ground
truth marginal mark query values. Gray dashed lines indicate an efficiency of 1. Red lines
with associated text box indicate the average multiplicative increase in computation time for
importance sampling.

205

with exponential kernels has the explicit form:

λ∗
k(t) = µk +

K∑
m=1

∫ t

0

ϕmk(t− u)dNm(u)

= µk +
K∑

m=1

∑
Tm,i<t

ϕmk(t− Tm,i), (B.1)

where Tm,i refers to the time when the ith event of type m occurs, ϕ(x) = αe−βx with

α,β > 0, and Equation B.1 can be expressed in matrix form. The first term µ is referred

to as the base intensity or background intensity in literature. Each event instantaneously

increases the intensity by the corresponding value of α and its influence decays exponentially

with β and over time. Under this parametric form, the integrals for query estimates can be

computed in closed forms.

We also conduct both experiments on hitting time and “A before B” queries using Hawkes

processes with Gamma kernels. The Gamma kernel has the form of ϕ(x) = xe−x, and the

corresponding Hawkes processes do not have closed-form solutions to these queries.

We evaluate our methods on (i) hitting time queries P(hit(k) ≤ t) and (ii) “A before B”

queries P(hit(A) < hit(B)). All results are averaged over 1,000 different randomly initiated

parametric self-exciting Hawkes models that are not feasible for real-world datasets. These

random models have different total amounts of marks ranging from K = 3 to K = 10, and

have different inter-event effects as well as exponential rates of decay. We use 10 integration

points for hitting time queries and 1,000 integration points for “A before B” queries. 2

For each hitting time query, we fix t = 1 and k = 0, because the model is randomly generated.

For the “A before B” queries, like the real-world experiments we let them be randomly

2For the “A before B” queries, using 1,000 integration points after sampled provided sufficient precision
and we did not need to employ the online integration approach used with the real-world experiments. This
is most likely attributable to the well-behaved dynamics exhibited by the parametric Hawkes intensity. This
is also why we used a reduced amount of integration points for the synthetic hitting time queries as well
compared to the real-world experiments.

206

sampled subsets of the vocabulary such |A| = |B| ≈ K/3. We evaluate the hitting time

queries using varying amounts of samples: {2, 4, 10, 25, 50, 250, 1000}. For “A before B”

queries, we only use {2, 4, 10, 25, 50, 250} number of samples because the query estimates

take longer. Ground truth probabilities are calculated using 5,000 samples with importance

sampling for hitting time queries and with naive method for “A before B” queries respectively.

The plots in Figs. B.2 and B.3 reveal similar patterns and illustrate that our method is more

efficient than the naive estimates averaged over a range of different model settings.

207

10−2

10−1

M
ea

n
R

A
E

Exponential

(a) Hitting Time Query
Mean RAE v. Sample Size

100

101

102

R
el

.
E

ff
.

Exponential

×0.38

(b) Relative Efficiency
for Hitting Time Queries

101 102 103

Samples

10−2

10−1

100

M
ea

n
R

A
E

Gamma

0.0 0.5 1.0
Ground Truth Prob.

100

101

102

R
el

.
E

ff
.

Gamma

×0.83

Figure B.2: Synthetic experiments for hitting time queries evaluated on parametric self-
exciting Hawkes processes with both exponential and Gamma kernels. (a) Average relative
absolute error for naive and importance sampling shown in comparison to number of sampled
sequences used. (b) Estimated relative efficiency values for importance sampling compared
to naive sampling plotted against ground truth hitting time query values. Gray dashed
lines indicate an efficiency of 1. Red lines with associated text box indicate the average
multiplicative increase in computation time for importance sampling.

208

10−1

M
ea

n
R

A
E

Exponential

(a) “A Before B” Query
Mean RAE v. Sample Size

101

103

105

V
a
r.

R
a
ti

o

Exponential

×16.40

(b) Variance Reduction
for “A Before B” Queries

101 102

Samples

10−1

M
ea

n
R

A
E

Gamma

0.0 0.5 1.0
Ground Truth Prob.

101

103

105

107

V
a
r.

R
a
ti

o

Gamma

×6.12

Figure B.3: Synthetic experimental results evaluated on 1,000 different random models and
“A before B” queries for parametric self-exciting Hawkes processes with both exponential and
Gamma kernels. (a) Average relative absolute error for naive and importance sampling shown
in comparison to number of sampled sequences used. (b) Estimated relative efficiency values
for importance sampling compared to naive sampling plotted against ground truth “A before
B” query values. Gray dashed lines indicate an efficiency of 1. Red lines with associated
text box indicate the average multiplicative increase in computation time for importance
sampling.

209

Appendix C

Supplemental Material for Chapter 5

C.1 Further Experimental Details and Results

C.1.1 Datasets

The following are more in depth descriptions on the different real-world datasets used in

experiments. All sequences used for both training and inference are preprocessed to only

allow sequences with at least 5 events and at most 200. Summary statistics can be found in

Table C.1.

Taobao The Taobao user behavior dataset [Zhu et al., 2018] was originally intended for

recommendations during online shopping sessions, which includes four different behaviors:

page viewing, purchasing, adding items to the chart, and adding items to a wishlist. We

focus on modeling the page viewing of users as events, and let the item category be the

associated event mark. Modeling this information has various marketing implications such as

click through rate of recommending some types of items. Due to the large scale of the dataset,

210

we use a subset of 2,000,000 events on 8 consecutive calendar days inclusive (November 25th,

2017 - December 2nd, 2017), as well as the most frequent 1,000 marks (item categories). All

user sequences have the same time length of T = 192 hours.

Reddit The Reddit comments dataset [Baumgartner et al., 2020] contains records of com-

ments made by different users on various posts listed in the social media site reddit.com.

One month’s worth of data (October 2018) was used to extract user sequences, and the mark

vocabulary was defined as the top 1000 communities (subreddits) determined by marginal

comment volume. The month was divided into multiple week-long sequences for each user,

with event times in units of hours (T = 178 hours).

MemeTracker The MemeTracker dataset [Leskovec et al., 2009] tracks to common phrases

(memes) as they appear on various websites. We compile these records into sequences, each

pertaining to a single meme with events defined as the time of mention and the website they

appeared on as the mark. Only the mentions in the top 5000 websites by marginal volume

were considered. Sequences were defined as one-week-long chunks spanning August 2008 to

April 2009, and event times were measured in hours (T = 178 hours).

Email Lastly, the Email dataset [Paranjape et al., 2017] contains the email records for a

research organization over the course of 803 days. Sequences were defined as the collection

of incoming emails for a given user where each mark was the address of the original sender.

These sequences were defined over four week intervals and event times were measured in days

(T = 28 days). After preprocessing the sequences, we were left with 808 different unique

addresses.

211

reddit.com

Table C.1: Summary Statistics for the Four Real-World Datasets

Mean # Sequences
Dataset T M |H| Train Valid Test

Taobao 8 Days 1000 62.6 13.3K 1.8K 2.7K
Reddit 1 Week 1000 65.2 343K 15K 34K
MemeTracker 1 Week 5000 23.4 271K 9K 21K
Email 28 Days 808 31.1 6.9K 1.5K 1.5K

Table C.2: Model Hyperparameters for Real-World Datasets

Hyperparameter Taobao Reddit MemeTracker Email

Training Epochs 300 50 50 300
Mark Embedding Size 64 64 64 32
Recurrent Hidden State Size 128 128 128 64

C.1.2 Model & Training Details

For each of the real-world datasets, a neural Hawkes process model [Mei and Eisner, 2017]

was trained on fully observed sequences for a given dataset. Each model was trained using

the Adam stochastic gradient optimization algorithm [Kingma and Ba, 2015] with default

hyperparameters, a learning rate of 0.001, and a linear warm-up learning rate schedule over

the first 1% of training iterations. Each iteration optimized the parameters against the

average log-likelihood for a batch of 128 training sequences. Gradients were clipped to have

a maximum norm of 104 for stability. All models were trained for a fixed amount of epochs;

however, each one was confirmed to have converged based on average held-out validation

log-likelihood.

Models possessed different hyperparameters depending on the dataset due to differences in

the amount of data and total possible marks. Details can be found in Table C.2.

212

C.1.3 Next Event Prediction

Alongside likelihood, we are also interested in making predictions for next events in the

presence of censored data. The following section details the prediction experiments conducted

for both synthetic and real-world settings.

Setup We follow the same settings for the next event prediction as Du et al. [2016], Mei

and Eisner [2017] on both event time and event mark. The predicted time is chosen to be

the expected time of the next event occurrence, which is defined as

T̂i = EP [Ti |HTi−1

]
=

∫ ∞

Ti−1

tλ∗(t) exp

(
−
∫ t

Ti−1

λ∗(s)ds

)
dt. (C.1)

We measure predictive performance for this with the mean absolute error between predicted

and true next event time. Without the knowledge of the event time Ti, the predicted next

event type set as

M̂i := arg max
k∈M

P(Mi = k |HTi−1
) (C.2)

for P(Mi = k |HTi−1
) =

∫ ∞

Ti−1

λ∗
k(t) exp

(
−
∫ t

Ti−1

λ∗(s)ds

)
dt, (C.3)

and is evaluated via top-10 accuracy (i.e., the proportion of predictions in which true mark

Mi appears in the set of top-10 highest probability predicted marks). Both predictions can be

achieved by approximating integrals numerically, for both the censored and baseline methods.

Similar to the likelihood ratio experiments, we evaluated these methods on sequences that

have been artificially censored. For the synthetic experiments, we evaluate 1000 sequences

H(T) sampled from their respective models and then randomly choose a subset of unique

marks that appear in each sequence to be censored C, the proportion of which is determined

for each value γ ∈ {0.2, 0.4, 0.6, 0.8}. For real-world experiments, the same is done except

213

the sequences originate from held-out sets and γ is also allowed to be 0.5.

We condition each method on the occluded sequence HO
T⌊n

2 ⌋
where |H(T)| = n and have each

produce predictions for the next time T̂⌊n
2
⌋+1 and the next mark M̂⌊n

2
⌋+1.

Synthetic Results Figure C.1 reports the results evaluated on three parametric point

process models with 20 distinct marks. When predicting next time to event, both versions

of Hawkes processes achieve less error under our framework compared to the baseline. The

performance gap between methods widen as more information is censored. However, the

baseline outperforms our method for self-correcting models, which may be due to the fact

that the occurrence of an event has an inhibiting effect on future events. This results in the

baseline always overestimating the intensity as it lacks the censored events to correct it. For

this model, this leads to always underestimating the next time to event which is favorable as

this will be bounded between T⌊n
2
⌋ and T⌊n

2
⌋+1. This can be seen as a systematic bias inherent

to the specific model parameterization.

As for the prediction of the next event type, both self-correcting processes and Hawkes

processes with dense interaction between events have similar performances as random guesses

that will have an accuracy of around 0.5 for top-10 accuracy. This is expected for both models,

as there is not much imposed correlation between events of different types due to how the

models were instantiated. However, the Hawkes processes with block-diagonal interactions

better model the structure in sequential events, where the prediction accuracy is much higher

than 0.5, which in general decreases as more marks are censored. It is clear that our method

is less sensitive to the amount of censored information and significantly outperforms random

guesses, as long as the model is able to capture the underlying structured dynamics of the

event sequences.

214

0.08

0.09

M
ea

n
A

E
Self-Correcting

0.04

0.06

Hawkes (dense)

0.025

0.050

Hawkes (block-diagonal)

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

@
1
0

Censored

Baseline

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

5 10

Marks Censored

D
en

si
ty

5 10 15

Marks Censored

5 10 15

Marks Censored

Figure C.1: Next event prediction results for censored and baseline methods across the
three different parametric MTPPs. Top plots indicate the mean absolute error in next time
prediction, middle plots indicate top-10 accuracy in next mark prediction, and bottom plots
show density of the number of marks censored across the sequences used for the experiments.

Real-World Results Real-world datasets naturally have more meaningful structures and

larger vocabulary sets compared to synthetic experiments. We evaluate the results on all

four datasets that have different numbers of marks ranging from 808 to 5000. The prediction

of the next event time of our method is on par with the baseline, while we see consistent

improvements in the next event prediction evaluated by top-10 accuracy. Furthermore, the

accuracy in general, regardless of method, tends to decrease with more information being

censored which is expected.

C.1.4 Model Misspecification

Recall in the synthetic experiments that we evaluated the log-likelihood for the mark-censored

model PCen and the baseline method PBase on censored sequences that were originally sampled

from the same model P used in both methods. Under this setting, for a given mark-censoring

215

9

10
M

ea
n

A
E

Taobao

5.0

7.5

Reddit

0

10
MemeTracker

1.4

1.5

Email

0.0

0.2

0.4

0.6

0.8

A
cc

@
1
0

Censored

Baseline

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

100 101

Marks Censored

D
en

si
ty

100 101

Marks Censored

100 101 102

Marks Censored

100 101

Marks Censored

Figure C.2: Same format as Fig. C.1 except using held-out sequences from real-world datasets
with respectively trained neural-based models.

scheme C and O and sampled sequences HO
t ∼ P, it is guaranteed that

EP
HO

t

[
LPCen(HO

t)
]
≥ EP

HO
t

[
LPBase(HO

t)
]

with the inequality being strict so long as P(HC
t = ∅ | HO

t) > 0. This is due to the fact

that the mark-censored model is simply a marginalized version of the original model, thus

resulting in no model misspecification for this setup.

That being said, we no long have this guarantee once we start considering sequences that

are drawn from a different distribution from the model we are using. This is inherently

the same scenario that was evaluated in the real-world data experiments, as all of the

sequences used there came from some other source Pdata whereas the models P were learned

to best approximate this distribution. Naturally, the closer P is to Pdata (i.e., the less model

misspecification there is) the more we can start to trust that the censored method will produce

superior results to the baseline.

216

10−2

100

102

104
L

ik
el

ih
o
o
d

R
a
ti

o
Num Seqs = 2

10−2

100

102

104
Num Seqs = 32

10−2

100

102

104
Num Seqs = 128

10−2

100

102

104
Num Seqs = 1024

5 10 15

Marks Censored

D
en

si
ty

5 10 15

Marks Censored

5 10 15

Marks Censored

5 10 15

Marks Censored

Figure C.3: Distributions of likelihood ratios across number of marks censored for the duration
of the sequences used for synthetic experiments. Integration points is fixed as 1024, with
varying numbers of MC samples used for estimation. Values greater than 1 indicate higher
likelihoods under the mark-censored model.

C.1.5 Sensitivity Analysis

We perform an ablation study for synthetic experiments using different numbers of samples

and integration points. The parameters of the Hawkes process are drawn from the same

distributions as described in Section 4.1, where we used 128 MC samples and 1024 integration

points. Figure C.3 shows the results of the same experiment but varies the number of Monte

Carlo sampled sequences and keeps the number of integration points as 1024, while C.4 shows

the same results but varies the number of integration points while keeping the number of

Monte Carlo samples fixed to 128. Aside from slight deviations on the lower end of the

values tested (e.g., number of sampled sequences = 2 and number of integration points = 8),

the results across the board are roughly consistent. This indicates that our method is fairly

robust and does not necessitate prohibitive amounts of computing resources to employ.

That being said, we do recommend evaluating this on a case-by-case basis as each model

and dataset are different. In critical applications, this concern can be taken care of by

iteratively sampling sequences and monitoring the convergence of the resulting censored

intensity function.

217

10−2

100

102

104

L
ik

el
ih

o
o
d

R
a
ti

o

Int Pts = 8

10−2

100

102

104
Int Pts = 32

10−2

100

102

104
Int Pts = 128

10−2

100

102

104
Int Pts = 1024

5 10 15

Marks Censored

D
en

si
ty

5 10 15

Marks Censored

5 10 15

Marks Censored

5 10 15

Marks Censored

Figure C.4: Same format as Fig. C.3 except using 128 MC samples and different numbers of
integration points for estimation.

218

Appendix D

Supplemental Material for Chapter 6

D.1 Estimators for Discrete-Time

As outlined in Bruti-Liberati and Platen [2007], any stochastic jump process defined in

continuous-time,

dXt = µ(t,Xt−)dt + σ(t,Xt−)dWt + dJt (D.1)

for some jump process J := (Jt)t≥0 with increments of either 0 if no jump occurs or MNt for

the N th
t jump, can be approximated by a Euler discretization scheme via

Xt+∆ −Xt ≈ µ(t,Xt)∆ + σ(t,Xt)(Wt+∆ −Wt) + (Jt+∆ − Jt) (D.2)

where

Wt+∆ −Wt |Ft
d
= Wt+∆ −Wt ∼ N (0,∆) (D.3)

219

and

Jt+∆ − Jt |Ft ∼


0 with probability 1− λt∆

p(MNt+1 |Ft) with probability λt∆

(D.4)

for t = 0,∆, 2∆, . . . and X0 being some constant. For ∆ > 0, it then follows that P(Xt+∆ ̸=

Xt) = 1 regardless if a jump occurs or not (assuming that σ > 0). When working with the

original process, using importance sampling we could only intervene directly on the potential

jumps that would lead the process to landing in the hitting region At for some generalized

hitting time T ; however, now it is as if the process jumps at every increment of time and

thus we can prevent all actions that lead to reaching the hitting region.

We will briefly outline how the tower rule and importance sampling CDF estimators are

defined for discretized processes. For notational convenience, we index by steps i = 1, 2, . . .

rather than equivalent time t = ∆, 2∆, . . . and use this for both processes X1:i and the

filtrations Fi. While only the general CDF estimators are shown, it is straight forward to

extend these derivations to the other estimators derived in Section 6.6 as well.

D.1.1 Discrete-Time Tower Rule Estimator

Let X := (Xi)i∈N be a process over discrete-time i ∈ N adapted to filtration (Fi)i∈N with

autoregressive conditional distributions P(Xi | Fi−1) for i ∈ N. Given a generalized hitting

time T with hitting time process A := (Ai)i∈N, then the associated tower rule CDF estimator

is defined as follows:

P(T ≤ t) =
t∑

i=1

P(T = i) (D.5)

=
t∑

i=1

EP [1(T = i)] (D.6)

220

=
t∑

i=1

EP [1(T = i)1(T > i− 1)] (D.7)

=
t∑

i=1

EP [P(T = i |Fi−1)1(T > i− 1)] by Tower Rule (D.8)

=
t∑

i=1

EP [P(Xi ∈ Ai |Fi−1)1(T > i− 1)] (D.9)

= EP

[
t∑

i=1

P(Xi ∈ Ai |Fi−1)1(T > i− 1)

]
(D.10)

= EP

[
t∧T∑
i=1

P(Xi ∈ Ai |Fi−1)

]
(D.11)

=: EP [FTR
t

]
. (D.12)

Compare this to the continuous-time version,
∫ t∧T
0

λT
s ds, we can see that the two are similar

as both the integral and intensity are simply limiting cases of the summation and P(Xi ∈

Ai |Fi−1) as ∆ ↓ 0.

D.1.2 Discrete-Time Importance Sampling Estimator

Just like in continuous-time, the tower rule estimator can be further developed into an

importance sampling estimator. We present the discrete-time equivalent of Eq. (6.66) due to

it being more versatile for compositions of hitting times, however, the discrete-time variant

of Eq. (6.59) is similarly straight forward to show.

First, we define discrete-time autoregressive proposal distribution Q:

Q(Xi |Fi−1) := P(Xi |Fi−1, Xi /∈ Ai) (D.13)

=
P(Xi |Fi−1)1(Xi /∈ Ai)

P(Xi /∈ Ai |Fi−1)
, (D.14)

221

with likelihood ratio

dP
dQ

(X1:t) :=
t∏

i=1

P(Xi /∈ Ai |Fi−1) (D.15)

for X ∼ Q. Note that this is of a similar form to the proposal distribution in Section 3.4.1.

The importance sampling CDF estimator is then derived as such:

P(T ≤ t) = EP [FTR
i

]
(D.16)

=
t∑

i=1

EP [P(Xi ∈ Ai |Fi−1)1(T > i− 1)] (D.17)

=
t∑

i=1

EQ

[
P(Xi ∈ Ai |Fi−1)

i∏
j=1

P(Xj /∈ Aj |Fj−1)

]
(D.18)

= EQ

[
t∑

i=1

P(Xi ∈ Ai |Fi−1)
i∏

j=1

P(Xj /∈ Aj |Fj−1)

]
(D.19)

=: EQ [F IS’
t

]
. (D.20)

Unlike the tower rule estimator, the discrete-time importance sampling estimator does not

appear as closely related to the continuous-time version,
∫ t

0
λT
s exp

(
−
∫ s

0
λT
v dv
)
ds, at least

at first glance. To see the connection more clearly, first note that for a general function f(x)

with the region [a, b] discretized into evenly spaced points {x0, x1, . . . , xN} where x0 = a and

xN = b, it follows that

lim
N→∞

N∏
i=0

(1 + f(xi)(∆x)) :=
b∏
a

(1 + f(x)dx) := exp

(∫ b

a

f(x)dx

)
(D.21)

where ∆x is the discretization width [Slav́ık, 2007]. With this, we can now see that

F IS’
t =

t∑
i=1

P(Xi ∈ Ai |Fi−1)
i∏

j=1

P(Xj /∈ Aj |Fj−1) (D.22)

=
t∑

i=1

P(Xi ∈ Ai |Fi−1)
i∏

j=1

(1− P(Xj ∈ Aj |Fj−1)) (D.23)

222

=
t∑

i=1

P(Xi ∈ Ai |Fi−1) exp

(
−

i∑
j=1

P(Xj ∈ Aj |Fj−1)

)
for small ∆, (D.24)

which can be seen as the continuous-time version estimator just with each component swapped

out with a discretized version.

D.2 Generalized Hitting Time as a Point Process

Let T be a generalized hitting time with hitting region process A := (At)t>0. In the general

setting, it was noted that T has a corresponding counting process NT
t (ω) := 1(T (ω) ≤ t)

and the corresponding conditional intensity function λT
t (ω) was defined to be the general

intensity function λt integrated over all marks that would lead to the ground process Xt

landing in the hitting region At.

This information is great if we would like to leverage these facts for other estimators; however,

it is not suited for directly characterizing the distribution of T . While it is true that for a

generic counting process Nt with a Poisson intensity λt, the CDF of the next event takes the

following form,

P(Nt′ ≥ Nt + 1 |Ft) = 1− exp

(
−
∫ t′

t

λsds

)
, (D.25)

this does not hold for general intensity processes that are conditional on Ft. It turns out that

taking the expected value of the above equation with the appropriate measure yields our pre-

viously derived importance sample estimator; however, there exists an alternative direction

for estimation—namely, estimate the intensity of NT
t with respect to the natural filtration

FNT

t := σ(NT
s |s ≤ t) ⊂ Ft. We will refer to this as a marginal intensity and denote it with ηt.

223

Note that since the filtration FNT

t is with respect to the counting process NT and we

assume that the hitting time can only occur once, the filtration essentially holds information

of either T /∈ [0, t] or the value of T in the range [0, t]. We will now derive an estimator for

this marginal intensity:

ηtdt := P(T ∈ [t, t + dt) |T /∈ [0, t)) (D.26)

= EP [P(T ∈ [t, t + dt) |Ft) |T /∈ [0, t)] (D.27)

= EQ

[
dP(· |T /∈ [0, t))

dQ
λT
t

]
dt (D.28)

=
1

P(T > t)
EQ
[
Ltλ

T
t

]
dt (D.29)

=
EQ
[
Ltλ

T
t

]
dt

EQ [Lt]
(D.30)

(D.31)

=⇒ P(T ∈ [t, t + dt)) = ηt exp

(
−
∫ t

0

ηsds

)
(D.32)

=
EQ
[
Ltλ

T
t

]
EQ [Lt]

exp

(
−
∫ t

0

EQ
[
Lsλ

T
s

]
EQ [Ls]

ds

)
(D.33)

and P(T ≤ t) = 1− exp

(
−
∫ t

0

ηsds

)
(D.34)

= 1− exp

(
−
∫ t

0

EQ
[
Lsλ

T
s

]
EQ [Ls]

ds

)
(D.35)

≈ 1− exp

(
−
∫ t

0

∑n
i=1 L

(i)
s λ

T,(i)
s∑n

i=1 L
(i)
s

ds

)
(D.36)

Due to the presence of a ratio estimator (and non-linear transformation of the integrand),

this is a biased, yet consistent, estimator.

224

D.3 Variance Reduction of Estimator through Impor-

tance Sampling

Let f(ω) be a random variable with finite variance under a probability space (Ω,F ,P) with

domain [0,∞). The null set under P will be denoted as Θ ⊂ Ω (i.e., for all A ⊂ Ω where

P(A) = 0 it holds that A ⊆ Θ). Denote the set of outcomes where f = 0 as F0 where

F0 := {ω ∈ Ω \Θ |f(ω) = 0}. Elements in this set will be referred to as zero-events. We will

assume that this scenario has a non-zero probability of occurring, i.e., P(F0) > 0.

We are ultimately interested in the mean of f , which we will denote as π, and finding

low variance estimators for it. This can be achieved by applying importance sampling with

the change of measure Q:

π := EP [f] (D.37)

= EQ [Lf] (D.38)

where L(ω) := dP(ω)
dQ(ω)

. The only requirement is that for all A ⊂ Ω where Q(A) = 0 then

P(A \ F0) = 0. In words, this means that if an event is possible under P then it either is

possible under Q as well or is a zero-event. Aside from this constraint, the exact measure Q

is left up to design, with the goal being to choose one that leads to low variance, VarQ(Lf),

especially compared to VarP(f).

Consider a subset of these zero-events, F ⊂ F0, where P(F0) ≥ P(F) > 0. Let dQ(ω) =

dP(ω |Ω \ F). At a high level, this choice of measure simply forbids all of the zero-events in

F and renormalizes the remaining distribution according to the original measure P. It can

be shown that dQ(ω) ∝ dP(ω)1(ω /∈ F).

225

Note that in general, Var(Z) = E [Z2] − E [Z]2. Because importance sampling produces

an unbiased estimate of π, to compare the variance of the original and the new estimator we

simply need to compare their second moments. From all of the prior assumptions, it follows

then that:

EQ [L2f 2
]

=

∫
Ω\F

L(ω)2f(ω)2dQ(ω) (D.39)

=

∫
Ω\F

L(ω)f(ω)2dP(ω) (D.40)

=

∫
Ω\F

dP(ω)

dQ(ω)
f(ω)2dP(ω) (D.41)

=

∫
Ω\F

dP(ω)P(Ω \ F)

dP(ω)1(ω /∈ F)
f(ω)2dP(ω) (D.42)

= P(Ω \ F)

∫
Ω\F

f(ω)2dP(ω) (D.43)

= P(Ω \ F)

∫
Ω

f(ω)2dP(ω) as f(ω) = 0 for ω ∈ F (D.44)

= P(Ω \ F)EP [f 2
]

(D.45)

< EP [f 2
]

(D.46)

(D.47)

=⇒ VarQ(Lf) < VarP(f). (D.48)

Furthermore, a similar line of reasoning exists that shows that if we even further restrict

the zero events from happening, i.e., measure Q′ and likelihood ratio L′ that prevents F ′ for

F ⊂ F ′ ⊂ F0 where P(F0) ≥ P(F ′) > P(F), exhibits even less variance. More formally:

VarQ
′
(L′f) < VarQ(Lf). (D.49)

These results imply that the larger the probability of zero-events in general, P(F0), the larger

the potential reduction in variance is to be had assuming that we can adequately forbid these

events from occurring.

226

Extending to Cumulative Processes We will slightly extend the previous setting to

stochastic processes, where (ft)t≥0 is the main process of interest under the filtered probability

space (Ω,F, (Ft)t≥0,P) with expected marginal values πt := EP [ft]. Consider the alternative

measure Q that satisfies the previous properties for ft for all values of t ≥ 0 in terms of

preventing (a subset of the) zero-events, and results in a valid density process Lt := dP
dQ

∣∣
Ft

.

We will assume that P(Lt ∈ (0, 1)) = 1 for all t > 0 (this means that similar valid draws of f

under Q are always more likely than under P).

Consider the value of interest:

Π :=

∫ T

0

πtdt (D.50)

=

∫ T

0

EP [ft] dt = EP
[∫ T

0

ftdt

]
(D.51)

or =

∫ T

0

EQ [Ltft] dt = EQ
[∫ T

0

Ltftdt

]
(D.52)

As before, since both expected values are unbiased with respect to Π, comparing their

respective second moments is sufficient for comparing estimator variances.

EQ

[(∫ T

0

Ltftdt

)2
]

= EQ
[∫ T

0

Ltftdt

∫ T

0

Lsfsds

]
(D.53)

= EQ
[∫ T

0

∫ T

0

LtLsftfsdtds

]
(D.54)

=

∫ T

0

∫ T

0

EQ [LtLsftfs] dtds (D.55)

=

∫ T

0

∫ T

0

EP [L−1LtLsftfs
]
dtds (D.56)

=

∫ T

0

∫ T

0

EP [L−1
t∧sLtLsftfs

]
dtds by Tower Rule and Martingale Property of L

(D.57)

=

∫ T

0

∫ T

0

EP [Lt∨sftfs] dtds (D.58)

227

<

∫ T

0

∫ T

0

EP [ftfs] dtds (D.59)

= EP

[(∫ T

0

ftdt

)2
]

(D.60)

228

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE DISSERTATION
	Introduction
	Motivating Use Cases
	Contributions and Dissertation Outline

	Background
	Notation
	Relevant Probability Theory
	Expectation Approximation Techniques
	Sequential Models
	Autoregressive Modeling of Categorical Sequences
	Marked Temporal Point Processes
	Continuous-Time Stochastic Jump Processes

	General Probabilistic Query Estimation for Discrete Time Models
	Related Work
	Probabilistic Queries
	Querying Markov Models
	Queries for Homogeneous First Order Markov Models
	General Queries and Higher Order Markov Models

	Query Estimation Methods
	Proposal Distribution
	Estimation Techniques
	Saving Computation on Multiple Queries

	Experiments and Results
	Experimental Setting
	Results

	Conclusion

	Hitting Time and Related Query Approximation for Marked Temporal Point Processes
	Related Work
	Preliminaries
	Notation for Event Sequences
	Marked Temporal Point Processes

	Querying MTPPs
	Directly Tractable Queries
	Naive Estimation of Queries
	General Restricted-Mark Queries
	Practical Estimation of Complex Queries

	Experiments
	Real-world Experiments
	Synthetic Experiments

	Conclusion

	Marginalization of Marked Temporal Point Processes to Account for Censoring
	Related Work
	Mark-Censored Temporal Point Processes
	Problem Statement
	Censored Intensity Function
	Tractable Estimation of Censored Intensity

	Experiments
	Experiments on Synthetic Data
	Experiments on Real-World Data

	Conclusion

	Generalized Hitting Times and their Approximated Distributions for Stochastic Jump Processes
	Related Work
	Preliminaries & Setting of Interest
	Stochastic Jump Process
	Random Times
	Objective

	Naive Empirical Estimators
	Tower Rule Estimators
	Importance Sampling Estimators
	Altering Jumps
	Alternative Approach

	Compositions of Generalized Hitting Times
	Hitting Time Ordering
	Joint Hitting Time Distributions

	Experiments
	First Passage Time
	First Exit Time
	Cover Time
	Joint Hitting Time Distributions

	Conclusion

	Conclusion
	Reiteration of Contributions
	Future Research Directions

	Bibliography
	Appendix Supplemental Material for Chapter 3
	Variance of Estimates from the Hybrid Method
	Determining Ground Truth for Experiments
	Additional Experimental Details and Results
	Query Estimation Error as a Function of Horizon K
	Query Estimation Error as a Function of Computation Budget
	Coverage-based Beam Search Ablation
	Long-horizon Query Estimation
	Query Estimation with Large-Scale Language Models
	Entropy Relationship with Query Estimation Error
	Investigation of Query 4 (``A" before ``B")
	Linearly Compounding Errors in Complex Query Estimation
	Qualitative Exploration and Practical Applications

	Appendix Supplemental Material for Chapter 4
	Deriving ``A before B'' Estimator
	Further Experimental Details and Results
	Dataset Preprocessing
	Modeling Details
	Integration Approximation
	Marginal Mark Query Experiments
	Synthetic Data Experiments

	Appendix Supplemental Material for Chapter 5
	Further Experimental Details and Results
	Datasets
	Model & Training Details
	Next Event Prediction
	Model Misspecification
	Sensitivity Analysis

	Appendix Supplemental Material for Chapter 6
	Estimators for Discrete-Time
	Discrete-Time Tower Rule Estimator
	Discrete-Time Importance Sampling Estimator

	Generalized Hitting Time as a Point Process
	Variance Reduction of Estimator through Importance Sampling

