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Abstract

Classical Nonparametric Hypothesis Tests with Applications in Social Good

by

Kellie Ottoboni

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Philip B. Stark, Chair

Hypothesis testing has come under fire in the past decade as misuses have become increas-
ingly visible. It is common to use tests whose assumptions don’t reflect how the data were
collected, and editorial policies of many journals reward “p-hacking” by setting the arbi-
trary threshold of 0.05 to determine whether a result merits publication. In fact, properly
designed hypothesis tests are an invaluable tool for inference and decision-making. Classical
nonparametric tests, once reserved for problems that could be worked out with pencil and
paper or approximated asymptotically, can now be applied to complex datasets with the help
of modern computing power. This dissertation tailors some nonparametric tests to modern
applications for social good.

Permutation tests are a class of hypothesis tests for data that involve random (or plausibly
random) assignment. The parametric assumptions for common tests, like the t-test and
linear regression, may not hold for randomized experiments; in contrast, the assumptions
of permutation tests are implied by the experimental design. But o↵-the-shelf permutation
tests are not a panacea: tests must be tailored to fit the experimental design, and there are
subtle numerical issues with implementing the tests in software. We construct permutation
tests and software to address particular questions in randomized and natural experiments,
including identifying what, if anything, student evaluations of teaching measure, and whether
voting machines malfunctioned in Georgia’s November 2018 election.

Risk-limiting post-election audits (RLAs) have existed for a decade, but have not been
adopted widely, in part due to logistical hurdles. This thesis uses classical nonparametric
techniques, including Fisher’s combination method and Wald’s sequential probability ratio
test, to build new RLA methods that accommodate the idiosyncratic logistics of statewide
elections. A new, more flexible method for using stratified samples in RLAs makes it easier
and more e�cient to audit elections conducted on heterogeneous voting equipment. This
thesis also develops an RLA method based on Bernoulli sampling, which allows ballots to
be audited “in parallel” across precincts on Election Day. The RLA method for stratified
samples of ballots was piloted in Michigan to study its performance in the face of real-world
constraints.
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Chapter 1

Introduction

Modern inference problems can benefit from classical nonparametric tests. This dissertation
demonstrates ways to develop nonparametric tests to solve domain-specific problems. We
focus on applications concerning human preference: student evaluations of teachers and
elections. These tests are designed to handle the characteristics of the data, as well as the
human factors that go into collecting the data. In this chapter, we present background for
key statistical concepts that appear throughout the dissertation.

1.1 Preliminary concepts

Permutation tests

Permutation tests (sometimes called randomization tests) are a class of hypothesis tests
appropriate when, under the null hypothesis, the distribution of some statistic is invariant
under transformations of a finite group. R. A. Fisher developed permutation tests in the
context of randomized experiments, where the distribution of post-treatment data are in-
variant under di↵erent random allocations of treatment that fix the number of subjects per
treatment group [31]. E. J. G. Pitman developed the same significance test along with a
more general theory of permutation testing motivated by the problem of inference without
population-level distributional assumptions [99]. Applications of permutation tests extend
beyond randomized experiments to scenarios where the null hypothesis implies some group
invariance, including tests for symmetry about a point, tests for stochastic dominance, and
tests for correlation between variables [111].

The two-sample experiment may be the clearest illustration of how permutation tests
work. Suppose we are interested in whether a treatment has a protective e↵ect against
cancer. In an experiment with n1 + n2 individuals, we randomly assign treatment to n1

individuals and the remaining n2 receive placebo. After following subjects for 10 years, we
determine the proportions of individuals p̂1 and p̂2 who developed cancer in the treatment
group and in the control group, respectively. Assuming we may ignore issues of study
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drop-out and non-compliance, we conclude that the treatment reduced the risk of cancer by
p̂1 � p̂2.

How significant is this risk di↵erence? Instead of deciding how “extreme” the observed
test statistic is relative to a parametric reference distribution, we judge it against its permu-
tation distribution. Deliberate randomization of treatments induces a distribution for the
test statistic under the null hypothesis of no e↵ect of treatment on the outcome. This is
called the “sharp” null hypothesis, because it provides detail about each individual’s poten-
tial outcome had they been assigned to the other group [81]. (In contrast, the “weak” null
hypothesis says that the treatment has no e↵ect on average.) The randomization scheme
specifies that any way of allocating treatment to n1 subjects and placebo to n2 subjects was
equally likely to have occurred. The null hypothesis tells us that each individual’s response
would have been the same regardless of the assignment. Using the randomization scheme and
imputing the unobserved, counterfactual responses under the null hypothesis, we can recover
the distribution of risk di↵erences that could have occurred with the n1 + n2 individuals in
this experiment. Chapter 2 describes two more complex experiments and the appropriate
permutation schemes for each.

To enumerate all possible randomizations is not practical for even moderate-sized datasets,
as the number of possible permutations grows exponentially with the sample size. Instead,
one typically estimates the randomization distribution by simulation. This step crucially
depends on the assumption that the software used to construct permutations actually does
so with equal probabilities, so the approximate randomization distribution is like a sim-
ple random sample (SRS) from the true distribution of all randomizations. As discussed
in Chapter 3, not all pseudo-random number generators behave “randomly enough” for all
simulations.

When a permutation test is available, it should be used in place of the corresponding
parametric test. Permutation tests are exact, meaning that they control the type I error
rate at the pre-specified level, even in finite samples; parametric hypothesis tests based on
asymptotic approximations do not always guarantee good finite-sample properties [32].

Wald’s sequential probability ratio test

Continuously monitoring a p-value as data come in is problematic: stopping as soon as the p-
value drops below the desired significance level or collecting more data until the test reaches
significance will generally inflate the type I error rate. However, there are many situations
where one would like to collect data incrementally until there is conclusive evidence in favor
or against the null hypothesis. [145] developed the sequential probability ratio test (SPRT)
to solve this problem. The procedure is based on iteratively calculating the likelihood ratio
for the data after additional observations and reaching a decision once the likelihood ratio
passes a threshold.

We’ll illustrate the SPRT using the simplest case of binary data. Suppose we observe
independent and identically distributed (IID) Bernoulli random variables X1, X2, . . . with
probability of success p. We’d like to test the null hypothesis H0 : p = p0 against the
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alternative H1 : p = p1 > p0 with level ↵ and power 1 � �. After m trials, there have been
Tm ⌘

P
m

i=1 Xi successes. At this point, the likelihood ratio is

p1m
p0m
⌘ pTm

1 (1� p1)m�Tm

pTm

0 (1� p0)m�Tm

.

We reject the null hypothesis if the evidence for H1 outweighs the evidence for H0, such
that

p1m
p0m
� 1� �

↵
.

We stop the test in favor of the null hypothesis if

p1m
p0m
 �

1� ↵
.

If �

1�↵
< p1m

p0m
< 1��

↵
, more samples should be drawn.

For any ↵ 2 (0, 1) and � 2 (0, 1), the SPRT has level no larger than ↵ and has power
at least 1 � � against the alternative H1. Amongst sequential tests with this property, the
SPRT approximately minimizes the expected sample size when the true parameter p = p0 or
p = p1. For values p0 < p < p1, the SPRT can have larger sample sizes than fixed-sample-size
tests.

If � = 0, then the inverse of the terminal likelihood ratio (the value when we stop the
test after it passes above the decision threshold 1/↵) can be interpreted as a p-value. This is
useful when implementing the SPRT as a hypothesis test of a single null, and stopping the
test in favor of the null hypothesis is not of interest.

More generally, we can use the SPRT framework to construct a test for any pointwise
null and alternative hypotheses. In Chapter 3, we use the SPRT as the basis for several
tests for uniformity of pseudo-random samples. Moreover, the SPRT can be used with
any distributions p0m and p1m. In Chapter 6, we develop a version of the SPRT using the
tri-hypergeometric distribution with a nuisance parameter.

Risk-limiting audits

No method for counting votes is perfect, and methods that rely on computers are particularly
fragile: errors, bugs, and deliberate attacks can alter results. The vulnerability of electronic
voting was confirmed in two major state-funded studies, California’s Top-to-Bottom Review
[14] and Ohio’s EVEREST study [73]. More recently, at the 2017 and 2018 DEFCON hacking
conferences, attendees with little or no knowledge of election systems were able to penetrate
a wide range of U.S. voting machines [9, 10]. Given that Russia interfered with the 2016
U.S. Presidential election through an “unprecedented coordinated cyber campaign against
state election infrastructure” [88], national security demands we protect our elections from
nation states and other advanced persistent threats.
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A risk-limiting audit (RLA) of an election contest is a procedure that has a known
minimum chance of leading to a full manual tally of the ballots if the electoral outcome
according to that tally would di↵er from the reported outcome. Outcome means the winner(s)
(or, for instance, whether there is a runo↵)—not the numerical vote totals. RLAs require a
durable, voter-verifiable record of voter intent, such as paper ballots, and they assume that
this audit trail is su�ciently complete and accurate that a full hand tally would show the
true electoral outcome. That assumption is not automatically satisfied: a compliance audit
[134] is required to check whether the paper trail is trustworthy.

RLAs have been conducted in California, Colorado, Indiana, Ohio, Virginia, and Den-
mark, and are required by law in Colorado (CRS 1-7-515) and Rhode Island (RI Gen L §
17-19-37.4). RLA legislation is under consideration in a number of other states, and bills to
require RLAs have been introduced in Congress. The National Academy of Sciences [80], the
American Statistical Association [1], the 2013 Presidential Commission on Election Admin-
istration [137], and California’s independent oversight agency, the Little Hoover Commission
[60] endorse risk-limiting post-election audits.

Current methods for risk-limiting audits are generally sequential hypothesis testing pro-
cedures: they examine more ballots, or batches of ballots, until either (i) there is strong
statistical evidence that a full hand tabulation would confirm the outcome, or (ii) the audit
has led to a full hand tabulation, the result of which should become the o�cial result. There
are three types of RLAs commonly used: ballot-level comparison, batch-level comparison,
and ballot polling.

Ballot-level comparison involves drawing a random sample of ballots and comparing the
electronic interpretation of votes, called a cast-vote record or CVR, to a manual interpretation
of voter intent. The hypothesis tests for these audits are based on Wald’s SPRT or other
probability inequalities. Batch-level comparison involves sampling entire batches (physical
groupings of ballots) and comparing the reported vote totals in the batch to a manual tally.
The math is an extension of the tests for ballot-level comparison. Batch-level comparison
audits are less e�cient (i.e., require examining more ballots) than ballot-level comparisons,
especially as batch sizes grow large [87].

Ballot-polling audits are akin to exit polls: they involve drawing a simple random sample
of ballots and using the observed number of votes for each candidate to weigh the evidence
that the reported winner is correct. The hypothesis test for ballot polling in a plurality
contest is based on Wald’s SPRT [63, 62]. Ballot polling does not require CVRs, so it can be
implemented in any jurisdiction with a paper record of voter intent. However, ballot-polling
audits generally require examining more ballots than ballot-level comparison audits.

1.2 Goals and organization

The main contribution of Part I is to illustrate the utility of carefully designed permutation
tests and issues that arise when implementing them in code. Parametric hypothesis tests
used to be commonplace because asymptotic approximations were the only computationally
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feasible way to estimate distributions. Computational power is no longer a barrier to find-
ing exact (or with pre-specified precision) permutation distributions. However, parametric
methods have remained the default approach in software, while more computationally in-
tensive nonparametric methods have received less attention. Many researchers run carefully
planned experiments or collect rich observational data, but then apply an inappropriate in-
ference method in a statistical program. This perpetuates a cycle of bad science: researchers
who don’t have a strong statistical background will tend to use statistical methods that are
readily available in the software, which are perpetuated in the field’s literature.

Chapter 2 develops permutation tests for two studies of student evaluations of teaching to
determine what, if anything, these surveys measure. The original analyses used parametric
tests to measure the extent of gender bias in the students’ evaluations; we provide a more
rigorous analysis using approaches that more accurately reflect the studies’ designs. We
explain the assumptions of our models in depth to illustrate how permutation tests can be
constructed for randomized and natural experiments.

Chapter 3 is an in-depth examination of the computational tools used to generate the
null distributions for permutation tests: pseudo-random number generators and sampling
algorithms. Using a pseudo-random number generator with an insu�cient state space and
using sampling algorithms that depend on floating point arithmetic can lead to unequal
sampling frequencies in code intended to produce uniform random samples. This matters
for permutation tests: approximating the null distribution crucially depends on the ability
to generate random permutations with equal probability.

Chapter 4 discusses packages we wrote for permutation tests in Python. permute contains
code to run common permutation tests and cryptorandom contains a cryptographically-
secure pseudo-random number generator and library of sampling algorithms. We explain
the code’s functionality, the software development practices used, and how they can be
useful to anyone who writes or uses statistical software.

The main contribution of Part II is to explore the intersection of post-election statisti-
cal forensics and the human element of elections. Risk-limiting audits have existed since
2008 [127, 129, 124], yet new challenges continue to arise as more cities and states pilot
them. Conducting a risk-limiting audit requires meticulous record-keeping and coordina-
tion between jurisdictions. Arguably, states should already be doing this, but challenges
remain: heterogeneous voting equipment across jurisdictions, laws that regulate the timing
and procedures around audits, recounts, and ballot handling, and ad hoc procedures that
election o�cials practice in their jurisdiction. We propose new developments that solve some
logistical barriers to risk-limiting audits by modifying the sampling plan.

Of course, risk-limiting post-election audits can only be conducted if there is a durable,
trustworthy voter-verifiable paper record. The state of Georgia uses legacy voting equipment
that does not produce a paper record. Chapter 5 gives a brief history of the election security
problems in Georgia since the early 2000s, leading up to the state’s contentious 2018 midterm
elections. We present statistical evidence, using permutation tests, of an unusually high rate
of undervotes in the Lieutenant Governor’s race amongst in-person voters who used legacy
machines compared to voters who used paper ballots. Since risk-limiting audits are not
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possible and a forensic examination of the voting machines has not been allowed, we cannot
draw strong conclusions about what happened.

Chapter 6 presents a general method for risk-limiting audits using stratified samples of
ballots, called SUITE. SUITE solves a problem for states like Colorado who would like to
conduct risk-limiting audits of statewide contests with votes cast on di↵erent types of voting
equipment: stratifying cast ballots by the equipment on which they were cast, and using the
most e�cient auditing method possible in each stratum, can be more e�cient than using
simple random sampling with a ballot-polling audit.

We tested SUITE in Michigan’s 2018 pilot risk-limiting audits. Chapter 7 describes the
lessons learned from bringing a statistical method from paper to practice. While SUITE
solved the problem of heterogeneous voting equipment, we observed other, more fundamen-
tal challenges during the pilots, including di�culty retrieving sampled ballots and issues
accessing the cast-vote record required for the comparison audit. Pilot audits are an impor-
tant way for for academics and election o�cials to learn and refine how the methods operate
in practice.

Chapter 8 presents a risk-limiting audit procedure based on Bernoulli random sampling.
Instead of drawing a random sample of ballots all at once after the election, ballots can be
sampled “in parallel” across precincts on Election Day. This can reduce the need for some
record-keeping, simplify the logistics of conducting an audit of a large election, and help
o�cials plan for the costs and labor required for the first portion of an audit. The statistical
test to calculate the risk in a Bernoulli ballot-polling audit is a version of Wald’s SPRT for
tri-hypergeometric samples.
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Part I

Permutation Tests
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Chapter 2

Permutation tests for student
evaluations of teaching

2.1 Introduction

Student evaluations of teaching (SET) are used widely in decisions about hiring, promoting,
and firing instructors. Measuring teaching e↵ectiveness is di�cult—for students, faculty, and
administrators alike. Universities generally treat SET as if they primarily measure teaching
e↵ectiveness or teaching quality. While it may seem natural to think that students’ answers
to questions like “how e↵ective was the instructor?” measure teaching e↵ectiveness, it is not
a foregone conclusion that they do. Indeed, the best evidence so far shows that they do not:
they have biases1 that are stronger than any connection they might have with e↵ectiveness.
Worse, in some circumstances the association between SET and an objective measure of
teaching e↵ectiveness is negative, as our results below reinforce.

Randomized experiments [18, 15] have shown that students confuse grades and grade
expectations with the long-term value of a course and that SET are not associated with
student performance in follow-on courses, a proxy for teaching e↵ectiveness. On the whole,
high SET seem to be a reward students give instructors who make them anticipate getting
a good grade, for whatever reason; for extensive discussion, see [52, Chapters 3–5].

Gender matters too. [13] finds that SET are a↵ected by gender biases and stereotypes.
Male first-year undergraduate students give more excellent scores to male instructors, even
though there is no di↵erence between the academic performance of male students of male and
of female instructors. Experimental work by [66] finds that when students think an instructor
is female, students rate the instructor lower on every aspect of teaching, including putatively
objective measures such as the timeliness with which instructors return assignments.

In this chapter, we reanalyze two sets of data from [13] and [66]. Our statistical contri-
bution is twofold. First, we apply nonparametric permutation tests to data to investigate

1[21, p.17] define bias to occur when “a teacher or course characteristic a↵ects teacher evaluations, either
positively or negatively, but is unrelated to criteria of good teaching, such as increased student learning.”
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whether SET primarily measure teaching e↵ectiveness or biases using a higher level of sta-
tistical rigor than the original analyses which used parametric models. Permutation tests
allow us to avoid contrived, counterfactual assumptions about parametric generative models
for the data, which regression-based methods (including ordinary linear regression, mixed
e↵ects models, logistic regression, etc.) and methods such as t-tests and ANOVA gener-
ally require. The null hypotheses for our tests are that some characteristic—e.g., instructor
gender—amounts to an arbitrary label and might as well have been assigned at random.

Second, we use this reanalysis as a pedagogical opportunity. The methods sections of
most research articles are terse and list the statistical methods used. Instead, we explain the
merits of each dataset and the mechanics of the tests we use in detail. Section 2.2 explains
how the data from [13] and [66] are unique among studies of SET and how their design allows
us to address questions that are normally di�cult to answer due to confounding. Section 2.3
explains the null hypotheses and ideas behind permutation tests, which many readers may
never have encountered. We hope that this extended discussion encourages readers to think
more critically about the merits and limitations of future research on SET.

The two main sources of bias we study are students’ grade expectations and the gender
of the instructor. We also investigate variations in bias by discipline and by student gender.
We work with course-level summaries to match how institutions use SET: typically, SET are
averaged for each o↵ering of a course, and those averages are compared across instances of
the course, across courses in a department, across instructors, and across departments. [132]
discuss statistical problems with this reduction to and reliance upon averages.

We find that the association between SET and an objective measure of teaching e↵ective-
ness —performance on the anonymously graded final— is weak and generally not statistically
significant. In contrast, the association between SET and (perceived) instructor gender is
large and statistically significant: instructors whom (students believe) are male receive sig-
nificantly higher average SET.

In the French data, male students tend to rate male instructors higher than they rate
female instructors, with little di↵erence in ratings by female students. In the US data, female
students tend to rate (perceived) male instructors higher than they rate (perceived) female
instructors, with little di↵erence in ratings by male students. The French data also show
that gender biases vary by course topic, and that SET have a strong positive association
with students’ grade expectations.

We therefore conclude that SET primarily do not measure teaching e↵ectiveness; that
they are strongly and non-uniformly biased by factors including the genders of the instructor
and student; that they disadvantage female instructors; and that it is impossible to adjust for
these biases. SET should not be relied upon as a measure of teaching e↵ectiveness. Relying
on SET for personnel decisions has disparate impact by gender, in general.
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2.2 Data

French natural experiment

These data, collected between 2008 and 2013, are a census of 23,001 SET from 4,423 first-
year students at a French university students (57% women) in 1,177 sections, taught by 379
instructors (34% women). The data are not public, owing to French restrictions on human
subjects data. [13] describes the data in detail. Key features include:

• All first-year students take the same six mandatory courses: History, Macroeconomics,
Microeconomics, Political Institutions, Political Science, and Sociology. Each course
has one (male) professor who delivers the lectures to groups of approximately 900
students. Courses have sections of 10–24 students. Those sections are taught by a
variety of instructors, male and female. The instructors have considerable pedagogical
freedom.

• Students enroll in “triads” of sections of these courses (three courses per semester).
The enrollment process does not allow students to select individual instructors. The
assignment of instructors to sets of students is as if at random, forming a natural
experiment. It is reasonable to treat the assignment as if it is independent across
courses.

• Section instructors assign interim grades during the semester. Interim grades are known
to the students before the students submit SET. Interim grades are thus a proxy for
students’ grade expectations.

• Final exams are written by the course professor, not the section instructors. Students
in all sections of a course in a given year take the same final. Final exams are graded
anonymously, except in Political Institutions, which we therefore omit from analyses
involving final exam scores. To the extent that the final exam measures appropriate
learning outcomes, performance on the final is a measure of the e↵ectiveness of an in-
structor: in a given course in a given year, students of more e↵ective instructors should
do better on the final exam, on average, than students of less e↵ective instructors.

• SET are mandatory: response rates are nearly 100%.

SET include closed-ended and open-ended questions. The item that attracts the most
attention, especially from the administration, is the overall score, which is treated as a
summary of the other items. The SET data include students’ individual evaluations of section
instructors in Microeconomics, History, Political Institutions, and Macroeconomics for the
five academic years 2008–2013, and for Political Science and Sociology for the three academic
years 2010–2013 (these two subjects were introduced in 2010). The SET are anonymous to
the instructors, who have access to SET only after all grades have been o�cially recorded.
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Table 2.1: Summary statistics of sections in the French university dataset.

course # sections # instructors % Female instructors

Overall 1,194 379 33.8%

History 230 72 30.6%
Political Institutions 229 65 20.0%
Microeconomics 230 96 38.5%
Macroeconomics 230 93 34.4%
Political Science 137 49 32.7%
Sociology 138 56 46.4%

Data for a section of Political Institutions that had an experimental online format are omitted. Political
Science and Sociology originally were not in the triad system; students were randomly assigned by the

administration to di↵erent sections.

US randomized experiment

These data, described in detail by [66], are available at http://n2t.net/ark:/b6078/
d1mw2k. Students in an online course were randomized into six sections of about a dozen
students each, two taught by the primary professor, two taught by a female graduate teach-
ing assistant (TA), and two taught by a male TA. In one of the two sections taught by each
TA, the TA used her or his true name; in the other, she or he used the other TA’s identity.
Thus, in two sections, the students were led to believe they were being taught by a woman
and in two they were led to believe they were being taught by a man. Students had no direct
contact with TAs: the primary interactions were through online discussion boards. The TA
credentials presented to the students were comparable; the TAs covered the same material;
and assignments were returned at the same time in all sections (hence, objectively, the TAs
returned assignments equally promptly in all four sections).

SET included an overall score and questions relating to professionalism, respectfulness,
care, enthusiasm, communication, helpfulness, feedback, promptness, consistency, fairness,
responsiveness, praise, knowledge, and clarity. Fourty-seven students in the four sections
taught by TAs finished the class, of whom 43 submitted SET. The SET data include the
genders and birth years of the students;2the grade data do not. The SET data are not linked
to the grade data.

2.3 Methods

Previous analyses of these data relied on parametric tests based on null hypotheses that do
not match the experimental design. For example, the tests assumed that SET of male and
female instructors are independent random samples from normally distributed populations
with equal variances and possibly di↵erent means. As a result, the p-values reported in those
studies are for unrealistic null hypotheses and might be misleading.

2One birth year is obviously incorrect, but our analyses do not rely on the birth years.

http://n2t.net/ark:/b6078/d1mw2k
http://n2t.net/ark:/b6078/d1mw2k
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In contrast, we use permutation tests based on the as-if-random (French natural exper-
iment) or truly random (US experiment) assignment of students to class sections, with no
counterfactual assumption that the students, SET scores, grades, or any other variables
comprise random samples from any populations, much less populations with normal distri-
butions.

In most cases, our tests are stratified. For the US data, for instance, the randomization is
stratified on the actual TA: students are randomized within the two sections taught by each
TA, but students assigned to di↵erent TAs comprise di↵erent strata. The randomization is
independent across strata. For the French data, the randomization is stratified on course
and year: students in di↵erent courses or in di↵erent years comprise di↵erent strata, and the
randomization is independent across strata. The null distributions of the test statistics3 are
induced by this random assignment, with no assumption about the distribution of SET or
other variables, no parameter estimates, and no model.

Illustration: French natural experiment

The selection of course sections by students at the French university—and the implicit as-
signment of instructors to sets of students—is as if at random within sections of each course
each year, independent across courses and across years. The university’s triad system groups
students in their classes across disciplines, building small cohorts for each semester. Hence,
the randomization for our test keeps these groups of students intact. Stratifying on course
topic and year keeps students who took the same final exam grouped in the randomization
and honors the design of the natural experiment.

Teaching e↵ectiveness is multidimensional [70] and di�cult to define, much less measure.
But whatever it is, e↵ective teaching should promote student learning: ceteris paribus, stu-
dents of an e↵ective instructor should have better learning outcomes than students of an
ine↵ective instructor have. In the French university, in all courses other than Political In-
stitutions,4 students in every section of a course in a given year take the same anonymously
graded final exam. To the extent that final exams are designed well, scores on these exams
reflect relevant learning outcomes for the course. Hence, in each course each semester, stu-
dents of more e↵ective instructors should do better on the final, on average, than students
of less e↵ective instructors.

Consider testing the hypothesis that SET are unrelated to performance on the final exam
against the alternative that, all else equal, students of instructors who get higher average
SET get higher final exam scores, indicating that they learned more. For this hypothesis
test, we omit Political Institutions because the final exam was not anonymous.

The test statistic is the average over courses and years of the Pearson correlation between
mean SET and mean final exam score among sections of each course each year. If SET do
measure instructors’ contributions to learning, we would expect this average correlation to

3The test statistics are correlations of a response variable with experimental variables, or di↵erences in
the means of a response variable across experimental conditions, aggregated across strata.

4The final exam in Political Institutions is oral and hence not graded anonymously.
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be positive: sections with above-average mean SET in each discipline each year would tend
to be sections with above-average mean final exam scores. How surprising is the observed
average correlation, if there is no connection between mean SET and mean final exam for
sections of a course?

There are 950 “individuals,” course sections of subjects other than Political Institutions.
Each of the 950 course sections has an average SET and an average final exam score. These
fall in 3 ⇥ 5 + 2 ⇥ 3 = 21 year-by-course strata. Under the randomization, within each
stratum, instructors are assigned sections independently across years and courses, with the
number of sections of each course that each instructor teaches each year held fixed. For
instance, if in 2008 there were N sections of History taught by K instructors in all, with
instructor k teaching Nk sections, then in the randomization, all

✓
N

N1 · · ·NK

◆
(2.1)

ways of assigning Nk of the N 2008 History sections to instructor k, for k = 1, . . . , K, would
be equally likely. The same would hold for sections of other courses and other years. Each
combination of assignments across courses and years is equally likely: the assignments are
independent across strata.

Under the null hypothesis that SET have no relationship to final exam scores, average
final exam scores for sections in each course each year are exchangeable given the average
SET for the sections. Imagine “shu✏ing” (i.e., permuting) the average final exam scores
across sections of each course each year, independently for di↵erent courses and di↵erent
years. For each permutation, compute the Pearson correlation between average SET for
each section and average final exam score for each section, for each course, for each year.
Average the resulting 21 Pearson correlations. The probability distribution of that average
is the null distribution of the test statistic. The p-value is the upper tail probability beyond
the observed value of the test statistic, for that null distribution.

The hypothetical randomization holds triads fixed, to allow for cohort e↵ects and to
match the natural experiment. Hence, the test is conditional on which students happen to
sign up for which triad. However, if we test at level no greater than ↵ conditionally on
the grouping of students into triads, the unconditional level of the resulting test across all
possible groupings is no greater than ↵:

Pr{ Type I error } =
X

all possible sets of triads

Pr{ Type I error | triads }Pr{ triads }


X

all possible sets of triads

↵Pr{triads }

= ↵
X

all possible sets of triads

Pr{triads }

= ↵. (2.2)
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It is not practical to enumerate all possible permutations of sections within courses and
years, so we estimate the p-value by performing 105 random permutations within each stra-
tum, finding the value of the test statistic for each overall assignment, and comparing the
observed value of the test statistic to the empirical distribution of those 105 random val-
ues. The probability distribution of the number of random permutations of assignments for
which the test statistic is greater than or equal to its observed value is Binomial, with n
equal to the number of overall random permutations and p equal to the true p-value. Hence,
the standard error of the estimated p-values is hence no larger than (1/2)/

p
105 ⇡ 0.0016.5

Code for all our analyses is at https://github.com/kellieotto/SET-and-Gender-Bias.
Results for the French data are below in Section 2.4.

Illustration: US randomized experiment

To test whether perceived instructor gender a↵ects SET in the US experiment, we use the
Neyman “potential outcomes” framework [81]. A fixed number N of individuals—e.g., stu-
dents or classes—are assigned randomly (or as if at random by Nature) into k � 2 groups
of sizes N1, . . . , Nk. Each group receives a di↵erent treatment. “Treatment” is notional. For
instance, the treatment might be the gender of the class instructor.

For each individual i, we observe a numerical response Ri. If individual i is assigned to
treatment j, then Ri = rij. The numbers {rij} are considered to have been fixed before
the experiment. (They are not assumed to be a random sample from any population; they
are not assumed to be realizations of any underlying random variables.) Implicit in this
notation is the non-interference assumption that each individual’s response depends only
on the treatment that individual receives, and not on which treatments other individuals
receive.

We observe only one potential outcome for individual i, depending on which treatment
she or he receives. In this model, the responses {Ri}Ni=1 are random, but only because
individuals are assigned to treatments at random, and the assignment determines which of
the fixed values {rij} are observed.

In the experiment conducted by [66], N students were assigned at random to six sections
of an online course, of which four were taught by TAs. Our analysis focuses on the four
sections taught by TAs. We condition on the assignment of students to the two sections
taught by the professor. Each remaining student i could be assigned to any of k = 4
treatment conditions: either of two TAs, each identified as either male or female. The
assignment of students to sections was random: each of the

✓
N

N1N2N3N4

◆
=

N !

N1!N2!N3!N4!
(2.3)

possible assignments of N1 students to TA 1 identified as male, N2 student to TA 1 identified
as female, etc., was equally likely.

5In Chapter 4, we describe other ways to calculate and interpret a permutation p-value.

https://github.com/kellieotto/SET-and-Gender-Bias
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Let ri1 and ri2 be the ratings student i would give TA 1 when TA 1 is identified as male
and as female, respectively; and let ri3 and ri4 the ratings student i would give TA 2 when
that TA is identified as male and as female, respectively. Typically, the null hypotheses we
test assert that for each i, some subset of {rij} are equal. For assessing whether the identified
gender of the TA a↵ects SET, the null hypothesis is that for each i, ri1 = ri2 (the rating
the ith student would give TA 1 is the same, whether TA 1 is identified as male or female),
and ri3 = ri4 (the rating the ith student would give TA 2 is the same, whether TA 2 is
identified as male or female). Di↵erent students might give di↵erent ratings under the same
treatment condition (the null does not assert that rij = r`j for i 6= `), and the ith student
might give di↵erent ratings to TA 1 and TA 2 (the null does not assert that ri1 = ri3). The
null hypothesis makes no assertion about the population distributions of {ri1} and {ri3}, nor
does it assert that {rij} are a sample from some super-population.

For student i, we observe exactly one of {ri1, ri2, ri3, ri4}. If we observe ri1, then—if
the null hypothesis is true—we also know what ri2 is, and vice versa, but we do not know
anything about ri3 or ri4. Similarly, if we observe either ri3 or ri4 and the null hypothesis is
true, we know the value of both, but we do not know anything about ri1 or ri2.

Consider the average SET (for any particular item) given by theN2+N4 students assigned
to sections taught by an apparently female TA, minus the average SET given by the N1+N3

students assigned to sections taught by an apparently male TA. This is what [66] tabulate as
their key result. If the perceived gender of the TA made no di↵erence in how students rated
the TA, we would expect the di↵erence of averages to be close to zero.6 How “surprising” is
the observed di↵erence in averages?

Consider the ✓
N1 +N2

N1

◆
⇥
✓
N3 +N4

N3

◆
(2.4)

assignments that keep the same N1+N2 students in TA 1’s sections (but might change which
of those sections a student is in) and the same N3+N4 students in TA 2’s sections. For each
of those assignments, we know what {Ri}Ni=1 would have been if the null hypothesis is true:
each would be exactly the same as its observed value, since those assignments keep students
in sections taught by the same TA. Hence, we can calculate the value that the test statistic
would have had for each of those assignments.

Because all
�

N

N1N2N3N4

�
possible assignments of students to sections are equally likely,

these
�
N1+N2

N1

�
⇥
�
N3+N4

N3

�
assignments in particular are also equally likely. The fraction of

those assignments for which the value of the test statistic is at least as large (in absolute
value) as the observed value of the test statistic is the p-value of the null hypothesis that
students give the same rating (or none) to an TA, regardless of the gender that TA appears
to have.

6We would expect it to be a least a little di↵erent from zero both because of the luck of the draw in
assigning students to sections and because students might rate the two TAs di↵erently, regardless of the
TA’s perceived gender, and the groups are not all the same size.
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This test is conditional on which of the students are assigned to each of the two TAs,
but if we test at level no greater than ↵ conditionally on the assignment, the unconditional
level of the resulting test across all assignments is no greater than ↵, as shown above.

In principle, one could enumerate all the equally likely assignments and compute the value
of the test statistic for each, to determine the (conditional) null distribution of the test statis-
tic. In practice, there are prohibitively many assignments (for instance, there are

�
23
11

��
24
11

�
>

3.3 ⇥ 1012 possible assignments of 47 students to the 4 TA-led sections that keep constant
which students are assigned to each TA). Hence, we estimate p-values by simulation, drawing
105 equally likely assignments at random, with one exception, noted below. As discussed ear-
lier, the standard error of the estimated p-values is hence no larger than (1/2)/

p
105 ⇡ 0.0016.

Code for all our analyses is at https://github.com/kellieotto/SET-and-Gender-Bias.
Results for the US data are in Section 2.5.

2.4 The French natural experiment

In this section, we test hypotheses about relationships among SET, teaching e↵ectiveness,
grade expectations, and student and instructor gender. Our tests aggregate data within
course sections, to match how SET are typically used in personnel decisions. We use the
average of Pearson correlations across strata as the test statistic,7 which allows us to test
both for di↵erences in means (which can be written as correlations with a dummy variable)
and for association with ordinal or quantitative variables.

In these analyses, individual i is a section of a course; the “treatment” is the instructor’s
gender, the average interim grade, or the average final exam score; and the “response” is the
average SET or the average final exam score. Strata consist of all sections of a single course
in a single year.

Our tests for overall e↵ects stratify on the course subject, to account for systematic dif-
ferences across departments: the hypothetical randomization shu✏es characteristics among
courses in a given department, but not across departments. We also perform tests separately
in di↵erent departments, and in some cases separately by student gender.

SET and final exam scores

We test whether average SET scores and average final exam scores for course sections are
associated. The null hypothesis is that the pairing of average final grade and average SET
for sections of a course each year is as if at random, independent across courses and across
years. We test this hypothesis overall and separately by discipline, using the average Pearson
correlation across strata, as described in Section 2.3. If the null hypothesis were true, we
would expect the test statistic to be close to zero. On the other hand, if SET do measure

7As discussed above, we find p-values from the (nonparametric) permutation distribution, not from the
theoretical distribution of the Pearson correlation under the parametric assumption of bivariate normality.

https://github.com/kellieotto/SET-and-Gender-Bias


CHAPTER 2. PERMUTATION TESTS FOR STUDENT EVALUATIONS OF
TEACHING 17

teaching e↵ectiveness, we would expect average SET and average final exam score to be
positively correlated within courses within years, making the test statistic positive.

The numbers show that SET scores do not measure teaching e↵ectiveness well, overall:
the one-sided p-value for the hypothesis that the correlation is zero is 0.09 (Table 2.2). Sep-
arate tests by discipline find that for History, the association is positive and statistically
significant (p-value of 0.01), while the other disciplines (Macroeconomics, Microeconomics,
Political Science and Sociology), the association is either negative or positive but not sta-
tistically significant (p-values 0.19, 0.55, 0.62, and 0.61 respectively). Political Institutions
is not reported, because the final exam was not graded anonymously. The five strata of
Political Institutions are not included in the overall average, which is computed from the
remaining 21 strata-level correlation coe�cients.

Table 2.2: Average correlation between SET and final exam score, by subject in the French
university.

strata ⇢̄ p-value

Overall 26 (21) 0.04 0.09
History 5 0.16 0.01
Political Institutions 5 N/A N/A
Macroeconomics 5 0.06 0.19
Microeconomics 5 -0.01 0.55
Political Science 3 -0.03 0.62
Sociology 3 -0.02 0.61

Note: p-values are one-sided.

SET and instructor gender

The second null hypothesis we test is that the pairing (by section) of instructor gender and
SET is as if at random within courses each year, independently across years and courses.
If gender does not a↵ect SET, we would expect the correlation between average SET and
instructor gender to be small in each course in each year. On the other hand, if students
tend to rate instructors of one gender higher, we would expect the average correlation to be
large in absolute value. We find that average SET are significantly associated with instructor
gender, with male instructors getting higher ratings (overall p-value 0.00). Male instructors
get higher SET on average in every discipline with two-sided p-values ranging from 0.08 for
History to 0.63 for Political Science (Table 2.3).

Instructor gender and learning outcomes

Do men receive higher SET scores overall because they are better instructors? The third
null hypothesis we test is that the pairing (by course) of instructor gender and average final
exam score is as if at random within courses each year, independent across courses and
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Table 2.3: Average correlation between SET and instructor gender in the French university.

⇢̄ p-value

Overall 0.09 0.00
History 0.11 0.08
Political Institutions 0.11 0.10
Macroeconomics 0.10 0.16
Microeconomics 0.09 0.16
Political Science 0.04 0.63
Sociology 0.08 0.34

Note: p-values are two-sided.

across years. If this hypothesis is true, we would expect the average correlations to be small.
If the e↵ectiveness of instructors di↵ers systematically by gender, we would expect average
correlation to be large in absolute value.

On the whole, students of male instructors perform worse on the final than students
of female instructors, by an amount that is statistically significant (p-value 0.07 overall,
Table 2.4). In all disciplines, students of male instructors perform worse, but by amounts that
are not statistically significant (p-values ranging from 0.22 for History to 0.70 for Political
Science). This suggests that male instructors are not noticeably more e↵ective than female
instructors, and perhaps are less e↵ective. The statistically significant di↵erence in SET
scores for male and female instructors does not seem to reflect a di↵erence in their teaching
e↵ectiveness.

Table 2.4: Average correlation between final exam scores and instructor gender in the French
university.

⇢̄ p-value

Overall -0.06 0.07
History -0.08 0.22
Macroeconomics -0.06 0.37
Microeconomics -0.06 0.37
Political Science -0.03 0.70
Sociology -0.05 0.55

Note: p-values are two-sided. Negative values of ⇢̄ indicate that students of female instructors did better on
average than students of male instructors.

Gender interactions

Why do male instructors receive higher SET scores? Separate analyses by student gender
shows that male students tend to give higher SET scores to male instructors than female
instructors (Table 2.5). These permutation tests confirm the results found by [13]. Gender
concordance is a good predictor of SET scores for men (p-value 0.00 overall). Male students
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give significantly higher SET scores to male instructors in History (p-value 0.01), Microeco-
nomics (p-value 0.01), Macroeconomics (p-value 0.04), Political Science (p-value 0.06), and
Political Institutions (p-value 0.08). Male students give higher SET scores to male instructors
in Sociology as well, but the e↵ect is not statistically significant (p-value 0.16).

The correlation between gender concordance and overall satisfaction scores for female
students is also positive overall and weakly significant (p-value 0.09). The correlation is
negative in some fields (History, Political Institutions, Macroeconomics, Microeconomics
and Sociology) and positive in only one field (Political Science), but in no case statistically
significant (p-values range from 0.12 to 0.97).

Table 2.5: Average correlation between SET and gender concordance in the French university.

Male student Female student
⇢̄ p-value ⇢̄ p-value

Overall 0.15 0.00 0.05 0.09
History 0.17 0.01 -0.03 0.60
Political Institutions 0.12 0.08 -0.11 0.12
Macroeconomics 0.14 0.04 -0.05 0.49
Microeconomics 0.18 0.01 -0.00 0.97
Political Science 0.17 0.06 0.04 0.64
Sociology 0.12 0.16 -0.03 0.76

Note: p-values are two-sided. Positive values indicate that students tended give higher ratings to instructors
of the same gender.

Do male instructors receive higher SET scores from male students because their teaching
styles match male students’ learning styles? If so, we would expect male students of male
instructors to perform better on the final exam. However, they do not (Table 2.6). If
anything, male students of male instructors perform worse overall on the final exam (the
correlation is negative but not statistically significant, with a p-value 0.75). In History, the
amount by which male students of male instructors do worse on the final is significant (p-
value 0.03): male History students give significantly higher SET scores to male instructors,
despite the fact that they seem to learn more from female instructors. SET do not appear
to measure teaching e↵ectiveness, at least not primarily.

SET and grade expectations

The next null hypothesis we test is that the pairing by course of average SET scores with
average interim grades is as if at random. We use interim grades as a proxy for students’
grade expectations. If students give higher SET in courses where they expect higher grades,
the association between SET scores and interim grades should be positive. Indeed, the
association is positive and generally highly statistically significant (Table 2.7). Political
Institutions is the only discipline for which the average correlation between interim grades
and SET scores is negative, but the correlation is not significant (one-sided p-value 0.61).
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Table 2.6: Average correlation between student performance and gender concordance in the
French university.

Male student Female student
⇢̄ p-value ⇢̄ p-value

Overall -0.01 0.75 0.06 0.07
History -0.15 0.03 -0.02 0.74
Macroeconomics 0.04 0.60 0.11 0.10
Microeconomics 0.02 0.80 0.07 0.29
Political Science 0.08 0.37 0.11 0.23
Sociology 0.01 0.94 0.06 0.47

Note: p-values are two-sided. Positive values indicate that students tended receive higher final exam scores
when their instructor was the same gender.

The estimated one-sided p-values for all other courses are between 0.0 and 0.03. The average
correlations are especially high in History (0.32) and Sociology (0.24).

Table 2.7: Average correlation between SET and interim grades in the French university.

⇢̄ p-value

Overall 0.16 0.00
History 0.32 0.00
Political Institutions -0.02 0.61
Macroeconomics 0.15 0.01
Microeconomics 0.13 0.03
Political Science 0.17 0.02
Sociology 0.24 0.00

Note: p-values are one-sided.

In summary, the average correlation between SET and final exam grades (at the level of
class sections) is positive, but only weakly significant overall and not significant for most dis-
ciplines. However, the average correlation between SET and grade expectations (at the level
of class sections) is positive and significant overall and across most disciplines. The average
correlation between instructor gender and SET is statistically significant—male instructors
get higher SET—but if anything, students of male instructors do worse on final exams than
students of female instructors. Male students tend to give male instructors higher SET,
even though they might be learning less than they do from female instructors. We conclude
that SET are influenced more by instructor gender and student grade expectations than by
teaching e↵ectiveness.

2.5 The US randomized experiment

The previous section suggests that SET have little connection to teaching e↵ectiveness,
but the natural experiment does not allow us to control for di↵erences in teaching styles



CHAPTER 2. PERMUTATION TESTS FOR STUDENT EVALUATIONS OF
TEACHING 21

across instructors. The truly randomized experiment from [66] does. As discussed above,
[66] collected SET from an online course in which 43 students were randomly assigned to
four8 discussion groups, each taught by one of two TAs, one male and one female. The
TAs coordinated their teaching practices: they gave similar feedback to students, returned
assignments at exactly the same time, etc.

Biases in student ratings are revealed by di↵erences in ratings each TA received when that
TA is identified to the students as male versus as female. [66] find that “the male identity
received significantly higher scores on professionalism, promptness, fairness, respectfulness,
enthusiasm, giving praise, and the student ratings index . . . Students in the two groups
that perceived their assistant instructor to be male rated their instructor significantly higher
than did the students in the two groups that perceived their assistant instructor to be female,
regardless of the actual gender of the assistant instructor.” [66] used parametric tests whose
assumptions did not match their experimental design; part of our contribution is to show that
their data admit a more rigorous analysis using permutation tests that honor the underlying
randomization and that avoid parametric assumptions about SET. Our permutation analysis
supports their overall conclusions, in some cases substantially more strongly than the original
analysis (for instance, p-values of 0.01 versus 0.19 for promptness and fairness). In other
cases, the original parametric tests overstated the evidence (for instance, a p-value of 0.29
versus 0.04 for knowledgeability).

We use permutation tests as described above in Section 2.3. Individual i is a student;
the treatment is the combination of the TA’s identity and the TA’s reported gender (there
are K = 4 treatments). The null hypothesis is that each student would give a TA the same
SET score, whether that TA is apparently male or apparently female. A student might give
the two TAs di↵erent scores, and di↵erent students might give di↵erent scores to the same
TA.

Because of how the experimental randomization was performed, all allocations of stu-
dents to TA sections that preserve the number of students in each section are equally likely,
including allocations that keep the same students assigned to each actual TA constant.

To test whether there is a systematic di↵erence in how students rate male-identified and
female-identified TAs, we use the di↵erence in pooled means as our test statistic: We pool
the SET for both instructors when they are identified as female and take the mean, pool the
SET for both instructors when they are identified as male and take the mean, then subtract
the second mean from the first mean (Table 2.8). This is what [66] report as their main
result.

As described above, the randomization is stratified and conditions on the set of students
allocated to each TA, because, under the null hypothesis, we then know what SET students
would have given for each possible allocation, completely specifying the null distribution of
the test statistic. The randomization includes the nonresponders, who are omitted from the
averages of the group they are assigned to.

8As discussed above, there were six sections in all, of which two were taught by the professor and four
were taught by TAs.
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We also perform tests involving the association of concordance of student and appar-
ent TA gender (Table 2.9), and SET and concordance of student and actual TA gender
(Table 2.10) using the pooled di↵erence in means as the test statistic. We test the asso-
ciation between grades and actual TA gender using the average Pearson correlation across
strata as the test statistic (Table 2.11). We find the p-values from the stratified permutation
distribution of the test statistic, avoiding parametric assumptions.

SET and perceived instructor gender

The first hypothesis we test is that students would rate a given TA the same, whether the
student thinks the TA is female or male. A positive value of the test statistic means that
students give higher SET on average to apparently male instructors. There is weak evidence
that the overall SET score depends on the perceived gender (p-value 0.12). Table 2.8 shows
that the evidence is stronger for several other items students rated: fairness, promptness,
giving praise, enthusiasm, communication, professionalism, respect, and caring. For seven
items, the nonparametric permutation p-values are smaller than the parametric p-values
reported by [66]. Items for which the permutation p-values were greater than 0.10 include
clarity, consistency, feedback, helpfulness, responsiveness, and knowledgeability. SET were
on a 5-point scale, so a di↵erence in means of 0.80, observed in student ratings of the
promptness with which assignments were returned, is 20% of the full scale—an enormous
di↵erence. Since assignments were returned at exactly the same time in all four sections
of the class, this seriously impugns the ability of SET to measure even putatively objective
characteristics of teaching.

We also conducted separate tests by student gender. In contrast to our findings for the
French data, where male students rated male instructors higher, in this experiment female
students rated the perceived male instructors higher (Table 2.9). Male students rated the
male-identified instructor significantly (though weakly) higher on only one criterion: fair-
ness (p-value 0.09). Female students, however, rated the male-identified instructor higher
on overall satisfaction (p-value 0.11) and most teaching dimensions: praise, enthusiasm, car-
ing, fairness, respectfulness, communication, professionalism, and feedback. Female students
rated the female-identified instructors lower on helpfulness, promptness, consistency, respon-
siveness, knowledge, and clarity, although the di↵erences are not statistically significant.

Table 2.9 shows that students of both genders rated the male-identified instructor higher
on all dimensions. However, Table 2.10 shows that the actual instructor gender is weakly as-
sociated with ratings. Students rated the actual male instructor higher on some dimensions
and lower on others, by amounts that generally were not statistically significant. The ex-
ceptions were praise (p-value 0.02) and responsiveness (p-value 0.05), where female students
tended to rate the actual female instructor significantly higher.

Students of the actual male instructor performed worse in the course on average, by an
amount that was statistically significant (Table 2.11). The di↵erence in student performance
by reported gender of the instructor is not statistically significant.
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Table 2.8: Di↵erence in mean ratings by reported instructor gender (male minus female) in
the US university.

di↵erence permutation MacNell et al.
in means p-value p-value

Overall 0.47 0.12 0.128
Professional 0.61 0.07 0.124
Respectful 0.61 0.06 0.124
Caring 0.52 0.10 0.071
Enthusiastic 0.57 0.06 0.112
Communicate 0.57 0.07 NA
Helpful 0.46 0.17 0.049
Feedback 0.47 0.16 0.054
Prompt 0.80 0.01 0.191
Consistent 0.46 0.21 0.045
Fair 0.76 0.01 0.188
Responsive 0.22 0.48 0.013
Praise 0.67 0.01 0.153
Knowledge 0.35 0.29 0.038
Clear 0.41 0.29 NA

Note: p-values are two-sided.

Table 2.9: Association between SET and reported instructor gender (male minus female) in
the US university.

Male students Female students
di↵erence in means p-value di↵erence in means p-value

Overall 0.17 0.82 0.79 0.11
Professional 0.42 0.55 0.82 0.12
Respectful 0.42 0.55 0.82 0.12
Caring 0.04 1.00 0.96 0.05
Enthusiastic 0.17 0.83 0.96 0.05
Communicate 0.25 0.68 0.87 0.10
Helpful 0.46 0.43 0.51 0.35
Feedback 0.08 1.00 0.88 0.10
Prompt 0.71 0.15 0.86 0.13
Consistent 0.17 0.85 0.77 0.17
Fair 0.75 0.09 0.88 0.04
Responsive 0.38 0.54 0.06 1.00
Praise 0.58 0.29 0.81 0.01
Knowledge 0.17 0.84 0.54 0.21
Clear 0.13 0.85 0.67 0.29

Note: p-values are two-sided.
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Table 2.10: Association between SET and actual instructor gender (male minus female) in
the US university.

Male students Female students
di↵erence in means p-value di↵erence in means p-value

Overall -0.13 0.61 -0.29 0.48
Professional 0.15 0.96 -0.09 0.73
Respectful 0.15 0.96 -0.09 0.73
Caring -0.22 0.52 -0.07 0.75
Enthusiastic -0.13 0.62 -0.44 0.29
Communicate -0.02 0.80 -0.18 0.61
Helpful 0.03 0.89 0.26 0.71
Feedback -0.24 0.48 -0.41 0.36
Prompt -0.09 0.69 -0.33 0.44
Consistent 0.12 0.97 -0.40 0.35
Fair -0.06 0.71 -0.59 0.12
Responsive -0.13 0.64 -0.68 0.05
Praise 0.02 0.86 -0.60 0.02
Knowledge 0.22 0.83 -0.44 0.17
Clear -0.26 0.49 -0.98 0.07

Note: p-values are two-sided.

Table 2.11: Di↵erence in mean grades by instructor gender (male minus female) in the US
university.

di↵erence in means p-value

Reported 1.76 0.54
Actual -6.81 0.02

Note: p-values are two-sided.

These results suggest that students rate instructors more on the basis of the instructor’s
perceived gender than on the basis of the instructor’s e↵ectiveness. Students of the TA who
is actually female did substantially better in the course, but students rated male-identified
TAs higher.

2.6 Multiplicity

We did not adjust the p-values reported above for multiplicity. We performed a total of
approximately 50 tests on the French data, of which we consider four to be our primary
results:

1fr lack of association between SET and final exam scores (a negative result, so multiplicity
is not an issue)
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2fr lack of association between instructor gender and final exam scores (a negative result,
so multiplicity is not an issue)

3fr association between SET and instructor gender

4fr association between SET and interim grades

Bonferroni’s adjustment for these four tests would leave the last two associations highly
significant, with adjusted p-values less than 0.01.

We performed a total of 77 tests on the US data. We consider the three primary null
hypotheses to be

1us perceived instructor gender plays no role in SET

2us male students rate male-identified and female-identified instructors the same

3us female students rate male-identified and female-identified instructors the same

To account for multiplicity, we tested these three “omnibus” hypotheses using the nonpara-
metric combination of tests (NPC) method with Fisher’s combining function [98, Chapter
4] to summarize the 15 dimensions of teaching into a single test statistic that measures how
“surprising” the 15 observed di↵erences would be for each of the three null hypotheses. In
105 replications, the empirical p-values for these three omnibus hypotheses were 0 (99% con-
fidence interval [0.0, 5.3⇥ 10�5]), 0.464 (99% confidence interval [0.460, 0.468]), and 0 (99%
confidence interval [0.0, 5.3⇥ 10�5]), respectively. (The confidence bounds were obtained by
inverting Binomial hypothesis tests.) Thus, we reject hypotheses 1us and 3us.

We made no attempt to optimize the tests to have power against the alternatives consid-
ered. For instance, with the US data, the test statistic grouped the two identified-as-female
sections and the two identified-as-male conditions, in keeping with how [66] tabulated their
results, rather than using each TA as his or her own control (although the randomization
keeps the two strata intact). Given the relatively small number of students in the US exper-
iment, it is remarkable that any of the p-values is small, much less that the p-values for the
omnibus tests are e↵ectively zero.

2.7 Code and data

Jupyter (http://jupyter.org/) notebooks containing our analyses are at https://github.
com/kellieotto/SET-and-Gender-Bias; they rely on the permute Python library (https:
//pypi.python.org/pypi/permute/). The US data are available at http://n2t.net/ark:
/b6078/d1mw2k. French privacy law prohibits publishing the French data.

http://jupyter.org/
https://github.com/kellieotto/SET-and-Gender-Bias
https://github.com/kellieotto/SET-and-Gender-Bias
https://pypi.python.org/pypi/permute/
https://pypi.python.org/pypi/permute/
http://n2t.net/ark:/b6078/d1mw2k
http://n2t.net/ark:/b6078/d1mw2k
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2.8 Discussion

Other studies

To our knowledge, only two experiments have controlled for teaching style in their designs:
[3] and [66]. In both experiments, students generally gave higher SET when they thought
the instructor was male, regardless of the actual gender of the instructor. Both experiments
found that systematic di↵erences in SET by instructor gender reflect gender bias rather
than a match of teaching style and student learning style or a di↵erence in actual teaching
e↵ectiveness. Numerous observational studies have also concluded that SET are biased by
gender [144, 74, 107].

Instructor race is also associated with SET. In the US, SET of instructors of color appear
to be biased downwards: minority instructors tend to receive significantly lower SET scores
compared to white (male) instructors [75].9 Observational studies show that SET tend to
be lower for non-native English speaking instructors [136, 144]. Age, [3], charisma [118], and
physical attractiveness [106, 41, 153] are also associated with SET. Other factors generally
not in the instructor’s control that may a↵ect SET scores include class time, class size,
mathematical or technical content, the physical classroom environment [47], and even the
availability of cookies in the classroom [45].

Many studies cast doubt on the validity of SET as a measure of teaching e↵ectiveness (see
[52, Chapters 3–5] for a review and analysis, [101] for a review, and [35, 18] for exemplars).
Moreover, studies have called into question whether the data from SET are trustworthy
and interpretable. [123] required students to take quizzes on the course syllabus and to sign
documents stating that they received grades at the first possible opportunity. Out of 40 SET,
only one student reported that they understood the course objectives and how they would be
evaluated, and only five students reported that they received graded documents reasonably
promptly. [56] showed that instructors tend to misjudge students’ definitions of terms such
as “not fair,” “professional,” “not organized,” “challenging,” and “not respectful.”

Some studies find that gender and SET are not significantly associated [7, 21, 28] and
that SET are valid and reliable measures of teaching e↵ectiveness [8, 20].10 The contradic-
tions among conclusions suggests that if SET are ever valid, they are not valid in general:
universities should not assume that SET are broadly valid at their institution, valid in any
particular department, or valid for any particular course. Given the many sources of bias in
SET and the variability in magnitude of the bias by topic, item, student gender, etc., as a
practical matter it is impossible to adjust for biases to make SET a valid, useful measure of
teaching e↵ectiveness.

9French law does not allow the use of race-related variables in data sets. We were thus unable to test
for racial biases in SET using the French data.

10Some authors who claim that SET are valid have a financial interest in developing SET instruments
and conducting SET.
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Summary

We used permutation tests to examine data collected by [13] and [66], both of which find that
gender biases prevent SET from measuring teaching e↵ectiveness accurately and fairly. SET
are more strongly related to instructor’s perceived gender and to students’ grade expectations
than they are to learning, as measured by performance on anonymously graded, uniform final
exams. The extent and direction of gender biases depend on context, so it is impossible to
adjust for such biases to level the playing field. While the French university data show
a positive male student bias for male instructors, the experimental US setting suggests a
positive female student bias for male instructors. The biases in the French university data
vary by course topic; the biases in the US data vary by item. We would also expect the bias
to depend on class size, format, level, physical characteristics of the classroom, instructor
ethnicity, and a host of other variables.

We do not claim that there is no connection between SET and student performance.
However, the observed association is sometimes positive and sometimes negative, and in
general is not statistically significant—in contrast to the statistically significant strong as-
sociations between SET and grade expectations and between SET and instructor gender.
SET appear to measure student satisfaction and grade expectations more than they mea-
sure teaching e↵ectiveness [132, 52]. While student satisfaction may contribute to teaching
e↵ectiveness, it is not itself teaching e↵ectiveness. Students may be satisfied or dissatisfied
with courses for reasons unrelated to learning outcomes—and not in the instructor’s control
(e.g., the instructor’s gender).

In the US, SET have two primary uses: instructional improvement and personnel deci-
sions, including hiring, firing, and promoting instructors. We recommend caution in the first
use, and discontinuing the second use, given the strong student biases that influence SET,
even on “objective” items such as how promptly instructors return assignments.11

Conclusion

In two very di↵erent universities and in a broad range of course topics, SET measure students’
gender biases better than they measure the instructor’s teaching e↵ectiveness. Overall, SET
disadvantage female instructors. There is no evidence that this is the exception rather than
the rule. Hence, the onus should be on universities that rely on SET for employment decisions
to provide convincing a�rmative evidence that such reliance does not have disparate impact
on women, under-represented minorities, or other protected groups. Because the bias varies
by course and institution, a�rmative evidence needs to be specific to a given course in a
given department in a given university. Absent such specific evidence, SET should not be
used for personnel decisions.

11In 2009, the French Ministry of Higher Education and Research upheld a 1997 decision of the French
State Council that public universities can use SET only to help tenured instructors improve their pedagogy,
and that the administration may not use SET in decisions that might a↵ect tenured instructors’ careers (c.f.
[12]).
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Chapter 3

Pseudo-random number generators
and permutations

3.1 Introduction

Pseudo-random number generators (PRNGs) are central to the practice of Statistics. They
are used to draw random samples, allocate patients to treatments, perform the bootstrap, cal-
ibrate permutation tests, perform MCMC, approximate p-values, partition data into training
and test sets, and countless other purposes.

Practitioners generally do not question whether standard software is adequate for these
tasks. This paper explores whether PRNGs generally considered adequate for statistical
work really are adequate, and whether standard software uses appropriate algorithms for
generating random integers, random samples, and independent and identically distributed
(IID) random variates.

Textbooks give methods that implicitly or explicitly assume that PRNGs can be sub-
stituted for true IID U [0, 1) variables without introducing material error [135, 57, 27, 102,
96]. We show here that this assumption is incorrect for algorithms in many commonly used
statistical packages, including MATLAB, Python’s random module, R, SPSS, and Stata.

For example, whether software can in principle generate all samples of size k from a
population of n items—much less generate them with equal probability—depends on the
size of the problem and the internals of the software, including the underlying PRNG and
the sampling algorithm, the method used to map PRNG output into a sample. We show
that even for datasets with only hundreds of observations, many common PRNGs cannot
draw all subsets of size k, for modest values of k.

Some sampling algorithms put greater demands on the PRNG than others. For instance,
some involve permuting the data. The number of items that common PRNGs can permute
ranges from at most 13 to at most 2084, far smaller than many data sets. Other sampling
algorithms require uniformly distributed integers (as opposed to the approximately U [0, 1)
PRNG outputs) as input. Many software packages generate pseudo-random integers using a
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rounding method that does not yield uniformly distributed integers, even if PRNG output
were uniformly distributed on w-bit binary integers.

As a result of the limitations of common PRNGs and sampling algorithms, the L1 distance
between the uniform distribution on samples of size k and the distribution induced by a
particular PRNG and sampling algorithm can be nearly 2. It follows that there exist bounded
functions of random samples whose expectations with respect to those two distributions di↵er
substantially.

Section 3.2 presents an overview of PRNGs and gives examples of better and worse ones.
Section 3.3 shows that, for modest n and k, the state spaces of common PRNGs considered
adequate for Statistics are too small to generate all permutations of n things or all samples
of k of n things. Section 3.4 discusses sampling algorithms, provides that some are less
demanding on the PRNG than others, and shows that a common, “textbook” procedure for
generating pseudo-random integers using a PRNG can be quite inaccurate. Unfortunately,
this is essentially the method that R uses and that the Python random.choice() function
uses. Section 3.5 describes tests for pseudo-randomness, including existing test batteries and
new statistical tests we have applied. Section 3.6 concludes with recommendations and best
practices.

3.2 Pseudo-random number generators

A pseudo-random number generator (PRNG) is a deterministic algorithm that, starting with
an initial “seed” value, produces a sequence of numbers that are supposed to behave like
random numbers. An ideal PRNG has output that is statistically indistinguishable from
random, uniform, IID bits. Cryptographically secure PRNGs approach this ideal—the bits
are (or seem to be) computationally indistinguishable from IID uniform bits—but common
PRNGs do not.

A PRNG has several components: an internal state, initialized with a seed ; a function
that maps the current state to an output; and a function that updates the internal state.

If the state space is finite, the PRNG must eventually revisit a state after some number
of calls—after which, it repeats. The period of a PRNG is the maximum, over initial states,
of the number of states the PRNG visits before returning to a state already visited. The
period is at most the total number of possible states. If the period is equal to the total
number of states, the PRNG is said to have full period. PRNGs for which the state and the
output are the same have periods no larger than the number of possible outputs. Better
PRNGs generally use a state space with dimension much larger than the dimension of the
output.

Some PRNGs are sensitive to the initial state. For unfavorable initial states, the PRNG
may need many “burn-in” calls before the output behaves well.
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Simple PRNGs

Linear congruential generators (LCGs) have the form Xn+1 = (aXn + c) mod m, for a
modulus m, multiplier a, and additive constant c. LCGs are fast to compute and require
little computer memory. The behavior of LCGs is well understood from number theory. For
instance, the Hull-Dobell theorem [49] gives necessary and su�cient conditions for a LCG to
have full period for all seeds, and there are upper bounds on the number of hyperplanes of
dimension k that contain all k-tuples of outputs, as a function of m [68]. When all k-tuples
are in a smaller number of hyperplanes, that indicates that the PRNG outputs are more
regular and more predictable.

To take advantage of hardware e�ciencies, early computer systems implemented LCGs
with moduli of the form m = 2b, where b was the integer word size of the computer. This led
to wide propagation of a particularly bad PRNG, RANDU, originally introduced on IBM
mainframes [55, 67]. (RANDU has a = 65539, m = 231, and c = 0.)

More generally, LCGs with m = 2b cannot have full period because m is not prime.
Better LCGs have been developed—and some are used in commercial statistical software
packages—but they are still generally considered inadequate for Statistics because of their
short periods (typically  232) and correlation among outputs.

The Wichmann-Hill PRNG is a sum of three normalized LCGs; its output is in [0, 1). It
is generally not considered adequate for Statistics, but was (nominally) the PRNG in Excel
2003, 2007, and 2010.1 The generator in Excel had an implementation bug that persisted for
several generations. Excel didn’t allow the seed to be set so issues could not be replicated,
but users reported that the PRNG occasionally gave a negative output [72]. As of 2014,
IMF banking Stress tests used Excel simulations [90]. This worries us.

Many other approaches to generating pseudo-random numbers have been proposed, and
PRNGs can be built by combining simpler ones (carefully–see [55] on “randomly” combining
PRNGs). For instance, the KISS generator combines four generators of three types, and has
a period greater than 2210. Nonetheless, standard PRNGs are predictable from a relatively
small number of outputs. For example, one can determine the LCG constants a, c, and m by
observing only 3 outputs, and can recover the state of KISS from about 70 words of output
[112].

Mersenne Twister (MT)

Mersenne Twister (MT) [71] is a “twisted generalized feedback shift register,” a sequence of
bitwise and linear operations. Its state space is 19, 937 bits and it has an enormous period
219937�1, a Mersenne prime. It is k-equidistributed to 32-bit accuracy for k  623, meaning
that output vectors of length up to 623 (except the zero vector) occur with equal frequency
over the full period. The state is a 624⇥ 32 binary matrix.

1
https://support.microsoft.com/en-us/help/828795/description-of-the-rand-function-in-excel,

last visited 23 October 2018.

https://support.microsoft.com/en-us/help/828795/description-of-the-rand-function-in-excel
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MT is the default PRNG in common languages and software packages, including Python,
R, Stata, GNU Octave, Maple, MATLAB, Mathematica, and many more (see Table 3.2).
We show below that it is not adequate for statistical analysis of modern data sets. Moreover,
MT can have slow “burn in,” especially for seeds with many zeros [115]. And the outputs
for close seeds can be similar, which makes seeding distributed computations delicate.

Cryptographic hash functions

The PRNGs described above are quick to compute but predictable, and their outputs are
easy to distinguish from actual random bits [58]. Cryptographers have devoted a great deal
of energy to inventing cryptographic hash functions, which can be used to create PRNGs, as
the properties that make functions cryptographically secure are properties of good pseudo-
randomness.

A cryptographic hash function H is a function with the following properties:

• H produces a fixed-length “digest” (hash) from arbitrarily long “message” (input):
H : {0, 1}⇤ ! {0, 1}L.

• H is inexpensive to compute.

• H is “one-way,” i.e., it is hard to find a pre-image of any output except by exhaustive
enumeration (this is the basis of hashcash “proof of work” for Bitcoin and some other
distributed ledgers).

• H is collision-resistant, i.e., it is hard to find M1 6= M2 such that H(M1) = H(M2).

• small changes to M produce unpredictable, big changes to H(M).

• outputs of H are equidistributed: bits of the hash are essentially IID random.

These properties of H make it suitable as the basis of a PRNG: It is as if H(M) is
a uniformly distributed random L-bit string assigned to M . One can construct a simple
hash-based PRNG with the procedure outlined in Figure 3.1 which we first learned about
from Ronald L. Rivest [110].

Since a message can be arbitrarily long, this PRNG has an unbounded state space. For
truly cryptographic applications, the seed should be reset to a new random value periodically;
for statistical applications, that should not be necessary.

3.3 Counting permutations and samples

Theorem 1 (Pigeonhole principle). If you put N > n pigeons in n pigeonholes, at least one
pigeonhole must contain more than one pigeon.
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Hash functions in counter mode

1. Generate a random string S with a substantial amount of entropy, e.g., 20 rolls of
a 10-sided die.

2. Set i = 0. i is the number of values generated so far. The state of the PRNG is
the string “S,” with the zero byte string appended i+ 1 times.

3. Set Xi be the hash of the state, interpreted as a (long) hexadecimal number.

4. Increment i and return to step 4 to generate more outputs.

Figure 3.1: Algorithm for using a hash function in counter mode to generate PRNs.

Corollary 1. At most n pigeons can be put in n pigeonholes if at most one pigeon is put in
each hole.

The corollary implies that a PRNG cannot generate more permutations or samples than
the number of states the PRNG has (which is in turn an upper bound on the period of
the PRNG). Of course, that does not mean that the permutations or samples a PRNG can
generate occur with approximately equal probability: that depends on the quality of the
PRNG, not just the size of the state space. Nonetheless, it follows that no PRNG with a
finite state space can be “adequate for Statistics” for every statistical problem.

The number of permutations of n objects is n!; the number of possible samples of k
of n items with replacement is nk; and the number of possible samples of k of n without
replacement is

�
n

k

�
. These bounds are helpful for counting permutation pigeons:

• Stirling bounds: enn+1/2e�n � n! �
p
2⇡nn+1/2e�n.

• Entropy bounds: 2nH(k/n)

n+1 
�
n

k

�
 2nH(k/n), whereH(q) ⌘ �q log2(q)�(1�q) log2(1�q).

• Stirling combination bounds: for ` � 1 and m � 2,
�
`m

`

�
� m

m(`�1)+1
p
`(m�1)(m�1)(`�1) .

Table 3.1 compares numbers of permutations and random samples to the size of the state
space of various PRNGs. PRNGs with 32-bit state spaces, which include some in statistical
packages, cannot generate all permutations of even small populations, nor all random samples
of small size from modest populations. MT is better, but still inadequate: it can generate
fewer than 1% of the permutations of 2084 items.

L1 bounds

Simple probability inequalities give attainable bounds on the bias introduced by using a
PRNG with insu�ciently large state space, on the assumption that the PRNG is uniform on
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Table 3.1: The pigeonhole principle applied to PRNGs, samples, and permutations. For a
PRNG of each size state space, the table gives examples where some samples or permutations
must be unobtainable.

Feature Size Full Scientific
notation

32-bit state space 232 4,294,967,296 4.29⇥ 109

Permutations of 13 13! 6,227,020,800 6.23⇥ 109

Samples of 10 out of 50
�
50
10

�
10,272,278,170 1.03⇥ 1010

Fraction of attainable sam-
ples with 32-bit state space

232/
�
50
10

�
0.418

64-bit state space 264 18,446,744,073,709,551,616 1.84⇥ 1019

Permutations of 21 21! 51,090,942,171,709,440,000 5.11⇥ 1019

Samples of 10 out of 500
�
500
10

�
2.46⇥ 1020

Fraction of attainable sam-
ples with 64-bit state space

264/
�
500
10

�
0.075

128-bit state space 2128 3.40⇥ 1038

Permutations of 35 35! 1.03⇥ 1040

Samples of 25 out of 500
�
500
25

�
2.67⇥ 1042

Fraction of attainable sam-
ples with 128-bit state space

2128/
�
500
25

�
0.0003

MT state space 232⇥624 9.27 ⇥
106010

Permutations of 2084 2084! 3.73 ⇥
106013

Samples of 1000 out of 390
million

�
3.9⇥108

1000

�
> 106016

Fraction of attainable sam-
ples

232⇥624/
�
3.9⇥108

1000

�
< 1.66 ⇥
10�6
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its possible outputs. (Failure of that uniformity makes matters even worse.) Suppose P0 and
P1 are probability distributions on a common measurable space. If there is some measurable
set S for which P0(S) = ✏ and P1(S) = 0, then kP0 � P1k1 � 2✏. Thus there is a function f
with |f |  1 such that

EP0f � EP1f � 2✏.

In the present context, P0 is the uniform distribution (on samples or permutations) and
P1 is the distribution induced by the PRNG and sampling algorithm. If the PRNG has n
states and we want to generate N > n equally likely outcomes, at least N �n outcomes will
have probability zero instead of 1/N . Some statistics will have bias of (at least) 2 ⇥ N�n

N
.

As seen in Table 3.1, the fraction of attainable samples or permutations is quite small in
problems of a size commonly encountered in practice, making the bias nearly 2.

3.4 Sampling algorithms

There are many ways to use a source of pseudo-randomness to simulate drawing a simple
random sample. A common approach is like shu✏ing a deck of n cards, then dealing the top
k: assign a (pseudo-)random number to each item, sort the items based on that number to
produce a permutation of the population, then take the first k elements of the permuted list
to be the sample [135, 57, 27]. We call this algorithm PIKK: permute indices and keep k.

If the pseudo-random numbers really were IID U [0, 1), every permutation would indeed
be equally likely, and the first k would be a simple random sample. But if the permutations
are not equiprobable, there is no reason to think that the first k elements comprise a random
sample. Furthermore, this algorithm is ine�cient: it requires generating n pseudo-random
numbers and then an O(n log n) sorting operation.

There are better ways to generate a random permutation, such as the “Fisher-Yates shuf-
fle” or “Knuth shu✏e” (Knuth attributes it to Durstenfeld) [55], which involves generating
n independent random integers on various ranges, but no sorting. There is also a version
suitable for streaming, i.e., permuting a list that has an (initially) unknown number of ele-
ments. Generating n pseudo-random numbers places more demand on a PRNG than other
sampling algorithms discussed below, which only require k < n pseudo-random numbers.

One simple method to draw a random sample of size k from a population of size n is to
draw k integers at random without replacement from {1, . . . , n}, then take the items with
those indices to be the sample. [24] provide an elegant recursive algorithm to draw random
samples of size k out of n; it requires the software recursion limit to be at least k. (In Python,
the default maximum recursion depth is 2000, so this algorithm cannot draw samples of size
greater than 2000 unless one increases the recursion limit.)

The sampling algorithms mentioned so far require n to be known. Reservoir algorithms,
such as Waterman’s Algorithm R, do not [55]. Moreover, reservoir algorithms are suitable
for streaming: items are examined sequentially and either enter into the reservoir, or, if not,
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are never revisited. Vitter’s Algorithm Z is even more e�cient than Algorithm R, using
random skips to reduce runtime to be essentially linear in k [142].

Pseudo-random integers

Many sampling algorithms require pseudo-random integers on {1, . . . ,m}. The output of
a PRNG is typically a w-bit integer, so some method is needed to map it to the range
{1, . . . ,m}.

A textbook way to generate an integer on the range {1, . . . ,m} is to first draw a random
X ⇠ U [0, 1) and then define Y ⌘ 1 + bmXc [102, 96]. In practice, PRNG outputs are
not U [0, 1): they are derived by normalizing a value that is (supposed to be) uniformly
distributed on w-bit integers.

Even if X is uniformly distributed on w-bit integers, the distribution of Y will not be
uniform on {1, . . . ,m} unless m is a power of 2. If m > 2w, at least m� 2w values will have
probability 0 instead of probability 1/m. If w = 32, then for m > 232 ⇡ 4.24 ⇥ 109, some
values will have probability 0. Conversely, there exists m < 2w such that the ratio of the
largest to smallest selection probability of {1, . . . ,m} is, to first order, 1 +m2�w+1 [55].

R (Version 3.5.1) [103] uses this multiply-and-floor approach to generate pseudo-random
integers, which eventually are used in the main sampling functions. Duncan Murdoch devised
a simple simulation that shows how large the inhomogeneity of selection probabilities can
be: for m = (2/5) ⇥ 232 = 1, 717, 986, 918, the sample() function generates about 40%
even numbers and about 60% odd numbers 2. We are pleased to report that after we called
attention to this issue in [93], the R development team updated the functions sample(),
walkerProbSampleReplace(), and wilcox.test() in R version 3.6 to use the following,
better approach.3

A more accurate way to generate random integers on {1, . . . ,m} is to use pseudo-random
bits directly. This is not a new idea; [48] describe essentially the same procedure to draw
integers by hand from random decimal digit tables. The integer m � 1 can be represented
with µ = dlog2(m� 1)e bits. To generate a pseudo-random integer uniformly distributed on
{1, . . . ,m}, generate µ pseudo-random bits (for instance, by taking the most significant µ
bits from the PRNG output) and interpret the bits as a binary integer. If the integer is larger
than m � 1, then discard it and draw another µ bits until the µ bits represent an integer
less than or equal to m� 1. When that occurs, return that integer, plus 1. This procedure
potentially requires throwing out (in expectation) almost half the draws if m�1 is just below
a power of 2, but the algorithm’s output will be uniformly distributed (if the input bits are).
This is how the Python package Numpy (Version 1.14) generates pseudo-random integers.4

2
https://stat.ethz.ch/pipermail/r-devel/2018-September/076827.html, last visited 17 October

2018
3See https://github.com/wch/r-source/commit/e4acfd1f240a42b3fc1474a4d97017114e4eb053#

diff-3fa2a86745f6ebacfa969f26aea574c7.
4 However, Python’s built-in random.choice() (Versions 2.7 through 3.6) does something else that’s

biased: it finds the closest integer to mX.

https://stat.ethz.ch/pipermail/r-devel/2018-September/076827.html
https://github.com/wch/r-source/commit/e4acfd1f240a42b3fc1474a4d97017114e4eb053#diff-3fa2a86745f6ebacfa969f26aea574c7
https://github.com/wch/r-source/commit/e4acfd1f240a42b3fc1474a4d97017114e4eb053#diff-3fa2a86745f6ebacfa969f26aea574c7
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3.5 Tests of pseudo-randomness

While defining randomness borders on being a philosophical exercise, pseudo-randomness
has a concrete definition from computational complexity theory. A distribution is said to be
pseudo-random if for any polynomial time algorithm, the probability of correctly identifying
the pseudo-random from the truly random distribution is arbitrarily small.

The notion of pseudo-randomness can weakened for PRNGs used in statistical applica-
tions: sequences from a PRNG should have the same relevant statistical properties as a truly
random source. Values and subsequences from a good PRNG should be equiprobable, and
the values within sequences should be independent and unpredictable.

Many test batteries for PRNGs have been developed over the years. The Diehard tests
of [69] were the first standardized software package for PRNG testing. The software im-
plemented thirteen tests, including the “birthday test,” based on the spacings of random
points on an interval; the “monkey tests,” based on the number of overlapping bit words in
a stream; and the “parking lot test,” based on the number of non-overlapping unit circles
randomly placed on a square. This software was the state of the art until [58] released the
TestU01 suite. TestU01 is the most comprehensive software to date: it includes chi-squared
and other statistical tests, geometric tests, computational complexity tests, and information
theoretic tests, as well as options to test the PRNG behavior at di↵erent parts of its period.
NIST maintains a list of benchmark tests specifically for cryptographically secure PRNGs
[120, 114].

We propose several new statistical tests based on simple random sampling and permuting
sequences. Existing test batteries test the raw outputs of PRNGs. The proposed approach
takes sequences of raw outputs from a PRNG, passes them through a sampling or per-
mutation algorithm, and conducts tests using the resulting output. These algorithms take
(supposedly) uniform PRNS and scale each one in a di↵erent way depending on n, k, and
how many steps the algorithm has taken. Tests based on these outputs exercise the PRNGs
in a new way.

A particular sampling algorithm and choice of k and n divide sequences of pseudoran-
dom numbers into equivalence classes based on which sample they yield. (Several di↵erent
sequences of PRNs yield the same sample because samples are unordered collections.) The
equivalence classes of sequences are not necessarily the same as the categories considered in
other chi-squared tests based on multinomial category probabilities. Using di↵erent algo-
rithms, such as those in Section 3.4, to draw samples may uncover di↵erent inadequacies of
a PRNG.

Uniformity of SRSs using the multinomial distribution

We propose two approaches to test whether each of N =
�
n

k

�
samples are selected with equal

probability: the usual chi-squared test and a test based on the range of the multinomial
values, maxi ni � mini ni, where n1, . . . , nN are the frequencies of samples that have equal
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probability 1/N under the null. [51] and [154] provide the following approximation to the
distribution of the range:

P (max
i

ni �min
i

ni  r) ⇡ P (WN  (r � (2B)�1)(N/B)1/2),

where WN denotes the sample range of N independent standard normal random variables
and B is the number of multinomial draws. It is a known result (see e.g. [44, 113]) that the
distribution function for the range of B IID normal samples is given by

R(w) = B

Z 1

�1
�(x) [�(x+ w)� �(x)]B�1 dx,

where � and � are the standard normal density and cumulative distribution function, re-
spectively.

Tests of uniformity using Wald’s SPRT

We use Wald’s sequential probability ratio test for Bernoulli random samples (see Chap-
ter 1.1) as the basis for two tests for PRNG uniformity. We have applied the SPRT to test
whether two events, derangements of a list and generating an unusually frequent SRS, occur
more or less often than they would if we used a true source of randomness.

Uniformity of permutations using derangements

A derangement is a permutation that leaves no item in the list fixed. For instance, (2, 3, 4, 1)
is a derangement of the list (1, 2, 3, 4), but (1, 3, 4, 2) is not. If all permutations occur with
equal frequency, then the probability that a permutation is a derangement is asymptotically
p0 = e�1 ⇡ 0.3678794 as the length of the list of numbers increases; see Theorem 2 in
Appendix A for a proof. We use the SPRT to test whether derangements of large lists occur
with this frequency. We specify two possible alternatives in order to whether derangements
occur more or less frequency than expected: p1 = 1.01p0 and p1 = 0.99p0.

Uniformity of SRSs using the most frequent categories

[147] developed a unique SPRT for testing the null hypothesis that a multinomial random
variable has equal category probabilities 1/N . We use this test for SRSs, treating each SRS
as a category. Fix some integer s < N and let p0 = s/N . Let p denote the probability
that the sample is from one of the s most frequent categories. After the Bth draw from
the distribution, we determine which s categories occurred most frequently among the first
B � 1 draws. We say that the event occurs if the Bth draw is among these categories. The
problem is thus reduced to a test of a Bernoulli random variable as described above.

The test seems peculiar for two reasons: First, the power of the test depends on the
choice of the parameter s. Second, events seem dependent because whether the Bth event
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occurs depends on which categories were the most frequent among draws 1 through B � 1.
However, it is a valid test because under the null, p0 is fixed and does not depend on which
samples actually occur.

Tests of serial correlation

We measure serial correlation by the number of fixed points — values that remain in the same
place — between a list and a permutation of it. The distribution of the number of fixed
points for random permutations is a sum of dependent, identically distributed Bernoulli
random variables. The probability of observing k fixed points is related to the number
of derangements of the list. This distribution converges to the Poisson distribution with
parameter 1 when the list length is su�ciently large. We use the chi-squared statistic to test
for goodness of fit between the empirical distribution of fixed points from permuting a list
with a PRNG and the Poisson distribution. See Theorem 3 in Appendix A for a proof of
the approximation.

3.6 Discussion

Any PRNG with a finite state space cannot generate all possible samples from or permuta-
tions of su�ciently large populations. That can matter. A PRNG with a 32-bit state space
cannot generate all permutations of 13 items. MT cannot generate all permutations of 2084
items.

Table 3.2 lists the PRNGs and sampling algorithms used in common statistical packages.
Most use MT as their default PRNG; is MT adequate for Statistics? Section 3.3 shows that
for some statistics, the L1 distance between the theoretical value and the attainable value
using a given PRNG is big for even modest sampling and permutation problems.

We have been searching for biases that are large enough to matter inO(105) replications or
fewer, and are not idiosyncratic to a few bad seeds. We have used each of the tests described
in Section 3.5; so far, we have not found a statistic with consistent bias large enough to be
detected in O(105) replications. According to these tests, MT and the SHA256 PRNG are
statistically indistinguishable from random. MT must produce bias in some statistics, but
which?

We attempted to use a true source of randomness, such as the NIST randomness beacon
and the ANU quantum random number server, as an empirical distribution in place of
theoretical distributions. However, the rate at which they produce random numbers is too
slow for our tests. For instance, the ANU quantum random number server only returns
1000 random numbers at a time, and the access is limited by the streaming speed of the
internet [2]. Similarly, the NIST randomness beacon returns 512 bits for every call to its
server [84]. Other providers sell large streams of random numbers. Some of the tests we ran
on MT and the SHA-256 PRNG required at least 109 random numbers; using a true source
of randomness was not practical.
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Table 3.2: PRNGs and sampling algorithms used in common statistical and mathematical
software packages. The ‘floor’ algorithm is the flawed multiply-and-floor method of generat-
ing pseudo-random integers. The ‘mask’ algorithm is better.

Package/Language Default PRNG Other SRS Algorithm

SAS 9.2 MT 32-bit LCG Floyd’s ordered hash or Fan’s method [30]
SPSS 20.0 32-bit LCG MT1997ar floor + random indices
SPSS  12.0 32-bit LCG
STATA 13 KISS 32 PIKK
STATA 14 MT PIKK
R  3.5 MT floor + random indices
R � 3.6 MT mask + random indices
Python MT mask + random indices
MATLAB MT floor + PIKK

We recommend the following practices and considerations for using PRNGs in Statistics:

• Consider the size of the problem: are your PRNG and sampling algorithm adequate?

• Use a source of real randomness to set the seed with a substantial amount of entropy,
e.g., 20 rolls of 10-sided dice.

• Record the seed so your analysis is reproducible.

• Avoid standard linear congruential generators, the Wichmann-Hill generator, and
PRNGs with small state spaces.

• Use a cryptographically secure PRNG unless you know that MT is adequate for your
problem.

• Use a sampling algorithm that does not overtax the PRNG. Avoid permuting the entire
population to draw a random sample: do not use PIKK.

• Beware discretization issues in the sampling algorithm; many methods assume the
PRNG produces U [0, 1] or U [0, 1) random numbers, rather than (an approximation
to) numbers that are uniform on w-bit binary integers.

We also recommend that R and Python upgrade their algorithms to use best practices,
and use cryptographically secure PRNGs by default, with an option of using MT instead in
case the di↵erence in speed matters. We have developed a CS-PRNG prototype as a Python
package, discussed further in Chapter 4.
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Chapter 4

Software for randomization

4.1 Introduction

In his seminal paper “The Future of Data Analysis,” John Tukey argues that researchers
analyzing their data ought to have access to a library of techniques [140].

There is a corresponding danger for data analysis, particularly in its statistical
aspects. This is the view that all statisticians should treat a given set of data
in the same way, just as all British admirals, in the days of sail, maneuvered
in accord with the same principles. The admirals could not communicate with
one another, and a single basic doctrine was essential to coordinated and e↵ective
action. Today, statisticians can communicate with one another, and have more to
gain by using special knowledge (subject-matter or methodological) and flexibility
of attack than they have to lose by not all behaving alike.

Conducting data analysis in popular open source programs enables researchers to choose
from a wide variety of contributed statistical methods, rather than having to rely on a limited
set of o↵-the-shelf methods. Researchers can build upon each others’ work without having to
reinvent the wheel themselves. Though written over 50 years ago, Tukey’s statement about
communication speaks to the current landscape of statistical software. There is a push
towards contributing code and using open source statistical packages like R and Python.

The S programming language, developed at Bell Laboratories in 1976, was the first
language designed for interactive data analysis [6]. In the 1990s, Robert Gentleman and
Ross Ihaka wrote R, an open source o↵shoot of S [50], which has been widely adopted
by statisticians and domain researchersĊurrently, there are over 13,000 user-contributed R
packages on the CRAN package repository.1

Python is a high-level, general purpose, open source programming language that has
been gaining popularity for data analysis. Like R, Python has a strong culture of users

1
https://cran.r-project.org last visited January 9, 2019.

https://cran.r-project.org
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contributing packages. Packages like NumPy2 and SciPy3 provide core functionality for
mathematical and statistical computing, including an n-dimensional array data structure,
linear algebra operations, basic statistical distributions, random samplers, and optimization
tools.

Python is not primarily intended for statistical analysis, so its contributed statistical
packages are not as extensive as R’s. Several recent third party Python packages, including
Pandas4, Statsmodels5, and Scikit-learn6, have converted some data scientists from R to
Python. However, the capabilities for hypothesis testing are still rather limited: the main
functions are parametric tests in SciPy and linear regression models in Statsmodels. As of
2014, when we began the permute project, there were no Python packages for permutation
testing.

The default PRNG in NumPy is the Mersenne Twister. While Mersenne Twister is
widely regarded as being su�cient for statistical applications, Chapter 3 explores ways in
which it may be insu�cient. The secrets module, included with standard Python distri-
butions, produces cryptographically secure random numbers using the operating system’s
random number generator, but there’s no guarantees about the quality of randomness or
reproducibility across platforms. We developed cryptorandom, a CS-PRNG with repro-
ducible outputs. The package also includes functions to generate pseudo-random samples
and permutations using a variety of algorithms.

This chapter discusses the development of the permute and cryptorandom projects in
detail, along with lessons learned about software development. Section 4.2 describes the
packages’ current capabilities. Section 4.3 describes the open source package development
model, which is not taught in most programming courses. The “best practices” we adopted
for these two software packages are powerful tools that enable e�cient communication, col-
laboration, replication, exploration of ideas, and error checking. Section 4.4 describes issues
we faced, both with the software itself and with managing open source projects more gener-
ally.

Computation and data analysis are central to modern research, not just in statistics but
across fields. Section 4.5 concludes with how software development best practices can be
applied to all computational research to boost productivity and make results more repro-
ducible.

2
http://numpy.org

3
http://scipy.org

4
https://pandas.pydata.org

5
https://www.statsmodels.org/stable/index.html

6
https://scikit-learn.org/

http://numpy.org
http://scipy.org
https://pandas.pydata.org
https://www.statsmodels.org/stable/index.html
https://scikit-learn.org/
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4.2 Software projects

permute

The permute project grew out of “Permutation Tests for Complex Data: Theory, Applica-
tions and Software,” a textbook about permutation testing with numerous code and data
examples [98]. The code is written in R and included in the book and online. We aimed to
rewrite the examples in Python, creating modular functions that could be used with other
datasets.

permute contains functions for the “building blocks” of permutation tests.7 At the core,
all permutation tests have two components: a group invariance under the null hypothesis and
a test statistic. The group invariance is defined by the structure of the data and the actual
(or implied) randomized experiment. The test statistic is a quantity that is computed from
a sample, used to discriminate between the null hypothesis and an alternative hypothesis.
Any statistic may be used, but some may give better discriminative power.

Permutation testing algorithm

1. Calculate the test statistic on the observed data.

2. Generate the permutation distribution. Repeat a large number B, e.g.
10,000, times:

• Permute the data according to the group invariance under the null hypothesis.

• Calculate the test statistic on the permuted data.

3. Calculate the p-value.

P =
1 +#{ permuted stats � observed stat}

1 + B
.

This is both a biased Monte Carlo approximation to a conditional p-value given
the data and a conservative conditional p-value for a randomized test.

Figure 4.1: Permutation testing algorithm used for all functions in permute.

Most functions in permute follow the algorithm illustrated in Figure 4.1. The name
and inputs of the function are determined by the null hypothesis, and an argument to the
function allows the user to specify a test statistic.

There are several ways to compute and interpret a p-value for a permutation test. The
first way is to compare the observed value of the test statistic to the empirical distribution

7https://statlab.github.com/permute
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of the test statistics for the permuted data, and to report the fraction that are more extreme
than the observed value. This is an unbiased Monte Carlo approximation to the p-value,
conditional on the orbit of the data. This is the approach used for the reported p-values
in Chapter 2. The second way is to take this fraction, but add 1 to both the numerator
and the denominator, as in Figure 4.1. This p-value has two interpretations: it is a biased
Monte Carlo approximation to the p-value, conditional on the orbit of the data, and an exact
p-value for a randomized test, conditional on the random elements of the orbit.8 permute
defaults to this second approach, with an option to use the unbiased approximate p-value.

Core functionality

The scope of the permute project is large and we have only begun to scratch the surface of
implementing permutation tests. There are functions for common tests, including a one sam-
ple test for symmetry about a point, a test for correlation between two lists of measurements,
and the canonical two sample test.

Some experimental designs group subjects based on their characteristics, then randomly
assign treatment within groups. In these scenarios, stratified permutations are appropriate:
permutations are done independently in each group, then statistics are aggregated across
groups. permute has a module specifically for stratified tests, including a two sample test
for designs where two treatments are randomly assigned to subjects in groups, independently
across the groups.

Nonparametric combination of tests

Researchers often test many hypotheses about the same data, whether about multiple vari-
ables or multiple outcomes. For instance, pharmaceutical developers care about whether a
drug a↵ects a variety of disease symptoms and run many statistical tests for these associ-
ations using measurements from a single group of patients. If tests are dependent, then a
naive multiple testing correction like the Bonferroni adjustment can be overly conservative,
resulting in tests with low power. Adjusted p-values may be informative for each individual
hypothesis, but if the substantive research question is about a global hypothesis (e.g. no
e↵ect of treatment on any outcome, whatsoever) then it is desirable to consider p-values
jointly.

It can be useful to test a composite null hypothesis in such situations. A composite
null is a multivariate hypothesis that can be written as an intersection of univariate null
hypotheses. When the variables under consideration are independent, Fisher’s combination
method can be used to obtain a global p-value: under the composite null hypothesis, if the
p-values p1, . . . , pK for each individual hypothesis are continuous, then �2

P
K

k=1 log pk has
a chi-squared distribution with 2K degrees of freedom. When the p-values are dependent,
this approach is not valid.

8See https://github.com/pbstark/S157F17/blob/master/combining-tests.ipynb (last visited Jan-
uary 23, 2019).

https://github.com/pbstark/S157F17/blob/master/combining-tests.ipynb
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[98] proposed the non-parametric combination (NPC) framework for scenarios when the
variables in a composite hypothesis test are dependent. The individual tests can be combined
in an e�cient way, so the computation time does not grow linearly with the number of
hypotheses. This framework opens the door to permutation testing in domains that have
traditionally relied on parametric hypothesis tests, such as psychology and social sciences
[19], and in domains where hypothesis testing has been limited due to the complexity of
data, such as shape analysis [17].

The NPC module in permute implements the algorithm in Figure 4.2. The idea is to
permute dependent variables in lock-step, so any dependencies among them are preserved
when approximating their multivariate permutation distribution under the intersection null
hypothesis. A combining function such as Fisher’s is used to combine variable-level p-values
into a single global value.

Datasets

Clear use cases and examples are just as important as the code itself. permute contains
17 example datasets that users can load and explore. The data include examples from [98],
therapeutic interventions with autistic children assessed by di↵erent raters over time [76], the
student evaluations of teaching from the U.S. dataset in Chapter 2 [66], and GERD symptom
scores from a clinical trial at multiple locations [92]. The goal is to provide example code
along with every dataset.

cryptorandom

The cryptorandom9 project grew out of concerns about the default PRNG in Python, as
discussed in Chapter 3. This package was intended to provide a plug-in replacement for
NumPy’s Mersenne Twister, so all of the random number generation methods that are built
on top of NumPy could use a CS-PRNG. However, as we discuss in Section 4.4, NumPy’s
architecture prevents users from doing this.

The package is built on top of the hashlib10 library, a module for secure hash algorithms
that comes built-in with standard Python distributions. We used the SHA256 hash function,
which takes input messages of arbitrary lengths and outputs a 256-bit integer. The package
uses the algorithm from Figure 3.1 to generate pseudo-random sequences of 256 bits.

The package uses the method described in Section 3.4 to generate pseudo-random integers
on {1, . . . , n} using random bits directly (as opposed to the multiply-and-floor method).
cryptorandom uses these 256 bits e�ciently by using only as many as it needs from a single
SHA256 output, then storing the remaining bits and using them for subsequent calls to the
random integer generator. This makes the code more e�cient by reducing the number of
calls to SHA256.

9https://statlab.github.com/cryptorandom
10https://docs.python.org/3.7/library/hashlib.html
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NPC algorithm

1. Calculate the vector of observed test statistics (T1(X1), . . . , TK(XK)).

2. Generate the K-variate permutation distribution. For each b in 1, 2, . . . , B,
for a large number B, e.g. 10,000:

• Apply the same permutation ⇡b, coming from the group invariance under the
null hypothesis, to all variables X1, . . . , XK .

• Calculate the test statistics on the permuted data
(T1(⇡b(X1)), . . . , TK(⇡b(XK))).

3. Convert test statistics to p-values. For each k = 1, . . . , K and b = 1, . . . , B,
let

Pbk ⌘
1 + #{Tk(⇡·(Xk)) � Tk(⇡b(Xk))}

1 + B
.

Do the same for the observed statistics to get P1,obs, . . . , PK,obs.

4. Combine tests from each permutation. Using a combining function �, cal-
culate

Tb ⌘ �(P1,b, . . . , PK,b)

and
Tobs ⌘ �(P1,obs, . . . , PK,obs)

5. Calculate the global p-value as

P =
1 +#{b : Tb � Tobs}

1 + B
.

Figure 4.2: NPC algorithm to test H0 : \Kk=1H0k implemented in permute.npc.

The cryptorandom PRNG includes a jump ahead feature. This allows the user to move
ahead a specified number of steps in the PRNG’s state space. This is a useful capability to
e�ciently reproduce randomization results and to generate independent streams of pseudo-
random numbers. Independent streams are crucial for using a PRNG for simulations running
in parallel: if streams of pseudo-random numbers overlap, then simulation results will not
be independent. A new, independent stream can be created by jumping ahead from the
starting point of the current stream past its end state. In cryptorandom, jumping ahead n
states amounts to appending n zero bytes to the state.
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In addition to the CS-PRNG, cryptorandom contains a sampling module with a variety
of algorithms for mapping pseudo-random numbers to samples and permutations. The per-
mutation algorithms include the Fisher-Yates-Knuth-Durstenfeld (FYKD) shu✏e [55], the
random sort method (generate random floats and sort the list by their order), and sam-
pling indices without replacement. The sampling algorithms include the PIKK algorithm
(see Section 3.4), using FYKD and taking the first k, recursive sampling [24], Waterman’s
Algorithm R [55], Vitter’s Algorithm Z [142], sampling k indices without replacement, ex-
ponential sampling with weights, and elimination sampling with weights. Each function uses
the SHA256 PRNG by default, but allows the user to input another PRNG with appropriate
random float and random integer methods.

4.3 Development practices

We adopted common “best practices” for open source software projects. These concepts are
used widely in the Python community but aren’t taught broadly in computing classes. Only
recently have workshops like Software Carpentry [150] and some university courses, such
as Berkeley’s Statistics 159/259: Reproducible and Collaborative Statistical Data Science11

begun to teach these tools and workflows. While these coding practices have a steep learning
curve, they make work more e�cient in the long run by facilitating collaboration on large
scale software projects and streamlining individual workflows.

Version control

In a collaborative project, it is imperative to preserve versions of the project at di↵erent
time points. Doing so allows everyone to monitor progress and view additions, to track who
has contributed and how much, and to recover old versions in case it becomes necessary to
revert back. Saving multiple versions of files with dates or version numbers in the file name,
using a hosting system such as Dropbox, or using program-specific features such as “track
changes” in Microsoft Word solve some, but not all, of these problems.

A version control system tracks project files in a repository and allows the user to track
changes in commits to the system history [77]. There are several common version control
systems in use, including SVN, Mercurial, and Git. We prefer Git, as its compatibility with
the GitHub website adds additional capabilities. By hosting a repository on GitHub, one
can back up all work in the cloud and share all files with collaborators.

A full discussion of GitHub’s capabilities is beyond the scope of this chapter, but we
will describe our preferred development workflow with GitHub. Figure 4.3 illustrates this
workflow, which we call the “wheel” model of collaboration because information travels
in one direction around the diagram. The main repository, which is traditionally named
upstream, is isolated and changes are never made directly in it. Instead, the first step is for
a contributor to make two copies of the repository. The first copy is called a clone, which is a

11See, for instance, http://berkeley-stat159.github.io for lessons.

http://berkeley-stat159.github.io
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copy of the main repository on a local machine where one can independently start a history
of commits. The second copy is called a fork, which is hosted on GitHub and is traditionally
named origin.

When someone has created a new feature they want to contribute, they push (the term
meaning to send the new history of commits) changes to their origin fork. To incorporate
changes on their GitHub fork into the main repository, the user makes a pull request, asking
the maintainers of the main repository to incorporate their new feature. Contributors can
push to their own fork, but not to the main repository; the package maintainers serve as
gatekeepers to the main repository and decide which pull requests to accept. Finally, once
new features are incorporated in the main repository, users can pull these changes into the
clone on their local machines.

Figure 4.3: The “wheel” model of collaboration using GitHub.

This workflow sets up checks and balances so the codebase remains pristine. The ability
to clone a GitHub repository enables anyone with an idea to contribute to a package, while
the pull request step allows package maintainers to review code before it enters the o�cial
codebase. Automated testing and continuous integration (discussed below) facilitate the
review process. This peer review process is public on GitHub’s issue tracking system, with
a forum in which anyone can comment. Transparent communication is critical for smooth
open source development.

Documentation

Documentation for software can take many forms, including websites with narratives, gal-
leries of example use cases, and API documentation. These forms of documentation serve
di↵erent purposes: teaching new users how to use the package, publicizing a project, and
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improving its discoverability [36]. We focused on creating narrative documentation and API
documentation, and delayed examples until the codebase is more comprehensive.

Using GitHub makes it easy to include narrative documentation with any project. The
documentation with lowest barrier to entry is a README file in a repository. README
files are written in Markdown, a markup language designed for easy readability and plain
text formatting. When a GitHub repository contains a README file, the Markdown gets
rendered at the bottom of the repository webpage. It is common for packages to include a
short description, installation instructions, and links to more information in the README.

Many open source Python projects, including permute and cryptorandom, use Sphinx12

to generate documentation. Sphinx is designed to use reStructured Text (reST), another
markup language with plain text formatting, with additional features to create table of
contents organization and display code, images, and mathematics. With Sphinx, reST can be
compiled into HTML for a website. GitHub also supports web documentation with GitHub
Pages13, which provides users a free website with each repository. The website contents
are stored in the repository; updating the website is as simple as making a pull request
(Figure 4.3). Integrating Sphinx and GitHub Pages makes it simple to create public-facing
narrative documentation for a project.

Narrative documentation is useful for providing an overview of what the software does and
how to download it, but users also need granular API documentation about its functionality.
It is common practice to include comments within source code, usually at the very beginning
of a function or object definition, succinctly describing what the code block does. In Python,
these docstrings appear on screen when a user queries an object’s help page. Moreover, when
integrated with Sphinx, docstrings can be automatically rendered into HTML webpages.
Our packages use the NumPy docstring standard,14 which provides a standard syntax for
describing an object’s purpose, the expected inputs, and its outputs.

Finally, it is worth mentioning that good code is readable. Readability is not itself docu-
mentation, but is critical for others to be able to interpret the code, for more e�cient debug-
ging, and for collaborators to build upon the code in future iterations. Writing docstrings
is only one component of writing readable code; other practices include writing modular
functions that do one specific task, giving functions and variables descriptive names, and
favoring several simple lines of code over long, complex lines of code. The PEP 8 style guide
for Python code15 gives a comprehensive list of coding conventions that improve readability,
from code layout to naming conventions. Our projects follow PEP 8.

Testing

People make mistakes, so it is imperative to test code. Tests do not guarantee that the code
works, but a battery of passing tests can give confidence that it does.

12
http://sphinx-doc.org

13
https://pages.github.com

14
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

15
https://www.python.org/dev/peps/pep-0008/

http://sphinx-doc.org
https://pages.github.com
https://www.python.org/dev/peps/pep-0008/
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Tests can appear both within and outside the source code. Assertions are statements
that enforce the programmer’s expectations of how the program should behave, for instance,
assertions about data types a program expects. If the inputs have the wrong type, an
assertion will give an error and halt the program. Unit tests are written separately from
the source code and check that the code returns the correct results. They should be run on
simple examples where the desired output is known ahead of time. Regression tests check
that the behavior of the code remains stable, and can help ensure that code continues to
work as expected after changes are made [151].

Unit testing can be di�cult for applications involving pseudo-random numbers. Without
knowing the seed, we may not know exactly what the code will output. However, we can
check distributional properties that are expected from theory, like uniformity of p-values over
many calls to the code. Tests that show the average behavior is as expected give evidence
(but not certainty) that the code for an individual call is correct.

Automation

Compiling documentation and running unit tests can be tedious, but they are critical for a
project’s health. They often involve many steps that must be done in sequence, making it
less likely that an individual will remember how to execute them right. Automating these
tasks ensures that the computer runs every step in the right order every time the task needs
to be done.

The make system is one tool to simplify the process. A make file runs a series of com-
mands to turn a source (a dataset, script, or some other set of files) into a target (a desired
output). The syntax expresses dependencies amongst files, and when one source is changed,
running the command make will update all targets that depend on that file. permute and
cryptorandom both use make files to run unit tests, to build the documentation, and to
update the package website.

Once this system is set up to run all of a package’s tests, the project can deploy a con-
tinuous integration system to automate code testing before contributions enter the main
codebase. We are most familiar with Travis CI16, a continuous integration system commonly
used with GitHub repositories. These systems take the new version of the codebase, run the
entire test suite, and report the results. Continuous integration helps package maintainers
review new contributions: Travis CI will raise a flag whenever code fails unit tests. Contin-
uous integration systems can also report code coverage, the fraction of lines in the code that
are run in a test; larger code coverage gives greater confidence that the code does what it is
supposed to do.

16
https://travis-ci.org

https://travis-ci.org
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4.4 Challenges

We have encountered a number of road bumps working on permute and cryptorandom. Some
of these have been issues with Python itself, while others relate to open source projects more
generally.

The cryptorandom project was intended to be a plug-in replacement for NumPy’s pseudo-
random number generator, so users could import the CS-PRNG and otherwise follow an
identical workflow. Unfortunately, NumPy’s architecture will not allow this. NumPy tracks
the internal state of the PRNG separately from calls to the PRNG, which are done using
functions specific to Mersenne Twister. SciPy o↵ers an extensive library of statistical distri-
butions, but all of its random number generation abilities rely on NumPy and do not allow
users to specify another PRNG. Therefore, we would have to implement a library of common
statistical distributions within cryptorandom and users would have to alter their workflows
to use the CS-PRNG to generate anything besides random integers and floats.

While the SHA256 hash function in hashlib is written in C and is itself fast, using it
from Python in a CS-PRNG is slow. We spent many hours and sought advice from experts
on speeding up the code. Type conversions in Python are the bottleneck: the seed and
counter must be converted from string to byte string before passing them into the SHA256,
then the output must be converted from a Python byte string to a long integer. Moreover,
this process cannot be vectorized; the SHA256 hash function can only take one input at a
time.

Generating a single random sample with cryptorandom takes less than a millisecond,
but this is still too slow for running simulations. Even after optimizing the code, our PRNG
takes nearly 200 times as long as NumPy’s Mersenne Twister to generate a large number
of random sample. A simulation that would take one hour using NumPy’s default PRNG
would take more than a week using cryptorandom. The PRNG can be used in situations
where only one random sample is needed, for instance in Chapters 6 and 8, where a sample
of ballots to audit only needs to be drawn once. We are working to implement the entire
process in C, so the type conversions and looping will run faster.

The time I felt I could spend working on these Python packages was constrained by
the competing demands of graduate school. A survey of graduate students and postdocs
engaged in computational research showed that participants felt that developing computa-
tional resources was valued far less than publishing, winning awards, and writing grants for
tenure—and by extension, not valued in their search for academic jobs [37]. However, many
researchers build software tools because they are important for their work. Using “best
practices” while creating software requires more time than using other practices, and may
take time away from activities that are perceived as more valuable. For instance, writing
the functional parts of software tend to be more rewarding, while activities like writing doc-
umentation fall by the wayside when time is limited, as there are few incentives and rewards
to spending time on it [36].

Distributing the work to teams, such as undergraduate volunteers, has had varying de-
grees of success. We have written thorough contribution instructions in the GitHub repos-
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itory and on the project website to lower the barrier to contribution, but there is a steep
learning curve for the wheel workflow, rigorous documentation, and unit tests. While many
undergraduate volunteers have had a strong background in programming, many have been
confused by the statistics: their code follows best practices but is incorrect. Many students
moved on before finishing their contributions; the lack of tangible rewards or consequences
makes it easy for volunteers to quit.

4.5 Conclusion

Scientists must choose their statistics carefully and test their software thoroughly. Re-
searchers continue to use inappropriate statistical tests because there are few non-technical
resources that teach more appropriate methods; parametric tests are commonplace and
widely used in the literature; and existing software for permutation tests is not su�ciently
flexible or accessible to most users. permute and cryptorandom attempt to address these
issues by providing a library of flexible statistical tests and sampling methods with thorough
examples and documentation.

Best practices that the open source software community has developed over the years,
like collaboration using distributed version control systems, documentation, and unit testing,
are indispensable tools that could help academics make their research more reproducible and
reduce errors [77]. Researchers have been moving away from using GUI tools to using scripts
to program all of their tasks, from reading the data to producing a result. Using open source
software practices in academic research benefits science by making it possible to reproduce
the analyses of a paper and delve into further scientific inquiry. The “show me, don’t tell
me” ethos makes scientists more trustworthy to the public [126].

Moreover, adopting these practices would make it easier for statisticians to contribute
packages with new statistical methods. Users in the R community have contributed thou-
sands of statistical packages, but many of these packages are highly specialized or lack clear
documentation on how to use them. Open source best practices make packages more valu-
able by requiring thorough documentation on inputs, outputs, and functionality; allowing
users to contribute new features and comment on problematic ones; and ensuring that code
works as expected in transparent, reproducible tests.
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Part II

Election Integrity: Security and
Risk-Limiting Audits
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Chapter 5

Election integrity and electronic
voting machines in 2018 Georgia

5.1 Introduction

The state of Georgia played a key role in the civil rights movement of the twentieth century
and recently, their election integrity issues have come back into relief. The state has a
history of problems: voting machines that are vulnerable to undetectable security breaches,
systematic voter suppression, and serious security flaws with their data systems.

The 2018 midterm election in Georgia was particularly contentious and put Georgia in
the national spotlight. Civil rights groups alleged that former Secretary of State Kemp
attempted to suppress voters, as many counties closed polling places and the Secretary of
State’s o�ce deleted or held up thousands of voter registrations in the months leading up to
the election [42, 78, 83]. A federal lawsuit against the Secretary of State’s o�ce, calling for
the state to quickly replace electronic voting with paper ballots in polling places, reminded
the public of the security issues of the statewide direct recording electronic (DRE) systems
[25]. Ultimately, the in-person voting in the 2018 election was done using DRE machines.

The 2018 election produced anomalous results that many security and election experts
have blamed on DREs. The accuracy of the reported vote counts cannot be checked via
an audit of paper records, for instance by a risk-limiting audit, because the DREs used in
Georgia do not produce a voter-verifiable paper record.

This chapter begins with an overview of DRE voting systems and their known security
flaws. While the focus is DREs and their use in Georgia, I provide a fuller picture of the
election landscape by starting with a short history of recent election integrity issues in the
state, including allegations of voter suppression and corruption. I describe what took place
in the months leading up to Georgia’s 2018 election and provide statistical evidence that
random chance alone is unlikely to explain the anomalous election results.
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2001

2002

HAVA passes, setting
voting system stan-
dards and providing
states funds to upgrade

2004

Diebold CEO promises to “de-
liver votes” to Bush

2002

GA signs exclusive con-
tract with Diebold to
use their DREs

2006

State election direc-
tor leaves to work for
Diebold

2007

CA Top-to-Bottom Review
and Ohio’s EVEREST Report
denounce DREs

2010

Kemp’s first “exact match” law
passes

2013

Shelby County v. Holder re-
moves sections of the Voting
Rights Act

2017

The first DEFCON Voting Ma-
chine Hacking Village reveals
more DRE vulnerabilities

2016

Logan Lamb discovers security
vulnerabilities at CES

2018

Curling v. Kemp ruling allows
paper ballots for the next elec-
tion

2017

Extent of CES security breach
becomes public; Curling v.
Kemp filed; CES wipes servers

Figure 5.1: Timeline of events pertaining to the use of DREs in Georgia since HAVA

5.2 Background

DRE Voting Systems

Congress passed the Help America Vote Act (HAVA) in 2002 after Florida experienced sub-
stantial issues with its voting systems and voter access in the 2000 presidential election.
HAVA set mandatory minimum standards for states to administer elections, including cre-
ating the provisional voting system, requiring statewide voter registration databases, and
providing funds for states to upgrade their voting equipment to meet accessibility standards.
The standards for better voting equipment were loose: states were expected to replace
punchcard and lever voting systems and to provide at least one accessible voting machine
per polling place [53].

The two main options states considered when upgrading their voting equipment were
optical scanners and DREs. DREs were an attractive option because the computer-based
system eliminates the need to print and store paper ballots. They allow states to o↵er
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ballots in multiple languages and satisfy the accessibility requirement with aids for disabled
voters, such as audio tools. In addition, DREs tabulate election results faster than a central
count optical scanner. While HAVA only required that each polling place have one accessible
voting machine, some states opted to use DREs exclusively [157]. In 2002, the voting machine
manufacturers o↵ering DREs were Diebold Election Systems, Election Systems and Software
(ES&S), Hart InterCivic, and Sequoia Voting Systems. For the majority of this chapter, we
will focus on Diebold; the company has been the lone election system provider in Georgia
and has been the star of many scandals that highlight the issues with DREs and electronic
voting [53].

Almost immediately, DREs began causing problems in major elections. In the 2002
Florida primaries, some machines in Miami-Dade county failed to turn on, creating long lines
that prevented some voters from casting their votes. In New Mexico, faulty programming
caused machines to drop a quarter of votes. In Virginia, the software on 10 machines caused
one vote to be subtracted for every 100 votes cast for a particular candidate [152]. Faulty
programming of ballot layouts can cause votes intended for one candidate to be recorded
as votes for another candidate [85]. Numerous examples of DRE failures have continued to
accumulate [26].

In 2007, two major statewide studies in California and Ohio gave concrete and conclusive
evidence that DREs have incorrigible security flaws. The California Secretary of State’s
Top-to-Bottom Review of the state’s voting systems found substantial physical and techno-
logical security flaws with Premier Election Systems’ (formerly Diebold) DREs, including
software vulnerabilities that would allow someone to install malicious software that records
votes incorrectly or miscounts them; susceptibility to software viruses that propagate from
voting machine to voting machine; unprotected information linked to each vote that could
compromise the secrecy of the ballot; access to the voting system server software, allowing
an attacker to corrupt the election management system database; “root access” to the vot-
ing system, allowing manipulation of every setting of devices on the network; and numerous
physical security weaknesses that would allow an attacker to disable parts of the device using
standard o�ce tools [14]. The Ohio Secretary of State’s EVEREST report found that the
software for Premier DREs was “unstable” and lacked “sound software and security engi-
neering practices” [73]. California decertified Premier, Hart InterCivic, and Sequoia DREs
and the EVEREST study prompted Ohio to move to optical scanners.

More recently, the annual DEFCON hacker conference started a “Voting Village” to study
and hack electronic voting machines. In 2017, the Voting Village acquired over 25 pieces of
election equipment used in the United States and made them available to participants to
hack. While the EVEREST study plan restricted the types of hacks that could be deployed
against the machines, there were no such restrictions at DEFCON. Within minutes, hackers
with limited knowledge of voting systems were able to penetrate several DREs, including the
Premier AccuVote-TSx used in Georgia. They uncovered serious hardware vulnerabilities,
including a chip whose removal would disable the entire machine [9]. The Voting Village has
become a regular part of DEFCON as voting system vulnerabilities persist: the organizers
reported in 2018, “while, on average, it takes about six minutes to vote, machines in at least
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15 states can be hacked with a pen in two minutes” [10].
Security experts recommend that jurisdictions still using DREs conduct forensic audits

of voting machines, both before and after the election. An examination of the software and
machines done by an independent, neutral party could detect tampering, bugs, or hacking,
and would help discourage malicious attacks [26]. But historically, it has been illegal to
examine the voting machine software because it is considered “proprietary information”
[97]. Without a forensic audit or a reliable paper trail, there is no way to check whether the
voting machine accurately captured voters’ intent.

Voter-verifiable paper audit trails (VVPATs) were introduced as a solution to improve
DRE auditability. VVPATs involve adding a printer to DREs and displaying a paper record
behind glass to the voter, who can then verify that their vote was cast as intended. The
paper record can be used in a post-election audit, and gives assurance in case the electronic
mode of casting votes fails. The NIST Auditability Working Group found that there is no
satisfactory way to audit DREs without a trustworthy paper record such as a VVPAT [104].

However, VVPATs are not a perfect solution. If the printer fails or malfunctions, the
paper record is compromised. They are not accessible to blind voters. Most importantly,
the method of printing does not lend itself to e�cient audits. VVPATs are typically printed
on continuous, uncut rolls of paper, which then need to be unrolled and segmented to count
votes. Moreover, some of these rolls are thermal paper, which degrade quickly when exposed
to heat, light, or human touch [104].

Verifiable does not guarantee verified: voters may not check or correctly verify a VVPAT.
Research on the usability of electronic review screens, an electronic copy of the ballot dis-
played for the voter to verify their choices before casting their vote, has shown that voters
don’t use the review screen e↵ectively. Study participants often walked away from the DRE
before the review screen was displayed. Errors in votes occurred at the same rate when the
review screen was shown and when it wasn’t shown. In experiments where contests were
added to or removed from ballots, only 32% of study participants noticed the change on
the review screen. In other experiments where the wrong candidate was marked, only 37%
of study participants noticed the error on the review screen, though 95% of participants
reported that they had checked their ballot either somewhat or very carefully [29]. These
studies suggest that VVPATs may not reflect voter intent, even when voters claim to review
them.

Many states have been phasing out DREs. In 2006, nearly 40% of voters used DREs to
cast their vote. In 2016, 28 states were using DREs in some capacity, but most jurisdictions
used paper, optical scan, or an electronic method with a paper backup [152]. Only 5 states
still use paperless DREs exclusively: Delaware, Georgia, Louisiana, New Jersey, and South
Carolina.

Voter suppression

Georgia was one of the states with a history of voter suppression that faced heightened
scrutiny under the Voting Rights Act of 1965. Voter suppression e↵orts were revitalized in



CHAPTER 5. ELECTION INTEGRITY AND ELECTRONIC VOTING MACHINES IN
2018 GEORGIA 57

2013 with the Supreme Court’s decision in Shelby County v. Holder. Sections 4(b) and 5 of
the 1965 Voting Rights Act required jurisdictions with prior evidence of racial discrimination
to get “preclearance” from the federal government before changing their election policies,
to ensure that new policies would not be discriminatory. In 2013, the Supreme Court ruled
that these sections were unconstitutional because they placed undue burden on some states
based on outdated evidence of discrimination against minority voters. [117].

Without strict oversight, states that were previously subject to the preclearance rule of
the Voting Rights Act were free to reinstate some discriminatory policies. Almost immedi-
ately, states began to close polling places and create stricter voter registration laws. Under
the preclearance rule, counties would have to show that these changes would not di↵erentially
disenfranchise minority voters. With the rule gone, a number of states including Arizona,
Louisiana, and Texas have made changes that a↵ect a large number of registered voters,
many of whom are black or Latino [141].

Strategically closing polling places can reduce voter turnout for specific demographic
groups. It can create long lines in the remaining polling places and force people to travel
farther to access a polling place, dissuading voters from even attempting to vote. Since the
court ruling, nearly a thousand polling places in the United States have been closed; many
of those polling places served African American communities [141]. Local election o�cials
in Georgia have closed 214 precincts—nearly 8% of the state’s polling places—since 2012
[83]. O�cials claim that consolidating low-turnout polling places is purely a cost-saving
measure [148]. However, opponents have pointed out that 39 of the Georgia counties that
have closed polling places have poverty rates higher than the state average and 30 have
significant African American populations [83]. These closures would not have been possible
prior to 2013 under the Voting Rights Act’s preclearance rule.

Polling place closures in Georgia have attracted attention from the national media. In
August 2018, Randolph County debated whether to close seven of its nine polling places. An
independent consultant endorsed by Secretary of State Kemp suggested the proposal, which
cited unresolved ADA compliance issues and low turnout as reasons to close the polling
places. Civil rights groups across the country spoke out against the proposal as a blatant
attempt to disenfranchise minority voters: Randolph County has around 7000 registered
voters and is 61% African American. Ultimately, the county elections board voted it down,
but the debate brought the broader issue of Georgia’s voter suppression e↵orts into the
spotlight [42].

Under Secretary of State Kemp’s watch, voter registrations have been unpredictable.
Since 2012, over 1.4 million voter registrations have been cancelled in “routine maintenance”
of the voter rolls. Kemp’s o�ce says that these records were marked as inactive according
to standard federal and state law. However, the “exact match” laws that Kemp has put in
place make it harder to get back on the voter registration roll. The first iteration of the
exact match law was passed in 2010 with preclearance from the federal government, but was
dismantled after a federal lawsuit found it unconstitutional in 2016 [139]. The current law,
passed in 2017, stipulates that voter applications must exactly match information on file
with the Georgia Department of Driver Services or the Social Security Administration. Any
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non-exact matches—as innocuous as a missing hyphen—are flagged as pending and those
individuals have 26 months to correct their application. While they are still eligible to vote,
civil rights groups say that a pending application might discourage someone from casting
their ballot. In the months before the November 2018 election, over 53,000 voter registration
applications were pending. Nearly 70% of pending applications are black, more than double
the 32% black population percentage in the state [78].

Kemp vehemently denies any attempts to suppress minority voters. He has tried to
distance himself from the polling place closures, stating that the decision to close a precinct
is up to the county election o�cials. However, in 2015 his o�ce provided a document giving
county o�cials guidance on why and how to close polling places [83]. Kemp claims that the
racial disparity in pending voter registration applications is due to sloppy voter registration
e↵orts. His o�ce specifically called out the New Georgia Project, a voter registration group
(founded by Kemp’s gubernatorial opponent Stacey Abrams) that targeted African American
voters and used primarily paper forms. His o�ce says that poorly trained canvassers who
helped voters fill out paper registration forms are a main reason for the large proportion of
minority non-exact matches [78].

Election Integrity in Georgia

Georgia was the first state to adopt DREs in November 2002 after HAVA was passed: just
days later, the state signed a $54 million contract with Diebold Election Systems to use their
AccuVote-TS/TSx DREs exclusively [157].

During the summer of 2002, Diebold began preparing more than 20,000 DREs to be
used across the state for the November election. A former Diebold employee alleged that
during this time, before the machines had been delivered to counties, employees were asked
to install three software patches on all of the DREs that would be used statewide that
year. These patches did not undergo the federal certification process for voting equipment
[155]. Another former Diebold employee reported that the president of Diebold’s election
unit, Bob Urosevich, came to the warehouse himself to order the installation of uncertified
software patches on about 5,000 machines in DeKalb and Fulton , two historically Democratic
counties. He instructed employees not to discuss the patches with county o�cials [54].

This is particularly troubling, given that key contests in Georgia’s 2002 election defied poll
predictions. Longtime Democratic Senator Max Cleland was predicted to beat Republican
opponent Saxby Chambliss by 3%, but in fact lost his seat by a 7% margin. Democratic
Incumbent Governor Roy Barnes was predicted to win 51% to 40%, but in fact lost to
Republican candidate Sonny Perdue by 6% [34, 97]. These Republican victories were a
surprise in a historically Democratic state: Perdue was Georgia’s first Republican governor in
130 years. Diebold’s partisan leanings raised eyebrows. The company’s CEO, Wally O’Dell,
was a member of President Bush’s “Rangers and Pioneers,” an elite group of Bush supporters
who raised funds for the president’s 2004 campaign. At a fundraiser, O’Dell announced that
he was “committed to helping Ohio deliver its electoral votes to the president” [146]. Despite
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obvious concerns, the election could not be audited because of the purely electronic voting
machines.

Even as security experts raised red flags about Diebold’s touchscreen machines, Georgia’s
government o�cials continued to endorse them. Former Secretary of State Cathy Cox, who
signed the 2002 contract with Diebold, had strong ties to the company: she even allowed
them to use her portrait on their promotional materials. The election director she appointed,
Kathy Rogers, supported the use of Diebold machines and helped kill house bills that would
have required paper records. In 2006, she resigned and took a job as Government Liaison at
Diebold [143]. Cox’s successor as Secretary of State, Karen Handel, was a vocal supporter
of paper audit trails and acknowledged publicly that she would not interact with Rogers
as Diebold’s liaison, due to the conflict of interest. However, Handel later reversed her
position on electronic voting and it came to light that she had received $25,000 in campaign
contributions from employees connected with Diebold’s lobbying firm, Massey & Bowers [38].
Diebold has used money and power to ensure that security concerns about their machines
would not stop them from remaining the sole voting machine provider in Georgia.

Georgia’s election security issues reach beyond their voting machines. In 2016, a cyber-
security researcherat Oak Ridge National Laboratory, Logan Lamb, discovered that he could
download files from the state’s “secure” election server. Among these files were the entire
voter registration database for the state of Georgia, including sensitive personal information,
instructional PDFs with passwords for poll workers to sign into a central server on Election
Day, and software files for the state’s ExpressPoll pollbooks that are used to verify voters’
eligibility [158]. This intrusion would have allowed Lamb to alter entries in the voter regis-
tration database or the pollbooks, preventing some voters from casting their ballots. Lamb’s
discovery was not a purely theoretical concern. The possibility of malicious hacking is real:
an NSA investigation found that Russian hackers targeted 39 states in the summer and fall
leading up to the 2016 presidential election [105].

These were not the only security concerns at the state’s Center for Election Services
(CES), housed at Kennesaw State University under a long-standing contract with the Sec-
retary of State. For instance, the center was using an outdated version of Drupal, their
content management software, that would allow hackers to seize control of a site using the
software. A software patch had been available since 2014, but the election center had not
installed it. Lamb notified the executive director of the CES, Merle King, of the problems
he uncovered; King agreed to fix them and allegedly pressed Lamb not to talk to the media
or other o�cials about the security issues [159].

The CES did not secure their server, nor did they inform anyone about the breach. In
March 2017, another cybersecurity researcher found that the CES had not secured its files
properly. He brought the issue to the attention of an IT sta↵ at Kennesaw State University,
who then raised the issue with higher authorities who made it public. This was the first time
that the Secretary of State’s o�ce heard about the breach; the CES did not notify them
when Lamb discovered the problem. In response to this poor management, the Secretary of
State o�ce signed a new agreement with Kennesaw State University to transfer the CES to
its own o�ces [159].
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In July 2017, state voters and the Coalition for Good Governance filed a lawsuit against
the Georgia Secretary of State, alleging that they ignored evidence that the state’s electoral
system is vulnerable to fraud and hacking. The plainti↵s demanded that the state use paper
ballots in future elections to guard against election interference [25, 26]. They requested
to examine the Kennesaw State University election servers as a crucial piece of evidence in
the case. Four days after the group filed the lawsuit, IT employees at the CES wiped their
servers of all prior election data. They later degaussed two remaining servers. There is no
evidence that the election center deliberately destroyed potential evidence, and the Secretary
of State’s o�ce claims that the servers were wiped before they were o�cially served with
the lawsuit in late July. However, Kemp’s o�ce was alerted about the lawsuit and declined
to comment in the days between its filing and when the CES wiped its servers [122]. Key
evidence for the legal case was permanently erased.

The November 2018 Election

The lawsuit, Curling v. Kemp, continued into September 2018, just before the midterm
elections (and is ongoing at the time of this report). The current director at the CES
testified that the server that each county uses to construct its ballots is “air-gapped” from
the internet, but that he uses thumb drives, email, and an online repository to store and
move data. A county o�cial testified that they use “analog phone lines” to transmit results
to the Secretary of State. Computer scientists have testified that these are all vulnerable
channels [79]. Given that DREs are known to have security flaws and are not auditable, it is
all the more crucial that the state’s data and procedures before and after Election Day are
secure.

The state had no good answer to the security concerns raised by the plainti↵s, but argued
that there was not enough time before the election to switch to paper ballots. Their timeline
for upgrading Georgia’s voting systems was several years: in 2017, Kemp established the
Secure, Accessible, & Fair Elections (SAFE) Commission to decide upon new voting system
options, with a goal of having new systems in place for the 2020 election. Ultimately, U.S.
District Judge Amy Totenberg ruled that the trade-o↵ between election integrity and the
feasibility of making changes before the impending election tipped in favor of continued
use of DREs. While Judge Totenberg noted that the plainti↵s provided su�cient evidence
that paperless voting has the potential to cause irreparable harm to voters, the burden of
switching to paper ballots so close to the election would cause even more harm to voters by
causing bureaucratic confusion.

Ultimately, any chaos or problems that arise in connection with a sudden rollout
of a paper ballot system with accompanying scanning equipment may swamp the
polls with work and voters – and result in voter frustration and disa↵ection from
the voting process. There is nothing like bureaucratic confusion and long lines
to sour a citizen. And that description does not even touch on whether voters
themselves, many of whom may never have cast a paper ballot before, will have
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been provided reasonable materials to prepare them for properly executing the
paper ballots.

The judge scolded the state in her ruling, saying that the evidence and testimony “indi-
cated that the Defendants and State election o�cials had buried their heads in the sand”
[25].

The November 2018 election in Georgia exemplified many of the state’s election integrity
issues discussed above. Numerous civil rights groups urged Secretary of State Kemp to step
down for ethical reasons. Kemp refused to resign on the grounds that other elected o�cials
have not done so when they run for higher o�ces [149]. Only when the reported results
showed that he won did he step down.

Per Judge Totenberg’s ruling, Election Day voting in November 2018 was carried out on
paperless DREs. The performance issues with DREs are not just hypothetical: machines
in four polling places in Gwinnett County malfunctioned and forced voters to use paper
ballots, causing some voters to wait four hours to cast their vote [64]. Anomalies appeared
in the vote totals: the rate of undervotes in the Lieutenant Governor’s contest was unusually
high, compared to historical Lieutenant Governor races and compared to other statewide
contests on the ballot. The Coalition for Good Governance brought another lawsuit against
the Georgia Secretary of State, calling for a redo of the Lieutenant Governor’s contest [22].
Statistical evidence of anomalies in this election appears in Section 5.3.

After the election, Kemp’s o�ce hastened to certify the election results six days before
state law required it. Another civil rights group sued to delay the certification. Judge Toten-
berg ruled against Kemp, ordering election o�cials to review the nearly 27,000 provisional
ballots cast. Provisional ballots are cast by voters who cannot verify their registration or
identification; deliberately omitting provisional ballots is one way to disenfranchise voters
and would have ensured that the margin between Kemp and his opponent Stacey Abrams
remained large enough to avoid a runo↵ election [11].

Election cooking continues to be common practice, even with all eyes on Georgia. The
SAFE Commission was scheduled to make recommendations for new voting systems in Jan-
uary, 2019. In early January, the Democratic Party of Georgia called on Kemp to delay
any decision to purchase new voting systems as more bad behavior came to light: Kemp
appointed Charles “Chuck” Harper, chief lobbyist for ES&S (the voting machine company
that eventually acquired Diebold), as Deputy Chief of Sta↵ in the governor’s o�ce [95].

5.3 The 2018 Georgia election

.
Shortly after the November 2018 election, The Coalition for Good Governance filed a law-

suit against the Secretary of State of Georgia, Robyn Crittenden, demanding a redo of the
Lieutenant Governor election between Republican candidate Geo↵ Duncan and Democratic
candidate Sarah Riggs Amico. The plainti↵s blamed malfunctioning DREs for anomalous
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results in the Lieutenant Governor race, and only in that race. The plainti↵s did not specify
the cause of the malfunction, whether it be faulty programming, hacking, or something else
[22]. Numerous voters reported irregularities when attempting to cast their vote for Lieu-
tenant Governor on DREs, including many who reported that the race did not appear on
their ballot until they were shown the review screen. Moreover, evidence suggests that under-
vote rates on touchscreen voting machines were higher in predominantly African American
precincts [43]. The judge overseeing the case initially agreed to let the plainti↵s examine the
memory, not the programming, of machines in three counties. She eventually dismissed the
case [156].

In this section, I present statistical evidence to support this claim that DREs may have
malfunctioned. The first line of evidence comes from reported results at the county level:
the rate of undervotes in the Lieutenant Governor race is unusually high among DRE votes
(those cast on Election Day and advance in-person) compared to the rate of undervotes on
absentee ballots. This pattern does not hold in as many counties for other statewide contests
on the ballot. The second line of evidence comes from a single polling place in Clarke County.
Photographs of printed poll tapes from each AccuVote-TS machine show how many votes
were cast for each candidate in each contest. On one out of seven machines, the majority of
votes were for the Republican candidate in every statewide contest. On the remaining six
machines, the majority were for the Democratic candidate, matching the overall results at
the polling place. For both sets of data, we use permutation tests to demonstrate that these
phenomena are implausible unless something went wrong.

Undervotes for Lieutenant Governor

Undervotes occur when a voter does not mark a vote for any candidate in a contest. Historical
data shows that the rate of undervotes is lowest for high profile contests, such as presidential
and gubernatorial contests, and that the undervote rate generally increases for contests
further down the ballot. In this case, the Lieutenant Governor race had a 4% undervote
rate, while the next contest on the ballot had an undervote rate of 1.4%. Moreover, this
pattern appeared only in votes cast on DREs—Election Day votes and advance in-person
votes.

Data

Data were downloaded from the Georgia Secretary of State’s website at https://results.
enr.clarityelections.com/GA/91639/222278/reports/detailxml.zip. Data included
total ballots cast in each county, total ballots cast by each mode of voting for each candidate
by county. The file did not report ballots cast in each county by vote type. Therefore, we
assumed that the total number of ballots cast, separated by county and mode of voting, was
equal to the maximum number of votes cast in each contest for that county and mode of
voting. These maxima were used as the baseline against which to calculate the number of
undervotes in each contest, by county and mode of voting.

https://results.enr.clarityelections.com/GA/91639/222278/reports/detailxml.zip
https://results.enr.clarityelections.com/GA/91639/222278/reports/detailxml.zip
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Methods

A hypergeometric test was used to identify anomalous counties. Under the null hypothesis,
in each county undervotes are equally likely to occur among vote by mail ballots and votes
cast on DREs1.While there may be di↵erent party preferences amongst these two groups
of voters, there is no reason to believe that interest in a contest should di↵er. Conditional
on the number of votes cast by mail, the number of votes cast on DREs, and the number
of undervotes in the county, the number of undervotes among DRE votes is distributed as
hypergeometric under the null hypothesis. This hypergeometric test is a permutation test.

Results

In 101 of 159 Georgia counties, the di↵erence in undervote rates between mail votes and DRE
votes is statistically significant at level 0.01%. In contrast, in the contests for Secretary of
State, Attorney General, Commissioner of Agriculture, Commissioner of Insurance, State
School Superintendent, Commissioner of Labor, Public Service Commission District 3, and
Public Service Commission District 5, the di↵erence is statistically significant in no more
than 5 counties. Table 5.1 shows the exact counts.

Table 5.1: Counties with statistically significant (p < 0.0001) disparities in undervote rates
between paper ballots and DREs.

Contest Counties with significant
undervote rate disparities

Lt. Governor 101
Secretary of State 4
Attorney General 4
Commissioner of Agriculture 5
Commissioner of Insurance 4
State School Superintendent 5
Commissioner of Labor 2
Public Service Commission District 3 4
Public Service Commission District 5 4

Party Preferences in Winterville Train Depot Polling Place

Data

A citizen photographed printed poll tapes from the seven DRE machines in the Winterville
Train Depot polling place in Clarke County. The photographs were transcribed to CSV and

1 Provisional ballots were omitted from this analysis as they are handled separately.
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double checked by a second person.
The DREs showed similar numbers of voters (117, 135, 131, 133, 135, 144, 135). In this

polling place, Democratic candidates won a majority in each of ten statewide contests. Every
DRE reported a majority of votes for the Democratic candidate except machine 3, which
reported a majority for the Republican candidate in every contest.

The Winterville Train Depot polling place is just one polling place in Georgia where voters
photographed poll tapes after the polls closed. It was not selected at random. However, there
is no reason to believe that problems are confined to this polling place.

Methods

If voters were directed to DREs as if at random, then the percentage of votes for each candi-
date should be roughly equal on each machine. Conditional on the number of ballots on each
machine and the total number of votes for each candidate across machines, all permutations
of votes across machines are equally likely under the null hypothesis. Permutations were
done using cryptorandom. The test statistic was the largest absolute di↵erence between the
expected and actual fraction of Republican votes in each contest. The p-values are two-sided.
The p-values for each contest were combined using Fisher’s combination function to obtain
a global p-value.

Results

On the assumption that voters were directed to DREs as if at random, the chance any of
the seven machines would show disparities as large as machine 3 did in individual contests
ranges from less than 1% to approximately 15%. Seven of the ten values are significant at
level 5% or below; see Table 5.2. The global p-value for the ten tests is 0.00009%; the chance
that any of the seven machines would show anomalies as large as machine 3 did is less than
one in a million.

These results are entirely driven by the results on machine 3. If the Democratic and
Republican party labels were flipped on the third machine, the anomaly disappears. The
global p-value for the ten tests is 97%. For individual contests, no p-value is below 0.280 on
the assumption that voters are directed to DREs as if at random, compared with values as
small as 0.008 (and seven values below 5 percent) for the actual poll tapes. See Table 5.3.

These tests strongly suggest that machine 3 had some software or hardware problem:
misconfiguration, error, defect, hack, or malfunction. The most plausible explanation is that
machine 3 was misconfigured in a way that caused votes for Republican candidates to be
recorded as votes for Democratic candidates, and vice versa.

5.4 Conclusion

The 2018 midterms demonstrated some of the election administration issues that plague
Georgia. In the weeks leading up to the election and for several weeks after, citizens chal-
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Table 5.2: Consistency of Results across DREs in Winterville Train Station Polling Place

Contest p-value
Governor 0.114
Lt. Governor 0.025
Secretary of State 0.018
Attorney General 0.151
Commissioner of Agriculture 0.026
Commissioner of Insurance 0.030
State School Superintendent 0.097
Commissioner of Labor 0.008
Public Service Commission District 3 0.046
Public Service Commission District 5 0.025

Table 5.3: Consistency of Results across DREs in Winterville Train Station Polling Place, if
D and R were flipped on machine 3.

Contest p-value
Governor 0.464
Lt. Governor 0.795
Secretary of State 0.450
Attorney General 0.543
Commissioner of Agriculture 0.734
Commissioner of Insurance 0.604
State School Superintendent 0.807
Commissioner of Labor 0.797
Public Service Commission District 3 0.280
Public Service Commission District 5 0.939

lenged the way that the Secretary of State’s o�ce handled provisional ballots and strict voter
registration laws, alleging that these practices were intended to disenfranchise minority vot-
ers. Touchscreen DRE voting machines were used statewide, even after security experts
voiced their concerns and a nonprofit organization sued the state to replace them with hand-
marked paper ballots. There is evidence that the DREs did in fact malfunction; we presented
statistical anomalies that suggest that DREs failed to record a large percentage of votes cast
in the Lieutenant Governor’s race. Moreover, there is evidence to suggest these missing votes
occurred at a higher rates in jurisdictions with large African American populations [43]. The
Secretary of State has expressed unwillingness to investigate these issues.

Lawmakers are set to replace the state’s DREs with a new system. The debate has
focused on two options: hand-marked paper ballots with optical scanners and touchscreen
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ballot-marking devices (BMDs). In February 2019, the state legislature voted to purchase
BMDs statewide [82]. While BMDs do produce a paper record, they also have problems:
the ability to cast a vote relies on the machine being functional on Election Day; there is
limited evidence that voters verify their selections on the summary card; and BMDs require
the same trust in software as DREs [125]. Security experts including Wenke Lee, the only
computer scientist on the state’s SAFE Commission, have warned against BMDs. However,
many lawmakers claim that the touchscreen interface of these machines will be more modern,
e�cient, and familiar to voters.

How the state proceeds will reveal Georgia lawmakers’ commitment to election integrity.
The state House Minority Leader Bob Trammell expressed his stance on the evidence for
hand-marked paper ballots [82]:

It’s unequivocally clear that cybersecurity experts have expressed concerns about
the ballot-marking devices. It comes down to whether you think the opinion of
election o�cials ... is more important than the issue of credentialed experts in
the field talking about a material risk to the voting process.
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Chapter 6

Risk-limiting audits by stratified
union-intersection tests of elections
(SUITE)

6.1 Introduction

States have begun piloting and passing laws mandating risk-limiting audits (RLAs) as ad-
ditional measure to ensure the fairness and security of their elections; see Chapter 1.1 for
details on RLAs. The most e�cient and transparent sampling design for RLAs selects in-
dividual ballots uniformly at random, with or without replacement [130]. Risk calculations
for such samples can be made simple without sacrificing rigor [131, 62]. However, to audit
contests that cross jurisdictional boundaries then requires coordinating sampling in di↵erent
counties, and may require di↵erent counties to use the lowest common denominator method
for assessing risk from the sample, which would not take full advantage of the capabilities
of some voting systems. For instance, any system that uses paper ballots as the o�cial
record can conduct ballot-polling audits, while ballot-level comparison audits require systems
to generate cast vote records that can be checked manually against a human reading of the
paper [63, 62]. (These terms are described in Section 6.3.)

Stratified RLAs have been considered previously, primarily to conform with legacy audit
laws under which counties draw audit samples independently of each other, but also to allow
auditors to start the audit before all vote-by-mail or provisional ballots have been tallied,
by sampling independently from ballots cast in person, by mail, and provisionally, as soon
as subtotals for each group are available [128, 46]. However, extant methods address only a
single approach to auditing, batch-level comparisons, and only a particular test statistic.

Here, we introduce SUITE, a more general approach to conducting RLAs using stratified
samples. SUITE is a twist on intersection-union tests [98], which represent the null hypoth-
esis as the intersection of a number of simpler hypotheses, and the alternative hypothesis as
a union of their alternatives. In contrast, here, the null is the union of simpler hypotheses,
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and the alternative is the intersection of their alternatives. The approach involves finding
the maximum p-value over a vector of nuisance parameters that describe the simple hy-
potheses: all allocations of tabulation error across strata for which a full count would find
a di↵erent electoral outcome than was reported. (A nuisance parameter is a property of
the population that is not of direct interest, but that a↵ects the probability distribution of
the data. Overstatement is error that made the margin of one or more winners over one or
more losers appear larger than it really was. The total overstatement across strata deter-
mines whether the reported outcome is correct; the overstatements in individual strata are
nuisance parameters that a↵ect the distribution of the audit sample.)

The basic building block for the method is testing whether the overstatement error in
a single stratum is greater than or equal to a quota. Fisher’s combining function is used
to merge p-values for tests in di↵erent strata into a single p-value for the hypothesis that
the overstatement in every stratum is greater than or equal to its quota. If that hypothesis
can be rejected for all stratum-level quotas that could change the outcome—that is, if the
maximum combined p-value is su�ciently small—the audit can stop.

It is not actually necessary to consider all possible quotas: the p-value has a bounded
modulus of continuity, which allows us to find upper and lower bounds everywhere using
only values on a discrete grid. We present a numerical procedure, implemented in Python,
to find bounds on the maximum p-value when there are two strata. The procedure can be
generalized to more than two strata.

Section 6.2 presents the new approach to stratified auditing. Section 6.3 illustrates the
method by solving a problem pertinent to Colorado: combining ballot polling in one stratum
with ballot-level comparisons in another. This requires straightforward modifications to the
mathematics behind ballot polling and ballot-level comparison to allow the overstatement
to be compared to specified thresholds other than the overall contest margin; those modifi-
cations are described in Sections 6.4 and 6.5. We applied SUITE in pilot RLAs in Michigan,
where some jurisdictions have cast vote records that can be linked to vote-by-mail ballots,
but not Election Day ballots; we discuss the pilots in Chapter 7.

Section 6.7 gives numerical examples of simulated audits, using parameters intended to
reflect how the procedure would work in Colorado. We provide example software imple-
menting the risk calculations for our recommended approach in Python Jupyter notebooks.1

Section 6.8 gives recommendations and considerations for implementation.

6.2 Stratified audits

Stratified sampling involves partitioning a population into non-overlapping groups and draw-
ing independent random samples from those groups. [128, 46] developed RLAs based on com-
paring stratified samples of batches of ballots to hand counts of the votes in those batches:
batch-level comparison RLAs, using a particular test statistic. The method we develop here
is more general and more flexible: it can be used with any test statistic, and test statistics

1See https://github.com/pbstark/CORLA18.

https://github.com/pbstark/CORLA18
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in di↵erent strata need not be the same—which is key to combining audits of ballots cast
using diverse voting technologies.

Here and below, we consider auditing a single plurality contest at a time, although the
same sample can be used to audit more than one contest (and super-majority contests), and
there are ways of combining audits of di↵erent contests into a single process [124, 131]. We
use terminology drawn from a number of papers, notably [62].

An overstatement error is an error that caused the margin between any reported winner
and any reported loser to appear larger than it really was. An understatement error is an er-
ror that caused the margin between every reported winner and every reported loser to appear
to be smaller than it really was. Overstatements cast doubt on outcomes; understatements
do not, even though they are tabulation errors.

We use w to denote a reported winner and ` to denote a reported loser. The total number
of reported votes for candidate w is Vw and the total for candidate ` is V`. Thus Vw > V`,
since w is reported to have gotten more votes than `.

Let Vw` ⌘ Vw� V` > 0 denote the contest-wide margin (in votes) of w over `. We have S
strata. Let Vw`,s denote the margin (in votes) of reported winner w over reported loser ` in
stratum s. Note that Vw`,s might be negative in one stratum, but

P
S

s=1 Vw`,s = Vw` > 0. Let
Aw` denote the margin (in votes) of reported winner w over reported loser ` that a full hand
count would show: the actual margin, in contrast to the reported margin Vw`. Reported
winner w really beat reported loser ` if and only if Aw` > 0. Define Aw`,s to be the actual
margin (in votes) of w over ` in stratum s.

Let !w`,s ⌘ Vw`,s � Aw`,s be the overstatement of the margin of w over ` in stratum s.
Reported winner w really beat reported loser ` if and only if !w` ⌘

P
s
!w`,s < Vw`.

An RLA is a test of the hypothesis that the outcome is wrong, that is, that w did not
really beat `:

P
s
!w`,s � Vw`. The null is true if and only if there exists some S-tuple of

real numbers (�s)Ss=1 with
P

s
�s = 1 such that !w`,s � �sVw` for all s.2 Thus if we can reject

the conjunction hypothesis \s{!w`,s � �sVw`} at significance level ↵ for all (�s) such thatP
s
�s = 1, we can stop the audit, and the risk limit will be ↵.

Fisher’s combination method

Fix � ⌘ (�s)Ss=1, with
P

s
�s = 1. To test the conjunction hypothesis that stratum null

hypotheses are true, that is, that !w`,s � �sVw` for all s, we use Fisher’s combining function.
Let ps(�s) be the p-value of the hypothesis !w`,s � �sVw`. If the null hypothesis is true, then

�(�) = �2
SX

s=1

ln ps(�s) (6.1)

2“If” is straightforward. For “only if,” suppose !w` � Vw`. Set �s = !w`,sP
t !w`,t

. Then
P

s �s = 1, and

!w`,s = �s!w` � �sVw` for all s.
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has a probability distribution that is dominated by the chi-square distribution with 2S de-
grees of freedom.3 Fisher’s combined statistic will tend to be small when all stratum-level
null hypotheses are true. If any is false, then as the sample size increases, Fisher’s combined
statistic will tend to grow.

If, for all � with
P

s
�s = 1, we can reject the conjunction hypothesis at level ↵ (i.e., if

the minimum value of Fisher’s combined statistic over all � is larger than the 1�↵ quantile
of the chi-square distribution with 2S degrees of freedom), the audit can stop.

If the audit is allowed to “escalate” in steps, increasing the sample size sequentially, then
either the tests used in the separate strata have to be sequential tests, or multiplicity needs
to be taken into account, for instance by adjusting the risk limit at each step. Otherwise,
the overall procedure can have a risk limit that is much larger than ↵. For examples of
controlling for multiplicity when using non-sequential testing procedures in an RLA, see
[128, 127].

The stratum-level p-value ps(�) could be a p-value for the hypothesis !w`,s � �sVw` from
any test procedure. We assume, however, that ps is based on a one-sided test, and that the
tests for di↵erent values of � “nest” in the sense that if a > b, then ps(a) > ps(b). This
monotonicity is a reasonable requirement because the evidence that the overstatement is
greater than a should be weaker than the evidence that the overstatement is greater than
b, if a > b. In particular, this monotonicity holds for the tests proposed in Sections 6.4 and
6.5.

One could use a function other than Fisher’s to combine the stratum-level p-values into
a p-value for the conjunction hypothesis, provided it satisfies these properties (see [98]):

• the function is non-increasing in each argument and symmetric with respect to rear-
rangements of the arguments

• the combining function attains its supremum when one of the arguments approaches
zero

• for every level ↵, the critical value of the combining function is finite and strictly
smaller than the function’s supremum.

For instance, one could use Liptak’s function, T =
P

i
��1(1 � pi), or Tippett’s function,

T = maxi(1� pi).
Fisher’s function is convenient for this application because the tests in di↵erent strata

are independent, so the chi-squared distribution dominates the distribution of �(·) when the
null hypothesis is true. If tests in di↵erent strata were correlated, the null distribution of
the combination function would need to be calibrated by simulation; some other combining
function might have better properties than Fisher’s [98].

3If the stratum-level tests had continuously distributed p-values, the distribution would be exactly chi-
square with 2S degrees of freedom, but if any of the p-values has atoms when the null hypothesis is true, it
is in general stochastically smaller. This follows from a coupling argument along the lines of Theorem 4.12.3
in [39].
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Maximizing Fisher’s combined p-value for S = 2

For the remainder of the chapter, we specialize to S = 2 strata. The set of � = (�1,�2) such
that

P
s
�s = 1 is then a one-dimensional family: if �1 = �, then �2 = 1 � �. For a given

set of data, finding the maximum p-value over all � is thus a one-dimensional optimization
problem.

To find the maximum combined p-value (equivalently, the minimum value of �(�)), we
first compute �(�) for a grid of values �0 = �� < �1 < · · · < �n = �+, where �j+1 � �j = �.
To account for the fact that � may be smaller for values of � between the sampled values,
we bound its variation between grid points. The local modulus of continuity, !(�;�), is an
upper bound on how much � can change in a �-neighborhood of �:

|�(�)� �(�+ �)|  !(�;�).

For all � 2 [�j,�j+1],

�(�) � max{�(�j)� !(�� �j;�j),�(�j+1)� !(�j+1 � �;�j+1)}. (6.2)

Thus for all � 2 [��,�+],

�(�) � �⇤
n
⌘

n�1
min
j=0

min
µ2[�j ,�j+1]

max{�(�j)� !(µ� �j;�j),�(�j+1)� !(�j+1 � µ;�j+1)}. (6.3)

If that lower bound is above �↵, the audit can stop. If not, then either the true minimum is
below �↵ or the grid {�j} is too coarse.

Finding a lower bound on �(�) between grid points can be simplified in a number of ways,
for instance, using a (bound on a) global modulus of continuity instead of a local modulus of
continuity. Section 6.6 derives the a bound on the global modulus of continuity for a special
case, where one stratum uses ballot polling and the other uses a comparison audit.

6.3 Auditing cross-jurisdictional contests

As mentioned above, stratified sampling can simplify audit logistics by allowing jurisdictions
to sample ballots independently of each other, or by allowing a single jurisdiction to sample
independently from di↵erent collections of ballots (e.g., vote-by-mail versus in-person on
Election Day). SUITE allows stratified samples to be combined into an RLA of contests
that include ballots from more than one stratum.

We present an example where SUITE is helpful for a di↵erent reason: it enables an RLA
to take advantage of di↵erences among voting systems to reduce audit sample sizes, which
solves a current problem in Colorado.

CRS 1-7-515 requires Colorado to conduct risk-limiting audits beginning in 2017. The
first risk-limiting election audits under this statute were conducted in November, 2017; the
second were conducted in July, 2018.4 Counties cannot audit contests that cross jurisdictional

4See https://www.sos.state.co.us/pubs/elections/RLA/2017RLABackground.html

https://www.sos.state.co.us/pubs/elections/RLA/2017RLABackground.html
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boundaries (cross-jurisdictional contests, such as gubernatorial contests and most federal
contests) on their own: margins and risk limits apply to entire contests, not to the portion of a
contest included in a county. Colorado has not yet conducted an RLA of a cross-jurisdictional
contest, although it has performed RLA-like procedures on individual jurisdictions’ portions
of some cross-jurisdictional contests. To audit statewide elections and contests that cross
county lines, Colorado will need to implement new approaches and make some changes to
its auditing software, RLATool.

Colorado’s voting systems are heterogeneous. Some counties (containing about 98% of
active voters, as of this writing) have voting systems that export cast vote records (CVRs)
in a way that the paper ballot corresponding to each CVR can be identified uniquely and
retrieved. We call counties with such voting systems CVR counties. In CVR counties,
auditors can manually check the accuracy of the voting system’s interpretation of individual
ballots. In other counties (legacy or no-CVR counties) there is no way to check the accuracy
of the system’s interpretation of voter intent for individual ballots.

Contests entirely contained in CVR counties can be audited using ballot-level comparison
audits [62], which compare CVRs to the auditors’ interpretation of voter intent directly from
paper ballots. Ballot-level comparison audits are currently the most e�cient approach to
risk-limiting audits in that they require examining fewer ballots than other methods do, when
the outcome of the contest under audit is in fact correct. Contests involving no-CVR counties
can be audited using ballot-polling audits [63, 62], which generally require examining more
ballots than ballot-level comparison audits to attain the same risk limit.

Colorado’s challenge is to audit contests that include ballots cast in both CVR counties
and no-CVR counties. There is no literature on how to combine ballot polling with ballot-
level comparisons to audit cross-jurisdictional contests that include voters in CVR counties
and voters in no-CVR counties.5

Colorado could simply revert to ballot-polling audits for cross-jurisdictional contests that
include votes in no-CVR counties, but that would entail a loss of e�ciency. Alternatively,
Colorado could use batch-level comparison audits, with single-ballot batches in CVR counties
and larger batches in no-CVR counties.6 The statistical theory for such audits has been
worked out (see, e.g., [128, 124, 129, 131] and Section 6.4, below); indeed, this is the method
that was used in several of California’s pilot audits, including the audit in Orange County,
California. However, batch-level comparison audits were found to be less e�cient than
ballot-polling audits in these pilots [87].

Moreover, to use batch-level comparison audits in Colorado would require major changes
to RLATool, for reporting batch-level contest results prior to the audit, for drawing the
sample, for reporting audit findings, and for determining when the audit can stop. The
changes would include modifying data structures, data uploads, random sampling proce-

5See [108] for a di↵erent (Bayesian) approach to auditing contests that include both CVR counties and
no-CVR counties. In general, Bayesian audits are not risk-limiting.

6Since so few ballots are cast in no-CVR counties, cruder approaches might work, for instance, pretending
that no-CVR counties had CVRs, but treating any ballot sampled from a no-CVR county as if it had a 2-vote
overstatement error. See [5].
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dures, and the county user interface. No-CVR counties would also have to revise their audit
procedures. Among other things, they would need to report vote subtotals for physically
identifiable groups of ballots before the audit starts. No-CVR counties with voting systems
that can only report subtotals by precinct might have to make major changes to how they
handle ballots, for instance, sorting all ballots by precinct. These are large changes.

We show here that SUITE makes possible a “hybrid” RLA that keeps the advantages
of ballot-level comparison audits in CVR counties but does not require major changes to
how no-CVR counties audit, nor major changes to RLATool. The key is to use stratified
sampling with two strata: ballots cast in CVR counties and those cast in no-CVR counties.

In order to use Equation 6.1, we must develop stratum-level tests for the overstatement
error that are appropriate for the corresponding voting system. Sections 6.4 and 6.5 describe
these tests for overstatement in the CVR and no-CVR strata, respectively.

6.4 Comparison audits of overstatement quotas

To use comparison auditing in the approach to stratification described above requires extend-
ing previous work to test whether the overstatement error is greater than or equal to �sVw`,
rather than simply Vw`. The derivation considers only a single contest, but the MACRO test
statistic [124, 131] automatically extends the result to auditing any number of contests simul-
taneously. The derivation is for plurality contests, including “vote-for-k” plurality contests.
Majority and super-majority contests are a minor modification [128].7

Notation

• W : the set of reported winners of the contest

• L: the set of reported losers of the contest

• Ns ballots were cast in stratum s. (The contest might not appear on all Ns ballots.)

• P “batches” of ballots are in stratum s. A batch contains one or more ballots. Every
ballot in stratum s is in exactly one batch.

• np: number of ballots in batch p. Ns =
P

P

p=1 np.

• vpi 2 {0, 1}: reported votes for candidate i in batch p

• api 2 {0, 1}: actual votes for candidate i in batch p. If the contest does not appear on
any ballot in batch p, then api = 0.

7So are some forms of preferential and approval voting, such as Borda count, and proportional represen-
tation contests, such as D’Hondt [133]. For a derivation of ballot-level comparison risk-limiting audits for
super-majority contests, see https://github.com/pbstark/S157F17/blob/master/audit.ipynb. (Last
visited 14 May 2018.) Changes for IRV/STV are more complicated.

https://github.com/pbstark/S157F17/blob/master/audit.ipynb
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• Vw`,s ⌘
P

P

p=1(vpw � vp`): Reported margin in stratum s of reported winner w 2 W
over reported loser ` 2 L, in votes.

• Vw`: overall reported margin in votes of reported winner w 2 W over reported loser
` 2 L for the entire contest (not just stratum s)

• V ⌘ minw2W,`2L Vw`: smallest reported overall margin in votes between any reported
winner and reported loser

• Aw`,s ⌘
P

P

p=1(apw � ap`): actual margin in votes in the stratum of reported winner
w 2W over reported loser ` 2 L

• Aw`: actual margin in votes of reported winner w 2 W over reported loser ` 2 L for
the entire contest (not just in stratum s)

Reduction to maximum relative overstatement

If the contest is entirely contained in stratum s, then the reported winners of the contest are
the actual winners if

min
w2W,`2L

Aw`,s > 0.

Here, we address the case that the contest may include a portion outside the stratum. To
combine independent samples in di↵erent strata, it is convenient to be able to test whether
the net overstatement error in a stratum is greater than or equal to a given threshold.

Instead of testing that condition directly, we will test a condition that is su�cient but
not necessary for the inequality to hold, to get a computationally simple test that is still
conservative (i.e., the level is not larger than its nominal value).

For every winner, loser pair (w, `), we want to test whether the overstatement error is
greater than or equal to some threshold, generally one tied to the reported margin between
w and `. For instance, for a hybrid stratified audit, we set the threshold to be �sVw`.

We want to test whether

PX

p=1

(vpw � apw � vp` + ap`)/Vw` � �s.

The maximum of sums is not larger than the sum of the maxima; that is,

max
w2W,`2L

PX

p=1

(vpw � apw � vp` + ap`)/Vw` 
PX

p=1

max
w2W,`2L

(vpw � apw � vp` + ap`)/Vw`.

Define
ep ⌘ max

w2W`2L
(vpw � apw � vp` + ap`)/Vw`.
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Then no reported margin is overstated by a fraction �s or more if

E ⌘
PX

p=1

ep < �s.

Thus if we can reject the hypothesis E � �s, we can conclude that no pairwise margin
was overstated by as much as a fraction �s.

Testing whether E � �s would require a very large sample if we knew nothing at all
about ep without auditing batch p: a single large value of ep could make E arbitrarily large.
But there is an a priori upper bound for ep. Whatever the reported votes vpi are in batch p,
we can find the potential values of the actual votes api that would make the error ep largest,
because api must be between 0 and np, the number of ballots in batch p:

vpw � apw � vp` + ap`
Vw`

 vpw � 0� vp` + np

Vw`

.

Hence,

ep  max
w2W,`2L

vpw � vp` + np

Vw`

⌘ up. (6.4)

Knowing that ep  up might let us conclude reliably that E < �s by examining only a
small number of batches—depending on the values {up}Pp=1 and on the values of {ep} for the
audited batches.

To make inferences about E, it is helpful to work with the taint tp ⌘ ep

up

 1. Define

U ⌘
P

P

p=1 up. Suppose we draw batches at random with replacement, with probability up/U
of drawing batch p in each draw, p = 1, . . . , P . (Since up � 0, these are all positive numbers,
and they sum to 1, so they define a probability distribution on the P batches.)

Let Tj be the value of tp for the batch p selected in the jth draw. Then {Tj}nj=1 are IID,
P{Tj  1} = 1, and

ET1 =
PX

p=1

up

U
tp =

1

U

PX

p=1

up

ep
up

=
1

U

PX

p=1

ep = E/U.

Thus E = UET1. So, if we have strong evidence that ET1 < �s/U , we have strong evidence
that E < �s.

This approach can be simplified even further by noting that up has a simple upper bound
that does not depend on vpi. At worst, the reported result for batch p shows np votes for
the “least-winning” apparent winner of the contest with the smallest margin, but a hand
interpretation would show that all np ballots in the batch had votes for the runner-up in
that contest. Since Vw` � V ⌘ minw2W,`2L Vw` and 0  vpi  np,

up = max
w2W,`2L

vpw � vp` + np

Vw`

 max
w2W,`2L

np � 0 + np

Vw`

 2np

V
.
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Thus if we use 2np/V in lieu of up, we still get conservative results. (We also need to re-define
U to be the sum of those upper bounds.) An intermediate, still conservative approach would
be to use this upper bound for batches that consist of a single ballot, but use the sharper
bound (6.4) when np > 1. Regardless, for the new definition of up and U , {Tj}nj=1 are IID,
P{Tj  1} = 1, and

ET1 =
PX

p=1

up

U
tp =

1

U

PX

p=1

up

ep
up

=
1

U

PX

p=1

ep = E/U.

So, if we have evidence that ET1 < �s/U , we have evidence that E < �s.

Testing ET1 � �s/U

A variety of methods are available to test whether ET1 < �s/U . One particularly elegant se-
quential method is based on Wald’s Sequential Probability Ratio Test (SPRT) [145]. Harold
Kaplan pointed out this method on a website that no longer exists. A derivation of this
Kaplan-Wald method is in Appendix A of [133]; to apply the method here, take t = �s in
their equation 18. A di↵erent sequential method, the Kaplan-Markov method (also due to
Harold Kaplan), is given in [129].

6.5 Ballot-polling audits of overstatement quotas

To use the new stratification method with ballot polling requires a di↵erent approach than
[63] took: their approach tests whether w got a larger share of the votes than `, but we need
to test whether the margin in votes in the stratum is greater than or equal to a threshold
(namely, �sVw`). This introduces a nuisance parameter, the number of ballots with votes for
either w or `. We address this by maximizing the probability ratio in Wald’s SPRT [145]
over all possible values of the nuisance parameter.

In this section, we derive a ballot-polling test of the hypothesis that the margin (in votes)
in a single stratum is greater than or equal to a threshold c.

Wald’s SPRT with a nuisance parameter

Consider a single stratum s containing Ns ballots, of which Nw,s have a vote for w but not
for `, N`,s have a vote for ` but not for w, and Nu,s = Ns �Nw,s �N`,s have votes for both
w and ` or neither w nor `, including undervotes and invalid ballots. Ballots are drawn
sequentially without replacement, with equal probability of selecting each as-yet-unselected
ballot in each draw.

We want to test the compound hypothesis that Nw,s � N`,s  c against the alternative
that Nw,s = Vw,s, N`,s = V`,s, and Nu,s = Vu,s, with Vw,s � V`,s > c.
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The values Vw,s, V`,s, and Vu,s are the reported results for stratum s (or values related
to those reported results; see [63]). The value of c is inferred from the definition !w`,s ⌘
Vw`,s � (Nw,s �N`,s). Thus,

c = Vw,s � V`,s � !w`,s = Vw`,s � �sVw`.

In this problem, Nu,s (equivalently, Nw,s +N`,s) is a nuisance parameter: we care about
Nw,s �N`,s, but the probability distribution of the sample depends also on Nu,s.

Let Xk be w, `, or u according to whether the ballot selected on the kth draw shows a
vote for w but not `, ` but not w, or something else. Let Wn ⌘

P
n

k=1 1Xk=w; and define Ln

and Un analogously. Then Wn + Ln + Un = n.
The probability of a given data sequence X1, . . . , Xn under the alternative hypothesis is

Q
Wn�1
i=0 (Vw,s � i)

Q
Ln�1
i=0 (V`,s � i)

Q
Un�1
i=0 (Vu,s � i)

Q
n�1
i=0 (Ns � i)

, (6.5)

using the convention that
Q�1

i=0 di ⌘ 1. If Ln � Wn�cn/Ns, the data obviously do not provide
evidence against the null, so we suppose that Ln < Wn�cn/Ns, in which case, the element of
the null that will maximize the probability of the observed data has Nw,s � c = N`,s. Under
the null hypothesis, the probability of X1, . . . , Xn is

Q
Wn�1
i=0 (Nw,s � i)

Q
Ln�1
i=0 (Nw,s � c� i)

Q
Un�1
i=0 (Nu,s � i)

Q
n�1
i=0 (Ns � i)

, (6.6)

for some value Nw,s and the corresponding Nu,s = Ns � 2Nw,s + c. How large can that
probability be under the null? The probability under the null is maximized by any integer
x 2 {max(Wn, Ln + c), . . . , (Ns � Un)/2} that maximizes

Wn�1Y

i=0

(x� i)
Ln�1Y

i=0

(x� c� i)
Un�1Y

i=0

(Ns � 2x+ c� i),

again using the convention that
Q�1

i=0 di ⌘ 1. The logarithm is monotonic, so any maximizer
x⇤ also maximizes

f(x) =
Wn�1X

i=0

ln(x� i) +
Ln�1X

i=0

ln(x� c� i) +
Un�1X

i=0

ln(Ns � 2x+ c� i).

(Here, we use the convention that
P�1

i=0 di ⌘ 0.) If we consider the domain of f to be
real numbers, not just integers, the second derivative of f is everywhere negative, so f
has a unique maximum on [max(Wn, Ln + c), (Ns�Un)/2], either at one of the endpoints or
somewhere on the interval. The derivative f 0(x) gives information about where the maximum
occurs:

f 0(x) =
Wn�1X

i=0

1

x� i
+

Ln�1X

i=0

1

x� c� i
� 2

Un�1X

i=0

1

Ns � 2x+ c� i
.
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If f 0(x) does not change signs, then the maximum is at one of the endpoints; set x⇤ to
be the endpoint that makes f larger. Otherwise, the (real-valued) maximum occurs where
f 0(x) = 0 and can be found using a root finder such as Brent’s method; alternatively, the
maximum can be found using concave optimization. Since the maximizer for the original
problem must be an integer, set x⇤ to be the value in {bxc, dxe} that makes f larger; by
concavity, that is the integer maximizer.

A conservative p-value for the null hypothesis after n items have been drawn is thus

Pn =

Q
Wn�1
i=0 (x⇤ � i)

Q
Ln�1
i=0 (x⇤ � c� i)

Q
Un�1
i=0 (Ns � 2x⇤ + c� i)

Q
Wn�1
i=0 (Vw,s � i)

Q
Ln�1
i=0 (V`,s � i)

Q
Un�1
i=0 (Vu,s � i)

.

Because the test is built on Wald’s SPRT, the sample can expand sequentially and (if the
null hypothesis is true) the chance that Pn < p is never larger than p. That is, Pr{infn Pn 
p}  p if the null is true.

Code implementing this approach is given in https://github.com/pbstark/CORLA18.

6.6 Maximizing Fisher’s combined p-value for a
hybrid stratified audit

Below, we present an algorithm for finding the maximum p-value in a hybrid stratified audit
that combines ballot-level comparison with ballot polling. Let p1(�) be the p-value from a
ballot-polling audit and p2(1� �) be the p-value from a ballot-level comparison audit. The
calculation of these p-values is derived in Appendix 6.4 and 6.5, respectively.

The algorithm to approximate min� �(�) is as follows:

1. Pick a grid of values �0 ⌘ �� < �1 < · · · < �n ⌘ �+.

2. Evaluate �(�j), j = 0, . . . , n.

3. If, for any j, �(�j)  �↵, the audit must escalate.

4. Otherwise, check whether �⇤
n
� �↵.

5. If so, the audit can stop: the minimum �(�) is above �↵. If not, refine the grid of
values of � and return to step 2.

Bounding the local modulus of continuity for Fisher’s combining
function

Fisher’s combining function applied to the stratumwise p-values is

https://github.com/pbstark/CORLA18
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We seek the modulus of continuity (or an upper bound on it) for this function. While
c(�) and Nw(�) must be integer values (as they represent numbers of ballots), the p-value
from the ballot-polling SPRT and thus �(�) make sense for non-integer values of c(�) and
Nw(�), so to allow the use of calculus, we will extend the domain to real values.

Moduli of continuity obey two key properties:

• Sublinearity: !(af + bg, �)  |a|!f (�) + |b|!g(�)

• Composition: !(g � f, �) = !g(!f (�))

First, we find the modulus of continuity for several simple functions:

• log(ax� b): the modulus of continuity is log(1 + a�).

• c(�) = (Vw,2�V`,2)��Vw`: since this function is linear in �, the modulus of continuity
is Vw`�.

• Nw,2(�). When Nu,2 is known, this is also linear in c(�). When Nu,2 is not known,
Nw,2(�) increases with c, at a rate between 0 and 1. For Nw,2(�) in the interior of the
domain, taking the implicit derivative with respect to c shows that

dNw,2

dc
=

P
Ln�1
i=0

1
(Nw,2�c�i)2 +

P
Un�1
i=0

2
(N2�2Nw,2+c�i)2P

Wn�1
i=0

1
(Nw,2�i)2 +

P
Ln�1
i=0

1
(Nw,2�c�i)2 +

P
Un�1
i=0

4
(N2�2Nw,2+c�i)2

2 [0, 1].

Thus it also has modulus of continuity at most Vw`�. Moreover, since Nw,2 is dominated
by c, the terms Nw,2(�)� c(�) and �2Nw,2(�) + c(�) have modulus of continuity Vw`�
and 2Vw`�, respectively.

• For terms that don’t involve �, the modulus of continuity is 0.
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There are four terms in �(�) that involve �. Using the two key properties of linearity
and composition, as well as the moduli for simple functions above, we obtain the following
bound on the global modulus of continuity:

!�(�) =2Wn log(1 + Vw`�) + 2Ln log(1 + Vw`�)+

2Un log(1 + 2Vw`�) + 2n1 log

✓
1 +

Vw`

2N1�
�

◆
(6.8)

6.7 Numerical examples

Jupyter notebooks containing calculations for hybrid stratified audits intended to be relevant
for Colorado are available at https://www.github.com/pbstark/CORLA18.

hybrid-audit-example-1 contains two hypothetical elections. The first has 110, 000
cast ballots, of which 9.1% were in no-CVR counties. The diluted margin (the margin in
votes, divided by the total number of ballots cast) is 1.8%. In 94% of 10,000 simulations
in which the reported results were correct, drawing 700 ballots from the CVR stratum and
500 ballots from the no-CVR stratum (1,200 ballots in all) allowed SUITE to confirm the
outcome at 10% risk. For the remaining 6%, further expansion of the audits would have
been necessary.

If it were possible to conduct a ballot-level comparison audit for the entire contest, an
RLA with risk limit 10% could terminate after examining 263 ballots if it found no errors. A
ballot-polling audit of the entire contest would have been expected to examine about 14,000
ballots, more than 10% of ballots cast. The hybrid audit is less e�cient than a ballot-level
comparison audit, but far more e�cient than a ballot-polling audit.

The second hypothetical election has 2 million cast ballots, of which 5% were cast in
no-CVR counties. The diluted margin is about 20%. The workload for SUITE at 5% risk is
quite low: In 93% of 10,000 simulations in which the reported results were correct, auditing
50 ballots from the CVR stratum and 25 ballots from the no-CVR stratum would have
confirmed the outcome. If it were possible to conduct a ballot-level comparison audit for
the entire contest, an RLA at risk limit 5% could terminate after examining 31 ballots if it
found no errors. The additional work for the hybrid stratified audit is disproportionately in
the no-CVR counties.

A second notebook, hybrid-audit-example-2, illustrates the workflow for SUITE for an
election with 2 million ballots cast. The reported margin is just over 1%, but the reported
winner and reported loser are actually tied in both strata. The risk limit is 5%. For a
sample of 7600 ballots from the CVR stratum and 400 ballots from the no-CVR stratum,
the maximum combined p-value is 1, so the audit cannot stop there.

A third notebook, fisher combined pvalue, illustrates the numerical methods used to
check whether the maximum combined p-value is below the risk limit. It includes code for the
tests in the two strata, for the lower and upper bounds �� and �+ for �, for evaluating Fisher’s

https://www.github.com/pbstark/CORLA18
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combining function on a grid, and for maximizing the p-value, using the local modulus of
continuity for Equation 6.7 to bound any approximation error.

6.8 Discussion

We present SUITE, a new class of procedures for RLAs based on stratified random sam-
pling. SUITE is agnostic about the capability of voting equipment in di↵erent strata, unlike
previous methods, which require batch-level comparisons in every stratum. SUITE allows
arbitrary tests to be used in di↵erent strata; if those tests are sequentially valid, then the
overall RLA is sequential. (Otherwise, multiplicity adjustments might be needed if one wants
an audit that escalates in stages. See [128, 127] for two approaches.)

Like other RLA methods, SUITE poses auditing as a hypothesis test. The null hypothesis
is a union over all partitions of outcome-changing error across strata. The hypothesis is
rejected if the maximum p-value over all such partitions is su�ciently small. Each possible
partition yields an intersection hypothesis, tested by combining p-values from di↵erent strata
using Fisher’s combining function (or a suitable replacement).

Among other things, the new approach solves a current problem in Colorado: how to
conduct RLAs of contests that cross jurisdictional lines, such as statewide contests and many
federal contests.

We give numerical examples in Jupyter notebooks that can be modified to estimate the
workload for di↵erent contest sizes, margins, and risk limits. In our numerical experiments,
the new method requires auditing far fewer ballots than previous approaches would.
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Chapter 7

Challenges of using SUITE in practice

MCL 168.319 authorizes the Michigan Secretary of State’s o�ce to develop a post-election
audit procedure. Current procedures include performance audits at the local and county
level, to check whether state regulations were followed properly before, during, and after the
election, as well as a full manual recount of randomly selected precincts throughout the state
[100]. However, these audits are conducted after the results have been certified, making it
impossible to use any evidence of discrepancies to amend an incorrect outcome.

Moreover, they do not provide evidence that the reported outcome was determined cor-
rectly. RLAs present an opportunity to identify cases of fraud or errors where voting ma-
chines interpreted voter intent incorrectly, where voters mismarked ballots, or where ballots
simply weren’t tabulated, if those problems altered the outcome. For instance, a random
audit of 3% of scanners in New York county on Election Day 2018 revealed small discrepan-
cies in the number of ballots scanned and the number of ballots stored in physical batches,
and concluded that each of these discrepancies were due to mishandling by the poll workers
[59]. Human errors are inevitable; RLAs can provide statistical evidence that the magnitude
of errors was not su�ciently large to change the election outcome.

Given the evidence of Russian hacking in the 2016 elections, the Michigan Bureau of
Elections decided to pilot RLAs as additional layer of security for Michigan’s elections that
provides additional assurance that ballots were tallied correctly while reducing the need
for full manual recounts. Rochester Hills, Lansing, and Kalamazoo were invited to pilot
post-election audits to explore the feasibility and the challenges of conducting RLAs.

The three cities used di↵erent voting technologies in the 2018 general election. Rochester
Hills used voting equipment that did not produce cast vote records (CVRs), making ballot
or batch polling the only RLA strategy they could use. Lansing and Kalamazoo used two
di↵erent types of voting equipment that produced (di↵erently formatted) CVRs, but also
had a sizable fraction of mail-in ballots with no CVRs. This presented an opportunity to use
SUITE, which can handle all three of these situations. I was invited to attend the pilots as
an expert in risk-limiting audits and the software developer for the SUITE tool. The pilots
took place December 3-5, 2018.

Pilot RLAs have been crucial for election o�cials to learn how to conduct RLAs, under-
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standing which approaches are practical given the available resources, and for recommending
improvements. California hosted the earliest pilot RLAs in 2008 [40]. Between 2011 and
2013, fourteen RLAs were piloted in eleven California counties. The Secretary of State’s
o�ce documented its best practices, costs and timing, and recommendations for modifica-
tions to existing voting systems [87]. They found that the cost was minimal compared to
California’s 1% manual tally law. In November, 2017, Colorado became the first state to
conduct statewide risk-limiting audits. The Denver County Auditor evaluated the Colorado
risk-limiting audit process and documented its recommendations for improvement, including
creating more streamlined software for transmitting information between local and state-
level entities and a better sampling process for handling multi-page ballots [86]. Both the
November, 2018 pilot RLAs in the city of Fairfax, Virginia and in Orange County, Califor-
nia highlighted the importance of upgrading election hardware to newer voting systems and
hardware [61, 119].

Following [40], this chapter seeks to answer the following questions about implementing
SUITE in practice:

• What RLA methods are practical to use currently, and what resources are required to
use them?

• What steps of the RLA are challenging?

• What processes at the local level in Michigan need to be changed to use RLAs, and in
particular, to use SUITE?

7.1 Software

We began writing a software tool for SUITE1 in October, 2018. This was intended to be
a prototype user interface for these pilot RLAs rather than an industrial strength tool; the
hope is that software developers will be able to base a proper program on our prototype. We
chose to use a Jupyter notebook because the code for risk calculations was already written in
Python and notebooks provide a user interface more similar to a website than pure Python
code in the terminal would.

The SUITE tool calculates the necessary pieces of information for each step of the audit:

• It estimates the initial sample sizes needed in each stratum to stop the audit, assuming
that the reported results were correct and that one-vote overstatements occur at a very
low rate in the ballot comparison stratum.

• It uses the SHA256 PRNG from the cryptorandom package to draw the random sam-
ples of ballots in each stratum.

1 The tool can be run interactively at https://mybinder.org/v2/gh/pbstark/CORLA18/master?

filepath=code%2Fsuite_toolkit.ipynb.

https://mybinder.org/v2/gh/pbstark/CORLA18/master?filepath=code%2Fsuite_toolkit.ipynb
https://mybinder.org/v2/gh/pbstark/CORLA18/master?filepath=code%2Fsuite_toolkit.ipynb
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• It reads in a ballot manifest for each stratum as a separate CSV file, then determines
which ballots in which batch need to be pulled based on the samples that were drawn
previously, and finally exports this data to a CSV file to be printed.

• It takes the statistics from each sample (the number of 1-vote and 2-vote overstatements
and understatements in the comparison stratum, and the number of votes seen for each
candidate in the polling stratum) as input and runs the risk calculation for each pair
of reported winners and reported losers.

• If not all (winner, loser) pairs are confirmed, it estimates how many more ballots need
to be sampled in each stratum to confirm the reported outcome, assuming that the
rates of discrepancies and the rates of votes for each candidate will continue to reflect
those seen in the initial samples.

• It runs each of these steps again for a second round of sampling.

• It logs each step of the process in JSON files.

I projected the SUITE tool on a large screen for the audience to watch at each pilot. The
Jupyter notebook is available on GitHub and was set up to run in the cloud, but we decided
to run it locally on my laptop to save the time needed to train others on how to use the tool.

7.2 Michigan pilot RLAs

In coordination with the Bureau of Elections at the Michigan Secretary of State’s o�ce, we
performed three pilots of risk-limiting audit procedures. This section describes the audits in
each city and the di↵erences between them. Table 7.2 summarizes the sizes of each audit.

Since the goal of these pilots was to gain hands-on experience, instruct local election
o�cials, compare procedures, and identify bottlenecks in the processes, we opted to reduce
the population of ballots under audit to each city. The sampling frame for a true RLA
includes all ballots cast for a particular contest; none of the contests under audit were
entirely contained in the sampling frame of ballots. Each audit pretended that the ballots
we had access to comprised the entire contest. Nonetheless, reducing the sampling frame
made these pilots feasible to conduct in a day and illustrated RLA procedures to a wide
audience.

Rochester Hills

The Rochester Hills pilot RLA took place on December 3. About 30 local election o�cials
from around the state attended to observe the audit process. We audited Proposal 18-3, a
statewide proposal to add new voting policies to the Michigan constitution. In Rochester
Hills, “Yes” votes won with a 29% margin.
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City Total Winner Loser Margin % Ballots # Ballots % Ballots
ballots with a CVR audited audited

Rochester Hills 36,666 22,999 12,343 29% 0% 76 0.2%
Lansing 21,328 10,309 7,694 12% 50% 260 1.2%
Kalamazoo 27,666 20,699 5,569 55% 19% 40 1.4%

Table 7.1: Summary of the races audited. Ballots and votes for the candidates are the results
as reported. Margins are expressed as a percentage of total ballots cast. The ballots included
in the contest under audit in Lansing were restricted for the purpose of the pilot; half of
Election Day precincts were omitted.

Rochester Hills uses Hart InterCivic Verity tabulators, which do not provide CVRs. Thus,
we used entirely ballot polling for the audit. We did not need to use di↵erent software for
this: The SUITE tool reverts to pure ballot polling when the CVR stratum size is 0 ballots.

The SUITE tool estimated that we’d need to look at 76 ballots to achieve a risk limit of
5% if the reported results were correct. We had 5 two-person audit boards pull batches from
ballot bags and sample from them one of two ways: by counting down to the ballot that
the SUITE tool sampled (e.g. retrieving the twenty-first ballot in Election Day Batch 3 by
counting ballots from the top of the stack) or by using an approximate sampling technique,
k-cut, to select a ballot from the stack. k-cut involves pulling the batch chosen by the SUITE
tool, then “cutting” the stack of ballots like a deck of cards several times and choosing the
ballot on top to be in the sample [121]. This procedure samples ballots approximately
uniformly from a batch.

Audit boards used a mix of counting and k-cut to sample ballots: if the SUITE tool
sampled a ballot that would require counting more than 200 ballots to find it, the team used
k-cut instead. It took about 2.5 hours for the audit boards to pull the ballots and record
them, and another half hour for a separate team to tally them.

The sample contained 50 “yes” votes and 26 “no” votes. The risk based on the sample
was 2%.

Lansing

The Lansing pilot RLA took place on December 4. We audited the 54-A District Court Judge
race using a 9% risk limit. Cynthia Ward won over Ayanna Neal by about a 10% margin.
Though this contest was contained within the city of Lansing, we reduced the sampling frame
of ballots for other reasons, making this a pilot of RLA procedures rather than a true RLA.

First, there were several ballot bags that legally could not be opened. Precinct 45 was
one of the randomly selected precincts to do a full hand recount for the post-election audit
procedures developed under MCL 168.319, so the ballot bags containing ballots from Precinct
45 could not be opened. These bags contained ballots from other precincts as well. One
way to handle this would have been the “phantoms to zombies” approach, treating each
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inaccessible ballot in the sample as a vote for the reported loser [5]. Because the point of the
pilot was to illustrate procedures rather than to obtain a precise risk measurement, we opted
to remove ballots from the ballot bags containing Precinct 45 from the sampling frame.

Second, the SUITE tool estimated that the initial sample size needed would be over 500.
Based on observing the sampling in Rochester Hills the previous day, we knew that it would
not be possible to examine 500 ballots before the close of business day. To reduce the sample
size needed, we reduced the sampling frame: I removed about 30 Election Day precincts
from the ballot manifest and the reported vote totals.2 This changed the fraction of ballots
with a CVR from 23.6% to 50%, making the hybrid SUITE audit much more e�cient (see
Section 7.4). This did not substantially a↵ect the reported margin between Ward and Neal
amongst Election Day votes. The initial sample size estimate decreased to 260, with 130
ballots from the absentee votes and 130 from Election Day votes.

Lansing used 6 two-member audit boards. It took about 4 hours to pull and record all
the ballots, then another hour to compare absentee, vote-by-mail ballots to the CVR and
tally the Election Day sample. The audit boards used counting down to sample vote-by-
mail ballots, because these ballots were linked to their corresponding CVR by position: the
batches of vote-by-mail ballots and the CVR file were both supposed to contain ballots in
the order in which they were scanned. They used a mix of counting and k-cut to sample
Election Day ballots.

Among the 130 sampled vote-by-mail ballots, we identified 15 discrepancies between the
paper ballots and the CVR. It is unlikely that these were true discrepancies; we believe that
the sampled paper ballots were matched to the incorrect CVR because of counting errors in
sampling the ballots or the way the batches were stored. We discuss this issue further below.
With so many vote-by-mail discrepancies, the SUITE risk was 100%.

For comparison, we pooled the vote-by-mail and Election Day samples for a pure ballot
polling audit. One vote-by-mail ballot was sampled three times, reducing the overall ballot
polling sample size to 258 ballots. In total, there were 116 votes for Ward, 94 votes for Neal,
and 48 invalid ballots or write-ins. The initial sample size estimate for ballot polling was
285 ballots, just higher than the sample size actually drawn. Overall, the risk calculated
using SUITE ballot polling was 87%.3 Given the vote proportions observed in the sample,
the SUITE tool estimated that we’d need to draw 4,557 more ballots in a second round of
sampling to achieve a 9% risk limit.

Kalamazoo

The Kalamazoo pilot RLA took place on December 5. We audited the governor’s race,
pretending that the governor’s race was entirely contained in Kalamazoo city. In this contest,

2 Another approach could have been to draw a fixed number of ballots, say 100, from the entire population
and simply measure the attained risk of the sample. This approach would not have attained the desired 9%
risk limit, but would have been equally illustrative.

3 The risk calculation using BRAVO ballot polling is 38%. This di↵erence likely occurs because there
were so many votes for neither Ward nor Neal in the sample.
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Gretchen Whitmer beat runner-up Bill Schuette by a margin of 54%.
The SUITE tool estimated that we would need to pull 33 ballots to achieve a 5% risk

limit. Based on our experiences the previous two days, I knew this would not take long.
To ensure that we would meet the risk limit and to give each audit board extra hands-on
experience, I increased the total sample size to 40 ballots, 8 from the vote-by-mail ballots
and 32 from Election Day. It took 4 two-member audit boards about 1.5 hours to both
sample and tally the ballots.

The vote-by-mail ballots were imprinted with ID numbers, so the comparison audit in-
volved looking up the imprinted ID in the CVR file. They did not rely on preserving the
order of ballots as in Lansing, so a mix of counting and k-cut were used to sample both
vote-by-mail ballots and Election Day ballots.

There were no discrepancies in the vote-by-mail sample. In the Election Day sample,
there were 23 ballots for Whitmer, 8 ballots for Schuette, and 1 for Gelineau. The risk
between Whitmer and Schuette was 3.7%, while the risk between Whitmer and the remaining
runner-ups was below 1%.

7.3 Sampling ballots

The SUITE tool, as well as other existing RLA tools, draws random samples of ballots to
be audited with and without replacement, and identifies their position within batches of
ballots. The audit boards must then retrieve the batch and count down into the stack of
ballots to take out the sampled ballot. This is feasible when batches are small, but quickly
becomes problematic as batch sizes grow. In Rochester Hills, for instance, vote-by-mail
ballots are split into batches of 100 when they are put in the tabulators. On the other hand,
Election Day ballots are organized by precinct, resulting in batches of up to 1035 ballots.
In Kalamazoo, the average Election Day batch contained 829 ballots and the largest batch
contained 1578 ballots.

For large batches of ballots, we used k-cut in place of counting down to a high number of
ballots. k-cut is an approximate method of drawing simple random samples from physical
batches of paper. The idea is to “cut” the batch, as one would cut a deck of cards, choosing
where to cut uniformly at random. After the batch is cut several times, the item on top of
the stack is included in the sample. Based on preliminary results, 6 cuts is su�ciently many
to ensure that which item appears on top is indistinguishable from true uniform random
selection [121].

k-cut improves the speed of pulling ballots. I observed audit boards sampling ballots by
counting and using k-cut in each city. In Rochester Hills, I observed an audit board doing
both. It took 20 seconds to count a stack of 10 ballots, because after the first person counted
the second one double checked. I watched the same team do k-cut and it took them 75
seconds to perform 6 cuts. In Kalamazoo, I watched one team count 77 ballots in 2 minutes.
I timed another team using k-cut on a stack of over 1000 ballots to pull 2 ballots using 6
cuts: it took them 2 minutes, 5 seconds for the first ballot and 2 minutes, 22 seconds for the
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second. Based on these numbers I would estimate that a faster audit board would take the
same amount of time to count 75 ballots or to do 6 cuts. For a slower audit board, counting
60 ballots would take the same amount of time as doing 6 cuts. In either case, using k-cut
to select ballots is faster when the audit board would have to count more than 75 ballots.

However, k-cut has implementation challenges as well. The card-cutting analogy does
not hold for Michigan’s ballots: they are large and di�cult to physically handle unlike a
deck of playing cards. Michigan’s ballots are 22 inches long, so batches were too long to hold
lengthwise and too floppy to hold by the middle. Some audit boards realized that they could
have one person on each side of the table and move the ballots using four hands. The large
batches were unwieldy and heavy; many people serving on audit boards are older women, so
this was a problem.

Moreover, k-cut is only approximately drawing a simple random sample. The proofs of its
approximate uniformity depend on the empirical distribution of cut sizes, which might vary
by person, by batch size, by the duration of the audit, or any other unmeasured factors. We
attempted to improve audit boards’ cut size uniformity by providing guidance from pseudo-
random number generators. Each team that used k-cut used an online pseudo-random
number generator to obtain six numbers uniformly chosen between 1 and 99. This number
was intended to give guidance on what percentage of the batch to cut, for each of the six
cuts. While it is unlikely that the teams actually used these hints perfectly, it may have
improved systematic bias in choosing cut sizes. Even so, a few audit boards preferred to
count anyway; they trusted the randomness provided by the RLA tool’s random sampler
more than the approximation by k-cut.

7.4 Using comparison audits in hybrid SUITE

Ballot-level comparison audits are the most statistically e�cient type of RLA: the number of
ballots needed to end the audit, if the reported margin is correct, decreases inversely with the
margin. (In comparison, the average sample size needed for ballot polling decreases inversely
with the square of the margin.) It should be advantageous to use ballot-level comparisons
when possible [62].

We ran into three issues with the comparison audit portion of hybrid SUITE: interpreting
the CVR files and doing the comparisons, handling paper ballots so they can be linked to
the CVR, and SUITE’s e�ciency as a function of the size of the comparison stratum.

CVR Files

Ballot-level CVRs are necessary to perform ballot-level comparison audits. Comparison
audits were not possible in Rochester Hills, because the Hart voting system they use does
not make ballot-level data available in a way that can be matched to the corresponding
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paper ballot. The Dominion and ES&S voting systems, used in Lansing and Kalamazoo,
respectively, make this data available. However, the files are unwieldy.4

Dominion’s CVR files are written in JSON and use codes for each contest and candidate
that aren’t human readable. Lansing’s CVR was 40 MB and we had issues converting it
to a readable CSV file. Instead, we wrote a Python script on the fly to look up ballots by
position in batch. The ES&S CVR in Kalamazoo was made up of two CSV files containing
the unique ID imprinted on each ballot. Looking up ballots in this format was simpler.

For future comparison audits, it would be helpful to have automated software to parse
these CVRs, look up ballots in them, and determine whether there was a discrepancy. NIST
is leading an e↵ort to create a common CVR format,5 but there is no indication that it
will be adopted soon. Moreover, there must be an automated way to determine whether
a discrepancy is an overstatement, an understatement, or neither. Even the team of RLA
experts at these pilots had a di�cult time determining what type a discrepancy was. An
incorrect determination could undermine the audit or prolong it unnecessarily.

Paper handling

To perform a comparison audit, it is crucial that paper ballots can be matched to their
corresponding CVR. Lansing and Kalamazoo took di↵erent approaches to matching paper
and electronic records. In Kalamazoo, the ES&S tabulator imprinted a unique identifier on
their vote-by-mail ballots once they were scanned. This unique identifier was recorded in
the CVR, allowing us to pull a ballot and look up its ID in the CVR file. In Lansing, the
Dominion tabulator did not imprint identifiers on ballots. Instead, they relied on the position
of the ballot in the batch to match paper to electronic records: the CVR file preserved the
order in which ballots were tabulated. Both approaches have issues.

In Lansing, among the 130 sampled vote-by-mail ballots, we identified 15 discrepancies.
We are confident that paper handling issues were the culprit because we examined more
contests on the ballots with discrepancies: several other contests on those ballots showed
discrepancies between the paper ballot and CVR. A number of errors due to paper handling
could have caused this. First, if the audit boards counted ballots incorrectly and pulled
the wrong ballot, there’s no way of matching the CVR to the correct ballot. For instance,
an o↵-by-one counting error could cause us to compare a paper ballot to the wrong CVR.
Second, the city clerk reported that he saw some audit boards flip the batches upside-down,
thinking that because the top ballot was upside-down that the whole batch was. This would
certainly a↵ect the order of ballots. Third, the poll workers were told to preserve the order
of the vote-by-mail ballots as they were scanned, but we have no way of knowing whether
they attempted to do this. It’s possible that some batches were entirely out of order. Given
the reported vote totals in the vote-by-mail stratum, there was approximately a 42% chance
that a random CVR would match a sampled ballot for this contest. Nearly half of CVRs

4 Colorado has worked with Dominion Voting to create CVRs in a standardized, human-readable format.
This is something that the vendors can improve, but have not yet done so in most jurisdictions.

5 See https://github.com/usnistgov/CastVoteRecords, last accessed December 17, 2018.



CHAPTER 7. CHALLENGES OF USING SUITE IN PRACTICE 90

that were matched to sampled ballots could have been the wrong CVR, but went undetected
because we only checked for discrepancies in a single contest.

The Kalamazoo comparison audit found no discrepancies among the 8 sampled vote-by-
mail ballots. The audit boards pulled the 8 sampled ballots and used their unique identifiers
to look up the corresponding CVRs. This process was e�cient and more accurate than the
approach used in Lansing. However, the reliance on ballot identifiers opens the audit to
manipulation.

For instance, a malicious imprinter could skew the election by changing CVRs to reflect
a desired outcome and modifying imprinted identifiers on ballots, and escape detection by
this method of sampling ballots. Suppose that the number of paper ballots is equal to the
number of CVRs. The adversary can change a fraction of CVRs to skew the election, then,
print identifiers on the paper ballots to match the unchanged CVRs. Some identifiers will
be duplicated in the paper ballots, and it is unlikely that auditing a small fraction of ballots
would reveal duplicate IDs. The CVRs lead to the adversarially-desired election outcome.
The ballot sampling procedure used in Kalamazoo would not detect this: by sampling ballots
first and using their imprinted IDs to look in the CVR, one will never examine ballots in the
portion of the CVR that has been changed.

Another approach to sampling with the help of imprinted identifiers would be to sample
from the CVR, retrieve the paper ballot with the corresponding identifier. This ensures that
all CVRs have an equal probability of appearing in the sample. However, this approach is
vulnerable to manipulation of the paper ballots. To conduct a rigorous audit, upper bounds
on the number of ballots should be used in drawing the sample and any ballots that can’t
be located should be treated with the “phantoms to zombies” approach [5].

This would have been di�cult to implement in Kalamazoo: the vote-by-mail ballots
were stored in batches of size up to 355 and were not kept in the order in which they were
scanned. Locating the ballot with a particular identifier among large batches would have
likely been more time consuming than counting ballots. Moreover, without a test to ensure
that identifiers are unique, there is no guarantee that the retrieved ballot is the right one.

A better procedure would be to sample ballots from the manifest, then retrieve the ballot
and CVR according to their position in the batch. This prevents manipulated imprinted IDs
from biasing the sample. The “phantoms to zombies” method can be used to deal with any
ballot without a corresponding CVR [5]. The imprinted IDs can serve as a check that the
correct ballot and CVR are matched, and further provide evidence that the ballot manifest
is correct. This sampling approach could not have been used in Kalamazoo for this election
because they did not preserve the scanning order of their batches.

SUITE e�ciency

SUITE was developed with Colorado in mind: as of June 2018, an estimated 98.2% of
voters were in counties with CVRs. In Michigan, most voting equipment does not produce
a CVR. The machines that do are used to tabulate mail-in ballots. Only a small fraction
of the population is eligible to vote absentee: voters must be 60 years or older, unable
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to vote without assistance in the polling place, or in another uncommon circumstance. In
Kalamazoo, only 19% of the ballots audited were absentee votes and had a CVR. In Lansing,
before reducing the universe of cast ballots, 23.6% of ballots were absentee votes.

Figure 7.1 shows the estimated number of ballots needed to audit a contest of approxi-
mately 13.7 million ballots. Simulations were based on actual ballot counts from California’s
2008 election [16]. If 98% of ballots had CVRs, as in Colorado, and SUITE could have been
used to conduct a hybrid audit, the audit workload would have been slightly higher than a
pure ballot-level comparison audit. This is a substantial improvement over ballot polling:
for a 5% margin, ballot polling would require ten times more ballots than SUITE. However,
if only 25% of ballots had a CVR and a SUITE hybrid audit were done, the workload would
have been more than doing a pure ballot-polling audit.
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Figure 7.1: Estimated workload (sample size) for an RLA of 13.7 million ballots with a 5%
risk limit. The sample size is plotted on a logarithmic scale.

Ballot polling alone is more e�cient than SUITE when the fraction of ballots in the CVR
stratum is low. Simulations assuming that the overall margin between the reported winner
and loser is the same in both strata show that when the fraction of ballots with a CVR
is low, SUITE can be substantially worse. In Lansing, the reduced universe of cast ballots
contained 50% vote-by-mail ballots. If we had used ballot polling alone, the estimated initial
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sample size would have been 300 ballots, while the estimated initial sample size for SUITE
was 260. If the fraction of ballots had been below 40%, then ballot polling would have been
more e�cient. The improvement due to combining comparison and polling audits is not
substantial. In Kalamazoo, the estimated initial sample size for SUITE was 33 ballots, while
the estimated initial sample size for BRAVO would have been 25 ballots. Kalamazoo would
have needed at least 70% of ballots to come from vote-by-mail ballots for SUITE to be more
e�cient than BRAVO. Without a change in absentee voting policies or upgrades to voting
equipment, it would be more e�cient for Michigan to use BRAVO ballot polling audits.

7.5 Conclusions

The Michigan pilot RLAs demonstrated to local election o�cials that RLAs are feasible
and will save work, compared to the current practice of conducting full hand recounts of
randomly selected precincts across the state. Rochester Hills and Kalamazoo completed
their RLA procedures in several hours and met the 5% risk limit. Lansing did not meet its
9% risk limit due to discrepancies in the comparison audit portion; however, it is unlikely
that they would have completed an RLA in a single day because the margin in the target
contest was so small.

The ballot polling portions of the pilots went smoothly. k-cut enabled the audit boards
to sample ballots e�ciently from large batches, potentially saving hours relative to counting.
Moreover, k-cut makes sense to use for ballot polling: since ballots needn’t be matched to a
CVR, it is less important to retrieve “the right” ballot than it is for a comparison audit.

The comparison portions of the pilots faced issues. The CVR files were di�cult to
process, and it will be a challenge for cities without imprinted ballots to match ballots
to their corresponding CVR. Moreover, SUITE is less e�cient than ballot polling alone in
scenarios common across Michigan. Compared to Colorado, which has a primarily mail-in
election, Michigan only allows a small number of residents to vote by mail. SUITE is most
e�cient when a large fraction of ballots can be used in the comparison audit. Without
changes to their policies to increase the share of absentee voters or changes to their voting
hardware to capture single-ballot CVRs from Election Day voters, SUITE will not be an
e�cient RLA option for Michigan. Ballot polling appears to be the best option.

While we identified RLA processes that worked for each city, a true RLA must encompass
ballots from the entire contest under audit. Michigan’s elections are highly decentralized:
1,520 city and township clerks administer absentee mail-in voting and Election Day voting.
Participating in an audit outside the scope of their jurisdiction is a conceptual leap: local
election o�cials are accustomed to thinking about the processes in their jurisdiction. Coun-
ties are free to choose to use Hart, Dominion, or ES&S voting equipment, making it di�cult
to standardize processes across the state. RLAs for countywide and statewide contests will
be di�cult to conduct without a more streamlined election process throughout Michigan.
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Chapter 8

Bernoulli ballot polling: A manifest
improvement for risk-limiting audits

8.1 Introduction

In this chapter, we present an RLA method based on Bernoulli random sampling. Traditional
ballot-polling RLAs, discussed in Chapter 1, use simple random samples of ballots. With
simple random sampling, the number of ballots to sample is fixed; with Bernoulli sampling,
the expected sampling rate is fixed but the sample size is not. Conceptually, Bernoulli ballot
polling (BBP) decides whether to include the jth ballot in the sample by tossing a biased
coin that has probability p of landing heads. The ballot is included if and only if the coin
lands heads. Coin tosses for di↵erent ballots are independent, but have the same chance
of landing heads. (Rather than toss a coin for each ballot, it more e�cient to implement
Bernoulli sampling in practice using geometric skipping, described in Section 8.5.)

The logistical simplicity of Bernoulli sampling may make it useful for election audits.
Like all RLAs, BBP RLAs require a voter-verifiable paper record. Like other ballot-polling
RLAs [63, 62], BBP makes no other technical demands on the voting system. It requires
no special equipment, and only a minimal amount of software to select and analyze the
sample—in principle, it could be carried out with dice and a pencil and paper. In contrast
to extant ballot-polling RLAs, BBP does not require a ballot manifest (although it does
require knowing where all the ballots are, and access to the ballots). BBP is inherently local
and parallelizable, because the decision of whether to include any particular ballot in the
sample does not depend on which other ballots are selected, nor on how many other ballots
have been selected, nor even on how many ballots were cast. We shall see that this has
practical advantages.

Bernoulli sampling is well-known in the survey sampling literature, but it is used less often
than simple random sampling for a number of reasons. The variance of estimates based on
Bernoulli samples tends to be larger than for simple random samples [116], due to the fact
that both the sample and the sample size are random. This added randomness complicates
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rigorous inferences. A common estimator of the population mean from a Bernoulli sample
is the Horvitz-Thompson estimator, which has a high variance when the sampling rate p
is small. Often, p-values and confidence intervals for the Horvitz-Thompson estimator are
approximated using the normal distribution [65, 23, 138], which may be inaccurate if the
population distribution is skewed—as it often is in auditing problems [89].

Instead of relying on parametric approximations, we use a test based on Wald’s sequential
probability ratio test [145]. The test is akin to that in extant ballot polling RLA methods [63,
62], but the mathematics are modified to work with Bernoulli random samples, including the
fact that Bernoulli samples are drawn without replacement. (Previous ballot-polling RLAs
relied on sampling with replacement.) Conditional on the attained sample size n, a Bernoulli
sample of ballots is a simple random sample. We maximize the conditional p-value of the
null hypothesis (that the reported winner did not win) over a nuisance parameter, the total
number of ballots with valid votes for either of a given pair of candidates, excluding invalid
ballots or ballots for other candidates. A martingale argument shows that the resulting test
is sequential: if the test does not reject, the sample can be expanded using additional rounds
of Bernoulli sampling (with the same or di↵erent expected sampling rates) and the resulting
p-values will still be conservative.

A BBP RLA can begin in polling places on election night. Given an initial sampling
rate to be used across all precincts and vote centers, poll workers in each location determine
which ballots will be examined in the audit, independently from each other and indepen-
dently across ballots, and record the votes cast on each ballot selected. (Vote-by-mail and
provisional ballots can be audited similarly; see Section 8.5.) Once the election results are
reported, the sequential probability ratio test can be applied to the sample vote tallies to
determine whether there is su�cient evidence that the reported outcome is correct.1 If the
sample does not provide su�ciently strong evidence to attain the risk limit, the sample
can be expanded using subsequent rounds of Bernoulli sample until either the risk limit is
attained or all ballots are inspected. Figure 8.1 summarizes the procedure.

BBP has a number of practical advantages, with little additional workload in terms of
the number of ballots examined. Workload simulations show that the number of ballots
needed to confirm a correctly reported outcome is similar for BBP and the BRAVO RLA
[63]. If the choice of initial sampling rate (and thus, the initial sample size) is larger than
necessary, the added e�ciency of conducting the audit “in parallel” across the entire election
may outweigh the cost of examining extra ballots. Using statewide results from the 2016
United States presidential election, BBP with a 1% initial sampling rate would have had at
least a 99% chance of confirming the results in 42 states (assuming the reported results were
in fact correct). A Python implementation of BBP is available at https://github.com/
pbstark/BernoulliBallotPolling.

1The current method uses the reported results to construct the alternative hypothesis. A variant of the
method does not require the reported results. We do not present that method here; it is related to ClipAudit
[109].

https://github.com/pbstark/BernoulliBallotPolling
https://github.com/pbstark/BernoulliBallotPolling
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Procedure for a Bernoulli ballot-polling audit

1. Set initial sampling rate. Choose initial sampling rate p0 based on pre-election
polls or set at a fixed value. If p0 is selected based on an estimated margin, use
the ASN heuristic in Section 8.4.

2. Sample ballots and record audit data. Use geometric skipping (below) with
rate p0 to select ballots to inspect. Record votes on all inspected ballots.

3. Check attained risk. Once the final election results have been reported, for
each contest under audit and for each reported (winner, loser) pair (w, `):

• Calculate Bw, B`, and Bu from the audit sample.

• Find the (maximal) p-value from Bw, B`, Bu using the test in Section 8.3.

4. Escalate if necessary. If, for any (w, `) pair, the p-value is greater than ↵,
expand the audit in one of the ways described in Section 8.3.

Procedure for geometric skip sampling

1. Set the random seed. In each polling place, use a cryptographically secure
PRNG, such as SHA-256, with a seed chosen using true randomness.

2. Sample ballots. Following Section 8.5, for each batch of ballots: Set Y0 = 0 and
set j = 0.

• j  j + 1

• Generate a uniform random variable U on [0, 1).

• Yj  
l

ln(U)
ln(1�p)

m
.

• If
P

j

k=1 Yj is greater than the number of ballots in the batch, stop. Otherwise,
skip the next Yj � 1 ballots in the bundle, and include the ballot after that
one (i.e., include ballot

P
j

k=1 Yj)

Figure 8.1: Bernoulli ballot-polling audit step-by-step procedures.

8.2 Notation and mathematical background

We consider social choice functions that are variants of majority and plurality voting: the
winners are the k � 1 candidates who receive the most votes. This includes ordinary “first-
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past-the-post” contests, as well as “vote for k” contests.2 As explained in [63], it su�ces to
consider one (winner, loser) pair at a time: the contest outcome is correct if every reported
winner actually received more votes than every reported loser. Auditing majority and super-
majority contests requires only minor modifications.3 Section 8.3 addresses auditing multiple
contests simultaneously.

Let w denote a reported winning candidate and ` denote a reported losing candidate.
Suppose that the population contains Nw ballots with a valid vote for w but not `, N` ballots
with a valid vote for ` but not w, and Nu ballots with votes for both w and ` or for neither
w nor `. The total number of ballots is N = Nw + N` + Nu. Let Nw` ⌘ Nw + N` be the
number of ballots in the population with a valid vote for w or ` but not both. For Bernoulli
sampling, N may be unknown; in any event, Nw, N`, and Nu are unknown, or the audit
would not be necessary.

If we can reject the null hypothesis that N` � Nw at significance level ↵, we have
statistically confirmed that w got more votes than `. Section 8.3 discusses a test for this
hypothesis that accounts for the nuisance parameter Nw`. We assume that ties are settled
in a deterministic way and that if the audit is unable to confirm the contest outcome, a full
manual tally resulting in a tie would be settled in the same deterministic way.

Multi-round Bernoulli sampling

A Bernoulli(p) random variable I is a random variable that takes the value 1 with probability
p and the value 0 with probability 1 � p. BBP uses Bernoulli sampling, which involves
independent selection of di↵erent ballots with the same probability p of selecting each ballot:
Ij = 1 if and only if ballot j is selected to be in the sample, where {Ij}Nj=1 are independent,
identically distributed (IID) Bernoulli(p) random variables.

Suppose that after tossing a coin with probability p0 of landing heads for every item in
the population, we toss a coin with probability p1 for every item (again, independently),
and include an item in the sample if the first or second toss for that item landed heads.
That amounts to drawing a Bernoulli sample using selection probability 1� (1� p0)(1� p1):
an item is in the sample unless its coin landed tails on both tosses, which has probability
(1 � p0)(1 � p1). This extends to making any integral number K of passes through the
population of ballots, with pass k using a coin that has chance pk of landing heads: such “K-
round” Bernoulli sampling is still Bernoulli sampling, with P{I = 1} = p = 1�

Q
K�1
k=0 (1�pk).

2The same general approach works for some preferential voting schemes, such as Borda count and range
voting, and for proportional representation schemes such as D’Hondt [133]. We do not consider instant-runo↵
voting (IRV).

3For instance, for a majority contest, one simply pools the votes for all the reported losers into a single
“pseudo-candidate” who reportedly lost.
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Exchangeability and conditional simple random sampling

Because the N variables {Ij} are IID, they are exchangeable, meaning their joint distribution
is invariant under the action of the symmetric group (relabelings). Consider a collection of
indices S ⇢ {1, . . . , N} of size k, 0  k  N . Define the event

IS ⌘ {Ij = 1, 8j 2 S, and Ij = 0, 8j /2 S}.

Because {Ij} are exchangeable, PIS = PIT for every set T ⇢ {1, . . . , N} of size k, since
every such set T can be mapped to S by a one-to-one relabeling of the indices.

It follows that, conditional on the attained size of the sample, n =
P

N

j=1 Ij, all
�
N

n

�

subsets of size n drawn from the N items are equally likely: the sample is conditionally
a simple random sample (SRS) of size n. This is foundational for applying the SPRT to
Bernoulli samples.

8.3 Performing the audit

Suppose we draw a Bernoulli sample of ballots. The random variable B is the number of
ballots in the sample. Let Bw denote the number of ballots in the sample with a vote for w
but not `; let B` denote the number of ballots in the sample with a vote for ` but not w; and
let Bu denote the number of ballots in the sample with a vote for both w and ` or neither w
nor `, so B = Bw +B` +Bu.

We want to test the compound hypothesis that Nw  N` against the alternative that
Nw = Vw, N` = V`, and Nu = Vu, with Vw�V` > 0.4 The ballot polling test for overstatement
quotas developed in Section 6.5 can be used here, setting the null overstatement quota c to
0.

Wald’s SPRT [145] leads to an elegant escalation method if the first round of Bernoulli
sampling does not attain the risk limit: simply make another round of Bernoulli sampling,
as described in Section 8.3. If the null hypothesis is true, then Pr{infk Pk < ↵}  ↵, where
k counts the rounds of Bernoulli sampling. That is, the risk limit remains conservative for
any number of rounds of Bernoulli sampling.

Auditing multiple contests

The math extends to audits of multiple contests; we omit the derivation, but see, e.g.,
[62]. The same sample can be used to audit any number of contests simultaneously. The
audit proceeds to a full hand count unless every null hypothesis is rejected, that is, unless
we conclude that every winner beat every loser in every audited contest. The chance of
rejecting all those null hypotheses cannot be larger than the smallest chance of rejecting any
of the individual hypotheses, because the probability of an intersection of events cannot be

4The alternative hypothesis is that the reported results are correct; as mentioned above, there are other
approaches one could use that do not involve the reported results, but we do not present them here.



CHAPTER 8. BERNOULLI BALLOT POLLING: A MANIFEST IMPROVEMENT
FOR RISK-LIMITING AUDITS 98

larger than the probability of any one of the events. The chance of rejecting any individual
null hypothesis is at most the risk limit, ↵, if that hypothesis is true. Therefore the chance
of the intersection is not larger than ↵ if any contest outcome is incorrect: the overall risk
limit is ↵, with no need to adjust for multiplicity.

Escalation

If the first round of Bernoulli sampling with rate p0 does not generate strong evidence that
the election outcome is correct, we have several options:

1. conduct a full hand count

2. augment the sample with additional ballots selected in some manner, for instance,
making additional rounds of Bernoulli sampling, possibly with di↵erent values of p

3. draw a new sample and use a di↵erent auditing method, e.g., ballot-level comparison
auditing

The first approach is always conservative. Both the second and third approaches require
some statistical care, as repeated testing introduces additional opportunities to wrongly
conclude that an incorrect election outcome is correct.

To make additional rounds of Bernoulli sampling, it may help to keep track of which
ballots have been inspected.5 That might involve stamping audited ballots with “audited”
in red ink, for example.

Section 8.2 shows that if we make an integral number of passes through the population
of ballots, tossing a pk-coin for each as-yet-unselected item (we only toss the coin for an item
on the kth pass if the coin has not landed heads for that item in any previous pass), then the
resulting sample is a Bernoulli random sample with selection probability p = 1�

Q
K�1
k=0 (1�pk).

Conditional on the sample size n attained after K passes, every subset of size n is equally
likely to be selected. Hence, the sample is conditionally a simple random sample of size n
from the N ballots.

The SPRT applied to multi-round Bernoulli sampling is conservative: the unconditional
chance of rejecting the null hypothesis if it is true is at most ↵, because, if the null is true,
the chance that the SPRT exceeds 1/↵ for any K is at most ↵.

The third approach allows us to follow BBP with a di↵erent, more e�cient approach, such
as ballot-level comparison auditing [62]. This may require steps to ensure that multiplicity
does not make the risk larger than the nominal risk limit, e.g., by adjusting the risk limit
using Bonferroni’s inequality.

5Once ballots are aggregated in a precinct or scanned centrally, it is unlikely that they will stay in the
same order.
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8.4 Initial sampling rate

We would like to choose the initial sampling rate p0 su�ciently large that a test of the
hypothesis Nw  N` will have high power against the alternative Nw = Vw, N` = V`, with
Vw � V` = c for modest margins c > 0, but not so large that we waste e↵ort.

There is no analytical formula for the power of the sequential hypothesis test under this
sampling procedure, but we can use simulation to estimate the sampling rates needed to
have a high probability of confirming correctly reported election results. Table 8.1 gives the
sampling rate p0 needed to attain 80%, 90%, and 99% power for a 2-candidate race in which
there are no undervotes or invalid votes, for a 5% risk limit and a variety of margins and
contest sizes. The simulations assume that the reported vote totals are correct. The required
p0 may be prohibitively large for small races and tight margins; Section 8.6 shows that with
high probability, even a 1% sampling rate would be su�cient to confirm the outcomes of the
vast majority of U.S. federal races without further escalation.

The sequential probability ratio test in Section 8.3 is similar to the BRAVO RLA pre-
sented in [62] when the sampling rate is small relative to the population size. There are two
di↵erences between BRAVO and BBP: BBP incorporates information about the number of
undervotes, invalid votes, or votes for candidates other than w and `, and Bernoulli sampling
is done without (as opposed to with) replacement. If every ballot has a valid vote either for w
or for ` and the sampling rate is small relative to the population size, the expected workload
of these two procedures is similar. The average sample number (ASN) [145], the expected
number of draws required either to accept or to reject the null hypothesis, for BRAVO using
a risk limit ↵ and margin m is approximately

ASN ⇡ 2 ln(1/↵)

m2
.

This formula is valid when the sampling rate is low and the actual margin is not substantially
smaller than the (reported) margin used as the alternative hypothesis.

The ASN gives a rule of thumb for choosing the initial sampling rate for BBP. For a risk
limit of 5% and a margin of 5%, the ASN is about 2,400 ballots. For a margin of 10%, the
ASN is about 600 ballots. These values are lower than the sample sizes implied by Table 8.1:
the sampling rates in the table have a higher probability that the initial sample will be
su�cient to conclude the audit, while a sampling rate based on the ASN will su�ce a bit
more than half of the time.6 The ASN multiplied by 2–4 is a rough approximation to initial
sample size needed to have roughly a 90% chance that the audit can stop without additional
sampling, if the reported results are correct.

The ASN formula assumes that Nu is 0; the value of p0 should be adjusted to account for
ballots that have votes for neither w nor ` (or for both w and `). If r = Nu

N
is the fraction of

such ballots, the initial sampling rate p0 should be inflated by a factor of 1
1�r

. For example,

6The distribution of the sample size is skewed to the right: the expected sample size is generally larger
than the median sample size.
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Table 8.1: Estimated sampling rates needed for Bernoulli ballot polling for a 2-candidate
race with a 5% risk limit. These simulations assume the reported margins were correct.

sampling rate p to achieve . . .
true margin ballots cast 80% power 90% power 99% power

1% 100,000 55% 62% 77%
2% 100,000 23% 30% 46%
5% 100,000 5% 7% 12%
10% 100,000 2% 2% 4%
20% 100,000 1% 1% 1%

1% 1,000,000 10.4% 14.2% 24.2%
2% 1,000,000 2.9% 4.0% 7.5%
5% 1,000,000 0.5% 0.7% 1.3%
10% 1,000,000 0.2% 0.2% 0.4%
20% 1,000,000 0.1% 0.1% 0.1%

1% 10,000,000 1.15% 1.66% 3.11%
2% 10,000,000 0.30% 0.42% 0.84%
5% 10,000,000 0.05% 0.07% 0.13%
10% 10,000,000 0.02% 0.02% 0.04%
20% 10,000,000 0.01% 0.01% 0.01%

if half of the ballots were undervotes or invalid votes, then double the sampling rate would
be needed to achieve the same power as if all of the ballots were valid votes for either w or
`.

8.5 Implementation

Election night auditing

Previous approaches to auditing require a sampling frame (possibly stratified, e.g., by mode
of voting or county). That requires knowing how many ballots were cast and their locations.
In contrast, Bernoulli sampling makes it possible to start the audit at polling places imme-
diately, without even having to count the ballots cast in the polling place. This has several
advantages:

1. It parallelizes the auditing task and can take advantage of sta↵ (and observers) who
are already on site at polling places.

2. It takes place earlier in the chain of custody of the physical ballots, before the ballots
are exposed to some risks of loss, addition, substitution, or alteration.
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3. It may add confidence to election-night result reporting.

The benefit is largest if p0 is large enough to allow the audit to complete without es-
calating. Since reported margins will not be known on election night, p0 might be based
on pre-election polls, or set to a fixed value. There is, of course, a chance that the initial
sample will not su�ce to confirm outcomes, either because the true margins are smaller than
anticipated, or because the election outcome is in fact incorrect.

There are reasons polling-place BBP audits might not be desirable.

1. Pollworkers, election judges, and observers are likely to be tired and ready to go home
when polls close.

2. The training required to conduct and to observe the audit goes beyond what poll
workers and poll watchers usually receive.

3. Audit data need to be captured and communicated reliably to a central authority to
compute the risk (and possibly escalate the audit) after election results are reported.

Vote-by-mail and provisional ballots

The fact that Bernoulli sampling is a “streaming” algorithm may help simplify logistics
compared with other sampling methods. For instance, Bernoulli sampling can be used with
vote-by-mail (VBM) ballots and provisional ballots. VBM and provisional ballots can be
sampled as they arrive (after signature verification), or aggregated, e.g., daily or weekly.
Ballots do not need to be opened or examined immediately in order to be included in the
sample: they can be set aside and inspected after Election Day or after their provisional
status has been adjudicated. Any of these approaches yields a Bernoulli sample of all ballots
cast in the election, provided the same value(s) of p are used throughout.

Geometric skipping

In principle, one can implement Bernoulli sampling by actually rolling dice, or by assigning
a U [0, 1] random number to each ballot, independently across ballots. A ballot is in the
sample if and only if its associated random number is less than or equal to p.

However, that places an unnecessarily high burden on the quality of the pseudorandom
number generator—or on the patience of the people responsible for selecting ballots by
mechanical means, such as by rolling dice. If the ballots are in physical groups (e.g., all
ballots cast in a precinct), it can be more e�cient to put the ballots into some canonical
order (for instance, the order in which they are bundled or stacked) and to rely on the fact
that the waiting times between successes in independent Bernoulli(p) trials are independent
Geometric(p) random variables: the chance that the next time the coin lands heads will be
kth tosses after the current toss is p(1� p)k�1.
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To select the sample, instead of generating a Bernoulli random variable for every ballot,
we suggest generating a sequence of geometric random variables Y1, Y2, . . . The first ballot in
the sample is the one in position Y1 in the group, the second is the one in position Y1 + Y2,
and so on. We continue in this way until Y1 + . . . + Yj is larger than the number of ballots
in the group. This geometric skipping method is implemented in the software we provide.

Pseudo-random number generation

To draw the sample, we propose using a cryptographically secure PRNG based on the SHA-
256 hash function, setting the seed using 20 rolls of 10-sided dice, in a public ceremony. This
is the method that the State of Colorado uses to select the sample for risk-limiting audits.

This is a good choice for election audits for several reasons. First, given the initial seed,
anyone can verify that the sequence of ballots audited is correct. Second, unless the seed is
known, the ballots to be audited are unpredictable, making it di�cult for an adversary to
“game” the audit. Finally, this family of PRNGs produces high-quality pseudorandomness.

Implementations of SHA-256-based PRNGs are available in many languages, includ-
ing Python and Javascript. The code we provide for geometric skipping relies on the
cryptorandom Python library, which implements such a PRNG; see Chapter 4.

While Colorado sets the seed for the entire state in a public ceremony, it may be more
secure to generate seeds for polling-place audits locally, after the ballots have been collated
into stacks that determine their order for the purpose of the audit. If the seed were known
before the order of the ballots was fixed, an adversary might be able to arrange that the
ballots selected for auditing reflect a dishonest outcome.

While the sequence of ballots selected by this method is verifiable, there is no obvious
way to verify post facto that the ballots examined were the correct ones. Only observers of
the audit can verify that. Observers’ job would be easier if ballots were pre-stamped with
(known) unique identifiers, but that might compromise vote anonymity.

8.6 Evaluation

As discussed in Section 8.4, we expect that workload (total number of ballots examined) for
Bernoulli ballot polling to be approximately the same as BRAVO ballot polling. Figure 8.2
compares the fraction of ballots examined for BRAVO audits and BBP for a 2-candidate
contest, estimated by simulation. The simulations use contest sizes of 10,000 and 1,000,000
ballots, each of which has either a valid vote for the winner or a valid vote for the loser. The
percentage of votes for the winner ranges from 99% (almost all the votes go to the winner)
to 50% (a tie). The methods produce similarly shaped curves; BBP requires slightly more
ballots than BRAVO.

As the workload of BRAVO and BBP are similar, the cost of running a Bernoulli audit
should be similar to BRAVO. There are likely other e�ciencies to Bernoulli audits, e.g., if
the first stage of the audit can be completed on election night in parallel, it might result
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Figure 8.2: Simulated quantiles of sample sizes by fraction of votes for the winner for a
two candidate race in elections with 10,000 ballots and 1 million ballots, for BRAVO ballot-
polling audits (BPA) and Bernoulli ballot polling audits (BBP), for various risk-limits. The
simulations assume every ballot has a valid vote for one of the two candidates.

in lower cost as election workers and observers would not have to assemble in a di↵erent
place and time for the audit. Even if the cost were somewhat higher, that might be o↵set
by advantages discussed in Section 8.7.

Empirical data

We evaluate BBP using state-level data from the 2016 U.S. presidential election, collected
from OpenElections [91] or by hand where that dataset was incomplete. If the reported
margins are correct, BBP with a sampling rate of p0 = 1% and a risk-limit of 5% would have
a 99% or higher chance of confirming the outcome in 42 states. Table 8.6 shows the reported



CHAPTER 8. BERNOULLI BALLOT POLLING: A MANIFEST IMPROVEMENT
FOR RISK-LIMITING AUDITS 104

margins and estimated power in the 8 states with a lower than 99% chance of confirming
the outcome. Each of these states had a reported margin below 3%, so it is likely that any
RLA procedure would escalate. The workload for BPA would have a prohibitively high.

While the total sample size for a 1% BBP audit within states may appear large, and is
substantially larger than the workload for BPA when the margin is wide, the mean sample
size per-precinct for BBP is only about 10 ballot. If the audit is conducted in-precinct, the
workload would be fairly minute.

State Total Margin BBP Power BBP Workload BPA Workload

NH 744,296 0.37% 0.00 7,442 413,892
MI 4,799,284 0.22% 0.00 47,992 114,1942
WI 2,976,150 0.76% 0.04 29,761 96,194
PA 6,115,402 0.72% 0.18 61,154 110,278
NV 1,125,385 2.42% 0.50 11,253 9,619
MN 2,944,782 1.52% 0.54 29,447 23,763
ME 771,892 2.87% 0.55 7,718 6,573
FL 9,420,039 1.20% 0.82 94,200 40,469

Table 8.2: 8 states in the 2016 US Presidential election for which a 1% BBP audit would
have less than 99% chance of confirming the outcome.

8.7 Discussion

Bernoulli ballot polling has a number of practical advantages. We have discussed several
throughout the paper, but we review all of them here:

• It reduces the need for a ballot manifest: ballots can be stored in any order, and the
number of ballots in a given container or bundle does not need to be known to draw
the sample.

• The work can be conducted in parallel across polling places, and can be performed by
workers (and observed by members of the public) already in place on Election Day.

• The same sampling method can be used for polling places, vote centers, VBM, and
provisional ballots, without the need to stratify the sample explicitly.

• If the initial sampling rate is adequate, the winners can be confirmed shortly after
voting finishes—perhaps even at the same time that results are announced—possibly
increasing voter confidence.
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• When a predetermined expected sampling rate is used, the labor required can be
estimated in advance, assuming escalation is not required. With appropriate parameter
choices, escalation can be avoided except in unusually close races, or when the reported
outcome is wrong. This helps election o�cials plan.

• The sampling approach is conceptually easy to grasp: toss a coin for each ballot. The
audit stops when the sample shows a su�ciently large margin for every winner over
every loser, where “su�ciently large” depends on the sample size.

• The approach may have security advantages, since waiting longer to audit would leave
more opportunity for the paper ballots to be compromised or misplaced. Workers will
need to handle the ballot papers in any case to move them from the ballot boxes into
long-term storage.

O�cials selecting an auditing method should weigh these advantages against some po-
tential downsides of our approach, particularly when applied in polling places on election
night. Poll workers are already very busy, and they may be too tired at the end of the night
to conduct the sampling procedure or to do it accurately. When audits are conducted in
parallel at local polling places, it is impossible for an individual observer to witness all the
simultaneous steps. Moreover, estimating the sample size before margins are known makes
it likely that workers will end up sampling more (or fewer) ballots than necessary to achieve
the risk limit. While sampling too little can be overcome with escalation, the desire to avoid
escalation may make o�cials err on the side of caution and sample more than predicted to
be necessary, further reducing expected e�ciency.

Previous work

Bernoulli sampling is a special case of Poisson sampling, where sampling units are selected
independently, but not necessarily with equal probability. [4] propose a Poisson sampling
method in which the probability of selecting a given unit is related to a bound on the error
that unit could hide. Their method is not an RLA: it is designed to have a large chance
of detecting at least one error if the outcome is incorrect, rather than to limit the risk of
certifying an incorrect outcome per se.

Stratified audits

Independent Bernoulli samples from di↵erent populations using the same rate still yields a
Bernoulli sample of the overall population, so the math presented here can be used with-
out modification to audit contests that cross jurisdictional boundaries. Bernoulli samples
from di↵erent strata using di↵erent rates can be combined using SUITE [94], which can
be applied to stratum-wise p-values from any method, including BBP. (This requires minor
modifications to the p-value calculations, to test arbitrary hypotheses about the margin in
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each stratum rather than to test for ties; the derivations in Chapter 6 apply, mutatis mu-
tandis.) If some ballots are tabulated using technology that makes a more e�cient auditing
approach possible, such as a ballot-level comparison audit, it may be advantageous to strat-
ify the ballots into groups, sample using Bernoulli sampling in some and a di↵erent method
in others, and use SUITE to combine the results into an overall RLA.

8.8 Conclusion

We presented a new ballot-polling RLA based on Bernoulli sampling, relying on Wald’s se-
quential probability ratio test to calculate the sample’s risk limit. The new method performs
similarly to the BRAVO ballot-polling audit but has several logistical advantages, includ-
ing that it can be parallelized and conducted on election night, which may reduce cost and
increase security. The method easily incorporates VBM and provisional ballots, and may
eliminate the need for stratification in many circumstances. Bernoulli ballot polling with
just a 1% sampling rate would have su�ced to confirm the 2016 U.S. Presidential election
results in the vast majority of states, if the reported results were correct. The practical ben-
efits and conceptual simplicity of Bernoulli ballot polling may make it simpler to conduct
risk-limiting audits in real elections.
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Appendix A

Appendix for Chapter 3

A.1 Derangements

Theorem 2. The probability that a random permutation of a list is a derangement converges
to e�1 as the length of the list grows.

Proof. If all permutations occur with equal frequency, then the probability that a permu-
tation is a derangement is given by p0 = Dn

n! , where Dn is the number of derangements of
n items. Let Ap denote the set of permutations of n items that fix at least p items, for
p = 1, . . . , n. The set of derangements is the complement of the union of these sets, so
Dn = n!� |[n

p=1Ap|. Using the inclusion-exclusion principle, we have

|[n
p=1Ap| =

nX

p=1

|Ap|�
X

p<q

|Ap \ Aq|+ · · ·+ (�1)n+1|\n
p=1Ap|

= # permutations fixing one item�# permutations fixing two items + . . .

+ (�1)n+1# permutations fixing all items.

The number of permutations fixing p items is (n � p)!
�
n

p

�
because after fixing p points,

we can freely permute n� p of them, and there are
�
n

p

�
subsets of p points that we could fix.

Plugging this back in, we get

Dn = n!� (n� 1)!

✓
n

1

◆
+ (n� 2)!

✓
n

2

◆
� · · ·+ (�1)n
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n

n

◆

Dn

n!
= 1� 1

1!
+

1

2!
� · · ·+ (�1)n
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=
nX

p=0

(�1)p

p!
.
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This sum converges quickly to the Taylor series for e�1 ⇡ 0.3678794; the approximation error
is smaller than 10�8 for n > 10.

A.2 Fixed points of a permutation

Theorem 3. The distribution of the number of points fixed between two random permutations
is asymptotically Poisson distributed with parameter 1. For any list length n,

|P(Sn = k)� P(W = k)|  1

k!

1

(n� k + 1)!
.

Furthermore, using the Poisson approximation instead of the exact distribution to compute
expected cell counts for the chi-squared statistic inflates the chi-squared statistic by a factor
of at most n�2n.

Proof. Let Sn denote the number of matches between the previous permutation and the
current permutation. As before, Dn denotes the number of derangements of n items. Dn

satisfies the recurrence relation Dn = (n�1) (Dn�1 +Dn�2) with initial values D1 = 0, D2 =
1.

P (Sn = 0) =
Dn

n!

P (Sn = 1) =
nDn�1

n!
...

P (Sn = k) =

�
n

k

�
Dn�k

n!
.

The number of matches Sn is a sum of indicator variables, one for each position in the list.
Xi = 1 if position i is the same in the two permutations and 0 otherwise. The probability
that position i is fixed is 1

n
, for each i.

The sum of weakly dependent Bernoulli random variables is asymptotically Poisson dis-
tributed, with parameter equal to the sum of all of the Bernoulli parameters [33]. We’ll show
that Sn can be approximated well by a Poisson random variable with parameter 1. We begin
by writing explicitly the probability distribution of Sn.
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P(Sn = k) =

�
n

k

�
Dn�k

n!

=
n!Dn�k

n!(n� k)!k!

=
!(n� k)

(n� k)!k!

=
(n� k)!

P
n�k

i=0
(�1)i

i!

(n� k)!k!

=
1

k!

 
n�kX

i=0

(�1)i

i!

!
.

Let W be a Poisson(1) random variable, so P(W = k) = e
�1

k! . For any k � 0, the approxi-
mation error is

|P(Sn = k)� P(W = k)| =
���
1

k!

1X

i=n�k+1

(�1)i

i!

��� 
1

k!

1

(n� k + 1)!
.

Now, we are interested in how this approximation error shows up in the chi-squared test.
Suppose we generate r random permutations of a list of length n and compute Sn for each
consecutive pair. Consider the kth component of the chi-squared statistic. When we use
the approximate distribution, there is some error � in computing the expected number in
category k. To first order,

(Ok � Ek � �)2

Ei + �
=

(Oi � Ei)2

Ei

+ �

✓
1� O2

i

E2
i

◆

=
(Oi � Ei)2

Ei

✓
1 +

�

Ei

◆
.

The approximation error �  r|P(Sn = k)�P(W = k)|  r

k!(n�k+1)! and Ek =
r

k!

P
n�k

j=0
(�1)j

j! =
r

k! (e
�1 � �k!).

�

Ek

 1

(n� k + 1)!(e�1 � 1
(n�k+1!))

⇡ 1

n2n
.

Thus, the chi-squared statistic is inflated by a factor of at most n�2n. This becomes miniscule
as n increases.
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