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Abstract 

The complexity and unpredictability of a situation might 
contribute to how much an individual feels in control of their 
actions. Goal-directed behaviour tailored to different situations 
is enabled through a hierarchy of situated action control 
combining cognitive and sensorimotor control processes. We 
use eye-tracking to investigate the grounding of cognitive 
processes in the sensorimotor system. Our assumption is that 
different degrees of perceived control trigger cognitive states 
that are reflected in eye-movement behaviour. Utilizing a 
dynamic experimental environment, we investigate whether 
complexity and uncertainty of the situation are top-down 
processed into fixational eye movements. The distance to a 
reference point is affected by environmental complexity in all 
fixations; however environmental uncertainty is only 
incorporated in fixations that guide motor control. We discuss 
that these fixations are only executed under high sense of 
control when there are enough cognitive resources left to top-
down process the environmental uncertainty into gaze 
allocation. 

Keywords: situated action control; visual attention; eye-
movement control; sensorimotor grounding 

Introduction & Theoretical Background 
Although many aspects of a motor action occur without 
awareness, being aware and in control of an action is one of 
the most essential components of conscious experience 
(Blakemore & Frith, 2003). Surprisingly, the awareness of an 
intended movement does not necessarily mean that this exact 
movement will be performed. However, the match between 
intended and performed actions is what makes individuals 
take ownership of their actions. Therefore, the timing, 
trajectory and precision of the action are essential aspects of 
movements for people to be aware of how they interact with 
the outside world. The predicted effect the movements would 
have on the sensory feedback is the action-perception loop 
that is the centre of almost every model of action-awareness. 

It becomes clear why prediction is such a critical aspect of 
being aware of the movement (Synofzik et al., 2013). The 
better the prediction, the more one feels in control of an 
action. But when there is a mismatch between the prediction 
and what actually happened, another aspect comes into play, 
called postdiction, where the individual tries to adjust the 
action to minimise this mismatch. In the sensorimotor-based 
comparator model of action awareness, Synofzik and 

colleagues (2008) suggest that if sensorimotor prediction and 
sensory feedback align, it leads to feeling in control of an 
action. On the basis of this, further models were developed 
which predict that the actions that are most likely to match 
the prediction are selected (Kahl et al., 2022). Therefore, the 
feeling of control loss is accounted for in the action selection 
process, in which the action intentions are selected that have 
a higher chance of being implemented as predicted. 

Visual feedback might be one of the most accurate sensory 
channels to identify a mismatch. Consequently, the cognitive 
processes underlying action selection and pursuing selected 
action intentions are grounded in oculomotor control. 
Therefore, we investigate changes in eye-movement 
behaviour while introducing various types of uncertainty in 
an experimental computer game environment. When the 
outcomes of actions are harder to predict, it will lead to a 
feeling of control loss and thus to changes in action selection. 
We expect that the allocation of fixational eye movements 
might reflect the cognitive state of control loss that leads to 
these changes in oculomotor control. More specifically, we 
hypothesize that the feeling of control loss leads to eye-
movement control being based on the properties of the visual 
field (e.g. properties of stimuli) rather than higher cognitive 
processes such as task-relevant planning or the like. 

Visual Attention & Oculomotor Control 
In attention control models, two main accounts for directing 
attention are discussed: stimulus-based control and goal-
driven control (Vecera et al., 2014). The stimulus-based 
control, also called bottom-up control, involves the allocation 
of attention based on the salience of an object or a region in 
the visual field. Here, the optical characteristics of an object, 
such as size, colour, or motion, drive attention allocation. On 
the contrary, goal-driven control, also called top-down 
control, allocates attention on the basis of the individual’s 
intentions. Attention allocation in this case is mainly driven 
by task requirements and task-relevant stimuli. How 
individuals process and prioritize visual information lies in 
understanding the interplay between these two control 
modes. Vecera and colleagues (2014) point out that although 
stimulus-based attention control is thought of as the default 
one, in real-life behaviour, goal-driven is the more frequently 
used mode. 

2590
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



Our oculomotor behaviour is highly specialized, executing 
distinct eye movements in response to various tasks (Land & 
Hayhoe, 2001). This becomes particularly evident when 
reading (e.g. Vitu & McConkie, 2000), or engaging in 
dynamic tasks such as driving (e.g. Broadbent et al., 2023) or 
playing computer games (e.g. Holm et al., 2021). 
Specifically, tasks that are solved within dynamic 
environments, environments  that change constantly over 
time and are clustered with uncertainty require efficient eye-
movement control to aid goal-directed behaviour. Our visual 
system is tuned to identify action possibilities (Gibson, 
1966). The top-down processing component of eye-
movement control factors in the various options to act within 
a given environment. But what happens when the 
environment is increasingly uncertain (and complex) that 
action possibilities to solve the task at hand become difficult 
to identify? According to the assumptions of Vecera and 
colleagues (2014), the allocation of attention via eye-
movement control should be based less on top-down 
processing and more on the visual properties of the 
environment (bottom-up control).  

We aim to investigate this exact interplay of stimulus-based 
and goal-driven control of visual attention by combining a 
dynamic environment, in which participants solve a 
continuous task, with eye tracking. This should allow us to 
identify properties of eye movements that stem from bottom-
up or top-down control, respectively. 
 
Previous Findings 
Mallic and colleagues (2016) investigated several eye metrics 
to estimate cognitive states such as workload and fatigue. 
Participants played a Tetris game with increasing speed of 
falling blocks, which would increase cognitive load. The 
number of fixations increased while fixation durations 
decreased as the task became more difficult. Furthermore, the 
cognitive load in driving also affects oculomotor behaviour 
(Mahanama et al., 2022). A study of multi-tasking during 
driving revealed that the number of fixations in a single-task 
condition (driving only) was significantly higher than in a 
dual-task condition (driving and auditory task; Broadbent et 
al., 2023). In a study with self-driving cars, during expected 
stops, participants fixated more and longer on the human-
machine interface as opposed to the central or the peripheral 
environment (Stephenson et al., 2020). When the stops were 
unexpected, fixations were placed upon the central 
environment longer and more frequently. This implies a 
demand on attentional resources during unexpected events 
and that attention is then directed towards what is in front of 
the agent, in front of the car. Unexpected events in a study 
about a first-person shooter videogame elicited a higher 
number of fixations and decreased fixation durations (Holm 
et al., 2021). In this study, however, the unexpected events 
were associated with less central vision. During these events, 
players stayed relatively still while exploring the visual field. 
This is in line with findings indicating that scenery change is 
associated with higher visual motion (Zacks et al., 2006). 

Another spatial factor in fixations pertains to the control of 
an agent in a dynamic environment. For example, in driving 
research, novice drivers prefer to fixate on road points that 
might help with steering (Robbins & Chapman, 2019). In 
contrast, experienced drivers shifted their gaze away from 
these helpful points and explored the visual field more 
horizontally. 

Looking at these previous findings, it becomes clear that 
differences in the characteristics of eye-movement behaviour 
are caused by different types of uncertainty. These may be 
because someone is still a novice at performing a task, or 
because various events could not be anticipated, or because 
processing bottlenecks led to a higher cognitive load. In the 
present study we try to understand the different control 
mechanisms that affect eye-movement control. Therefore, we 
apply high-frequency eye-tracking and combine it with the 
Dodge Asteroids experimental environment (Heinrich et al., 
2023), in which participants steer an agent within a dynamic 
environment.  

We take into account that individual fixations can be 
executed on the basis of a variety purposes. Hence, we resort 
to distance to reference point (D2R) for categorizing different 
fixational eye movements. D2R is a computation of the 
Euclidian distance from the fixation to the AOI (Falck-Ytter 
et al., 2013). More specifically, we make a distinction 
between close fixations and distant fixations. Close fixations 
are fixations made while the agent or a reference point is 
inside the region of central vision (fovea and parafovea; up to 
5° eccentricity) and thus can be perceived with relatively high 
accuracy. Fixations made with the agent being outside of the 
central vision region, in peripheral vision, are referred to as 
distant fixations. In these cases, we assume that the gaze is 
detached from the reference point to such an extent that the 
environment and not the agent's immediate surroundings are 
visually explored. Distant fixations might serve guiding other 
manual control, foveating on future locations for example of 
hands in grasping movements or the vehicle when driving.  

The main objective of this study is to investigate changes 
in visual exploration induced by situations of various 
uncertainty. For this, we assess gaze allocation relative to the 
agent as key metric for visual exploration in both types of 
fixations individually (close and distant fixations). We 
assume that the distance to the agent that participants control 
within the Dodge Asteroids environment reflects the feeling 
of control at the cognitive level. Despite the exploratory 
nature of the study, based on previous findings, we expect 
that the distance to the agent is smaller in situations of higher 
unpredictability and higher complexity. We anticipate this to 
be true for both types of fixations. A short distance therefore 
implies lower control. In close fixations allocating the gaze 
even closer to the agent might signify having to monitor the 
outcome of each motor command with higher accurate vision. 
On the contrary, in distant fixations shorter distances might 
imply the pursuit of action intentions that are more easily to 
accomplish. This is consistent with previous results of novice 
and expert drivers where, compared to the experts, novice 
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drivers execute fixations that are allocated closer to the 
vehicle (Robbins & Chapman, 2019).  

Methods 

Participants 
Participants were recruited through the SONA-Platform and 
were students at the University of Potsdam. The recruitment 
process was conducted from June 1st, 2023, until June 15th, 
2023. Overall, twenty adults (Nfemale = 15) with a mean age 
23.57years (SDage = 4.89years) took part in the experiment. 
All participants provided written informed consent and were 
either financially compensated (12€/hour) or collected 
participant hours. A vision test was conducted to assess the 
normality of each participant’s vision. The correction to 
normal was allowed only with help of contact lenses, as a 
reflection from glasses could compromise eye-tracking data.  

Experimental Paradigm 
We adapted the Dodge Asteroids environment (Heinrich et 
al., 2023), a game-like experimental environment, 
implemented in Python (Van Rossum & Drake, 2009) using 
the PyGame package (Shinners, 2011) that runs at 60 frames 
per second. In every trial of the experiment, participants have 
to steer an agent (green spaceship visible in Figure 1A) to a 
finish line by staying inside borders and avoiding obstacles 
(comets). The spaceship automatically travels downward in 
the environment, but participants can control the spaceship 
horizontally. On the screen, however, the spaceship is 
stationary at X = 954, Y = 270 position to remain a fixed 
reference point. Steering will thus result in the surroundings 
moving around the spaceship.  

To fully understand the experimental design, clarification 
of the terms is needed. The length of the environment and 
exact positions of the comets and are defined as a level. As a 
run, we define the manipulations of one level. Thus, playing 
one level with and without comets would sum up to two runs. 
The grouping of all levels with the same manipulation is 
defined as a block. For example, an easy block would mean 
all levels in condition are played with runs with a fever 
number of comets (N_easy). A single attempt to steer the 
spaceship to the finish line at the bottom of the level is 
defined as a trial. Every participant has a maximum of 3 
attempts per run. If all three attempts for a given run are 
unsuccessful, this specific run is removed from the 
experimental procedure.  

 In order to investigate the oculomotor behaviour in an 
environment with different types of uncertainty, we introduce 
the drift manipulation. Within the environment, drifts are 
visualised as red bars. In the normal drift condition, upon 
entering the area on the Y-axis occupied by the red bar, in 
every frame the agent is pushed to the opposite side of the red 
bar by half of a normal step if steered (Figure 1A). Different 
types of uncertainty result from manipulating the visual 
appearance of drifts. In addition to normal drift as described 
above (visible as red bar and imposing movement to the 
opposite side of half a normal step size), two new drift 

conditions are introduced: fake drifts and invisible drifts. The 
fake drifts appear as a red bar, the same way as the normal 
drifts, but no horizontal movement is applied to the agent; 
thus, the drift does not affect the spaceship's position within 
the environment. The invisible drifts are not visually 
displayed in the game, but they have the same effect as the 
normal drifts, pushing the agent to the opposite side of the 
drift bar by half a step size.  

 

 
Figure 1: A. Visualization of an instance within a run in the 
Dodge Asteroids environment with red arrows symbolising 
the directional effect of drift; B. Graphic representation of the 
drifts in a level. Drift constellation A in red, drift 
constellation B in green. The colours are for visualisation 
purposes only. All tiles in the game remain red. 
 

In the experiment, there are three blocks. In every trial of a 
block, half of the drifts are always normal drifts. The other 
half differs from block to block and will be either no drifts 
referred to as normal block), fake drifts (referred to as fake 
block, and invisible drifts (referred to as invisible block). 
Overall, 6 levels with the same number of comets (N) and the 
same length (750 vertical steps) are played. Each level 
features 8 drifts, whereas each drift is randomly assigned to 
one of two constellation groups, A and B (depicted as green 
and red in Figure 1B). There are 2 variations of each level to 
prevent the effects of specific drifts within the level and 
ensure the same conditions for each drift manipulation. In 
variation 1, all drifts belonging to group A are applied as 
normal drifts, and all drifts belonging to group B are 
manipulated drifts according to the block. The opposite is 
true for variation 2, where all drifts belonging to group A are 
manipulated drifts according to the block, and all drifts 
belonging to group B are applied as normal drifts. See Table 
1 for an overview. 

 
Table 1: Variations of drifts in the blocks 

 
This means that every drift is experienced as a normal drift 

as well as a manipulated drift. This choice in experimental 

Normal Fake Invisible 

A – Normal A – Normal A – Normal 

B – No Drift B – Fake B – Invisible 

A – No Drift A – Fake A – Invisible 

B – Normal B – Normal B – Normal 
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design together with a maximum number of attempts is 
intended to prevent participants from remembering certain 
drift situations. Every level is played with each of the three 
different drift manipulations in both constellations A and B, 
therefore each level is played at least 6 times (given that the 
run was successfully completed in the first attempt). 
Therefore, in total, at least 36 runs (6 levels x 3 blocks x 2 
variations) are played. If a player crashes into a wall or 
obstacle during a run, they are stripped of an attempt and the 
run is inserted at a random position within the sequence of 
the block. This means a participant can play a maximum of 
108 trials during the experiment. 

In the experimental procedure, the normal block is always 
the first block that is presented. After that, one of the 
manipulation blocks (fake/invisible) is presented. The order 
of the manipulation blocks is counterbalanced across 
participants. Between the two manipulation blocks, levels 
with normal drift condition are inserted to re-establish 
baseline behaviour.  

Eye-tracking Procedure 
Participants eye movements were recorded binocularly using 
the ViewPixx TRACKPixx eye tracker (VPixx Technologies, 
Saint-Bruno, QC, Canada) with a sampling rate of 2000 Hz. 
The eye tracker recorded X- and Y-coordinates of the 
individual eyes. The task was presented using a 28” ASUS 
PB277Q screen with a 60 Hz refresh rate. Participants sat at 
a distance of 70 cm away from the screen, and the camera 
was positioned just below the screen. Participants were asked 
to place their heads on a chin rest and remain in this position 
during trials. Before the start of the experiment, participants 
had to complete a nine-point calibration to ensure tracking 
accuracy. Before each trial, an additional five-point 
calibration was performed. Participants were asked to keep 
their gaze on the screen while playing. After every trial, 
participants were allowed to leave the chin rest and look at a 
keyboard to rate their control over the spaceship.  

Every row of the eye-tracking data obtained corresponds to 
a single fixation. Each fixation is associated with 
participants’ ID, block type, drift variation, drift type, trial, 
number of drift tiles on screen (visible or not), number of 
visible obstacles, and its location given by the midpoint of X- 
and Y-coordinates of both eyes. The data set also includes the 
Euclidean distance to the spaceship given in visual degrees, 
fixation duration, fixation count (how many fixations were 
executed before in this given trial).  

To adjust the eye tracker and familiarize participants with 
gameplay and controls, three levels with varying numbers of 
comets were played as training before the start of the actual 
experiment. These training runs were played without drifts to 
avoid potential learning effects for drift. The experiment was 
terminated if a participant could not finish all three training 
runs within three attempts each. Participants were still 
compensated for the time they contributed. 

Overall, one experiment session took a maximum of 90 
minutes to complete. No sensitive data was collected, and 
participants were given enough time for breaks. Therefore, 

this study aligns with ethical guidelines common in 
psychological research. 

Data Analysis 
To analyze the eye-tracking data, we applied linear mixed-
effects models (LMM) in R (version 4.3.0) using the lme4 
package (Bates et al., 2015). LMMs are a powerful statistical 
tool for analyzing data with fixed and random effects 
(Gałecki & Burzykowski, 2013). Fixed effects are variables 
that are considered to be a factor of interest and have a direct 
effect on the dependent variable. In contrast, random effects 
are used to model the variability across different groups or 
individuals, allowing to account for effects on group- or 
subject-level. The intent of the analysis is to derive two 
individual mathematical models that predict the distance to 
agent. One for close fixations in which the agent is within 
parafoveal vision (distance between point of fixation and 
agent is less than 5 visual degrees) and distant fixations (point 
of fixation being at least 5 visual degrees away from agent). 
Based on a box-cox analysis (Box & Cox, 1964), the distance 
to the spaceship was logarithmically transformed. Note that 
all reported estimates of effects are therefore on the 
logarithmic scale. 
 
Fixed Effects 
Block type, number of drifts, and number of visible obstacles 
are included in the models as fixed effects. The number of 
drifts (ND) corresponds to the number of drift tiles present on 
screen (visible or not) during the time of initiation of the 
fixation.  The number of visible obstacles (NVO) corresponds 
to the number of comets visible on the screen at the time of 
initiation of the fixation. 

The normal block is chosen as a baseline condition. NVO 
and ND are continuous variables and left uncentered, as the 
intercept is interpretable with no drifts and no comets on the 
screen. Therefore, the intercept in all models represents the 
mean value of a dependent variable in the normal block with 
no comets and no drifts. 

We assume an interaction between the block type and ND. 
These two variables represent the environmental uncertainty 
for participants. NVO represents the complexity of the 
environment at that specific moment in which the fixation is 
executed. 

Bootstrap estimates of confidence intervals are obtained to 
achieve more generalizable parameter estimations. Individual 
parameters are re-sampled, and 95% confidence intervals are 
reported. A total of 5000 re-samples are used for each of the 
two models. 

 
Model Selection 
Random effects are chosen for each model individually by 
comparing different random effects structures. To generalize 
results over various populations, the intercept will vary by 
participant due to the assumption that the individual 
differences across participants might contribute to the overall 
variance of the results. It is also assumed that individual 
differences contribute to the variability of responses to the 
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various block types. Therefore, we introduce a random slope 
effect for block type. The models that do not converge or 
have a singularity issue, which can be caused by overfitting 
the random-effects structure, are not included when selecting 
the final model. The random effects structure is chosen by 
referring to the Bayesian Information Criterion (BIC; 
Chakrabarti & Ghosh, 2011). The BIC prioritises simpler 
models over complex ones, therefore it is used to identify the 
most correct model with the highest chance of being 
reproducible, aiding further implementations of the 
experiment. 

Results 

Learning Effect 
A logistic LMM is fitted to predict the probability of 
successfully completing a trial to investigate possible 
learning effects. Block progression signifies the percentual 
completion of a specific block. We found a main effect for 
block progression (OR = 1.02, SE = 1.01, p = .005, 95% CI 
[1.01, 1.03]). The fake block condition significantly differs 
from the normal block, which was coded as baseline (OR = 
3.8, SE = 1.58, p = .004, 95% CI [1.7, 9.27]). The effects of 
block progression on success probability can be seen in a 
figure 2.  

 
Figure 2: the change in probability of completing a trial with 
increasing block progression. 

Close Fixations 
The final model to predict fixation distance to ship in close 
fixations includes a random intercept effect for participant ID 
and a random slope effect for block type (BIC = 80661). 
Table 2 provides an overview of all effects for this model. We 
found a significant main effect of NVO (b = .01, SE = .001, 
p <.001, 95% CI [.01, .015]), indicating that the distance to 
the spaceship increases with increasing NVO. The block 
types do not significantly differ from each other. The 
interaction between the fake block and ND is approaching 
significance (b = .003, SE = .02, p = .055, 95% CI [0.0, .07]). 

 

Table 2: Parameters for distance to spaceship in close 
fixations 

 
Effect Estimate SE 95% CI p 

   LL UL  
Intercept 0.81 0.06 0.69 0.93 <.001 
NVO 0.01 0.001 0.01 0.015 <.001 
ND -0.01 0.02 -0.03 0.02 .70 
FB -0.01 0.04 -0.09 0.06 .72 
IB -0.05 0.03 -0.11 0.01 .10 
ND x FB 0.03    0.02 0.0 0.07 .05 
ND x IB 0.03 0.02 -0.02 0.06 .06 
Note. FB – Fake Block; IN – Invisible Block. 

Distant Fixations 
Similar to the one for close fixations, the final selected model 
to predict the distance to the spaceship in distant fixations 
includes a random intercept effect for the participant ID and 
a random slope effect for the block type (BIC = 35951). For 
an overview of all effects for this model, see table 3. NVO 
significantly affects the predicted variable (b = -.02, SE = 
.001, p <.001, 95% CI [-.02, -.01]), indicating shorter 
distances to the spaceship with increasing NVO. The main 
effect of ND is significant (b = -.04, SE = .01, p <.001, 95% 
CI [-.06, -.02]), also eliciting shorter distances with 
increasing ND. There are no significant effects for block type 
or the interactions between block type and ND. 
 

Table 3: Parameters for distance to spaceship in distant 
fixations 

 
Effect Estimate SE 95% CI p 

   LL UL  
Intercept 2.13 0.04 2.05 2.21 <.001 
NVO -0.02 0.001 -0.02 -0.01 <.001 
ND -0.04 0.01 -0.06 -0.02 <.001 
FB 0.02  0.05 -0.08 0.11 .74 
IB -0.03 0.04 -0.11 0.05 .41 
ND x FB -0.01 0.01 -0.03 0.02 .54 
ND x IB 0.005 0.01 -0.02 0.03 .66 
Note. FB – Fake Block; IN – Invisible Block. 
 

Discussion 
We investigated gaze allocation with respect to the agent in a 
novel experimental environment. Manipulating the type of 
uncertainty encountered in the environment, we induced 
various states of cognitive control. We differentiated between 
fixations based on whether they are initiated with the agent 
within high accuracy vision or outside of it. We found that 
between the two types of fixations there are differences in 
what is visually processed of the environment and 
incorporated in gaze allocation. 
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There was a definite learning effect, as participants showed 
increased probability to successfully complete a trial with 
more trials played within a block. This was the case for the 
normal and invisible block, but not for the fake block (Figure 
2). The lack of learning within the fake block could be 
explained by already high performance at the beginning of 
the block. Our analyses did not account for the learning itself, 
although we expect that the learning effect also affected the 
gaze allocation behaviour of participants. 

Unsurprisingly, the characteristics of the visual 
environment played a significant role in shaping participants 
oculomotor behaviour, indicated by the main effect of NVO 
present in both close and distant fixations. However, the 
effect has opposite tendencies in the different types. When 
participants engage in close fixations, the distance to the 
agent increases with the number of visible obstacles. This is 
contradictory to our hypothesis, but it might relate to the need 
of monitoring the visual environment as it gets more complex 
while focusing on the agent. Confirmatory to our hypothesis 
however, when fixations are initiated further away from the 
agent, the distance decreases with increasing NVO. In 
fixations that were already close to the agent, there were no 
other effects besides NVO that affected their allocation. We 
argue that this might indicate bottom up, or stimulus-based 
visual attention control. At the higher cognitive level, the loss 
of control means that the uncertainty factor of drift cannot be 
processed. There are simply not enough cognitive resources 
left. This is why drift (the number of drift tiles or the block 

type) is not factored in gaze allocation. As a result, the 
fixational distance to the spaceship only depends on visible 
information (NVO). Incoming obstacles and subsequent 
changes within the environment shift the gaze away from the 
agent, resulting in larger distances. The limited resources are 
used on processing of visual information, rather than 
anticipating future situation or planning paths. 

Although the main effect of NVO is also present in distant 
fixations, there is an additional main effect for the number of 
drift tiles. The effect might be ascribed to top-down, or goal-
oriented control of visual attention, where participants 
actively plan for the potential effect of drift. This could mean 
that they feel enough in control on the cognitive level and 
thus have enough cognitive resources to anticipate the 
uncertain elements in the environment, in turn incorporating 
them in gaze allocation. 

These results imply that different cognitive processes take 
place that consequently lead to fixations being executed 
either with the agent in central or in the peripheral vision. 
This means that simply the execution of a close or distant 
fixation might indicate a specific feeling of control (low and 
high respectively). Gaze allocation in general might therefore 
represent a highly sensitive intrinsic measurement for 
moment-to-moment changes in cognitive control induced by 
environmental uncertainty. However, in order to make a more 
confident statement about this, the roles of these fixations 
would have to be examined more closely. 

Figure 3: Effect on fixational distance to spaceship modulated by block type, NVO and ND in close 
fixations (top) and distant fixations (bottom). 
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