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Closed-loop optimization of fast-charging 
protocols for batteries with machine 
learning

Peter M. Attia1,7, Aditya Grover2,7, Norman Jin1, Kristen A. Severson3, Todor M. Markov2,  
Yang-Hung Liao1, Michael H. Chen1, Bryan Cheong1,2, Nicholas Perkins1, Zi Yang1,  
Patrick K. Herring4, Muratahan Aykol4, Stephen J. Harris1,5, Richard D. Braatz3 ✉,  
Stefano Ermon2 ✉ & William C. Chueh1,6 ✉

Simultaneously optimizing many design parameters in time-consuming experiments 
causes bottlenecks in a broad range of scientific and engineering disciplines1,2. One 
such example is process and control optimization for lithium-ion batteries during 
materials selection, cell manufacturing and operation. A typical objective is to 
maximize battery lifetime; however, conducting even a single experiment to evaluate 
lifetime can take months to years3–5. Furthermore, both large parameter spaces and 
high sampling variability3,6,7 necessitate a large number of experiments. Hence, the 
key challenge is to reduce both the number and the duration of the experiments 
required. Here we develop and demonstrate a machine learning methodology  to 
efficiently optimize a parameter space specifying the current and voltage profiles of 
six-step, ten-minute fast-charging protocols for maximizing battery cycle life, 
which can alleviate range anxiety for electric-vehicle users8,9. We combine two key 
elements to reduce the optimization cost: an early-prediction model5, which reduces 
the time per experiment by predicting the final cycle life using data from the first few 
cycles, and a Bayesian optimization algorithm10,11, which reduces the number of 
experiments by balancing exploration and exploitation to efficiently probe the 
parameter space of charging protocols. Using this methodology, we rapidly identify 
high-cycle-life charging protocols among 224 candidates in 16 days (compared with 
over 500 days using exhaustive search without early prediction), and subsequently 
validate the accuracy and efficiency of our optimization approach. Our closed-loop 
methodology automatically incorporates feedback from past experiments to inform 
future decisions and can be generalized to other applications in battery design and, 
more broadly, other scientific domains that involve time-intensive experiments and 
multi-dimensional design spaces.

Optimal experimental design (OED) approaches are widely used to 
reduce the cost of experimental optimization. These approaches 
often involve a closed-loop pipeline where feedback from completed 
experiments informs subsequent experimental decisions, balancing 
the competing demands of exploration—that is, testing regions of the 
experimental parameter space with high uncertainty—and exploita-
tion—that is, testing promising regions based on the results of the com-
pleted experiments. Adaptive OED algorithms have been successfully 
applied to physical science domains, such as materials science1,2,12–14, 
chemistry15,16, biology17 and drug discovery18, as well as to computer 
science domains, such as hyperparameter optimization for machine 
learning19,20. However, while a closed-loop approach is designed to 

minimize the number of experiments required for optimizing across a 
multi-dimensional parameter space, the time (and cost) per experiment 
may remain high, as is the case for lithium-ion batteries. Therefore, an 
OED approach should account for both the number of experiments 
and the cost per experiment. Multi-fidelity optimization approaches 
have been developed to learn from both inexpensive, noisy signals and 
expensive, accurate signals. For example, in hyperparameter optimiza-
tion for machine learning algorithms, several low-fidelity signals for 
predicting the final performance of an algorithmic configuration (for 
example, extrapolated learning curves19,20, rapid testing on a subset 
of the full training dataset21) are used in tandem with more complete 
configuration evaluations22,23. For lithium-ion batteries, classical 

https://doi.org/10.1038/s41586-020-1994-5

Received: 6 August 2019

Accepted: 19 December 2019

Published online: 19 February 2020

 Check for updates

1Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. 2Department of Computer Science, Stanford University, Stanford, CA, USA. 3Department of Chemical 
Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. 4Toyota Research Institute, Los Altos, CA, USA. 5Materials Science Division, Lawrence Berkeley National Laboratory, 
Berkeley, CA, USA. 6Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. 7These authors contributed equally: Peter M. Attia, Aditya Grover. ✉e-mail: braatz@
mit.edu; ermon@cs.stanford.edu; wchueh@stanford.edu

https://doi.org/10.1038/s41586-020-1994-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-1994-5&domain=pdf
mailto:braatz@mit.edu
mailto:braatz@mit.edu
mailto:ermon@cs.stanford.edu
mailto:wchueh@stanford.edu
harri
Highlight



398 | Nature | Vol 578 | 20 February 2020

Article

methods such as factorial design that use predetermined heuristics 
to select experiments have been applied24–26, but the design and use 
of low-fidelity signals is challenging and unexplored. These previously 
considered approaches do not discover and exploit the patterns present 
in the parameter space for efficient optimization, nor do they address 
the issue of time per experiment.

In this work, we develop a closed-loop optimization (CLO) system 
with early outcome prediction for efficient optimization over large 
parameter spaces with expensive experiments and high sampling 
variability. We employ this system to experimentally optimize fast-
charging protocols for lithium-ion batteries; reducing charging times 
to approach gasoline refuelling time is critical to reduce range anxiety 
for electric vehicles8,9 but often comes at the expense of battery life-
time. Specifically, we optimize over a parameter space consisting of 
224 unique six-step, ten-minute fast-charging protocols (that is, how 
current and voltage are controlled during charging) to find charging 
protocols with high cycle life (defined as the battery capacity falling 
to 80% of its nominal value). Our system uses two key elements to 
reduce the optimization cost (Extended Data Fig. 1). First, we reduce 
the time per experiment by using machine learning to predict the out-
come of the experiment based on data from early cycles, well before 
the batteries reach the end of life5. Second, we reduce the number 
of experiments by using a Bayesian optimization (BO) algorithm to 
balance the exploration–exploitation tradeoff in choosing the next 
round of experiments10,11. Testing a single battery to failure under our 
fast-charging conditions requires approximately 40 days, meaning 
that when 48 experiments are performed in parallel, assessing all 224 
charging protocols with triplicate measurements takes approximately 
560 days. Here, using CLO with early outcome prediction, only 16 days 
were required to confidently identify protocols with high cycle lives  
(48 parallel experiments). In a subsequent validation study, we find that 
CLO ranks these protocols by lifetime accurately (Kendall rank correla-
tion coefficient, 0.83) and efficiently (15 times less time than a baseline 
‘brute-force’ approach that uses random search without early predic-
tion). Furthermore, we find that the charging protocols identified as 
optimal by CLO with early prediction outperform existing fast-charging 
protocols designed to avoid lithium plating (a common fast-charging 
degradation mode), the approach suggested by conventional battery 
wisdom4,8,9,26. This work highlights the utility of combining CLO with 
inexpensive early outcome predictors to accelerate scientific discovery.

CLO with early outcome prediction is depicted schematically in Fig. 1. 
The system consists of three components: parallel battery cycling, an 
early predictor for cycle life and a BO algorithm. At each sequential 
round, we iterate over these three components. The first component 
is a multi-channel battery cycler; the cycler used in this work tests 48 
batteries simultaneously. Before starting CLO, the charging proto-
cols for the first round of 48 batteries are chosen at random (without 
replacement) from the complete set of 224 unique multi-step protocols 
(Methods). Each battery undergoes repeated charging and discharging 
for 100 cycles (about 4 days; average predicted cycle life 905 cycles), 
beyond which the experiments are terminated.

These cycling data are then fed as input to the early outcome predic-
tor, which estimates the final cycle lives of the batteries given data from 
the first 100 cycles. The early predictor is a linear model trained via 
elastic net regression27 on features extracted from the charging data of 
the first 100 cycles (Supplementary Table 1), similar to that presented 
in Severson et al.5. Predictive features include transformations of both 
differences between voltage curves and discharge capacity fade trends. 
To train the early predictor, we require a training dataset of batteries 
cycled to failure. Here, we used a pre-existing dataset of 41 batteries 
cycled to failure (cross-validation root-mean-square error, 80.4 cycles; 
see Methods and Supplementary Discussion 1). Whereas obtaining 
this dataset itself requires running full cycling experiments for a small 
training set of batteries (the cost we are trying to offset), this one-time 
cost could be avoided if pretrained predictors or previously collected 
datasets are available. If unavailable, we pay an upfront cost in collecting 
this dataset; this dataset could also be used for warm-starting the BO 
algorithm. The size of the dataset collected should best tradeoff the 
upfront cost in acquiring the dataset to train an accurate model with 
the anticipated reduction in experimentation requirements for CLO.

Finally, these predicted cycle lives from early-cycle data are fed into 
the BO algorithm (Methods and Supplementary Discussion 2), which 
recommends the next round of 48 charging protocols that best balance 
the exploration–exploitation tradeoff. This algorithm (Methods and 
Supplementary Discussion 2) builds on the prior work of Hoffman 
et al.10 and Grover et al.11. The algorithm maintains an estimate of both 
the average cycle life and the uncertainty bounds for each protocol; 
these estimates are initially equal for all protocols and are refined as 
additional data are collected. Crucially, to reduce the total optimiza-
tion cost, our algorithm performs these updates using estimates from 
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Fig. 1 | Schematic of our CLO system. First, batteries are tested. The cycling 
data from the first 100 cycles (specifically, electrochemical measurements 
such as voltage and capacity) are used as input for an early outcome prediction 
of cycle life. These cycle life predictions from a machine learning (ML) model 
are subsequently sent to a BO algorithm, which recommends the next 
protocols to test by balancing the competing demands of exploration (testing 
protocols with high uncertainty in estimated cycle life) and exploitation 

(testing protocols with high estimated cycle life). This process iterates until the 
testing budget is exhausted. In this approach, early prediction reduces the 
number of cycles required per tested battery, while optimal experimental 
design reduces the number of experiments required. A small training dataset 
of batteries cycled to failure is used both to train the early outcome predictor 
and to set BO hyperparameters. In future work, design of battery materials and 
processes could also be integrated into this closed-loop system.
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the early outcome predictor instead of using the actual cycle lives. The 
mean and uncertainty estimates for the cycle lives are obtained via a 
Gaussian process (Methods), which has a smoothing effect and allows 
for updating the cycle life estimates of untested protocols with the 
predictions from related protocols. The closed-loop process repeats 
until the optimization budget, in our case 192 batteries tested (100 
cycles each), is exhausted.

Our objective is to find the charging protocol which maximizes the 
expected battery cycle life for a fixed charging time (ten minutes) and 
state-of-charge (SOC) range (0 to 80%). The design space of our 224 six-
step extreme fast-charging protocols is presented in Fig. 2a. Multi-step 
charging protocols, in which a series of different constant-current steps 
are applied within a single charge, are considered advantageous over 
single-step charging for maximizing cycle life during fast charging4,8, 
though the optimal combination remains unclear. As shown in Fig. 2b, 
each protocol is specified by three independent parameters (CC1, CC2 
and CC3); each parameter is a current applied over a fixed SOC range 
(0–20%, 20–40% and 40–60%, respectively). A fourth parameter, CC4, 
is dependent on CC1, CC2, CC3 and the charging time. Given constraints 
on the current values (Methods), a total of 224 charging protocols are 
permitted. We test commercial lithium iron phosphate (LFP)/graphite 
cylindrical batteries (A123 Systems) in a convective environmental 
chamber (30 °C ambient temperature). A maximum voltage of 3.6 
V is imposed. These batteries are designed to fast-charge in 17 min 
(rate testing data are presented in Extended Data Fig. 2). The cycle life 
decreases dramatically with faster charging time4,5, motivating this 
optimization. Since the LFP positive electrode is generally considered 
to be stable4,5, we select this battery chemistry to isolate the effects of 
extreme fast charging on graphite, which is universally employed in 
lithium-ion batteries.

In all, we ran four CLO rounds sequentially, consisting of 185 bat-
teries in total (excluding seven batteries; see Methods). Using early 
prediction, each CLO round requires four days to complete 100 cycles, 
resulting in a total testing time of sixteen days—a major reduction from 
the 560 days required to test each charging protocol to failure three 
times. Figure 3 presents the predictions and selected protocols (Fig. 3a), 
as well as the evolution of cycle life estimates over the parameter space 

as the optimization progresses (Fig. 3a). Initially, the estimated cycle 
lives for all protocols are equal. After two rounds, the overall structure 
of the parameter space (that is, the dependence of cycle life on charg-
ing protocol parameters CC1, CC2 and CC3) emerges, and a prominent 
region with high cycle life protocols has been identified. The confidence 
of CLO in this high-performing region is further improved from round 
2 to round 4, but overall the cycle life estimates do not change substan-
tially (Extended Data Fig. 3). By learning and exploiting the structure 
of the parameter space, we avoid evaluating charging protocols with 
low estimated cycle life and concentrate more resources on the high-
performing region (Extended Data Figs. 3–5). Specifically, 117 of 224 
protocols are never tested (Fig. 3c); we spend 67% of the batteries test-
ing 21% of the protocols (0.83 batteries per protocol on average). CLO 
repeatedly tests several protocols with high estimated cycle life to 
decrease uncertainties due to manufacturing variability and the error 
introduced by early outcome prediction. The uncertainty is expressed 
as the prediction intervals of the posterior predictive distribution over 
cycle life (Extended Data Figs. 3g, 4, 5).

To the best of our knowledge, this work presents the largest known 
map of cycle life as a function of charging conditions (Extended Data 
Fig. 5). This dataset can be used to validate physics-based models of 
battery degradation. Most fast-charging protocols proposed in the 
battery literature suggest that current steps decreasing monotonically 
as a function of SOC are optimal to avoid lithium plating on graphite, 
a well-accepted degradation mode during fast charging4,8,9,26. In con-
trast, the protocols identified as optimal by CLO (for example, Fig. 3d) 
are generally similar to single-step constant-current charging (that 
is, CC1 ≈ CC2 ≈ CC3 ≈ CC4). Specifically, of the 75 protocols with the 
highest estimated cycle lives, only ten are monotonically decreasing 
(that is, CCi ≥ CCi+1 for all i) and two are strictly decreasing (that is, CCi > 
CCi+1). We speculate that minimizing parasitic reactions caused by heat 
generation may be the operative optimization strategy for these cells, 
as opposed to minimizing the propensity for lithium plating (Supple-
mentary Discussion 3). While the optimal protocol for a new scenario 
would depend on the selected charge time, SOC window, temperature 
control conditions and battery chemistry, this unexpected result high-
lights the need for data-driven approaches for optimizing fast charging.
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Fig. 2 | Structure of our six-step, ten-minute fast-charging protocols. 
Currents are defined as dimensionless C rates; here, 1C is 1.1 A, or the current 
required to fully (dis)charge the nominal capacity (1.1 A h) in 1 h. a, Current 
versus SOC for an example charging protocol, 7.0C–4.8C–5.2C–3.45C (bold 
lines). Each charging protocol is defined by five constant current (CC) steps 
followed by one constant voltage (CV) step. The last two steps (CC5 and CV1) 
are identical for all charging protocols. We optimize over the first four 
constant-current steps, denoted CC1, CC2, CC3 and CC4. Each of these steps 
comprises a 20% SOC window, such that CC1 ranges from 0% to 20% SOC, CC2 

ranges from 20% to 40% SOC, and so on. CC4 is constrained by specifying that 
all protocols charge in the same total time (10 min) from 0% to 80% SOC. Thus, 
our parameter space consists of unique combinations of the three free 
parameters CC1, CC2 and CC3. For each step, we specify a range of acceptable 
values; the upper limit is monotonically decreasing with increasing SOC to 
avoid the upper cutoff potential (3.6 V for all steps). b, CC4 (colour scale) as a 
function of CC1, CC2 and CC3 (on the x, y and z axes, respectively). Each point 
represents a unique charging protocol.
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We validate the performance of CLO with early prediction on a subset 
of nine extreme fast-charging protocols. For each of these protocols, 
we cycle five batteries each to failure and use the sample average of the 
final cycle lives as an estimate of the true lifetimes. We use this valida-
tion study to (1) confirm that CLO is able to correctly rank protocols 
based on cycle life, (2) compare the cycle lives of protocols recom-
mended by CLO to protocols inspired by the battery literature and 
(3) compare the performance of CLO to baseline ablation approaches 
for experimental design. The charging protocols used in validation, 

some of which are inspired by existing battery fast-charging literature 
(see Methods), span the range of estimated cycle lives (Extended Data 
Fig. 6 and Extended Data Table 1). We adjust the voltage limits and 
charging times of these literature protocols to match our protocols, 
while maintaining similar current ratios as a function of SOC. Whereas 
the literature protocols used in these validation experiments are gener-
ally designed for batteries with high-voltage positive electrode chem-
istries, fast-charging optimization strategies generally focus on the 
graphitic negative electrode4,8. For these nine protocols, we validate 
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and CC3 (the x, y and z axes, respectively). The colour scale represents cycle life 
predictions from the early outcome prediction model. The charging protocols 
in the first round of testing are randomly selected. As the BO algorithm shifts 
from exploration to exploitation, the charging protocols selected for testing 
by the closed loop in subsequent rounds fall primarily into the high-performing 
region. b, Evolution of the parameter space per round. The colour scale 
represents cycle life, as estimated by the BO algorithm. The initial cycle life 

estimates are equivalent for all protocols; as more predictions are generated, 
the BO algorithm updates its cycle life estimates. The CLO-estimated mean 
cycle lives after four rounds for all fast-charging protocols in the parameter 
space are also presented in Extended Data Fig. 5 and Supplementary Table 3.  
c, Distribution of the number of repetitions for each charging protocol 
(excluding failed batteries). Only 46 of 224 protocols (21%) are tested multiple 
times. d, Current versus SOC for the top three fast-charging protocols, as 
estimated by CLO. CC1–CC4 are displayed in the legend. All three protocols 
have relatively uniform charging (that is, CC1 ≈ CC2 ≈ CC3 ≈ CC4).
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the ‘CLO-estimated’ cycle lives against the sample average of the five 
final cycle lives.

The validation results are presented in Fig. 4. The discharge capacity 
fade curves (Fig. 4a) exhibit the nonlinear decay typical of fast charg-
ing5,7. If we apply our early-prediction model to the batteries in the 
validation experiment, these early predictions (averaged over each 
protocol) match the CLO-estimated mean cycle lives well (Pearson 
correlation coefficient r = 0.93; Fig. 4b). This result validates the per-
formance of the BO component of CLO in particular, since the CLO-
estimated cycle lives were inferred from early predictions. However, 
our early-prediction model exhibits some bias (Fig. 4c), probably owing 
to calendar ageing effects from different battery storage times28 (Sup-
plementary Table 2 and Supplementary Discussion 4). Despite this bias 
in our predictive model, we generally capture the ranking well (Kendall 
rank correlation coefficient, 0.83; Fig. 4d and Extended Data Fig. 7). 
At the same time, we note that the final cycle lives for the top-ranked 
protocols are similar. Furthermore, the optimal protocols identified 
by CLO outperform protocols inspired by previously published fast-
charging protocols (895 versus 728 cycles on average; Extended Data 
Fig. 6 and Extended Data Table 1). This result suggests that the efficiency 
of our approach does not come at the expense of accuracy.

Our method greatly reduces the optimization time required compared 
to baseline optimization approaches (Fig. 4e). For instance, a procedure 
that does not use early outcome prediction and simply selects protocols 
randomly to test begins to saturate at a competitive performance level 
after about 7,700 battery-hours of testing. To achieve a similar level of 
performance, CLO with both early outcome prediction and the BO algo-
rithm requires only 500 battery-hours of testing. For this small-scale vali-
dation experiment, we observe that the early-prediction component of 
CLO greatly reduces the time per experiment. Here, random selection is 
equivalent to a pure exploration strategy and can achieve a performance 
similar to the BO-based approaches for smaller experimental budgets. In 
later stages, random selection is eventually outperformed by BO-based 
approaches, which exploit the structure across the protocols and focus 
on reducing the uncertainty in the promising regions of the parameter 
space. Although these results are specific to this validation study, we 
observe similar or larger gains in simulations when fewer batteries or 
fewer parallel experiments (relative to the size of the parameter space) 
are available (Extended Data Fig. 8). The relative gains from BO over 
random selection are largest with minimal resources.

Finally, we compare our early predictor with other low-fidelity predic-
tors proposed in state-of-the-art multi-fidelity optimization algorithms 
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probably owing to calendar ageing effects (Supplementary Discussion 4), the 
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The gains from Bayesian optimization are larger when resources are 
constrained (Extended Data Fig. 8).
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in the literature19,20, and find that our approach outperforms these algo-
rithms (Supplementary Discussion 2 and Supplementary Table 4). The 
generic early-prediction models in these previous works fit composites 
of parametric functions to the capacity fade curves, while our model 
uses additional features recorded at every cycle (for example, voltage). 
This result highlights the value of designing predictive models for the 
target application in multi-fidelity optimization.

In summary, we have successfully accelerated the optimization of 
extreme fast charging for lithium-ion batteries using CLO with early 
outcome prediction. This method could extend to other fast-charging 
design spaces, such as pulsed26,28 and constant-power8 charging, as well 
as to other objectives, such as slower charging and calendar ageing. 
Additionally, this work opens up new applications for battery optimiza-
tion, such as formation29, adaptive cycling30 and parameter estimation 
for battery management system models31. Furthermore, provided that 
a suitable early outcome predictor exists, this method could also be 
applied to optimize other aspects of battery development, such as 
electrode materials and electrolyte chemistries. Beyond batteries, our 
CLO approach combining black-box optimization with early outcome 
prediction can be extended to efficiently optimize other physical1,2,18  
and computational22,32 multi-dimensional parameter spaces that 
involve time-intensive experimentation, illustrating the power of 
data-driven methods to accelerate the pace of scientific discovery.
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Methods

Experimental
Commercial high-power lithium iron phosphate (LFP)/graphite A123 
APR18650M1A cylindrical cells were used in this work (packing date 
2015-09-26, lot number EL1508007-R). These cells have a nominal 
capacity of 1.1 A h and a nominal voltage of 3.3 V. All currents are defined 
in units of C rate; here, 1C is 1.1 A, or the current required to fully (dis)
charge the nominal capacity (1.1 A h) in 1 h. The manufacturer’s rec-
ommended fast-charging protocol is 3.6C (3.96 A) CC-CV. The rate 
capability of these cells is shown in Extended Data Fig. 2. The graphite 
and LFP electrodes are 40 μm thick and 80 μm thick, respectively, as 
quantified via X-ray tomography (Zeiss Xradia 520 Versa).

The cells were cycled with various charging protocols but identically 
discharged. Cells were charged with one of 224 candidate six-step, ten-
minute charging protocols from 0% to 80% SOC, as detailed below. After 
a five-second rest, all cells then charged from 80% to 100% SOC with 
a 1C CC-CV charging step to 3.6 V and a current cutoff of C/20. After 
another five-second rest, all cells subsequently discharged with a CC-CV 
discharge at 4C to 2.0 V and a current cutoff of C/20. The cells rested 
for another five seconds before the subsequent charging step started. 
The lower and upper cutoff voltages were 2.0 V and 3.6 V, respectively, 
as recommended by the manufacturer. In this work, cycle life is defined 
as the number of cycles until the discharge capacity falls below 80% of 
the nominal capacity.

All cells were tested in cylindrical fixtures with 4-point contacts on a 
48-channel Arbin Laboratory Battery Testing battery cycler placed in 
an environmental chamber (Amerex Instruments) at 30 °C. The cycler 
calibration was validated before the state of the experiment.

In the closed-loop experiment, four experiments did not reach 100 
cycles owing to contact issues either at the start or partially through 
the experiment. These experiments were run on channels 17 and 27 in 
round 1 (oed_0) and channels 4 and 5 in round 2 (oed_1). Additionally, 
in each round, one protocol per round that should have been selected 
(that is, with a top-48 upper bound) was not selected and replaced with 
the protocol with the 49th-highest upper bound owing to a process-
ing error (Extended Data Fig. 4), but this error is not expected to have 
a large effect. Additional experimental issues are documented in the 
notes of the data repository.

Charging protocol and parameter space design
Cells were charged with one of 224 different four-step charging proto-
cols. Each of the first four steps is a single constant-current step applied 
over a 20% SOC range; thus, the 224 charging protocols represent dif-
ferent combinations of current steps within the 0% to 80% SOC range. 
We can define the charging time from 0% to 80% SOC by:

t =
0.2
CC1

+
0.2

CC2
+

0.2
CC3

+
0.2

CC40−80%

In all protocols considered here, we constrain t0-80% to be 10 min. We 
now write CC4 as a function of the first three charging steps, as:

( )
CC4 =

0.2

− + +10
60

0.2
CC1

0.2
CC2

0.2
CC3

Thus, each protocol can be uniquely defined by CC1, CC2 and CC3.
Each independent parameter can take on one of the following dis-

crete values: 3.6C, 4.0C, 4.4C, 4.8C, 5.2C and 5.6C. Furthermore, CC1 
can take on values of 6.0C, 7.0C and 8.0C, and CC2 can take on values 
of 6.0C and 7.0C. CC4 is not allowed to exceed 4.81C. The maximum 
allowable current for each parameter decreases with increasing SOC to 
avoid reaching the upper cutoff voltage of 3.6 V. With these constraints, 
a total of 224 charging protocols are permitted.

For a consistent protocol nomenclature, we define each fast-charging 
protocol as CC1-CC2-CC3-CC4. For example, the charging protocol 
with the highest CLO-estimated mean cycle life is written 4.8C-5.2C-
5.2C-4.160C.

Early outcome predictor
The early outcome predictor for cycle life is similar to that presented 
in Severson et al.5. This linear model predicts the final log10 cycle life 
(number of cycles to reach 80% of nominal capacity, or 0.88 A h) using 
features from the first 100 cycles. The training set is identical to the one 
used in Severson et al.5 and consists of 41 batteries. The linear model 
takes the form:

w x� �y =i i
T

Here �yi  is the predicted cycle life for battery i, xi is a p-dimensional 
feature vector for battery i and w� is a p-dimensional model coefficient 
vector. Features are z-scored (mean-subtracted and normalized by the 
standard deviation) to the training set before model evaluation.

Regularization, or simultaneous feature selection and model fitting, 
was performed using the elastic net27. Regularization penalizes overly 
complex fits to improve both generalizability and interpretability. 
Specifically, the coefficient vector w� is found via the following expres-
sion:
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Here λ and α are hyperparameters; λ is a non-negative scalar and α is a 
scalar between 0 and 1. The first term minimizes the squared loss, and 
the second term performs both continuous shrinkage and automatic 
feature selection. During model development, we apply fourfold cross-
validation and Monte Carlo sampling with the training set to optimize 
the values of the hyperparameters λ and α.

As in Severson et al.5, the available features were based on the differ-
ence between discharge voltage curves of cycles 100 and 10, or trends 
in the discharge capacity. The five selected features, their correspond-
ing weights and the z-scored values are presented in Supplementary 
Table 1. The training (cross-validated) error was 80.4 cycles (10.2%); 
the test error on a test set from Severson et al.5 was 122 cycles (12.6%).

The early predictor automatically flags predictions as anomalous if 
the 95% prediction interval exceeds 2,000 cycles. The two-tailed 95% 
prediction interval is computed by:

t x X X x95%PI = 2 × RMSE 1 + ( )a n p i i( /2, − )
T T −1

where t is the Student’s t value, α is the significance level (0.05 for 
95% confidence), n is the number of samples, p is the number of fea-
tures, RMSE is the root-mean-square error of the training set (in units 
of cycles), xi is the vector of selected features for battery i and X is 
the matrix of selected features for all observations in the training  
set.

In the closed-loop experiment, three tests returned predictions  
with a prediction interval outside of the threshold; these anoma-
lous predictions were excluded. These tests were run on channel  
27 in round 1 (oed_0), channel 12 in round 3 (oed_2) and channel 6 in 
round 4 (oed_3). Furthermore, in the validation experiment, one test 
returned a prediction with a prediction interval outside of the thresh-
old (channel 12; 3.6C-6.0C-5.6C-4.755C), although the final cycle life 
was reasonable.

We note that the predictions from this model exhibited systematic 
bias for the cells in the validation experiments, which we attribute to 
the increased calendar ageing of these cells relative to the training set 
(Supplementary Table 2 and Supplementary Discussion 4).
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Bayesian optimization algorithm
To perform optimal experimental design, we consider the setting of 
best-arm identification using multi-armed bandits. Here each arm is 
a charging protocol and the goal is to identify the best arm, or equiva-
lently the charging protocol with the highest expected cycle life. Many 
variants of the problem have been studied in prior work33–35; our algo-
rithm builds on the approaches of Hoffman et al.10 and Grover et al.11. 
We consider further modifications in Supplementary Discussion 2.

In particular, we assume a Bayesian regression setting, where there 
exists an unknown set of parameters (θ ∈ Rd) that relate a charging 
protocol x to its cycle life (a scalar) via a Gaussian likelihood function. 
Here, x denotes the CC1, CC2, CC3 configurations of a charging pro-
tocol, which is projected onto a d-dimensional feature vector φ(x). We  
set d = 224, and the feature representations φ(x) are obtained by  
approximating a radial-basis function kernel, K(xi, xj) = exp(γ||xi−xj ||2

2),  
using Nystroem’s method. Here, xi and xj are the CC1, CC2 and CC3  
configurtions for two arbitrary charging protocols and the inverse of 
the kernel bandwidth, γ > 0 is treated as a hyperparameter.

The Gaussian likelihood function relates a charging protocol to its 
cycle life distribution. For a protocol x, the mean of this likelihood 
function is given as θTφ(x). The variance of this likelihood function 
is the sum of two uncertainty terms, both of which we assume to be 
homoskedastic (that is, uniform across all protocols). The first term is 
the empirical variance averaged across the repeated runs of individual 
protocols present in the training dataset (same as that used for training 
the early predictor). This accounts for variability due to exogenous 
factors such as manufacturing. Second, since we do not wait for an 
experiment to complete, the likelihood variance additionally needs 
to accommodate an additional uncertainty term due to the early out-
come prediction component of the pipeline. We do so by computing 
the residual variance of the early predictions on the held-out portion 
of the dataset and set the aforementioned uncertainty term to be the 
maximum of the residual variances. We assume that the two sources 
of uncertainty are independent, and hence the overall variance of the 
likelihood distribution is given by the sum of the squares of both vari-
ance terms described above.

To perform inference over the unknown parameters θ and subse-
quent predictions of cycle lives, we employ a Gaussian process. In a 
Gaussian process, the prior over θ is assumed to be isotropic Gauss-
ian; such a prior is conjugate to the Gaussian likelihood, and as a con-
sequence the Gaussian posterior can be obtained in closed-form via 
the Bayes rule. This posterior is used to define a Gaussian predictive 
distribution over the cycle life for any given charging protocol with 
mean μ and variance σ2.

Finally, to select a charging protocol, we optimize an acquisition 
function based on upper confidence bounds. The acquisition function 
selects protocols where the noisy predictive distribution over cycle 
life has high mean μ (to encourage exploitation) and high variance σ2  
(to encourage exploration). The mean and upper and lower confidence 
bounds for any arm i is given by μk,i ± βkσk,i at round k, such that the rela-
tive weighting of the two terms is controlled by the exploration tradeoff 
hyperparameter, β > 0. The exploration tradeoff hyperparameter at 
round k, βk, is decayed multiplicatively at every round of the closed 
loop by another hyperparameter, ε ∈(0,1], as given by βk = β0εk.

BO hyperparameter optimization
The BO algorithm relies on eight hyperparameters, each of which 
can be categorized as either a resource hyperparameter, a parameter 
space hyperparameter or an algorithm hyperparameter. We note that 
the BO algorithm runs in the fixed-budget setting; here, the budget 
refers to the number of iterations of the closed loop we run, exclud-
ing validation experiments. We describe each category of hyperpa-
rameters below; the values of each hyperparameter are tabulated in 
Supplementary Table 5.

Resource hyperparameters are specified by the available testing 
resources. The ‘batch size’ represents the number of parallel tests. We 
set a batch size of 48 given our 48-channel battery cycler. The ‘budget’ 
represents the number of batches tested during CLO. The budget 
excludes batches used to develop the early predictor and validation 
batches. The budget is typically constrained by either the available 
testing time or the number of cells. In this case, we set a budget of 4, 
yielding a cell budget of 192 cells and a time budget of 16 days (4 days 
per batch of 48 cells tested for 100 cycles).

Parameter space hyperparameters are specified by the optimization 
problem. Here, we use the same data available from the training set of 
the early predictor to estimate these parameters, despite a different 
charging protocol structure. The ‘standardization mean’ represents 
the estimated mean cycle life across all protocols. The ‘standardiza-
tion standard deviation’ represents the estimated standard deviation 
of cycle life across all protocols; in other words, this parameter repre-
sents the range of cycle lives in the parameter space. The ‘likelihood 
standard deviation’ represents the estimated standard deviation of a 
single protocol tested multiple times, which is a measure of the sam-
pling error; this sampling error includes both the intrinsic variability 
and the prediction error.

Algorithm hyperparameters control the performance of the Bayesian 
optimization algorithm. γ is the kernel bandwidth, which controls the 
interaction strength between neighbouring protocols in the parameter 
space. High γ favours under-smoothing of the parameter space, that is, 
the protocols have weak relationships with their neighbours. β0 repre-
sents the initial value of β, the exploration tradeoff hyperparameter; β 
controls the balance of exploration versus exploitation. High β0 favours 
exploration over exploitation. ε represents the decay constant of beta 
per round; as the experiment progresses, ε shifts towards stronger 
exploitation (given by βk = β0εk, where βk represents the exploration 
constant at round k, 0-indexed). High ε favours a rapid transition from 
exploration to exploitation.

The algorithm hyperparameters were estimated by creating a phys-
ics-based simulator based on the range of cycle lives obtained in the 
preliminary batch, testing all hyperparameter combinations on the 
simulator, and selecting the hyperparameter combination with the 
best performance (that is, that which most consistently obtains the 
true cycle life). These results are visualized in Extended Data Fig. 9; we 
note that the performance of BO is relatively insensitive to the selected 
combination of algorithm hyperparameters, meaning sufficiently 
high performance can be achieved even with suboptimal algorithm 
hyperparameters. Other approaches, such as using the early-predictor 
training dataset, are also possible for optimization of the algorithm 
hyperparameters (Supplementary Discussion 1).

Physics-based simulator
We used a physics-based simulator for hyperparameter optimization; 
this simulator allows us to estimate the shape and range of cycle lives 
in the parameter space, although the simulator is not designed to be 
an accurate representation of battery degradation during fast charg-
ing. This finite element simulator was originally designed to estimate 
the heat generation during charging in an 18650 cylindrical battery by 
approximating the battery as a long cylinder, which simplifies to a one-
dimensional radial heat transfer problem. The equations and thermal 
properties were sourced from Drake et al.36 and Çengel and Boles37. The 
output from these simulations is a matrix of temperature as a func-
tion of both radial position and time. We use total solid-electrolyte 
interphase (SEI) growth as a proxy for degradation. First, we estimate 
the temperature dependence of SEI growth from the C/10 series of 
figure 7 from Smith et al.38 (Supplementary Table 6). Simultaneously, 
we compute the expected temperature profiles in the battery as a func-
tion of charging protocol with respect to time and position. We then 
approximate the kinetics of SEI growth with an Arrhenius equation, 
such that SEI growth increases with increasing temperature. SEI growth 



(in arbitrary units) is calculated for each temperature element in the 
position-time array via:
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where D is the degradation parameter, Ea is the effective activation 
energy for SEI growth (Supplementary Table 6) and kB is Boltzmann’s 
constant. The cycle life is then calculated from the degradation param-
eter using the range of expected cycle lives (as estimated from the 
early-predictor training dataset):

C DCycle life = 500 + /

where C is a constant (5 × 10−11) that scales D to reasonable values of 
cycle life.

Validation experiments
After the closed-loop experiment completed, we selected nine pro-
tocols to test to failure (five batteries per charging protocol). This 
experiment allowed us to (1) evaluate the performance of the closed 
loop by comparing the CLO-estimated mean cycle lives to the mean 
cycle life of multiple batteries tested to failure for multiple protocols, 
(2) compare the protocols with the highest CLO-estimated mean cycle 
lives to conventional fast-charging protocol design principles from 
the battery literature, and (3) generate a small dataset with which we 
can evaluate the performance of the closed loop relative to baseline 
optimization approaches.

The selected protocols are displayed in Extended Data Fig. 6 and 
Extended Data Table 1. Of our nine fast-charging protocols, three were 
the top three CLO-estimated protocols; four were based on approxima-
tions of multi-step fast-charging protocols in the battery literature (see 
Extended Data Table 1); and two were selected to obtain a representa-
tive sampling from the distribution of CLO-estimated cycle lives. The 
four protocols based on approximations of multi-step fast-charging 
protocols in the battery literature were obtained by determining the 
current ratios between various steps and translating those ratios to 
our ten-minute fast-charging space. The voltage limits were consistent 
with our charging protocols, that is, 2.0 V and 3.6 V.

Five batteries per charging protocol were tested to obtain a rea-
sonable estimate of the true cycle lives. In this experiment, one test 
returned a prediction with a prediction interval outside of the threshold 
(channel 12; 3.6C-6.0C-5.6C-4.755C) and was excluded. A comparison 
of the three different methods for cycle life results (CLO, early predic-
tions from validation, and final measurements from validation) are 
presented in Extended Data Fig. 7.

Validation ablation study
For the ablation study using the charging protocols and data from the 
validation experiments, we systematically compared the full closed-
loop system against three other ablation baselines which use (1) only 
early prediction (no BO exploration–exploitation, purely random 
exploration), (2) only BO exploration–exploitation (no early predic-
tion), (3) purely random exploration without any early prediction. As 
highlighted earlier, since the final cycle lives for the protocols in the 
validation study have a noticeable bias that can be explained by calen-
dar ageing (Supplementary Discussion 4), we perform a simple additive 
bias correction for each of the final cycle lives beforehand to suppress 
any undesirable influence of this bias in interpreting the results.

We run the four ablation baselines for a varying number of sequential 
rounds. Since our validation space is relatively small (nine charging 
protocols, five batteries tested per protocol in our validation dataset), 
we run only one battery per round (that is, we assume a one-channel 
battery cycler). The baselines that use BO exploration–exploitation 
additionally require hyperparameters to be specified before beginning 

the experiment, as described in the Methods section ‘BO hyperparam-
eter optimization’. The best hyperparameters are chosen separately for 
each round based on the performance obtained on the physics-based 
simulator, averaged over 100 random seeds.

When an ablation baseline queries for the cycle life of a given charging 
protocol, the returned value corresponds to one of the five runs in our 
validation dataset, chosen via random sampling with replacement (that 
is, bootstrapped). The experimental time cost of this query is equal to 
100 cycles for ablation baselines that use early prediction and equals 
the full cycle life otherwise. Finally, to account for the randomness at 
the beginning of the experiment (that is, round 0 when every ablation 
baseline randomly selects a protocol), we report the performance of 
each ablation baseline averaged over a sequence of 2,000 randomly 
initialized experiments. To specify the y-axis of Fig. 4e, we assume that 
each full cycle (charging, discharging, resting) requires one hour of 
experimental testing.

Overpotential analysis
To determine the dependence of overpotential on current and SOC 
during charging (Extended Data Fig. 2e–f), we perform a pseudo-galva-
nostatic intermittent titration technique experiment on two minimally 
cycled batteries and two degraded batteries (80% of nominal capacity 
remaining). We probe currents ranging from 3.6C to 8C at 20%, 40%, 
60% and 80% SOC, mirroring the current and SOC values used in charg-
ing protocol design. In this experiment, we start at an initial SOC 20% 
lower than the target, for example, we start at 0% SOC to probe 20% 
SOC. We then charge at a given current rate, for example, 3.6C, until 
we reach 20% SOC. The cell rests for 1 h, and then the cell discharges at 
1C back to 0% SOC. We repeat this sequence for all current values, after 
which we charge the cell at 1C to the next initial SOC, for example, 20% 
SOC to probe 40% SOC, and repeat for each SOC of interest.

To compute the overpotential, we compare the voltage at the start 
and end of the 1-h rest periods. Nearly all of the potential drop occurs 
immediately (<100 ms) after the start of the rest period. Given the 
linear trends observed (implying ohmic-limited rate capability), we 
then perform a linear fit on each overpotential-current series. In these 
fits, the slope represents the ohmic resistance.

Data availability
The datasets used in this study are available at https://data.matr.io/1.

Code availability
The CLO code, data and figures associated with this manuscript are 
available at https://github.com/chueh-ermon/battery-fast-charging-
optimization. The data processing and early-prediction code are 
available at https://github.com/chueh-ermon/BMS-autoanalysis. The 
charging protocol generation code (automated creation of battery 
cycler tests) is available at https://github.com/chueh-ermon/automate-
Arbin-schedule-file-creation.
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Extended Data Fig. 1 | Illustrations of early outcome predictor and BO 
components of CLO. a, Illustration of early outcome prediction for two cells  
(A and B) using data from only the first 100 cycles. Two discharge capacity 
features are generated: the second-cycle discharge capacity, Qd,2, and the 
difference between the maximum and second-cycle discharge 
capacities, max(Qd) − Qd,2. Three voltage features are generated: the logarithm 
of the minimum, variance and the skewness of the difference in voltage curves 
between cycles 100 and 10. These five features are combined in a linear model 
to predict the final cycle life, or the number of cycles until the capacity falls 
below 0.88 A h. The weights and scalings of each feature are determined by 
training the model on a training set using the elastic net; the weights and 
scaling values are presented in Supplementary Table 1. See Severson et al.7 and 

Methods for additional details. b, Illustration of the BO principle. The desired 
output, cycle life, has a true functional dependence on charging protocol 
parameters (such as CC1). Here, we show a one-dimensional model (that is, just 
dependent on one parameter, CC1) for simplicity. By performing Gaussian 
process regression on the available data, we develop a probabilistic estimate of 
the true function; our goal is for the estimate to match the true function. The 
next data point selected is that which maximizes the upper confidence bound 
(UCB), which is selected by either high uncertainty (exploration) or high 
predicted value (exploitation). Once this point is selected (right panel), the 
next point selected is, again, that which maximizes the upper confidence 
bound.
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Extended Data Fig. 2 | Cell characterization. a, b, Voltage versus capacity 
during rate testing of A123 18650M1A cylindrical cells under charge (a) and 
discharge (b). The (dis)charge step not under investigation is cycled at 1C to 
isolate the rate of each step; for example, the charge rate test is performed with 
1-C discharge steps. We note that the discharge rate capability is much higher 
than that of charge. c, d, Battery surface temperature (‘can temperature’) 
versus capacity during rate testing under charge (c) and discharge (d). The can 
temperature is measured via a type T thermocouple secured with thermal 

epoxy. e, f, Overpotential as a function of SOC and C rate (see Methods 
section ‘Overpotential analysis’ for details of the measurement) for a minimally 
cycled cell (e) and an aged cell at 80% of nominal capacity (f). The trend lines are 
linear fits of the overpotential as a function of current at fixed SOC (excluding 
outliers). We note that both of the relationships are linear (indicating that the 
rate capability is ohmically limited) and that the SOC dependence is weak, 
particularly for the minimally cycled cell. The initial internal resistance, 
averaged over two cells and all four SOCs, is 33 mΩ.



Extended Data Fig. 3 | Additional optimization results. a, b, Mean of the 
absolute difference in CLO-estimated cycle lives with increasing rounds, 
expressed as both percentage change (a) and absolute change (b). These 
changes are relatively small beyond round 2, suggesting that the closed loop 
can perform well with even smaller time or battery budgets. c, Change in 
Kendall rank correlation coefficient with increasing rounds. From round 3 to 
round 4, the ranking of the top protocols shifts, but the cycle lives of these top 
protocols are similar. d, Distribution of CLO-estimated mean cycle lives after 
round 4. The mean and standard deviation are 943 cycles and 126 cycles, 
respectively. e, Correlation between CLO-estimated mean cycle lives and the 
sum of squared currents, a simplified measure of heat generation (P = I2R). This 
relationship suggests that minimizing heat generation, as opposed to avoiding 

lithium plating, may be the operative optimization strategy for these cells 
under these conditions. f, Standard deviation (σ4,i) versus mean (μ4,i) of the BO 
predictive distribution over cycle life after round 4. The standard deviation 
quantifies the uncertainty in the cycle life estimates and is generally low for 
protocols estimated to have high mean cycle life, since these protocols are 
probed more frequently. We start with a relatively wide, flat prior (standard 
deviation 164) and therefore the uncertainty intervals after four rounds are also 
wide. g, Mean ± standard deviation of the predictive distribution over cycle life 
after round 4 (μ4,i ± σ4,i) for all charging protocols, sorted by their rank after 
round 4. The legend indicates the number of repetitions for each protocol 
(excluding failed batteries).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Means and upper/lower confidence bounds 
(μk,i ± βkσk,i) on cycle life per round k. Protocol indices on the x-axis are sorted 
by rank after round 4. The weighted interval around the estimated mean, 
βkσk,i = (β0εk)σk,i, weights the protocol-specific standard deviation at round k, 
σk,i (estimated by the Gaussian process model) with the exploration tradeoff 
hyperparameter at round k, βk. The upper and lower confidence bounds are 
plotted for all charging protocols before round 1 (a) and after rounds 1 (b), 2 (c), 
3 (d) and 4 (e). The predictive distributions for all charging protocols have 
identical means and standard deviations before the first round of testing. 
Because the standard deviations are weighted by βk = β0εk and ε = 0.5, the 

weighted confidence bounds rapidly decrease with increasing round number, 
favouring exploitation (examination of protocols with high means). The BO 
algorithm recommends the 48 protocols with the highest upper bounds (red 
points); the upper bounds are high either due to high uncertainty (exploration) 
or high means (exploitation). The algorithm rapidly shifts from exploration to 
exploitation as εk rapidly shrinks the upper bounds with increasing round 
index. We note that one protocol per round that should have been selected 
(that is, with a top-48 upper bound) was not selected owing to a processing 
error; instead, the protocol with the 49th-highest upper bound was selected.
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Extended Data Fig. 5 | Mean and standard deviation of the CLO-estimated 
predicted distribution over cycle lives after round 4. In this two-dimensional 
representation, mean estimated cycle life (colour scale) and standard deviation 
of cycle life (marker size) after round 4 are presented as a function of CC1, CC2 
and CC3 (the x axis, y axis and panels a–f, respectively). Panels a–f represent 

CC3 = 3.6C, 4.0C, 4.4C, 4.8C, 5.2C, 5.6C and 6.0C, respectively. CC4 is 
represented by the contour lines. Note that the protocols with the highest cycle 
lives generally have the smallest standard deviations, since these protocols 
have been tested repeatedly.



Extended Data Fig. 6 | Selected protocols for validation. The three protocols 
with the highest CLO-estimated mean cycle lives are shown in panels b, c and d. 
The protocols shown in panels a, f, g and h are approximations of previously 
proposed battery fast-charging protocols (Extended Data Table 1). The 
remaining two protocols, shown in panels e and i, were selected to obtain a 
representative sampling from the entire distribution of CLO-estimated cycle 
lives. The annotations on each panel represent the cycle lives of each protocol 

as estimated by CLO (‘CLO’), early outcome prediction from validation (‘Early 
prediction’), and the final cycle lives from validation (‘Final’). In the 
annotations, the errors represent the CLO-estimated standard deviation after 
round 4 (σk,4) for the CLO-estimated cycle lives and the 95% confidence intervals 
for the early-predicted and final cycle lives from validation (n = 5; n = 4 for the 
early predictions of 3.6C-6.0C-5.6C-4.755C) (a).
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Extended Data Fig. 7 | Validation ablation analysis. We perform pairwise 
comparisons of the cycle lives of the nine validation protocols, as estimated 
from three sources: closed-loop estimates after four rounds, early predictions 
from the validation experiment and final cycle lives from the validation 
experiment. Panels a–c compare closed-loop estimates to early predictions 
from validation, panels d–f compare final cycle lives from validation to early 
predictions from validation, and panels g–i compare final cycle lives from 
validation to closed-loop estimates. The first column (a, d and g) compares 
cycle lives averaged on a protocol basis; the second column (b, e and h) 

compares cycle lives on a battery (cell) basis; and the third column (c, f and i) 
compares the predicted ranking by cycle life via each method. Orange points 
represent the top three CLO-estimated protocols, blue points represent 
protocols inspired by the battery literature (Methods), and green points 
represent protocols selected to sample the distribution of estimated cycle 
lives. The error bars represent the 95% confidence intervals (n = 5; n = 4 for the 
early predictions of 3.6C-6.0C-5.6C-4.755C). The Pearson correlation 
coefficient and Kendall rank correlation coefficients are displayed for all 
relevant cycle life and ranking plots, respectively.



Extended Data Fig. 8 | Closed-loop performance under resource constraints. 
Comparison of the closed loop with and without the Bayesian optimization 
algorithm (that is, with and without the explore/exploit component) as a 
function of number of channels and number of rounds in the 224-protocol 
space, using the first-principles simulator as the ground-truth source for cycle 
lives. Early prediction is not included. Each point represents the mean of 100 

simulations; error bars represent the 95% confidence intervals (n = 100). Early 
prediction is not incorporated into these simulations. The complete closed 
loop (that is, with Bayesian optimization) consistently outperforms the closed 
loop without Bayesian optimization. Bayesian optimization offers the largest 
advantage when the number of channels is low relative to the number of 
protocols.
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Extended Data Fig. 9 | Hyperparameter sensitivity analysis on a cycle life 
simulator. The true cycle life of the best charging protocol as estimated by 
CLO, averaged over ten random seeds, is plotted as a function of the initial 
exploration constant (β0), the exploration decay factor (ε) and the kernel 
bandwidth (γ). The values of all other hyperparameters are consistent with the 
values indicated in the ‘BO hyperparameter optimization’ Methods section and 

in Supplementary Table 5. Overall, CLO achieves acceptable performance over 
a range of hyperparameter combinations; the highest-cycle-life protocols as 
estimated by the best and worst hyperparameter combinations differ by only 
60 cycles. In our real-world CLO experiment, the selected hyperparameters are 
β0 = 5.0, ε = 0.5 and γ = 1; this combination performed well on a variety of 
simulated parameter spaces and budgets.



Extended Data Table 1 | Selected charging protocols for validation

The columns represent the CLO-estimated mean cycle lives of each protocol, early predictions in the validation experiment and the final tested cycle lives. For the CLO-estimated cycle lives, 
the errors represent the CLO-estimated standard deviation after round 4 (σk,4). For the early-predicted and final cycle lives from validation, the errors represent 95% confidence intervals (n = 5; 
but n = 4 for the early predictions of 3.6C-6.0C-5.6C-4.755C). The two protocols without a source were selected to obtain a representative sampling from the distribution of CLO-estimated cycle 
lives. Literature fast-charging protocols are from refs. 39–44.
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