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REVIEW ARTICLE OPEN

Systems-based approaches to study immunometabolism
Vinee Purohit 1,2, Allon Wagner3,4, Nir Yosef3,4 and Vijay K. Kuchroo1,2✉

© The Author(s) 2022

Technical advances at the interface of biology and computation, such as single-cell RNA-sequencing (scRNA-seq), reveal new layers
of complexity in cellular systems. An emerging area of investigation using the systems biology approach is the study of the
metabolism of immune cells. The diverse spectra of immune cell phenotypes, sparsity of immune cell numbers in vivo, limitations in
the number of metabolites identified, dynamic nature of cellular metabolism and metabolic fluxes, tissue specificity, and high
dependence on the local milieu make investigations in immunometabolism challenging, especially at the single-cell level. In this
review, we define the systemic nature of immunometabolism, summarize cell- and system-based approaches, and introduce
mathematical modeling approaches for systems interrogation of metabolic changes in immune cells. We close the review
by discussing the applications and shortcomings of metabolic modeling techniques. With systems-oriented studies of
metabolism expected to become a mainstay of immunological research, an understanding of current approaches toward
systems immunometabolism will help investigators make the best use of current resources and push the boundaries of the
discipline.
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INTRODUCTION

IIl y a des systèmes vivants; il nʼy a pas de matière vivante.

There are living systems; there is no living matter.

These words of Nobel laureate Dr. Jacques Monod [1] are
increasingly relevant with our improved appreciation of the
complexity of biology at the cellular and organismal levels. Today,
systems biology is a well-established branch of scientific
interrogation, but in the last century, unlike its contemporary
sciences such as physics, biology was focused on reductionist
approaches and deciphering cause and effects attributable to
individual molecules, cells, and parts of the genome. However, as
Monod expressed, reductionist studies are insufficient in light of
the interrelatedness of biological components as systems.
With the advent of high-dimensional sequencing techniques,

heterogeneity within immune cell populations has become more
evident [2–8]. Gury-BenAri et al. performed the single-cell analysis
of innate lymphocytes (ILCs) from the mouse intestine to
determine seven “ILC states” (ILC1a, ILC1c, ILC1d, ILC2a, ILC2c,
ILC2d, and ILC3a) to be highly responsive to microbial colonization
[4]. Similarly, another study identified three functionally distinct
subsets of ILC3s: NKp44+ ILC3s, CD62L+ ILC3s, and HLA-DR+ ILC3s
[2]. Single-cell analysis has also revealed the transcriptional and

functional spectrum within T cell subtypes such as T helper 17
(Th17) [3] and T regulatory (Treg) cells [9]. The balance between
pathogenic and nonpathogenic Th17 cells (Th17p and Th17n cells
respectively) shapes tissue inflammation [10–12]. Gaublomme
et al. used scRNA-seq to identify multiple genes that regulate this
balance, including CD5-like (Cd5l), that were not found at the
population RNA-seq level. Genetic ablation of these genes had a
strong biological impact on the development of disease in murine
model of experimental autoimmune encephalomyelitis (EAE) [3].
These examples illustrate the potential of systems methods to
uncover the heterogeneous spectrum of immune cells and to
aid the discovery of novel targets for potential therapeutic
intervention that might not otherwise be evident at the
population level [13].
Similar to immunity, cellular metabolism is also systematically

regulated. In fact, the two branches of biology have been
connected since Otto Warburg discovered that activated leuko-
cytes have increased aerobic glycolysis and not oxidative
metabolism [14]. Metabolism fulfills three basic needs of an
organism, i.e., the generation of energy in the form of ATP, the
maintenance of redox potential by the generation of NAD(P)H,
and the synthesis of macromolecules [15, 16]. All living systems,
including immune cells, take in nutrients and utilize them to fulfill
these needs. While it is common to abstract metabolism as a set of
pathways and cycles, cellular metabolism comprises a complex
network of reactions that are highly interconnected through
common substrates, products, cofactors, and catalyzing enzymes.
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A limited perturbation target may therefore alter the entire
network to maintain metabolic homeostasis. To study immuno-
metabolism, one has to consider the dynamic nature of immune
cells, heterogeneity within immune cell populations, and rapid
changes in disease environments. Here, we review system-based
approaches to interrogate immunometabolism and introduce
mathematical modeling tools that promise to advance the field.

EXPERIMENTAL APPROACHES TO INTERROGATE
IMMUNOMETABOLISM
The foundation of our current understanding of immune cell
metabolism is based on cell-focused approaches. Classically, the
uptake of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-
glucose (NBDG) or radiolabeled deoxyglucose has been used as an
indicator of glycolysis, a method also implemented in clinics for
diagnosis of cancer in the form of 18-fluorodeoxyglucose positron
emission tomography (FDG-PET). Reinfeld and Madden et al.
recently applied FDG-PET to identify myeloid cells, and not tumor
cells, as the principal consumers of glucose in a tumor
microenvironment, contrary to the established paradigm [17].
Extracellular flux analysis (EFA) can also be performed for the
quantification of cellular respiration and indirect assessment of
glycolysis through the measurement of lactate release. Corrobor-
ating Warburg’s seminal findings in lymphocytes in the 1950s,
recent work has shown that T cell receptor activation dramatically
increases both the extracellular acidification rate (ECAR) and the
oxygen consumption rate (OCR) [18], which are indicative of
increased glycolysis and aerobic mitochondrial respiration,
respectively. Similarly, Tregs and Th17n cells have an increased
OCR and reduced ECAR compared to Th17p cells [19].
Flow cytometry, which is used to detect soluble and cell surface

proteins, can also be used to measure metabolic parameters in
immune cells, such as glucose uptake [20, 21], lipid levels by
BODIPY [22], and FITC-based cysteine uptake assays [23]. This
widely implemented technique is also foundational to a multi-
plexed and systems tool for the interrogation of immune cell
metabolism using cytometry by time of flight (CyTOF) mass
spectrometry. CyTOF quantifies up to 40 antibody-based meta-
bolic proteins, cell surface markers, and cytokines to allow parallel
characterization of the immune and metabolic states of an
individual cell. This can be applied not only to understand the
metabolic [24–26] and effector states [27, 28] of immune cells but
also to determine epigenetic changes such as acetylation [29].
Hartmann et al. recently developed a mass-cytometry-based
method called single-cell metabolic regulome profiling (scMEP)
that determines cell phenotype by identifying metabolic regula-
tors [26]. Combining scMEP with multiplexed ion beam imaging
by the time of flight (MIBI-TOF), the authors determined that
CD39+ PD1+ T cells are spatially restricted to the tumor-immune
boundary, implicating a broader, noncheckpoint-dependent
mechanism of immune exclusion in human colorectal cancers.
Similarly, Levine et al. implemented mass cytometry to determine
metabolic regulators of CD8+ T cell activation after Listeria
monocytogenes infection in vivo [25]. The authors observed that
early activated CD8+ T cells have an increase in both, glycolysis
proteins such as glyceraldehyde 3-phosphate dehydrogenase
(Gapdh) and glucose transporter 1 (Glut1/gene name Slc2a1), and
mitochondrial protein such as ATP synthase F1 subunit alpha
(Atp5a), which was confirmed functionally by EFA and MitoTracker
staining [25]. Another flow cytometry-based strategy is Met-Flow,
which determines the metabolic state of a cell based on the
expression levels of rate-limiting enzymes of principal metabolic
pathways. For example, high levels of Glut1 and hexokinase 1 are
indicative of increased glycolysis, and glucose-6-phosphate
dehydrogenase (G6PD) of increased oxidative pentose phosphate
pathway [30]. Of note, protein synthesis is also a major consumer
of energy such that changes in protein synthesis, especially after

metabolic interventions, are an informative readout. Applying this
understanding, Argüello et al. developed SCENITH (single-cell
energetic metabolism by profiling translation inhibition), which
quantifies protein translation with puromycin staining as a
surrogate to assess metabolic changes in heterogeneous cell
populations at single-cell resolution. Using this technique, Lopes
et al. unveiled the metabolic dichotomy between γδ T cell subsets
in EO711 and MC38 tumor models and determined that whereas
IFN+γδ T cells rely on glycolysis, IL17+γδ T cells depend on
mitochondrial metabolism [31]. The flow cytometry readout can
be made more comprehensive by the inclusion of markers for
DNA and RNA along with proteins [32]. All these experimental
techniques are validated tools to study metabolism and provide
substantial insights into the metabolic dependencies of immune
cells. However, the assessment of immunological proteins in cells
grown under nonphysiological conditions and the fact that
multiplexing by CyTOF is limited to only 40 markers restrict the
applicability of these methods for the detection of the metabolic
heterogeneity of immune cells.
Unlike flow-based approaches, RNA sequencing is comprehen-

sive and has no intrinsic limit on the number of marker readouts
per cell. Indeed, scRNA-seq data have been instrumental in
understanding heterogeneity and identifying novel metabolic
regulators of immune cells. Through insights provided by scRNA-
seq, we identified Cd5l, a regulator of lipid metabolism, as a critical
mediator of Th17 cell pathogenicity [3, 33]. We discovered that
high Cd5l in Th17n cells shifts cellular lipid profile by increasing
polyunsaturated fatty acids (PUFAs) while reducing saturated fatty
acids (SFAs) and cholesterol biosynthesis. Genetic ablation of Cd5l
promotes pathogenicity in Th17 cells by increased cholesterol
metabolites and the activation of RORγT [33], the master
transcription factor of Th17 cell differentiation. Similarly, based
on single-cell analysis, Rivadeneira et al. found that vaccinia-virus-
infected melanoma tumors have an increased influx of new
TIM3high PD1mid/low CD8+ T cells that, despite appearing
non-exhausted, are metabolically insufficient, as indicated by
reduced mitochondrial content and increased glycolysis [34]. Local
administration of leptin, an adipokine with metabolic effects [35],
increased basal oxygen consumption and mitochondrial reserve,
thereby increasing the inflammatory capacity and antitumor
effector functions of T cells. In a separate study, Ringel et al.
performed the single-cell analysis of tumor-infiltrating CD45+

lymphocytes from mice fed control and high-fat diet [36]. The
authors reported that a high-fat diet reprograms tumor metabo-
lism, specifically fat utilization between tumor and CD8+ T cells.
Single-cell analysis of human melanoma, and head and neck
cancers, revealed the metabolic programs governing the
tumors and non-tumor populations [37]. Similarly, leveraging
scRNAseq analysis Fernández-García et al. identified asparagine
synthetase (Asns) as a dynamic regulator of CD8+ T cell effector
function during viral infections, downregulation of which polarizes
these cells to a memory phenotype [38]. These examples highlight
the efficacy of scRNA-seq as a tool to identify new metabolic
targets that regulate the T cell response in autoimmunity and
cancer.
The quantification of intracellular and extracellular metabolites

by nuclear magnetic resonance-based (NMR) and mass spectro-
metry (MS)-based metabolomics can serve as orthogonal con-
firmation of the results of metabolic gene expression analyses
based on sequencing data. NMR lacks the resolution of MS-based
methods in identifying a specific metabolite but is nondestructive
to samples and is quantitative. By doing NMR analysis of T
lymphocytes obtained from septic shock patients Venet et al.
found that these T cells had impaired glycolysis and ATP
production, which was corrected upon treatment with IL7 [39].
Compared to NMR, MS-based metabolomics is more widely
implemented in the study of cellular metabolism due to its
greater sensitivity and resolution. It is usually done in tandem with
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chromatography-based separation of metabolites and hence
called liquid chromatography-mass spectrometry (LC-MS) or gas
chromatography-MS (GC-MS). We and others have applied LC-MS-
based metabolomics to study the metabolic basis of Th17 cell
differentiation and fate [33, 40, 41]. We identified that Th17p cells
depend on polyamine biosynthesis, which when inhibited, shifts
Th17 cells into a nonpathogenic/regulatory state and ameliorates
EAE [19].
The steady-state metabolome is a snapshot of metabolite levels

at a given time and thus provides an incomplete picture.
Appreciating the dynamics of metabolism warrants the assess-
ment of material flow per unit time, i.e., metabolic flux [41]. Ron-
Harel et al. labeled naive and activated T cells with 13C3-D-serine to
measure the incorporation in de novo purine biosynthesis
metabolites [42]. The authors identified that the knockdown of
the mitochondrial serine metabolizing enzyme Shmt2 resulted in
an accumulation of the metabolites α-phosphoribosyl pyropho-
sphate (α–PRPP), glycineamide ribonucleotide (GAR),
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), and
succinylaminoimidazole carboxamide ribose-5′-phosphate (SAI-
CAR) upstream of 10-formyl THF incorporation. Based on dynamic
labeling, the authors identified the mitochondrial folate pathway
as critical for supplying one-carbon units for de novo purine
synthesis in activated T cells [42]. Similarly, using U-13C6-glucose
(glucose labeled on all six carbons with 13C) tracing followed by
GC-MS-based analysis, Wu et al. assessed the 13C incorporation
kinetics of pyruvate, lactate, serine, glycine, alanine, and citrate in
olfactory receptor Olfr2-knockout, glucose-6-phosphate isomerase
1 (Gpi1)-deficient, and koningic acid (KA)-treated Th17p and Th17n
cells [43]. Stable isotope labeling (SIL) can also be performed
in vivo through the slow infusion of nutrients such as U-13C6-
glucose to determine the fate of downstream metabolites [44].
13C-based SIL to assess murine T cell metabolism during an active
immune response has shown that effector CD8+ T cells adopt a
distinct metabolic profile in vivo, and produce little lactate and
oxidize most of their glucose through the TCA cycle [45]. Further,
pyruvate dehydrogenase mediates entry of pyruvate to the TCA
cycle in vivo unlike in vitro environment where it is mediated
by pyruvate carboxylase. Finally, the fate of glucose is different
in T cells during different phases and is associated with an
increased dependence on serine biosynthesis during the effector
phase [45].
Mass spectrometry can be employed to study both metabo-

lome and proteome. Applying this strategy, Geiger and colleagues
discovered that L-arginine concentrations regulate
T cell proliferation, differentiation, and survival. These authors
found that an increase in L-arginine concentrations promotes
oxidative phosphorylation (OXPHOS) and central memory T cell
formation with enhanced antitumor efficacy [46]. Similarly, LC-MS-
based quantitative analysis of the proteomes of murine naive
CD4+ and CD8+ T cells, revealed that sensing of environmental
cues and metabolic reprogramming of T cells depend on
activation by cognate antigens [47]. Further, mTORC1 inhibition
has a cell context-specific effect on cell cycle progression such
that it is prominent in antigen-activated naive CD4+ and CD8+

cells but not in effector cells [47]. In another study, by applying
tandem mass tag method and two-dimensional liquid
chromatography-tandem mass spectrometry (LC/LC-MS/MS) fol-
lowed by integrated in silico analysis, Tan et al. determine the
signaling and bioenergetic mediators of
T cell exit from quiescence [48]. The authors found that the
absence of cytochrome oxidase 10 (Cox10), an accessory factor for
the assembly of mitochondrial complex IV, reduced Ifn-γ+ TNF-α-
producing Th1 cells in mice infected with ovalbumin-expressing
recombinant Listeria monocytogenes (LM-OVA) [48]. Using a
different approach to compare naive and activated T cells, Wolf
and colleagues observed that even though naive T cells do not

rely on glycolysis these cells have a large reservoir of glycolytic
enzyme (amounting to 11% of the total cytosolic proteins) as a
mechanism of T cell preparedness for activation [49]. By pulsed
SILAC (stable isotope labeling of amino acids in cell culture)-based
approach, these authors found that upon activation T cells
increase the activity as well as turnover of major glycolytic
proteins such as lactate dehydrogenase (Ldha), Gapdh, aldolase A
(Aldoa), and phosphoglycerate kinase 1 (Pgk1) that feed the
altered metabolic demands of activated cells [49]. Mass spectro-
metry can also be applied to measure the in vitro activity of
enzymes. Ghergurovich et al. performed LC-MS-based monitoring
of 6-phosphogluconate production by recombinant human G6PD
in vitro to assess the activity of the pentose phosphate enzyme
G6PD in T cells and macrophages [50].
The CRISPR revolution has provided another means to assess

the effect of targeting specific genes or a library of genes on
immune cell metabolism and phenotype. An elegant example of
this is the recent work by Huang and colleagues that leverages
CRISPR-Cas9-based in vivo pooled screening to determine
metabolic regulators of Klrg1−CD127+ or Klrg1loCD127hi memory
precursor (MP) and Klrg1+CD127− or Klrg1hiCD127lo terminal
effector (TE) CD8+ T cells under the acute lymphocytic choriome-
ningitis Armstrong strain (LCMV) infection model [51]. The authors
observed that the loss of amino acid transporters Slc7a1 and
Slc38a2 promoted MP CD8+ T cell formation and persistence by
regulating amino acid levels and mTORC1 activity. The same
screening also uncovered the GDP-fucose protein O-fucosyltrans-
ferase 1(Pofut1), as the key regulator of a different subset of
Klrg1hi Cxcr3lo CD127lo terminal effector (TE’) T cell population.
Pofut1 deletion reduced the TE’ frequency but improved the
accumulation of Cxcr3hiCD127lo effector T cells in a poised state
(TINT) that have cytotoxic features. Application of CRISPR-Cas9
screening followed by in vivo validation revealed de novo
synthesis of phosphatidylethanolamine as a metabolic and
posttranscriptional regulator of CXCR5 protein stability and
membrane localization in T follicular helper cells [52]. In another
study, using CRISPR-Cas9-based screening of metabolism-
associated factors, Wei et al. identified zinc finger CCCH-type
containing 12 A or Zc3h12a (also known as Regnase-1) as a major
negative regulator of antitumor response [53]. By performing
secondary in vivo genome-scale CRISPR screening, these authors
identified Basic Leucine Zipper ATF-Like Transcription Factor
(Batf)-mediated mitochondrial oxidative metabolism as a regulator
of increased effector response in Regnase-1 null CD8+ T cells.
Simultaneous inhibition of both Regnase-1 and Batf diminished
the increased mitochondrial mass, membrane potential, and
effector function of Regnase-1 null CD8+ T cells [53]. All these
studies illustrate how CRISPR-based screening is a powerful tool to
determine functional and phenotypic regulators of immune cell
metabolism.
Integrated approaches that combine high throughput sequen-

cing with traditional biochemical, metabolic, and molecular
biology techniques have also been developed to interrogate the
metabolism of immune cells. An example is Ins-seq, which
integrates massively parallel measurements of scRNA-seq and
intracellular protein activity [54]. Utilizing this method on bone
marrow cultures stimulated with LPS, Katzenelenbogen et al.
identified Trem2 as a marker of immunosuppressive myeloid cells
in the tumor microenvironment [54]. Another technique combin-
ing scRNA-seq data with the spatial distribution of immune cell
population is Zipseq, which has been used in tandem with
SCENITH to determine both the location and the metabolic traits
of immune cells, as used for the examination of CD8+ T cell
populations in the tumor microenvironment [55].
In summary cell-based, cytometry-based, and high-dimensional

techniques are the workhorses of immunometabolic interroga-
tions, the latter being the foundation of systems methods
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currently being implemented. Giving examples of each, we have
attempted to provide a brief introduction to these approaches. For
the details of these methods, the readers are referred to recent
excellent reviews in the field [28, 56–60].

COMPUTATIONAL METABOLIC MODELING COMPLEMENTS
EXPERIMENTAL APPROACHES
It is challenging to holistically characterize cellular metabolic
states with direct metabolic assays. Assays such as glucose uptake
or EFA or flow-cytometry-based methods depend on isolated cells
that are cultured or sorted under nonphysiological conditions
before or during analysis, effectively causing a loss or damage of
metabolites. Metabolomics assays, although high throughput,
require cell numbers that make it challenging to study small

immune populations, especially in vivo. In addition, metabolomic
assays are unable to measure in parallel and distinguish a large
enough number of molecules to be considered comprehensive.
These gaps can be effectively addressed by functional
genomic methods, which may not provide direct metabolic
readouts, but their advantages effectively complement direct
metabolic assays. When used in tandem, gene/metabolite
enrichment analyses can identify genes/metabolites significantly
altered in experimental datasets by leveraging the power of
known gene ontologies and established metabolic databases such
as KEGG [61], thereby providing insights into altered metabolism,
function, and heterogeneity among immune cells. However, the
metabolic network is highly interconnected, and fragmentation
into pathways inevitably loses some of the ways in which
pathways can interact and affect one another. Moreover, pathway

Fig. 1 Network-based methods complement and add to enrichment-based workflows for interrogating immunometabolism. Top panel: High-
throughput data, such as transcriptomics, metabolomics, or systemic CRISPR screens, are used to generate data-driven hypotheses in the form
of differentially expressed targets [119, 120]. Pathways and gene sets are knowledge-based representations of shared biological activity
derived from established gene ontologies and databases (e.g., GO [121, 122] and KEGG [61]). Subsequent experiments validate and refine the
data-driven hypotheses, add mechanistic insight, and may lead to another cycle of high-throughput data collection and analysis. Bottom
panel: Network-based approaches augment enrichment-based approaches. Biological networks, such as genome-wide metabolic networks,
are generated from the annotated genome of a species of interest together with functional genomic data and computational gap-filling
where appropriate [104–106]. Network algorithms, such as flux balance analysis for genome-scale metabolic models, integrate global
information agnostic of pathway divisions and can therefore predict targets that will not be prioritized based on the workflow described
above. Similar to pathway- and gene-set-based approaches, networks organize extant knowledge and allow the contextualization of gathered
high-throughput data within extant knowledge bases. However, network approaches may capture systemic effects that are missed by
pathway-focused approaches.
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composition may not be the same between different tissues or in
disease states. Therefore, enrichment analysis of predefined
pathways cannot account for the full complexity of the metabolic
network.
A different way to approach this is by utilizing metabolic models

that translate available knowledge of the topology and stoichiometry
of the metabolic network of a species into mathematical
models. These models allow a structural analysis of the metabolic
network [62, 63] and, importantly, in silico predictions of
metabolic fluxes, which can then be confirmed by biochemical and
metabolic techniques. They offer a powerful way to contextualize
high- dimensional omics data, such as scRNA-seq data, within species-
specific metabolic knowledge. Metabolic modeling can be steady-
state or kinetic and leverages the strength of computation to predict
cellular metabolism. Of note, metabolic models are simplified
maps for explaining and predicting biological phenomena. Hence,
although metabolic approaches augment standard enrichment-based
approaches, the resultant predictions also need to be confirmed and
revised by traditional experimentation techniques. This complemen-
tarity of two approaches warrants the need for current methods to
work in tandem with metabolic modeling to develop a holistic
understanding of cellular metabolism in the immune system. Figure 1

provides a summary of the workflow of prevalent non-network-based
approaches and metabolic modeling-based methods. In the following
sections, we will introduce the basics of current metabolic modeling
approaches to study cellular metabolism, provide a basic workflow of
genome-scale metabolic models (GSMMs), and summarize the
application and shortcomings of metabolic models to interrogate
immunometabolism.

GENOME-SCALE METABOLIC MODELS AS TOOLS TO STUDY
IMMUNOMETABOLISM
Metabolic modeling of cellular metabolism broadly falls into one
of two branches: kinetic vs. steady-state approaches [64]. Kinetic
methods directly model metabolite concentrations as a function
of time and reactions that produce or consume them as ordinary
differential equations. Challenges to this approach include
incomplete knowledge of reaction kinetics, especially in vivo,
and computational intractability at scale. Hence, kinetic
approaches have thus far been applied to unicellular organisms
such as E. coli [65] and yeast [66, 67] and to simpler systems such
as human red blood cells, which lack mitochondria-dependent
metabolic pathways [68, 69]. In contrast, steady-state approaches

Fig. 2 Schematic overview of a constraint-based modeling approach to study metabolism. a Annotated genes from a species of interest are
combined with metabolic knowledge bases to generate a draft for the metabolic reactions available to a cell. b This draft is refined based on
existing knowledge bases, and computational gap filling [104–106] is applied to ensure desired properties, such as the ability to generate ATP
from a given substrate. c The product of this phase is a stoichiometric matrix (S) wherein entries are the stoichiometric coefficient of a
particular metabolite (row) in a particular reaction (column). Reactions that have only negative or positive entries are exchange reactions that
allow metabolite intake into and secretion out of the system (e.g., R5 in the illustrated matrix). d, e Imposing the assumptions of mass balance
and of biochemical steady-state (i.e., constant metabolite concentrations) leads to a feasible space of metabolic flux distributions v
(mathematically, this is the kernel of the stoichiometric matrix, namely, the solution space of S · ν= 0). The addition of (f) thermodynamic and
(g) capacity constraints further restrict the feasible flux distribution space into a convex cone and bounded convex cone, respectively
[71, 123, 124]. h The optimization of objective functions is used to detect mechanistically relevant flux distributions (i.e., the assignment of
predicted flux for each reaction). The optimization of the pertinent objective (e.g., synthesis of biomass molecules) allows finding the vertices
of the convex cone (namely, specific flux distributions) of interest, although the system is often underconstrained, and as a result, the solution
to the optimization problem is nonunique. i The final outcome is predicted flux distributions, namely, the assignment of flux values to each
reaction, that achieve the optimum of the stated objective, subject to the stated constraints. Often, the optimization function and/or
constraints are informed by empirical high-throughput data, such as gene expression of different phenotypes/cells as denoted in the figure.
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model genome-scale metabolic networks by simplifying the
assumption of a biochemical steady-state and consequently do
not directly model metabolite concentrations [70]. Their network-
wide metabolic coverage, which allows accounting for subcellular
metabolite compartmentalization and cell-to-cell metabolic
exchanges, has been leveraged to study human metabolism in
diverse contexts and to perform in silico combinatorial perturba-
tion experiments [71, 72]. In this review, we focus on one of the
main computational frameworks for steady-state metabolic
modeling, GSMM, which offers two advantages in the study of
immunometabolism. First, GSMMs can be contextualized with
single-cell genomics, which is advantageous in the study of rare
and highly heterogeneous cells, as in the case of the immune
system. Second, GSMMs allow in silico hypothesis generation, for
example, via a network-wide in silico search of metabolic targets
modulating an immune cell phenotype.
Foundational to any GSMM is the generation of a well-curated

organism-specific metabolic network based on omics data such as,
proteomics, transcriptomic, and metabolomics; published literature;
and reference network reconstructions such as, BiGG (Biochemical
Genetic and genomic knowledgebase) [73], VMH (Virtual Metabolic
Human) (https://www.vmh.life/), ModelSeed (https://modelseed.
org/), and MetaNetX (https://www.metanetx.org/). Notably, GSMMs
encode more than the association between reactions with substrate
and product metabolites. They contain information on associating
metabolic reactions with genes that code the enzymes catalyzing
these reactions [74] and reaction stoichiometry in matrix format (S)
[75] (Fig. 2). Stoichiometry, together with the assumptions of mass
balance and steady-state, defines a space of feasible flux
distributions (v), i.e., the assignment of flux value through to every
reaction in the network. This solution space can be constrained
further, for example, by the imposition of nutrient availability
constraints or reaction irreversibility due to thermodynamic
considerations (Fig. 2), upon which further condition- or outcome-
specific constraints can be applied. In the next step, particular flux
distributions may be selected based on constrained optimization of
a desired cellular property, such as biomass production or the
synthesis of a desired metabolite [76, 77]. These steps are carried by
Flux Balance Analysis (FBA) algorithms, which use constrained
optimization, such as linear or mixed-integer linear programming to

be applied to predict the direction and flux of metabolic reactions
that support a given biological objective, such as cell growth,
macromolecule biosynthesis, and the regulation of redox balance.
The steps of creating a GSMM and constraint-based analysis are
shown in Fig. 2, and the basics of the latter are enumerated in
Box 1. GSMMs have been used to study mammalian cells, including
red blood cells (RBCs) [68], cancer cells [78, 79], hepatocytes [80, 81],
adipocytes [82, 83], and neurons [84, 85]. GSMMs have also been
applied to interrogate immune cell metabolism. One early example
was the creation of a GSMM for the RAW 264.7 macrophage cell line
[86], which was used to identify metabolic regulators of immune
activation and immune suppression in macrophages. Based on this,
the authors identified glutamine/glutamate utilization in de novo
nucleotide synthesis as a key pathway downregulated during LPS-
mediated activation of macrophages [86]. Hörhold et al. used FBA
modeling and gene set enrichment to study macrophage regula-
tion and identified nine top-ranking transcription factors that
regulate an M1 to M2 phenotype switch, which were then
confirmed by in vivo studies [87].
To predict the cellular state with greater accuracy, high-

throughput data such as transcriptomics, metabolomics, or
proteomics can be used to limit the solution space of
constraint-based metabolic models. Among the available high-
dimensional data, scRNA-seq is unrivaled in comprehensiveness
by covering all enzymes in the entire genome of an organism.
Furthermore, scRNA-seq is cost-efficient and can be compared to a
high volume of available datasets. With an increased impetus to
develop human-cell-based datasets such as the Human Cell Atlas
[88], the potential of RNA expression in metabolic prediction is
increasing. The novel avenues afforded by scRNA-seq (unlike bulk
sequencing) require new methods to account for its characteristics
and to exploit the novel opportunities it allows. This led us to
develop Compass [19], an FBA algorithm that models the
metabolic flux states of individual cells based on single-cell data.
Intuitively, Compass determines the alignment of the cell’s global
metabolic program, reflected in its transcriptome, without carrying
a high flux on a particular reaction. This is quantified by the
Compass score for the reaction, which we interpret as a proxy for
the activity of the reaction in cells [19]. Compass-predicted

Box 1. Basics of flux balance analysis

Stoichiometric matrix (S)
The stoichiometric coefficients are the multiplicative factors added to chemical

formulas to preserve mass balance. A stoichiometric matrix S describes the set of
possible metabolic reactions in the system. Its rows correspond to metabolites, its
columns correspond to reactions available to the cell, and entries hold the
stoichiometric coefficients of a metabolite in a reaction.
Metabolic flux (v)
A metabolic flux is an instantaneous rate at which a chemical reaction occurs and

is measured in units of particles per time and volume. Let x be vectors of metabolite
concentrations in the system (as a function of time t) and v be the vector of
metabolic fluxes. Then:

S � v ¼ dx
dt

FBA algorithms [125] assume a metabolic steady-state, i.e.,

S � v ¼ 0

Equivalently, we limit the space of feasible flux distributions v to ker (S)
(Fig. 2e).
In addition to the steady-state assumption, the vector of flux values per reaction

is subject to thermodynamic (e.g., reaction irreversibility) and chemical (e.g.,
nutrient availability) constraints, which further limit the space of feasible flux
distributions (Fig. 2f, g) [125]. FBA then employs constraint-based optimization to
detect points of interest in the high-dimensional flux distribution space (Fig. 2h, i)
[76, 109,126–128].

Box 2. Compass: an FBA tool to study immunometabolism

Compass is an FBA algorithm that uses single-cell transcriptomic profiles to
produce a quantitative profile for the metabolic state of single cells. Even though
the mRNA expression of enzymes is not an accurate proxy for their metabolic
activity, a global analysis of the metabolic network (as enabled by RNA-seq) in the
context of a large sample set (as offered by single-cell genomics) coupled with
strict criteria for hypothesis testing provides an effective framework for predicting
cellular metabolic states.
The first step of Compass is agnostic to gene expression and computes, for every

metabolic reaction r, the maximal flux voptr it can carry while imposing only
stoichiometry and mass balance constraints. Next, Compass assigns every reaction
in every cell a penalty inversely proportional to the mRNA expression associated
with the enzyme(s) catalyzing the reaction in that cell. Finally, for every reaction r
and every cell, Compass finds a flux distribution (an assignment of flux values to
every reaction in the network) that minimizes the overall penalty incurred while
maintaining a flux of at least ω � voptr (we used ω= 0.95) through r. The additive
inverse of this penalty term is the reaction score.
The use of genome-scale metabolic networks allows the entire metabolic

transcriptome to impact the computed score for any particular reaction, rather than
just the mRNA coding for the enzymes that catalyze it. This reduces the effect of
instances where mRNA expression does not correlate with metabolic activity and of
scRNA-Seq dropouts [129]. Compass further mitigates data sparsity effects through
information sharing on a k-nearest neighbors graph, similar to other scRNA-Seq
algorithms [89,130–133]. Single-cell gene expression sparsity can also be effectively
addressed by pooling cells together based on data-driven heuristics (e.g., metacells
[89] or micropools [134]) or based on the experimental design (e.g., pooling
together experimental replicates to create pseudobulks).
The resulting quantitative profile of the metabolic state of a cell, represented by a

reaction score matrix, is subjected to further analyses, which can be (a) hierarchical
clustering of metabolic reactions as metareactions, (b) computing differential
expression of reactions, (c) the correlation of reactions with phenotype under
interrogation, and (d) the analysis of data-driven pathways [19].
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metabolic profiles can then be used to identify differentially active
metabolic reactions between cell types or reactions associated
with continuous spectra of cellular states within a dataset.
Notably, Compass takes a global view of the metabolic network
and does not partition it to predetermined metabolic pathways,
allowing it to predict novel connections between a phenotype
and ancillary metabolic pathways or between seemingly distant
metabolic reactions. In our study, we demonstrated the utility of
Compass in the assessment of the metabolic state of individual
cells in a disease to identify new metabolic targets to ameliorate
the disease [19]. This algorithm can be applied either to single
cells or to groups of cells (metacells [89, 90] or pseudobulks) and
produces a quantitative metabolic profile for each cell or
subgroup that can be calculated based on their transcriptomic
profile. A summary of Compass is provided in Box 2.

APPLICATIONS OF METABOLIC MODELING IN
IMMUNOMETABOLISM
Genome-scale models can be useful tools to gain a better
understanding of the metabolic requirements of rare immune
cells, especially in vivo, and consequently are an important
tool to study immune cells both under homeostasis and in disease.
With the increasing availability of high-throughput data, metabolic
models can have several potential applications in both preclinical
and clinical settings (Fig. 3), a few of which are summarized here.

Studying environment-specific metabolic dependencies of
immune cells
Immune cells moving from blood or lymphoid tissue to the tissue
of residence face a shift in microenvironment-derived metabolic
input as well as oxygen concentrations. Angelin and colleagues
demonstrated that Tregs maintain OXPHOS only under nutrient-
and oxygen-replete conditions [91]. Under glucose-limiting con-
ditions and hypoxia, as seen in cancers and inflammatory diseases,
T cells rely on lactate as a preferred carbon source and direct it to
mitochondrial metabolism. Not only Tregs but also effector CD4+

T cells within an inflammatory microenvironment, such as an
arthritic joint, express lactate transporters to support their survival
[92]. Simulating these conditions under artificial in vitro conditions
can be difficult. Systems approaches offer a solution to this
through model extraction algorithms. A context-specific genome-
scale metabolic model (CSM) takes into consideration context-
specific reactions or enzymes expressed in a given tissue or cell
line [86, 93]. In this case, model extraction methods are applied to
remove reactions deemed inactive based on observed (expres-
sion, protein, and metabolic) data, predefined metabolic functions
of a tissue and knowledge from published literature. In the
absence of widely available protein and enzyme activity data,
various groups have successfully utilized gene expression data to
generate CSMs. Zhang et al. recently applied constraint-based
CSMs for scRNA-seq data to simulate NAD+ biosynthesis activity in
seven mouse tissues [94]. Similarly, using Caenorhabditis elegans as

Fig. 3 Preclinical and clinical applications of genome-scale metabolic models (GSMMs): Cartoon depiction of the current use and potential
applications of GSMMs. The left panel represents the preclinical applications of GSMMs in mice and cell lines. The right panel summarizes the
clinical applications in humans.
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a model, Yilmaz et al. implemented their new computational
pipeline MERGE to identify tissue-specific metabolism in the
nematode. Applying tissue-specific constraints on scRNA-seq data
from various tissues of C. elegans, the authors found that the
metabolic properties of a nematode tissue depend on the
established functions of the tissue and that metabolic similarities
with analogous human tissues could be identified [95]. These
studies provide an excellent basis for the application of CSMs to
study the tissue-specific metabolic heterogeneity of mammalian
immune cells.

Identification of novel regulators of disease
Distinct T cell subsets are associated with autoimmunity and
inflammation. In EAE, an animal model of multiple sclerosis, the
balance between Th17p and Th17n/Treg cells regulates the
outcome and severity of disease. Using the FBA algorithm
Compass, we studied the metabolic underpinnings of T cell
pathogenicity in simplified in vitro settings [19]. Leveraging single-
cell data, Compass predicted increased dependence of regulatory
and nonpathogenic T cells on fatty acid oxidation. Additional
principal components uncovered nitrogen metabolism, specifi-
cally urea cycle targets that had the capacity to modulate Th17
pathogenicity. Compass identified polyamine metabolism as a key
regulator of the T cell phenotype and predicted its requirement in
the generation of Th17p cells. By performing complementary
in vitro and in vivo studies, we confirmed that the inhibition of
polyamine biosynthesis shifts T cells to a nonpathogenic/
regulatory phenotype in murine models of MS [19]. It is important
to note that the outcome of GSMMs can vary based on the
application of different constraints that are provided by different
disease microenvironments. Therefore, different metabolic path-
ways could underlie the development of autoimmune diseases in
different tissues.

Integration of multiomics to increase the depth of metabolic
networks
The basis of genome-scale networks is the integration of omics
data to generate draft reconstructions upon which GSMMs
are built. Integration approaches that can incorporate multiple
omics data can enhance the depth of network-based approaches.
Jha et al. developed such a network-based approach concordant
with metabolomics integrated with transcription (“CoMBI-T”) that
allows the integration of transcriptional and 13C metabolomics
data. Applying this pipeline, the authors identified UDP-GlcNac and
glutamine metabolism as characteristic features of M2 macrophage
polarization. Furthermore, an inflammation-induced aspartate-
argininosuccinate shunt was identified as a link between the
metabolic rewiring of the TCA cycle and the production of nitric
oxide [96]. The authors developed a web-based tool, GAM (genes
and metabolites), that allows integrated network analysis of
transcriptional and steady-state metabolomics data and incorpo-
rates metabolic network information specific to Arabidopsis, yeast,
mice, and humans [97]. Of note, although comprehensive, this
integration approach was not a constraint-based method. In an
earlier study, Shlomi et al. developed a constraint-based approach
to integrate tissue-specific gene expression and protein abundance
data to study the metabolic behavior of ten human tissues [98].
This approach suggested that 18% of human metabolic genes in
tissues are regulated posttranscriptionally and identified tissue-
specific expression of disease-associated genes such as DLD
(dihydrolipoamide dehydrogenase) and BCKDHA (branched-chain
keto acid dehydrogenase E1) in the brain and liver [98]. Such
integrative approaches can be important for the constraint-based
assessment of immune cells.

Genome-scale metabolic modeling of patient data
This increasing understanding of the human metabolic network
provides an opportunity for the clinical application of GSMMs to

characterize and predict the outcome of a disease. A recent
attempt to increase the patient-specific understanding of diseases
is the Human Pathology Atlas developed in 2017. Based on data
from ~8000 patients in 17 cancer types and datasets from local
and open-source data repositories such as the Cancer Genome
Atlas and the Human Protein Atlas, the authors identified genes
associated with survival in various cancer types [99]. By applying
GSMMs, this study identified fumarate hydratase (FH) as a
conserved gene for tumor growth in all liver cancer patients,
whereas succinate dehydrogenase complex subunit A (SDHA) was
predicted to be important for tumor growth in 60% of patients
[99]. In the case of lung cancer, SLC2A1 or GLUT1 was identified as
an important marker associated with poor prognosis. This work is
the first detailed attempt to study cancer-cell-type-specific and
patient-specific metabolic dependencies of different cancers. In
another study, a similar attempt was made to develop persona-
lized genome-scale metabolic models for nonalcoholic fatty liver
disease (NAFLD) in 45 human subjects [82]. Based on metabolic
modeling, the authors identified serine deficiency as the basis of
NAFLD and the serine biosynthesis pathway as a potential target
for clinical interventions. Follow-up clinical studies confirmed
these findings and demonstrated the health benefit of serine
supplements in NAFLD patients [100]. The Human Blood Atlas has
increased our understanding of gene expression in individual
immune cells present in the blood [101]. Among the significant
genes associated with individual immune cells, as identified by the
Human Blood Atlas, are metabolic genes such as fructose
transporter SLC2A5 in B cells, aldehyde dehydrogenase 1 family
member A1 (ALDH1A1) in monocytes, superoxide dismutase 2
(SOD2) in neutrophils, equilibrative nucleoside transporter 1 (ENT1
or SLC29A1) and catalase (CAT) in eosinophils, and mitochondrially
encoded NADH:ubiquinone oxidoreductase core subunit 2 (MT-
ND2) in basophils [101]. The recently released human metabolism
network Human1 [88] integrates gene reaction association from
the earlier reconstructions HMR 2.0 [100], Recon 3D [102] and
iHSA, as well as protein complex information from Recon 3D, iHSA
[103], and the CORUM [104] database. It would be interesting to
apply Human1 for further analysis of human datasets to
specifically study immune cell data to determine the metabolic
dependencies of immune cells in various human tissues and
cancer types.

SHORTCOMINGS OF CURRENT NETWORK-BASED MODELING
APPROACHES
GSMMs and FBA make simplifying assumptions due to incomplete
information. For example, computational predictions by gap-filling
algorithms [105–107] are integrated into the reconstructed
metabolic networks to ensure that the networks are capable of
simulating desired metabolic functions. Enzyme activity measured
in vitro may not reflect their catalytic activity under physiological
conditions, and some enzymes may have promiscuous unanno-
tated functions in addition to their primary functions [108]. Other
simplifying assumptions, most notably the assumption of bio-
chemical steady state, are made for computational tractability.
FBA algorithms that rely on mRNA data to infer metabolic fluxes
neglect the effects of posttranscriptional and posttranslational
regulation and use a simplified model to determine the complex
relationship between enzymes and their catalyzed reactions.
The steady-state assumption in static FBA, namely that net

influx through each metabolic reaction is equal to the net outflux,
hinders analysis of temporal dynamics of cellular metabolism.
Some insight into the system behavior if the assumption is relaxed
is offered by the dual variables of the FBA constraints, sometimes
called “shadow prices” [109, 110]. Another method to overcome
this caveat is to use constraint-based steady-state models with
unsteady-state extensions. Bordbar et al. recently proposed
unsteady state FBA (uFBA) with the goal of capturing dynamic
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changes in the cellular state regulated by changes in metabolism
[78]. This was done by a constraint-based workflow that
incorporates time-course metabolomics data in FBA to predict
the metabolic flux state of a cell. This study compared FBA and
uFBA methods in human red blood cells, platelets, and
Saccharomyces cerevisiae [78]. Based on their observations, the
authors propose that uFBA provides more accurate predictions
than standard nondynamic FBA methods. By adding additional
metabolomics data, the authors provided constraint-based
modeling to study metabolic dynamics [78]. uFBA incorporates
metabolite concentrations and hence paves the way for comput-
ing network flux by vertically integrating metabolomics with
standard transcriptomics-based tools. However, as a shortcoming,
similar to other multiomics-based approaches incorporating
metabolomics, uFBA faces the challenge of measuring metabolites
in rare immune cell populations specifically in disease settings.
This restricts the applicability of uFBA to immune cells that can be
easily obtained, cultured, and perturbed in vitro. Another
approach called Single-cell Flux Estimation Analysis (scFEA) [111]
relaxes the steady-state constraint by incorporating a loss term
corresponding to flux imbalance into an objective function that
maximizes the correlation between flux and gene expression in
supermodules to which the metabolic network is segmented.
scFEA uses a neural network to allow rich modeling of non-linear
dependencies of flux on gene expression but ignores reaction
stoichiometry. scFEA also segments the metabolic network and
prunes non-carbon molecules, resulting in less granular mechan-
istic predictions [111].
GSMMs also lack widely accepted standardized protocols for

workflow and the validation of model outputs. Genome-scale
networks require manual and laborious curation, a process that can
introduce significant variability in predictions [79, 112]. To overcome
this, Richelle et al. recently developed a computational framework,
CellFie, that incorporates a list of metabolic tasks alongside
knowledge databases and transcriptomics data [112]. Although this
work was restricted to select metabolic tasks in human transcrip-
tomics data, this is applicable to other high-dimensional datasets
from humans and other species. Further work is needed to expand
the repertoire of metabolic tasks not incorporated in the study,
along with the development of new methods to standardize
network curation. While curation can introduce errors, the choice of
a model extraction method implemented for computation can affect
the outcome of GSMMs. In a study comparing the effect of six CSM
methods, FASTCORE [113], GIMME [114], mCADRE [115], MBA [116],
INIT [117], and iMAT [98, 118, on models of four cancer cell lines
(A375, HL60, K562, and KBM7), Opdam and colleagues demon-
strated that all six model extraction algorithms increased the
accuracy of predictions from GSMMs; however, applied constraints,
especially uptake constraints, do influence the accuracy of results
[79]. Clearly, robust computational tools will be necessary to
standardize the integration of gene expression and increase the
prediction ability of GSMMs operated in different contexts. These
will overcome the biases introduced by the workflow and
constraints to allow the wider application of GSMMs.
In the domain of single-cell studies, future research will also

address the lack of specificity in GSMMs. For example, different
subsets of the metabolic network may be available to different cell
types. The molecular composition of a cell’s environment, which is
modeled in FBA and affects the outcomes of the computation, is
uncertain even in synthetic and highly controlled growth
environments. Better modeling of cellular environments will
increase the predictive capability of FBA-based algorithms. The
diverse protocols for single-cell sequencing also pose both
challenges and promise. For example, we mainly tested the
Compass algorithm on Smart-Seq single-cell data [3, 33]. While we
showed that the predictions were reproduced in a 10x-based
dataset obtained from the same model system, future studies may
need to consider the protocol differences (e.g., 3’/5’ end reads vs.

full transcript). In addition, the exponential growth in the size of
current cell atlases will require careful consideration of computa-
tional efficiency. On the other hand, the introduction of novel
assays that measure multiple data modalities opens avenues for
more comprehensive modeling of cellular metabolic states than is
possible with mRNA alone.

CONCLUSIONS
The ultimate quest of all approaches for interrogating immunome-
tabolism is finding the link between genotype and metabolic
phenotype to predict patient- and disease-specific fates of immune
cells and to provide novel targets to check the progression of
immunological diseases. With the increased availability of large
datasets, including the Human Cell Atlas [88], and the reduction in
the costs of gene sequencing, the applicability of GSMMs has
significantly increased in predicting the potential metabolic depen-
dencies of cells. Immune cells respond to changes in the
microenvironment such that the lineage fidelity and immune
function of cells depend on available nutrients, oxygen, and tissue
topology, among other parameters. This warrants a broader analysis
accounting for multiple variables, such as tissue type, genetic
background, age, and the sex of the individual. Increasing the
comprehensiveness by incorporating specific biological constraints
along with robust validation methods would therefore increase the
predictive capability and applicability of GSMMs. Utilizing the
outcome of such comprehensive models, one could identify
strategies for modifying the function of immune cells in the context
of disease. For example, by applying GSMMs to an individual’s tumor
sequencing data, one could gain insights into how to develop
functional effector T cells that can continue to work in the tumor
microenvironment, despite the lack of certain essential nutrients or
excess other metabolites that make T cells dysfunctional. Clearly,
systems methods and computational models are powerful futuristic
tools with their promise to predict and alter metabolic predilections
of immune cells and thereby change the course of a disease.
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