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ABSTRACT 

 Formulas for (i) the components of acceleration, (ii) the volumetric 
gravitational, pressure-dependent, and friction forces, and (iii) stability conditions 
for aquifer solids in groundwater flowing under steady-state conditions are 
derived in this work. The tangential acceleration governs the magnitude of the 
average pore velocity along the flow path of ground water. The normal 
acceleration component arises from changes in the direction of the average pore 
velocity. The frictional force exerted by the aquifer matrix on ground water is 
derived via Newton’s second law of motion. It is shown that the friction force is of 
approximately the same magnitude (but opposite in direction) to the drag or 
seepage force exerted by moving ground water on the aquifer matrix. Loss of 
aquifer solids by ground-water motion may occur whenever the contact force that 
holds aquifer particles static is not sufficient to counterbalance the resultant of the 
drag force plus the buoyant unit weight of aquifer. The hydraulic shear force 
exerted by stream flow contributes to the detachment of channel-bottom particles, 
although this force is perpendicular to the ground-water induced drag force under 
uniform stream flow regime.   Key variables governing the detachment of aquifer 
solids by moving ground water are the hydraulic gradient, flow-path geometry, 
and the unit weights of aquifer and ground water.  
 

INTRODUCTION 

 A volume of ground water moving through an aquifer is subject to several 
forces that determine its acceleration, if any. These forces are associated with the 
actions of gravitation, pore pressure, the Earth’s rotation, and friction exerted  on 
the moving fluid by the aquifer’s matrix. Loáiciga (2006) showed that the Earth’s 
rotational forces acting on ground water are much smaller than the gravitational 
force. Concerning the friction force exerted by the aquifer matrix on ground water 
moving through it, little is known about the magnitude of this force under field 
conditions. The use of Newton’s second law of motion relating the forces acting 
on ground water (among which the friction force) to its change in momentum is 
infrequent in the ground-water hydrology literature (see, however, Hubbert, 1940; 
Howard and McLane, 1988). Instead, the average pore velocity of ground water 
( vr , a three-dimensional vector) is customarily expressed using Darcy’s law (in 
which K is the hydraulic conductivity, ph  is the pressure head, z is the elevation 
head, and φ  denotes porosity): 

)zh(Kv p +∇−=
φ

r             (1) 
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Equation (1) is combined with the continuity equation to yield the well-known 
equation of ground water flow expressed in terms of the hydraulic head 

zhh p += . The equation of ground water flow is solved (using numerical 
methods, usually) and, afterwards, equation (1) is used to determine groundwater 
velocities within an aquifer. The acceleration of groundwater ( ar ) can be 
determined by taking the time derivate of velocity:  

dt
vda
r

r
=                (2) 

In the absence of an analytical expression for the velocity, the derivative in 
equation (2) is estimated in finite-difference form using the calculated velocity 
distribution throughout an aquifer. 
 The components of ground-water acceleration are derived analytically in this 
paper. Subsequently, the acceleration is related to the (volumetric) pressure-
dependent, gravitational, and friction forces driving ground-water flow. Steady-
state flow conditions are assumed. In addition, an analysis of forces is conducted 
for a generic volume of aquifer. From this analysis emerge the conditions under 
which losses of aquifer matrix by ground-water transport may occur. Such losses 
create subsurface conditions of consequence in a wide range of geologic, 
geomorphologic, and geotechnical processes (Terzaghi, 1931; Cedergren, 1989; 
Freeze and Cherry, 1979; Emery and Kuhn, 1982; Hagerty, 1991; Leipnik and 
Loáiciga, 2006). When ground water discharges to lake and streams the ground 
water drag force may suffice to detach particles on the aquifer-free water 
boundary, causing seepage erosion (Hagerty, 1991). Uniform flow in a gaining 
stream produces a  hydraulic shear force (or tractive force) tangent to its wetted 
perimeter and in the direction of flow (Rosgen, 2006). This shear force is 
perpendicular to the direction of discharging ground water, and, thus, to the drag 
force exerted by ground water on aquifer solids, as shown in Figure 1. The 
conditions governing seepage erosion and hydraulic shear erosion are investigated 
in this paper.  
 
THE ACCELERATION OF GROUNDWATER 

 The acceleration of groundwater arises from changes in the magnitude and 
direction of the average pore velocity along its flow path. Figure 2 shows a flow 
net of ground-water flow under a dam. The flow net encompasses a stream tube 
with vertices labeled 1-2-3-4 in which the coordinate s for a particular 
groundwater flow path is depicted. The stream tube contains a volume of aquifer 
a-b-c-d over which several forces act upon, as described in the next section  Let (i) 

Ter and Ner represent unit vectors tangential and normal, respectively, to the flow 
path along the curvilinear coordinate s, (ii) R(s) be the principal radius of 
curvature at s, (iii) v denote the magnitude of the velocity vector at s, |v|v r

= , and 
(iv) α  be the angle formed between the tangential velocity v at s and a 
(horizontal) reference datum that passes through the point s, and whereα  is 
related to R(s) by α∂∂= /s)s(R . Figure 3 shows an enlarged aquifer volume a-b-
c-d with key geometric characteristics drawn on it. Kinematic analysis leads to the 
following expression for the groundwater acceleration (see, for example, White, 
1979):  
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The local component of the tangential acceleration, t/v ∂∂ , is zero in steady-state 
flow. It  arises from changes in velocity over time at a fixed location. The local 
angular velocity t/ ∂∂α  represents the temporal rate of change of the direction of 
the tangential velocity at a given location s. This term vanishes in steady-state 
flow. Notice however that the tangential and normal components svv ∂∂ / and 

Rv /2 , respectively, of acceleration may still be nonzero in steady-state 
groundwater flow.  

The magnitude of the average pore velocity along the flow path is expressed 
using Darcy’s law (K andφ  denote hydraulic conductivity and  aquifer porosity, 
respectively): 

)s(iK
s
hKv

φφ
−=

∂
∂

−=            (4)   

in which i(s) = s/h ∂∂  denotes the hydraulic gradient along the coordinate s. The 
hydraulic gradient varies with s. The hydraulic head decreases in the direction of 
increasing s, so that i < 0, and, thus, v > 0. 
 Equation (3) coupled with equation (4) establish that the acceleration along a 
flow pathway has tangential ( Ta ) and normal ( Na ) acceleration components 
whose magnitudes are given by (steady-state flow is assumed):  

ds
idiK

ds
dvv

ds
dv

dt
ds

dt
dva

2

2
T

φ
====         (5)   

2
2

22
N i

R

K
R
va

φ
−=−=            (6) 

Equation (5) shows that the tangential component of the acceleration ( Ta ) along a 
flow pathway is nonzero so long as the magnitude of the velocity changes with the 
coordinate s. Equation (6) indicates that the normal acceleration component Na is 
proportional to the square of the average pore velocity. The negative sign of 

Na signifies that it is directed towards the center of curvature defined by the 
coordinate s. The normal acceleration arises from changes in the direction of the 
average pore velocity. It vanishes only when a flow path is straight or when 
ground water is stagnant. Equations (5) and (6) show that groundwater 
accelerations do exist in steady-state groundwater flow. Moreover, the 
accelerations (5)-(6) apply in 2- and 3-dimensional flow regimes. Further insight 
into the magnitude of the components of ground-water acceleration can be gained 
from flow nets, as shown next. 
 

GROUNDWATER ACCELERATION FROM A FLOW NET 

 The acceleration of groundwater can be related to the geometry of a flow net. 
For the sake of argument, the flow net shown on Figure 2 is used to illustrate 
derivations presented in this section. The pseudo-squares of the flow net in Figure 
2 are drawn so that their side along the flow path ( sΔ ) are approximately equal to 



World Environmental and Water Resources Congress 2011:                                  
Bearing Knowledge for Sustainability © ASCE 201 

 

1041

their average width (ω) perpendicular to the flow path and on the plane of the flow 
net (see enlarged pseudo-square a-b-c-d on Figure 3). Any other consistently 
constructed flow net could be used without invalidating the results below. It shall 
prove useful later in this paper to realize that the streamlines arriving at the 
discharge surface of the flow net (see points 3, 4 in Figure 2) do so perpendicular 
to the aquifer-free water boundary. This would also be the case if ground water 
discharges to an overlying stream with uniform flow regime.  It is known from 
flow-net theory that the (constant) ground-water flow traversing the stream tube 1-
2-3-4 depicted on Figure 2 is equal to: 

f
HbKQ =Δ              (7)  

in which b is the thickness of the aquifer perpendicular to the plane of Figure 2, f 
is the number of head drops through the flow net (f  = 8 in Figure 2), and H 
denotes the total head drop across the flow net (H = 7.10 in Figure 2). The total 
flow through the flow net of Figure 2 is Q = p QΔ , in which p denotes the number 
of stream tubes in the flow net (p = 3 in Figure 2).  
 The flow QΔ equals the product of the area of aquifer perpendicular to the 
flow path (A = b w) times the magnitude of the specific discharge ( φ⋅= vq ), so 
that φΔ vAQ ⋅= . While QΔ is constant, the area A and specific discharge q vary 
with the flow-path coordinate s. Therefore:  

ds
dvA

ds
dAv0

ds
Qd φφΔ

+==           (8)  

from which the change of the average pore velocity along the flow path is related 
to the change in the flow area by  the following equation: 

ds
dA

A
v

ds
dv

−=              (9)  

 From equations (5) and (9) it follows that the magnitude of the tangential 
component of the ground water acceleration is given by  the following equation:  

ds
dA

A
v

ds
dvva

2
T −==            (10)    

The tangential acceleration is positive (or negative) if the average pore velocity 
increases (or decreases) with increasing traveled distance s. The velocity v 
increases with s in the portion of the flow net of Figure 2 upstream from the 
narrowest constriction under the dam’s pile. It decreases downstream from this 
constriction. Therefore, ground water exhibits positive (negative)  tangential 
acceleration upstream (downstream) from the pile shown on Figure 2.  
 Using the fact that the flow area )v/(QA φΔ=  and the flow-net equation 
(7) in Equation (10) yields the following expression for the tangential acceleration 
along the coordinate s (recalling that A = b ω, also):  

( ) ds
dw

f/HK
v

ds
dA

)f/H(Kb
va 3

3
T

φφ
−=−=       (11)   

 To elucidate the order of magnitude that can be expected for Ta  in aquifers, 
variables from the Figure 2 flow net are exemplary. With K = 1.2 x 10-4 m/s, φ  = 
0.3, and i ≅ 0.28, the average pore velocity crossing the segment a-d of the stream 
tube 1-2-3-4 on Figure 2 is  v ≅  1.1 x 10-4 m/s. The contraction ratio at the same 
location is dω/ds ≅ - 1/3. These values, together with the average head drop H/f = 
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7.10/8 = 0.89, yield Ta ≅  1.2 x 10-9 m/s2. Given that the acceleration of gravity g 
≅ 9.8 m/s2, the Ta /g ratio is on the order of 10-10 for the data used.  
 Concerning the normal acceleration Na , recall from equation (6) that its 
magnitude  equals the square of the average pore velocity divided by the radius of 
curvature (R). R ≅ 10 m at the center of the pseudo-square a-b-c-d of the stream 
tube 1-2-3-4. It follows that the magnitude of the ratio Na /g for v = 1.1 x 10-4 m/s 
is on the order of 10-10. These calculations suggest that the tangential and normal 
components of the acceleration of ground water are very small –in fact, 
negligible- compared to the acceleration of gravity.  
 

GRAVITATIONAL, PRESSURE, AND FRICTIONAL FORCES 

 Newton’s second law of motion. The ground water contained in a pseudo-
square (such as a-b-c-d in Figures 2 and 3) of a stream tube is subject to 
gravitational, pressure-dependent, and frictional forces, which, per unit volume of 
ground water, are herein denoted by WF , PF , and FF , respectively. Newton’s 
second law of motion written along the pathway of ground water flow implies 
that: 

FPWTw FFFa −+=ρ            (12) 
in which Ta  is given by equation (11) and wρ  is the density of ground water 
(approximately 1000 kg/m3). In laminar ground-water flow the friction force 
( FF ) arises from viscous stresses caused by ground-water velocity gradients 
normal to the direction of flow within aquifer pores, akin to friction in flow 
through circular conduits associated with the well-known Hagen-Poiseuille flow 
equation (Streeter, 1966; Batchelor, 1970; Tritton, 1988). These viscous stresses 
are opposite to the direction of ground-water flow. The change of ground-water 
velocity within a highly irregular geometric array of aquifer pores induces thrust 
forces opposing ground-water flow, also. Given the relatively small magnitude of 
the changes in velocity involved, however, shear stresses are the dominant source 
of forces exerted by an aquifer matrix on ground water. The component  of the 
gravitational force WF is in the direction of flow when the average pore velocity 
has a downward vertical component. It opposes flow if the average  pore velocity 
has an upward vertical component. WF is nil when the average pore velocity is 
horizontal. The pressure force PF  is in the  direction of decreasing pressure head. 
 The ground water gravitational force. From the geometry of Figure 3 –
which shows an enlarged drawing of the pseudo-square a-b-c-d of Figure 2- it is 
deduced that the component of the gravitational force along the pathway of 
ground-water flow ( WF ) is given by (letting wγ  denote the unit weight of water, 

gww ργ = ): 
θγ cosF wW =              (13) 

in which θ  is the angle measured from a line oriented vertically downwards  and 
counterclockwise to a line tangent to the pathway defined by the coordinate s, as 
shown on Figure 3.  The angle θ  equals 0 (orπ ) when ground water moves 
vertically downward (or upward). The gravitational force is in the direction of 
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ground water flow whenever 2/0 πθ <≤ . It is opposite to the direction of 
ground water flow if πθπ ≤<2/ . 
 The pressure force on ground water. Recall that the pressure head ph  

equals P/ wγ , in which P is the pore pressure. The pressure force acting on an area 
Aφ  of pores perpendicular to the direction of ground water flow equals P A φ = 

ph wγ  Aφ . The volume of ground water in the pseudo-square a-b-c-d drawn on 
Figure 2 and Figure 3 is approximately A )2/ss( Δ+ φ sΔ . The net pressure 
force per unit volume of ground water, PF , driving ground water flow through 
the pseudo-square a-b-c-d is, in the limit when 0s →Δ  :  

( )
( )

=
+−

≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++−
=

→→ s
s(sh)s(h

lim
s2/ssA

)ss(A)ss(h)s(A)s(h
limF pp

0s
w

pp
0s

w
P Δ

Δ
γ

ΔΔ
ΔΔ

φ
φγ

ΔΔ
 

ds
dhp

wγ−=                (14)  

The minus sign in equation (14) indicates that the pressure force PF  is in the 
direction of decreasing pressure head. Recalling that the pressure head is related to 
the hydraulic head and elevation head by the expression zhhp −= , it follows 
that: 

θcosi
ds
dz

ds
dh

ds
dhp +=−=      0i <  πθ ≤≤0  (15)  

The hydraulic-head gradient i is negative because the hydraulic head decreases in 
the direction of increasing coordinate s. Substituting equation (15) in equation 
(14) yields the following equation for the pressure force (per unit volume of 
ground water):  

)cosi(F wp θγ +⋅−=       0i <  πθ ≤≤0  (16) 
in which i andθ  vary with the coordinate s.  
 The friction force on ground water. The friction force FF can be solved 
from Newton’s second law of motion (equation (12)), in which all forces are 
known except FF . Substituting equations (13) and (16) into equation (12), and 
solving for the magnitude of FF yields the following formula: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅−=−+⋅−=−+=

g
ai

g
a)cosi(cosaFFF T

w
T

wwwTwPWF γγθγθγρ

 (17) 
The magnitude of the tangential acceleration of groundwater, Ta , is much less 
than the acceleration of gravity. This being the case, the frictional force per unit 
volume of groundwater is approximately: 

iF wf γ−≅        0i <       (18) 
opposite to the direction of ground water flow. Result (18) is analogous to 
frictional forces that have been postulated for gradually-varied, steady-state, flow 
in channels (Chow, 1959; Cunge et al., 1980).  
 

VOLUMETRIC AQUIFER FORCES AND MATRIX STABILITY 
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 This section considers gravitational, pressure-induced, and contact forces (per 
unit volume of aquifer) acting on a volume of aquifer. Howard and McLane 
(1988) used an approach based on force equilibrium applied to surface grains of 
non-cohesive sediments to study the erosion by ground water seepage. These 
section’s results apply to cohesive and non-cohesive sediments, which, if found on 
an aquifer’s discharge boundary, may also be subject to a hydraulic shear or 
tractive exerted by overlying stream flow. 
 The gravitational force. The component of the gravitational force ( WAF ) 
along the path of ground water flow acting on the volume of aquifer such as that 
delimited by the pseudo-square a-b-c-d shown on Figure 3 is:  

θγ cosFWA =              (19) 
in which gργ = is the unit weight of aquifer, ρ  is the aquifer density (mass of 
solids plus water per unit volume of saturated aquifer), and g is the acceleration of 
gravity. Equation (19) differs from equation (13) in that the latter features the unit 
weight of ground water ( wγ ) within  the pseudo-square a-b-c-d. The gravitational 
force is positive, that is, in the direction of ground water flow whenever 

2/0 πθ <≤ . It is negative, meaning opposite to the direction of ground water 
flow if πθπ ≤<2/ . The component of the gravitational force along the path of 
ground-water motion is zero when 0=θ . 

 The pressure force. Using arguments similar to those used to derive equation 
(16), the pressure-induced force on the aquifer volume a-b-c-d can be shown to 
be: 

θγγθγ cosi)cosi(F wwwPA −−=+⋅−=      i < 0 (20) 

It is made explicit in equation (20) that the pressure-induced force has two 
components, one which is due to the hydraulic gradient ( iwγ− ) and another 
which is of gravitational origin ( θγ cosw− ). The first  component ( iwγ− ) is a 
drag force exerted by moving ground water on the aquifer matrix, always acting in 
the direction of ground water motion. The drag force is sometimes referred to in 
the literature as the seepage force (Cedergren, 1989; Freeze and Cherry, 1979). 
This force is responsible for the erosion of subsurface particles by moving 
groundwater that may lead to the problem of piping in earthen embankments 
(Cedergen, 1980), or to sapped drainage morphology (Laity and Malin, 1985). 
geomorphological evolution driven by  It is of approximately the same magnitude, 
but opposite in direction, to the friction force exerted on groundwater (see 
equation (18)). The drag force is perpendicular to the aquifer-free water boundary 
when ground water discharges into a water body with hydrostatic or nearly 
hydrostatic pressure distribution or a stream with prevailing uniform flow regime 
(shown in Figure 1).  

 The contact force. The contact force exerted by the solids surrounding the 
volume a-b-c-d on this volume arises from (i) the friction stresses ( *σ ) acting on 
the surface of solids enveloping the volume a-b-c-d, and (ii) cohesive forces 
among solids on the same surface. The friction stress is caused by grain-to-grain 
contact forces per unit area of contact in a volume of aquifer (Terzaghi et al., 
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1996). The friction stress at a point within an aquifer depends on (i) the effective 
stress at the point (caused by natural stress, pore pressure, induced stress caused at 
the point by loads such as the dam shown on Figure 2, and, in some cases, stresses 
induced by tectonic forces (Keller and Loáiciga, 1993)), and (ii) the effective 
friction angle at the point. Cohesion arises from bonding among solid particles. 
Under stable conditions the aquifer matrix is static. In this case the (developed) 
contact force )s(FC  along the coordinate s equals in magnitude and is opposite in 
direction to the resultant of the gravitational and pressure-dependent forces: 

θγγγθγθγ cos)(i)cosi(cos)s(F wwwC ⋅−+−=+⋅−=   i < 0 (21)   

Equation (21) shows that the contact force equals the sum of the drag force (= 
iwγ− ) plus the component along the coordinate s of the buoyant unit weight (per 

unit volume) of aquifer (= θγγ cos)( w ⋅− ). The drag force acts in the direction 
of ground-water flow. The component of the buoyant unit weight acts in the 
direction of ground water flow whenever 2/0 πθ <≤ , that is, when ground 
water flow has a vertically downward component. It has a sense opposite to the 
direction of ground water flow whenever πθπ ≤<2/ , that is, when ground 
water flow has an upward component (referred to as upwelling ground water). 

 Depending on (i)  the magnitude of the friction stress, and (ii) the cohesion 
within the aquifer matrix, the contact force may not counterbalance the resultant 
of the drag force and buoyant unit weight. This takes heightened relevance for 
non-cohesive sediments whose particles or bundles of particles rest on the aquifer-
free water boundary (into a lake or stream, for example), where the contact force 
is negligible or feeble. In this case the drag force –which is perpendicular to the 
aquifer-free water boundary under hydrostatic and uniform flow conditions- may 
exceed the buoyant unit weight component of aquifer-boundary particles opposing 
it. This leads to the separation or entrainment of boundary particles from the 
aquifer matrix, initiating seepage erosion in non-cohesive sediments. Hagerty 
(1991) presented diagrams and field photographs illustrating how a layer of non-
cohesive sediments confined by an overlying cohesive formation undergoes 
seepage erosion. As the cohesive layer looses some of its volume to seepage 
erosion it undermines the structural support of the overlying formation, which 
eventually topples. This sequence of events causes stream bank erosion and 
recession. Quicksands and heave are other phenomena caused by upwelling 
ground water in non-cohesive sediments (Cedergren, 1989).  

 Stability condition for cohesive sediments subject  to a drag force. The 
resultant of the drag force and buoyant unit weight in the direction of ground 
water flow may exceed the contact force even in cohesive sediments. Particles on 
the discharge surface of ground water are separated from the aquifer matrix first, 
followed by internal transport of subjacent particles along preferential pathways, a 
phenomenon called piping. Piping is a matter of concern in the stability of 
earthworks subject to ground water seepage through them (Terzaghi, 1931). Let 

*σ  and c be  the average  friction stress and cohesion (both in N/m2) acting on 
the surface of a volume of aquifer, respectively, and  A* denote the surface area 
enveloping a unit volume of aquifer matrix (a textural property of the aquifer 
matrix with dimensions L2/L3). The contact force CF  is expressible in terms of  
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*σ , c, and A* as being  *A)c)s(*()s(FC += σ . The aquifer matrix 
remains stable as long as the (developed) contact force equals the resultant of the 
drag force and the buoyant unit weight, as expressed in equation (21), which can 
be re-arranged as follows:  

 
( )

θγγγσ cos
*A

i
*A

c)s(* ww −
+−=+      i < 0 (22) 

Equation (22) is the stability condition for cohesive sediments subject  to a ground 
water drag force. Whenever the right-hand side of equation (22) exceeds the sum 
of the average friction stress and cohesion, aquifer solids may be mobilized. The 
loss of solids begins at the boundary of the aquifer where discharge occurs and 
propagates inward causing piping.  

 Critical hydraulic gradient for boundary particles in non-cohesive 
sediments. The stability condition in this case is described by setting the cohesion 
equal to zero in equation (22):  

( ) θγγγσ cosi)s(**A ww −+−=⋅       i < 0  (23) 

If groundwater flow is upward vertically ( πθ = ), the force **A σ in equation 
(23) reduces to the vertical effective stress (σ ′ ). Assuming further that the 
upward seepage force equals the downward buoyancy force, then, the vertical 
effective stress is nil, and the volume of aquifer is free to move. In this instance 
the critical hydraulic gradient ( ci ) at which the drag force becomes equal in 
magnitude but opposite in direction to the component of the buoyant unit weight 
is obtained from equation (23):   

( )
w

w
ci γ

γγ −
=               (24)  

Entrainment of aquifer solids may occur whenever the hydraulic gradient cii < , 
that is, whenever i is more negative than ci , meaning that its magnitude or 
absolute value would exceed that of ci . Knowing the flow-net geometric and unit 
weights, condition (24) can be checked a priori to asses whether or not the loss of 
aquifer solids poses a threat. Equation (24) shows that ground water flow need not 
be vertically upwelling (i.e., πθ = ) for aquifer losses to take place.  

 Entrainment of boundary particles in non-cohesive sediments by 
hydraulic shear  (tractive) force Sediment entrainment by stream flow has been 
thoroughly studied in the specialized literature of river hydraulics (see a recent 
summary in Rosgen, 2006). At a foundational level, the shear stress acting tangent 
to a stream bed in the direction of (uniform) flow where the depth of water is d 
and the slope of the stream’s water surface is denoted by S is approximately:  

Sdwγτ ≅               (25) 
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From equation (24), the tractive force per unit volume of aquifer exerted at the 
bottom of a column of water of depth d is approximately:  

D
Sd

F wγ
τ ≅              (26) 

in which D is the effective dimension of sediment particles on the aquifer-free 
water boundary (or stream bed). The tractive force in equation (26) is 
perpendicular to the groundwater drag (or seepage) force acting of the aquifer-free 
water boundary (see Figure 1). The tractive force is opposed by a resistance force 
(per unit volume of aquifer) equal to the component of buoyant unit weight of 
sediment particles normal to the stream bed times a friction coefficient ( μ ):  

βμγγ cos)(R w−=            (27) 

in which β  is the angle of the stream bed’s slope. Based on equilibrium of forces 
along the bottom of the stream in the direction of flow, entrainment of sediment 
particles would take place whenever the tractive force exceeds the resistance 
force. Using the ratio of the resistance force over the tractive force, τG , 
entrainment of sediment particles on the aquifer-free water boundary would occur 
whenever τG <1:  

1
S

cos
d
DG

w

w <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= μ

γ
γγβ

τ          (28) 

Entrainment of non-cohesive sediment particles on the aquifer-free water 
boundary may be triggered by the tractive force exerted by stream flow on the 
stream bed according to criterion (28). Or, it may occur by the action of ground 
water drag or upward seepage if the hydraulic gradient is less than the critical 
gradient given in equation (24).These two force systems act along directions that 
are perpendicular to each other.  

EXAMPLE CALCULATION OF VOLUMETRIC FORCES  

     Figure 4 shows the calculated drag force along the coordinate s marking the 
flow path of ground water through the midst of the stream tube 1-2-3-4 previously 
depicted on Figure 2. It is seen that the drag force has a nearly bell-shaped form 
with a maximum reached at the narrowest construction of the flow net, where s ≅  
13.6 m.  

 The calculated drag force, buoyant weight component along s, and contact 
force for the flow net of Figure 2 are shown on Figure 5. It is seen there that the 
drag and buoyant weight act in the same direction, that is, in the direction of 
ground-water flow up to the constriction point where s ≅  13.6 m. Downstream 
from the constriction point the buoyant weight acts opposite to the drag force. The 
drag force is opposite in direction to the buoyant weight and it exceeds its 
magnitude between s = 13.6 m and s = 15 m, at which point they become equal in 
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magnitude and the contact force becomes nil. This portion of the flow path is of 
concern from the viewpoint of matrix losses, a concern that it mitigated in the 
example flow net by the fact that beyond s = 15 m the buoyant weight dominates 
over the drag force. Evidently, potential matrix losses are exacerbated if the drag 
force is opposite in direction to the buoyant weight and it exceeds its magnitude 
near the terminus of a flow path. The lack of aquifer overburden given such 
imbalance of forces produces transport of solids that propagates upstream a flow 
path, giving rise to piping that may undermine engineering works or become an 
active subaerial geomorphic agent (Emery and Kuhn, 1982; Hagerty, 1991).  

CONCLUSIONS 

 This paper has shown that the acceleration of ground water is negligible when 
compared to the acceleration of gravity under typical flow conditions.  This fact, 
together with the formulation  of forces acting on ground water using Newton’s 
second law of motion, led to the determination of the friction force exerted by the 
aquifer matrix on moving ground water. The friction force so determined was 
shown to be approximately equal to the drag force exerted by ground water on the 
aquifer solids. The drag force arises from pressure gradients that mobilize ground 
water through an aquifer’s pores. Force equilibrium was exploited to derive 
relations among pressure-dependent, buoyant, and contact forces acting on a 
generic aquifer volume. These relations were shown to be valuable in assessing 
the potential for the  loss of aquifer solids and the concomitant instability of 
aquifers through  which ground water flows  subject to  a substantial drag  force..      
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Figure 1. The drag force and shear (or tractive) force acting on the wetted 

perimeter of a stream with uniform flow. 
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Figure 2. Flow net under a gravity dam, showing stream tube 1-2-3-4, typical 
aquifer volume a-b-c-d, and the curvilinear coordinate s depicting the pathway of 
ground water through the center of the stream tube. 
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Figure 3. Enlarged aquifer volume a-b-c-d showing its dimensions, the average 
pore velocity v tangent to the path flow of ground water (s), and the angleθ .   
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Figure 4. The drag force ( iwγ− ) along the coordinate s shown on Figure 2.  
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Figure 5. The drag force ( iwγ− ), buoyant unit weight along s ( θγγ cos)( w ⋅− ), 
and contact force along the coordinate s shown on Figure 2. The contact force 
is opposite in direction to the resultant of the drag and buoyant unit weight. 

 




