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Abstract of the Dissertation 
 

Advanced Methods for Detecting Specification Issues in Bayesian Structural Equation 
Modeling 

 
by 

Sonja D. Winter 
 

Doctor of Philosophy in Quantitative Methods, Measurement, and Statistics 
 

University of California, Merced, 2021 
Professor Sarah Depaoli, Chair 

 
This dissertation consists of two studies investigating model and prior specification issues 
in the context of Bayesian structural equation modeling (SEM). Two of the major 
advantages of Bayesian estimation for SEM are that complex models can more easily be 
estimated, and prior information can be directly included in the analysis. Two aspects of 
Bayesian estimation of SEM that are important for the applied researcher are model and 
prior specification assessment. In Study 1 of this dissertation, I examined the ability of 
several model fit and selection indices to detect model misspecification in two commonly 
used SEMs with data that are completely observed or that contain missing values. 
Simulation results showed that Bayesian approximate model fit indices may not be 
appropriate for model fit assessment of a single model. The posterior predictive p-value 
was more likely to detect model misspecification, although it was sensitive to sample size 
and the presence of missing values. Instead of focusing on a single model, researchers 
should aim to compare multiple models and focus on model selection, using Bayesian 
approximate fit indices, in addition to model fit assessment. Furthermore, informative 
priors that diverge from the population model worsened model fit even for a correctly 
specified model. Thus, researchers should examine whether there is disagreement 
between the priors and their observed data when using informative priors. This so-called 
prior-data disagreement was the focus of Study 2 of this dissertation. In this study, I 
examined three indices for detecting prior-data disagreement, the Data Agreement 
Criterion (DAC), Bayes Factor (BF), and prior-predictive p-value, and assessed their 
ability to detect diverging priors across 4 sample sizes and 49 prior specifications for the 
mean intercept and linear slope parameters of a latent growth model. Simulation results 
showed that while the DAC was easily implemented, it cannot assess interactions 
between priors placed on different parameters. Use of the BF becomes unfeasible as 
model complexity, sample size, or the number of prior specifications examined increase. 
Here, the prior-predictive p-value may offer an alternative, although it may not be 
appropriate for prior specifications that are partially or fully diffuse. Furthermore, all 
prior-data disagreement indices tended to be better at detecting disagreement with larger 
sample sizes, whereas the impact of disagreement is largest with small sample sizes. 
Other implications, suggestions for applied researchers, limitations, and future directions 
are also discussed. 
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Chapter 1  
Overview of Dissertation 

Bayesian estimation of structural equation modeling (SEM) is becoming an 
increasingly popular approach in the social sciences. This increasing popularity is not 
surprising given that Bayesian estimation allows a researcher to estimate complex models 
more easily and incorporate prior information into the analysis. Accurate model and prior 
specification may be the most important parts of Bayesian estimation to explore further 
because they are crucial to the integrity of the use of Bayesian SEM. In this dissertation, I 
investigate both factors to provide researchers with concrete recommendations for model 
and prior specification assessment. I will discuss various Bayesian indices of model fit 
and selection and assess their ability to detect model misspecification across a variety of 
SEMs. Similarly, I will discuss three indices for detecting disagreement between the prior 
specification and the observed data and assess their ability to detect prior-data 
disagreement in a commonly used SEM. I am interested in these indices’ capability to 
support applied researchers in making informed decisions about Bayesian SEMs. 

This dissertation consists of two separate studies. The first study is entitled 
“Performance of Model Fit and Selection Indices for Bayesian Structural Equation 
Modeling”. The primary goal of Study 1 is to examine the ability of the Bayesian 
information criterion (BIC), deviance information criterion (DIC), posterior-predictive p-
value (PPP), and Bayesian root mean square error of approximation (BRMSEA), 
comparative fit index (BCFI), and Tucker-Lewis index (BTLI) to detect model 
misspecification. This study will focus on three different SEMs and evaluate the impact 
of (a) sample size, (b) missing at random (MAR) data in one or multiple variables, (c) 
location and severity of the misspecification, and (d) prior specification. 

The second study is entitled “Detecting Prior-Data Disagreement in Bayesian 
Structural Equation Modeling”. In Study 2, the main goal is to investigate the ability of 
the data agreement criterion (DAC), Bayes factor (BF), and prior-predictive p-value to 
detect prior-data disagreement in an SEM. This study focuses on the latent growth model, 
an SEM for which researchers are likely to specify informative priors on the main 
intercept and growth parameters. The indices will be compared across 49 different prior 
specifications that represent increasing amounts of prior-data disagreement. In addition to 
assessing whether the indices can detect prior-data disagreement, I will also evaluate 
whether the prior-data disagreement causes bias in the posterior estimates. 

This dissertation is structured as follows. First, I will provide a general introduction to 
the Bayesian statistics that are the focus of the two studies. Next, I will present two 
studies aiming to: (1) examine a variety of Bayesian model fit and selection indices and 
assess their ability to detect model misspecification across a variety of SEMs (Study 1 of 
the dissertation), and (2) examine three indices for detecting prior-data disagreement in a 
commonly used SEM (Study 2 of the dissertation). Finally, I will conclude by discussing 
the implications of my findings regarding model- and prior-specification and provide 
recommendations for use in applied research settings. 



 
 

 
 

2 

Chapter 2  
General Introduction to Bayesian 

Statistics 
The use of Bayesian statistical methods has been increasing in psychological science (van 
de Schoot et al., 2017) since their introduction to the field in the 1960s (Edwards et al., 
1963; Rupp et al., 2004). This chapter will introduce the Bayesian estimation framework 
and discuss its application to structural equation model (SEM) estimation.  

2.1 Bayesian Estimation 

2.1.1 Bayes’ Theorem 
Bayes’ theorem was first introduced in the 18th century (Bayes, 1764; Laplace, 1774) to 
use conditional probability to express how the probability of an event is updated by the 
availability of prior evidence. Bayes’ theorem is stated mathematically as follows: 
 
 !(#|%) = !(%|#)!(#)

!(%) , (1) 

 
where A and B are events, and !(%) ≠ 0. Further, !(#|%) is the likelihood of event A 
occurring given that B is true and !(%|#) is the likelihood of event B occurring given 
that A is true. Finally, !(#) and !(%) are the marginal probabilities of event A and B 
occurring, respectively. Using the Bayesian interpretation, these probabilities express a 
degree of belief before and after event B is observed. !(#) is the prior, or initial, degree 
of belief in A. !(#|%) is the posterior degree of belief in A, after incorporating the 
knowledge that event B is true. The support provided by event B for event A is 
represented in the quotient !"%##$

!(&) . Typically, event B is treated as fixed as it refers to the 
observed data. In this case, the posterior probability is proportional to the numerator of 
Bayes’ theorem, or the prior multiplied by the likelihood: 
 
 !(#|%) ∝ !(#)!(%|#). (2) 

 

2.1.2 Bayesian Estimation 
Bayes’ theorem can be used for Bayesian estimation, a statistical estimation method in 
which a probability distribution of subjectively likely values (prior) is updated with new 
evidence (data likelihood). In general, statistical estimation is used to obtain estimates for 
unknown parameters, -, given the data y. How the unknown parameters are defined is 
something that differentiates Bayesian estimation from frequentist estimation. In 
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frequentist estimation, the assumption is that . is unknown but fixed. In Bayesian 
estimation, . is assumed to be random, with a probability distribution that quantifies the 
uncertainty about the true value of .. Thus, in the context of Bayesian estimation, we can 
express Bayes’ theorem in terms of a vector of parameters, - and a sample vector of data, 
y, as follows:  
 
 /(-|0) = /(0|-)/(-)

∫/(0|-)/(-)	3- ∝ /(0|-)/(-). 
(3) 

 
In Equation (3), /(-) is the prior distribution of -,	/(0|-) is the data likelihood for y, or 
4(-|0), and /(-|0) is the posterior distribution. 

2.1.3 The Prior 
Specifying prior distributions for all parameters - is the first step of a Bayesian analysis. 
Different ways of categorizing types of prior distributions have been proposed, such as 
subjective versus objective or informative versus non-informative. In both cases, the 
former implies a type of prior that is deliberately specified to convey prior knowledge, 
whereas the latter implies a type of prior that is deliberately specified to convey as little 
information as possible. In practice, the amount of information conveyed by any 
particular prior depends on many factors, such as the overall model, the parameter in 
question, and the sample size (Gelman et al., 2017; Smid & Winter, 2020; van Erp et al., 
2018). Under certain circumstances, a prior that was assumed to be objective or non-
informative may strongly affect the posterior distribution (e.g., Depaoli & Clifton, 2015; 
van Erp et al., 2018). However, the general purpose of non-informative priors is to “let 
the data speak for themselves” (Gelman et al., 2013). Thus, posteriors estimated with 
non-informative priors will typically reflect the information provided by the observed 
data. 

To illustrate the interplay between the prior distribution and the data likelihood, I will 
discuss a simple example. Suppose we have a sample of twenty individuals for which we 
have observed a change in the number of depression symptoms from summer to winter 
(measured on a scale from -30 to 30). We are interested in two parameters: the mean and 
variance of the exam score. Those parameters will tell us to what extent the number of 
depression symptoms changed on average and to what extent the change in depression 
symptoms varied across individuals. For the current illustration, I will focus on the mean 
parameter.1 Remember that, within the Bayesian framework, parameters are assumed to 
unknown and random, with a probability distribution that quantifies the uncertainty about 
the true value of the parameter. Typically, the likelihood of a mean parameter is set to 
follow a normal distribution. This likelihood is often combined with a prior that also 
follows a normal distribution (this choice is more fully discussed in Section 2.1.4). 

 
1 As the variance cannot be negative, its prior usually follows a distribution that is only defined for positive 
values, such as the inverse gamma distribution. Other distributions can be specified, such as the uniform, 
half-t, or half-Cauchy distributions. For the sake of simplicity, I do not include a discussion of this prior 
here and instead focus on the prior for the mean parameter. 



 
 

 
 

4 

Each prior distribution has its own parameters, which are called hyperparameters. For 
example, the normal distribution has a mean µ and variance σ!. Taking an uninformative, 
or objective, approach to Bayesian estimation, we might specify a prior for the mean 
parameter that follows a normal distribution centered around 0 with a variance of 1000, 
which we can express as follows:  
 
 µ"#$%&~8(µ = 0, σ! = 1000). (4) 

 
This prior distribution is depicted in Figure 1, panel A for a range of average change in 
depression symptoms from -10 to 30. As can be seen in panel A, this prior places almost 
equal prior probability on the entire range shown on the x-axis (i.e., the line is almost 
flat). The reason for the flat appearance of this normal distribution is the variance 
hyperparameter, which corresponds to a standard deviation of 100. As the prior is 
centered around 0, 68% of the prior distribution contains values between -100 and 100, 
and 95% of the prior distribution contains values between -200 and 200. With this prior, a 
wide range of values can be sampled from the posterior distribution of the average 
change in depression. Based on this prior, an average increase in depression symptoms of 
15 is equally plausible as an average decrease in depression symptoms of 15.  

Comparing the prior distribution to the data likelihood (shown in Figure 1, panel B) 
shows that the data likelihood provides more precise information about the value of the 
change in depression symptoms. The data-likelihood distribution more closely resembles 
a typical normal distribution, with most of its density placed around an average change in 
symptoms close to 15 and symmetric tails that indicate that average changes in symptoms 
of 0 or 30 are not plausible. As the data likelihood contains more information about the 
location of the average change in depression symptoms, the posterior distribution will 
closely resemble the data likelihood (panel C). This scenario is an example in which the 
prior “let the data speak for themselves” (Gelman et al., 2013). 

In contrast, we could have specified an informative prior for the mean parameter. We 
could use previous groups of individuals’ average change in depression symptoms from 
summer to winter as the basis for our prior belief. For example, we could look at the 
average change in depression symptoms of samples observed in the previous ten years, 
and find that the average change was 10, with a variance of 4. This information translates 
to the following prior: 
 
 µ"#$%&~8(µ = 10, 	σ! = 4). (5) 

 
This informative prior distribution is depicted in Figure 1, panel D. Comparing panel 

D to panel A, we can see that the informative prior places more plausibility on values 
close to 10. For this prior, 95% of the distribution contains values between 6 and 14. 
Although any normal distribution has an infinite range, values close to 10 are much more 
likely to be sampled from the posterior distribution of the average change in depression 
symptoms with this informative prior. If we compare this prior to the data likelihood 
(shown again in Figure 1, panel E), we can see that the data likelihood distribution is only 
somewhat narrower and more peaked (i.e., it provides more precise information about the 
value of the average change in symptoms) than the prior distribution. Also, note that the 
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data likelihood remains the same regardless of the prior selected (i.e., panel B and panel 
E are identical). These middle panels represent the fixed information provided by the 
specific sample of twenty individuals through the data likelihood. 

With an informative prior like the one specified in panel D, the posterior distribution 
will represent a compromise between these two sources of information. Indeed, the 
posterior distribution shown in Figure 1, panel F, falls between the prior and likelihood 
distributions, although it is somewhat closer to the likelihood distribution. This tendency 
towards the likelihood distribution makes sense, as the information provided by the 
likelihood is more precise (i.e., the density distribution is narrow) than the information 
provided by the prior. The difference between the posterior distributions in panel C and F 
demonstrate that the way a prior distribution is specified can affect the conclusions drawn 
from the posterior. With a diffuse prior, the posterior mean of the average change in 
depression symptoms is 14.43, but with the informative prior, the posterior mean drops to 
13.07. Thus, for any analysis, it is important to consider the potential impact of the prior 
specification on the posterior estimates.  

2.1.4 Computation 

Prior to the 1990s, the application of Bayesian estimation was limited to problems and 
models that were relatively simple. The formulas presented above provide a closed-form 
expression only if the model includes a single parameter and if the posterior distribution 
of that parameter is in the same probability distribution family as the prior distribution. 
When both distributions come from the same probability distribution family, they are 
called conjugate distributions, and the prior becomes a conjugate prior for the likelihood 
function (Raiffa & Schlaifer, 1961; Wetherill, 1961). A well-known example is the 
Gaussian family, which is conjugate to itself. This means that if the likelihood function is 
Gaussian, choosing a prior distribution that is Gaussian will ensure that the posterior 
distribution is also Gaussian (as in Figure 1 above). Another advantage of conjugacy is 
that it makes it clear to see how the likelihood and the prior interact to generate the 
posterior.  

Non-conjugate priors are prior distributions that are part of a different probability 
distribution family than the posterior distribution of a parameter. For example, the 
conjugate prior distribution for a variance parameter is the inverse gamma distribution. 
However, other distributions, such as the uniform, half-t, or half-Cauchy, can also be 
used as priors for this type of parameter (Gelman, 2006; Polson & Scott, 2012; van Erp et 
al., 2018). Researchers sometimes use non-conjugate priors because their distribution 
aligns better with the prior knowledge about the parameter of interest. In that case, 
numerical integration becomes necessary to obtain the posterior distribution. Numerical 
integration is also necessary when there are multiple parameters of interest. However, 
numerical integration can become untenable once the model includes more than a few 
parameters. This major computational challenge hampered the adoption of Bayesian 
estimation by the broader scientific community.  

This changed with the introduction of the Markov chain Monte Carlo (MCMC; 
Hastings, 1970) estimation algorithm to Bayesian statistics (Gelfand & Smith, 1990; 
Smith & Roberts, 1993). MCMC methods generate systematic random samples from 
high-dimensional (e.g., across multiple parameters) probability distributions. Whereas 
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Monte Carlo sampling methods draw independent samples from a distribution, MCMC 
methods draw samples where the next sample is dependent on the existing sample, 
creating what is called a Markov chain. The advantage of these dependent samples is that 
the algorithm can efficiently narrow in on the parameter that is being approximated from 
the distribution. MCMC methods are not inherently Bayesian, but their application to 
approximating distributions aligns with the Bayesian definition of ! as a random variable 
with a probability distribution. To approximate a target distribution, MCMC methods 
evaluate integrals or sums through simulation instead of exact or approximate algebraic 
analysis. The general steps of the MCMC method are: 

1. Obtain starting values "!. 
2. Sample "" using a specific algorithm or sampler. 
3. Repeat step 2 S times to obtain a Markov chain {"!, "", … , "#}. 

The starting values used in Step 1 are placeholders that are simply used to start the 
MCMC process. As the initial samples in the Markov chain are still dependent on the 
starting values, they may not be a good representation of the (posterior) distribution that 
is being approximated. These initial samples are part of the burn-in or warm-up period, 
which is the period in the Markov chain before it enters a stationary distribution. Once a 
chain enters a stationary distribution, additional samples s will not alter the distribution 
(O Roberts, 1996). However, increasing the number of samples in the Markov chain will 
increase the precision with which the (posterior) distribution is estimated. Thus, samples 
that are part of the burn-in period are typically not included in the final set of samples to 
ensure that the portion of the Markov chain that remains is likely to represent the 
(posterior) distribution. While the explanation above focuses on estimating a single 
Markov chain, multiple Markov chains can be obtained for each parameter. By estimating 
multiple chains, it is possible to ensure that any single chain is not stuck in a particular 
sampling space (see Section 2.2.5 for an example). 

The Markov chain (or chains) generated in Step 3 of the MCMC algorithm represents 
an estimate of the posterior distribution of !. The obtained posterior distribution is 
usually summarized in various ways (see Section 2.2.6). As mentioned above, a Markov 
chain contains dependent samples. The dependence between samples within a Markov 
chain is influenced by a transition kernel. A transition kernel describes how parameter 
values are updated at each iteration s of the Markov chain (van de Schoot et al., 2021). 
The specific sampling algorithm used in Step 2 of the MCMC method determines the 
definition of the transition kernel. In the next two sections, I will introduce two sampling 
algorithms that can be used to generate the MCMC chains. 

2.1.4.1 Gibbs Sampler 

The Gibbs sampler (Geman & Geman, 1984) is probably the most well-known MCMC 
sampling algorithm. It is used as the default sampler in various Bayesian software 
programs and packages, such as the BUGS programming language, through WinBUGS 
(no longer supported; Gilks et al., 1994; Lunn et al., 2012) and OpenBUGS (Lunn et al., 
2009), Mplus (L. K. Muthén & Muthén, 2017), and (r)JAGS (Plummer, 2017, 2019). The 
Gibbs sampler first takes the set of starting values for all q model parameters, placed in a 
vector "! = (θ$

%, … , θ&%*
'. Next, the Gibbs sampler generates a new set of values for the 
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model parameters "# from "#("  for the Monte Carlo iterations s = 1, 2, . . . , . using the 
following steps: 

 
1.		sample			!$

)	~	7(θ$8θ*
)($, θ+

)($, … , θ&)($, 9*	
2.		sample			θ*

) 	~	7(θ*8θ$
) , θ+

)($, … , θ&)($, 9*	
⋮	
;.		sample			θ&) 	~	7(θ&8θ$

) , θ*
) , … , θ&($

) , 9*.	 
 
Thus, in the Gibbs sampler transition kernel, a new set of parameter values is 

generated based on their posterior conditional distribution, and the probability of 
accepting generated values is equal to one. After these steps are repeated for all S 
iterations, the resulting samples approximate the joint distribution of all parameters. 
Further, the marginal distribution of any subset of parameters can be approximated by 
considering the samples for that subset of variables, ignoring the rest. Finally, the 
expected value of any parameter (i.e., the posterior mean) can be approximated by 
averaging over all the (post burn-in) samples.  

The samples resulting from the Gibbs sampler are Markov chains, which adhere to 
the Markov property: the future is independent of the past given the present state. A 
Markov chain is a discrete time stochastic process with the property that the distribution 
of "# given all previous values of the process, "!, "", … , "#(", depends only on "#(" (O 
Roberts, 1996). Based on this property, we expect adjacent members from a Markov 
chain to be positively correlated, a phenomenon called autocorrelation. Autocorrelation 
can also exist between more distant members of the Markov chain. An important result 
regarding autocorrelation is that if the posterior samples are from a stationary process, 
correlated draws still provide an unbiased estimate of the distribution, provided that the 
sample size S is sufficiently large. 

2.1.4.2 Other Samplers 

While the Gibbs sampler may be the most well-known sampler, others exist. A recent 
addition to this lineup is the Hamiltonian Monte Carlo algorithm (HMC; Betancourt, 
2018; Betancourt & Girolami, 2015; Neal, 2011) and its extension, the No-U-Turn 
sampler (NUTS; Hoffman & Gelman, 2014). These samplers rely on Hamiltonian 
dynamics in physics to efficiently sample from the posterior distribution. In essence, this 
algorithm treats the model as a high-dimensional particle that is moving across the 
posterior sampling space. According to the description given by the Stan Development 
Team (2020), HMC relies on auxiliary momentum variables ρ and draws samples from 
the following joint density: 
 
 7(>, !) = 7(>|!)7(!). (6) 

 
In most implementations of HMC (e.g., Stan; Stan Development Team, 2020), the 

auxiliary density follows a multivariate normal distribution that does not depend on the 
parameters !, ρ~MVN(0, Σ). The covariance matrix Σ works as a Euclidean metric to 
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rotate and scale the target distribution (for details, see: Betancourt & Stein, 2011). 
Further, Hamiltonian dynamics uses the joint density 7(>, !) to define a Hamiltonian: 
 
 F(>, !) = − log 7(>, !) 	

= − log 7(>|!) − log 7(!) 	
= K(>|!) + M(!), 

 

(7) 

where T(>|!) = − log 7(>|!) is the kinetic energy and V(!)  =   − log 7(!) is the 
potential energy. These terms are used to generate transitions from one space to another 
(i.e., move from sample s – 1 to sample s) in three steps. First, a value for the momentum 
> is drawn independently of the current parameter values (this means that momentum 
does not persist across iterations). Next, the joint system (!, >), which is made up of the 
current parameter values and the new momentum value, is evolved using Hamilton’s 
equations: 
 
 O!

OP
= +

QF
Q>

= +
QK
Q>

	

O>
OP
	= 	−	

QF
Q!

	= 	−	
QK
Q!
	−	

QM
Q!

	= 	−
QM
Q!
. 

 

(8) 

To solve this two-state differential equation, most implementations of HMC use the 
leapfrog integrator. This numerical integration algorithm is specifically adapted to lead to 
stable results for Hamiltonian systems of equations. The leapfrog integrator takes discrete 
steps of some small interval R (i.e., the step size). The leapfrog integrator alternates 
between half-step updates of the momentum and full-step updates of the parameter: 
 
 

ρ ← 	ρ −	
R
2
QM
Q!
	

θ ← 	θ + 	R	Σρ	

ρ ← 	ρ −	
R
2
QM
Q!
. 

 

(9) 

The three leapfrogs steps above are repeated L times, resulting in a state that is 
denoted as (ρ∗, θ∗) (for details, see: Leimkuhler & Reich, 2004). Finally, a Metropolis 
acceptance step is applied, because numerical errors can occur during leapfrog steps. The 
probability of accepting the proposed (ρ∗, θ∗) is min V1, exp(F(ρ, θ) − F(ρ∗, θ∗)*X. If 
the proposed state is not accepted, the algorithm returns to the previous parameter values, 
which are used to initialize the next iteration. Thus, contrary to the Gibbs sampler, the 
NUTS transition kernel does not always accept the newly generated parameter value. 

With HMC, each iteration in the chain can move a more considerable distance 
compared to the Gibbs sampler. This characteristic results in posterior samples that 
efficiently explore the entire posterior sampling space while promoting low dependence 
between iterations in the chain. Compared to the Gibbs sampler, the HMC algorithm and 
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the NUTS converge to a stationary distribution faster and suffer less from autocorrelation 
within a chain. 

2.1.5 Assessing Convergence 

 

 
 

Figure 2. Examples of trace plots showing convergence or non-convergence. 
 
Researchers have exerted considerable effort to develop diagnostics for assessing 
convergence of MCMC chains, given the importance of reaching stationarity for drawing 
valid inferences. Convergence needs to be assessed for each parameter in the model. The 
simplest convergence diagnostic is a visual inspection of the trace plots of the chains. 
These plots depict the samples that were drawn from the posterior. While the exact value 
drawn from the posterior changes with each iteration, the trace line(s) should typically 
show a tight, horizontal band across the plot (Figure 2, panel A). However, for 
parameters that are naturally skewed (e.g., variance parameters that are constrained to 
positive values), the trace line(s) may show some spikes on one side of the horizontal 
band (Figure 2, panel B). Thus, whether these spikes in the trace line(s) indicate non-
convergence depends on the type of parameter and whether the spikes reach implausible, 
extreme areas of the target distribution. The trace plot can also provide evidence of other 
forms of non-convergence: Two chains may be sampling from different areas of the 
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target distribution (Figure 2, panel C), or the chains are jumping from one area of the 
target distribution to another area (Figure 2, panel D). This visual diagnostic is most 
useful for detecting major issues with convergence and should not be the sole method for 
assessing convergence. For that reason, several other convergence diagnostics have been 
developed, such as the Geweke (Geweke, 1992), the Heidelberger and Welch 
(Heidelberger & Welch, 1983), the Raftery and Lewis (Raftery & Lewis, 1992), and the 
Gelman-Rubin (Gelman & Rubin, 1992) convergence diagnostic. 

Each diagnostic assesses different aspects of the MCMC chains. The Geweke 
diagnostic is a diagnostic for a single MCMC chain, and it compares the first 10% of the 
chain to the last 50% of the chain using a z-test to see if they differ significantly 
(Geweke, 1992). If the z-statistic is significant, it suggests that the start of the chain has 
not converged and the burn-in period should be increased. The Heidelberger and Welch 
diagnostic uses the Cramer-von-Mises statistic to assess non-stationarity in a single 
MCMC chain (Heidelberger & Welch, 1983). If evidence of non-stationarity is found, the 
first 10% of the iterations are removed, and the test is repeated until stationarity is found 
or until 50% of the chain is removed. If the latter occurs, convergence to stationarity is 
not reached, and the number of iterations should be increased. The Raftery and Lewis 
diagnostic helps determine three components of the MCMC chains for each parameter: 
the burn-in period, the total number of iterations, and the thinning interval (Raftery & 
Lewis, 1992).2 These three components are determined for a particular quantile and 
degree of accuracy for the posterior distribution. As the posterior distribution is often 
assessed using the posterior mean or median, the 0.5 quantile is often selected for 
computing the Raftery & Lewis diagnostic. Finally, the Gelman-Rubin diagnostic 
assesses convergence by comparing multiple Markov chains within one Bayesian 
analysis (Gelman & Rubin, 1992). It compares the estimated within-chain variance to the 
between-chain variance for each model parameter. Large differences between these 
variances indicate issues with convergence. The ratio of the two variances is represented 
by the potential scale reduction factor (PSRF) or the YZ- statistic (S P Brooks & Gelman, 
1998; Gelman & Rubin, 1992; Vehtari et al., 2019). If the chains have converged, the 
PSRF for that parameter is close to 1. If the PSRF is > 1, it indicates that the number of 
iterations should be increased so that either the between-chain variance decreases or the 
within-chain variance increases (as it explores the full posterior distribution). Several 
cutoffs have been suggested for concluding convergence, such as < 1.05 in Mplus 
(Asparouhov & Muthén, 2010b). Ideally, a researcher uses a combination of these 
diagnostics to assess convergence for all parameters in the model of interest. 

2.1.6 Posterior Point Estimates, Credible Intervals, and Highest 
Posterior Densities 

Once a Bayesian analysis through MCMC methods is conducted and convergence is 
confirmed, a researcher can use several values to assess the posterior distributions of the 
parameters. First, point estimates, such as the mean, median, mode, and variance, can be 

 
2 A thinning interval can be used to reduce autocorrelation between iterations in the chain. When a thinning 
interval is used, only every sth iteration of the chain is retained for the purpose of summarizing the posterior 
distribution. 
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computed. These estimates are all computed using the conditional distribution of a 
parameter ", which is obtained by averaging over the marginal distribution of y. 

 The posterior point estimates of quantiles can be used to construct something 
called a 95% (or another percentage) credible interval. It is important to note that this 
interval is not the same as the frequentist 95% confidence interval. These intervals have 
different interpretations because of how the parameters are defined within each 
framework. Recall that in frequentist estimation, the population parameters are 
considered fixed, whereas, in Bayesian estimation, population parameters are considered 
random. Thus, because we assume that a parameter has a parameter distribution, the 
posterior samples obtained through MCMC can be used to obtain quantiles. These 
quantiles can be used to find the probability that a parameter lies within a particular 
interval (Kaplan & Depaoli, 2012). In other words, the probability that a parameter lies in 
a particular 95% credible interval is .95. This interpretation is completely different from 
the frequentist perspective, where the probability is either 0 or 1 that a fixed population 
value lies within a particular 95% confidence interval. 

In addition to the credible interval, it is also possible to examine an interval referred 
to as the highest posterior density (HPD) interval (Box & Tiao, 1973; Kaplan & Depaoli, 
2012). This is an interval of the posterior distribution where every point inside the 
interval has a higher density than any point outside the interval. Similar to the credible 
interval, the HPD interval can contain 95% of the distribution, but other percentages, 
such as 90%, are also common. In contrast to the credible interval, a 95% HPD interval 
does not need to start at the .025 quantile and end at the .975 quantile. A 95% credible 
interval and 95% HPD interval will only match if the posterior distribution is unimodal 
and symmetric. Thus, the HPD interval is beneficial for posterior distributions that are 
not unimodal or not symmetric. 

2.2 Bayesian Structural Equation Models 
The topics described in this section assume a basic understanding of SEM estimation. For 
further resources regarding SEM, I refer readers to Hoyle (2012), Kaplan (2009), Kline 
(2015), Lei and Wu (2007), and Tarka (2018). The Bayesian approach was first combined 
with SEM over twenty years ago (Scheines et al., 1999). This combination is not 
surprising given that the Bayesian framework has certain features that become especially 
advantageous for SEM. However, it was not until around 2012 that the use of Bayesian 
estimation of SEMs in the applied literature really started to increase (van de Schoot et 
al., 2017). In this section, I will discuss the advantages and drawbacks of Bayesian SEM 
and introduce two ways in which my dissertation research will address some of these 
drawbacks. 

2.2.1 Advantages of Bayesian SEM 

Researchers have several reasons, both theoretical and practical, for turning to Bayesian 
approaches to SEM (van de Schoot et al., 2017). In this section, I will address the major 
advantages for using a Bayesian approach to SEM. 

The inclusion of prior distributions is at the root of many of the advantages of 
Bayesian estimation for SEM. From a theoretical standpoint, priors allow updating 
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knowledge instead of starting each study from scratch and testing null hypotheses (van de 
Schoot et al., 2014). In the absence of prior knowledge, priors can still be used to 
incorporate uncertainty about the parameters explicitly. This approach is more in line 
with the overarching goal of science: moving knowledge forward.  

From a practical standpoint, the inclusion of prior distributions has several 
advantages. For example, computational difficulties that are often encountered with 
maximum likelihood (ML) estimation, such as Heywood cases, can be prevented through 
the specification of appropriate priors for the (residual) variances (Lee, 2007). In ML 
estimation, these problematic parameters are often fixed to zero. More generally, in 
typical SEM studies that use maximum likelihood estimation, many parameters are fixed 
at zero to ensure that the model is identified. However, it is implausible that all these 
parameters are exactly zero in the population. Thus, this source of model error is almost 
always present in frequentist SEMs (B. O. Muthén & Asparouhov, 2012). In Bayesian 
SEM, fixed zeroes can be replaced by small-variance priors that are centered at zero, 
allowing for slight deviations from zero. This approach most accurately reflects the 
uncertainty about the specified model and prior theory about parameter values 
(MacCallum et al., 2012). In addition, if the 95% credible interval of a parameter with a 
small-variance prior does not contain 0, then it provides evidence that the parameter is 
non-zero in the population (B. O. Muthén & Asparouhov, 2012). 

Another advantage of Bayesian estimation for SEM is that it can provide reliable 
statistical estimates with small sample sizes, provided that appropriate priors are specified 
(Lee, 2007; McNeish, 2016; Smid, Depaoli, et al., 2019; Smid & Winter, 2020). While 
researchers generally agree that larger sample sizes are better, there are some situations 
under which collecting a large sample may be challenging (Smid, McNeish, et al., 2019). 
Examples include studies that focus on naturally small populations (burn victims who 
needed mechanical ventilation; van de Schoot et al., 2015), hard to access populations 
(e.g., incarcerated mothers; Zeman et al., 2018), or study designs that result in financial 
constraints (e.g., ecological momentary assessment; Schwerdtfeger et al., 2020). Small 
samples often cause problems for researchers using frequentist estimators such as ML, 
resulting in non-convergence, inadmissible estimates, or inaccurate estimates (Smid, 
McNeish, et al., 2019). The inaccuracy of the estimates is in part due to ML’s reliance on 
asymptotic (large sample) theory. Bayesian estimation does not rely on this theory; 
instead it uses MCMC methods to sample from the posterior distribution directly. 
However, it is important to note that using Bayesian estimation without thoughtfully 
specified, informative priors can result in posterior estimates that are more biased than 
their ML counterparts (Depaoli, 2013; McNeish, 2016; Smid & Winter, 2020; van Erp et 
al., 2018). 

Bayesian estimation’s use of MCMC methods can also help resolve issues of missing 
data, nonlinearity, and nonnormality (Lee, 2007). An example of a model in which these 
characteristics are particularly advantageous is a model that contains mediation effects. In 
these models, two regression coefficients are multiplied, and the resulting parameter is 
not normally distributed, resulting in biased standard errors and confidence intervals. As 
Bayesian estimation makes no assumptions about the specific form of the posterior 
distribution, the standard error (or posterior standard deviation) can be accurately 
estimated (Y. Yuan & Mackinnon, 2009). Similarly, Bayesian estimation yields unbiased 
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credible intervals for reliability estimates in multi-level SEMs, where bootstrapped 
confidence intervals are not appropriate (Geldhof et al., 2014). Concerning issues 
surrounding missing data, MCMC methods such as the Gibbs sampler do not distinguish 
between missing data, latent variables, and parameters. All three are considered unknown 
and random, and are estimated through a joint posterior distribution conditional on the 
observed data (Asparouhov & Muthén, 2010b; Gelman et al., 2013). 

Finally, using an iterative sampling algorithm like MCMC also results in a posterior 
distribution of each parameter in their model, which provides more information than a 
single point estimate found through frequentist estimation. Although researchers using 
frequentist methods can report a 95% confidence interval, this interval is less 
straightforward to interpret than the Bayesian credible interval (Kaplan & Depaoli, 2012; 
van de Schoot et al., 2014). In addition, the posterior distribution is not constrained to 
follow a normal distribution (or any parametric distribution). In contrast, normality is an 
assumption underlying most frequentist methods for constructing a 95% confidence 
interval. The rich information provided by the posterior distribution, combined with the 
computational advantages of the MCMC methods, provide a convincing case for the use 
of Bayesian estimation for SEMs. However, several drawbacks of Bayesian SEM have 
also been voiced. These will be discussed in the next section. 

2.2.2 Drawbacks of Bayesian SEM 

Before discussing the drawbacks of Bayesian SEM in particular, I want to acknowledge a 
general philosophical criticism of Bayesian statistics, namely its subjectivity (Press, 
2003). The practice of including prior knowledge or beliefs directly in an analysis goes 
against the idea that scientists should be concerned with objective knowledge (Gelman, 
2008). Indeed, the Bayesian perspective on probability is that it does not have an 
objective status but instead “represents the quantification of our experience of 
uncertainty” (Kaplan, 2014 p. 284). Even if the concept of including prior knowledge in 
an analysis is accepted, critics often point out that different individuals (e.g., researchers 
or content experts) may hold different prior beliefs (Press, 2003). Why should my prior 
belief be used over others’ prior beliefs? Proponents of the Bayesian approach have 
argued that scientific objectivity can still be attained with objective Bayes (objective or 
reference priors; Press, 2003; Wagenmakers et al., 2008) or the evidence-based use of 
subjective Bayes (Kaplan, 2014). In this dissertation, I subscribe to the evidence-based 
use of subjective Bayes. This approach to Bayesian statistics prescribes the use of 
historical data (e.g., prior research) over personal belief to inform the prior distributions 
specified for an analysis. If historical data are not available, diffuse or reference priors 
should be used (Berger, 2006). Through this method of including prior knowledge, the 
evidence-based use of subjective Bayes aligns with the argument that objective science 
needs to refer to specific data that inform the research (Jaynes, 1968; Kaplan, 2014). 

I will now continue my discussion on the drawbacks associated with Bayesian 
estimation of SEMs, which appear to boil down to a simple message: Bayesian SEM 
requires more effort and thought from the researcher than frequentist estimation. In other 
words, the drawbacks of Bayesian estimation are not necessarily fatal computational 
issues that have no solution. Instead, they are components of the estimation process that 
are more cumbersome for Bayesian estimation than for frequentist estimation. In this 
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section, I will discuss several components of Bayesian estimation where the researcher’s 
active role is required. 

First, while the ability to use small-variance priors to relax exact zero constraints 
within a model has been touted as an advantage to Bayesian SEM, it has also been 
repeatedly criticized (MacCallum et al., 2012; Stromeyer et al., 2015). While these 
critiques are slightly different in their approach, they both emphasize that estimating 
many more parameters in a model may inflate model fit and reduce generalizability and 
replicability. These non-zero parameters may be capturing random sampling noise rather 
than true minor deviations from zero present in the population (Stromeyer et al., 2015). 
Asparouhov and colleagues (2015) have refuted this claim, stating that model fit would 
only be inflated if the small-variance priors are relaxed to the point that the model 
becomes equivalent to a model that freely estimates all parameters. They also argue that 
the point of including small-variance priors is to evaluate the sources of differences 
between a hypothesized (clean) model and the (messy) data. 

Another possible drawback to Bayesian estimation of SEM is that it requires more 
effort from the researcher than frequentist approaches to SEM (MacCallum et al., 2012). 
For example, with ML estimation, convergence is reached once the algorithm finds the 
maximum to some pre-specified level of precision. This level of precision is often chosen 
by the software or package creators and does not require any input from the researcher 
(although some may argue that it should require the researcher’s input). In contrast, with 
Bayesian estimation, the researcher needs to specify the number of chains, the number of 
burn-in iterations and the number of posterior sampling iterations. Next, the researcher 
needs to assess, for each parameter in the model (which, for SEM, can be many), whether 
the MCMC algorithm has converged to a stable estimate, using a variety of the 
convergence diagnostics discussed above. Software packages can automate some of the 
decisions surrounding convergence, but the researcher will need to be aware of what 
these automated decisions are and if they are stringent enough for the purposes of their 
research. Several guides and checklists have been developed to help researchers navigate 
these decisions for SEMs (e.g., Depaoli & van de Schoot, 2017; Harindranath & Jacob, 
2018; Miočević, 2019; Song & Lee, 2012; van de Schoot et al., 2020, 2021). While these 
guides are helpful, it is true that researchers play a more active part in the estimation 
process if they use a Bayesian approach to SEM. 

Prior specification is another component of Bayesian estimation where active 
participation of the researcher is required. To help researchers with this step, software 
packages such as Mplus (Asparouhov & Muthén, 2010b) and the R package ‘blavaan’ 
(Merkle & Rosseel, 2018) have implemented default priors for SEMs. However, 
researchers have repeatedly demonstrated that naively relying on default priors can have 
adverse effects on the posterior estimates of SEMs (Depaoli, 2013; Depaoli & Clifton, 
2015; Smid, McNeish, et al., 2019; Smid & Winter, 2020; van Erp et al., 2018). In 
contrast, specifying thoughtful, informative priors in SEMs results in posterior 
distributions that more closely approximate the population parameter compared to diffuse 
priors or frequentist approaches (Depaoli, 2013; McNeish, 2016; Smid, Depaoli, et al., 
2019; Zondervan-Zwijnenburg et al., 2018). Researchers might be hesitant to specify 
informative priors because their prior knowledge may not agree with the information 
provided by the data (i.e., prior-data disagreement). Indeed, researchers have found that 
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informative, inaccurate priors can negatively impact the posterior estimates (Depaoli, 
2014; Dingjing Shi & Tong, 2017). Researchers may also wonder what information they 
should use as the basis for their priors. Several guides exist that illustrate the process of 
prior elicitation (Van de Schoot et al., 2021; Zondervan-Zwijnenburg et al., 2017). 
Researchers also have some tools at their disposal to examine the impact of their priors 
on the posterior estimates. Most importantly, each Bayesian analysis should be followed 
by a sensitivity analysis of the priors, in which alternative priors are examined to fully 
understand the impact of the priors specified for the original analysis (Depaoli et al., 
2017, 2020; B. O. Muthén & Asparouhov, 2012; van Erp et al., 2018). In addition, 
researchers can get an idea of the impact of their prior specification before they analyze 
their observed data through prior-predictive checks (Evans & Jang, 2010). 

Finally, one major hindrance to the adoption of Bayesian SEM in the mainstream 
literature was a lack of readily available and interpretable indices for model fit and 
selection (Levy, 2011). Until recently, Bayesian model fit assessment was limited to 
absolute fit indices such as the posterior predictive p-value (PPP-value; Gelman, Meng, et 
al., 1996; Meng, 1994) and comparative fit indices such as the Bayesian information 
criterion (Schwarz, 1978), Deviance information criterion (DIC; Spiegelhalter et al., 
2002), Bayes Factor (BF; e.g., Wagenmakers, 2007), leave-one-out cross-validation 
(LOO; Geisser & Eddy, 1979; Gelfand & Dey D.K., 1994), and widely applicable 
information criterion (WAIC; Watanabe, 2010). The Bayesian model evaluation toolkit 
was missing a set of approximate fit indices that could be used to assess fit along a 
continuum and without the need for alternative models. Fortunately, a series of fit indices 
was recently developed and implemented (Asparouhov & Muthén, 2019; Garnier-
Villarreal & Jorgensen, 2019; Hoofs et al., 2018). It is now possible to assess the 
approximate fit of a Bayesian SEM with Bayesian versions of the root mean square error 
of approximation (RMSEA; Steiger, 1990; Steiger & Lind, 1980), comparative fit index 
(CFI; Bentler, 1990), and Tucker-Lewis index (TLI; Tucker & Lewis, 1973). Asparouhov 
and Muthén (2019) implemented these approximate fit indices in Mplus together with a 
new version of the posterior-predictive p-value (PPP-value) that is more appropriate 
when there is missing data. While the performance of these new fit indices still needs to 
be assessed across a variety of conditions, their development is promising for the future 
of Bayesian SEM research. 

2.2.3 Opportunities for Bayesian SEM 

My dissertation focuses on two of the drawbacks discussed in the previous section. In 
Study 1, I assess the performance of the newly implemented model fit indices in Mplus 
across a wide variety of conditions, such as population model, location and severity of 
model misspecification, sample size, amount and location of missing data, and prior 
specification. In Study 2, I assess three methods for detecting prior-data disagreement 
across multiple sample sizes in a commonly used SEM: the latent growth model (LGM). 
With these two studies, I aim to improve the applicability of Bayesian estimation of SEM 
for applied researchers. 
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Chapter 3  
Study 1: Performance of Model Fit and Selection 
Indices for Bayesian Structural Equation 
Modeling 
 

3.1 Introduction 
Several methods for model fit assessment and model selection have been implemented 
for Bayesian SEM. However, until recently, Bayesian model fit assessment was limited 
to absolute fit indices such as the posterior predictive p-value (PPP-value; Gelman, 
Meng, et al., 1996; Meng, 1994) and comparative fit indices such as the Bayesian 
Information Criterion (BIC; Schwarz, 1978), Deviance information criterion (DIC; 
Spiegelhalter et al., 2002), Bayes Factor (BF; e.g., Wagenmakers, 2007), leave-one-out 
cross-validation (LOO; Geisser & Eddy, 1979; Gelfand & Dey D.K., 1994), and widely 
applicable information criterion (WAIC; Watanabe, 2010). The Bayesian model 
evaluation toolkit was missing a set of approximate fit indices that could be used to 
assess fit along a continuum and without the need for alternative models.  

Fortunately, new model evaluation tools were added to the toolkit by the recent 
introduction of a series of approximate model fit indices for Bayesian SEM (Asparouhov 
& Muthén, 2019; Garnier-Villarreal & Jorgensen, 2019; Hoofs et al., 2018; Liang, 2020). 
In addition, the Mplus implementation of the PPP-value has been adjusted to properly 
account for missing data (Asparouhov & Muthén, 2019). The new approximate fit indices 
have great potential as they detect model misspecification to a similar extent as their 
maximum likelihood (ML) counterparts (Garnier-Villarreal & Jorgensen, 2019; Hoofs et 
al., 2018) and perform well when data are missing at random (Asparouhov & Muthén, 
2020). Another advantage is that they have been implemented in multiple software 
packages, such as the R package ‘blavaan’ (Merkle & Rosseel, 2018) and Mplus (L. K. 
Muthén & Muthén, 2017). This has aided the adoption of the new fit indices in the 
applied literature (e.g., Dwirifqi Kharisma Putra et al., 2019; Hanson et al., 2020; 
Nakadai et al., 2020; Phipps et al., 2020).  

However, the implementation of the fit indices differs across software packages, 
resulting in conflicting results about their performance across simulation studies. 
Furthermore, they have been studied only under limited conditions. For example, their 
performance has not been assessed for models with a mean structure (e.g., latent growth 
models) or relatively small sample sizes. In addition, an important element that may 
affect the performance of the new model fit indices is missing data.  

The presence of missing data is a factor that plays a role in almost any study in the 
social sciences that relies on SEM (Bell et al., 2014; Graham, 2009; Lang & Little, 2018; 
Nicholson et al., 2017). Missing data can arise through different mechanisms. Rubin 
(1976) defined three missing data mechanisms: missing completely at random (MCAR),  
missing at random (MAR), and missing not at random (MNAR). MCAR occurs if the
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probability of missing a value is not related to any observed variable or the missing value 
itself. If data are MAR, it means that the probability of missing a value is related to an 
observed variable but not to the missing value itself. These two missing data mechanisms 
are often referred to as ignorable missingness (Graham, 2009; R. J. Little & Rubin, 
2002). These mechanisms are ignorable in the sense that, as long as they are taken into 
account in the analysis, they result in unbiased parameter estimates (Graham, 2009; R. J. 
Little, 2021). In contrast, nonignorable missingness occurs when data are MNAR. Here, 
the probability of missing a value is related to the missing value itself. With MNAR, 
there are no straightforward methods to adjust for the missing values, resulting in biased 
parameter estimates (Graham, 2009). To prevent biased estimates due to MNAR, one 
needs to uncover and explicitly model the missingness mechanism (R. J. Little, 2021). In 
the current study, I focus on the MAR mechanism.  

While Asparouhov and Muthén (2020) concluded that the new model fit indices 
performed well when data were M(C)AR, their conclusions are based on a simulation 
study that generated data from a simple linear regression with one observed outcome and 
one observed predictor variable. From the frequentist literature, we know that the impact 
of missing data on model fit indices may depend on many factors, such as the sample size 
(Enders & Mansolf, 2018), the amount and location of missing data (Wu & West, 2010), 
and the number of different missing data patterns present in the sample (Zhang & 
Savalei, 2020). Thus, the focus of the current study is to add to the literature on model fit 
and selection indices for Bayesian SEM through an extensive simulation study that 
examines the performance of the PPP-value, BIC, DIC, and approximate fit indices. 

The remainder of this section will be organized as follows. First, I will introduce the 
concept of model misspecification, after which I will present the model fit and selection 
indices currently implemented in Mplus. This section is followed by a discussion of the 
existing literature on factors affecting the ability of model fit and selection indices to 
detect model misspecification. This discussion will cover both Bayesian and frequentist 
implementation of model fit indices, as the existing literature on the Bayesian 
approximate fit indices is still limited. Next, I will introduce and specify the models for 
which the model fit and selection indices’ performance will be examined through a 
simulation design. 

3.1.1 What is Model Misspecification? 

SEMs are used to represent the hypothesized theory underlying the data-generating 
process. For that reason, assessing the model’s fit to the observed data is an important 
step to evaluate whether the theory adequately explains the data-generating process. The 
adequacy of a specified model can be assessed with two different questions in mind 
(West, Taylor, & Wu, 2012). First, we can ask: Does the hypothesized model provide a 
good fit to the observed data? Second, we can ask: If multiple competing models exist, 
which of these models best represents the observed data? These two questions map on to 
model fit and model selection, respectively. 

Model fit and selection indices all assume that the estimated model is the correctly 
specified model for the population. However, it is generally accepted that most estimated 
models are not 100% correct and include some form of misspecification (West et al., 
2012). Thus, model fit and selection indices should capture the degree to which a model 
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is misspecified. The definition of model misspecification needs to be clear before this 
question can be assessed through simulation research. In the literature, model 
misspecification has been defined using different characteristics. For example, a model 
can be misspecified if it is either under- or over-parameterized (Hu & Bentler, 1998). 
Model under-parameterization occurs when one or more parameters are fixed to zero 
even though their population values are non-zero. Model over-parameterization occurs 
when one or more parameters are estimated whose population values equal zero. Under- 
and over-parameterization can also co-occur in different parts of the model. 

A related way of looking at model misspecification is by differentiating between 
internal and external misspecification (Kaplan, 1989, 1990). Internal model 
misspecification assumes that the correct variables are included in the model but that the 
estimated associations between these variables are incorrect. In contrast, external model 
misspecification arises when a key variable of the theoretical model is not included in the 
statistical model. There might be several reasons why such a variable is excluded. 
Perhaps it was not included in an original dataset that is now used for secondary analysis, 
or its importance was not realized until after data collection was completed. 
Alternatively, the variable could reflect sensitive information, information from an 
unavailable informant, or hard to access information (Harring et al., 2017). 

Another way of categorizing model misspecification is as substantively relevant or 
irrelevant (Saris et al., 2009a). Substantively relevant misspecifications are 
misspecifications that lead to incorrect conclusions. For example, in a model that 
examines whether Y1 predicts Y2, all variables that could cause spurious relationships 
between the two variables (i.e., third variables) need to be included. If some third variable 
is not included, the residuals of Y1 and Y2 covary. If this covariance is not included in the 
estimated model, the path from Y1 to Y2 may be under- or over-estimated, leading to the 
wrong conclusion about their association. 

In contrast, substantively irrelevant misspecifications are misspecifications that result 
in a model that is adequate for all practical purposes even though it is not entirely correct. 
For example, suppose the correlation between two latent factors is .95. In that case, 
researchers might conclude that this two-factor model can be reduced to a one-factor 
model (essentially fixing the correlation between the two factors to 1). 

Model misspecification in SEM can also be described according to the location of 
misspecification. While some SEMs, such as path models, can only have misspecification 
in the covariance matrix, other models include multiple locations where misspecification 
can arise. For example, in growth curve models, misspecification can exist in 
the marginal mean structure, conditional mean structure, between-individual covariance 
structure, and within-individual covariance structure (Wu et al., 2009). Here, the marginal 
mean structure refers to the average growth trajectory estimates, while the conditional 
mean structure refers to the individual growth trajectories. The between-individual 
covariance structure refers to the specification of the variances and covariances among 
the growth parameters. The within-individual covariance structure refers to the variances 
and covariances between the observed variables’ residual variances. Model 
misspecification in the marginal mean structure affects the fit of the within- and between-
person covariance structures, and under realistic conditions, misspecification of the 
covariance structures also affects the marginal mean structure (Wu et al., 2009). Further, 
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the fit of the conditional mean structure is affected by both the marginal mean structure 
and the covariance structures (Wu et al., 2009). In general, global fit indices used in SEM 
(including the approximate indices discussed below) can only detect model misfit in the 
covariance structures and the marginal mean structure (Wu et al., 2009). 

In practice, many of the studies that examine the ability of model fit indices to detect 
model misspecification focus on under-parameterized models (e.g., Fan & Sivo, 2005, 
2007; Heene et al., 2012; Hsu et al., 2015; Hu & Bentler, 1998; Leite & Stapleton, 2006; 
Lin et al., 2017; Mahler, 2011; Maydeu-Olivares et al., 2017; Maydeu-Olivares, 2017; 
Ryu & West, 2009; Saris et al., 2009b; Savalei, 2012; Dexin Shi et al., 2018; Wu & West, 
2010). Examples of under-specification include (a) fixing one or more covariances 
between factors in a confirmatory factor analysis (CFA) to zero (Fan & Sivo, 2005; Hsu 
et al., 2015; Hu & Bentler, 1998), (b) fixing one or more non-zero cross-loadings to zero 
in a CFA (Savalei, 2012; Dexin Shi et al., 2018), or (c) fixing the mean and variance of a 
quadratic slope in a latent growth model (LGM) to zero (Wu & West, 2010). These 
examples illustrate that some of the definitions of misspecification overlap. Fixing a 
covariance between two factors to zero can also represent a substantively irrelevant 
misspecification if the covariance is close to zero in the population model. Fixing the 
mean of a quadratic slope to zero results in a misspecification in the marginal mean 
structure, whereas fixing the variance of a quadratic slope to zero results in a 
misspecification in the between-individual covariance structure. I will further discuss 
these nuances after presenting an overview of the model fit and selection indices that are 
the focus of the current study. 

3.1.2 Overview of Model Fit and Selection Indices 

In this section, I will introduce the model fit and selection indices that are implemented in 
Mplus. When appropriate, I will also mention alternative model fit and selection indices 
available in other software packages. 

3.1.2.1 Information Criteria 

The first two Bayesian model selection indices, the BIC (Schwarz, 1978) and the DIC 
(Spiegelhalter et al., 2002), are absolute fit indices because they do not require a baseline 
or null model to be computed. They can also be considered comparative fit indices 
because the BIC and DIC values have no intrinsic meaning and can be interpreted only 
when they are computed and compared for multiple competing models. Thus, these 
indices can be used to answer the question, “If multiple competing models exist, which of 
these models best represents the observed data?” While the BIC and DIC are just two 
possible information criteria, they are the only information criteria implemented for 
Bayesian estimation in Mplus. Some other information criteria are the Widely Available 
Information Criterion (Watanabe, 2010) and Leave-One-Out information criterion 
(LOOIC; Geisser & Eddy, 1979).  

The BIC and DIC are based on a deviance term that can be calculated using the 
following equation: 
 
 [\]^_`a\	 = 	−2logb7(c8!Z-./*d, (10) 
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where !Z-./ is the posterior mean estimate, and logb7(c8!Z-./*d is the log likelihood 
based on that posterior mean estimate. 

The BIC (Schwarz, 1978) uses the deviance term defined in Equation (10) as follows:  
 efg = −2logb7(c8!Z-./*d + 7(log[`]), (11) 

 
where p is the number of parameters in the model and n is the sample size. A model with 
a lower BIC value should be selected over a model with a higher BIC value. 

The DIC (Spiegelhalter et al., 2002) uses the deviance term defined in Equation (10) 
as follows: 
 
 [fg = −2logb7(c8!Z-./*d + 27012 , (12) 

 
where 7012  is a model complexity penalty that is computed as  
 
 7012 = 2Vlogb7(c8!Z-./*d − j34)5(log[7(c|!)])X. (13) 

 
In Equation (12), j34)5(log[7(c|!)]) is the posterior mean of the log likelihood, 

which is computed with the following equation: 
 
 

j34)5(log[7(c|!)]) 	= 	
1
.
k log[7(c|!))]
6

)	8	$

, 
(14) 

 
where S is the number of MCMC iterations and !) is the posterior sample for parameter 
! at the sth draw. Thus, the DIC is only partially Bayesian, as the deviance term and the 
first term in the computation of 7012  are both based on !Z-./, a point estimate of the 
posterior mean. Only the second term in the computation of 7012  is based on the entire 
posterior sampling chain. A model with a lower DIC value should be selected over a 
model with a higher DIC value. 

3.1.2.2 Posterior Predictive p-value 

The PPP-value reflects the extent to which replicated data generated under the posterior 
estimates of the model are similar to the observed data (Gelman et al., 2013). To assess 
the similarity of the replicated and observed data, the posterior model-implied covariance 
matrix for the variables is compared to the data covariance matrix of the replicated and 
the observed data, using a discrepancy statistic, such as the likelihood ratio test (LRT). 
This is done at each iteration of the MCMC chain. The PPP-value represents the 
proportion of posterior predictive discrepancy statistics (computed for replicated data) 
that are greater than the discrepancy statistics of the observed data. A model that fits the 
data well is expected to have a PPP-value close to 0.5 (i.e., half of the replicated datasets 
had greater discrepancy values compared to the observed data). A misspecified model is 
expected to have a PPP-value close to 0 (i.e., most of the replicated datasets had greater 
discrepancy values compared to the observed data). Generally, a PPP-value > .05 is 
considered to indicate a well-fitting model. Thus, this index can be used to answer the 
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question, “Does the hypothesized model provide a good fit to the observed data?” Some 
advantages of the PPP-value compared to indices such as the DIC are that it incorporates 
uncertainty of estimation in the model by using the full posterior distribution, and that it 
does not depend on asymptotic arguments (Gelman, 2013; Levy, 2011). 

The PPP-value implemented in Mplus is based on a discrepancy function D, 
following standard posterior predictive checking methodology (Gelman et al., 2013). The 
discrepancy function is the LRT function comparing the estimated model (the H0 model) 
and the unconstrained mean and variance-covariance matrix model (the H1 model). 
Starting with Mplus version 8.4, this discrepancy function is defined as follows: 

 
 [(l, µ$, Σ$, µ%, Σ%) = ℒ(l|µ$, Σ$) − ℒ(l|µ%, Σ%), (15) 

 
where Y represents the data and ℒ(l8o9 , Σ9* represents the log-likelihood of Y based on 
the multivariate normal distribution with mean o9 and covariance matrix Σ9. This 
discrepancy function is computed for the observed data, l4:), and the replicated data 
generated during the i-th MCMC iteration, l;

<=3. For the observed data, this function is 
computed as 
 [;

4:) = [(l4:), o$;(l4:)), Σ$;(l4:)), µ%; , Σ%;), (16) 
 
where o$;(l4:)) and Σ$;(l4:)) are a random draw of the H1 model parameter estimates 
for l4:), and o%; and Σ%; are the H0 model implied mean and covariance matrix obtained 
from the i-th iteration of the H0 model. Likewise, the discrepancy function for the 
replicated data is computed as 
 
 [;

<=3 = [(l;
<=3, o$;(l;

<=3*, Σ$;(l;
<=3*, o%; , Σ%;*, (17) 

 
where o$;(l;

<=3* and Σ$;(l;
<=3* are a random draw of the H1 model parameter estimates 

for l;
<=3. These two values are then used to compute the PPP-value as follows: 

 
 

ppp = p([4:) < [<=3) ≈
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(18) 

 
where L is the number of iterations in the MCMC chain, and t; 	= 	1 if [;4:) < [;

<=3 and 
0 otherwise.  
3.1.2.2.1 Computing the PPP-value with missing data 
In Mplus version 8.4, each discrepancy function is defined as a test of the fit function for 
the observed (i.e., not missing) data only. Thus, if there are missing values, these remain 
missing in the computation of the discrepancy functions. Similarly, the replicated data at 
each iteration of the MCMC chain also include missing values if the original observed 
data include missing values. Every missing value in the observed data is matched with a 
missing value in the replicated data. So, the observed and replicated data have the same 
pattern of missing data. The discrepancy function for the observed and replicated data is 
computed in exactly the same manner. At each iteration in the MCMC chain, the 
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discrepancy function uses the LRT function for the H0 model with the current H0 model 
parameters based on the observed data and the H1 model estimates obtained from the 
incomplete observed and replicated data. 

The H1 model estimates of the observed and replicated data are both based on the last 
draw of a 10-iteration MCMC chain of the H1 model. Asparouhov and Muthén (2020) 
acknowledge that running such a low number of iterations is not perfect as full 
convergence is not enforced. However, they argue that it is equitable since the approach 
is used for the observed and the replicated data, and it is the only way that the speed of 
computation is not compromised. In addition, the H1 model is fast and simple to estimate 
since it is the unconstrained model. Moreover, by estimating ten iterations of an MCMC 
chain, this approach results in an approximation of the H1 model parameter distributions 
for both the observed and replicated data, which can be used to compute the discrepancy 
functions. To further ensure that the discrepancy functions of the observed and replicated 
data can be compared, the same starting values are used in the estimation of each H1 
model. 

The reason why the missing values remain missing for the observed and replicated 
data is that it ensures that the replicated data are comparable to the real data under the 
null hypothesis that the H0 model is correct (Asparouhov & Muthén, 2020). As the 
missing data mechanism is unknown and not explicitly estimated, it cannot be used to 
generate missing values in the replicated data. However, as the model estimating 
assumption for the real data set is assumed to be MAR, using the location of the missing 
values in the real data to generate missing values in the replicated data can also be 
considered MAR (Asparouhov & Muthén, 2020). When data are MAR, the likelihood of 
the observed data is independent of the missing data mechanism (R. J. A. Little & Rubin, 
1989). Thus, even though the missing data mechanisms of the observed and replicated 
data are not identical, the discrepancy functions (which are based on the likelihood) for 
these two data sets are comparable. 

Asparouhov and Muthén (2020) demonstrated that this new approach to computing 
the PPP-value improves power to detect model misspecification compared to the original 
approach and appears to work well with missing data when estimating a simple 
regression model.  

3.1.2.3 Bayesian Approximate Fit Indices 

In this section, I will discuss a series of Bayesian approximate fit indices that are based 
on the components of the PPP-value discussed above. Approximate fit indices do not 
assess the significance of some value but are continuous measures of model-data 
correspondence (Kline, 2015). Within this group of fit indices, the RMSEA (Steiger, 
1990; Steiger & Lind, 1980) is considered an absolute fit index, as it relies only on the 
extent to which the hypothesized model represents the observed data. Thus, this index 
answers the question, “Does the hypothesized model provide a good fit to the observed 
data?”. In contrast, the CFI (Bentler, 1990) and TLI (Tucker & Lewis, 1973) are often 
called comparative or incremental fit indices because they represent the relative 
improvement in model fit of the specified model over that of a baseline model. The 
baseline model is often the independence (null) model, which assumes the covariances 
between variables are zero (Kline, 2015). The specific baseline model depends on the 
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software program. In Mplus, the covariances between the endogenous variables are 
assumed to be zero, but the covariances between the exogenous variables are estimated. 
This baseline model is often implausible and a poor fit to the observed data. So, 
approximate fit indices can be used to answer a question that lies in the middle of the 
questions for model fit and model selection: “To what extent does the hypothesized 
model represent the observed data compared to the worst possible model?” (Miles & 
Shevlin, 2007). 

The implementation of the approximate model fit indices in Mplus (Asparouhov & 
Muthén, 2020) is based on the work by Garnier-Villarreal and Jorgensen (2019). The 
Bayesian approximate fit indices follow the population formulas of the frequentist 
approximate fit indices. In Mplus, each approximate fit index is computed at each 
MCMC iteration s. Thus, one advantage of Bayesian approximate fit indices is that a 
posterior distribution is formed for each index. This posterior can be interpreted in the 
same rich way that posteriors for model parameters are interpreted within the Bayesian 
framework (e.g., by computing the posterior median, mean, or credible interval).3 The 
Bayesian RMSEA (BRMSEA) is computed as follows: 
 
 

eYu.jv) =	wx_y z0,
[)4:) − 7∗

(7∗ − 7012){
|√~. 

(19) 

 
In that formula, s is the sth iteration of the MCMC chain, [)4:) is the discrepancy 
function for the observed data at the sth iteration, G is the number of groups in the model, 
and N is the sample size. Further, 7∗ is the number of parameters in the H1 model 
(unconstrained model), which is based on the number of groups G, the number of 
dependent variables p, and the number of covariates q and is computed as follows: 7∗ =
~(7(7 + 3)/2 + 7;). Finally, 7012  is the model complexity penalty term that is also used 
in the computation of the DIC. This term is also known to reflect the number of effective 
parameters in the H0 model. This value will be close to the actual number of parameters 
in the H0 model when diffuse priors are used for the model parameters. If informative 
priors are used, 7012  will be smaller than the actual number of parameters in the H0 
model. This discrepancy makes sense if you consider that a small-variance prior centered 
around zero constrains a parameter to be approximately zero, which is nearly equivalent 
to a parameter that is fixed to zero (Asparouhov et al., 2015; Hoofs et al., 2018). It should 
be noted that other implementations of the BRMSEA may instead use 7?.12  or 7>@@ to 
represent the number of effective parameters (Garnier-Villarreal & Jorgensen, 2019). 

The Bayesian CFI and TLI are computed in a similar manner. However, as noted 
above, these two indices require the specification of a baseline or null model to compare 
the H0 and H1 models to. Generally, the baseline model is a model in which all variances 
are estimated but all covariances are fixed to zero. The Bayesian CFI is computed as 
follows: 
 

 
3 In Mplus, the posterior median and a 90% credible interval are returned for each index. In the current 
version, the full posterior distribution cannot be extracted. 
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egÅf) = 1 −

[)4:) − 7∗

[A,)
4:) − 7∗

, 
(20) 

 
where [A,)4:) is the baseline model discrepancy function for the observed data computed at 
the sth iteration of the baseline model MCMC estimation. Similarly, the Bayesian TLI is 
computed as follows: 
 
 

eKsf) =
([A,)

4:) − 7012[A]*/(7∗ − 7012[A]* − ([)4:) − 7012)/(7∗ − 7012)

([A,)
4:) − 7012[A]*/(7∗ − 7012[A]* − 1

, 
(21) 

 
where 7012[A] 	= 	27~, which means that, for the baseline model, the estimated number 
of parameters are replaced by the actual number of parameters. As the baseline model is 
estimated with diffuse priors, the difference between the estimated and actual number of 
parameters is expected to be inconsequential (Asparouhov & Muthén, 2020). 

One reason why the BTLI and BCFI were not introduced in earlier versions of Mplus 
is how missing data used to be treated in computing the discrepancy function for the 
observed (and replicated) data (Asparouhov & Muthén, 2020). In previous versions of 
Mplus, the discrepancy function was based on the data after imputing missing values. 
This approach was problematic for the PPP-value because it essentially used the imputed 
values at the sth iteration to create the replicated data. That approach weakens the power 
to detect model misspecification because the imputed data are based on the H0 model and 
thus fit the specified model perfectly, even if the estimated model does not match the 
population model. For the BCFI and BTLI, including imputed values resulted in an 
opposite problem. As both the BCFI and BTLI rely on a baseline model that assumes 
zero correlations between variables, imputed data based on this model will be 
considerably different from the observed data. Using the imputed data in the computation 
of the discrepancy function would distort [A,)4:) much more than [)4:), resulting in BCFI 
and BTLI estimates that are meaningless and offer no valuable information about the fit 
of the H0 model. With the current method for computing the discrepancy functions, these 
problems are resolved as the method does not include imputed data in its computation. 

3.1.3 Factors Impacting Model Fit and Model Selection Assessment 

In an ideal world, the model fit and selection indices presented above would reflect only 
the extent to which a model is misspecified. In reality, several nuisance factors impact the 
indices, sometimes in surprising ways. Here, I focus on four commonly considered 
nuisance factors: sample size, location of misspecification, missing data, and the role of 
priors. For each factor, I will discuss the literature on the Bayesian model fit and 
selection indices. As this literature is still limited in scope for the approximate and 
absolute fit indices, BRMSEA, BCFI, and BTLI, I will supplement this discussion with 
findings from the frequentist literature on model fit and selection. 

3.1.3.1 Sample Size 

Every index of model fit or selection is affected by sample size. However, the impact of 
sample size differs across indices and is more straightforward for some than for others. 
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For example, the DIC’s ability to select the correctly specified model generally improves 
as the sample size increases (Cain & Zhang, 2019; Liang & Luo, 2019; Lu et al., 2017; 
Zhu & Stone, 2012). The DIC may be more sensitive to detecting model misspecification 
than the PPP-value (Liang & Luo, 2019). However, the DIC is not a consistent measure 
of model fit, so we cannot assume that it will increasingly select the true model out of a 
fixed set of models with increasing sample size (Spiegelhalter et al., 2002, 2014). To 
draw appropriate conclusions regarding model selection, it may be crucial to look at the 
magnitude of a difference in DIC between two models instead of assessing if there is any 
difference at all. Cain and Zhang (2019) found that for smaller samples (n < 150), the 
difference between two models’ DIC values needed to be at least 7 to minimize the false  
selection rate of misspecified models. This threshold could be lowered to 3 for models 
with larger samples (n ≥ 250). 

Similar to the DIC, the PPP-value becomes increasingly sensitive to model 
misspecification with increasing sample size (Asparouhov & Muthén, 2010a, 2020; Cain 
& Zhang, 2019). In addition, the PPP-value is unlikely to reject a correctly specified 
model regardless of the sample size (Asparouhov & Muthén, 2010a). However, compared 
to the frequentist LRT test for model fit, the PPP-value is generally less likely to reject a 
misspecified model across a range of sample sizes. This lower sensitivity may be due to 
the somewhat arbitrary nature of the .05 cutoff of the PPP-value for rejecting a model. In 
contrast to the frequentist p-value, the distribution of the PPP-value is not uniform 
between 0 and 1 if the H0 model is true. Instead, its distribution is not known and 
depends on the specific model estimated. However, a cutoff value of .05 is still used in 
the way that the H0 model (the estimated model) is rejected if the PPP-value is smaller 
than .05. As the distribution of the PPP-value is not known, this cutoff value does not 
necessarily represent the fifth percentile of the distribution. For some models, the fifth 
percentile is associated with a slightly larger PPP-value. Thus, using the cutoff of .05 
may reduce power to detect model misspecification. However, it also lowers the 
probability of a Type I error, which may be desirable in certain contexts. Asparouhov and 
Muthén (2020) suggest a method for adjusting the cutoff value that may be useful when 
the PPP-value is between .05 and .25. In this approach, the posterior estimates of the H0 
model are used to create a population model for a simulation. The output of this 
simulation is then used to generate a distribution of the PPP-value under the assumption 
that the H0 model was the true model. This distribution can then be used to find the fifth 
percentile for the specific H0 model in question. In an example, Asparouhov and Muthén 
showed that this method increased the power to detect model misspecification from .62 
to .87. 

A more complicated picture emerges for the approximate fit indices. To start, 
Asparouhov and Muthén (2020) strongly urge against the use of the new Bayesian 
approximate fit indices in the context of small sample sizes (n < 200). For small samples, 
the PPP-value typically rejects the model (i.e., is < .05) only when the model is severely 
misspecified. In those cases, the approximate fit indices should be ignored. Further, if the 
PPP-value does not reject the model (i.e., is ≥ .05), then the approximate fit indices are 
not needed to provide further evidence of model fit (Asparouhov & Muthén, 2020). 
These recommendations call into question the utility of the approximate fit indices for 
sample sizes common in social science research. However, they are in line with 
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conclusions from the frequentist literature on approximate fit indices, which are likely to 
reject correctly specified models when sample sizes are small (Heene et al., 2012; 
Sharma et al., 2005). In contrast, whereas frequentist approximate fit indices do not 
necessarily become more accurate for larger sample sizes (Ainur et al., 2017; Heene et 
al., 2012; Leite & Stapleton, 2006; Sharma et al., 2005), the Bayesian approximate fit 
indices stabilize and become more accurate as the sample size increases (Asparouhov & 
Muthén, 2020; Garnier-Villarreal & Jorgensen, 2019).  

Furthermore, the Bayesian approximate fit indices benefit from the fact that their 
posterior distribution is available. Thus, a credible interval can be extracted and used to 
assess if fit is good, inconclusive, or poor using some pre-selected cutoff-value. While the 
RMSEA, CFI, and TLI were not developed for making binary decisions about model fit, 
the use of several suggested cutoff values for concluding that a model fits the data well 
(e.g., CFI/TLI ≥ .90 or .95; RMSEA ≤ .05 or .06) is widespread in the applied literature. 
Their implementation in the frequentist framework has been criticized (e.g., Leite & 
Stapleton, 2006; Mcneish & Hancock, 2018; Niemand & Mai, 2018; Xia & Yang, 2018), 
as the cutoff-values are based on very specific population models and conditions, such as 
a moderately large sample size. For example, the cutoff-values for the TLI and RMSEA 
are likely to reject correctly specified models when the sample size is relatively small 
(Sharma et al., 2005). Perhaps more problematic, as the sample size increases, the cutoff-
values of the RMSEA (and to a lesser extent the TLI) become more likely to fail to reject 
a misspecified model (Sharma et al., 2005).  

Using the posterior credible intervals through the Bayesian framework can provide a 
level of nuance to the use of cutoff values. For example, if a 90% posterior credible 
interval of the BCFI is below .95, we can conclude with 90% certainty that the model is a 
poor fit to the data. Using the credible interval approach also allows for an inconclusive 
conclusion: if the 90% credible interval contains .95, we cannot be sure if the model fits 
the data well or not. That approach may be particularly beneficial for smaller samples. 
Indeed, Asparouhov and Muthén (2020), demonstrated that using rejection-rates based on 
the approximate fit indices’ credible intervals resulted in more accurate conclusions for 
small sample sizes (n = 100) compared to using the point-estimates. For such small 
sample sizes, approximate fit indices are more variable across samples (Fan et al., 1999; 
Sharma et al., 2005). Thus, an analysis based on a small sample is more likely to imply 
poor (or great) model fit independent from the actual presence or absence of model 
misspecification. With small sample sizes, the posterior distribution of the approximate 
fit indices may also be wider, resulting in a credible interval that is less precise. A wider 
credible interval may be beneficial in the sense that the conclusion will more often be 
“inconclusive”, instead of incorrectly concluding good or poor model fit. It is important 
to note that Garnier-Villarreal and Jorgensen (2019) do not recommend using fixed cutoff 
values for the BCFI and BTLI because the cutoffs vary across several study and model 
characteristics. In addition, they argue that existing cutoff recommendations for the 
RMSEA based on its frequentist confidence interval likely need to be adjusted for the 
BRMSEA, as its credible interval is often narrower. 
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3.1.3.2 Location of Misspecification 

As stated above, the location of misspecification (in the covariance structures or the 
marginal mean structure) may influence model fit and selection indices. Research on this 
factor is limited, particularly in the Bayesian literature. One reason for this scarcity of 
knowledge may be that the common choice of population model in this field of research 
(i.e., a CFA) does not include the marginal mean structure. 

One study examined several approaches for computing the PPP-value to detect model 
misspecification in different structures of LGMs (Fay et al., 2020). The LRT-based 
version implemented in Mplus emerged as the superior option among the choices 
examined. This PPP-value detected misspecification in the covariance structures and both 
mean structures (both separately and combined). As frequentist approximate fit indices 
are not sensitive to misspecification in the conditional mean structure (Wu et al., 2009; 
Wu & West, 2010, 2013), this finding points towards an area in which the PPP-value may 
be particularly beneficial for assessing model fit. Although the Bayesian approximate fit 
indices have not been tested for LGMs, we can draw from research on frequentist 
approximate fit indices for some insights about their ability to detect misspecification in 
different model structures. Findings from these studies indicate that the RMSEA, CFI, 
and TLI are less sensitive to misspecification in the marginal mean structure than to 
misspecification of within- or between-individual covariance structure (Wu et al., 2009; 
Wu & West, 2010). Among the three indices, the RMSEA appears less sensitive to the 
magnitude of inter-individual variability in change over time than the CFI and TLI, which 
makes it a better fit index for detecting the presence of a quadratic slope (Leite & 
Stapleton, 2006). Moreover, if misspecification in one location (e.g., the between-person 
covariance structure) is more severe than in another location (e.g., the marginal mean 
structure), the RMSEA, CFI, and TLI are less sensitive to the additional misspecification 
in the latter area (Wu & West, 2010). This decrease in sensitivity may be because 
misspecification in one model structure is confounded by misspecification in another 
model structure (K.-H. Yuan et al., 2019). Given that the Bayesian approximate fit 
indices are based on the same information as the PPP-value, it is unclear whether these 
indices will be able to detect model misspecification in the conditional mean structure. 

3.1.3.3 Missing Data 

The presence of missing data is a reality in most studies in the social sciences that rely on 
SEM (Bell et al., 2014; Graham, 2009; Lang & Little, 2018; Nicholson et al., 2017). For 
that reason, it is important to understand how missing data affects the performance of 
model fit and selection indices in Bayesian SEM. Before turning to the potential impact 
of missing data in the assessment of model fit, it is helpful to discuss how missing data 
are handled in Bayesian estimation. Bayesian estimation uses a process called data 
augmentation (DA; Dyk & Meng, 2001; Tanner & Wong, 1987). DA is a technique that 
is also used in ML estimation through the expectation-maximization (EM) algorithm 
(Dempster et al., 1977). In the Bayesian framework, DA is implemented through the 
MCMC method (Gelman et al., 2013). One popular version of data augmentation uses the 
Gibbs sampler. After a researcher specifies a set of starting values, a DA algorithm 
alternates between two steps: 
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Imputation (I) step: Predict values for the missing data based on the model, the 
current parameter estimates and the observed data. The result is a complete data set 
that includes the observed and the imputed data. 
 
Posterior (P) step: Using the complete data from the I step, the specified prior 
distributions, and the model, draw a new set of parameters for the mean vector and 
covariance matrix. 
 
A Markov chain is formed by repeating those two steps many times. In case of the 

Gibbs sampler, the parameter vector θ is divided into d sub-vectors, θ = 	 (θ$, … , θE). 
Within each iteration, the Gibbs sampler goes through all d sub-vectors and draws new 
values from their posterior distributions conditional on the latest values of the other sub-
vectors of ! (Gelman et al., 2013). In Mplus, the Gibbs sampler moves through three 
blocks: parameters, latent variables, and missing observations (Asparouhov & Muthén, 
2010b). These augmentation methods work well when missing data are ignorable 
(M[C]AR) and can incorporate a model for the missing-data mechanism if data are 
MNAR (Gelman et al., 2013). 

With missing data, the DIC can be constructed in different ways, and its use and 
interpretation vary (Celeux et al., 2006). This variety illustrates a more general issue with 
the DIC, in that it is not based on a universal principle that makes it generically 
applicable while remaining computationally feasible (Spiegelhalter et al., 2014). The 
presence of a large number of missing values inflates the effective number of parameters, 
7012 , and increases the variability of the DIC estimate (Celeux et al., 2006). Thus, using 
the DIC for model selection in the presence of missing data may not be appropriate. 

With regard to the PPP-value, I will limit the discussion to the version that is 
currently implemented in Mplus and was described in Section 3.1.2.2 (Asparouhov & 
Muthén, 2020). As this new version of the PPP-value treats missing data in a 
substantially different way compared to previous implementations of the PPP-value, it 
would not be meaningful to look at research based on these older implementations. 
Asparouhov and Muthén (2020) examine the impact of varying amounts (25 or 50%) of 
MCAR data for a two-factor CFA and a fixed amount (50%) of MAR data for a simple 
linear regression model.  

Across these two simulation studies, the PPP-value’s ability to detect model 
misspecification was better when samples were large (i.e., n = 1000) or when the amount 
of missing data was relatively small (25%). Notably, the PPP-value was unlikely to reject 
the true model across sample size levels (i.e., n = 300 or 1000) and missing data rates, 
retaining acceptable Type I error rates. Their results indicate that the type of missing data 
(MCAR or MAR) does not affect the performance of the PPP-value. 

Similarly, for the Bayesian approximate fit indices, I will also rely on the study 
performed by Asparouhov and Muthén (2020), as their implementation is connected to 
the implementation of the PPP-value. For MCAR data in a three-factor CFA, they found 
that the Bayesian approximate fit indices were affected by sample size and the amount of 
missing data. The indices became increasingly likely to indicate good model fit for 
misspecified models in the presence of missing data (10%, 25%, or 50%) and for small 
sample sizes (n ≤ 300). The authors argue that approximate fit indices should not be used 
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for such small sample sizes and demonstrate that the PPP-value is likely to reject the 
misspecified models under these circumstances. However, for larger sample sizes (e.g., n 
≥ 1000), the approximate fit indices may be informative because, for these larger 
samples, the PPP-value tends to reject even trivial misspecifications. These findings 
mimic results from the literature on frequentist multiple imputation for SEM, where the 
RMSEA, CFI, and TLI also struggle when sample sizes are small (e.g., n = 100) and 
missing data rates are relatively high (e.g., ≥ 30%; Enders & Mansolf, 2018).  

3.1.3.4 The Role of Priors 

Priors affect the marginal likelihood of a model, and in turn, it is reasonable to assume 
that priors also affect the model fit and selection indices based on this marginal likelihood 
(Gelman et al., 2017). Two aspects of priors that may affect model fit and selection 
indices are the level of informativeness of the prior and the extent to which the prior 
diverges from the data likelihood.4 Some research has focused on the impact of the prior 
specification on model fit and selection indices. So far, this research has mostly looked at 
the DIC and PPP-value. For the DIC, true model selection rates decrease with 
increasingly diverging priors (Cain & Zhang, 2019), but the impact of priors lessens with 
increasing sample size. When priors align with the data likelihood, the DIC may prefer 
informative priors over diffuse priors, particularly for difficult-to-estimate parameters 
(Ward, 2008). This preference may be related to the effective number of parameters term 
used in the computation of the DIC. With diffuse priors, the estimated number of 
parameters approximates the model’s actual number of parameters. With informative 
priors, the estimated number of parameters will decrease, lowering the DIC’s penalty 
term (Asparouhov & Muthén, 2020). In terms of model selection, increasingly 
informative priors result in higher true positive rates (Liang & Luo, 2019). However, 
these informative priors may lead the DIC to become too sensitive for small samples, 
flagging trivial, or substantively ignorable, misspecifications.  

The PPP-value is relatively robust to small variations in the priors (de la Horra & 
Rodriguez-Bernal, 2003). Similarly, it does not appear to be affected by increasingly 
informative priors (Liang, 2020). In fact, informative priors that agree with the data 
likelihood may improve the PPP-values ability to assess model fit (Gelman, Bois, et al., 
1996). However, the PPP-value is sensitive to more severely diverging priors, particularly 
for smaller sample sizes (Cain & Zhang, 2019).  

The studies that introduced the Bayesian approximate fit indices implemented in 
Mplus only included default or diffuse priors and did not examine any other prior 
specifications through a simulation study (Asparouhov & Muthén, 2020; Garnier-
Villarreal & Jorgensen, 2019). Only one study that examined the Bayesian approximate 
fit indices, together with the PPP-value and DIC, through a simulation design focused on 
the prior specification (Liang, 2020). Liang (2020) focused on a particular application of 
priors, namely, to relax the exact-zero constraints on cross-loadings through small-
variance priors. The simulation design also included several diffuse prior conditions for 
the model’s other parameters. Results showed that using small-variance priors that were 

 
4 While it is tempting to call these priors inaccurate, a Bayesian researcher would argue that the data 
likelihood is just as likely to be the source of inaccuracy. Thus, in this dissertation, I will use diverging to 
describe a disagreement between the prior and the data. 
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too narrow resulted in inflated rejection rates for the PPP-value but not for the BRMSEA, 
BCFI, and BTLI (using cutoff-values). In contrast, decreasing the small-variance prior 
resulted in lower DIC values (this may be because the number of effective parameters 
decreases as the priors become more informative). For the other model parameters, some 
diffuse prior specifications (e.g., the Mplus default prior settings) resulted in slightly 
inflated rejection rates based on the PPP-value. The DIC and approximate fit indices were 
not affected by alternative diffuse prior specifications. 

So far, the impact of priors on model fit and selection indices has been investigated 
only in the context of correctly specified models. Thus, it is still unclear how the priors 
may affect these indices in the context of model misspecification. Diverging, informative 
priors may mask model misspecification. 

3.1.4 Models Examined in this Study 

In this study, I explore three different population models: two versions of a three-factor 
CFA with 5 items per factor, and a 5 time-point LGM with a linear and quadratic slope. I 
selected those two general population models because they represent two popular SEMs, 
allowing me to examine misspecification in the covariance (CFA and LGM) and the 
mean structure (LGM) in models that are relevant because they are in common use. All 
observed variables are continuous and normally distributed. Each model will be discussed 
in more detail below. 

3.1.4.1 CFA-Simple 

The first population model is a three-factor CFA with 5 items per factor that has a simple 
structure. This means that the model does not include any non-zero cross-loadings 
(Figure 3).5 The general CFA can be expressed in the following matrix form: 
 
 Ç	 = 	ÉÑ	 + 	Ö, (22) 

where Y represents a vector of observed item responses i, Ñ represents a vector of latent 
variables f, É is a loading matrix that related the observed responses to the latent 
variables, and Ö is a vector of residuals. The covariance matrix of the observed data can 
be expressed as follows: 
 
 Ü = ÉFáÉF' + àG, (23) 

 
where á is the covariance matrix of the latent variables, Ü is the population covariance 
matrix, and àG is the covariance matrix of residuals. This matrix is diagonal in the 
absence of residual covariances. Furthermore, the following assumptions are made: 
j(Ñ) = 0, j(Ö) = 0, and gâ](Ñ, Ö) = 0. 

 
5 The specific design conditions that link to the values in Figure 3, 4, and 5 will be described in the Design 
section. 
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Figure 3. Path diagram and population parameters for Simple Confirmatory Factor 
Analysis Model (CFA-Simple). Dotted paths represent population parameters that were 
misspecified in the estimated models. 

 
Figure 4. Path diagram and population parameters for Complex Confirmatory Factor 
Analysis Model (CFA-Complex). Dotted paths represent population parameters that were 
misspecified in the estimated models. 
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3.1.4.2 CFA-Complex 

The second population model follows the same general three-factor CFA set-up as the 
CFA-Simple model. However, this model has a complex structure, and includes two 
moderate cross-loadings (Figure 4). The two cross-loadings are associated with two items 
that have their main loading on the first factor.  

3.1.4.3 LGM 

The third population model is an LGM with 5 time points and a quadratic slope (Figure 
5). The model can be expressed in the following matrix form: 
 
 Ç	 = 	ÉÑ + 	ä, (24) 

 
where Y represents a vector of repeated measures variables, Ñ represents a vector of 
latent variables (the growth parameters), and É is a fixed loading matrix relating the 
growth parameters to the observed outcomes. The first column of É defines the intercept 
and is a column of ones. Each additional column represents a specific slope (e.g., linear, 
quadratic). For the population model in Figure 5, these values are -2, -1, 0, 1, 2 for the 
linear slope, and 4, 1, 0, 1, 4 for the quadratic slope. That means that the intercept is 
located at the third time point. Finally, ã represents a vector of residuals. Further, j(Ñ) =
	å, a vector of means of the latent variables, á is the covariance matrix of the latent 
variables (between-individual covariance matrix),	Ü is the population covariance matrix, 
and àH is the covariance matrix of residuals. This matrix is diagonal in the absence of 
residual covariances. Furthermore, we assume gâ](Ñ, Ö) = 0. Following this, the 
covariance matrix of the observed data can be expressed as follows: 
 
 Ü = ÉFáÉF' + àH. (25) 

 

 
Figure 5. Path diagram and population parameters for Latent Growth Model (LGM). 
Dotted paths represent population parameters that were misspecified in the estimated 
models. 
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3.1.5 Overview of the Current Study 

We need to broaden our knowledge on the performance of the new model fit indices for 
Bayesian SEM across a large range of conditions. For that reason, the first study of my 
dissertation examines the performance of the new and updated model fit indices across a 
set of common SEM models (CFA and LGM) and under a variety of missing data 
patterns. I looked at the performance of both the point estimates and credible intervals in 
combination with cutoff values. Other factors that I varied were as follows: sample size, 
amount and location of missing data, the location and severity of model misspecification, 
and the impact of the prior specification. 

3.2 Design 

3.2.1 Population Models 

The population values for the CFA-Simple model are included in Figure 3. They are 
based on a series of previous studies that have used this model to examine the impact of 
model misspecification (e.g., Garnier-Villarreal & Jorgensen, 2019; Hu & Bentler, 1998). 
The scale of the latent factors is set by fixing the factor variances to 1 and estimating all 
factor loadings. This means that the factor loadings are standardized and the residual 
variance for item i loading on factor f can be calculated as 1 − λ;I* . 

For the CFA-Complex model, the population values for the main factor loadings are 
the same as for the CFA-Simple model (Figure 4). In that model, the factor covariances 
reflect moderate associations between the three factors. When there is a non-zero cross-
loading, the residual variance of item i loading on factors f and g can be calculated as 1 −
(é;I
* +	é;J

* ). 
Population values for the LGM population model are included in Figure 5 and are 

based on a subset of population values examined by Wu and West (2010). 

3.2.2 Severity of Misspecification 

For each population model, I examined several levels of misspecification. The dashed 
lines in Figure 3, 4, and 5 represent the paths involved in the misspecification. For the 
simple and complex CFA model, I followed Garnier-Villarreal and Jorgensen (2019): For 
the simple CFA model, minor misspecification was introduced by fixing the covariance 
between the first and second factor to 1, reducing the model to a two-factor CFA (Figure 
3). Severe misspecification was introduced by fixing the covariances between all factors 
to 1, reducing the model to a one-factor CFA. For the complex CFA model (Figure 4): 
minor misspecification was introduced by fixing one cross-loading to 0, and severe 
misspecification will be introduced by fixing both cross-loadings to 0. As the current 
study examines conditions that are different from previous research, using the same 
misspecification conditions allows for comparison and extension of previous findings.  

For the LGM (Figure 5), I examined three distinct types of misspecification, ranging 
from subtle to more severe: (1) constraining the measurement errors of the observed 
variables to be equal, (2) fixing the variance of the quadratic slope to zero, and (3) fixing 
the mean and the variance of the quadratic slope to zero. These conditions are similar to 
those examined by Wu and West (2010). 
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Table 1. Population RMSEA values of model misspecification conditions. 
Population Model Misspecification RMSEA 
Simple CFA 1. Three-factor model as two-factor .039 
 2. Three-factor model as one-factor  .053 
Complex CFA 1. One cross-loading fixed to 0 .068 
 2. Two cross-loadings fixed to 0 .094 
LGM 1. Fixed measurement errors .046 
 2. No quadratic slope variance .071 
 3. No quadratic slope .115 

Table 1 shows the population RMSEA values of each model specification to compare 
the severity of the misspecification across the three population models. These values 
show that the misspecifications introduced in the Simple CFA model might be considered 
substantively irrelevant as both RMSEA values are below the commonly used cutoff 
value of .06. I included these relatively small misspecifications to assess whether the 
model fit and selection indices may be overly sensitive to minor misspecifications under 
certain circumstances. In contrast, both levels of misspecification introduced in the 
Complex CFA model may be considered substantively relevant. Finally, the 
misspecifications introduced in the LGM cover the largest range of the RMSEA. 

3.2.3 Sample Size 

Previous research on the performance of model fit indices for SEM has repeatedly 
identified sample size as an important factor, with larger sample sizes resulting in better 
performance (Garnier-Villarreal & Jorgensen, 2019; e.g., Heene et al., 2012; Kenny & 
Mccoach, 2003; Sharma et al., 2005; Dexin Shi et al., 2019). However, Bayesian 
estimation is often used to increase the available information through the use of priors 
when only small samples are available (Smid, McNeish, et al., 2019). For that reason, it 
is important to examine whether the new Bayesian model fit indices can provide some 
information about model fit even when sample sizes are small. To answer this research 
question, four different sample sizes were included: n = 50, n = 100, n = 250, and n = 
500. 

3.2.4 Amount of Missing Data 

The central aim of the current study is to examine the impact of missing data on Bayesian 
model fit assessment. Varying the amount of missing data is the most straightforward 
way of addressing that aim. Previous simulation studies have often included a condition 
with no missing data (0% missing) and a condition with half of the data missing (50% 
missing) to reflect a best and worst-case scenario (e.g., Asparouhov & Muthén, 2019; 
Zhang & Savalei, 2020). I examined a series of systematic reviews on missing data across 
a variety of fields and found that a missing data rate of 15% is a representative 
intermediate amount of missing data (Bell et al., 2014; Fiero et al., 2016; Peugh & 
Enders, 2004; Rioux & Little, 2019). Thus, three different amounts of missing data were 
included: 0% (best-case), 15% (typical-case), and 50% (worst-case). The way in which 
these percentages were applied to the observed variables differed slightly across 
population models. For the CFA models, the percentage reflects the number of missing 
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values within variables that have missing data (see Section 3.2.4 below). For the LGM, 
the interpretation of the percentage depends on how many variables have missing data. If 
missing data are present in one variable, the percentage reflects the number of missing 
values within that variable. If missing data are present in multiple variables, the 
percentage reflects the number of missing values across all observed variables that have 
missing data. The missing data were generated as MAR for all population models. The 
way in which observed variables are related to the missingness in other variables will be 
further explained in the Data Generation section (Section 3.2.8). 

3.2.5 Number of Variables with Missing Data 

Missing data can affect just a few or most variables. Thus, the number of variables with 
missing data was varied to assess the potential impact of the spread of missing data. The 
specific number of variables affected by missing data depended on the population model. 
For the CFA, missing data were present in 1 item per factor (3 items total) or 3 items per 
factor (9 items total). For the LGM, missing data were present in 1 variable (time point 5) 
versus 4 variables (time points 2 to 5). 

3.2.6 Location of Missing Data (for CFA-Complex) 

Missing values can be located in the variables that are involved in the model 
misspecification or in variables that occur in correctly specified parts of a model. From 
the frequentist literature, we know that the RMSEA and CFI indicate better model fit 
when the missing data are located in the part of the model with a misspecification (Zhang 
& Savalei, 2020). This factor was assessed only for the CFA-Complex population model 
because it was not straightforward to vary the location of missing data in the CFA-Simple 
and LGM population models. For the CFA-Simple model, misspecification merges 
multiple factors to a single-factor model (which includes all observed variables). For the 
LGM, misspecification affects either the residual variances of all observed variables or 
the latent quadratic slope effect (which is related to all observed variables). Thus, for the 
CFA-Complex model, missing data was or was not present in the variables that had 
cross-loadings. 

3.2.7 Prior Specification (for LGM) 

Several prior specification conditions were included for the LGM population model 
to investigate the impact of accurate and inaccurate prior distributions on the ability of 
model fit indices to detect model misspecification. These were: (1) diffuse, (2) narrow 
and centered over the population value (aligned), and (3) narrow and centered away from 
the population value (divergent). To limit the number of cells in the simulation, the prior 
specification condition was only varied for cells with complete data. In the diffuse 
condition, the Mplus default priors were used for all parameters.6 For the aligned and 
divergent conditions, narrow priors following a normal distribution, {(µ, σ), were placed 

 
6 The relevant default priors are: N(mean = 0, variance = 1010) for (latent) mean parameters, IW(I, p + 1) for 
the (latent) covariance matrix (here, p refers to the number of latent factors and I is an identity matrix of 
size p), and IG(shape = -1, scale = 0) for the residual variances (Asparouhov & Muthén, 2010b). 
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affected by the first two levels of model misspecification (which focus on the covariance 
structures). For the misspecification in the quadratic slope mean, the population value of  
 
A. Prior Specifications for the intercept mean  

 
B. Prior Specifications for the slope mean  

 
Figure 6. Prior conditions for the intercept mean (panel A) and slope mean (panel B). 
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the intercept decreased by .115, whereas the linear slope mean increased by .025. Thus, 
for this condition of model misspecification, the divergent priors are slightly more on the 
intercept and linear slope means. I selected a standard deviation of 0.3 for the intercept 
mean and 0.1 for the slope mean.7  

For the aligned condition, priors were centered on the population values (1.0 and 0.3, 
respectively). For the divergent condition, priors were centered on a population value 
such that the resulting prior had 5% overlap with the correct prior distribution (2.176 and 
0.692, respectively). The aligned and divergent priors for the intercept mean and slope 
mean are shown in Figure 6. 

It should be noted that the prior specification will interact with misspecification in the 
model, where it may be that both the prior and the model do not represent the true 
population parameters. However, this interplay reflects the behavior of an applied 
researcher, who will likely not alter the prior specification of the intercept and linear 
slope mean based on the presence or absence of a quadratic slope effect. I estimated the 
(divergent) population parameter values of the misspecified models to ensure that the 
divergent priors did not result in posterior estimates that suddenly aligned with these 
population values. The population values of the intercept and linear slope means were not 
divergent for the intercept mean (3.1% overlap) and slightly less divergent for the linear 
slope mean (6.7% overlap). 

3.2.8 Data Generation 

I chose the number of replications included in each cell of the simulation after 
assessing at what point the simulation converged. To ensure convergence of the 
simulation to a stable estimate, I examined cumulative average plots for all conditions. 
Based on these plots, 1,000 replications were sufficient to ensure that the simulation 
converged to a stable estimate across all simulation cells. I generated all replications in R 
(R Core Team, 2019) using the package ‘lavaan’ (Rosseel, 2012). I simulated data for the 
following, fully crossed, conditions: population model (3 levels) and sample size (4 
levels). These datasets became the starting point for each level of the missing data 
conditions (i.e., amount of missing data, number of variables affected, location of missing 
data). I generated missing data as MAR. For the CFA models, each factor’s first indicator 
served as the cause of missingness for the other indicators of that factor that were 
incomplete. For the LGM, the first time point served as the cause of missingness for the 
other time points that were incomplete. In addition, if missing values were present in 
multiple time points, I simulated a dropout pattern (Galbraith et al., 2002; Ortega-
Azurduy et al., 2008). In this condition, missing values at a previous time point 
guaranteed missing values at future time points. I identified new cases with missing 

 
7 These values are data dependent priors (DDP; Mcneish, 2016), which were selected by first generating 
100 samples of N = 50 from the population model. These 100 samples were used to estimate the population 
model with maximum likelihood estimation (MLE). The standard error estimates of the intercept mean and 
slope mean were averaged across the 100 samples. These values were used to specify the standard 
deviation hyperparameters of the moderately informative priors. I used the smallest sample size condition 
to find the standard error estimate with the highest level of uncertainty. The same values will be used across 
all sample size levels in the main simulation. In applied research, DDPs are controversial, as the researcher 
technically double-dips by using data to specify the priors that are subsequently used to analyze their data. 
However, they can aide in model estimation under certain circumstances (e.g., Mcneish, 2016). 
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values based on their value at time point 1 (i.e., the first time point was the cause of 
missing data). For the purpose of this dissertation, I solved the following formula to 
select the incremental increase in the proportion of missing values across all time points: 
 

7êâ7	 = 	
y ∑ PK

5	8	%

K
. 

(26) 

 
Here, x represents the increment with which the proportion of missing values should 
increase, T represents the number of time points with missing values (here, 4), and prop 
represents the desired overall proportion of missing values (here, .15 or .50). This 
formula can be used to solve for x in the following way: 
 

y	 = 	
7êâ7	 × K
∑ PK
5	8	%

. (27) 

 
This meant that, if the overall proportion of missing values was .15, the proportion of 
missing values increased in increments of .06, resulting in missing value percentages: 
0%, 6%, 12%, 18%, 24%. Similarly, if the overall proportion of missing values was .50, 
the proportion of missing values increased in increments of .20, resulting in missing 
values percentages: 0%, 20%, 40%, 60%, 80%. 

3.2.8.1 Missing Data Generation 

I followed a process similar to Enders and Mansolf (2018) to generate missing values in 
R, using logistic regression to create a missing data indicator for each variable with 
missing data. I used logistic regression to derive intercept and slope coefficients from the 
regression of a missing data indicator (R) on a standardized predictor:  
 

 p(Y = 1|ì) = =("#$"%&)

$L=("#$"%&)
. (28) 

 
The intercept value, b0, determined the amount of missing values predicted by the 

regression (e.g., an intercept of 0 reflects 50% missing values), while the slope, b1, 
reflected the relationship between the predictor and the likelihood of missing data. A 
positive slope indicates that the probability of missingness increases as the value of the 
predictor increases. In line with Enders and Mansolf (2018), I selected a slope coefficient 
that produced a squared correlation of .40, indicating a moderately strong relationship 
between the cause of missingness and the underlying latent probability for missing data. 

After selecting the logistic coefficients, I applied Equation (26) to the actual missing 
data predictor (i.e., the first indicator of each factor or the first time point), making sure to 
standardize the variable for the LGM (in the CFA, the first indicator of each item was 
already on a standardized scale). I used the logit link to obtain a vector of predicted 
probabilities for each variable that would predict missing values. I then used a binomial 
distribution function to generate a vector of missing data indicators for each variable that 
would contain missing values, where the predicted probabilities from the previous steps 
defined the distribution’s probability of success. This process continued until the desired 
amount of missingness was reached. I coded each of the values within a variable as 
missing if its corresponding indicator equaled one. 
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3.2.9 Bayesian Estimation 

Bayesian estimation was done through the program Mplus (Muthén & Muthén, 1998-
2017). The CFA models and the LGMs with diffuse priors were all estimated using the 
Mplus default priors (see footnote 7, p. 36). All analyses generated four MCMC chains 
using Mplus’ implementation of the Gibbs sampler. Each chain consisted of 20,000 
iterations, with the first 10,000 discarded as burn-in. This number of iterations was 
selected after testing several chain lengths for a select number of replications in each cell 
and inspecting the trace plots, the YZ  convergence diagnostic, and ensuring that the each 
parameter’s effective sample size (ESS) was > 1000 (Zitzmann & Hecht, 2019). To 
further ensure that convergence was obtained across all replications, the YZ  convergence 
diagnostic and effective sample size were checked for all replications across all 
conditions. 

3.2.10 Outcomes of Interest 

I assessed the performance of the model fit indices in two main ways. First, for the PPP-
value, BRMSEA, BCFI, and BTLI, the model fit index values were compared across 
misspecification levels to assess whether they systematically worsened as 
misspecification became more severe. For these indices, it was also possible to assess 
whether the average fit index value indicated good model fit using cutoff values: 
PPP > .05, BRMSEA < .06, BCFI and BTLI > .95. Furthermore, Mplus reports 90% 
credible intervals for the posterior distribution of the BRMSEA, BCFI, and BTLI.8 As 
discussed in the Introduction, these intervals can provide additional insight into a model’s 
approximate fit. I used the cutoff values listed above in the current dissertation for 
practical reasons: Those cutoff values are generally used in applied research and were 
also referenced in the study introducing the implementation of these indices to Mplus 
(Asparouhov & Muthén, 2020). Although the cutoff value for the PPP of .05 may mirror 
the frequentist p-value significance cutoff (for an alpha level of .05), it should not be 
interpreted in the same manner. As was discussed in the Introduction, a model that fits 
the data well is expected to have a PPP-value close to 0.5 (i.e., half of the replicated 
datasets had greater discrepancy values compared to the observed data). A misspecified 
model is expected to have a PPP-value close to 0 (i.e., most of the replicated datasets had 
greater discrepancy values compared to the observed data). The cutoff value of .05 serves 
the same purpose as cutoff values for the approximate fit indices: to ease interpretation. 

Second, I will assess how often the model fit and selection indices select the correctly 
specified model over the misspecified models. This will provide insight into which model 
fit and selection indices can be used for model selection. 

 
8 During the pre-proposal meeting, we discussed looking at additional intervals, such as a 90% HPD 
interval. However, Mplus does not provide the full posterior distribution of the approximate fit indices and 
only reports the 90% credible interval. Thus, this extension of the results could not be implemented in 
Study1. 
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3.3 Results 
The results are organized as follows: I first discuss findings regarding convergence of 
each of the replications in the simulation. Next, I examine the results for each population 
model sequentially. 

3.3.1 Convergence 

For each replication in the simulation, I extracted largest YZ and smallest ESS to assess 
convergence and precision of the posterior distributions. A maximum YZ < 1.05 and 
minimum ESS > 1000 indicated that a replication converged. According to this criterium, 
all replications of the CFA-Simple and LGM population models were converged. For the 
CFA-Complex model, I found that, for a small minority of replications, the estimation 
resulted in a non-positive definite á matrix. This issue occurred more often when the 
sample size was small. For n = 50, 242 out of the total 30,000 replications (0.8%) did not 
converge, for n = 100, just 48 out of the total 30,000 replications (0.16%) did not 
converge, and for n = 250, a mere 3 out of the total 30,000 replications (0.01%) did not 
converge. All replication converged for the n = 500 sample size. Non-convergence 
occurred only for misspecified models and was more likely if 50% of values were 
missing for nine items. Non-convergence did not appear related to the location of the 
misspecification. Only replications for which all model specifications converged were 
included in the results presented in Section 3.3.3. In applied research, this issue could be 
resolved by specifying a weakly informative prior on the latent factor covariance matrix, 
such as IW(I, p +1), where p stands for the number of latent factors.9  

3.3.2 CFA-Simple 

3.3.2.1 The Value of the Model Fit Indices 

Model fit indices should increasingly indicate that a model fits the data poorly as model 
misspecification becomes more severe. I used boxplots to assess whether the model fit 
indices followed this pattern for the CFA-Simple population model. Within each figure, 
the rows represent the sample size levels, and the columns represent the missing data 
conditions. Specifically, the complete data conditions are shown in the left-most column, 
while the remaining four columns focus on the conditions that are increasingly affected 
by missing values. Within each plot, the different model specifications are compared 
through boxplots based on the observed fit index values across all replications. 

Results for the PPP-value appear in Figure 7. Each plot includes a horizontal line at 
PPP = .05 to emphasize at what point a model might be rejected based on this cutoff 
value. Across all conditions, the PPP-value decreased as model misspecification became 
more severe. However, sample size greatly affected to what extend the PPP-value 
decreased. Specifically, for n = 50 and 100, the PPP-value was unlikely to drop 
below .05, even for the most severe level of model misspecification. In contrast, for the 
largest sample size (n = 500), the PPP-value was sensitive to moderate model 
misspecification. Missing values reduced the ability of the PPP-value to differentiate 

 
9 Reference: http://www.statmodel.com/discussion/messages/11/1602.html?1597708138. 
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between different levels of model misspecification. For example, the PPP-value 
decreased to a similar extent for complete data with a sample size of 100 as it did for data 
with 50% missing values in nine items with a sample size of 250. 

 
Figure 7. CFA-Simple: PPP-value across simulation conditions. 

 

 
Figure 8. CFA-Simple: BCFI across simulation conditions. Note that the y-axis does not 
cover the full possible range to highlight subtle changes. 
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Results for the BCFI and BTLI appear in Figures 8 and 9. Each plot includes a 
horizontal line at .95 to emphasize at what point a model might be rejected based on this 
cutoff value. As they follow a similar pattern, only the BCFI (Figure 8) will be discussed 
here. In this figure, we see that, although the BCFI decreased as model misspecification 
became more severe, its value was unlikely to fall below .95. The BCFI increased as the 
sample size increased (moving down the plots within one column). Unexpectedly, the 
BCFI also increased and varied less across replications as the number of missing values 
increased (moving left to right within a row).  

Most notably, the BCFI was equal to 1 across all replications and model 
specifications when n = 50 with 50% missing values in nine items (top-right plot). Closer 
inspection of these analyses showed that the models were converged, and their associated 
PPP-value was interpretable. It appears that, when the sample size is this small (and 
further reduced within variables due to missing values), [)4:) is smaller than 7∗ resulting 
in a BCFI estimate that is greater than 1. These estimates are adjusted to 1 in the output 
generated by Mplus. As discussed in Section 3.2.1.2, 7∗ is related to the number of 
observed variables. For the CFA-Simple model, 7∗	is 135. It may be that this model 
includes too many variables relative to the information provided through the sample 
observations and that this is preventing accurate estimation of the BCFI (and similarly the 
BTLI and BRMSEA). This issue was also briefly mentioned by Asparouhov and Muthén 
(2020), who explained that the difference between the baseline model discrepancy, [A,)4:), 
and the estimated model discrepancy, [)4:), becomes too small to evaluate approximate 
model fit.  

 
Figure 9. CFA-Simple: BTLI across simulation conditions. Note that the y-axis does not 
cover the full possible range to highlight subtle changes. 
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Figure 10 depicts results for the BRMSEA. Each plot includes a horizontal line at .06 
to emphasize at what point a model might be rejected based on this cutoff value. The 
pattern of results is similar to the BCFI and BTLI; although the BRMSEA did increase 
(reflecting a decline in model fit) as the model misspecification became more severe, it 
tended to move towards lower values as the sample size increased. For n = 500, the 
BRMSEA was unlikely to indicate poor model fit, even for the most severe model 
misspecification level. Mirroring the BCFI and BTLI, the BRMSEA also decreased and 
varied less across replications as the number of missing values increased. 

 
Figure 10. CFA-Simple: BRMSEA across simulation conditions. Note that the y-axis 
does not cover the full possible range to highlight subtle changes. 
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In general, the fit indices rejected misspecified models more often if data were 
complete compared to data containing missing values. Overall, the PPP-value was most 
sensitive to model misspecification. However, the sample size affected the extent to 
which misspecified models were rejected. For n = 500 (bottom row), the PPP-value was 
highly sensitive and likely to reject a moderately misspecified model, particularly if data 
were complete. In contrast, for n = 50, the PPP-value was still very likely to accept a 
severely misspecified model. The sensitivity of the PPP-value and its cutoff value to  
misspecification was also lower if more variables had missing values and if a higher 
percentage of values was missing. The PPP-value’s sensitivity to the sample size is not 
unexpected, given that the discrepancy function at the foundation of the PPP-value is 
rooted in the Chi-square statistic. 

Results for the BCFI, BTLI, and BRMSEA followed a similar pattern. Overall, the 
approximate fit indices were more likely to reject a severely misspecified model than a 
correctly specified model. However, even under conditions in which the approximate fit 
indices had the highest rejection rates for misspecified models, those rates were far below 
the ideal of 1. The tendency of the approximate fit indices to retain a misspecified model 
increased as the sample size increased. In contrast, the approximate fit indices became 
more likely to reject a correctly specified model for samples of n = 50 (top row), 
particularly if data were complete. As the number of variables with missing data and 
percentage of missing values increased, any differences between sample sizes 
disappeared and all indices were likely to retain the model across all levels of 
misspecification. 

3.3.2.2.2 Using 90% Credible Intervals 
For the approximate fit indices, it is possible to use their 90% credible interval to assess 
model fit. This approach results in one of three conclusions: (1) the model fits the data 
well (the entire 90% credible interval is beyond the cutoff that denotes good fit), (2) 
model fit is inconclusive (the cutoff values is within the 90% credible interval), (3) the 
model does not fit the data (the entire 90% credible interval is < .95 for the BCFI/BTLI 
or > .06 for the BRSMEA). The results for the BCFI, BTLI, and BRMSEA based on this 
approach appear in Figures 12, 13, and 14, and are organized in the same manner as 
Figures 7-10. However, in the figures below, the stacked bars represent the proportion of 
replications that resulted in one of the three conclusions (good fit; inconclusive fit; poor 
fit) for each model specification. Ideally, the entire bar is the lightest shade for the 
correctly specified model and the darkest shade for the misspecified models. As the 
pattern of results is similar for all three indices, only the results for the BCFI (Figure 12) 
are discussed in detail. 

Overall, the conclusions drawn based on the credible interval followed those based on 
the cutoff value: as the sample size or amount of missing values increased, the 90% 
credible intervals increasingly indicated that the model fit the data well, regardless of the 
level of model misspecification. However, the figures also illustrate some scenarios for 
which the 90% credible interval method would result in a more nuanced conclusion 
regarding model fit. Specifically, for small sample sizes with minimal amounts of 
missing values, the 90% credible intervals often indicated that model fit was 
inconclusive. This classification is important diagnostic information that could help a 
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researcher realize that they may not be able to rely on the point estimates of the 
approximate fit indices for assessing model fit. However, as this effect disappeared with 
larger sample sizes, it may be difficult to know when this reasoning can be applied. 
 
 

 
Figure 12. CFA-Simple: Model fit classification based on 90% BCFI credible interval. 
 

 
Figure 13. CFA-Simple: Model fit classification based on 90% BTLI credible interval. 
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Figure 14. CFA-Simple: Model fit classification based on 90% BRMSEA credible 
interval. 

3.3.2.3 Model Selection 
Model fit and selection indices can also be used for model selection. Figure 15 presents 
the proportions of replications selected based on a given fit index’s value. This figure 
follows the same layout as Figure 11. Ideally, each line starts at 1 for the correctly 
specified model, after which it should steeply decrease to 0 for the misspecified models. 
Model selection is only possible if the model fit or selection index changes across model 
specifications. Recall that the results reported in Section 3.3.2.1 showed that the 
approximate fit indices tended to be equal to 1 across all replications and model 
specifications with small sample sizes or large numbers of missing values. Thus, before 
examining model selection across fit indices, I first examined to what extent the 
approximate model fit indices were equivalent (and equal to 1 for BCFI/BTLI or 0 for 
BRMSEA) across model specifications. The proportions of replications that resulted in 
equivalent fit index values across model specifications are reported in Table 2. From this 
Table, it becomes clear that the issue of equivalent approximate model fit indices was 
present across all sample sizes and missing value conditions. However, the approximate 
model fit indices were much more likely to be equivalent if 50% of values are missing in 
9 items, even if the overall sample size was 500. As the sample size increased, the fit 
indices became less likely to be equivalent with complete data or with moderate numbers 
of missing values.  

The model selection proportions for the approximate fit indices reported in Figure 15 
are based solely on replications for which the fit indices were different across model 
specifications. This means that for the right-most column in the figure, displaying the 
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conditions with the largest number of missing values, the points and lines are based on 
just a few replications. Thus, those results should be interpreted with caution. 
 
Table 2. CFA-Simple: Proportion of replications for which the approximate model fit 
indices were equal across all three model specifications. 
Sample 
Size 

Complete 
Data 

Number of items and percentage MAR 
3 items 9 items 

15% 50% 15% 50% 
50 0.033 0.132 0.581  0.542  1.000 
100 0.072 0.171 0.620  0.577  0.998 
250 0.016 0.039 0.290 * 0.290 * 0.991 
500 0.001 0.002 0.037  0.035  0.916 
* For the BRMSEA these proportions were equal to 0.292 instead of 0.290. 
 

Overall, all fit indices were likely to select the correctly specified model for n = 250 
and 500. For n = 250, the PPP-value (black dot) and the BIC (grey box with a cross) were 
slightly more sensitive to the presence of missing values. Specifically, with 50% missing 
values in 9 items, the PPP-value and DIC were slightly less likely to select the correctly 
specified model, and slightly more likely to select the moderately misspecified model. 
For n = 100 and n = 50, the performance of the fit indices diverged more clearly. Overall, 
the BIC was least likely to select the correctly specified model, particularly for n = 50 or 
when data contained missing values. Specifically, for n = 50 with 50% missing values in 
nine items, the BIC was more likely to select either of the misspecified models than the 
correctly specified model. The PPP-value was less sensitive to missing data than the BIC 
but was less likely to select the correct model than the DIC if missing data was limited. 
Perhaps surprisingly, the approximate fit indices were most likely to select the correctly 
specified model across conditions when n = 50 or 100. It should be noted that these 
indices are not included in the plot for n = 50 with 50% missing values in 9 items (top-
right plot) as their values were equal to 1 (or 0 for the BRMSEA) across all three model 
specifications (Table 2). Thus, as long as the approximate fit indices are properly 
estimated, they will most likely select the correctly specified model across all included 
conditions. 
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3.3.3 CFA-Complex 
The location of the missing values relative to the location of the misspecification did not 
affect the results for the CFA-Complex population model. Thus, results presented here 
are based on the simulation conditions in which the variables with missing values were 
not involved in the model misspecification. Results of the condition in which variables 
with missing values were involved in the misspecification can be found on the OSF page. 

3.3.3.1 The Value of the Model Fit Indices 
Model fit indices should increasingly indicate that a model fits the data poorly as model 
misspecification becomes more severe. As with the CFA-Simple population model, I 
used boxplots to assess whether the model fit indices followed this pattern for the CFA-
Complex population model. 

Results for the PPP-value appear in Figure 16. Each plot includes a horizontal line at 
PPP = .05 to emphasize at what point a model might be rejected based on this cutoff 
value. Across all conditions, the PPP-value decreased as model misspecification became 
more severe. However, sample size greatly affected to what extend the PPP-value 
decreased. Specifically, for n = 50, the PPP-value was unlikely to drop below .05, even 
for the most severe level of model misspecification. In contrast, for the largest sample 
size (n = 500), the PPP-value dropped below .05 as soon as one cross-loading was 
omitted from the specification. Missing values reduced the ability of the PPP-value to 
differentiate between different levels of model misspecification. For example, the PPP-
value decreased to a similar extent for complete data with a sample size of 50 as it did for 
data with 50% missing values in nine items with a sample size of 100. 

 
Figure 16. CFA-Complex: PPP-value across simulation conditions. 
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Figure 17. CFA-Complex: BCFI across simulation conditions. Note that the y-axis does 
not cover the full possible range to highlight subtle changes. 
 

Results for the BCFI and BTLI appear in Figures 17 and 18. Each plot includes a 
horizontal line at .95 to emphasize at what point a model might be rejected based on this 
cutoff value. As they follow a similar pattern, I discuss only the BCFI (Figure 17) here. 
In this figure, we see that, although the BCFI decreased as model misspecification 
became more severe, its value was not as sensitive to model misspecification as the PPP-
value. In contrast to the pattern of results for the CFA-Simple model, the BCFI did not 
appear to increase as the sample size increased (moving down the plots within one 
column). Similar to the pattern of results for the CFA-Simple model, the BCFI increased 
and varied less across replications as the number of missing values increased (moving left 
to right within a row). The BCFI was equal to 1 across all replications and sample sizes 
when the model was correctly specified with 50% missing values in nine items (top-right 
plot). As with the CFA-Simple model, closer inspection of these analyses showed that the 
models were converged, and their associated PPP-value was interpretable. The same 
explanation as found for the CFA-Simple model appears to be applicable here. It may be 
that this model includes too many variables relative to the information provided through 
the sample observations and that this is preventing accurate estimation of the BCFI (and 
similarly the BTLI and BRMSEA). What is surprising is that this behavior also occurred 
for the larger sample sizes included in the simulation and that it only occurred for the 
correctly specified model (i.e., the model with the largest number of freely estimated 
parameters). 
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Figure 18. CFA-Complex: BTLI across simulation conditions. Note that the y-axis does 
not cover the full possible range to highlight subtle changes. 
 

Results for the BRMSEA appear in Figure 19. Each plot includes a horizontal line 
at .06 to emphasize at what point a model might be rejected based on this cutoff value. 
The pattern of results is similar to the BCFI and BTLI; although the BRMSEA did 
increase (reflecting a decline in model fit) as the model misspecification became more 
severe, it tended to move towards lower values as the number of missing values increased 
(moving left to right within a row). For n = 50, if 50% of values were missing in 9 items, 
the BRMSEA appeared to reflect perfect fit across levels of misspecification. This pattern 
of results barely improved as the overall sample size increased. 
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Figure 19. CFA-Complex: BRMSEA across simulation conditions. Note that the y-axis 
does not cover the full possible range to highlight subtle changes. 

 

3.3.3.2 Does the Model fit the Data well? 
An important question for researchers is whether a particular model fits the data well. 
The PPP-value, BCFI, BTLI, and BRMSEA can all be used to answer this question by 
using cutoff values or (for the approximate fit indices) using a credible interval. I will 
first go over the results for the CFA-Complex based on cutoff values, after which I will 
present the result based on credible intervals. 

3.3.3.2.1 Using Cutoff Values 
Figure 20 presents the proportion of replications that are rejected based on a given fit 
index’s cutoff value. This figure follows the same layout as Figure 11. Ideally, each line 
starts at 0 for the correctly specified model, after which it should steeply increase to 1 for 
the misspecified models. 

In general, the fit indices rejected misspecified models more often if data were 
complete compared to data containing missing values. For n = 50 with 50% missing 
values in 9 items (top-right panel), none of the indices rejected any of the model 
specifications. Overall, the PPP-value was most sensitive to model misspecification. 
However, the sample size affected the extent to which misspecified models were rejected. 
For n = 500 (bottom row), the PPP-value was highly sensitive and likely to reject a 
moderately misspecified model, particularly if data were complete. In contrast, for n = 
50, the PPP-value was still very likely to accept a severely misspecified model. The 
sensitivity of the PPP-value and its cutoff value to misspecification was also lower if 
more variables had missing values and a higher percentage of values was missing.
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Results for the BCFI, BTLI, and BRMSEA followed a similar pattern if n = 50 or 
100. For n = 50, the approximate fit indices were likely to reject the correctly specified 
model if data were complete. As the presence of missing data increased, the approximate 
fit indices became less likely to reject a model, even if both cross-loadings were omitted 
from the specification. For n = 100, the approximate fit indices were more likely to reject 
a model that omitted both cross-loadings, although the proportion of rejected models still 
declined as the number of missing values increased. 

For n = 250 and 500, the approximate fit indices all rejected the most severely 
misspecified model, regardless of the presence of missing data. However, if the estimated 
model omitted only one cross-loading, their likelihood to reject the model diverged, 
particularly when data were complete (left-most column). It appears that the BRMSEA 
and the BTLI (with their cutoff values) are somewhat more sensitive to model 
misspecification than the BCFI. As the number of missing values increased, none of the 
approximate fit indices became likely to reject the moderately misspecified model. 

3.3.3.2.2 Using 90% Credible Intervals 
For the approximate fit indices, it is possible to use their 90% credible interval to assess 
model fit. This approach results in one of three conclusions: (1) the model fits the data 
well (the entire 90% credible interval is beyond the cutoff that denotes good fit), (2) 
model fit is inconclusive (the cutoff values is within the 90% credible interval), (3) the 
model does not fit the data (the entire 90% credible interval is < .95 for the BCFI/BTLI 
or > .06 for the BRSMEA). The results for the BCFI, BTLI, and BRMSEA based on this 
approach appear in Figures 21, 22, and 23, organized in the same manner as Figures 12-
14. Ideally, the entire bar is the lightest shade for the correctly specified model and the 
darkest shade for the misspecified models. As the pattern of results is similar for all three 
indices, only the results for the BCFI (Figure 21) are discussed in detail. 

Overall, the credible intervals were more likely to indicate poor model fit for the most 
severe model misspecification (omitting both cross-loadings) as the sample size 
increased. In contrast, for the moderate level of misspecification, the credible intervals 
became more likely to indicate good model fit as the sample size increased. In both 
instances, the credible intervals were more likely to indicate inconclusive model fit as the 
sample size decreased. The presence of missing values increased the probability that the 
credible intervals would indicate good or inconclusive model fit. If 50% of values were 
missing in 9 items, the credible intervals were unlikely to indicate poor model fit (except 
for n = 500). This pattern can be explained by the difficulty in computing the 
approximate model fit indices (and thus their credible intervals) due to the large number 
of estimated parameters relative to the observed sample size. 
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Figure 21. CFA-Complex: Model fit classification based on 90% BCFI credible interval. 
 
 

 
Figure 22. CFA-Complex: Model fit classification based on 90% BTLI credible interval. 
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Figure 23. CFA-Complex: Model fit classification based on 90% BRMSEA credible 
interval. 

3.3.3.3 Model Selection 
Model fit and selection indices can also be used for model selection. Figure 24 shows the 
proportions of replications selected based on a given fit index’s value. This figure follows 
the same layout as Figure 15. Ideally, each line starts at 1 for the correctly specified 
model, after which it should steeply decrease to 0 for the misspecified models.  
As the approximate model fit indices showed similar computational issues for the CFA-
Complex model as for the CFA-Simple model, I first examined to what extent the 
approximate model fit indices were equivalent (and equal to 1 for BCFI/BTLI or 0 for 
BRMSEA) across model specifications. The proportions of replications that resulted in 
equivalent fit index values across model specifications are reported in Table 3. From this 
Table, it becomes clear that the issue of equivalent approximate model fit indices was 
less severe than it was for the CFA-Simple model. Equivalent approximate model fit 
indices were unlikely with complete data or with larger sample sizes. However, the 
approximate model fit indices were much more likely to be equivalent if 50% of values 
were missing in 9 items and the sample size was relatively small (i.e., n = 50 or 100). 

The model selection proportions for the approximate fit indices reported in Figure 24 
are based solely on replications for which the fit indices were different across model 
specifications. That means that for the right-most column in the figure, displaying the 
conditions with the largest number of missing values, the points and lines are based on 
just a few replications, particularly for n = 50 and 100. Thus, those results should be 
interpreted with caution. 
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Table 3. CFA-Complex: Proportion of replications for which the approximate model fit 
indices were equal across all three model specifications. 
Sample 
Size 

Complete 
Data 

Number of items and percentage MAR 
3 items 9 items 

15% 50% 15% 50% 
50 0.006 0.043 0.362 0.311 1.000 
100 0.008 0.026 0.228 0.203 0.997 
250 0.000 0.000 0.006 0.003 0.806 
500 0.000 0.000 0.000 0.000 0.150 
 

Overall, all fit indices were likely to select the correctly specified model for n = 250 
and 500. For n = 100 and n = 50, the performance of the fit indices diverged somewhat 
more clearly. Overall, the PPP-value was least likely to select the correctly specified 
model, particularly for n = 50 or when data contained missing values. However, the PPP-
value still selected the correctly specified model most of the time across sample size and 
missing value conditions. The approximate fit indices were most likely to select the 
correctly specified model across conditions when n = 50 or 100. It should be noted that 
these indices are not included in the plot for n = 50 with 50% missing values in 9 items 
(top-right plot) as their values were equal to 1 (or 0 for the BRMSEA) across all three 
model specifications (Table 3). Thus, as long as the approximate fit indices are properly 
estimated, they will most likely select the correctly specified model across all included 
conditions.
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3.3.4 LGM 
In this section, I will present the results for the LGM population model. For this 
population model, I included the prior specification as a factor in the simulation, 
examining the impact of specifying diffuse, aligned, or diverging priors. 

3.3.4.1 The Value of the Model Fit Indices 
Model fit indices should increasingly indicate that a model fits the data poorly as model 
misspecification becomes more severe. As with the CFA-Simple and CFA-Complex 
population models, I used boxplots to assess whether the model fit indices followed this 
pattern for the CFA-Complex population model. However, the organization of these plots 
has changed to accommodate the prior specification conditions. The x-axis now reflects 
the prior specification. Within each prior specification, the grouped boxplots represent 
the four model specification levels. 

Results for the PPP-value appear in Figure 25. Each plot includes a horizontal line at 
PPP = .05 to emphasize at what point a model might be rejected based on this cutoff 
value. Across all conditions, the PPP-value decreased as model misspecification became 
more severe. However, the prior specification greatly affected the PPP-value. Whereas 
the aligned and diffuse prior specifications followed a similar pattern, if diverging priors 
were specified, the PPP-value was visibly lower for the correctly specified model. This 
effect was more substantial for n = 50 and 100 and conditions with a large number of 
missing values. However, even for n = 500, the PPP-value was still lower if diverging 
priors were specified compared to diffuse or aligned priors. Further, the sample size itself 
greatly affected to what extend the PPP-value decreased. Focusing on the diffuse prior 
specification, for n = 50, the PPP-value was unlikely to drop below .05, unless the 
quadratic slope was omitted entirely. In contrast, for the largest sample size (n = 500), the 
median PPP-value dropped below .05 if the quadratic slope variance was constrained to 
0. Missing values reduced the ability of the PPP-value to differentiate between different 
levels of model misspecification. For example, the PPP-value decreased to a similar 
extent for complete data with a sample size of 50 as it did for data with 50% missing 
values in nine items with a sample size of 250. 

Results for the BCFI and BTLI appear in Figures 26 and 27. A horizontal line in each 
plot emphasizes the point at which a model might be rejected based on the cutoff value. 
As both indices follow a similar pattern, I will discuss only the BCFI (Figure 26) here. In 
this figure, we see that, although the BCFI decreased as model misspecification became 
more severe, its value was not as sensitive to model misspecification as the PPP-value. 
However, the BCFI did not appear to be as sensitive to the prior specification as the PPP-
value, although the BCFI was slightly lower and varied more across replications with 
diverging priors compared to diffuse or aligned priors. The BCFI increased and varied 
less as the sample size increased (moving down a column). The BCFI also increased 
somewhat, and varied more, as the number of missing values increased (moving left to 
right within a row). The computational issues observed with the CFAs for small samples 
with missing values appeared less common with the LGM, especially with diverging 
priors. This is not surprising, as the LGM includes fewer observed variables than the 
CFA models, resulting in a lower !∗ (135 for the CFA-Simple vs. 20 for the LGM).
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Figure 28 depicts results for the BRMSEA. A horizontal line at .06 is included in 

each plot to emphasizes the point at which a model might be rejected based on this cutoff 

value. Compared to the BCFI and BTLI, the BRMSEA was less sensitive to the sample 

size but more sensitive to the prior specification. The BRMSEA was higher across model 

specifications for diverging priors compared to aligned or diffuse priors. The impact of 

the prior specification became smaller as the sample size increased, barely affecting the 

BRMSEA value for n = 500. The BRMSEA was relatively unaffected by the number of 

missing values, unless 50% of values with missing at four time points. Under that 

condition, the BRMSEA was lower, especially for n = 50 and 100. However, even for n = 

500, the median BRMSEA was visibly lower across model specification levels compared 

to conditions with fewer missing values. 

3.3.4.2 Does the Model fit the Data well? 

An important question for researchers is whether a particular model fits the data well. 

The PPP-value, BCFI, BTLI, and BRMSEA can all be used to answer this question by 

using cutoff values or (for the approximate fit indices) using a credible interval. I will 

first go over the results for the LGM based on cutoff values, after which I will present the 

result based on credible intervals. 

3.3.4.2.1 Using Cutoff Values 

Figure 29 and 30 show the proportion of replications that are rejected based on a given fit 

index’s cutoff value. These figures follow a similar layout as Figure 20. However, to 

examine the impact of the prior specification, the results appear for n = 50 and 100 

(Figure 29) and n = 250 and 500 (Figure 30). Ideally, each line starts at 0 for the correctly 

specified model, after which it should steeply increase to 1 for the misspecified models. 

In general, the fit indices rejected misspecified models more often as the sample size 

increased. Model rejection rates were relatively stable across missing data conditions, 

unless the sample size was 50 or for the most extreme missing data condition (right-most 

column in Figures 29 and 30). For n = 50 (Figure 29), rejection rates decreased as the 

number of missing values increased. Further, if 50% of values were missing in four time 

points, all fit indices were less likely to reject misspecified models (compared to 

conditions with fewer missing values). This effect diminished as the sample size 

increased. Although the values presented in Figures 26-28 suggested that the 

computational issues with small samples and missing data were not as apparent with the 

LGM, Figure 29 reveals that the issue may persist even though this is a simpler model. 

For the smaller sample size levels (Figure 29), the rejection rates were similar for the 

aligned and diffuse prior specifications. However, model rejection rates of the correctly 

specified model were inflated if diverging priors were specified. With diverging priors, 

the BRMEA rejection rate was close to 1 even if the model was correctly specified. With 

aligned or diffuse priors, the BRMSEA had the highest model rejection rates across 

model specification levels, followed by the PPP-value. The BCFI and BTLI rejection 

rates were similar to that of the PPP-value for n = 50, but lower for n = 100. While the 

BRMSEA rejection rate was highest for misspecified models, it was also inflated for the 

correctly specified model, particularly for n = 50. Overall, for smaller sample sizes, with 
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diffuse or aligned priors, only the BRMSEA (followed by the PPP-value) was likely to 

reject the most severely misspecified model. 

 
Figure 29. LGM: Proportion of times a model was rejected based on each fit index’s 

cutoff value across simulation conditions for n = 50 and 100. 
 

For the larger sample size levels (Figure 30), the rejection rates were similar for the 

aligned and diffuse prior specifications. Overall, the impact of diverging priors was 

diminished for these larger sample sizes. However, for n = 250, BRMSEA model 

rejection rates of the correctly specified model were still inflated if diverging priors were 

specified. With aligned or diffuse priors, the PPP-value and the BRMSEA had the highest 

model rejection rates for misspecified models. The model rejection rates of the BCFI and 

BTLI were close to zero for all but the most severely misspecified model. Even for that 

model, the rejection rates of the BCFI and BTLI were visibly lower than the BRMSEA 

and PPP-value. Overall, for larger sample sizes, the BRMSEA and PPP-value were likely 

to reject a model that constrained the quadratic slope variance to 0 or omitted the 

quadratic slope entirely. The model in which measurement errors were constrained to be 

equal was unlikely to be rejected by these indices across sample sizes, although the 

rejection rate for this model misspecification slowly increased as the sample size 

increased. 
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Figure 30. LGM: Proportion of times a model was rejected based on each fit index’s 

cutoff value across simulation conditions for n = 250 and 500. 
 

3.3.4.2.2 Using 90% Credible Intervals 

For the approximate fit indices, it is possible to use their 90% credible interval to assess 

model fit. This approach results in one of three conclusions: (1) the model fits the data 

well (the entire 90% credible interval is beyond the cutoff that denotes good fit), (2) 

model fit is inconclusive (the cutoff values is within the 90% credible interval), (3) the 

model does not fit the data (the entire 90% credible interval is < .95 for the BCFI/BTLI 

or > .06 for the BRSMEA). The results for the BCFI, BTLI, and BRMSEA based on this 

approach are shown in Figures 31-36 and are organized in the same manner as Figures 

21-23, but with separate figures for the smaller (n = 50 and 100) and larger (n = 250 and 

500) sample sizes. Ideally, the entire bar is the lightest shade for the correctly specified 

model and the darkest shade for the misspecified models. As the pattern of results is 

similar for the BCFI and BTLI, only the results for the BCFI (Figures 31 and 32) are 

discussed in detail. The results for the BRMSEA (Figures 35 and 36) will be discussed 

separately. 
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Figure 31. LGM: Model fit classification based on 90% BCFI credible interval for n = 50 

and 100. 
 

Overall, the credible intervals were somewhat more likely to indicate poor model fit 

as the severity of the model misspecification increased. However, as the sample size 

increased, the credible intervals became more likely to indicate inconclusive or even 

good model fit for all but the most severe level of model misspecification. For n = 50 and 

100 (Figure 31), the use of diverging priors increased the proportion of replications that 

resulted in inconclusive and, to a lesser extent, poor model fit. The difference between 

diverging and aligned or diffuse priors was smaller for n = 250 and nonexistent for n = 

500 (Figure 32). The presence of missing values increased the probability that the 

credible intervals would indicate good or inconclusive model fit. If 50% of values were 

missing in 4 time points, the credible intervals were unlikely to indicate poor or 

inconclusive model fit (except for the most severe level of misspecification). 
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Figure 32. LGM: Model fit classification based on 90% BCFI credible interval for n = 

250 and 500. 
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Figure 33. LGM: Model fit classification based on 90% BTLI credible interval for n = 50 

and 100. 
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Figure 34. LGM: Model fit classification based on 90% BTLI credible interval for n = 

250 and 500. 
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Figure 35. LGM: Model fit classification based on 90% BRMSEA credible interval for n 

= 50 and 100. 

 

For the BRMSEA, the pattern of results was quite different from the BCFI. Overall, 

the credible intervals were more likely to indicate poor model fit for the two most severe 

levels of model misspecification as the sample size increased. However, the credible 

intervals were also likely to indicate inconclusive model fit for correctly specified 

models, unless n = 500 and diffuse or aligned priors are specified (Figure 36). For n = 50 

and 100 (Figure 35), the use of diverging priors increased the proportion of replications 

that resulted in inconclusive and poor model fit. Even with larger sample sizes (n = 250 

and 500; Figure 36), the use of diverging priors resulted in inconclusive BRMSEA 

credible intervals. With informed or diffuse priors, the presence of missing values 

increased the probability that the credible intervals would indicate good or inconclusive 

model fit. If 50% of values were missing in 4 time points, the credible intervals were 

unlikely to indicate poor or inconclusive model fit (except for the most severe level of 

misspecification). 
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Figure 36. LGM: Model fit classification based on 90% BRMSEA credible interval for n 

= 250 and 500. 

3.3.4.3 Model Selection 

Model fit and selection indices can also be used for model selection. Figures 38 and 39 

shows the proportions of replications selected based on a given fit index’s value. These 

figures follows the same layout as Figures 29 and 30. Ideally, each line starts at 1 for the 

correctly specified model, after which it should steeply decrease to 0 for the misspecified 

models. 

Although the approximate model fit indices did not appear to show similar 

computational issues as for the CFA-Simple or CFA-Complex model, I still examined to 

what extent the approximate model fit indices were equivalent (and equal to 1 for 

BCFI/BTLI or 0 for BRMSEA) across model specifications. The proportions of 

replications that resulted in equivalent fit index values across model specifications are 

reported in Figure 37. This figure is more complex compared to Tables 2 and 3 for 

several reasons. Whereas the approximate model fit indices were always equivalent 

across all model specifications for the CFA models, that was not the case for the LGM. 

Within each plot in the figure, I have reported the proportion of replications that resulted 

in different or equal approximate fit index values across two, three, or all four 
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specifications. Further, the proportions are reported for each sample size and prior 

specification separately.  

 
Figure 37. LGM: Proportion of replications for which the approximate model fit indices 

were different or equal across two, three, or four model specifications. 
 

From this figure, several things become clear. First, equivalent model fit index values 

were much less common when diverging priors were specified. That is likely because the 

diverging priors caused the approximate model fit index values to reflect worse fit across 

specifications, making it less likely that their value was so close to perfect fit that the 

index value could not be computed at all. From this we learn that if the discrepancy 

between the baseline and estimated model becomes too small (indicating poor fit), the 

computational issues appear less likely to arise than if the discrepancy is larger 

(indicating good fit). Second, with complete data, model fit indices were more likely to 

be different or equivalent across two model specifications (i.e., the correctly specified 

model and the model with constant measurement errors) than across three or all four 

model specifications. That is encouraging, as it means that the approximate model indices 

were still able to differentiate between substantively irrelevant and relevant model 

misspecification. However, as the number of missing values increased, the proportion of 

replications that resulted in equivalent model fit index values across all four model 
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replications that resulted in equivalent model fit index values was never 1 (i.e., all 

replications), the overall pattern of observing any number of equivalent model fit index 

values was somewhat between that of the CFA-Simple and CFA-Complex. Even with n = 

500 and with complete data, some replications still resulted in two equivalent model fit 

index values. However, three or four equivalent model fit index values did not occur for n 

= 250 and 500 with complete data. 

The model selection proportions for the approximate fit indices reported in Figures 38 

and 39 are based solely on replications for which the fit indices were different across all 

model specifications. That means that for the right-most column in the figure, displaying 

the conditions with the largest number of missing values, the points and lines are based 

on just a few replications. Thus, those results should be interpreted with caution. 

The results displayed in the figures below reveal several interesting patterns. Across 

sample sizes, the fit indices were most likely to select either the correctly specified model 

or the model in which the measurement errors were held constant. The likelihood of 

selecting the correctly specified model increased across the board as the sample size 

increased. The BIC, and to a lesser extent the DIC, preferred the model with constant 

measurement errors over the correctly specified model. That pattern likely reflects the 

preference of the BIC and the DIC for parsimonious models. As the sample size 

increased, the DIC started to prefer the correctly specified model, whereas the BIC 

remained more likely to select the model with constant measurement errors. Specifying 

diverging priors had a less apparent effect on model selection than it had on model 

rejection rates. If fit indices are compared across multiple specifications, the use of 

diverging priors did not suddenly increase the likelihood of selecting a severely 

misspecified model. However, for n = 50, the use of diverging priors did increase the 

likelihood that the PPP-value, BCFI, BTLI, and BRMSEA selected the model with 

constant measurement errors. For n = 100, the BTLI and the BRMSEA remained more 

likely to select this slightly misspecified model. The impact of the diverging priors 

further diminished with larger sample sizes (Figure 38). 
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Figure 38. LGM: Proportion of times a model was selected based on each fit index’s 

value across simulation conditions for n = 50 and 100. 

 
The presence of missing values only meaningfully affected the pattern of model 

selection if 50% of values were missing in four time points (the right-most column in 

Figures 37 and 38). The impact was especially noticeable for the smallest sample size. 

With aligned or diffuse priors, the PPP-value, the BCFI, the BTLI, and the BRMSEA 

were about equally likely to select the correctly specified model as it was to select the 

first two misspecified models. For n = 50, this level of missing data also increased the 

likelihood that the BIC and DIC selected the most misspecified model. As the sample 

size increased, the preference of the DIC for the model with constant measurement errors 

was more apparent when 50% of values were missing in four time points. 
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Figure 39. LGM: Proportion of times a model was selected based on each fit index’s 

value across simulation conditions for n = 250 and 500.  

3.4 Discussion 
Study 1 examined the ability of the Mplus implementation of the PPP-value, BCFI, 

BTLI, BRMSEA, BIC, and DIC to detect model misspecification in Bayesian SEM. 

Gaining a better understanding of the extent to which those indices can be used for model 

fit and selection purposes will help applied researchers judge the appropriateness of their 

statistical models. I will first discuss the overall findings regarding model fit assessment 

and model selection, followed by a discussion of the impact of missing data and the role 

of priors. 

3.4.1 Model Fit Assessment 
Overall, it appears that the PPP-value may be the most useful for model fit assessment. 

Across population models, it was most strongly affected by each level of model 

misspecification. Furthermore, as the sample size increased, the PPP-value was more 

likely to reflect poor model fit for misspecified models, even if the severity of the 

misspecification was relatively small. However, if the sample size is limited (e.g., n = 
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50), the PPP-value is unlikely to reflect poor model fit if the misspecifications are 

substantively irrelevant (i.e., for the CFA-Simple).  

In contrast, the approximate fit indices were less clearly affected by model 

misspecification, often indicating good model fit for misspecified models. Further, 

focusing on the LGM population model, the results of Study 1 show that the Bayesian 

approximate fit indices, particularly the BCFI and BTLI, were less sensitive to 

misspecification in the marginal mean structure compared to the PPP-value. This finding 

is in line with previous research on the frequentist versions of the CFI and TLI (Wu et al., 

2009; Wu & West, 2010). In contrast, the BRMSEA was sensitive to misspecification in 

the marginal mean structure, and overall performed better in terms of model fit 

assessment than the BCFI and BTLI. Most worrisome was the finding that the 

approximate fit indices appeared to indicate better model fit across all levels of model 

(mis)specification as the sample size increased. At n = 50, the approximate fit indices 

were likely to indicate poor model fit for the correctly specified model. However, at n = 

500, the approximate fit indices were less likely to indicate poor model fit for all but the 

most severe levels of misspecification. Among the three indices, the BRMSEA appeared 

somewhat more sensitive to model misspecification compared to the BCFI and the BTLI. 

One potential advantage of the Bayesian approximate fit indices is that they possess a 

posterior distribution that can be used to create a 90% credible interval (different 

percentages can also be examined). This interval has been suggested to provide a more 

nuanced reflection of model fit compared to the posterior mean value by itself 

(Asparouhov & Muthén, 2020). By using the interval, a researcher may conclude that 

model fit is good, inconclusive, or poor. Based on the results of Study 1, it appears that 

this method may only be useful for small sample sizes (e.g., n = 50). However, this 

strategy could result in concluding inconclusive model fit even if the correct model was 

specified. For larger sample sizes, inconclusive model fit occurred less often, but could 

still be useful for detecting model misspecifications that are missed by relying on the 

cutoff value. Overall, the conclusion drawn based on the credible interval appeared to 

rely on multiple factors that were not related to the model misspecification itself, 

reducing its general utility for applied researchers. 

It should be noted that Asparouhov and Muthén (2020) argued that the approximate 

model fit indices should only be used with larger sample sizes, which they defined as 

“more than 100 or even 200” (p. 9). However, the results of the current study seem to 

indicate that the utility of the approximate fit indices at larger sample sizes may be 

limited. The indices (especially the BCFI and BTLI) are likely to indicate that the model 

fits the data approximately well, even if the level of misspecification is substantively 

relevant. 

3.4.2 Model Selection 
For the CFA-Simple and CFA-Complex, all model fit indices selected the correct model 

100% of the time if n = 500, and the vast majority of the time if n = 250. Even if n = 50, 

the correct model was extremely likely to be selected for the CFA-Complex population 

model. For the CFA-Simple model, model selection accuracy was lower if n = 50, 

particularly for the DIC. This finding may reflect the DIC’s preference for parsimonious 

models in the presence of substantively irrelevant model misspecification. For the LGM, 
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a similar pattern emerged for the DIC, and to a lesser extent the BIC. A model in which 

the measurement errors at each time point were constrained to be equal was preferred by 

those two indices over the correctly specified model if n = 50 or 100. While the correct 

model became more likely to be selected with the BIC if n = 250 or 500, model selection 

based on the DIC kept preferring the model with constrained measurement errors. The 

correct model was most likely to be selected using the remaining model fit indices, with 

this preference for the correct model increasing as the sample size increased. These 

findings, combined with the findings discussed above regarding model fit assessment, 

underline the importance of comparing multiple models within one study. When multiple 

models are compared, the fit indices were generally able to select the correct model, or a 

model with a substantively irrelevant level of misspecification.  

Although the approximate model fit indices were not developed for model selection, 

it appears that they might be more suitable for this purpose, under the conditions 

examined in the current study. In the current study, a difference of any size across model 

specification was used for model selection. However, the frequentist literature has 

pointed out that an alternative degree of change may need to be used instead (Chen, 2007; 

Cheung & Rensvold, 2002; Meade et al., 2005; Rutkowski & Svetina, 2014). Future 

research could investigate whether a specific amount of change in the value of the BCFI, 

BTLI, and BRMSEA can be used for model selection, or if such guidelines depend on 

factors such as the sample size and model type. 

One critical limitation to the use of the approximate fit indices for model selection 

emerged from the current study. As the number of missing values increased, the 

approximate fit indices were more likely to reflect “perfect” fit (i.e., 1 for BCFI/BTLI or 

0 for BRMSEA) across model specifications. This issue occurred for all three population 

models investigated, although it appeared less prevalent for the CFA-Complex model. 

Furthermore, model fit index values were less likely to be equivalent if diverging priors 

were specified. However, the use of diverging priors may still be problematic for model 

fit and selection, as further discussed in Section 3.4.4. If a fit index value is equivalent 

across model specifications, it cannot be used for model selection. Thus, researchers may 

need to rely on other fit indices for model selection (and model fit assessment) if missing 

values are prevalent in their data. 

In addition to these general patterns of performance of the model fit indices, the 

results of Study 1 also showed that the ability of the model fit indices to select the correct 

model depended on the presence of missing data and the prior specification. These two 

factors will be discussed in more detail in the following two sections. 

3.4.3 The Impact of Missing Data 
The results of Study 1 indicate that missing data have a different effect on each of the 

model fit indices. Starting with model fit assessment, an increasing number of missing 

values consistently reduced the ability of the PPP-value to detect model misspecification. 

The PPP-value was centered around 0.5 (indicating good model fit) for the correctly 

specified model independent of the number of missing values. However, as the number of 

missing values increased, the PPP-value declined to a lesser extent for misspecified 

models. The PPP-value performed about equally well for a sample of n = 50 without 

missing values as it did for a sample of n = 250 with 50% missing values in the majority 
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of the observed variables. This relatively straightforward pattern mirrors results found in 

previous research on this implementation of the PPP-value (Asparouhov & Muthén, 

2020).  

In contrast, the pattern of findings for the approximate model fit indices was not as 

straightforward. With increasing numbers of missing values, the approximate model fit 

indices indicated better model fit for the correctly specified model. In addition, as the 

number of missing values increased, the approximate model fit indices decreased (or for 

BRMSEA: increased) less as the level of model misspecification became more severe. 

This pattern of results extends previous research on the approximate fit indices with 

missing data (Asparouhov & Muthén, 2020). The current study design differed from the 

previous design in terms of the sample sizes included. Asparouhov and Muthén (2020) 

generated missing values only for samples of n = 300, 1000, and 5000. The current study 

extends their findings by demonstrating that the use of approximate fit indices as model 

fit indices (as opposed to model selection indices) is likely to result in falsely concluding 

good model fit if the data contain missing values.   

Furthermore, for the CFA models (and to a lesser extend the LGM), the approximate 

fit indices could not be computed for the smallest sample size (n = 50) with the largest 

number of missing values (50% in 9 out of 15 variables). As was discussed in the Results, 

it appears that the approximate fit indices cannot be computed for situations in which the 

number of observed variables is relatively large compared to the number of observed 

values as this reduces the difference between the baseline and estimated model 

discrepancy too much. It should be noted that this problem did not arise to the same 

extent for n = 50 with complete data. Thus, it is not just the overall sample size that 

makes the difference, but the sample size for each observed variable. This computational 

issue did not arise for the PPP-value, highlighting the PPP-value as a valuable tool for 

model fit assessment for small samples with missing data. 

Missing values had a smaller effect on the ability of the model fit indices to select the 

correct model out of a set of estimated models. For all indices, model selection 

performance was not meaningfully affected by missing values unless 50% of values were 

missing in a majority of the variables. However, at that level of missing data, the fit 

indices were less likely to select the correct model for the CFA-Simple and the LGM, but 

not for the CFA-Complex. It may be that if the model misspecifications were 

substantively irrelevant, as they were for the CFA-Simple, the presence of missing values 

further muddles the difference in model fit across different (mis)specifications. For the 

LGM, it is less clear why a large number of missing values had such an impact on the 

performance of the fit indices to select the correct model. It may be related to the smaller 

number of parameters or observed variables that are involved in estimating the LGM as 

compared to the CFA-Complex model. Alternatively, it may be due to the way missing 

data were generated following a dropout pattern for the LGM with missing values in 

multiple observed variables. When 50% of values were missing across 4 time points, that 

meant that 80% of values were missing at the final time point. This sparsity of data may 

seriously reduce the ability to differentiate between models with and without a quadratic 

slope (or quadratic slope variance). Increasing the overall sample size reduces the 

negative impact of missing data on the performance of the fit indices in terms of model 

selection. 
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Finally, for the CFA-complex model, it appeared that there was no negative effect of 

missing values in variables that were involved in the model misspecification. This factor 

was examined in the current study as previous research had indicated that the frequentist 

RMSEA and CFI might indicate better model fit when the missing data are located in the 

part of the model with a misspecification (Zhang & Savalei, 2020). The explanation for 

this discrepancy may lie in how missing values were treated: previous research looked at 

ML estimation, which used full information maximum likelihood (FIML) to address 

missing data. As discussed in the introduction, Bayesian estimation relies on DA, in 

which values for the missing data are predicted based on the model, the current parameter 

estimates, and the observed data at each iteration of the MCMC chain. It appears that the 

location of missing values relative to the location of the model misspecification is less 

critical when Bayesian estimation is used. 

3.4.4 The Role of Priors 
The ability to incorporate prior knowledge into the analysis through Bayesian estimation 

is often lauded as a major advantage (e.g., Smid, McNeish, et al., 2019; van de Schoot et 

al., 2014, 2017). However, diverging priors may negatively affect the ability of model fit 

indices to select the correctly specified model (Cain & Zhang, 2019; Liang, 2020). The 

results of Study 1 support the hypothesis that, when it comes to model fit and selection, 

there may also be downsides to specifying informative prior distributions in Bayesian 

SEM. For the LGM population model, specifying informative priors that aligned with the 

population values, as compared to diffuse priors, did not noticeably improve model fit 

assessment or model selection for any of the included indices. However, specifying 

informative priors that diverged from the population values confounds the association 

between model misspecification and the values of model fit indices. Garnier-Villarreal 

and colleagues (2019) also observed this pattern of results with an empirical example 

using their implementation of the approximate model fit indices (i.e., BCFI, BTLI, and 

BRMSEA). The results of Study 1 add to their finding by demonstrating that, in addition 

to the Mplus implementation of the approximate fit indices, diverging priors also affected 

the performance of the PPP-value, the BIC, and the DIC. The impact of diverging priors 

on the model fit and selection indices was still apparent for n = 250. In terms of model fit 

assessment, the BRMSEA was most affected by diverging priors, followed by the PPP-

value, and finally, the BCFI and BTLI. One notable finding is that for n = 50 and 100 

(and also n = 250 and 500 for the BRMSEA), model fit conclusions based on the 90% 

credible interval were more likely to be inconclusive if diverging priors were specified. 

Specifying diverging priors had a less detrimental impact on the ability of the fit indices 

to select the correctly specified model. This finding indicates that, although the values of 

the fit indices were biased with diverging priors, they still followed a pattern of indicating 

worsening model fit as model misspecification increased. The only exception occurred 

with n = 50, where the PPP-value and the BCFI had an increased probability of selecting 

the misspecified model with constant measurement errors. As this misspecification 

results in a more parsimonious model, and can be considered substantively irrelevant, this 

may not be a problematic pattern for applied researchers who rely on relatively small 

samples such as n = 50. 
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In contrasts, there was no impact of specifying aligned priors (compared to diffuse 

priors). Across the indices examined in Study 1, specifying informative aligned priors did 

not result in better model fit for the correctly specified model, nor did it increase the 

probability that the correctly specified model was selected when compared to several 

misspecified models. This lack of positive impact can be explained by the level of 

informativeness of the aligned prior. In particular, the prior standard deviation matched 

the precision of the data likelihood at n = 50 (see footnote 7), and in turn was less precise 

than the data likelihood at n = 100, 250, and 500. In addition, the prior agreed with the 

data likelihood, as it was centered on the population value. Under these conditions, the 

posterior samples will be similar to those based on diffuse priors. This finding is in line 

with the limited previous research that looked at using informative small-variance priors 

on cross-loadings (Liang, 2020) or informative priors for factor-loadings in a full SEM 

(Cain & Zhang, 2019). 

These findings have important implications for applied researchers with access to 

limited sample sizes, who are often advised to specify informative priors for at least some 

of the parameters in their SEM (Depaoli, 2014; Lee, 2007; McNeish, 2016; Smid, 

Depaoli, et al., 2019; Smid & Winter, 2020). Some previous research has shown that 

informative priors generally result in less biased parameter estimates compared to diffuse 

priors, even if the informative priors diverge from the population values (e.g., Depaoli, 

2014). Moreover, in the Bayesian framework, priors that diverge from the observed data 

are not inherently problematic. They simply reflect a disagreement between the prior 

knowledge about the parameter and the new evidence provided through the observed 

data. However, if a researcher is interested in model fit assessment or model selection, 

that trust in informative priors, even if they might disagree with the data, may not be 

merited. First, if priors are informative and perfectly aligned, they do not improve the 

researcher’s ability to assess model fit or selection. Second, and more likely, if priors are 

informative, but they diverge from the unknown population parameter distribution, the 

model fit indices may indicate that fit is poor even when the correct model is specified. 

This finding points towards an important avenue for future research: examining methods 

for detecting disagreement between the priors and the data, so that applied researchers are 

aware and can adjust their reliance on model fit indices accordingly. 

3.4.5 Conclusion 
With the introduction of the Bayesian approximate fit indices and an improved version of 

the PPP-value to Mplus, researchers have access to a host of new options for model fit 

and selection in Bayesian SEM. Based on the results of Study 1, researchers should be 

careful to rely on the approximate fit indices for model fit assessment of a single model. 

While the 90% credible intervals allow for the attractive option of inconclusive model fit, 

the inconclusiveness is not solely due to model misspecification, but may also be caused 

by the overall sample size, presence of missing data, or prior specification. Instead of 

focusing on a single model, researchers should compare multiple models to find a model 

that fits their data best. Furthermore, if a researcher uses informative priors in their model 

and finds that model fit is poor, they should examine whether this result may be related to 

any disagreement between their priors and the observed data.
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Chapter 4  
Study 2: Detecting Prior-Data Disagreement in 

Bayesian Structural Equation Modeling 
 

4.1 Introduction 
The choice of prior specification plays an important role in any Bayesian analysis. In 

Bayesian estimation, the information provided through the prior distribution is combined 

with information provided by the observed data likelihood to form the posterior 

distribution. Ideally, the prior distributions and the data likelihood support each other and 

tell the same story. But the prior and the data do not always agree. Prior-data 

disagreement occurs when the researcher’s prior knowledge is not in agreement with the 

evidence provided by the data (Evans & Moshonov, 2006a).10 Previous simulation 

studies on prior-data disagreement in structural equation model (SEM) estimation show 

that diverging priors introduce bias in the posterior distributions, especially when the 

priors are informative or the sample size is small (e.g., Depaoli, 2014; Dingjing Shi & 

Tong, 2017; Smid, Depaoli, et al., 2019). Thus, an essential next step in research on 

Bayesian SEM is to investigate methods to identify prior-data disagreement. 

Several methods for identifying prior-data disagreement have been suggested in the 

literature. Examples include the Data Agreement Criterion (DAC; Bousquet, 2008), 

Bayes Factors (BFs; Kass & Raftery, 1995), and prior-predictive checks (PPC; Evans & 

Jang, 2010). As will become apparent, each method answers a slightly different question 

about the match between the prior and the data. Moreover, each of these approaches is 

easily applied to the SEM context. However, the question of their effectiveness in 

detecting prior-data disagreement in the SEM context has not been studied before. To 

address this gap in the literature, the second study of this dissertation focuses on the 

ability of these three methods to detect prior-data disagreement when estimating SEMs. 

For this purpose, I will focus on a model for which researchers are likely to incorporate 

informative priors: the latent growth model (LGM). This study aims to provide 

researchers who use SEM with concrete recommendations about which (if any) approach 

for detecting prior-data disagreement they should use. 

The remainder of this section will be organized as follows. First, I will further 

introduce the concept of prior-data disagreement, after which I will present the three 

indices for detecting prior-data disagreement that are the focus of the current study. This

 
10 It should be noted that prior-data disagreement would not pose a problem to a true subjective Bayesian, 
who would simply update their prior belief. However, prior-data disagreement can cause computational 
issues for the pragmatic evidence-based subjective Bayesian, which is why it is the focus of the current 
investigation. 
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subsection is followed by a discussion of the existing literature on the impact of divergent 

priors on SEM parameter estimation. Next, I will introduce and specify the LGM for 

which the three prior-data disagreement indices’ performance will be examined through a 

simulation design.  

4.1.1 Prior-Data Disagreement 

Prior-data disagreement is generally discussed in the context of informative priors. 

However, it should be noted that the prior and data can interact in surprising ways even if 

the prior is considered diffuse (Smid & Winter, 2020; van Erp et al., 2018). Figure 40 

provides a basic overview of different levels of prior-data (dis)agreement. In panel A, 

there is prior-data agreement: the prior (light grey) and the data likelihood (darker grey) 

overlap completely. In panel B, there is some prior-data disagreement. The distributions 

still overlap, but the center of the prior distribution is shifted to the left, indicating that the 

prior belief is centered around a lower value. Finally, in panel C, there is clear prior-data 

disagreement. The prior and data likelihood distributions have almost no visible overlap 

and cover completely different values on the x-axis.  

It should be noted that the precisions of the prior distribution and the distribution 

created by the data likelihood do not need to be the same. Either source of information 

may be more or less precise. One can imagine a situation where the two distributions’ 

centers align, but the prior distribution is narrower (conveying a more precise prior 

belief) or wider (conveying a less precise prior belief). 

 

 
Figure 40. Illustration of different levels of prior-data (dis)agreement. 
 

Concern about prior-data disagreement appears to have emerged in research looking 

at clinical trial study designs (Spiegelhalter et al., 1994; Young & Pettit, 1996). This field 

recognized the benefits of Bayesian estimation for building knowledge in an iterative 

manner but warned against the reliance on one prior specification. Instead, they 

recommended relying on a community of priors and examining prior-data disagreement 

for each specification (Kass & Greenhouse, 1989; Spiegelhalter et al., 1994). This 

process should be used as a diagnostic tool to indicate that two sources of information 

(the prior and the data) do not agree about a quantity of interest (Young & Pettit, 1996). 

Although it is easy to take evidence of disagreement as evidence that the prior must be 

wrong, there are many reasons for disagreement to emerge. For example, the problem 

may lie with the collected data. Perhaps the sample is not representative of the population 

about which the model was hypothesized (Veen et al., 2020). Alternatively, the problem 

A. Agreement B. Can we compromise? C. Disagreement
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may reside with the research design. If the prior was based on a previous study that the 

current study is attempting to replicate, then disagreement between the prior and the data 

may indicate that the studies are different in some important ways (Young & Pettit, 

1996). Finally, the problem may lie with the priors themselves. The sources upon which 

the priors were based, such as clinical experts, may not have been accurate (Spiegelhalter 

et al., 1994). Thus, if a researcher finds prior-data disagreement, they need to examine all 

aspects of their study closely. 

As interest in detecting prior-data disagreement increased, researchers developed 

various indices to capture different expressions of prior-data disagreement. The next 

section will introduce three of these indices. 

4.1.2 Indices for Quantifying Prior-Data Disagreement 

This section will introduce three approaches to detecting prior-data disagreement: the 

DAC, BFs, and prior-predictive checking. 

4.1.2.1 Data Agreement Criterion 

The DAC represents the distance between a prior specified by the researcher and a 

diffuse reference prior (Bousquet, 2008). Before defining the DAC as an expression, it is 

important to introduce its main ingredient: the Kullback-Leibler (KL) divergence 

(Kullback & Leibler, 1951).11 De KL divergence measures the loss of information if a 

reference distribution (!!) is approximated by another distribution (!"). The larger the 

discrepancy, or distance, between the two distributions, the greater the loss of 

information. The KL divergence is calculated as follows: 

 

 "#(!!||!") = (!!
#

())*+,
!!())
!"())

-), (29) 

 

where || stands for divergence, or the distance between the reference and the specified 

distributions, / is the parameter space for parameter ), !!()) is the reference 

distribution, and !"()) is the distribution that attempts to approximate the reference 

distribution. 

We can use the KL divergence to compute the DAC. In short, the DAC is the ratio of 

two KL divergences. Each KL divergence is based on the same reference distribution but 

uses a different distribution (i.e., a different prior) to approximate the reference 

distribution. To examine prior-data disagreement, the reference distribution is a posterior 

distribution !$()|0) based on a benchmark prior !$()) such that the data completely 

dominate the posterior distribution. For that reason, the benchmark prior is generally a 

diffuse or uninformative prior. To ensure that the KL divergence is well defined, this 

prior should be a proper prior. Figure 41 illustrates how the relationship between the 

reference distribution !$()|0) and its associated KL divergence is different for the 

benchmark prior !$())  (left panel) and a researcher-specified prior !()) (right panel). 

Two lower plots show the priors (dashed lines) and the reference posterior (solid line) 

 
11 Other distance measures can also be used, however the KL divergence appears to perform best (Lek & 
van de Schoot, 2019). 
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and the two upper plots show the KL divergence, which equals the shaded area under the 

curve. The DAC, using the reference posterior !$()|0), the benchmark prior !$()), the 

data 0, and a chosen second prior !()), can be computed as follows: 

 

 

 
123 =

"#[!$(. |0)||!]
"#[!$(. |0)||!$]. 

(30) 

 

If the chosen prior conflicts less with the data than the benchmark prior, DAC < 1. If 

the chosen prior conflicts more with the data than the benchmark prior, DAC > 1. For the 

scenario depicted in Figure 41, the DAC is 1.15, slightly above the cutoff value. A larger 

DAC implies a more impactful prior-data conflict. The DAC will be > 1 for two reasons: 

(1) the researcher-specified prior is placed in a region of the parameter space that is far 

removed from the data (conflict in location), or (2) the researcher-specified prior is far 

more precise than the information from the data (conflict in information; Bousquet, 2008; 

Lek & van de Schoot, 2019). The specific question addressed with the DAC is: Is this 
prior a good representation of the information present in the data about parameter )? 

 
Figure 41. Illustration of the components that make up the DAC. Note the difference in 

y-axis scale for the upper and lower plots in the figure. Dashed line reflects the prior, 

solid line reflects the posterior. 
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For single-parameter models, the DAC can generally detect prior-data disagreement 

(Lek & van de Schoot, 2019; Veen et al., 2018). The DAC has also been used in an LGM 

context to compare the accuracy (compared to the observed data) of several prior 

distributions elicited from experts (Veen et al., 2020). In addition, it is relatively fast to 

compute the DAC for a large range of parameters and researcher-specified priors. This is 

because the computation of the DAC requires only one actual posterior distribution: the 

reference distribution, !$()|0). All other (prior) distributions can simply be plugged into 

the formula. This makes the DAC an attractive option for SEMs, which often consist of 

many parameters. The main challenge of the DAC is that a benchmark prior needs to be 

selected for all parameters in the model. Although it is relatively straightforward to 

specify a diffuse prior for a single parameter, we know that diffuse priors in SEMs can 

interact in unexpected ways and produce a posterior distribution that does not accurately 

reflect the data (Depaoli, 2013; Depaoli & Clifton, 2015; Smid & Winter, 2020; van Erp 

et al., 2018). 

4.1.2.2 Bayes Factors 

A second way of looking at prior-data disagreement is through BFs. A BF can be 

computed by taking the ratio of the marginal likelihoods of two Bayesian analyses: 

 

 
78 =

9!(0)
9"(0)

, 
(31) 

 

which provides the odds of some model :! versus model :" (Kass & Raftery, 1995). 

The marginal likelihood can be expressed as: 

 

 9(0) = (;
#
(0|))!())-()), (32) 

 

for data 0, parameter ), and prior !()). As can be seen, the marginal likelihood is 

affected by the data, the model, and the prior (Kass & Raftery, 1995; C. C. Liu & Aitkin, 

2008; Vanpaemel, 2010). Although the influence of the prior on the marginal likelihood 

is seen as a disadvantage by some (e.g., Gelman, 2008; Kass & Raftery, 1995), this 

sensitivity can be used to our advantage to detect prior-data disagreement. To compare 

different prior distributions, we must keep the data and the model constant across prior 

specifications. That way, the only difference in the marginal likelihood arises from a 

change in prior specification. 

If we specify model :! using benchmark priors (i.e., 9$(0)), as with the DAC, and 

model :" using chosen priors (i.e., 9(0)), then we can assess whether the marginal 

likelihood provides more support for the benchmark prior (BF > 1; prior-data 

disagreement) or the chosen prior (BF < 1; prior-data agreement). Evidence in favor of 

the benchmark or researcher-specified prior becomes stronger as the BF moves further 

away from 1 (Herbert Hoijtink et al., 2019). Thresholds for concluding “positive” or 

“strong” evidence have been suggested for the BF (e.g., 3 and 20 respectively; Kass & 

Raftery, 1995). However, the BF’s sampling distribution depends on the model and prior 

specification, making universally applied cutoff values problematic (García-Donato & 
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Chen, 2005). The BF should be used simply to quantify the strength of support for one 

model compared to a second model (Herbert Hoijtink et al., 2019). Thus, the question 

addressed with the BF is: Does this prior result in a marginal likelihood that is more 
supportive of the data than a benchmark prior?12 Alternatively, the BF can also be used 

to compare several pairs of chosen prior specifications to answer the question: Does this 
prior result in a marginal likelihood that is more supportive of the data than some other 
prior? 

For a single parameter, the BF and DAC both assess one researcher-specified prior. 

However, for a model with multiple parameters, the BF assesses the entire collection of 

researcher-specified priors, whereas the DAC is computed for each parameter separately. 

The BF’s focus on the overall model may be desirable, as we know that a prior for one 

parameter may affect the posterior of another parameter (Depaoli et al., 2020). The BF 

considers these interactions across priors and posteriors and provides an assessment of 

the entire model. A drawback of this approach is that it may be challenging to identify 

which prior(s) drive the prior-data disagreement. In addition, the BF approach is 

computationally more demanding, as the model needs to be estimated for each prior 

specification. Moreover, similar to the DAC, a series of diffuse benchmark priors needs 

to be specified for the reference model. 

In addition to these characteristics of the BF, the researcher should also consider an 

important distinction between BFs and DACs: BFs are less likely than DACs to flag 

researcher-specified priors that are too precise as prior-data disagreement (conflict of 

information; Veen et al., 2018). The reason behind this becomes evident if we express the 

DAC in terms of the BF (Bousquet, 2008; Veen et al., 2018): 

 

DAC	 = 	
9$(0)
9(0) @AB	

{"#[!$(∙ |0)||!(∙ |0)]} = 	BF	exp	{"#[!$(∙ |0)||!(∙ |0)]}. 
(33) 

 

Equation (33) shows us that the DAC has an additional penalty term that multiplies 

the BF by the KL divergence between the reference posterior and the posterior based on 

the researcher-specified prior. Note that this expression of the DAC uses the posterior 

based on the researcher-specified prior, !(∙ |0), instead of simply the researcher-specified 

prior, !, as in the original expression of the DAC in the previous section. It may depend 

on the situation whether the DAC or the BF should be preferred for detecting prior-data 

disagreement. The DAC and BF are likely to disagree for analyses based on small 

samples that include informative priors. This disagreement emerges because it is likely 

that the prior conveys more information about the parameter than the observed data. 

According to the DAC, this makes the prior overly precise, which will likely indicate 

prior-data disagreement. In contrast, the BF may indicate prior-data agreement, perhaps 

even supporting the researcher-specified priors over the benchmark priors. In this 

example, only the DAC makes the researcher aware that their prior specification may be 

the driving force behind the posterior distribution. Thus, it may be that researchers need 

 
12 As the marginal likelihood is likely support a diffuse prior over any informative prior, it is likely that 
several prior specifications need to be compared to the diffuse benchmark prior to gain insight into the 
relative ranking of the researcher-specified priors. 
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to assess multiple data-disagreement indices to become aware of different forms of 

disagreement (e.g., disagreement in precision or location). 

4.1.2.3 Prior-Predictive Checking 

A third way of investigating prior-data disagreement is through prior-predictive checks 

(Box, 1980; Evans & Moshonov, 2006a; Gelman et al., 2017). Prior-predictive checks are 

based on the prior predictive distribution, which is generated by evaluating the marginal 

likelihood without including the observed data. In other words, we run a Bayesian 

analysis for which the iterative output for parameter ) is only affected by the prior 

distribution !. We can then use the prior predictive distribution to generate random 

samples of 0, often denoted as y%&'. This is done by first simulating parameters 

according to the priors 

 

 θ()*~π(θ), (34) 

 

and then simulating data according to the sampling distribution given the simulated 

parameters 

 

 0()*~πO0Pθ()*Q. (35) 

 

These random samples form a distribution of all possible samples that could occur if 

the model and prior specification are true (van de Schoot et al., 2021). If the prior aligns 

with the data, then the random samples 0()* will form a prior predictive distribution that 

is similar to the true data-generating distribution. To assess whether prior-data 

disagreement exists, these random samples can be used to create a fixed distribution R+  

of some relevant piece of information about the observed variable y (e.g., its mean) called 

S(0,).13 The fixed distribution R+ is then used to examine whether S(0,) is surprising 

(Evans & Moshonov, 2006a). A prior predictive p-value (Evans & Jang, 2010; Evans & 

Moshonov, 2006a) can quantify the unexpectedness of S(0,), by comparing the value of 

the density B+ of S at S(0,) with other possible values:  

 

 R+ 	= 	R TB+(U) ≤ B+OS(0,)QW. (36) 

 

Ideally, the prior predictive p-value should be close to 0.5, which indicates that about 

half the density B+ is above (and below) S(0,). The specific question that prior-

 
13 This piece of information should be a minimally sufficient statistic. A statistic ! is sufficient if knowing 
the value of ! leads to an estimate of " that is just as accurate as an estimate based on the entire random 
sample that ! is based on. Examples include the sample mean for a normally distributed " with a known 
variance, or the maximum observed value for a " that represents the upper bound of a uniform distribution. 
For a normal distribution with an unknown mean # and variance $!, the minimal sufficient statistic is 
!(&', )!) (i.e., sample mean and sample variance estimate). Since the distribution of )! does not depend on 
#, it is also possible to assess each statistic separately through the marginal prior predictive distribution. By 
looking at the mean and variance separately, it is possible to differentiate between prior-data conflict that 
arises from the location of the data and the spread of the data (Evans & Moshonov, 2006a). 
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predictive checks address is: Is this prior able to predict my observed data well? Or: Are 
my observed data unexpected under this prior specification? 

Using prior-predictive checks such as the prior predictive p-value has several 

advantages. The approach is conceptually straightforward and does not require the 

specification of benchmark priors or a reference posterior. The method is more 

computationally intensive than the DAC, but less intensive than the BF approach. The 

main challenge lies in the specification of the minimally sufficient statistic S that 

provides relevant information to assess how unexpected the observed data are under the 

selected prior specification. Moreover, Young and Pettit (1996) argued that measures 

such as the prior-predictive p-value do not differentiate between two priors centered over 

the true parameter space that only differ in terms of precision. This indifference 

distinguishes the prior-predictive p-value from the DAC (which may prefer the less 

precise prior if it is more in line with the precision provided through the likelihood) and 

the BF (which prefers the more precise prior). 

4.1.3 The Impact of Prior-Data Conflict on SEM Estimates 

Being aware of prior-data conflict is valuable in its own right (Evans & Moshonov, 

2006a; Young & Pettit, 1996). However, this sense of awareness might quickly be 

followed by a new question: Does it matter? The disagreement between the prior and the 

data may or may not affect inferences based on the posterior distribution. Particularly for 

larger samples, the influence of the prior may be minimal (Evans & Moshonov, 2006a; 

Liang et al., 2020). In this section, I will review the literature on the influence of priors 

on SEM estimates to examine if detecting prior-data disagreement is more important in 

some situations than in others. 

Numerous studies have looked at the effect of diverging prior distributions on the 

accuracy and efficiency of posterior parameter estimates (e.g., Depaoli, 2014; Depaoli et 

al., 2017; Finch & Miller, 2019; Holtmann et al., 2016; Marcoulides, 2018; Miočević et 

al., 2020; Dingjing Shi & Tong, 2017; Smid, Depaoli, et al., 2019). Several patterns have 

emerged from this research. First, the impact of diverging priors may be limited if these 

diverging priors are not too precise (Depaoli, 2014; Finch & Miller, 2019; Holtmann et 

al., 2016; Miočević et al., 2020). In fact, across these studies, divergent weakly 

informative priors often resulted in more accurate and efficient posterior parameter 

estimates than diffuse priors. In contrast, highly informative, divergent priors tended to 

result in severely biased posterior estimates (Depaoli, 2014; Depaoli et al., 2017; 

Marcoulides, 2018; Dingjing Shi & Tong, 2017; Smid, Depaoli, et al., 2019), in some 

cases also causing bias in other model parameters (Depaoli, 2014; Holtmann et al., 2016). 

Moreover, these informative divergent priors resulted in biased posterior estimates that 

were highly efficient (i.e., had narrow 95% credible intervals), which increases the risk of 

drawing inappropriate inferences regarding the presence or absence of an effect (Dingjing 

Shi & Tong, 2017).  

Another worrisome finding across multiple studies is that access to sample sizes that 

most would consider large enough to overwhelm the prior did not wholly diminish the 

negative impact of informative divergent priors (Depaoli, 2014; Depaoli et al., 2017; 

Holtmann et al., 2016; Dingjing Shi & Tong, 2017). For example, Depaoli (2014) and 

Depaoli and colleagues (2017) showed that the problematic impact of informative 
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divergent priors on growth mixture model parameter estimates was still present for an 

overall sample size of n = 600 or 800. Similarly, Holtmann and colleagues (2016) 

examined the impact of informative divergent priors on multilevel SEM parameter 

estimates. They found that bias in the posterior estimates persisted even for larger 

samples with 200 clusters of 6 observations (total overall n = 1200). Finally, Shi & Tong 

(2017) found that severely divergent priors resulted in biased posterior estimates in a 

latent basis growth model across all included sample size levels (n = 50 to 500). Thus, it 

may be imperative to assess prior-data disagreement if highly informative priors are 

specified. Depending on their accuracy, these priors can result in the biggest gains or 

losses in accuracy and efficiency, even with larger samples. 

There is one additional group of priors that needs to be mentioned here: diffuse 

priors. As briefly mentioned above, diffuse priors may be more problematic than weakly 

informative divergent priors in SEM estimation (Baldwin & Fellingham, 2012; Depaoli, 

2014; Depaoli et al., 2017; Depaoli & Clifton, 2015; Finch & Miller, 2019; Holtmann et 

al., 2016; Smid & Winter, 2020; van Erp et al., 2018). Diffuse priors can become 

unexpectedly influential for analyses based on small samples, where the observed data 

contribute a limited amount of information. While diffuse priors are not typically thought 

of as presenting prior-data disagreement, it is important to keep their potential impact on 

the posterior estimates in mind. Thus, a lack of prior-data disagreement does not 

guarantee that a prior does not have other inadvertent effects (Smid & Winter, 2020). Out 

of the three indices for detecting prior-data disagreement included in the current study, 

the BF may be the only index that will show a preference for an informative prior over a 

diffuse prior. 

4.1.4 Model Examined in the Current Study 

To examine if the DAC, BF, and prior-predictive p-value can detect prior-data 

disagreement in an SEM, the current study will focus on a commonly used SEM: the 

LGM. Specifically, the population model is an LGM with 5 time points (Figure 42). The 

model can be expressed in the following matrix form: 

 

 Z	 = 	[\ + 	^, (37) 

 

where Y represents a vector of repeated measures variables, \ represents a vector of 

latent variables (the growth parameters), and [ is a fixed loading matrix relating the 

growth parameters to the observed outcomes. The first column is related to the intercept 

and is a column of ones. Each additional column represents a specific slope (e.g., linear, 

quadratic). For the population model in Figure 41, these values are 0, 1, 2, 3, 4 for the 

linear slope. This means that the intercept is located at the first time point and timepoints 

are equally spaced (but this spacing can be altered if desired). Finally, _ represents a 

vector of residuals. Further, `(\) = 	a, a vector of means of the latent variables, b is the 

covariance matrix of the latent variables (between-individual covariance matrix),	c is the 

population covariance matrix, and d- is the covariance matrix of residuals. This matrix is 

diagonal in the absence of residual covariances. Furthermore, we assume 3+e(\, f) = 0. 

Following this, the covariance matrix of the observed data can be expressed as follows: 
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 c = [.b[./ + d-. (38) 

 

 

 
Figure 42. Path diagram and population parameters for Latent Growth Model (LGM). 
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4.2 Design 

4.2.1 Population Values 

Population values for the LGM are included in Figure 41 and are based on Bauer and 

Curran (Bauer & Curran, 2003). These values represent a scenario in which the latent 

growth factors (i.e., intercept and linear slope) account for 50% of the variance in each of 

the observed variables, which was deemed appropriate for the current investigation. 

4.2.2 Sample Size 

The impact of a selected prior distribution changes as a function of the sample size. On 

the one hand, priors that may seem diffuse or noninformative can become highly 

informative when the sample size is relatively small (Mcneish, 2016). On the other hand, 

highly informative priors may have no impact on the posterior distribution when the 

sample size is relatively large (B. O. Muthén & Asparouhov, 2012). The current study 

examined the impact of sample size by including four different sample sizes: n = 50, n = 

100, n = 250, and n = 500. 

4.2.3 Prior Specification 

To investigate the impact of prior specification I included 7 prior specifications for the 

intercept mean (Figure 43, panel A) and the slope mean (Figure 43, panel B). All priors 

followed a normal distribution, g(µ, σ), with mean hyperparameter µ and standard 

deviation hyperparameter σ. The first prior specification served as the benchmark prior 

for the DAC and BF computation, N(0, 55).14 

The next three prior specifications were all centered around the population values for 

the intercept mean (1.0) and slope mean (0.8), and they are labeled as “aligned”. In 

Figure 42A and B, these priors are centered over the triangle (population value) and 

drawn with bold lines. These priors vary in the specification of the standard deviation 

(i.e., the precision of the prior). Starting with the middle level of precision (moderately 

informative), I selected a standard deviation of 0.2 for the intercept mean and 0.1 for the 

slope mean.15 To vary the informativeness of the priors, I either multiplied the standard 

deviation of the moderately informative prior by 2 (weakly informative) or by 0.5 

(strongly informative). 

 
14 This prior was selected after a pilot study demonstrated that this prior had minimal impact on the 
posterior distribution but did not result in convergence issues. Other priors investigated were: N(0, 10), N(0, 
100), and U(-100, 100). 
15 These values represent data dependent priors (DDP; Mcneish, 2016), which I selected by first generating 
100 samples of n =50 from the population model. Next, I used these 100 samples to estimate the population 
model with maximum likelihood estimation (MLE). I averaged the standard error estimates of the intercept 
mean and slope mean across the 100 samples. I used those values to specify the standard deviation 
hyperparameters of the moderately informative priors. I used the smallest sample size conditions of the 
main simulation design to find the standard error estimate that represented the highest level of uncertainty. 
The same values were used across all sample size levels in the main simulation. In applied research, DDPs 
are somewhat controversial, as the researcher technically double-dips by using their data to specify the 
priors that are subsequently used to analyze their data. However, they can aide in model estimation under 
certain circumstances (e.g., Mcneish, 2016). 
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The final three prior specifications were labeled as “divergent” and represented priors 

that diverged from the population value. In Figure 19A and B, these priors are  

 
A. Prior Specifications for the intercept mean 

 
B. Prior Specifications for the slope mean 

 
Figure 43. Prior conditions for the intercept mean (panel A) and slope mean (panel B). 
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centered over the cross and drawn with normal weight lines. The mean hyperparameter 

for these three priors was selected by finding the µ value for which a normal distribution 

had 5% overlap with the correct moderately informative prior. The standard deviation of 

the correct moderately informative prior was used in this process. This procedure resulted 

in the mean hyperparameter of the divergent priors being 1.784 and 1.192 for the 

intercept and slope mean respectively. The standard deviations of the divergent priors 

matched those of the correct priors. The 7 priors for each parameter are fully crossed, 

resulting in 49 prior conditions. 

4.2.4 Data Generation 

I chose the number of replications included in each cell of the simulation after assessing 

at what point the simulation converged. To ensure convergence of the simulation to a 

stable estimate, I examined cumulative average plots for all conditions. Based on these 

plots, 1,000 replications were sufficient to ensure that the simulation converged to a 

stable estimate across all simulation cells. I generated all data in R (R Core Team, 2019) 

using the package ‘lavaan’ (Rosseel, 2012). I simulated data separately for each of the 

four sample size conditions. 

4.2.5 Bayesian Estimation 

The R package ‘rstan’ (Stan Development Team, 2020) with its default sampler, NUTS 

(Betancourt, 2018; Hoffman & Gelman, 2014), was used for Bayesian estimation. Each 

model was estimated using four chains, the default number of chains used in the ‘rstan’ 

package. Each chain consisted of 10,000 iterations, with the first 5,000 iterations 

discarded as burn-in. I selected that number of iterations after testing several chain 

lengths for a select number of replications in each cell and inspecting the trace plots, the 

jk convergence diagnostic, and ensuring that each parameter’s ESS was > 1000 

(Zitzmann & Hecht, 2019). To further ensure that convergence was obtained across all 

replications, I checked the jk convergence diagnostic and effective sample size for all 

replications across all conditions. 

For each prior condition, I estimated two models. The first model was a full Bayesian 

model that used the priors and the data to sample from the posterior distribution. The 

second model was a Bayesian model that did not include the observed data. This model 

was used to generate the prior-predictive samples that were used to compute the prior-

predictive p-value. I executed all analyses through R. Output generated as a result of the 

simulations was also processed through R. 

4.2.6 Outcomes of Interest 

I extracted several types of results. First, I examined the relative bias and root mean-

square error (RMSE) of the posterior estimates of the mean intercept and slope parameter 

to see how the prior specification affects the posterior estimates. In the current 

investigation, I used the rule of thumb that relative bias that exceeds |.10| reflects 

meaningful bias (Flora & Curran, 2004). It should be noted that this rule of thumb should 

not be blindly applied to any situation. A more meaningful definition of bias should be 

used if it is available. Further, for an unbiased parameter estimate, the RMSE reflects the 

sampling standard deviation of that parameter. For a biased parameter estimate, the 
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RMSE combines bias and variability into an overall measure of average error in the 

estimate. When comparing multiple estimates of the same parameter, estimates with 

lower RMSEs are preferred to estimates with larger RMSEs. 

Second, I assessed the performance of the three indices for detecting prior-data 

disagreement in various ways. Specifically, for the DAC and the BF, I examined the 

average value of the index, the proportion of replications for which a certain prior 

resulted in prior-data disagreement, and the number of times each prior specification was 

selected as the “best” prior. The DAC has a clear cutoff value denoting prior-data 

disagreement (DAC > 1). However, for the BF, the question may be asked at what point 

its value reflects strong enough evidence of prior-data disagreement. Rules of thumb have 

been suggested in the past, such as BF > 3 or > 10 (Jeffreys, 1961; Kass & Raftery, 

1995). However, research has shown that the BF depends on, for example, the sample 

size (Morey & Rouder, 2011). Thus, in the current study, I performed a cut-point analysis 

on a random sample consisting of 50% of the replications in each sample size condition 

to find the optimal cutoff value for each sample size. As cut-point analyses differentiate 

between two outcomes, the prior specifications were classified such that specifications 

with at least one divergent prior represented disagreement. To find the optimal cutoff 

value, I used the R package ‘cutpointr’ (Thiele, 2021)  and used a method that optimized 

the sum of specificity and sensitivity. I used bootstrapping (with 200 draws) to find a 

robust BF cutoff value for each sample size. Next, I used the cutoff values to assess prior-

data disagreement in the remaining 50% of the replications. The replications were split 

into two parts to prevent overly accurate results by using the same values twice. 

For the prior-predictive p-value, I used the mean of each observed variable as the 

statistic S. A prior-predictive proportion close to .5 implied that the model and priors 

could recover the observed variable means well, whereas a prior-predictive proportion 

< .05 or > .95 implied that the model and priors were not able to recover the observed 

variable means well. To assess the performance of this index, I examined the average 

value of the index, the proportion of replications for which the prior-predictive p-value 

indicated prior-data disagreement, and the number of times each prior specification 

resulted in a prior-predictive p-value that was closest to the ideal (i.e., .5). 

4.3 Results 
The results are organized as follows: I first discuss findings regarding convergence of 

each of the replications in the simulation. This is followed by an assessment of the 

relative bias and RMSE of the posterior estimates to determine when prior-data 

disagreement affects the posterior estimates. Next, I examine the results for each prior-

data disagreement index sequentially. 

4.3.1 Assessing Convergence 

For each replication in the simulation, I extracted the largest jk and smallest ESS to assess 

convergence and precision of the posterior distributions sampled with NUTS. For n = 50, 

28 replications resulted in jk > 1.05 for at least one of the 49 estimated models. For n = 

100, 3 replications resulted in jk > 1.05 for at least one of the 49 estimated models. For n 

= 250 and 500, zero replications resulted in jk > 1.05.  
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For n = 50, models with at least one diverging prior were more likely to result in non-

convergence. For n = 100, the prior specification did not appear related to whether 

convergence was reached. Furthermore, after inspecting the ESS across sample sizes and 

prior specifications, the lowest ESS was always associated with one of the residual 

variance parameters. Replications for which non-convergence was found (based on jk  > 

1.05) for at least one model were completely excluded from further examination of the 

results. Cumulative average plots were inspected after removing these replications, to 

ensure that the simulation was still converged for each sample size condition. 

4.3.2 When Should the Prior-Data Disagreement Indices Flag 
Disagreement? 

The impact of the prior changes as a function of its level of informativeness (e.g., how 

narrow the prior is) and the sample size of the observed data. Thus, detecting prior-data 

disagreement may be especially important under conditions in which the prior is likely to 

affect the posterior estimates. For that reason, I first assessed under what conditions these 

indices should flag prior-data disagreement. Here, I focused on the relative bias and 

RMSE of the two parameters for which the priors were altered (i.e., the mean intercept 

and mean slope), as the impact of their prior specification on their own posteriors is likely 

to be the largest (compared to their impact on other model parameters). 

4.3.2.1 Relative Bias 

Relative bias in the mean intercept and mean slope parameter estimates is depicted in 

Figure 44. Within the figure, the bias of the mean intercept is shown in the left column 

and the mean slope in the right column. The rows represent the sample size levels. Within 

each plot, relative bias is shown on the y-axis (with dashed lines representing |10%| bias), 

and each group of bars reflects a prior specification of the slope parameter. Within each 

group of bars, each bar reflects a prior specification of the intercept parameter. Both 

between and within groups of bars, the priors are ordered from optimal (i.e., aligned and 

strongly informative) to neutral (i.e., diffuse), to worst (i.e., divergent and strongly 

informative). The expectation is that parameter recovery worsens as we move from left to 

right within each group of bars and each plot. 

Overall, relative bias decreased as the sample size increased. Focusing on the mean 

intercept estimate bias (left column), the results showed that if the intercept prior was 

divergent and moderately or strongly informative, the intercept estimate was positively 

biased (in line with the direction of the divergent intercept prior; lightest two bars). 

However, if the intercept prior was diffuse or aligned and weakly informative, and paired 

with the divergent strongly informative slope prior (right-most group of bars), the 

estimate was meaningfully biased in the negative direction for n = 50 and 100. This may 

reflect that the mean intercept estimate was forced down to balance the positively biased 

mean slope estimate (see right-most group of bars in right column). When n = 250 or 

500, the mean intercept estimate was biased only with divergent strongly informative 

priors on both parameters. 

Moving to the mean slope estimate bias (right column), we can see that the slope 

estimate reached a negative bias greater than -.10 with n = 50, but only if the slope prior 

was diffuse (center group of bars) and the intercept prior was divergent and strongly 
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informative (lightest bar). The mean slope estimate became positively biased when n = 50 

or 100, with divergent moderately or strongly informative priors (left-most groups of 

bars), regardless of the prior specification of the intercept. When n = 250 or 500, the 

mean slope estimate was biased only with divergent strongly informative priors. 

 

 
Figure 44. Relative parameter bias of the mean intercept and slope parameter across 

simulation conditions. 
 

Based on these results, the prior-data disagreement indices need to consistently detect 

prior-data disagreement if divergent moderately or strongly informative priors are placed 

on both parameters or, for smaller sample sizes (i.e., n = 50 or 100), if a diffuse prior is 

placed on one parameter and a divergent strongly informative prior is placed on the other 

parameter. Moreover, specifying aligned strongly informative priors does not negatively 

impact the relative bias. In fact, an aligned and strongly informative prior resulted in the 

least biased posterior estimates for the parameter on which the prior was placed. Thus, 

the prior-data disagreement indices should not flag aligned and strongly informative 

priors as problematic. 

4.3.2.2 RMSE 

RMSE of the posterior estimates of the mean intercept and mean slope parameter 

estimates is depicted in Figure 45. This figure is organized in the same manner as Figure 

44. Overall, RMSE values decreased as the sample size increased, following a similar 

pattern to the relative bias. 
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Focusing on the RMSE of the mean intercept estimate, the pattern and magnitude of 

RMSEs were nearly identical across different prior specifications for the slope (i.e., 

across groups of bars within each plot). Across the intercept prior conditions, the RMSE 

was lowest with aligned and strongly informative priors (left-most bar within each 

group). Further, the RMSE steadily increased with diffuse and divergent weakly 

informative priors. Between divergent weakly and moderately informative priors, the 

RMSE increased steeply and was highest for the divergent strongly informative prior. 

Moving to the RMSE of the mean slope estimate, we can see that the pattern of 

results was independent of the mean intercept prior specification, as the bars within each 

group tended to be of similar magnitude. However, there did appear to be a small change 

for models estimated with a divergent and strongly informative mean intercept prior (the 

right-most bar within each group). This divergent prior inflated the RMSE if the slope 

priors were aligned or diffuse, while it reduced the RMSE if the slope priors were 

divergent. However, this effect was small compared to the effect of the mean slope prior 

specification itself. Across mean slope prior conditions, the RMSE increased slightly, 

moving from aligned and strongly informative to divergent and weakly informative. 

However, the RMSE increased more visibly if divergent and moderately or strongly 

informative priors were specified. 

Thus, in terms of minimizing the RMSE, the prior-data disagreement indices need to 

consistently detect disagreement if priors placed on either of the parameters were 

divergent and moderately or strongly informative. 

 
Figure 45. RMSE of the mean intercept and slope parameter across simulation 

conditions. 
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4.3.3 The DAC 

4.3.3.1 Proportion of replications for which DAC > 1 

Figures 46 and 47 show the proportion of DACs > 1 (indicating prior-data disagreement) 

for the intercept and slope prior, respectively. As the DAC is computed relative to a 

benchmark posterior based on an analysis with diffuse priors placed on all parameters, 

the DAC can be examined for each parameter independently. Proportions are grouped by 

prior specification and displayed for each sample size level. The specific proportion 

values are reported at the top of each plot for clarity. 

 

 
Figure 46. Proportion of DACs > 1 for the mean intercept prior across simulation 

conditions. 
 

In these figures, we can see a similar pattern for both parameters. As expected, the 

DAC was never > 1 for diffuse and aligned weakly or moderately informative priors. For 
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particularly for the smaller sample size condition. This result was expected, as the DAC 

also penalizes priors that are too informative relative to the information provided through 

the data. This effect disappeared as the sample size increased.  

The DAC was unlikely to be > 1 for the divergent weakly informative prior condition. 

Moving from weakly to moderately informative divergent priors, there was a large 
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using the divergent strongly informative priors resulted in a DAC > 1. Comparing Figure 

45 to Figure 46, we can see that the DAC appeared slightly more sensitive to 

misspecification in the mean intercept prior compared to the mean slope prior. 

Overall, the DAC could detect divergent priors that are strongly informative even for 

data with small sample sizes. The DAC appeared to become more sensitive to prior-data 

disagreement as the sample size increased. However, for small sample sizes, the DAC 

sometimes indicated prior-data disagreement if the prior was too informative for the data. 

 

 
Figure 47. Proportion of DACs > 1 for the mean slope prior across simulation 

conditions. 

4.3.3.2 Optimal Prior as Identified by the DAC 

According to the DAC, the distribution with the smallest DAC value reflects a prior that 
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informative priors were most often associated with the lowest DAC, whereas for n = 250 

and 500, aligned and strongly informative priors were most often associated with the 
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Thus, if the DAC is compared across a set of prior specifications, it is highly unlikely that 
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Table 4. Proportion of times each prior specification was associated with the lowest DAC 

across simulation conditions. 

Parameter Sample Size  Aligned Divergent 

  Diffuse Weak Moderate Strong Weak Moderate Strong 

Intercept 50 0.000 0.284 0.693 0.000 0.022 0.001 0.000 

100 0.000 0.066 0.749 0.183 0.002 0.000 0.000 

 250 0.000 0.002 0.189 0.809 0.000 0.000 0.000 

 500 0.000 0.000 0.033 0.967 0.000 0.000 0.000 

Slope 50 0.000 0.356 0.634 0.000 0.013 0.000 0.000 

100 0.000 0.068 0.854 0.078 0.000 0.000 0.000 

 250 0.000 0.001 0.185 0.814 0.000 0.000 0.000 

 500 0.000 0.000 0.043 0.957 0.000 0.000 0.000 

 

4.3.4 The BF 

For the BF, sets of prior specifications can be compared to a model with diffuse priors. 

Thus, each unique combination of intercept and slope prior specification could be 

examined. 

4.3.4.1 Changes in the BF Values across Prior Specifications 

For the BF, a larger value indicates more apparent prior-data disagreement. Table 5 

presents the median BF values are reported in Table 6. I decided to focus on the median 

rather than the average because the BF values within each prior specification tended to be 

positively skewed. This was expected, given that BFs can range from 0 to ∞. In this 

table, the prior specification of the mean intercept is presented in the rows, and the prior 

specification of the mean slope is presented in the columns. Table 3 shows that the BF 

value increased drastically as the degree of prior-data disagreement increased (i.e., as our 

eye moves towards the lower-right corner of the table, the values become larger). 

Across sample sizes, we can see that, for n = 50, the BF appeared to increase if one or 

both priors were aligned and strongly informative. This pattern seems to mimic the 

patterns found for the DAC in that overly precise priors were penalized (to a certain 

extent). For n = 100 and 250, this effect became much less pronounced. For n = 500, the 

median BF value for prior specifications with aligned priors was often < 1, which 

indicates that the informative aligned priors appeared to result in a marginal likelihood 

that was more supportive of the data than the benchmark prior specification. For this 

sample size, the median BF value was also < 1 for several prior specifications that 

included diverging priors. Only once one or both priors were diverging and moderately or 

strongly informative did the median BF rapidly increase. With smaller sample sizes, all 

prior specifications that included at least one divergent prior quickly inflated the median 

BF to very large values. It should be noted that the variability in BF values was much 

larger for n = 500 compared to smaller sample sizes. For example, across diffuse and 

aligned priors, the average standard deviation of BF values was 5.14 for n = 50, 1.87 for 

n = 100, 0.69 for n = 250, but 29,664,081.00 for n = 500. This unexpected behavior will 

be further discussed in Section 4.3.4.4.
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4.3.4.2 Using a Cutoff Value for the BF 
Based on the previous section, we can conclude that the BF tends to increase as the 

magnitude of prior-data disagreement increases. But, at what point is a BF high enough to 
represent convincing evidence of prior-data disagreement? Rules of thumb have been 
suggested in the past, such as BF > 3 or > 10 (Jeffreys, 1961; Kass & Raftery, 1995). 
However, research has shown that the BF depends on, for example, the sample size 
(Morey & Rouder, 2011). This effect was also visible in Table 5, where the BF increased 
much more drastically for n = 250 compared to n = 100 and n = 50. Thus, I used an 
analytical approach to finding an optimal cutoff value. 

 
Figure 48. ROC curve of BF cutoff value located at optimal combination of sensitivity 
and specificity (the dots) for each sample size.  

 
The results of this analysis are shown in Figure 48. The plot presents the receiver 

operating characteristic (ROC) curve for each sample size to illustrate the sensitivity, or 
true-positive rate (y-axis) and specificity, or false-positive rate (x-axis) of each cutoff 
value. This plot also illustrates that the selected cutoff value became more sensitive as the 
sample size increased from 50 to 250. The specific cutoff values were: 9.40 (90% interval 
= 9.02; 9.78, accuracy = 0.88) for n = 50, 5.67 (90% interval = 5.55; 5.81, accuracy = 
0.94) for n = 100, and 4.20 (90% interval = 4.14; 4.28, accuracy = 0.98) for n = 250. 
Thus, the optimal cutoff value appeared to decrease as the sample size increased. In 
addition, decisions based on the cutoff value became more accurate (increasing from 0.88 
to 0.98) as the sample size increased. However, for n = 500, a different picture emerged. 
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First, the selected cutoff value was much higher compared to the smaller sample size 
conditions: 346.30 (90% interval = 210.92; 760.86, accuracy = 0.57). Second, decisions 
based on that cutoff value became visibly less accurate. This inaccuracy is likely related 
to the increased variability in BF values across replications within prior specification 
conditions (see Section 4.3.4.1) and will be further discussed in Section 4.3.4.4. 

Next, I applied these cutoff values to assess the proportion of times the BF indicated 
prior-data disagreement (Table 6). Ideally, these proportions should be 1 for all cells with 
at least one divergent moderately or strongly informative prior (the outer two columns 
and lower two rows within each sample size). In addition, the proportion should be zero 
for all cells with diffuse or aligned priors. 

The table shows that, for n = 50 to 250, the BF cutoff values were likely to indicate 
prior-data disagreement when one or both priors were divergent and moderately or 
strongly informative. Furthermore, the performance of the cutoff values improved as the 
sample size increased. However, the table also shows that if one or both priors are 
aligned and strongly informative, the cutoff values became more likely to indicate prior-
data disagreement. For example, if both priors were aligned and strongly informative, this 
proportion was .445 for n = 50, .341 for n = 100, and .095 for n = 250. This unexpected 
finding makes sense if one considers that, with a smaller sample size, one is more likely 
to encounter a strange sample, a sample that is not a good reflection of the underlying 
population. With informative priors that place the prior probability more heavily around 
the population values, a strange sample will stick out more and will likely result in prior-
data disagreement. 

For n = 500, the results shown in Table 6 further illustrate the lower sensitivity and 
specificity of the selected cutoff value (see Figure 48). In line with smaller sample sizes, 
divergent prior specifications were most likely to be flagged as prior-data disagreement, 
albeit at a lower rate. However, the BF cutoff value was also likely to indicate prior-data 
disagreement for prior specifications that included a combination of diffuse and aligned 
priors. Further, for n = 500, aligned weakly or moderately informative prior 
specifications sometimes resulted in BFs above the cutoff value. The performance of the 
BF cutoff value is markedly worse for n = 500 than for n = 250, for which fully aligned 
weakly or moderately informative prior specifications never resulted in BFs above the 
cutoff value.
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4.3.4.3 Optimal Prior as Identified by the BF 
In addition to using cutoff values, it is also possible to compare across prior 
specifications to examine how often each prior specification results in the lowest BF. The 
prior specification with the smallest BF value reflects a prior most in agreement with the 
data. Table 7 presents the proportion of times each prior specification combination 
(across intercept and slope priors) resulted in the lowest BF value. Only specifications 
that were selected are included in the table. For n = 50, the smallest BF was most often 
associated with prior specifications that had diffuse priors on one or both parameters. As 
the sample size increased, this preference became less apparent. Instead, the lowest BF 
started to be associated with a prior specification that included aligned, weakly or 
moderately informative priors on one of both parameters. Models with divergent priors 
were never selected. 

These findings indicate that, although the BF is unlikely to select a model with 
divergent priors among a set of prior specifications, it may not be the best prior-data 
disagreement index for selecting the optimal prior specification in terms of minimizing 
the relative bias and RMSE of the posterior estimates. As the choice of prior specification 
has a larger impact on the posterior parameter estimates with smaller samples, it is 
disappointing to observe that the BF is unlikely to prefer aligned informative priors over 
diffuse priors for the smallest sample size examined. 

4.3.4.4 Issues with Computing the BF for Larger Sample Sizes 
The previous subsections have illustrated that the BF appears to be unstable and 

unreliable for n = 500. Compared to smaller sample sizes, with n = 500, the BF was much 
more variable and less clearly related to the prior specification. One reason for this 
instability is that the marginal likelihood of this model (an LGM) is much more complex 
for n = 500 than for n = 50 or even 250. The core number of parameters estimated is the 
same across sample sizes and include five residual variances, the mean intercept and 
slope, and the covariance matrix of the intercept and slope. However, for each case in the 
sample, two additional parameters are estimated: the individual’s intercept and slope. 
Thus, for n = 50, a total of 110 unique parameters are estimated. In contrast, for n = 500, 
a total of 1,010 parameters are estimated. The creators of the R package 
‘bridgesampling’, used in the current study, suggest that for complex models, “testing 
requires about an order of magnitude more posterior samples than estimation” (Gronau et 
al., 2020 p. 12). For the current study, this would result in a total of 100,000 posterior 
samples for each of 49 prior specifications across 1,000 replications. Using the most 
powerful computer I have access to, estimating posteriors for 49 prior specifications for 
one replication would take about 50 hours to complete. This estimate assumes that the 
amount of memory available is sufficient to save all the posterior samples. Thus, even 
using all six simulation computers I have access to, it would take at least 50	 × 	1000	/
	24	/	6	 ≈ 	348 days, which is unfeasible. The implications of this finding will be further 
addressed in the Discussion section. 
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4.3.5 The Prior-Predictive p-value 
The motivation for estimating an LGM is that the latent growth parameters, such as the 
linear intercept and slope, provide a good representation of the underlying data at each 
time point. Thus, to examine whether the priors placed on the mean intercept and slope 
parameters are in line with the underlying observed data, the observed sample means at 
each time point were compared to the prior-predictive samples' prior means. A prior-
predictive p-value < .05 or > .95 indicated that the prior specification resulted in prior-
predictive samples that did not provide a good representation in terms of the average 
values at each time point. For the current population model, the first and last time point 
will likely be most affected by the prior specification of the intercept and slope mean, 
respectively. Thus, the results will focus on these two time points. 

4.3.5.1 Prior-Predictive p-values that Indicate Poor Fit 
The prior-predictive p-value for the mean of y1 only exceeded the commonly used 

cutoff values of < .05 and >.95 for one prior specification with one sample size: a diffuse 
prior specified for the intercept mean and an aligned moderately informative prior for the 
slope mean with n = 500. Inspecting the prior-predictive samples for this specific prior 
specification revealed that the prior-predictive mean of y1 was -30.94 (SD = 18.70). In 
contrast, the mean of y1 across all 1,000 replications with n = 500 was 1.00 (SD = 0.06). 
As the aligned prior specified for the slope mean is not expected to affect the 
observations at the first time point, one may expect that the prior-predictive mean would 
be closer to zero, the center of the diffuse prior placed on the intercept. However, -30.94 
is still within one standard deviation (i.e., 55) from the mean hyperparameter. A technical 
explanation of the potential issues of using prior-predictive samples with diffuse priors is 
provided in Appendix A. 

Table 8 presents the proportion of times a prior-predictive p-value indicated poor fit 
based on the same cutoff values for y5. Only sample sizes for which at least one prior 
specification resulted in a proportion > 0 were included in the tables. Based on Table 9, 
the prior-predictive p-value exceeded the cutoff values in the two larger sample size 
conditions when looking at y5. For n = 250, the prior-predictive p-value indicated poor 
prior-data fit for some replications if the priors diverged for both parameters. For n = 500, 
the prior-predictive p-value became more likely to indicate poor prior-data fit when 
diverging priors were specified for both parameters, and to a lesser extent, when a 
diverging prior was specified for the slope mean parameter. If both priors were divergent 
and moderately or strongly informative, the prior-predictive p-value exceeded the cutoff 
values for all replications. 

The difference in results when computing the prior-predictive p-value for the mean of 
y1 or y5 highlights the importance of assessing different aspects of the observed data 
through prior-predictive checks. It appears that the diverging priors examined in the 
current study did not result in overly unusual prior-predictive samples for the mean of y1 
(apart from the prior specification mentioned above). Yet, those same diverging priors 
did emerge as problematic for generating prior-predictive samples for the mean of y5. 
However, these problematic prior-predictive samples emerged only for the two larger 
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sample sizes examined, indicating that relying on the cutoff values is likely not helpful in 
detecting prior-data disagreement with smaller sample sizes. 
 
Table 8. Proportion of prior-predictive p-values for the mean of y5 that exceed cutoff 
values for prior-data disagreement for n = 250 and 500. 

  Prior: Slope 
Sample 
Size 

Prior: 
Intercept 

 Aligned Divergent 
Diffuse Weak Moderate Strong Weak Moderate Strong 

250 

Diffuse 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Aligned: 
Weak 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Aligned: 
Moderate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Aligned: 
Strong 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Divergent: 
Weak 0.000 0.000 0.000 0.000 0.001 0.029 0.245 
Divergent: 
Moderate 0.000 0.000 0.000 0.000 0.023 0.098 0.353 
Divergent: 
Strong 0.000 0.000 0.000 0.000 0.000 0.121 0.361 

500 

Diffuse 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Aligned: 
Weak 0.000 0.000 0.000 0.000 0.000 0.004 0.005 
Aligned: 
Moderate 0.000 0.000 0.000 0.000 0.000 0.006 0.030 
Aligned: 
Strong 0.000 0.000 0.000 0.000 0.000 0.021 0.016 
Divergent: 
Weak 0.000 0.000 0.000 0.000 0.708 0.990 1.000 
Divergent: 
Moderate 0.000 0.000 0.000 0.000 0.740 1.000 1.000 
Divergent: 
Strong 0.000 0.000 0.000 0.000 0.487 1.000 1.000 

Note. Proportions > 0 were bolded for emphasis, proportions were equal to 0 for n = 50 
and 100. 
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4.3.5.2 Distance from the Ideal Prior-Predictive p-value of 0.5 
Table 9 and 10 above present the absolute average distance between the prior-predictive 
p-value and the ideal value of .5 (which reflects a scenario in which half the prior-
predictive sample means lie above and below the observed sample mean) for y1 and y5 
respectively. The tables show that the prior-predictive p-value generally moved away 
from the ideal as the prior specification became more divergent (i.e., within each sample 
size, as our eye moves towards the lower-right corner of the table, the values become 
larger). Furthermore, this pattern became more pronounced as the sample size increased. 
Note that the average distance from the ideal value was also quite large for some prior 
specifications that included one or two diffuse priors (see Appendix A). 

Focusing on the prior-predictive p-value for the mean of y1 (Table 10), it is not 
unexpected that a divergent slope prior did not appear to affect the distance from the ideal 
value (i.e., the value does not change meaningfully moving from left-to-right within a 
row of the table). It is not strange that this value was most affected by the mean intercept 
prior. In contrast, the prior-predictive p-value for the mean of y5 (Table 11) was affected 
by both prior specifications and was visibly farther removed from the ideal value if 
diverging priors were specified for both parameters. 

This finding reinforces the implication that it is important to look at the prior-
predictive ability of a model in multiple ways (e.g., looking at multiple observed 
variables) to fully assess the impact of each prior. 

4.3.5.3 Optimal Prior as Identified by Prior-Predictive p-value 
Finally, we can look at how often the prior-predictive p-value is closest to the ideal 0.5 
for each prior specification to examine which prior specification a researcher would 
likely select across all options (Table 11 and 12 for y1 and y5 respectively).  

Focusing first on the results for y1 (Table 11), the optimal prior based on the prior-
predictive p-value depended on the sample size. For n = 50, the fully diffuse specification 
was most often picked. More importantly, specifications that included one or two 
divergent priors were hardly ever preferred. The prior specifications that included only 
diffuse and aligned priors were selected 0.89 of the time. 

For n = 100 and 250, the specification with a diffuse intercept prior and an aligned, 
weakly informative slope prior was most often selected. Similar to the results for n = 50, 
prior specifications that included a divergent intercept were hardly ever preferred. 
However, specifications in which an aligned intercept prior was combined with a 
diverging slope prior became more likely to emerge as the optimal prior specification. 
Prior specifications that included only diffuse and aligned priors were selected 0.93 of the 
time for n = 100 and 0.88 of the time for n = 250. 

For n = 500, the prior combinations most often selected shifted markedly to the 
specification with an aligned, weakly informative intercept prior and a divergent, 
moderately informative slope prior. Overall, the likelihood of selecting any prior 
specification was more evenly distributed over all prior specifications in which the 
intercept prior was diffuse or aligned. Prior specifications that included only diffuse and 
aligned priors were selected 0.31 of the time. Thus, as the sample size increased, prior 
specifications that included a diverging prior for the mean slope parameter were more 
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likely to emerge as the optimal prior specification when it came to generating prior-
predictive samples that are in line with the mean of y1. 

A different pattern emerged if the mean of y5 was the target of the prior-predictive p-
value (Table 12). For n = 50 and 100, prior specifications with a diverging intercept or 
slope prior were associated with the optimal prior-predictive p-value for some 
replications. Most notably, for n = 100, the prior specification with a diffuse prior on the 
intercept mean and a diverging, strongly informative prior on the slope mean resulted in a 
prior-predictive p-value closest to 0.5 for a large majority of the replications. This 
unexpected finding is further discussed in Appendix A. However, for n = 250 and 500, 
the optimal prior-predictive p-value was associated only with prior specifications that 
included diffuse or aligned priors. This finding further demonstrates the importance of 
assessing the prior-predictive ability of a model for different aspects of the observed data. 
A researcher who only focused on y1 might have selected a prior specification that 
included a diverging prior for the slope mean parameter, resulting in increased parameter 
estimate bias and RMSE. A researcher who looked at y1 and y5 would be unlikely to 
make the same decision. However, even if both prior-predictive p-values were examined, 
a researcher would still be unlikely to select highly informative priors, which may not be 
optimal for minimizing posterior parameter estimate bias and RMSE. 
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4.4 Discussion 

Study 2 examined the ability of the DAC, BF, and a prior-predictive checking 
procedure (i.e., prior-predictive p-value) to detect prior-data disagreement in Bayesian 
SEM. Gaining a better understanding of the extent to which those indices can be used for 
assessing the presence of prior-data disagreement will help applied researchers become 
aware of the potential impact their priors may have on inferences based on the posterior 
parameter estimates. In the Introduction, I linked each of the three prior-data 
disagreement indices to a specific question that they could answer about the potential 
disagreement between the prior and the data. I will now discuss what the results of this 
study can tell us about the extent to which each of the indices can be used to answer those 
questions in the context of SEM. 

4.4.1 The DAC 
The specific question addressed with the DAC is: Is this prior a good representation 

of the information present in the data about parameter !? The results of this study show 
that the DAC can be used to answer this question quite well. Notably, highly informative 
divergent priors were consistently flagged as disagreeing with the data across sample 
sizes. Moderately informative divergent priors were also likely flagged as disagreeing 
with the data for n = 50, and consistently flagged as disagreeing with the data for n = 100 
or larger. These results are encouraging, as those two diverging prior specifications 
resulted in the most severe posterior parameter estimate bias and RMSE across the 
included sample sizes. For n = 50, the DAC sometimes indicated prior-data disagreement 
for the aligned, strongly informative prior. This may reflect the DAC’s ability to detect 
prior-data disagreement due to a conflict of information: The researcher-specified prior 
was more precise than the information from the data. However, it may also reflect the 
increased likelihood of drawing a sample that is not representative of the population if the 
sample size is small. Thus, with small sample sizes, the DAC may indicate prior-data 
disagreement that is due to a diverging prior or due to a diverging sample. 

For that reason, it may be beneficial for researchers to compare multiple potential 
prior specifications to assess whether a specific prior may minimize the prior-data 
disagreement. The results of this study showed that if the DAC was compared across 
prior specifications, it was likely that one of the aligned prior specifications was selected 
as the optimal prior specification. The larger the sample size, the more likely it became 
that the strongly informative aligned prior distribution was selected as the optimal prior 
specification. The DAC’s tendency to prefer informative, aligned priors may be 
beneficial for parameter estimation accuracy, as the results showed that informative, 
aligned prior specifications resulted in lower relative bias and RMSE across sample sizes. 

Overall, the DAC was easily implemented to assess prior-data disagreement for SEM 
in this study. Since its computation only requires the Bayesian estimation of the 
benchmark prior model to form the reference posterior, "!(!|%), the computation time 
was extremely fast compared to the two other approaches examined in this study. The 
resulting DAC can be used to make a clear, binary decision regarding prior-data 
disagreement based on a meaningful, prespecified cutoff. Furthermore, the presence of 
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prior-data disagreement can be examined for each parameter in isolation, making it easier 
for the researcher to identify priors for specific parameters that disagree with the data. 
However, this may also pose a potential drawback for the use of the DAC, as priors 
placed on different parameters may interact in unexpected ways (Depaoli et al., 2020). 
This interaction among priors cannot be captured by the DAC.  

Furthermore, the value of the DAC depends on the proper specification of the 
benchmark priors and reference posterior. The large number of parameters often involved 
in SEM further complicates this process, as diffuse priors placed on some parameters 
may act in an informative manner when combined with diffuse priors placed on other 
parameters (Depaoli, 2013; Depaoli & Clifton, 2015; Smid & Winter, 2020; van Erp et 
al., 2018). For the current study, I examined several benchmark prior specifications (see 
Footnote 15) to find a specification that minimally impacted the posterior distributions of 
the mean intercept and slope parameters. Default priors that are specified in Bayesian 
estimation packages such as ‘blavaan’ (Merkle & Rosseel, 2018) may not be appropriate 
for estimating the reference posterior used to compute the DAC. Benchmark priors that 
are used for one study or model may not be appropriate for use with a different sample or 
model. Thus, using the DAC necessitates the thoughtful specification of a set of priors 
that have a minimal impact on the reference posteriors. Researchers may also examine 
the impact of their chosen benchmark priors through a sensitivity analysis of several 
alternative benchmark priors. 

4.4.2 The BF 

The question addressed with the BF is: Does this prior result in a marginal likelihood 
that is more supportive of the data than a benchmark prior? The results of the current 
study appear to indicate that the BF may be able to answer this question under certain 
circumstances. The BF was likely to detect diverging, strongly informative priors, even 
for the smallest sample size included in the current study. If both priors were diverging, 
evidence for prior-data disagreement was consistently detected, even if the priors were 
only weakly informative (for n = 50 to 250). This highlights an advantage of the BF over 
the DAC in that the BF considers all specified priors simultaneously. Whereas weakly 
informative, divergent priors were unlikely to be detected through the DAC, the BF 
values of models with two diverging, weakly informative priors tended to be visibly 
greater in magnitude compared to specifications with just one diverging weakly 
informative prior.  

However, the BF tended to indicate prior-data disagreement if aligned, strongly 
informative prior specifications were used with smaller sample sizes (i.e., n = 50 or 100). 
This finding was unexpected, as previous research showed that only the DAC tended to 
penalize overly informative priors (Veen et al., 2018). The current study differs from 
previous research in that priors for two parameters were varied simultaneously. If only 
one of the two priors was aligned and strongly informative, the BF was generally unlikely 
to indicate prior-data disagreement. Only when both priors were aligned and strongly 
informative did the BF increase visibly. Thus, it may be that the threshold at which the 
BF starts penalizing a conflict of information is higher (i.e., multiple priors need to be 
overly informative), or that this tendency to penalize overly informative priors only 
emerges in more complex models (i.e., SEMs).  
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Moreover, while the DAC has a meaningful cutoff value that differentiates between 
prior-data agreement and disagreement (DAC > 1), the BF does not have a uniformly 
applicable cutoff value that can easily be applied. The results reported in the current 
study regarding the optimal cutoff value show that this value may decline as the sample 
size increases (at least up to n = 250). This finding is in line with previous research 
showing that a meaningful BF cutoff value for deciding between two models depends on 
the sample size (Morey & Rouder, 2011). While it was possible to use an analytical 
approach to find the optimal cutoff value in the current study, these cutoff values cannot 
be generalized beyond the population model and sample sizes examined. Although the 
results presented here showed that the BF rapidly increased in the presence of severe 
prior-data disagreement, it was less straightforward to differentiate between for example 
diverging weakly informative priors and aligned strongly informative priors. Thus, it may 
be difficult for applied researchers to discern if their prior specification reflects prior-data 
disagreement for their particular sample and model specification. For that reason, it may 
be more meaningful to compare BFs across multiple prior specifications and find the 
prior specification with the lowest BF. However, with smaller sample sizes, this approach 
is likely to prefer prior specifications that are less informative. As posterior estimates 
were less biased with aligned informative priors, the BFs tendency to prefer diffuse or 
aligned weakly informative priors is not ideal.  

Furthermore, given the problems that arose with the largest sample size included in 
the study (n = 500), using the BF for assessing prior-data disagreement may be 
problematic for applied researchers using SEMs or other complex models with larger 
samples. A researcher who collects longitudinal data from 500 participants may think that 
the prior specification no longer affects the posterior estimates. However, the results of 
the current study indicated that with n = 500, the posterior estimates of the mean intercept 
and slope parameters were still meaningfully biased for some diverging prior 
specifications. Thus, assessing prior-data disagreement remains relevant even with these 
larger sample sizes. Although it is unlikely that an applied researcher would compare 49 
prior specifications as was done in the current study, the time commitment becomes 
impractical even with fewer options. For example, if a researcher would like to compare 
six prior specifications for a sample of n = 500, it might take at least seven hours even if 
they have access to state-of-the-art simulation computers. Future research could explore 
techniques for optimizing the efficiency of posterior sampling of complex models such as 
SEMs so that comparing the marginal likelihood across several models or prior 
specifications becomes more feasible with larger sample sizes. 

Finally, if the BF is used to compare a set of informative prior specifications to a 
benchmark (diffuse) prior specification, researchers are required to find a set of priors 
that minimally affect marginal likelihood. However, with the BF, researchers can also use 
an alternative approach, not examined in the current study. Specifically, researchers can 
directly compare the marginal likelihood generated through two different informative 
prior specifications. For an example of this process, I refer to Veen and colleagues 
(2018). 
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4.4.3 The prior-predictive p-value 

The specific question that prior-predictive checks address is: Is this prior able to 
predict my observed data well? Or: Are my observed data unexpected under this prior 
specification? The results of the current study indicate that whether the prior-predictive 
p-value can answer these questions depends on several factors. 

First, the ability to detect prior-data disagreement with the prior-predictive p-value 
depended to a large extent on the observed data that were at the center of the calculating 
of this p-value. If the observed mean of y1 was used as the basis of the discrepancy 
function, prior-data disagreement was never detected using commonly used cutoff values. 
Moreover, although the prior-predictive p-value was sensitive to some extent to a 
diverging intercept mean prior, its value was barely affected by a diverging slope mean 
prior. This lack of impact reflects the way the LGM was specified, as the path between 
the slope mean parameter and the observed variable y1 was fixed to 0 (see Figure 41). 
This model specification meant that prior specifications that included a diverging slope 
prior were sometimes selected as the optimal prior specification. In contrast, if the 
observed mean of y5 was used as the basis of the discrepancy function, prior-data 
disagreement was more likely to be detected with larger samples (n = 250 and 500), 
particularly if both priors were diverging. Across sample sizes, the prior-predictive p-
value was affected by a diverging prior specified for either parameter. Furthermore, the 
prior-predictive p-value was more strongly affected if both priors were diverging. That 
meant that prior specifications with diverging slope priors were never selected as the 
optimal prior specification. The ability to consider priors specified for all parameters 
simultaneously (as with the BF) is a clear advantage of the prior-predictive p-value over 
the DAC. Based on these findings, applied researchers are urged to examine multiple 
aspects of their observed data to thoroughly investigate to what extent their observed data 
are unexpected under their prior specification. 

The above findings highlight the utility of the prior-predictive p-value based on prior-
predictive samples generated with the R package ‘rstan’ (Stan Development Team, 
2020). However, researchers should also be cautioned about using the prior-predictive p-
value if they assess prior specifications for SEMs that are entirely or partially diffuse. As 
pointed out in the Results section and further discussed in Appendix A, factors unrelated 
to the data, model, or prior specification may affect the prior-predictive p-value if diffuse 
priors are specified. These factors include aspects of the computer used to estimate the 
prior-predictive samples (e.g., operating system, hardware, underlying libraries, and 
specific C++ compiler) and the random seed specified in the sampling() function of the 
‘rstan’ package. Although diffuse priors may be unlikely to reflect prior-data 
disagreement, they may still affect the posterior samples in unexpected ways (Depaoli, 
2013; Depaoli & Clifton, 2015; Smid & Winter, 2020; van Erp et al., 2018). For that 
reason, researchers may still want to examine whether their diffuse prior specification can 
predict their observed data well. I strongly urge these researchers to interpret the prior-
predictive p-value with caution. Where possible, alternative random seeds (and when 
possible, computer setups) should be examined to assess the stability of the prior-
predictive samples. 
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Finally, it should be noted that, compared to the other two indices examined in the 
current study, the findings regarding the prior-predictive p-value are the least 
generalizable, as they may depend on my choice of the minimal sufficient statistic (the 
observed variables’ sample means). This implementation of the prior-predictive p-value 
is not invariant to the choice of minimal sufficient statistic (Jang, 2010). A potential 
solution that may be investigated in future research was proposed by Nott and colleagues 
(Nott et al., 2016). In their approach, the discrepancy function is defined by using the 
distance between the researcher specified prior, "(!), and resulting posterior "(!|%). 
This distance could be quantified through a distance measure such as the KL divergence 
and used to define the prior-predictive p-value with the following discrepancy function: 
 

 '" 	= 	'(*+[(!|%)||"(!)] ≤ *+["(!|%#$%)||"(!)]). (39) 
 
The advantage of this implementation of the prior-predictive p-value is that it depends on 
the observed data only through the posterior distribution. This means that the discrepancy 
function is a function of any sufficient statistic and thus invariant (Lek & van de Schoot, 
2019; Nott et al., 2016). This adjustment would result in a prior-predictive p-value that is 
more similar to the DAC, but that does not rely on the specification of a benchmark prior 
or reference posterior. However, this implementation of the prior-predictive p-value 
addresses a different question than the prior-predictive p-value examined in the current 
study: Is this prior able to predict my posterior well? Or: Is my posterior unexpected 
under this prior specification? Future research may compare this approach to 
implementing the prior-predictive p-value that more directly reflects the level of 
agreement between the prior and some aspect of the observed data. 

4.4.4 How Prior-Data Disagreement Relates to Prior Sensitivity 
Analysis 

The assessment of prior-data disagreement may be considered complementary to a prior 
sensitivity analysis. A prior sensitivity analysis is done after a researcher estimates a 
model based on their prior specification. It allows the researcher to assess the impact of 
their prior specification on the posterior estimates as compared to those obtained using 
different priors (Depaoli et al., 2020; B. O. Muthén & Asparouhov, 2012). The results of 
a prior sensitivity analysis illustrate how robust the final model results (based on the 
priors that the researcher originally specified) are to different prior specifications. The 
three indices examined in the current study do not directly assess the impact of the prior 
specification on the posterior estimates but instead, assess the extent to which the priors 
align with the information provided through the observed data. Thus, they could be used 
as a diagnostic tool to evaluate why the final model results are or are not robust to the 
chosen prior specification. Recall that the presence of prior-data disagreement does not 
automatically imply that the prior was wrong. It may be just as likely that the observed 
data is unusual. 

Furthermore, although not the focus of the current study, it should be noted that the 
prior-predictive samples that are generated to compute the prior-predictive p-value do not 
rely on the existence of any observed data. For that reason, these prior-predictive samples 
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form an important tool for assessing the appropriateness of the intended prior 
specification before any data are observed. A clear indication of future prior-data 
disagreement arises when the prior predictive samples based on a certain prior 
specification cover a range of values that are not expected to be observed under the data 
generating process. If this happens, a researcher will have to consider whether this 
discrepancy is due to an inappropriate prior or an inaccurate model (Evans & Moshonov, 
2006b). 

A concern that arises with a prior sensitivity analysis is the temptation to engage in 
questionable research practices to find the “best” results, also known as Bayesian 
HARKing (hypothesizing after results are known; Kerr, 1998). After comparing different 
priors, a researcher may discover that some alternative prior specification leads to model 
results that are more in line with their hypotheses. Once a researcher has observed this 
more favorable result, they may be tempted to switch to that alternative prior 
specification and pretend that it was in line with their prior belief all along. Similar to 
conducting a prior sensitivity analysis, checking for prior-data disagreement opens the 
door to HARKing. To minimize the temptation of fishing for the “best” prior 
specification, the scientific community should continue to push for transparent and 
reproducible reporting of research designs and analyses (Rouder et al., 2019; Shrout & 
Rodgers, 2018). I also want to urge researchers to remember that their chosen prior is just 
one factor that could lead to prior-data disagreement. It is my hope that researchers will 
take this new source of information and use it to make more informed decisions about all 
components involved in the analysis: the prior, the data, and the model. 

4.4.5 Conclusions 

Previous research has demonstrated that the prior specification can meaningfully affect 
inferences drawn based on SEMs (e.g., Depaoli, 2014; Depaoli et al., 2017; Finch & 
Miller, 2019; Holtmann et al., 2016; Marcoulides, 2018; Miočević et al., 2020; Dingjing 
Shi & Tong, 2017; Smid, Depaoli, et al., 2019). The assessment of prior-data 
disagreement helps researchers become aware of the potential impact of their prior 
specification. Alternatively, the assessment of prior-data disagreement may point out 
something unusual about the collected sample data. The current study illustrated to what 
extent three indices for detecting prior-data disagreement can be used to assess different 
aspects of this potential disagreement in SEMs.  

Based on the results of Study 2, I urge researchers to compare multiple prior 
specifications, as this will shed more light on the presence of prior-data disagreement 
than the assessment of a single prior specification. While the DAC has advantages such 
as its ease of implementation, researchers should ensure that the benchmark prior 
minimally affects the reference posterior. Furthermore, if priors for multiple parameters 
are altered across prior specifications, the DAC cannot be used to assess interactions 
between priors within a specification. For that reason, the BF and prior-predictive p-value 
may be preferred. However, these indices come with their own drawbacks. Assessing 
prior-data disagreement through the BF may become unfeasible as model complexity, 
sample size, or the number of prior specifications increase. Use of the prior-predictive p-
value may not be appropriate for prior specifications that are partially or fully diffuse. 
Moreover, the prior-predictive ability of each prior specification should be assessed for 
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different aspects of the observed data to understand the full impact of the prior 
specification. A limitation of all three indices is that they were unlikely to point out the 
aligned, strongly informative prior specification as the optimal choice, particularly with 
smaller samples, even though this prior specification resulted in the lowest bias and 
RMSE of the posterior estimates.
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Chapter 5  

General Discussion 
In this section, I discuss the main implications and contributions of the two studies in this 
dissertation. I also discuss relevant limitations to the research presented in this 
dissertation and provide suggestions for future directions for methodological research.  

5.1.1 Contributions 

The primary purpose of this dissertation was to improve the applicability of Bayesian 
estimation of SEM for applied researchers. Through two simulation studies, I examined 
two components that are central to Bayesian estimation in general and Bayesian SEM in 
particular: model and prior specification. The findings of these two studies contribute to 
existing knowledge on these two topics by highlighting the strengths and drawbacks of 
methods available to researchers across a variety of population models and conditions. 

An important finding of this dissertation was that comparing across multiple 
specifications often resulted in more accurate decisions, whether the focus was on 
multiple models (Study 1) or multiple priors (Study 2). For instance, while the Bayesian 
approximate fit indices often indicated good model fit for misspecified models, their 
value did decrease when a correctly specified model was compared to a misspecified 
model. Similarly, whereas diverging prior specifications did not necessarily result in a 
DAC or a prior-predictive p-value that indicated prior-data disagreement, these diverging 
priors were unlikely to be selected as the optimal prior specification once they were 
compared to aligned or diffuse priors. It is encouraging to find this pattern across both 
studies. Regarding statistical model specification, it is generally agreed that “[a]ll models 
are wrong but some are useful” (Box, 1979, p. 202) or “[e]very scientist in the back of his 
mind takes it for granted that even the best theory is likely to be an approximation to the 
true state of affairs” (Meehl, 2009, p. 113). The practice of model comparison allows 
researchers to identify a model that is least wrong, or most useful. We could similarly 
assume that all priors are wrong, but some are useful. Even with extensive prior 
knowledge, researchers are unlikely to specify a prior that is exactly in line with the 
underlying population parameter distribution. Here again, comparing different priors in 
terms of prior-data disagreement may provide information to the researcher about which 
prior is least wrong, at least compared to the observed data. As stated in Chapter 4, this 
kind of information may serve as a useful diagnostic tool to understand the results of a 
prior sensitivity analysis. 

The assessment of prior-data disagreement may serve an additional purpose in 
Bayesian SEM. Study 1 revealed that diverging priors confounded the association 
between the model specification and decisions regarding model fit or selection. Correctly 
specified models were more likely to result in model fit index values indicative of poor 
fit. Conversely, aligned priors did not affect this association between model specification 
and model fit or selection. Researchers who include informative priors in their analysis 
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gain a deeper understanding of what drives their model fit and selection decisions by 
using the prior-data disagreement indices examined in Study 2. Following the Bayesian 
perspective, finding disagreement between the priors and the data does not imply that the 
priors are wrong or need to be altered (Spiegelhalter et al., 2014; Veen et al., 2018; 
Young & Pettit, 1996). However, being aware of a disagreement provides a context 
around a study’s findings regarding the reported model fit and posterior estimates. If the 
priors align with the data, a researcher can be more confident that their model fit and 
selection assessment reflects the appropriateness of their model specification and not the 
disagreement between the priors and the data. 

5.1.2 Limitations and Future Directions 

Several limitations emerged in the process of completing this dissertation that all provide 
avenues for future research to explore. For Study 1, I relied on commonly used cutoff 
values, such as BCFI > .95 or PPP < .05. While this design choice was made to be in line 
with the general use of these indices by applied researchers, numerous studies, most 
within the frequentist framework, have shown that cutoff values do not necessarily 
generalize across models, sample sizes, and other aspects of an analysis (e.g., Leite & 
Stapleton, 2006; Mcneish & Hancock, 2018; Niemand & Mai, 2018; Xia & Yang, 2018). 
One important future direction is to provide further insight into the sensitivity of the 
Bayesian approximate fit indices to factors other than model specification and provide 
guidance as to when cutoff values may be appropriate. 

Another opportunity for future research is to compare the impact of different missing 
data mechanisms on the ability of the Bayesian model fit indices to detect 
misspecification. In Study 1, I focused on data that were MAR, or ignorable. Similarly, 
Asparouhov and Muthén (Asparouhov & Muthén, 2020) examined data that were MCAR 
and MAR, both considered ignorable. However, data collected for social science research 
may be more likely to include data that are MNAR, a nonignorable type of missing data. 
For example, in an educational research testing scenario with multiple items on an 
assessment, values may be missing because participants did not reach one or more items 
(Rose et al., 2017). Similarly, in survey research in which not all questions are 
mandatory, participants may choose not to answer certain items, based on item content or 
some other factor (C. W. Liu & Wang, 2017). Dropout from a longitudinal study can also 
be caused by a MNAR mechanism (Cuer et al., 2020). As these mechanisms may not 
always be apparent, it is essential to examine the consequences of assuming that data are 
MAR when they are in fact MNAR. In addition, it may also be interesting to examine if 
explicitly modeling the MNAR mechanism improves model fit assessment. 

As stated in Chapter 4 and Appendix A, I discovered two major limitations of the 
prior-data disagreement indices investigated in Study 2. First, the computation of the BF 
became untenable as model complexity and sample size increased. Second, the 
generation of the prior-predictive samples was unstable for prior specifications that were 
entirely or partially diffuse. Whereas the first issue may be addressed through the 
development of more efficient estimation methods for the marginal likelihood or the 
introduction of ever more powerful computers, the second issue is more challenging to 
address. Researchers interested in examining prior-predictive samples generated from 
primarily diffuse prior specifications will need to interpret their findings with caution.  
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Finally, the conclusions drawn from the results of the studies in this dissertation are 
limited to the conditions included in the simulation designs. While the simulations were 
designed to represent realistic research scenarios, it is impossible to incorporate all the 
nuances that a researcher may encounter. Future research may identify other factors that 
affect model fit and selection assessment, such as measurement quality (Beauducel & 
Wittmann, 2005; Heene et al., 2011; Mcneish et al., 2018), skewness or kurtosis in the 
observed variables (Maydeu-Olivares et al., 2017), or categorical variables (Garrido et 
al., 2016). In addition, researchers might focus on other SEMs that benefit from Bayesian 
estimation, such as growth mixture models (Depaoli et al., 2019). 

 

5.1.2.1 Recommendations for Applied Researchers 

In this section, I lay out practical recommendations for applied researchers based on the 
findings of Study 1 and Study 2. For researchers interested in assessing model fit for a 
single model, I recommend focusing on the PPP-value as opposed to the approximate fit 
indices. With small sample sizes (and complete data), the approximate model fit indices 
may falsely indicate that a correctly specified model is misspecified, whereas the PPP-
value is unlikely to falsely reject a correctly specified model, even with small sample 
sizes and missing values. However, if a researcher only has access to a relatively small 
sample (i.e., n ≤ 100), a PPP-value > .05 does not necessarily indicate that a model is 
correctly specified, particularly if the data contain many missing values. Under these 
conditions, even a meaningful misspecification such as the omission of a quadratic slope 
is unlikely to cross any of the model fit indices’ cutoff values (including the approximate 
fit indices). A researcher who has access to a larger sample (e.g., n = 500) without 
missing values, may compare their conclusion based on the PPP-value to their conclusion 
based on the approximate fit indices. Here, the BRMSEA appears more sensitive to 
misspecification than the BCFI and BTLI. If both indicate that a model is misspecified, 
the magnitude of the misspecification is likely substantial. In contrast, if only the PPP-
value indicates that the model is misspecified, the misspecification may be more subtle: 
the model fits approximately, but not absolutely, well. Finally, researchers whose data 
include a large number of missing values across the majority of the observed values may 
not be able to interpret the approximate fit indices at all, as they cannot be computed. 
Under these circumstances, researchers will have to rely on the PPP-value, which will be 
somewhat less likely to detect misspecification (although the overall sample size is more 
important to this ability than the number of missing values). 

For researchers interested in comparing multiple models and selecting the best 
specification, I recommend focusing on the approximate model fit indices over the PPP-
value, BIC, and DIC. Even with small sample sizes, model selection based on the 
approximate model fit indices is more likely to result in selecting the correctly specified 
model. However, the approximate fit indices may be equivalent across model 
specifications if the sample size is small (i.e., n ≤ 100) or if missing values are prevalent. 
Under those circumstances, the PPP-value can serve as an alternative. Compared to the 
BIC and DIC, the PPP-value is more likely to select the correctly specified model. The 
BIC and, to a lesser extent, the DIC are more likely to prefer a parsimonious, slightly 
misspecified model over the correctly specified model. 
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Researchers should be careful to interpret model fit indices if they have specified 
informative priors on (some of) the parameters. If the prior specification disagrees with 
the information provided by the data, model fit indices may falsely reject the correctly 
specified model. This is particularly true for the BRMSEA, which still appears to be 
affected by diverging priors when n = 250. To gain a better understanding of how the 
informative priors may have affected the model fit indices, researchers should assess the 
potential presence of prior-data disagreement. 

Researchers can use multiple approaches to assess prior-data disagreement. 
Independent of the approach, I recommend that researchers examine multiple prior 
specifications, in line with a prior sensitivity analysis. Alternative prior specifications 
may include priors that are centered on the same value as the original prior specification, 
but that convey less precise prior knowledge (e.g., by increasing the variance 
hyperparameter). In addition, if researchers want to use the DAC or BF approach to 
assessing prior-data disagreement, they will need to use an appropriate diffuse prior 
specification. If researchers are unable to specify a diffuse prior specification (e.g., 
because diffuse priors cause convergence issues), they can examine to what extent their 
observed data are unexpected under their prior specification with the prior-predictive p-
value. I do not recommend that use of the prior predictive p-value for diffuse prior 
specifications, as the results may depend on the specific computer setup used to generate 
the prior-predictive samples.  

For researchers who can use an appropriate diffuse prior specification, the DAC is 
likely to flag meaningful prior-data disagreement across sample sizes. However, the DAC 
is computed for each prior-parameter pair sequentially, which may become impractical 
when models include many parameters. In that case, the BF may be used as an 
alternative, as long as the sample size is not too large, and the model is relatively simple 
(in terms of number of parameters). An advantage of the BF over the DAC is that entire 
prior specifications can be compared, which may reveal that some priors interact to result 
in prior-data disagreement. Comparing multiple prior specifications is essential here, as 
the BF does not have an intrinsic cutoff value that generalizes across sample sizes (or 
model complexities). 

Overall, it is my hope that the results of these two studies can serve as a starting point 
for researchers as they embark on their next Bayesian SEM adventure. 
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Appendix A: A Note on the use of Prior-Predictive Samples 

with Diffuse Priors for SEM 
Researchers should be aware that prior-predictive samples generated through the 

package ‘rstan’ for SEMs with diffuse priors on all parameters may be affected by factors 
not directly related to the observed data, priors, or specified model. Specifically, the 
developers of Stan (Stan Development Team, 2021) state that Stan results will only be 
exactly reproducible if all of the following components are identical: 

1. Stan version 
2. Stan interface (RStan, PyStan, CmdStan) and version, plus version of 

interface language (R, Python, shell) 
3. Versions of included libraries (Boost and Eigen) 
4. Operating system version 
5. Computer hardware including CPU, motherboard, and memory 
6. C++ compiler, including version, compiler flags, and linked libraries 
7. Same configuration of call to Stan, including random seed, chain ID, 

initialization, and data 
While researchers can control some of these components directly (e.g., Stan version and 
random seed), other components are more difficult to control and may change 
unexpectedly as time passes. For example, if analyses are run on a high-performance 
cluster (HPC) managed by external parties (e.g., the university), one may not be able to 
control the operating system version or hardware used. 

For this dissertation, the issue with reproducibility arose as I was compiling the 
results for Study 2. For efficiency, I used several computers (e.g., a simulation computer 
running Windows 10 and the UC Merced HPC running Linux) to run the simulation cells 
for Study 2. As I was comparing the results across cells, I noticed clear discrepancies for 
the prior-predictive samples generated for the fully diffuse prior specification. Further, 
small discrepancies existed for conditions in which a diffuse prior for one parameter was 
combined with an informative prior (aligned or diverging) for the other parameter. I 
systematically adjusted different aspects of my code to determine what the cause of these 
discrepancies was. From this examination, I could draw several conclusions: 

1. Differences between computers did not affect the posterior samples used to 
compute the posterior estimate bias, RMSE, DAC, or BF. Thus, the 
reproducibility challenges existed only for the prior-predictive samples used 
to compute the prior-predictive p-values. 

2. Prior specifications with two informative priors (aligned or diverging) were 
not affected by differences between computers. 

3. For a specific computer, the versions of R, Stan, and the package ‘rstan’ did 
not affect the prior-predictive samples generated with diffuse prior 
specifications. However, the random seed used in the sampling() function did 
affect prior-predictive samples generated with the fully diffuse prior 
specification. The impact of the random seed was less apparent for prior 
specifications with one informative prior. 
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4. Ensuring that the same versions of R, Stan, and the package ‘rstan’ (in 
addition to the same random seed, chain ID, and initialization) were used 
across computers did not resolve the reproducibility issues for prior-predictive 
samples generated with diffuse prior specifications. 

Thus, researchers should keep in mind that any conclusions regarding the 
appropriateness of (fully or partially) diffuse prior specifications may depend on the 
specific computer (and to a lesser extent the random seed specified in the sampling() 
function) they used to generate the prior-predictive samples. For example, in Study 2, the 
prior-predictive p-value of the mean of y1 for the diffuse prior on the mean intercept and 
aligned moderately informative prior on the mean slope specification with n = 500 
indicated that there was prior-data disagreement for 100% of replications on one 
computer system (as reported in the Results section), but for 0% of replications on a 
second computer system.  

Although diffuse priors may not reflect prior-data disagreement, examining their 
appropriateness may still be necessary as diffuse priors can sometimes affect posterior 
estimates in unexpected ways (Depaoli, 2013; Depaoli & Clifton, 2015; Smid & Winter, 
2020; van Erp et al., 2018). Therefore, prior-predictive samples generated for models 
with (fully or partially) diffuse priors should be interpreted with caution. Furthermore, 
researchers should provide specific details regarding their random seeds and computer 
setup when they present their findings so that results can be replicated, or at least so that 
the reader knows the settings implemented for the specific study. All code (including 
random seeds) used to generate the prior-predictive samples reported in Study 2 can be 
found on the OSF page connected to this dissertation. Prior-predictive samples were 
generated with R version 4.0.3, ‘rstan’ package version 2.21.2, on the UC Merced HPC, 
which runs CentOS Linux release 7.8.2003 (Core) with kernel 3.10.0-
1127.19.1.el7.x86_64. The UC Merced HPC is supported by the National Science 
Foundation (Grant No. ACI-1429783). 




