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Abstract

Noise Tailoring for Enhancing the Capabilities of Quantum Computers

by

Akel Hashim

Doctor of Philosophy in Applied Science & Technology

University of California, Berkeley

Professor Irfan Siddiqi, Chair

The successful implementation of algorithms on quantum processors relies on the accurate
control of quantum bits (qubits) to perform logic gate operations. However, qubits in the
noisy intermediate-scale quantum (NISQ) era are short-lived and susceptible to a variety
of errors and noise due to imperfect control signals and incomplete isolation from the sur-
rounding environment. For example, systematic miscalibrations, unwanted entanglement,
and crosstalk in the control of qubits can lead to a coherent form of error which has no clas-
sical analog. Coherent errors can severely limit the performance of quantum algorithms in
an unpredictable manner on timescales shorter than the coherence times of qubits. In recent
years, there has been growing interest in using methods which randomize the physical imple-
mentation of quantum gates to mitigate the impact of coherent errors, e↵ectively tailoring
them into a form of stochastic noise. In this thesis, we study one such method — randomized
compiling — and show how gate errors under randomized compiling are accurately described
by a stochastic Pauli noise model without coherent errors. We demonstrate significant per-
formance gains under randomized compiling for various di↵erent quantum algorithms, such
as the quantum Fourier transform. We further show that randomized compiling can improve
the predictability of quantum algorithms, and enables unique forms of error mitigation for
enhancing the performance of quantum computations in the NISQ era. Finally, we show that
randomized compiling can reduce worst-case error rates by orders of magnitude, enabling the
accurate characterization of quantum gates for fault tolerance. Our results demonstrate that
randomized compiling can be utilized to leverage and predict the capabilities of modern-day,
noisy quantum processors, paving the way forward for scalable quantum computing and fault
tolerant quantum error correction.
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Chapter 1

Introduction

1.1 Current State of the Field

We have entered what many are calling the “second quantum revolution” [1, 2, 3]. While
the science of quantum mechanics was developed 100 years ago, we are now beginning to
learn how to harness the power of quantum mechanics, but we do not yet understand the
limits to which we can control quantum systems. In the last two decades, the fields of
quantum computing and quantum information science (QIS) have grown at a rapid pace,
fueled in part by the excitement of developing technologies based fundamentally on quantum
mechanics, and in part by the fear of being left behind in the race to be the first country
to build a quantum computer capable of achieving the potential we know exists. Several
di↵erent “laws” governing the growth of quantum computers have been claimed, in analogy
to Moore’s law for transistors. Regarding superconducting quantum bits (qubits), “Girvin’s
law” states that qubit coherence times (e.g. lifetimes) are growing at an exponential rate [4,
5], increasing by a factor of ⇠ 10⇥ every three years. Regarding the computational power
of quantum computers relative to classical computers, “Neven’s law” states that quantum
computers are growing at a doubly exponential rate. Whether these claims hold true in the
distant future remains to be seen, but needless to say, the power of quantum computers
is growing rapidly, bolstered in large part by the vast amount of money in the field, with
tens of billions of dollars in public and private funding having been invested in the past 20
years [6]. Despite this, the central question still exists: are quantum computers capable of
solving problems that classical computers cannot solve in any reasonable amount of time?
Already, several claims to quantum supremacy or quantum advantage have been made using
superconducting and photonics-based hardware platforms [7, 8, 9, 10] for carefully designed
problems. However, the long-term implications of these experiments are perhaps not yet
known, and demonstrating quantum advantage for “practical” applications [11] is still very
much an open question.

Much of the current research in the field is focused on improving or building high-
coherence qubits capable of performing longer quantum computations [12]. This is par-
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ticularly important for superconducting qubits which, despite the fast speeds at which they
can perform quantum logic operations, su↵er from shorter coherence times compared to
atomic-based systems [13]. However, in this era of noisy intermediate-scale quantum (NISQ)
[14] computers, qubit coherence times and operations times are not the only characteristics
that matter for quantum computations. NISQ era computations are called “noisy” for a
reason, not only because noise from the surrounding environment can couple to qubits and
cause decoherence, but also because other novel forms of errors can occur which, as we will
see in this thesis, have no classical analogue. If the global impact of all such noise and errors
limits the timescale within which one can perform useful computations, and if this timescale
is less than the coherence times of the qubits, then coherence times are no longer the limiting
factor. While engineering high-coherence qubits is of utmost important in the development
of scalable quantum computers needed for fault tolerance, work must also be done to ensure
that quantum computations can be reliably performed up to the limits of their coherence
times.

This thesis focuses on the aforementioned regime, in which the sum of all errors and
noise limits the useable timescale of qubit operations below that of their coherence times.
We therefore do not worry about qubit coherence times, but rather what types of errors are
most pernicious to quantum computations within the timescale of the coherences, and what
can be done to mitigate their e↵ects. While the experimental work presented in this thesis
was performed on superconducting circuits, none of the methods we describe are specific
to superconducting qubit platforms. In fact, the methods and protocols we introduce are
general, and are platform agnostic. Therefore, our results have broad applicability across
many di↵erent hardware platforms.

The thesis is structured as follows: Chapter 2 covers the basic physics of superconduct-
ing circuits, how quantum gates are implemented, and how superconducting qubits satisfy
all of the requirements necessary for universal quantum computation. Chapter 3 introduces
common noise and errors in quantum computations, and di↵erent ways of representing quan-
tum processes. Chapter 4 introduces the main concepts behind “noise tailoring,” a central
theme in this thesis, which will be necessary in order to understand the methods intro-
duced in the subsequent chapters. Chapter 5 outlines the field of quantum characterization,
verification, and validation, which encompasses various di↵erent methods for benchmarking
the performance of quantum gates and quantum processors; we introduce several di↵erent
benchmarking protocols, and discuss what they can (and cannot) tell us about the perfor-
mance of general quantum circuits. Chapter 6 covers the primary focus of this thesis — a
protocol called randomized compiling, which can be used to change the structure of noise
and errors impacting quantum algorithms. Finally, in Chapter 7 we show how randomized
compiling enables di↵erent novel error mitigation methods for improving the performance of
NISQ applications. Chapter 8 concludes with an outlook on randomized compiling and the
future of QIS.
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1.2 Recommended Reading

Every grad student entering a new field asks the same basic question, “where do I start?”
Diving into the literature of any field of physics is a daunting task, not only because the
number of research papers on any given topic is large (and growing rapidly!), but also
because one’s knowledge base may not yet be mature enough to understand the topics
and math presented in contemporary research articles. Most graduate courses only teach
the fundamentals and rarely have time to delve into specialized topics. In this section, I
aim to provide some recommended material for students just starting out in the field of
superconducting quantum computing and QIS. This list is by no means comprehensive, and
is bias toward experimental physics and superconducting qubits. In other words, it is the
list I wish I had when just starting out in the field.

Quantum Optics & Cavity QED

Many of the experimental techniques employed in superconducting circuits are based on
quantum optics and cavity quantum electrodynamics (CQED). Therefore, having a basic
understanding of quantum optics is extremely important for understanding the physics of
superconducting qubits. For example, the treatment of the Jaynes-Cummings Hamilto-
nian (i.e. the interaction of light with a two-level system; see Section 2.6) is applicable to
many di↵erent hardware platforms in quantum computing. Furthermore, topics like coher-
ent and squeezed states, vacuum Rabi oscillations, parametric amplification, quantum non-
demolition (QND) measurements, and quantum trajectories all have their roots in quantum
optics. Below is a list of textbooks that cover these topics in great detail:

1. Quantum Optics – Scully & Zubairy [15]: This is a classic textbook on quantum
optics. While some of the notation might appear a bit dated, the material and diagrams
are extremely useful for understanding many of the core topics in quantum optics.
Scully & Zubairy uses the Jaynes-Cummings model extensively starting in chapter 6,
deriving the Hamiltonian from first principles, even though they never refer it by name.
The book has a nice treatment of the EPR Paradox, and finishes with a discussion of
more advanced topics such as complementarity, which-path detectors, and the quantum
eraser.

2. Introductory Quantum Optics – Gerry & Knight [16]: This is a good intro-
ductory textbook to quantum optics, including a thorough introduction to QED. The
book covers experimental topics such as CQED and trapped ions, and finishes with an
introduction to quantum cryptography.

3. Quantum Optics – Walls & Milburn [17]: The updated version of this textbook
o↵ers a modern treatment of quantum optics with clean, concise notation, and full
chapter treatments of more advanced topics, such as CQED, trapped ion systems, and
quantum information (qubits, entanglement, gates, etc.).
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4. Exploring the Quantum: Atoms, Cavities, and Photons – Haroche & Rai-
mond [18]: This is a must read for anyone interested in experimental QIS. While
the treatment of CQED is (naturally) based on atomic systems, Haroche & Raimond
provide a strong connection between experimental methods and quantum gates in
circuit-based quantum computing, which is applicable to many other hardware plat-
forms. Their discussion of quantum measurement at the quantum-classical boundary
was particularly illuminating.

Superconducting Quantum Computing

The field of superconducting quantum computing is based on the physics of the Josephson
junction. Therefore, knowledge of superconductivity and the Josephson E↵ect is neces-
sary for understanding how quantum circuits are implemented on Josephson junction-based
qubits. While many di↵erent textbooks on superconductivity exists, the Introduction to

Superconductivity – Tinkham [19] is an excellent reference for those interested in super-
conducting qubits. Tinkham dedicates two full chapters to the Josephson E↵ect, while also
providing a full treatment of the Ginzburg-Landau and BCS theories of superconductivity.

To go from Josephson junctions, to superconducting qubits, to superconducting quantum
computing contains a lot of di↵erent physics. The following theses and research papers
attempt to bridge these gaps, and provide foundational knowledge for the entire field of
superconducting quantum computing:

1. Introduction to Quantum Electromagnetic Circuits – Vool & Devoret [20]:
This article is based on a series of summer school lectures that provide a nice treatment
of superconducting qubits, starting from classical circuits and ending with artificial
atoms based on quantized LC circuits.

2. The superconducting circuit companion: an introduction with worked ex-

amples – Rasmussen et al. [21]: This article is a nice companion to Vool & Devoret,
but provides a more foundational framework for understanding superconducting qubits
in terms of circuit analysis.

3. A Quantum Engineer’s Guide to Superconducting Qubits – Krantz et al.
[22]: This is an excellent review article for all things related to superconducting quan-
tum computing, starting from system Hamiltonians, and ending with readout and
amplification of superconducting qubits. Re-reading this article 2 – 3 times would pro-
vide all of the basic foundational knowledge necessary for understanding circuit-based
quantum computing using superconducting qubits.

4. Circuit quantum electrodynamics – Blais et al. [23]: This article provides an
thorough overview of circuit QED (cQED)1, the circuit equivalent of cavity QED, in

1Not to be confused with cavity QED, which we denote CQED.
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which microwave resonators are coupling to superconducting qubits in order to realize
the atom-light interactions governed by the Jaynes-Cummings Hamiltonian.

5. Circuit quantum electrodynamics – Schuster [24]: This thesis provides an in-
depth overview of cQED, for those wanting more information beyond Blais et al.

6. Quantum Jumps and Measurement Backaction in a Superconducting Qubit

– Slichter [25]: The first three chapters of this thesis provide an excellent introduc-
tion to both superconducting qubits and parametric amplification, and is a standard
recommendation for new students joining the Quantum Nanoelectronics Laboratory.

Quantum Computing

While many introductory books exist on the topic quantum computing, there is no substitute
for Quantum Computation and Quantum Information – Nielson & Chuang [26],
more commonly referred to as “Mike & Ike.” There is a reason this book (at the time of
this writing) has been cited over 45,000 times. It covers the basics of quantum mechanics,
classical computing, complexity theory, quantum circuits, quantum algorithms, representa-
tions of quantum processes and error channels, distance measures and error metrics, and
error correction. I have heard many senior researchers in the field still refer to Mike and Ike
as their go-to reference.

Any subtopic within the field of quantum computing is likely to have its own dedicated
review article or book (and if not now, then in the near future). For example, I found
Variational quantum algorithms – Cerezo et al. [27] an extremely useful introduction
to the entire field of variational quantum algorithms and their contemporary challenges.
Beyond introducing a specific topic, these types of review papers can be a great resource for
finding the proper references for a given subject matter.

Miscellaneous

Many other great introductory articles exist. An example of one which does not fall into any
of the above categories is the Introduction to quantum noise, measurement, and

amplification – Clerk et al. [28], which is the de facto standard reference for quantum
noise and the fundamental limits it places on quantum measurement and amplification.
Those looking for a brief introduction to general measurement theory will also find this
article useful.

General Advice

When I was starting out in the field, I read a similar list of suggested works that I found
extremely useful [29]. While the examples provided above are by no means exhaustive, each
student or reader will end up compiling their own list of “most useful introductory material.”
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I highly recommend sharing this list with as many younger students as possible, as theses
are one of the best ways to transfer knowledge from one generation of students to the next.

Beyond basic introductory material, staying up-to-date on current research trends and
recent results is extremely important. For those unsure of how to do so or overwhelmed by
the vast number of papers published every day, I o↵er the following advice:

1. Make reading or perusing recent papers part of your daily routine. This need not take
up a significant amount of time out of your day.

2. The quickest way to learn is to read about topics that interest you the most. Read
papers that pique your interest, and follow the cited works in order to fill in the
background material. You will soon become very knowledgeable in fields in which you
are not an expert or are not currently researching yourself.

3. Do not worry about reading every paper from start to finish. If you find a paper
that sounds interesting, start by reading the abstract, introduction, and conclusion.
The basic concepts and results should all be contained within these sections. If you
are interested in learning more, try to understand the figures just from reading the
figure captions. Still interested? Try reading the bulk of the paper. But if you quickly
become lost or confused, it is okay to move on to something else. You can always come
back to the paper at a later time.

4. A good way to stay on top of recent results is to filter new posting on arXiv depending
on your field of interest. For example, visiting https://arxiv.org/list/quant-ph/
new lists new submissions under “Quantum Physics” for the current day. If you are
interested in a more social media approach, try perusing the top papers on SciRate,
where anyone can vote on which recent arXiv papers they find most interesting.

5. Collect and organize papers that you are interested in and/or are applicable to your
current research. This will become useful later on when you are trying to remember
in which paper you saw a certain result, or if you need to cite various papers in your
own manuscript or thesis. One great resource for organizing research papers is Zotero.

6. O↵er to present a research paper that interests you to the rest of your group or in a
journal club. This will force you to learn the material to the best of your ability in a
short time span. Furthermore, presenting and discussing results with other students or
researchers in your field is a great way to solidify and expand upon what you already
learned.

7. If research papers are di�cult to learn from, try finding recorded videos of the topic
(e.g. on YouTube). For example, many research colloquia will post recorded videos of
invited presenters who have published top research papers in the field. You might even
find a talk covering the exact paper you are interested in.

8. There is no one-fits-all approach. Find what works best for you!

https://arxiv.org/
https://arxiv.org/list/quant-ph/new
https://arxiv.org/list/quant-ph/new
https://scirate.com/
https://arxiv.org/
https://www.zotero.org/
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Chapter 2

Superconducting Quantum
Computing

Superconducting quantum bits (qubits) are at the forefront of the race to build practical
quantum computers. The goal of this chapter is to give a brief (yet comprehensive) overview
of their foundations — su�cient to build upon and understand the material presented in
later chapters — such that future students looking to use this thesis as a reference can
understand the basic physics of superconducting qubits from first principles.

2.1 The Josephson E↵ect: the primitive building
block of superconducting qubits

The Josephson e↵ect is a phenomenon in superconductivity in which Cooper pairs can tunnel
between two superconducting electrodes separated by a thin insulating barrier, resulting in
a superconducting current (or supercurrent) across the junction, even in the absence of an
applied voltage [30]. Prior to the Josephson e↵ect, quantum tunneling of normal (non-
superconducting) electrons was a well-known concept. The prediction of quantum tunneling
of Cooper pairs by physicist Brian Josephson and the subsequent experimental verification
[31, 32] led to the naming of such e↵ect after Josephson, for which he was awarded the 1973
Nobel Prize in Physics.

While there are many applications of the Josephson e↵ect, such as Superconducting
Quantum Interference Devices (SQUIDs) [33, 34], ultra sensitive magnetometers [35], gra-
diometers [36], voltmeters [37], amplifiers [38, 39], etc., more recently it has been utilized
in the creation of superconducting qubits [40, 41]. In fact, the Josephson junction (JJ)
is the fundamental component that makes possible the three basic superconducting qubit
archetypes: the flux, charge, and phase qubits. In this chapter, we describe the physics
behind the Josephson e↵ect and how it has been utilized to build superconducting qubits.
We then discuss the design and behavior of the three primary qubit types, and highlight
in detail the most common superconducting qubit archetype — the transmon qubit [42].
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(a) Typical layout of an S-I-S junction.

(b) Josephson junction circuit element. (c) SEM image of an actual S-I-S junction.

Figure 2.1: Josephson junction. (a) The layout of a typical S-I-S JJ. Two superconducting
electrodes are separated by an insulating (oxide) barrier, forming a junction such as Al-AlOx-
Al. The entire junction sits upon some substrate, such as Si. (b) Circuit diagram of a JJ. I is
current flowing through the junction, Ic is the junction-dependent critical current, and CJ is
the intrinsic capacitance of the junction. (c) An SEM image of an actual junction. Electron-
beam lithography allows nanometer resolution for determining the area of overlap between
the two electrodes. This image was taken at the Quantum Nanoelectronics Laboratory at
UC Berkeley.

Finally, we consider the requirements that a physical system must fulfill in order to build a
quantum computer, and discuss how JJ-based qubits satisfy these criteria.

The Josephson Junction

The Josephson e↵ect can be observed in a variety of physical systems, other than simply
across an insulating barrier. In fact, the only requirement is that there is a “weak link”
connecting two superconducting electrodes. There are three typical types of JJs:

1. Superconductor-Insulator-Superconductor (S-I-S ): the two electrodes are separated by
an insulating barrier.

2. Superconductor-Normal metal-Superconductor (S-N-S ): the two superconducting elec-
trodes are separated by a gap and sit on top of a substrate made of non-superconducting
“normal” metal. The only method of tunneling from one electrode to the other is via
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the proximity e↵ect, in which the Copper pairs di↵use into the layer of normal metal,
creating a thin, weakly superconducting layer between the two electrodes.

3. Superconductor-constriction-Superconductor (S-c-S ): the two superconducting elec-
trodes are connected by a narrow, but otherwise continuous, superconducting mate-
rial. This method provides a “constricted” path for the Cooper pairs to travel from
one electrode to the other.

The most common junction is the S-I-S type, with an insulating barrier typically made
from an oxide material. For example, it may be constructed from two aluminum electrodes,
with an aluminum-oxide layer in between as the insulator (i.e. Al-AlOx-Al). Because a JJ
is formed by two electrodes separated by an insulator, there is an intrinsic parallel-plate
capacitance CJ associated with the junction. It is also characterized by a critical current Ic,
which is the maximum supercurrent that the junction can sustain. In circuit diagrams, a JJ
is denoted by a boxed “X”. A schematic diagram of a typical junction, its circuit equivalent,
and an image taken of a real junction using scanning electron microscopy (SEM) can be seen
in Fig. 2.1.

The typical method of fabricating JJs is to use electron-beam lithography to etch away
resist sitting on top of a substrate, and then use thin-film deposition of aluminum at multiple
angles (called double-angle evaporation), while allowing the first layer to oxidize before
depositing the second layer. This method is referred to as the Niemeyer-Dolan technique for
fabricating very small overlapping structures. (For a full explanation of this technique, the
reader is referred to Ref. [25].)

The Josephson E↵ect

In his original paper, Josephson postulated the tunnelling current density through an insu-
lating barrier separating two superconducting electrodes to be

j = j0 +
1

2
j1 

⇤

1 2 +
1

2
j⇤1 

⇤

2 1, (2.1)

where j0 is the DC supercurrent density, |j1| is related to the matrix element governing the
transfer of Cooper pairs across the barrier, and  1 and  2 are quasiparticle wavefunctions on
the left- and right-hand sides of the junction, respectively. Josephson made two predictions
from the above formula:

1. At zero applied voltage, j0 will be zero, but a maximum DC supercurrent of magnitude
|j1| can still flow through the junction. This is known as the DC Josephson e↵ect.

2. At a nonzero voltage di↵erence V , a DC current j0 will be superimposed by an AC
current of amplitude |j1| and frequency f = 2eV/h. This is known as the AC Josephson
e↵ect.
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Figure 2.2: The Josephson E↵ect. A JJ is composed of two superconductors separated
by a thin insulating barrier. Each superconductor can be described by a macroscopic wave-
function  describing the number density n of Cooper pairs and phase ✓ of the macroscopic
superconductor. The phase di↵erence � = ✓2�✓1 across the junction controls the underlying
physics of Cooper pairs tunneling across the thin insulating barrier.

From the second conclusion above, we can equate a phase evolution to an applied voltage:

! =
d✓

dt
=

2eV

~ (2.2)

where 2e/h ⇡ 483.6 GHz/mV. For example, an applied voltage of 10 µV equates to a charac-
teristic oscillation frequency of approximately 5 GHz for the AC supercurrent flowing across
the junction. Given that we are considering the superposition of states in two separated
superconducting regions, there is no guarantee that the phases of  1 and  2 are the same.
In fact, in order to treat the problem correctly, Josephson required that the current density
be a superposition of states with arbitrary phases that are allowed vary over the thickness of
the barrier. Thus, the total supercurrent density j will depend directly on the total overlap
and phase di↵erence between  1 and  2.

The underlying physics of JJs involves the discrete tunneling of Cooper pairs across the
thin insulating barrier. While a proper treatment of this problem can be derived using
Bogoliubov operators and the BCS theory of superconductivity [30, 43], because we are
dealing with macroscopic states of superconductors, it is su�cient to treat the problem
in the Ginzburg-Landau approach. Consider the Ginzburg-Landau wavefunction (or order
parameter) describing the (uncoupled) superconductor on either side of an insulating barrier
(see Fig. 2.2),

 i =
p

nie
i✓i , i 2 {1, 2} (2.3)

where ni is the number density of Cooper pairs and ✓i the phase of each superconductor.
The uncoupled wavefunctions are normalized such that

Z
d3r ⇤

i
 j = �ij. (2.4)
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The Schrödinger equations for the uncoupled regions are

i~@ i

@t
= Ei i, (2.5)

where Ei is the on-site energy of each electrode. If we apply a voltage V across the junction,
the two superconductors will be separated by an energy di↵erence of 2eV and the on-site
energy is the potential energy of a Cooper pair of electrons on either side of the junction:
E1 = (2e)(12V ) = eV and E2 = �eV , where we have defined the potential energy to be zero
at the midpoint for convenience (i.e. a floating potential).

If we now consider the Schrödinger equation for the full system,

i~@ 

@t
= H , (2.6)

the total Hamiltonian H must also contain a term which couples the two regions, and can
be decomposed into a 2 ⇥ 2 matrix with elements

Hij =

Z
d3r ⇤

i
H j, (2.7)

where diagonal elements of Hij are the on-site potential energies of the Cooper pairs H11 =
eV and H22 = �eV , and the o↵-diagonal matrix elements are related to the hopping of
Cooper pairs across the barrier, and are identical. Thus, we can define H12 = H21 = �T ,
where T is related to the tunneling amplitude. We can consider these terms to represent the
energy it takes for a tunneling event to occur. The full Schrödinger equation can be now
written as

i~ @
@t

0

@ 1

 2

1

A = H

0

@ 1

 2

1

A =

0

@eV �T

�T �eV

1

A

0

@ 1

 2

1

A . (2.8)

However, this matrix equation can be reduced a set of coupled di↵erential equations:

i~@ 1

@t
= eV  1 � T 2,

i~@ 2

@t
= �T 1 � eV  2. (2.9)

Recalling our definitions  1(t) =
p

n1(t)ei✓1(t) and  2(t) =
p

n2(t)ei✓2(t), where we have
highlighted the specific time dependence, we can simultaneously solve the equations:

i~ @
@t

⇣p
n1(t)e

i✓1(t)
⌘

= eV
⇣p

n1e
i✓1

⌘
� T

⇣p
n2e

i✓2

⌘
,

i~ @
@t

⇣p
n2(t)e

i✓2(t)
⌘

= �T
⇣p

n1e
i✓1

⌘
� eV

⇣p
n2e

i✓2

⌘
.
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Computing the derivatives,

i~
2
p

n1

dn1

dt
� ~pn1

d✓1
dt

= eV
p

n1 � T
p

n2e
i(✓2�✓1),

i~
2
p

n2

dn2

dt
� ~pn2

d✓2
dt

= �eV
p

n2 � T
p

n1e
�i(✓2�✓1),

we can see that these equations can be separated into real and imaginary solutions,

~n1
d✓1
dt

= �eV n1 + T
p

n1n2 cos (✓2 � ✓1)

~n2
d✓2
dt

= eV n2 + T
p

n1n2 cos (✓2 � ✓1) (2.10)

and

~dn1

dt
= �2T

p
n1n2 sin (✓2 � ✓1)

~dn2

dt
= 2T

p
n1n2 sin (✓2 � ✓1), (2.11)

respectively.
From the set of imaginary solutions (Eq. 2.11), we can see that current (or charge)

conservation across the junction is guaranteed by ṅ1 = �ṅ2. Furthermore, if we multiply
the second equation by the charge 2e of a single Cooper pair, we can derive the supercurrent
flowing from left to right across the junction:

I = 2e
dn2

dt
=

4eT
p

n1n2

~ sin (✓2 � ✓1) (2.12)

By defining Ic ⌘ 4eT
p

n1n2/~ to be the maximum supercurrent (i.e. critical current) that
the junction can sustain, with T the characteristic number of a particular junction, and
� = ✓2 � ✓1 the phase di↵erence across the junction1, we arrive at Josephson’s current-phase
relationship:

I = Ic sin �. (2.13)

This is the DC Josephson e↵ect, and is equivalent to the observations made from Eq. 2.1
To understand the real solutions (Eq. 2.10), we first note that only the relative phase

di↵erence � is important, not the overall phase. Thus, without loss of generality we can define

1This is not rigorously correct. For a phase di↵erence �✓ = ✓2 � ✓1 across the junction, � is actually
the gauge-invariant phase di↵erence. Since the current density in a superconductor (an observable) must be
gauge invariant in the presence of a magnetic field, but depends on the vector potential A, it can be shown
that the relationship between �✓ and � is given by � = �✓ � 2⇡

�0

R 2
1 A · ds, where �0 = h/2e is the flux

quantum. See Ref. [19] for a full discussion.
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✓2 = �/2 and ✓1 = ��/2. Inputting these definitions and subtracting the first equation from
the second, we find

~
2

d�

dt
=

~
2
! = eV. (2.14)

Thus, we have arrived at the AC Josephson e↵ect mentioned in the beginning of the section:

! =
2eV

~ . (2.15)

Equations 2.13 and 2.15 are Josephson’s relations governing the physics of JJs, and from
these equations a plethora of interesting physics can be derived. We will not go into much
more detail about the physics of JJs, but it is worth mentioning that the observations made
by Josephson listed in the beginning of this section can be understood directly from these
relations. Equation 2.13 states that even in the absence of any externally applied voltage,
a nonzero supercurrent �Ic  I  Ic can flow across the junction as long as the phase
di↵erent between the two electrodes is not zero. If, on the other hand, we apply a voltage
V across the junction, then by Eq. 2.15 the phase di↵erence increases linearly in time, but
the supercurrent will oscillate rapidly due to the sine term, sin(�) = sin

�
�0 + 2e

~ V t
�
, and will

thus average to zero over time. Therefore, the phases of macroscopic superconductors have
real physical consequences! These e↵ects were observed experimentally not long after they
were predicted by Josephson [31].

Interestingly, because the AC Josephson e↵ect is defined in terms of fundamental con-
stants, it has been used to define the voltage standard [44]. By driving JJs using precise
radio frequency instruments such that the AC frequency !AC is known to good precision,
the resulting DC voltage can be measured at integer n steps of

VDC =

✓
~!AC

2e

◆
n. (2.16)

The idea then is to place many thousands JJs in series and measure the precise voltage
intervals for a given applied frequency. For example, apply a frequency of 1 GHz would
result in DC voltages at integral multiples of approximately 2 µV. This is known as the
inverse AC Josephson e↵ect, and was first observed by Shapiro in 1963 [45]. Thus, JJs can
act as perfect frequency-to-voltage converters.

Josephson Inductance & Energy

The phase di↵erence across a JJ leads to a non-linear inductance, which itself is associated
with a coupling energy between the electrodes. The inductance LJ associated with a JJ is
not a geometric quantity; rather, it is related to the inertia of Cooper pairs tunneling across
the barrier. To calculate the Josephson inductance, we can use the fact that voltage and
inductance are related by V = LdI

dt
. Using Eq. 2.15, we can write the voltage as

V =
~
2e

d�

dt
=

�0

2⇡

d�

dI

dI

dt
=

�0

2⇡

1

Ic cos �

dI

dt
, (2.17)
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where in the second equality we have used the definition of the flux quantum �0 ⌘ h/2e and
the chain rule, and in the third equality we have taken the derivative of Eq. 2.13. Thus, we
can identify the Josephson inductance as

LJ(�) =
LJ0

cos �
(2.18)

where LJ0 ⌘ �0
2⇡Ic

is known as the Josephson e↵ective inductance. It is interesting to note
that the Josephson inductance can be negative or become infinite, depending on the phase
di↵erence �.

Because the Josephson inductance depends on �, there must be a connection between the
magnetic flux and the phase across a junction. To see how the two are related, we introduce
the branch flux of an electrical element

�(t) =

Z
t

�1

V (t0)dt0, (2.19)

where V (t) is the time-dependent voltage across the circuit element. This integral assumes
that the voltage is zero at t = �1. �(t) can be defined for any electrical component with
two leads, and from this we can derive the branch flux-phase relationship. If we assume that
� = 0 at time t = �1, and that the junction accumulates a phase di↵erence � at time t,
then the branch flux at time t is

�(t) =

Z
t

�1

✓
~
2e

d�0

dt0

◆
dt0 =

~
2e

Z
�

0

d�0 =
�0

2⇡
�. (2.20)

The branch flux-phase relationship is often written as � = �0�, where �0 ⌘ �0/2⇡ is called
the reduced flux quantum.

The inertia of Cooper pairs tunneling across the barrier results in the buildup of magnetic
flux density at the junction. For a more intuitive understanding, we can re-write the current-
phase relation (Eq. 2.13) using the branch flux-phase relationship:

I(t) = Ic sin

✓
2⇡�(t)

�0

◆
. (2.21)

While Eqs. 2.13 and 2.15 are often referred to as Josephson’s relations, Eq. 2.21 is sometimes
called the constitutive relation [46], as it contains the same information as Josephson’s
relations in only one equation. As we can see, for small branch flux �, the junction behaves
like a standard inductor, with I(t) ⇡ �(t)/LJ to first order.

When supercurrent flows across the barrier, magnetic flux accumulates at the junction
due to its non-linear inductance. This results in the development of a potential energy across
the junction. Using Eqs. 2.13 and 2.15, we can derive the potential energy by integrating the
power delivered to the junction due the applied voltage V and the current flowing through
the junction I:

U =

Z
t

�1

IV dt0 =

Z
t

�1

(Ic sin �0)

✓
~
2e

d�0

dt0

◆
dt0 =

~Ic
2e

Z
�

0

sin �0d�0 = EJ(1 � cos �), (2.22)
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Figure 2.3: Josephson energy and inductance. The Josephson energy U/EJ = 1 � cos �
is plotted above in green and the Josephson inductance LJ/LJ = 1/ cos � is plotted above
in blue versus the phase di↵erence �. The potential energy is a minimum when � = 2⇡n,
where n is any integer, and is often described as having the shape of a “cosine washboard.”
The inductance is highly non-linear and is finite at any phase � 6= ⇡

2m, where m is any odd
integer. As we can see from the above graph, the Josephson inductance can become negative
or even infinite.

where EJ ⌘ ~Ic
2e is the characteristic energy scale of the junction, and can be written in terms

of the flux quantum �0: EJ = �0Ic

2⇡ . This energy is often written without the constant term:

U(�) = �EJ cos � . (2.23)

U(�) is the Josephson (potential) energy of the junction, and is clearly a minimum when
� = 0 or any integer of 2⇡; see Fig. 2.3. In other words, the energy is minimized when the
phases are equal, or rather, in the absence of phase gradients across the barrier. Additionally,
we can see that the strength of the coupling energy depends on the magnitude of the critical
current, which itself is a function of the type of material used for the barrier, its thickness and
cross-sectional area, and the type of weak link employed. As we will see in the next section,
the sinusoidal form of the Josephson energy allows us to create an anharmonic oscillator out
of a standard LC circuit, which is the basis of the superconducting qubit.

There is one more important JJ-based circuit element that must be covered before we
can understand how they are the fundamental component of superconducting qubits. When
JJs are placed around a superconducting loop, this is known as a Superconducting QUantum
Interference Device (SQUID) [33, 34] (see Fig. 2.4a). There are two main types of SQUIDs:
the DC SQUID, which contains parallel JJs, and the RF SQUID, which is a loop interrupted
by only a single JJ. In a DC SQUID, the total input current I is split equally between the
two branches. When an external magnetic field is applied to the loop, the induced back-
EMF around the loop establishes a circulating “screening” current Is to cancel the applied
magnetic field, reducing the total current in one branch and increasing the total current in
the other: I1 = I/2 � Is and I2 = I/2 + Is. When I1 or I2 exceeds the critical current Ic
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(a) SEM image of a SQUID

(b) Circuit schematic of a SQUID

(c) Critical Current vs. Applied Flux for SQUID

(d) Flux-tuning data from a DC SQUID

Figure 2.4: Superconducting QUantum Interference Device. (a) A false-colored SEM
image of a DC SQUID, which is composed of two JJs in parallel around a loop. (b) The
electrical circuit element of a DC SQUID is denoted by a loop with a JJ on both sides. An
external flux � applied through the SQUID establishes a screening current Is around the loop
to cancel the field. When the bias current through one of the junctions plus the screening
current, I/2+Is, exceeds the critical current Ic of the junction, a voltage V can be measured.
(c) Critical current vs. Applied flux for a DC SQUID, given by Eq. 2.24. (d) Experimental
flux-tuning data for a DC SQUID in a Josephson parametric amplifier (JPA). The applied
flux is recorded as the bias current of an external DC power source. The x-axis is the output
frequency of a Vector Network Analyzer (VNA). The pixel intensity at each location is the
unwrapped phase di↵erence across the SQUID measured by the VNA. A sharp phase shift
indicates the location of the resonant frequency of the SQUID. As the external flux is tuned
through one flux quantum �/�0, the resonant frequency shifts from low to high, and then
back to low again; this is equivalent to changing the critical current Ics of the SQUID as a
function of applied flux � (Eq. 2.24). The o↵set of the maximum resonant frequency from
zero bias current is most likely due to trapped magnetic flux in the system, as SQUIDs are
extremely susceptible to the magnetic fields from any parasitic circulating currents.
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of its respective junction, a voltage di↵erence will appear across the SQUID (see Fig. 2.4b);
therefore, SQUIDs can act as a flux-to-voltage converter. The energy in the SQUID loop
is minimized when the flux enclosed is an integer multiple of the flux quantum �0. As the
external flux is tuned upward through half a flux quantum, �0/2, the screening current will
reverse direction in order to encourage a total enclosed flux �0 through the loop. The current
will then reverse direction again when the applied flux is tuned through �0, and will continue
to do so periodically every half-integer multiple of a flux quantum. In the limit in which the
geometric loop inductance is much smaller than the Josephson inductances of the individual
junctions, we can write the critical current Ics of the SQUID as a function of the applied
flux � [34]:

Ics(�) = 2Ic

����cos

✓
⇡�

�0

◆����, (2.24)

where Ic is the critical current of each Josephson junction, which we take to be identical. As
we can see, the DC SQUID behaves as a single Josephson junction, but with a flux-tunable
critical current Ics.

2.2 Quantization of LC Circuits

The behavior of a quantum mechanical circuit is determined by its Hamiltonian. Consider
a standard LC circuit, as shown on the left in Fig. 2.5a. The mechanical energy stored
in a capacitor and inductor is EC = 1

2CV 2 and EL = 1
2LI2, respectively. We are justified

in ignoring any resistance in this circuit, as the components are made of superconductors.
For the LC circuit in Fig. 2.5a, we choose the voltages across both elements to be equal:
VC = VL = V , where Q = CVC and VL = LdI

dt
= Lİ. By defining the voltages to be

equal and taking the positive current to be in the clockwise direction through the inductor,
we must therefore adopt the convention that the current through the capacitor is given by
I = �dQ

dt
= �Q̇.

Using the classical equations that define capacitance Q = CV and inductance � = LI,
we can write the Hamiltonian of the system as

H =
1

2
CV 2 +

1

2
LI2 =

Q2

2C
+

�2

2L
. (2.25)

In order to map classical observables into quantum mechanical operators, it is necessary to
find the canonically conjugate pair of coordinates, qi and pi, defined by Hamilton’s equations:

@H

@pi
= q̇i,

@H

@qi
= �ṗi. (2.26)

If we consider the partial derivative of our Hamiltonian with respect to Q and �, we find

@H

@Q
=

Q

C
= V = Lİ = �̇, (2.27)

@H

@�
=

�

L
= I = �Q̇. (2.28)
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Thus, we have shown that Q and � are canonically conjugate variables for our Hamiltonian,
which map to the classical coordinates p and q, respectively. By equating the capacitance
with the mechanical analog of a mass m, and noting that the resonant frequency of an LC
circuit is ! = 1/

p
LC, we can see that our Hamiltonian is simply the classical Hamiltonian

for a harmonic oscillator,

H =
Q2

2C
+

�2

2L
=

p2

2m
+

1

2
m!2x2, (2.29)

where x is the spatial coordinate and p the momentum. Therefore, an LC circuit is just a
simple harmonic oscillator with resonant frequency ! = 1/

p
LC.

In order to quantize our Hamiltonian, we map our classical observables into quantum
operators, Q ! Q̂ and � ! �̂, which obey the canonical commutation relation, [�̂, Q̂] = i~.
Next, we define Q̂ and �̂ in terms of creation and annihilation operators,

Q̂ = �iQZPF

�
a � a†

�
, (2.30)

�̂ = �ZPF

�
a + a†

�
, (2.31)

where

QZPF =

r
~

2Z
, (2.32)

�ZPF =

r
~Z
2

(2.33)

are the zero-point fluctuations of the charge and phase variables, respectively, and Z =p
L/C is the complex impedance of the LC circuit. Using these definitions, we can define

creation and annihilation operators

â† ⌘ 1p
2~Z

⇣
�̂ � iZQ̂

⌘
, (2.34)

â ⌘ 1p
2~Z

⇣
�̂ + iZQ̂

⌘
. (2.35)

Thus, we can write the Hamiltonian as a quantum harmonic oscillator (QHO),

Ĥ =
Q̂2

2C
+

�̂2

2L
= ~!

✓
â†â +

1

2

◆
= ~!

✓
n̂ +

1

2

◆
, (2.36)

where n̂ is the number operator acting on a Fock state |ni, which defines the number of
photons n at frequency !. As such, the energy of a quantized LC circuit is simply the
number of photons at the resonant frequency, plus the zero-point contribution 1

2~!.
A quantized LC circuit is nothing more than a QHO. At low temperatures and high

resonant frequencies, such that kBT ⌧ ~!, the circuit will primarily be in its ground state
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(a) Josephson junction in an LC circuit (b) Harmonic vs. Anharmonic potential

Figure 2.5: Harmonic vs. Anharmonic potential. (a) (Left) A standard quantized LC
circuit is not su�cient for creating a qubit. (Right) In order to create an isolated two-state
quantum system out of an LC circuit, we must add a JJ, which is a lossless nonlinear circuit
element with an intrinsic capacitance and phase-dependent inductance, CJ and LJ(�). (b)
(Left) The energy spacing of a quantum harmonic oscillator is degenerate for all pairs of
energy levels. Thus, a photon of energy ~! is equally likely to drive a transition upward as it
is to drive a transition downward. This makes a standard harmonic oscillator unsuitable for
creating qubits. (Right) By adding a JJ to the LC circuit, we can change the shape of the
potential well due to the sinusoidal dependence on the phase (or flux, since � = �0

2⇡ �). The
anharmonicity of the sinusoidal potential shifts the excited energy levels down with respect
to the parabolic potential. Thus, the energy spacings are no longer degenerate, allowing us
to drive a transition between the ground and first excited states without exciting the higher
levels.

|0i. Statistically, there will be a small but non-zero chance of measuring it in an excited state,
but this is exponentially suppressed by a Boltzmann factor exp(�h!/kBT ). By injecting a
photon of energy ~! into the circuit, we can excite the QHO into its first excited state |1i.
If we could resonantly drive the circuit between its ground state and first excited state, this
would constitute a quantum bit. However, upon injecting a second photon into the circuit,
due to the equal spacing of the energy levels in a parabolic potential, the QHO will have an
equal probability of de-excitation into the ground state as being promoted into the second
excited state |2i (see Fig. 2.5b). Thus, a simple QHO does not allow for control over a
two-state quantum system due to its harmonic potential, because photons of energy ~! can
drive transitions between any two of its energy levels. For an isolated two-state quantum
system, we need to add a Josephson junction.

Recall that the JJ is a lossless nonlinear circuit element with a potential energy given
by U = �EJ cos �. This potential well has a sinusoidal dependence on the phase �, but for
small � it approximates a parabola: U = EJ

�
2

2 � O(�4). Thus, at the bottom of the well
U is approximately parabolic, but as you move higher up the walls begin to broaden into
a sinusoidal potential. This broadening causes the higher energy levels to shift downward,
creating an anharmonic oscillator (AHO) in which the spacing between any set of two energy
levels is di↵erent (see Fig. 2.5b). Therefore, by adding a JJ in parallel with the existing
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LC circuit, we can change the energy levels such that the spacing between the ground and
excited states is non-degenerate with the rest of the spectrum. In this way, we can drive an
isolated transition between the two quantum states using microwave photons, thus creating
a quantum bit. By including a JJ, we have e↵ectively created an artificial atom.

After adding the JJ to our LC circuit, we must consider the Hamiltonian for the entire
system. By defining the charge operator on the capacitor in terms of the number operator
of Cooper pairs, Q̂ = (2e)n̂, we can define the characteristic energy scale for a capacitor C:
EC = (e)2/2C.2 Similarly, by equating the energy stored in the inductor with the branch flux
through the element (Eq. 2.20), we can define the characteristic energy scale of an inductor
L: EL = (�0/2⇡L)2. Thus, the Hamiltonian for the circuit on the right in Fig. 2.5a is

Ĥ =
Q̂2

2C
+

�̂2

2L
+ U = 4EC n̂2 +

1

2
EL�̂

2 � EJ cos �̂. (2.37)

As is written above, �̂ and n̂ now constitute the canonically conjugate variables of our
Hamiltonian, with a commutation relation given by [�̂, n̂] = i.

2.3 Superconducting Qubits

The basis of superconducting qubits is the quantization of electrical LC circuits at low tem-
peratures. However, in order for LC circuits to behave quantum mechanically and maintain
quantum coherence, there must be little to no dissipative energy loss in the system. Nat-
urally, superconductors are ideal candidates for for this purpose. In addition to the zero
resistance requirement, we must be able to control the state of the qubit (i.e. drive it reso-
nantly between two quantum states, say |0i and |1i, and make a measurement). As we saw
in the previous section, the Josephson junction allows us to create an artificial atom out of
a resonant LC circuit, in which we can drive the qubit between its ground state and its first
excited state using microwave photons. Given that JJs can be fabricated in large numbers
using standard integrated-circuit microfabrication techniques, this allows for tunability in
the properties of a qubit. As we will see below, this tunability enables the creation of several
di↵erent “flavors” of superconducting qubits.

The Charge Qubit

The charge qubit [47, 48, 49, 50] is based o↵ of the circuit diagram in Fig. 2.6a, in which
a JJ is biased by a voltage source V through a series “gate” capacitance Cg. The portion
of the circuit between Cg and the JJ is called a Cooper pair box : a small superconducting
island capacitively isolated from the rest of the circuit in which the number n of Cooper
pairs on the island is discrete. Both the charge island and the charge reservoir are assumed

2EC does not contain the factor of 4 due to the charge carrier being a Cooper pair (not an electron) for
historical reasons.
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(a) Charge qubit (b) Phase qubit (c) Flux qubit

Figure 2.6: Superconducting qubits. (a) Circuit diagram of a charge qubit. The JJ is
voltage-biased through a gate capacitor Cg. The portion highlighted in red is called the
Cooper pair box. (b) Circuit diagram of a phase qubit. The JJ is current-biased using
current source. (c) Circuit diagram of a flux qubit. A loop containing a single JJ is flux
biased using a current source.

to be good BCS superconductors, such that the energy gap � exceeds the kBT thermal noise
of the system. The Hamiltonian for a charge qubit is

Ĥ = 4EC(n̂ � ng)
2 � EJ cos �̂, (2.38)

where we have defined the charging energy with respect to the voltage-induced charge on
the gate capacitor, V = (2e)ng/Cg, and EC = e2/2(Cg + CJ). While n̂ is constrained to be
an integer, ng is a continuous variable determined by the voltage and gate capacitance. In
fact, it is this discreteness in n̂ (i.e. the integer number of Cooper pairs tunneling through
the JJ) which causes the periodic dependence on �̂ in the Josephson energy term.

To find the energy eigenvalues of this Hamiltonian, we must first solve the following
Schrödinger equation:

Ĥ =


4EC

✓
� i

@

@�̂
� ng

◆2

� EJ cos �̂

�
 = E , (2.39)

where we have defined n̂ = �i @

@�̂
in the phase-basis representation. While this equation can

be solved exactly, doing so requires special functions, which is beyond the scope of this thesis.
Nevertheless, it is useful to consider the energy spectrum with respect to ng, as shown in
Fig. 2.7.

Because n̂ must be an integer, we can choose adjacent energy eigenstates in the Cooper
pair number basis, |ni and |n + 1i, to represent our two-state quantum system. Thus, we
can write our qubit as an linear combination of these two states with arbitrary complex
coe�cients ↵ and �: | i = ↵ |ni + � |n + 1i. On the other hand, because ng is continuous,
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(a) EJ/EC = 1

(b) EJ/EC = 5

(c) EJ/EC = 10

(d) EJ/EC = 50

Figure 2.7: Charge qubit energy spectrum and charge dispersion. Energy spectrum
as a function of ng for di↵erent ratios of EJ/EC for the first three eigenenergies of the charge
qubit (Eq. 2.38). (a) EJ/h = 1 GHz, EC/h = 1 GHz. (b) EJ/h = 5 GHz, EC/h = 1 GHz.
(c) EJ/h = 10 GHz, EC/h = 1 GHz. (d) EJ/h = 10 GHz, EC/h = 0.2 GHz. We can see
that for ng = 1/2, the first two energy levels in (a) are nearly degenerate. In fact, in the
absence of the Josephson potential, the energy spectrum would simply be quadratic in n and
the two points would touch. However, these degeneracy points are lifted by the Josephson
energy term, with the di↵erence given by ⇠ EJ . As we increase the ratio EJ/EC , the energy
bands become flatter with respect to ng, which reduces the Cooper pair box’s sensitivity
to charge noise at the expense of reduced anharmonicity. For large EJ/EC , as in (d), the
energy bands are essentially flat; this is known as the transmon regime. (The charge qubit
eigenenergies were calculated using the scQubits Python package [51].)
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we can use it as a parameter to tune how close together our basis states are (see Fig. 2.7).
Typically, a voltage V is chosen such that ng = n + 1/2. This is known as the charge
degeneracy point (or the charge “sweet spot”), corresponding to half a Cooper pair of charge
for both basis states. In other words, we can use ng to change where the qubit operates
within the energy spectrum. |ni and |n + 1i would be fully degenerate at ng = 1/2 if it
were not for the Josephson coupling term U(�̂). It is called a coupling term because, in the
Cooper pair number basis, we can write the Hamiltonian for U(�̂) as [49]

HJ = �EJ

2

X

n

(|ni hn + 1| + |n + 1i hn|). (2.40)

The JJ forces Cooper pairs to tunnel to and from the charge island one by one, connecting
the energy eigenstates and creating a separation between the two energy levels given by EJ .
For small EJ/EC , the separation between the energy levels is extremely dependent on the
value of ng. Small variations in ng can cause large variations in the energy di↵erence between
|ni and |n + 1i; this is known as charge noise, as it depends on the charge induced by the
voltage source. However, by tuning the ratio of EJ/EC , it is possible to make the qubit
less sensitive to variations in ng near the charge degeneracy point. As EJ/EC is increased,
the bands become flatter, reducing the qubit’s sensitivity to charge noise at the expense of
reduced anharmonicity of the potential energy (i.e. the di↵erence between subsequent pairs
of energy levels). A popular variant of the charge qubit, known as the transmon [42], takes
advantage of this phenomenon by fabricating the qubit such that EJ � EC ; we discuss this
more below.

It is also necessary to read out the state of the qubit. With the charge qubit, this can
be done with extremely sensitive electrometers, such as a single-electron transistor[52], with
the requirement that the accuracy of the instrument be much greater than 2e. For increased
tunability of the charge qubit, the single JJ can be replaced by a DC SQUID, which allows
the experimenter to modify EJ by changing the critical current of the SQUID with a DC
flux bias.

The Phase Qubit

The phase qubit [53] is composed of a single current-biased Josephson junction (Fig. 2.6b).
The energy associated with the bias current Ib can be calculated by integrating out the power
P = IbV = Ib

� ~
2e

d�

dt

�
, as we did for the Josephson energy in Eq. 2.22. The full Hamiltonian

is given by

Ĥ = 4ECJ n̂
2 � EJ cos �̂ � �0

2⇡
Ib�̂, (2.41)

where ECJ is the charging energy associated with the intrinsic Josephson capacitance. The
second and third terms in the Hamiltonian represent the potential energy of the system.
Using the relation EJ = �0Ic

2⇡ derived in Section 2.1, we can re-write the potential energy in
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(a) Phase qubit potential (b) Flux qubit potential

Figure 2.8: Phase and flux qubit potentials. (a) Energy spectrum of the phase qubit as
a function of � for di↵erent ratios of Ib/Ic. This is known as the tilted washboard potential.
(Note: the energy levels depicted in the figures above are not exact; they are qualitatively
right, but are used for illustrative purposes only.) (b) Energy spectrum of the flux qubit
as a function of � with the external flux through the RF SQUID loop tuned to half a flux
quantum, �ext = �0/2, and EJ/EL = 10. The ground (blue) and excited (red) states are
taken to be the symmetric and anti-symmetric wavefunctions of the double-well potential,
respectively. Each wavefunction is a superposition of magnetic flux pointing up |"i and down
|#i through the loop, denoted by the bound states at the bottom of each well.

terms of the Josephson energy and the junction critical current as a function of the phase �̂:

U(�̂) = �EJ cos �̂ � EJ

Ib
Ic
�̂. (2.42)

Thus, we can see that the potential energy in the Hamiltonian has the usual periodic Joseph-
son term, modulated by a term that is linear in �̂. Together, these two terms form what is
known as a “tilted washboard” potential, whose shape depends critically on the ratio Ib/Ic;
see Fig. 2.8a. As Ib/Ic increases, the height of the potential well decreases, and as a con-
sequence, so do the energy spacings in the well. As the potential becomes shallower, the
probability that a Cooper pair in an excited state |ni can tunnel through the wall into the
next well increases exponentially as n increases. In fact, the shape of each potential well can
be accurately approximated by a cubic potential. However, when Ib becomes larger than Ic,
the shape of the potential approaches that of a straight line, at which point there are no
longer any bound states.

A qubit is created out of a single current-biased JJ by driving transitions between the
ground state |0i and first excited state |1i. One advantage of the phase qubit is that the
readout-circuitry is already built into the architecture of the qubit. By biasing the junction
such that the second excited state is nearly at the top of the potential well, any excitation
into |2i is exponentially likely to tunnel out of the potential barrier and down the washboard
into the next well. A measurement of the state of a phase qubit is carried out by applying
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a microwave pulse at frequency !12 = (E2 � E1)/~ to drive a transition from |1i to |2i. If
the qubit is in the ground state |0i, it will not be excited to |2i and nothing will happen. If,
however, the qubit is in the first excited state |1i, the pulse will excite a transition to state
|2i, causing a tunneling event to occur through the JJ, which will result in the appearance
of a finite voltage across the junction. Thus, measuring no voltage after applying the probe
pulse implies that the qubit was in state |0i, whereas the appearance of a nonzero voltage
indicates that the qubit was in state |1i.

The Flux Qubit

The basis of a flux qubit [54] is an RF SQUID — a superconducting loop interrupted by a
single Josephson junction. The Josephson loop is inductively coupled to a current source,
such that an external flux �ext can bias the state of the SQUID. The Hamiltonian is given
by

Ĥ = 4ECJ n̂
2 +

1

2
EL�̂

2 � EJ cos

✓
�̂ � 2⇡

�0
�ext

◆
, (2.43)

where the second term is the energy associated with the magnetic flux stored in the inductive
loop L. We can understand the third term by recalling that the flux across a circuit element
(the branch flux) is simply associated with a phase shift for a JJ (see Eq. 2.20), so the
Josephson energy will acquire a phase shift that depends on the external flux. Since the last
two terms constitute the potential energy of the system, we can see that it is composed of a
term quadratic in phase, modulated by the usual periodic Josephson term, whose phase now
depends on the external flux. As discussed in Section 2.1, a SQUID energetically prefers
an enclosed flux that is an integer number of flux quanta. Thus, by tuning the external
magnetic flux to half a flux quantum, the SQUID will acquire counter-circulating currents
to encourage a total enclosed flux of 0 or �0. Therefore, for �ext = �0/2 the SQUID will
have flux pointing both upward and downward through the loop. At this degeneracy point,
the qubit itself is a superposition of supercurrents circulating clockwise and anticlockwise
around the loop, or, equivalently, a superposition of magnetic flux pointing up and pointing
down: | i = ↵ |"i ± � |#i. Plotted versus the phase in Fig. 2.8b, we can see that U(�) is a
quadratic potential with a cosine corrugation in the middle, creating a double-well potential.
The ground and excited states are simply the symmetric and anti-symmetric superpositions
of the two basis states: |0i = 1

p
2
(|"i + |#i) and |1i = 1

p
2
(|"i � |#i).

By sending current pulses to the RF SQUID through an inductive coupler, we can deter-
mine whether the qubit is in the |0i or |1i state. If the current pulse results in no change in
voltage across the JJ, the qubit is in the |0i state. However, if the current pulse results in
a non-zero voltage across the junction, the qubit has made a transition to the excited state.
A measurement of the voltage state of a flux qubit is typically made with a DC SQUID
aligned co-axially with the RF SQUID. By also biasing the DC SQUID with a flux �0/2,
the critical current Ics of the SQUID will be zero (see Eq. 2.24). Thus, by monitoring the
critical current of the DC SQUID, any change in flux produced by the nearby qubit can be
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(a) Energy dispersion as a function of EJ/EC (b) Wavefunctions in cosine potential

Figure 2.9: Transmon qubit energy dispersion and wavefunctions. (a) The dispersion
in the energy levels decreases exponentially with EJ/EC , flattening the energy bands (as seen
in Fig. 2.7d). (b) The wavefunctions for the first five energy levels of the transmon qubit in
a cosine potential in the flux-basis representation (EJ/h = 10 GHz, EC/h = 0.2 GHz). The
separation between adjacent energy levels is distinct for each pair of eigenenergies; however,
the reduced anharmonicity of the transmon means that a transmon qubit is more likely to
be excited to higher energy levels (i.e. “leak” out of the first excited state).

measured with high accuracy. Due to the high sensitivities of SQUIDs to magnetic flux, flux
qubits are extremely susceptible to any stray magnetic fields.

The Transmon Qubit

The charge qubit, phase qubit, and flux qubit represent the three prototypical types of su-
perconducting qubits. However, modern superconducting quantum processors utilize qubits
which have been developed from these three main archetypes to be much more intrinsically
robust to noise. For example, the charge qubit’s sensitivity to charge noise (i.e. fluctuations
in ng) lead to the development of the transmon qubit [42]. The transmon is a charge qubit
that is shunted by a large capacitance Cs. The Hamiltonian of the transmon is identical to
the charge qubit (Eq. 2.38), however, the charging energy EC = (e)2/2(Cg + CJ + Cs) is
made much smaller by the addition of the large shunting capacitor. The transmon regime
is define to be the regime in which the Josephson energy is much larger than the charging
energy (EJ >> EC) such that the ratio EJ/EC & O(10) (the transmon is typically operated
around EJ/EC ⇡ 50). In fact, the dispersion in the energy levels (i.e. the variation in the
energy levels with respect to ng) decreases exponentially in EJ/EC [42] (see Fig. 2.7).

At large EJ/EC the transmon qubit is insensitive to charge noise and can be operated
at any gate voltage (not just at the charge degeneracy point). This, however, comes at the
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cost of reducing the anharmonicity ↵ of the qubit:

↵ ⌘ E12 � E01. (2.44)

The anharmonicity defines how the transition energy between the ground |0i and the first
|1i excited states (E01) di↵ers from the transition energy between the first |1i and second |2i
excited states (E12). For the charge qubit at the sweet spot, the anharmonicity is positive
and large (see Fig. 2.7a), meaning that the energy levels defining the qubit are well separated
from the higher energy levels. However, the transmon has an anharmonicity that is small and
negative, meaning that excitations from |0i ! |1i are much more likely to drive a transition
to |2i; this is often referred to as “leakage,” since it represents information leaking out of
the basis states, which we define to be |0i and |1i. In fact, the anharmonicity decreases
with a slow power law in EJ/EC [42], much slower than the exponential reduction in the
charge dispersion, and therefore the benefits generally outweigh the costs. However, a smaller
anharmonicity severely limits the speed with which one can reasonable drive transitions from
|0i ! |1i (e.g. via Rabi oscillations), as faster control pulses will naturally include higher
harmonics, which can drive transitions from |1i ! |2i.

For transmon qubits, the |0i ! |1i frequency is given as

!01 =
⇣p

8EJEC � EC

⌘
/~, (2.45)

and the anharmonicity is ↵ = �EC . Typically, !01 is in the range of 4 � 6 GHz, and ↵ is
generally designed to be around 100 � 300 MHz.

The Qubit Hamiltonian

The insensitivity of the transmon to charge noise means that the gate charge ng can be
omitted from the qubit Hamiltonian:

Ĥq = 4EC n̂2 � EJ cos �̂ . (2.46)

However, it is often more convenient to represent this Hamiltonian using second quantization,
as the energy diagram is most intuitively understood in terms of excitations involving quanta
of discrete energy ~!, as opposed to thinking about the problem in terms of discrete tunneling
of Cooper pairs.

As a reminder, the introduction of the JJ in the qubit Hamiltonian transforms the
quadratic potential of the QHO into an AHO with a cosine potential (see Fig. 2.5b). The
e↵ect is to shift the energy levels such that they are no longer degenerate with the |0i ! |1i
transition frequency !01. We can gain some intuition by expanding the cosine potential in
terms of a power series,

� EJ cos �̂ = �1 +
1

2
EJ �̂

2 � 1

24
EJ �̂

4 + O(�̂6), (2.47)
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where the second-order term represents the typical quadratic potential of the QHO, and the
fourth (and higher) order terms represent modifications to the quadratic potential for higher-
energy eigenstates. Thus, when representing the qubit Hamiltonian in terms of the second
quantization approach, the AHO acquires higher order terms which define the deviation of
the higher energy levels from the first excited state:

Ĥ = ~!01â
†â +

~↵
2

â†â†ââ, (2.48)

where the first term represents a typical harmonic oscillator for the |0i ! |1i transition,
and the second term is often called a fourth-order Kerr-nonlinearity, with ↵ the qubit an-
harmonicity. For simplicity, we omit the zero-point energy and truncate our expansion at
fourth order. Eq. 2.48 resembles that of a classical Du�ng oscillator.

If we take |↵| to be large enough, or assume that leakage to higher energy states can be
su�ciently suppressed, we may e↵ectively treat the qubit as a two-level system. In this case,
we can write the Hamiltonian as

Ĥq =
1

2
~!q�z , (2.49)

where !q = !01 is the |0i ! |1i transition frequency and �z the Pauli-z operator. Therefore,
we see that in the limit that a qubit can be treated as an e↵ective two-level system, the
qubit Hamiltonian is exactly the same as the Hamiltonian for a spin-12 particle in quantum
mechanics, with |0i and |1i representing the spin up and spin down states of the parti-
cle. Therefore, two-level systems are isomorphic to spin-12 systems, greatly simplifying our
treatment of qubits.

2.4 Single-qubit Gates

In the previous section, we have shown that the non-linearity of the Josephson junction en-
ables one to drive transitions between two distinct energy levels in an anharmonic potential,
creating the basis for a class of di↵erent superconducting qubits. However, developing quan-
tum gates for superconducting qubits requires more control than simply driving excitations
from |0i ! |1i. In this section, we describe how microwave pulses can be used to perform
single-qubit quantum gates in transmon qubits. We restrict ourselves to fixed-frequency
transmon qubits (i.e. those that do not contain a SQUID for tunability) and fix coupling to
neighboring qubits (which can also be made tunable using a SQUID). However, it only re-
quires a small modification of the methods described below to adapt them to other classes of
superconducting qubits. For a good overview of this topic, the reader is referred to Ref. [22].

The Bloch Sphere

To understand how to control the state of qubit, one must be familiar with the Bloch sphere
representation of two level systems (see Fig. 2.10). The sphere itself is a unit sphere defined
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Figure 2.10: Bloch sphere representation of a two-level system. The north and
south poles represent the ground |0i and first excited |1i states, respectively. The |+i and
|�i states represent superposition states along the x-axis, and the |i+i and |i�i states
represent superposition states along the y-axis. Any arbitrary state can be represented by
| i = cos

�
✓

2

�
|0i + ei� sin

�
✓

2

�
|1i (blue), where ✓ and � are polar and azimuthal angles,

respectively.

by standard spherical coordinates. A state vector | i can point in any direction along the
surface of the Bloch sphere. We define the north and south poles of the Bloch sphere to
be the ground state |0i and the first excited state |1i, respectively. These two state vectors
form the standard basis of the two-state quantum system. In matrix representation, these
are given as

|0i =

0

@1

0

1

A , |1i =

0

@0

1

1

A . (2.50)

Thus, any arbitrary state vector | i can be expanded as a linear combination of |0i and |1i
with complex coe�cients ↵ and �:

| i = ↵ |0i + � |1i . (2.51)

Consequently, unlike a classical bit, which must be in a definite state of 0 or 1, a qubit can
be in a superposition of |0i and |1i, with ↵ and � representing the relative weight of the two
states. Using the normalization condition h | i = |↵|2 + |�|2 = 1, we can write out ↵ and
� in terms of the spherical coordinates ✓ and �:

| i = cos
�
✓

2

�
|0i + ei� sin

�
✓

2

�
|1i . (2.52)
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Measurement of the qubit in the {|0i , |1i} “computational” basis will result in 0 or 1 with
probabilities |↵|2 and |�|2, respectively.

It is also possible to measure the state of a qubit in a di↵erent basis. For example, if we
were to measure the qubit along the x-axis, we can define the {|+i , |�i} basis to be

|+i ⌘ |0i + |1ip
2

, |�i ⌘ |0i � |1ip
2

. (2.53)

Solving for |0i and |1i in terms of |+i and |�i yields

|0i =
|+i + |�ip

2
, |1i =

|+i � |�ip
2

. (2.54)

Thus, in this basis, we can write an arbitrary state | i as

| i = ↵ |0i + � |1i (2.55)

= ↵
|+i + |�ip

2
+ �

|+i � |�ip
2

(2.56)

=
↵ + �p

2
|+i +

↵� �p
2

|�i (2.57)

A similar expansion can be done for basis states {|i+i , |i�i} defined along the y-axis as well.

Unitary Rotations for Qubit Control

Unitary rotation operators are necessary for qubit control in quantum computing, as quan-
tum algorithms rely on qubit rotations for implementing logical gate operations. A unitary
rotation operator in quantum mechanics takes the form

U(n̂, ✓) = e�
i
~ ✓n̂·J, (2.58)

where ✓ is the rotation angle, n̂ the axis of rotation, and J a vector of Hermitian angular
momentum operators (also called the generators of rotations); this is known as the axis-angle
parametrization of unitary rotations3. For infinitesimal rotations, we can take the Taylor
series of U(n̂, ✓):

U(n̂, ✓) = 1 � i

~✓n̂ · J + ... (2.59)

Since finite rotations can be built out of the product of small-angle rotations, the infinitesimal
(or near-identity) form of U(n̂, ✓) will be useful for constructing a matrix representation of
the unitary rotation operators.

3In the quantum computing literature, the axis-angle form is often written as Rn̂(✓); however, this
notation does not di↵erentiate from classical rotations, from which unitary rotations are derived.
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Qubits are two-state quantum systems which are isomorphic to spin-12 systems, so the
generators of rotations are simply the Pauli matrices:

J = S =
~
2
�, (2.60)

where
� = �xx̂ + �yŷ + �zẑ, (2.61)

and

�x = X =

0

@0 1

1 0

1

A ,

�y = Y =

0

@0 �i

i 0

1

A , (2.62)

�z = Z =

0

@1 0

0 �1

1

A .

Thus, the unitary rotation operators for qubits can be written as

U(n̂, ✓) = e�
i
2 ✓n̂·� = cos

�
✓

2

�
� i(n̂ · �) sin

�
✓

2

�
, (2.63)

where we have used the standard properties of the Pauli matrices to simplify the Taylor
expansion of U(n̂, ✓) in terms of trigonometric functions. We can use the last part of Eq. 2.63
to write out the matrix form of the unitary rotation operators about each axis of the Bloch
sphere:

U(x̂, ✓) = cos
�
✓

2

�
� i�x sin

�
✓

2

�
=

0

@ cos ✓

2 �i sin ✓

2

�i sin ✓

2 cos ✓

2

1

A ,

U(ŷ, ✓) = cos
�
✓

2

�
� i�y sin

�
✓

2

�
=

0

@cos ✓

2 � sin ✓

2

sin ✓

2 cos ✓

2

1

A , (2.64)

U(ẑ, ✓) = cos
�
✓

2

�
� i�z sin

�
✓

2

�
=

0

@e�i✓/2 0

0 ei✓/2

1

A .

So, for example, performing a 90-degree rotation about the y-axis of a qubit on the |0i state
results in

U
�
ŷ, ⇡

2

�
|0i =

0

@
p
2
2 �

p
2
2

p
2
2

p
2
2

1

A

0

@1

0

1

A =
1p
2

0

@1

1

1

A =
|0i + |1ip

2
= |+i .
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As we can see, in accordance with the Bloch sphere, a ⇡/2 rotation about the y-axis results
in the |+i superposition state.

To have complete control over the state of a qubit, one must be able to perform rotations
on the qubit about all three axes. However, depending on the experimental setup and
hardware platform, it might not be possible to have control over all three rotation axes.
Nevertheless, by using the Euler angle parameterization of spinor rotations, it is possible to
rotate about all three axes with control over only two of the three. Suppose, for example, it
is only possible to control rotations about the x-axis and z-axis. In this case, any arbitrary
rotation about the Bloch sphere is parametrized by three Euler angles,

U(✓,�, �) = U(ẑ, ✓)U(x̂,�)U(ẑ, �), (2.65)

which can range from

0  ✓  2⇡,

0  �  ⇡, (2.66)

0  �  4⇡,

where the 4⇡ upper bound for � is due to the double-valued representation for spin-12 systems
(i.e. a particle rotated by 2⇡ does not return to the original value, but rather acquires a phase
of -1; see Eq. 2.63). For example, suppose ✓ = ⇡

2 , � = �⇡

2 , and � remains arbitrary. In this
case, Eq. 2.65 gives

U
�
⇡

2 ,�, �⇡

2

�
= U

�
ẑ, ⇡

2

�
U (x̂,�) U

�
ẑ, �⇡

2

�

=

0

@e�i⇡/4 0

0 ei⇡/4

1

A

0

@ cos �

2 �i sin �

2

�i sin �

2 cos �

2

1

A

0

@ei⇡/4 0

0 e�i⇡/4

1

A

=

0

@ cos �

2 sin �

2

� sin �

2 cos �

2

1

A

= U(ŷ,�)

Thus, we can obtain universal control over the qubit with control over only two of the three
rotation axes.

Rabi-driven Single-qubit Gates

In superconducting qubits, single-qubit gates are typically calibrated by Rabi driving a qubit.
For fixed-frequency transmons, the control signal comes from microwave tones propagating
down a control line which is capacitively-coupled to the qubit using a time-dependent voltage
Vd(t) (see Fig. 2.11a). The Hamiltonian for this system can be written as4

H(t) =
Q(t)2

2CT

+
�2

2L
+

Cg

CT

QVd(t), (2.67)

4This section follows the notation and derivation given in Ref. [22].
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(a) Circuit diagram of qubit driving (b) IQ mixing for waveform generation

Figure 2.11: Qubit driving. (a) Circuit diagram of driving a qubit with a time depen-
dent voltage Vd(t). (b) Schematic of pulse generation for generating single-qubit gates. A
local oscillator (LO) microwave source generates a carrier frequency at !LO. An arbitrary
waveform generator (AWG) generates a pulse envelope s(t) for in-phase I and quadrature Q
baseband pulses at a frequency of !AWG. An IQ mixer combines these signals into a single
pulse that is sent to the qubit.

where CT = Cg + Cs is the total capacitance to ground, and the charge variable Q(t) =
(Cg + Cs)�̇ � CgVd(t) now takes into account the time-dependent voltage. Promoting the
charge and flux variables to quantum operators, Q ! Q̂ and � ! �̂, we arrive at the familiar
form for a quantum harmonic oscillator (Eq. 2.36) with an additional driving term:

Ĥ = ĤQHO +
Cg

CT

Q̂Vd(t). (2.68)

By expressing the charge operator in terms of raising and lower operators,

Q̂ = �i

r
~

2Z
(a � a†) = �iQZPF(a � a†), (2.69)

where Z is the impedance to ground and QZPF the zero-point charge fluctuations, we may
write the above Hamiltonian as

Ĥ = ~!
✓

a†a +
1

2

◆
� i

Cg

CT

QZPFVd(t)(a � a†). (2.70)

By taking the two-level system approximation, we can replace a ! �� and a† ! �+, and
write the final Hamiltonian as

Ĥ =
1

2
~!�z + ~⌦Vd(t)�y = Ĥq + Ĥd(t), (2.71)
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where Ĥq = 1
2~!�z is the qubit Hamiltonian and ⌦ = Cg

CT
QZPF is related to the Rabi driving

frequency between the ground state and first excited state.
To understand the impact of the driving term Ĥd(t) in the Hamiltonian, we must move

into the rotating frame of the qubit. The propagator Û0 for the qubit Hamiltonian is given
as

Û0(t) = e�iĤqt/~. (2.72)

Therefore, to move into the rotating frame of the qubit, we define a propagator Û(t) = Û †

0(t)
and apply this propagator to the state of the qubit in the lab frame | 0i, | (t)i = Û(t) | 0i.
| (t)i represents the state of the qubit in a frame that rotates at the same frequency as the
qubit transition frequency !q = (E1 � E0)/~ in the lab frame. Writing the time-dependent
Schrödinger equation for | (t)i, we find

i~ @
@t

| (t)i = i~ @
@t

Û(t) | 0i

= i~@Û(t)

@t
| 0i + i~Û(t)

@ | 0i
@t

= i~U̇(t) | 0i + Û(t)Hq | 0i
= i~U̇(t)Û †(t) | (t)i + Û(t)HqÛ

†(t) | (t)i
= H̃q(t) | (t)i ,

where H̃q = i~U̇ Û † + ÛHqÛ † is the qubit Hamiltonian in the rotating frame.
In the rotating frame the qubit state is static on the Bloch sphere, except under the

influence of an external driving term, such as Hd(t). To understand the influence of Hd(t)
on the state of the qubit in the rotating frame, we must also transform Hd(t) to the rotating
frame. Doing so, we find the transformed Hamiltonian to be

H̃d(t) = ~⌦Vd(t) [cos(!qt)�y � sin(!qt)�x] . (2.73)

The time-dependent driving voltage Vd(t) is composed of three di↵erent components: an
amplitude V0, a phase sin(!dt + �), and a time-dependent pulse envelope s(t) (see Fig. 2.11b).
Therefore, we can write Vd(t) as

Vd(t) = V0s(t) sin(!dt + �) (2.74)

= V0s(t) [sin(!dt) cos(�) + cos(!dt) sin(�)] , (2.75)

where in the second line we have used the di↵erence formula for sines. By defining I ⌘ cos(�)
as the in-phase component of the driving signal, and Q ⌘ sin(�) as the out-of-phase (or
“quadrature”) component of the driving signal, we may write the time-dependent voltage as

Vd(t) = V0s(t) [I sin(!dt) + Q cos(!dt)] . (2.76)

Therefore, our driving Hamiltonian becomes

H̃d(t) = ~⌦V0s(t) [I sin(!dt) + Q cos(!dt)] [cos(!qt)�y � sin(!qt)�x] . (2.77)
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To simplify the above equation, we multiply out the various terms involving products of
sines and cosines, and then write them out using product-to-sum trigonometric formulas.
When we do so, we will see terms involving the sum (!q + !d) and terms involving the
di↵erence (!q � !d). Next, we invoke the rotating wave approximation (RWA) and drop
the fast rotating terms which contain (!q + !d), which will average to zero on the timescale
associated with the terms containing (!q �!d). Simplifying the resulting terms and defining
� = !q � !d, we can write the driving Hamiltonian as

H̃d(t) = �⌦

2
V0s(t) {I [cos(�t)�x � sin(�t)�y] + Q [cos(�t)�y � sin(�t)�x]} . (2.78)

If we assume that the detuning � = 0 (i.e. driving our qubit on-resonance), then the above
equation simplifies to

H̃d(t) = �~⌦

2
V0s(t)(I�x + Q�y). (2.79)

Here, we can see that the in-phase pulse corresponds to a rotating about the x-axis, whereas
an out-of-phase pulse corresponds to a rotation about the y-axis. However, if we allow
o↵-resonant drives, then general form of H̃d(t) can be written as

H̃d(t) = �~⌦

2
V0s(t)

0

@ 0 ei(�t+�)

e�i(�t+�) 0

1

A . (2.80)

The choice of which phase component — I or Q — defines an X gate and which defines
a Y gate is arbitrary, representing a gauge degree of freedom in the system. However, as
defined in Eq. 2.79, � = 0 corresponds to an X gate and � = ⇡/2 corresponds to a Y gate.
To understand how Rabi-driven single-qubit gates are implemented via unitary operators,
consider the case in which � = 0 (on resonance) and � = 0 (i.e. I = 1 and Q = 0), where we
may write the following unitary operator, corresponding to the Bloch state evolution under
H̃d(t):

U(t) = exp

✓
� i

~

Z
t

0

H̃d(t
0)dt0

◆
(2.81)

= exp

✓
i

2


⌦V0

Z
t

0

s(t0)dt0
�
�x

◆
(2.82)

= exp

✓
� i

2
⇥(t)�x

◆
, (2.83)

where ⇥(t) = �⌦V0

R
t

0 s(t0)dt. Eq. 2.81 governs the dynamics of Rabi-driven single-qubit
gates. In the following equations, we see that we recover that exact same functional form of
unitary gates in SU(2) (Eq. 2.63) for a rotation about the x-axis, where the rotation angle
⇥(t) depends on the amplitude of the driving signal V0 and the time-integrated envelope
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function s(t). Therefore, in order to “calibrate” a quantum gate (e.g. ⇥ = ⇡/2), one can
either fix V0 and vary the shape and/or time of the signal envelope s(t), or fix s(t) and sweep
across values of V0 until the desired rotation angle is found.

In superconducting systems, arbitrary single-qubit gates containing both in-phase I and
out-of-phase Q signal components are generated using an arbitrary waveform generator
(AWG), which also allows the experimenter to define the shape of the pulse envelopes s(t)
(e.g. Gaussian, cosine, etc.; see Fig. 2.11b) and choose whether to perform single-qubit gates
about the x- or y-axis. However, AWGs typically cannot generate pulses at the frequencies
necessary to drive superconducting qubits (⇠ 5 – 6 GHz). Therefore, to generate a pulse at
a frequency !d (which is assumed to be close or equal to !q), it is necessary to mix the I(Q)
signals with the in-phase (out-of-phase) components of a local oscillator (LO), termed “IQ
mixing.” The detuning between the AWG baseband frequency !AWG and the LO frequency
!LO is such that the drive frequency is given as !d = !LO ± !AWG. This means that no
matter whether the two frequencies add or subtract to give !d, there exists an unwanted side
band signal at either !LO +!AWG (if !d = !LO �!AWG) or !LO �!AWG (if !d = !LO +!AWG)
which must be “nulled” using filters in order to ensure a hygienic EM environment inside
the dilution fridge. Poorly nulled LO signals can lead to “environmental noise” on the qubit
processor, leading to dephasing (since it is o↵-resonance) and thus low coherence times. Once
quantum gates have been well calibrated, any circuit C of single-qubit gates can be written
in terms of Rabi-driven unitary rotations:

C = UNUN�1...U2U1 =
NY

n=0

e�
i

2⇥n(t)(In�x+Qn�y). (2.84)

Universal Qubit Control via Virtual Z Gates

One of the primary bottlenecks in real-world quantum computers is the calibration of quan-
tum gates. If one desires to perform arbitrary SU(2) rotations, it is not feasible to calibrate
V0 and/or s(t) for all possible values of ⇥(t), and for all rotation axes, since the space of all
possible SU(2) rotations is infinite. We have previously shown that we can perform rotations
about the x- or y-axis by changing the phase � of the drive signal, generating polar rotations
about the Bloch sphere (see the ⇥ parameter in Fig. 2.10). However, in order to generate
phase rotations about the Bloch sphere (i.e. changing the � parameter in Fig. 2.10, not to
be confused with the phase � of the drive signal), we must be able to control rotations about
the z-axis.

In general, any arbitrary SU(2) gate can be decomposed as a unitary operator containing
three di↵erent rotation angles:

U(�, ✓,�) =

0

@ cos
�
✓

2

�
�ei� sin

�
✓

2

�

ei� sin
�
✓

2

�
ei(�+�) cos

�
✓

2

�

1

A . (2.85)
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Gate ✓ � � Type

I 0 0 0 Pauli

X⇡ ⇡ 0 0 Pauli

Y⇡ ⇡ ⇡/2 -⇡/2 Pauli

Z⇡ 0 ⇡/2 ⇡/2 Pauli

X⇡/2 ⇡/2 0 0 Cli↵ord

Y⇡/2 ⇡/2 ⇡/2 -⇡/2 Cli↵ord

S 0 ⇡/4 ⇡/4 Cli↵ord

H ⇡/2 ⇡/2 ⇡/2 Cli↵ord

X⇡/4 ⇡/4 0 0 Non-Cli↵ord

T 0 ⇡/8 ⇡/8 Non-Cli↵ord

Table 2.1: Angles for common SU(2) gates performed with the ZXZXZ-
decomposition. (Table adapted from Ref. [55].)

This is equivalent to the following decomposition (up to a global phase),

U(�, ✓,�) = Z�X✓Z�. (2.86)

To see this5, imagine we implement two X✓ = e�i
✓

2�x pulses, but add some phase o↵set �
between the pulses. This may be written as a circuit

C = e�i
✓

2 [cos(�)�x+sin(�)�y ]e�i
✓

2�x . (2.87)

The leftmost term in the above equation is equivalent to the unitary evolution under the
Hamiltonian in Eq. 2.79. If the phase � = 0, then C = X✓X✓. However, for general �, we
can expand the above equation as

C = ei
�

2 �ze�i
✓

2�xe�i
�

2 �ze�i
✓

2�x (2.88)

= Z��X✓Z�X✓. (2.89)

We see that what di↵erentiates the first X✓ from the second X✓ is the phase o↵set Z�

in between the two. For example, if � = ⇡/2, then Z�⇡/2X✓Z⇡/2 = Y✓. Note that this is
equivalent to Eq. 2.65, in which we showed that U

�
⇡

2 , ✓, �
⇡

2

�
= U

�
ẑ, ⇡

2

�
U (x̂, ✓) U

�
ẑ, �⇡

2

�
=

5This section follows Ref. [55].
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Figure 2.12: Physical pulse structure of an X⇡ gate in the ZXZXZ-decomposition.
Channel 0 (1) denotes the in-phase I (quadrature Q) component of the pulse, plotted in
arbitrary amplitude units. The two pulse envelopes represent the physical X⇡/2 gates. All
virtual Z gates are implemented as phase shifts in the sequence between X⇡/2 gates, and
therefore do not appear as physical pulses.

U(ŷ, ✓) via Euler-angle decomposition. Therefore, we can achieve arbitrary Z phase gates
by simply adding a phase o↵set between physical pulses. Because these phase o↵sets occur
in software (they are not physical pulses implemented on the qubits, but rather phase shifts
between physical pulses), they are often referred to as virtual Z gates [55]. The trailing Z��

in the above equation is due to the rotation being in the reference frame of the qubit and
has no impact on the measurement outcomes of the circuit in the computational basis, but
it is necessary if we were to add another gate at the end of the sequence.

To minimize the calibration overhead for generating arbitrary single-qubit gates, we fix
our angle ✓ = ⇡/2 and calibrate only a single gate X⇡/2 for each qubit. Using the identity

X✓ = Z��/2X⇡/2Z⇡�✓X⇡/2Z��/2, (2.90)

we can write any SU(2) as

U(�, ✓, �) = Z��⇡/2X⇡/2Z⇡�✓X⇡/2Z��⇡/2 . (2.91)

This is termed the ZXZXZ-decomposition of single-qubit gates. Therefore, calibrating a
single physical X⇡/2 gate (via resonant Rabi-driven pulses), combined with virtual Z gates,
is su�cient to perform arbitrary single-qubit rotations. In Table 2.1, we list the phases for
Eq. 2.91 for several common SU(2) gates. In Fig. 2.12, we plot an example pulse sequence
for an X⇡ gate in the ZXZXZ-decomposition.

2.5 Two-qubit Gates

Methods for generating entanglement between two or more qubits are unique to di↵erent
quantum computing platforms. Even within the field of superconducting circuits, the mech-
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Figure 2.13: Energy level diagram for Stark-induced ZZ interaction. The control
and target qubits are characterized by transition frequencies !c and !t (solid black lines),
and anharmonicities ⌘c and ⌘t (purple dashed lines), respectively. � = !c � !t denotes the
detuning between qubits (black dashed line), with J the qubit-to-qubit coupling strength.
"c and "t denote the drive amplitudes on the control and target qubits, respectively. The
qubits are driven simultaneous at a detuned frequency between !t and !c + ⌘c, resulting in
a conditional Stark shift on both qubits. (Figure reprinted with permission from Ref. [60].)

anism by which two qubits are entangled depends not only on the flavor of qubit, but also
the type of coupler employed, which can be inductive, capacitive, or parametric, in which
the coupling element can be tuned to generate di↵erent types of entangling interactions. A
popular two-qubit gate on superconducting hardware platforms with fixed-frequency trans-
mon qubits is the so-called “cross-resonance” gate [56, 57, 58, 59], in which the target qubit
is driven on-resonance through the control line of the control qubit, such that the amplitude
of the driving signal at the location of the target qubit depends on the state of the control
qubit. By calibrating the duration of the cross-resonance gate such that the target qubit is
unchanged (flipped) when the control qubit is in |0i (|1i), one can create a two-qubit inter-
action that is locally-equivalent to a controlled-X gate. While the cross-resonance gate is
employed in some of the experiments described in this work, here we instead describe a novel
scheme for calibrating a tuneable interaction via o↵-resonant drives between fixed-frequency,
fix-coupling transmon qubits. This section is based on the work presented in Ref. [60].

Figure 2.13 shows an energy level diagram for two qubits of frequency !c and !t, and
anharmonicities ⌘c and ⌘t, coupled with a coupling rate J , where c (t) denotes the control
(target) qubit. For a qubit drive frequency !d, the system Hamiltonian in the Du�ng
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approximation [42] is given as

H =
X

i=c,t

h
(!i � !d) a†

i
ai +

⌘i
2

a†

i
a†

i
aiai +

⇣
"iai + "⇤

i
a†

i

⌘i
+ J

⇣
a†

cat + aca
†

t

⌘
, (2.92)

where ai (a†

i
) is the bosonic annihilation (creation) operator, "i the complex drive amplitude,

and ~ = 1. A Stark-induced ZZ interaction can be achieved by driving the control qubit at
the target qubit frequency !t with an amplitude "c. Similar to the cross-resonance interaction
described above, the target qubit experiences a drive amplitude "̃n, where n denotes the
state of the control qubit (|ni 2 {|0i , |1i)}). In the limit that the drive amplitude "c is
much smaller than the detuning between the drive frequency and target qubit frequency
�t = !t � !d (i.e. "c/�t ⌧ 1), the drive signal results in a conditional Stark shift of the
target qubit frequency

�̃n =
"̃2
n

�t
. (2.93)

This conditional Stark shift manifests as a drive-induced ZZ interaction ⇣ = �̃0 � �̃1, which
can be written as

⇣ = 2µ ("̃0 + "̃1) /�t, (2.94)

where µ = ("̃0 � "̃1) /2 is cross-resonance coupling rate. In general, the conditional stark
shift is much smaller than the cross-resonance rate ⇣ ⌧ µ. However, when a driving term is
applied directly to the target qubit at amplitude "t (in addition to the driving term driven
through the control qubit), the total drive amplitude becomes "̃n+"t. Replacing "̃n ! "̃n+"t
in the above equation, we see that, to first order, ⇣ scales linearly with "t:

⇣ =
2µ

�t
("̃0 + "̃1 + 2"t) + O(|"t|2). (2.95)

Therefore, by driving both transmons simultaneously o↵-resonant, we can generate a ZZ
coupling rate that is comparable to the cross-resonance rate.

Using this tunable ZZ interaction, we calibrate a CZ gate, given by the following unitary:

CZ = exp

✓
� i

2

⇡

2
(�ZI � IZ + ZZ)

◆
, (2.96)

where IZ, ZI, and ZZ represent the relevant terms in the Hamiltonian. In matrix form,
the CZ is given by

CZ =

0

BBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1

CCCCCCA
, (2.97)
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Figure 2.14: CZ Gate Calibration. (a) Pulse sequence for calibrating the amplitude and
frequency of the CZ pulse. The control qubit is prepared in |0i (or |1i, by application of a
⇡ gate), and the target qubit is prepared in a superposition state by application of a ⇡/2
gate. The CZ gate is then applied for a duration of time, with the pulse amplitudes " and
pulse frequency !d variable parameters. At the end of the CZ gate, partial tomography is
applied to the target qubit to measure the target Bloch vector ri for each control qubit state
|ii 2 {0, 1}. The global pulse amplitude and frequency are calibrated by selecting parameters
that maximize the entanglement measure R (Eq. 2.98). (b) 2D plot of R as a function of
the CZ gate amplitude A and drive detuning from the target (!d �!t). There exists regions
where R is maximal (yellow), which is used to realize the CZ gate. There also exists regions
where R is minimal (blue), corresponding to ZZ cancellation. The global drive amplitude
A is related to the individual drive line amplitudes (see Ref. [60] for more details). (Figure
reprinted with permission from Ref. [60].)
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which is symmetric between both qubits; therefore, even though we have been using the
terms “control” and “target” to describe the two qubits involved in the CZ gate, these
labels are interchangeable.

To calibrate the ZZ term, we prepare the target qubit in a superposition state, prepare
the control qubit in |0i (|1i), apply the CZ pulse sequence for some user-specified duration,
and then perform partial tomography on the final state of the target qubit by measuring in
X and Y in order to measure the length of the block vector r0 (r1); see Fig. 2.14a. For a
maximally-entangling gate like the CZ, the di↵erence between the Bloch vectors r0 and r1
(corresponding to when the control qubit is in |0i and |1i, respectively) should be maximized.
Therefore, we search for a parameter regime which maximizes the following quantity, termed
the “conditionality,”

R =
1

2
||r0 � r1||2, (2.98)

which measures the normalized vector distance between target Bloch vectors conditioned
on the control qubit state [59]. The drive amplitude, drive frequency, and pulse time are
determined by finding regions in which the conditionality R = 1 for a single CZ pulse (see
Ref. [60] for more details). In Fig. 2.14b, we observe a ⇠ 40 MHz bandwidth region with
maximal conditionality. The drive amplitudes and frequency can be further fine-tuned via
pulse amplification (i.e. performing the sequences in Fig. 2.14a with an odd integer number of
CZ gates). We also observe regions in which the conditionality R = 0, indicating parameter
regions in which the static ZZ coupling is entirely nulled. Once the ZZ term has been
calibrated, to map this to a CZ gate we calibrate the IZ and ZI terms in the Hamiltonian by
measuring the individual qubit Pauli Z errors using Ramsey-type experiments (see Ref. [60]
for more details), and correcting the errors on each qubit using virtual Z gates [55].

We assess the performance of the CZ gate using various benchmarking procedures, which
we discuss in Chapter 5. As previously mentioned, some of the data presented in Chapters
6 and 7 utilize the cross-resonance CX gate, but most of the data utilizes the CZ gate
outlined above. While CX and CZ gates are locally-equivalent, the Stark-induced ZZ
interaction is preferred to the cross-resonance interaction, as it makes use of the native
ZZ coupling between transmon qubits, and has a much larger operating regime for maximal
entanglement than the cross-resonance gate (see Fig. 2.14), lowering the calibration overhead
for an entangling gate. We note that a similar scheme has been used to generate entanglement
between two qutrits [61].

2.6 Qubit Readout

The final component needed to perform computations on superconducting quantum proces-
sors is the ability to read out the state of the qubits at the end of a quantum circuit. The
measurement of transmon qubits can be understood in the circuit QED framework, which,
like cavity QED, can be represented by the Jaynes-Cummings Hamiltonian [62, 63, 16] for
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a two-level system coupled to a cavity resonator:

HJC = Hq + Hr + Hint (2.99)

=
1

2
~!q�z + ~!r

✓
a†a +

1

2

◆
+ ~g(a + a†)(�� + �+), (2.100)

where Hq is the qubit Hamiltonian (Eq. 2.49), Hr is the resonator Hamiltonian (i.e. QHO,
Eq. 2.36), and Hint is the interaction Hamiltonian which describes the dipole coupling be-
tween the qubit and cavity, characterized by a coupling rate g; here, a† (a) denotes the
bosonic creation and annihilation, and �+ (��) the qubit raising (lowering) operator. If we
multiply out the interaction Hamiltonian, we obtain

Hint = ~g(a�� + a�+ + a†�� + a†�+). (2.101)

We see that Hint contains terms like a�+ and a†��, which represent the coherent swapping
of quanta between the qubit and cavity resonator. We additionally see terms like a�� and
a†�+ which appear to remove or add two quanta of energy, violating energy conservation.
The typical approach here is to invoke the rotating wave approximation (RWA), in which
the terms in Hint which do not conserve energy are simply discarded. However, the RWA is
only valid on certain timescales. To see this, we express the interaction Hamiltonian in the
interaction picture by performing the following transformation:

Hint,I = eiH0t/~Hinte
�iH0t/~,

where H0 = Hq + Hr. In the interaction picture, Hint becomes

Hint,I = ~g
�
a��e�i(!q+!r)t + a�+e�i(!q�!r)t + a†��ei(!q�!r)t + a†�+ei(!q+!r)t

�
, (2.102)

where we see that the swapping terms oscillate at a frequency (!q �!r), whereas the double
excitation/de-excitation terms oscillate at a frequency (!q + !r). Therefore, it is only valid
to discard a�� and a†�+ on timescales much longer than t ⇠1/(!q +!r), in which these fast
oscillating terms average to zero. Superconducting transmon qubits are typically measured
in the dispersive coupling limit, in which the qubit-resonator detuning � = !q � !r is much
larger than the coupling rate g (i.e. � >> g). In this regime, we are only concerned with
timescales on the order of t ⇠ 1/(!q � !r), and we are therefore justified in dropping the
terms that oscillate at (!q + !r). However, we note that describing the terms a�� and a†�+

as non-energy conserving is somewhat misleading, as the full Jaynes-Cummings Hamiltonian
governs the true behavior of the coupled qubit-resonator system. Rather, we see that a��

and a†�+ are allowed to occur, even though they appear to violate the conservation of energy,
but only for a short amount of time. On longer timescales, these terms do not contribute to
the system dynamics, and therefore after invoking the RWA and transforming back to the
Schrödinger picture, the Jaynes-Cummings Hamiltonian becomes

HJC =
1

2
~!q�z + ~!r

✓
a†a +

1

2

◆
+ ~g(a�+ + a†��) . (2.103)
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Figure 2.15: Qutrit classification. Ensemble measurements of a qutrit prepared in |0i, |1i,
and |2i are plotted in phase space. We discriminate between the three states by classifying
the results using a Gaussian mixture model fit to the in-phase (I) and quadrature (Q)
heterodyne voltage signals. (Figure courtesy of Long Nguyen.)

In the dispersive limit, in which the qubit and resonator are far detuned such that � >>
g, there is no longer any direct exchange of energy between the qubit and resonator. Because
g/� is small, one can derive the dispersive approximation to HJC by performing a second-
order perturbative expansion in terms of g/� [64, 65], yielding

HJC =
1

2
~(!q + �)�z + ~!r

✓
a†a +

1

2

◆
+ ~�a†a�z, (2.104)

where � = g
2

� is the dispersive frequency shift. Interestingly, we see that the qubit frequency
is shifted by �; this is due to the qubit interacting with vacuum fluctuations in the cavity,
known as the Lamb shift. It is more informative to rearrange the last term in the dispersive
approximation of HJC in one of two ways:

HJC =

(
1
2~(!q + �+ 2�a†a)�z + ~!r

�
a†a + 1

2

�

1
2~(!q + �)�z + ~ (!r + ��z)

�
a†a + 1

2

� (2.105)

In the first case, we see that the presence of photons in the resonator shifts the qubit frequency
by an amount given by 2�n, where n = a†a is the number of photons in the resonator;
this is known as the AC Stark shift, and has the unintended consequence of causing qubit
dephasing if there are fluctuations in n due to thermal noise or spurious photon occupation
in the resonator. In the second case, we see that the presence of the qubit coupled to the
cavity causes a state-dependent frequency shift of � in the resonator frequency, but the
sign of the frequency shift depends on whether the qubit is in |0i or |1i. By probing the
resonant frequency of the resonator, and performing heterodyne detection of the reflected or
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transmitted signal to measure the resonator amplitude and phase6, we are able to measure
the qubit state and determine whether it was in |0i or |1i. While our treatment of this topic
was limited to a two-level system in order to derive the dispersive approximation to the
Jaynes-Cummings Hamiltonian, one can extend this derivation to the higher energy levels
in superconducting qubits. In Fig. 2.15, we plot the classification of quantum trit (qutrit)
states in phase space for our system. We see the presence of three distinct pointer states,
allowing us to determine whether our qutrit was in |0i, |1i, or |2i before measurement. Even
if computations are limited to qubit gates, qutrit classification allows one to monitor leakage
outside of the computational basis states.

2.7 DiVincenzo’s Criteria

There is a specific set of criteria that a physical system needs to fulfill in order to be considered
a viable candidate for building a quantum computer. These requirements are known as
DiVincenzo’s criteria [66]:

1. It must be a scaleable physical system with well-characterized qubits.

2. It must be possible to initialize the qubits into a known state (i.e. |0i or |1i).

3. The decoherence time of the qubits must be much longer than the operation time.

4. A“universal” set of quantum gates must exist for the qubits.

5. Measurement of the state of a qubit must be attainable.

In Fig. 2.16, we show a micrograph of the superconducting quantum processing unit (QPU)
used in this work, and highlight the various components of the QPU that enable the imple-
mentation of arbitrary quantum computations. We use this figure to guide our discussion of
how each of DiVincenzo’s criteria is fulfilled by Josephson junction-based qubits:

1. The JJ is the critical component of all three superconducting qubit archetypes. Since
these junctions can be readily fabricated using standard industrial microfabrication
techniques, superconducting qubits are very scaleable on the surface of 2D chips. Work
is also underway to integrate superconducting qubits into 3D chips, to set the stage
for larger-scale processors [67]. Because of the tunability of JJs and the surrounding
circuitry, superconducting qubits are easily characterized. Single-qubit manipulations
(i.e. read and write) through dedicated microwave control lines allow for the unique
characterization (i.e. decoherence time, dephasing time, gate error rate, etc.) of each
qubit on a chip.

6We do not cover this topic here. However, the interested reader is referred to Ref. [22] for a brief
introduction to this topic.
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Figure 2.16: Superconducting quantum processor. (Top left) False-colored micrograph
of our eight-qubit superconducting quantum processor. In this work, we used four transmon
qubits (green) with independent microwave control lines (blue). Two-qubit cross-resonance
or controlled-Z gates are mediated by coupling resonators (CR, purple) between nearest-
neighbors. The qubits are simultaneously measured via dispersive coupling to independent
readout resonators (RO, red) coupled to a multiplexed readout bus (MRB, cyan). (Top
right) Single- and two-qubit gates are implemented down the microwave control lines (see
Fig. 2.11b). (Bottom left) The circuit QED readout circuitry is analogous to cavity QED
(bottom right), in which the qubit and resonator cavity are coupled at a rate g. The cavity
decays at a rate , which can be modified by means of a Purcell filter at frequency !p.
(Middle right) Multiplexed readout of all qubits (or qutrits) is performed at the end of a
sequence of gates in order to classify the measured state of the qubits. (Cavity QED figure
courtesy of Noah Stevenson.)

2. The non-linearity of the JJ results in an anharmonic potential term in the qubit Hamil-
tonian, breaking the degeneracy of the energy spacings of the harmonic potential (see
2.5b). As such, initializing the state of the qubit is trivial, either by waiting long
enough for the qubit to relax into its ground state, or by driving a transition into its
excited state using microwave photons at the |0i ! |1i transition frequency.

3. Quantum coherence is necessary in order to perform quantum computations. The de-
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coherence time of a superconducting qubit is a↵ected by numerous factors, including
isolation from the surrounding environment, the quality of the JJ, etc. Typical coher-
ence times of superconducting transmon qubits are of order O(100) µs, which is much
longer than the time is takes to perform an operation on the qubit, which is typically
of order O(10) – O(100) ns.

4. The implementation of single-qubit gates is achieved by sending microwave pulses
down individual qubit control lines. We can obtain universal control over a qubit with
control over only two of the three rotation axes in an experiment using the ZXZXZ-
decomposition of single-qubit gates. In addition, it is also necessary to perform a
two-qubit operation (e.g. controlled-NOT gate), in which the state of one qubit de-
pends on the state of another qubit. This is achieved by the quantum entanglement
of two superconducting qubits, which is easily incorporated onto qubit chips by fab-
ricating coupling resonators between two or more qubits. Various methods exist for
generating entanglement between two transmons qubits, including the cross-resonance
e↵ect, as well as the hardware-e�cient controlled-Z gate described in this work. To-
gether, arbitrary single-qubit unitary operations and an entangling gate constitute a
universal set of quantum gates.

5. Transmon qubits can be measured via dispersive coupling to a capacitively-coupled
readout resonator. Other superconducting qubit archetypes have their own unique
readout circuitry.

JJ-based qubits satisfy all of the above criteria for building a quantum computer. Given
that JJs are a relatively simple device to fabricate in a laboratory, superconducting qubits
are the leading candidate for scaling the size of a quantum computers. This is only made
possible by the Josephson e↵ect.

There are two remaining criteria of DiVincenzo that have to do with building a net-
work for quantum communication. These involve being able to convert stationary qubits to
transmittable qubits, and being about to faithfully transmit quantum information between
specified locations. While research is currently underway for building quantum networks,
distributed entanglement, modular computing, microwave to optical transducers, etc., it re-
mains an open question as to whether these criteria can be satisfied by superconducting
systems.
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Chapter 3

Errors and Noise in Quantum
Computations

Qubits in the NISQ era are susceptible to a variety of di↵erent error and noise processes.
These processes can be broadly placed into two di↵erent categories: coherent errors and
incoherent noise. Here, the notion of quantum “coherence” relates to how well a process
preserves quantum information. Furthermore, we generally distinguish errors from noise,
as errors tend to be systematic processes, whereas noise is – by definition – random or
stochastic. To understand how errors and noise impact quantum states (and thus quan-
tum computation), we must first familiarize ourselves with the density matrix formalism
of quantum mechanics, as this is necessary for the treatment of open (i.e. real) quantum
systems.

3.1 Density Matrix Formalism

Quantum mechanics is typically taught using the wavefunction formalism. While this is valid
and useful in a theoretical context in which one can consider quantum states in isolation,
this formalism is typically inadequate for actual quantum systems (i.e. those measured in
a lab), which are always to some extent “open” to the rest of the world. To treat “open
quantum systems,” it is necessary to introduce the density matrix formalism of quantum
mechanics, which will facilitate our discussion of errors and noise in quantum computers in
this chapter.

The density matrix ⇢ is a generalized linear operator that defines the complete state of
a physical quantum system. If the quantum state is “pure” (see Fig. 3.1a), then the density
matrix can be written as the outer product of a state vector | i with itself:

⇢ = | ih | . (3.1)

However, more generally, for a “mixed” quantum state (see Fig. 3.1b) the density matrix is
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(a) Pure state (b) Mixed state

Figure 3.1: Density matrix formalism. (a) A pure state is one whose Bloch vector has
unity length, for which Tr(⇢2) = 1. (b) A mixed state is one whose Bloch vector has length
less than unity, for which Tr(⇢2) < 1.

written as a sum over pure states,

⇢ =
X

i

pi | iih i| , (3.2)

where pi is the probability of measuring ⇢ in the state | ii. The decomposition of ⇢ into
pure states and their respective weights is not unique, nor is there any requirement that the
set of states {| ii} be orthonormal.

There are several important properties of density matrices:

1. Hermiticity: ⇢ = ⇢†

2. Positivity: ⇢ � 0

3. Normalization: Tr(⇢) = 1

4. Purity: Tr(⇢2)  1

5. Idempotency: ⇢ = ⇢2, i.f.f. Tr(⇢2) = 1

Property (1) follows immediately from the definition of the density operator (Eq. 3.2). Prop-
erty (2) states that ⇢ is non-negative definite (or positive semi-definite) and follows from
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computing the expectation value for ⇢ with respect to an arbitrary state |�i:

h�| ⇢ |�i =
X

i

pi h�| ii h i|�i =
X

i

pi| h�| ii |2 � 0. (3.3)

Property (3) can be derived by requiring that the basis states | ii of ⇢ are normalized, and
that all probabilities sum to 1:

P
i
pi = 1. As a reminder, the trace of a matrix is the sum

of its diagonal components:
Tr(⇢) =

X

i

⇢ii. (3.4)

Property (4) is a statement regarding the purity � of ⇢ (see Fig. 3.1), which is defined to be

� ⌘ Tr
�
⇢2
�

. (3.5)

If ⇢ is a pure state (Eq. 3.1), then � = 1; if ⇢ is a mixed state (Eq. 3.2), then � < 1. For a
maximally mixed state ⇢mix in d dimensions, the purity is

Tr
�
⇢2mix

�
=

1

d
> 0. (3.6)

For example, d = 2 for a qubit, therefore �mix = 1
2 . Property (5) follows from property (4)

for pure states; in other words, ⇢ is idempotent if and only if (i.f.f.) it is pure. This can also
be understood by stating that if ⇢ is a projection operator, then it must represent a pure
state.

If the complete density matrix of a system is known, the expectation value of an operator
A can easily be calculated:

hAi = Tr(⇢A) . (3.7)

This follows directly from expectation value of A with respect to a pure state | i and Eq. 3.1:

hAi = h | A | i

=
X

n

h | A |ni hn| i

=
X

n

hn| i h | A |ni

= Tr(| ih | A)

= Tr(⇢A),

where in line 2 we insert the resolution of the identity (or completeness relation)
P

n
|ni hn| =

I of an orthonormal basis set {|ni}, and in line 3 we make use of the commutativity property
of traces of inner products of matrices: Tr(AB) = Tr(BA) for matrices A and B; this is true
even if AB 6= BA.
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The Bloch sphere representation of two-level systems is useful for understanding the
properties of density matrices (Fig. 2.10). For an arbitrary pure state | i = ↵ |0i+� |1i, we
can write the density matrix as

⇢ =

0

@|↵|2 ↵�⇤

↵⇤� |�|2

1

A . (3.8)

Using of the spherical parametrization of arbitrary single-qubit quantum states (Eq. 2.52),
we can write out the explicit form of the density matrix on the Bloch sphere:

⇢ =

0

@ cos2( ✓2) e�i� cos
�
✓

2

�
sin
�
✓

2

�

ei� cos
�
✓

2

�
sin
�
✓

2

�
sin2( ✓2)

1

A (3.9)

Using trigonometric half-angle formulas and simplifying the above expression, we can write
this as

⇢ =
1

2
(I + sin ✓ cos��x + sin ✓ sin��y + cos ✓�z) . (3.10)

By noting that r = rxx̂ + ryŷ + rzẑ = sin ✓ cos�x̂ + sin ✓ sin�ŷ + cos ✓ẑ is a unit vector in
spherical coordinates and � = �xx̂+�yŷ+�zẑ is the Pauli vector, we can simplify the above
express and write an arbitrary quantum state on the Bloch sphere as

⇢ =
1

2
(I + r · �) . (3.11)

Computing the expectation value of �, we find that

h�i = Tr(⇢�) = r. (3.12)

Therefore, the Bloch vector r contains all of the information about ⇢, including the purity
of the state. To see this, we note that Tr(⇢2) = 1 for a pure state implies that |r| = 1, and
Tr(⇢2) < 1 for a mixed state implies that |r| < 1.

3.2 Coherent Errors

The notion of a “coherent” quantum state is one in which quantum information is perfectly
preserved. In the Bloch sphere representation, a perfectly coherent state is one in which the
Bloch vector has unit length (i.e. lies on the surface of the Bloch sphere). Unitary rotation
operators in the form of Eq. 2.63 rotate a quantum state | 0i into a new quantum state | i,

| i = U(n̂, ✓) | 0i = e�
i
2 ✓n̂·� | 0i , (3.13)

which changes where the vector is located on the Bloch sphere, but has no e↵ect on the
length of the Bloch vector and therefore maintains the coherence of the quantum state.
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Unitary (or coherent) errors manifest as imperfect or unwanted unitary rotations acting
on qubits. This can be modeled as an ideal operator U(n̂, ✓) followed by an erroneous
operator U(m̂, ✏), such that the actual final state is given according to

| i = U(m̂, ✏)U(n̂, ✓) | 0i
= e�

i
2 ✏m̂·�e�

i
2 ✓n̂·� | 0i , (3.14)

where m̂ can be arbitrary relative to n̂ (i.e. there is no requirement that the error acts in
the same direction as the intended rotation); see Fig. 3.3a. For example, an error associated
with a rotation about the z-axis will have an evolution operator

U(ẑ, ✏) = exp
⇣
�i
✏

2
�z
⌘

= cos
�
✏

2

�
� i�z sin

�
✏

2

�

=

0

@ e�i✏/2 0

0 ei✏/2

1

A . (3.15)

Because unitary operators maintain quantum coherence, coherent errors map pure states to
pure states,

⇢0 = | 0i h 0| 7! ⇢ = U(m̂, ✏) | 0i h 0| U(m̂, ✏)†,

and therefore do not result in decoherence. We call this a purity-preserving process. Coherent
errors typically result from systematic imperfections in qubit control (e.g. detuning and
calibration errors), drift in previously-calibration parameters [68], and stray electromagnetic
(EM) signals or unwanted couplings on multi-qubit processors, which is broadly termed
crosstalk [69, 70, 71, 72, 73]. Because unitary operators are reversible, coherent errors are
unique to quantum computations and have no classical analog. While coherent errors may at
first appear benign, given that they are in theory reversible and do not cause decoherence, in
later chapters we will see that they are in fact extremely pernicious to multi-qubit quantum
computations, and pose a serious barrier to achieving reliable fault-tolerant quantum error
correction.

Crosstalk

The term “crosstalk” is borrowed from electrical engineering to describe the phenomenon
in classical electronics in which stray EM signals cause “unwanted coupling between signal
paths” [74]. Crosstalk errors describe a wide variety of physical error processes that occur
across many di↵erent quantum computing systems involving more than one qubit, often
resulting in non-local and correlated errors. Ref. [69] gives a rigorous definition of what
constitutes a crosstalk error, which we outline below.

Crosstalk errors are characterized by violating two key assumption: spatial locality and
independence of operations. In an ideal world, each qubit is perfectly isolated from the
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surrounding environment and evolves only according to the intended operations applied to
it. But, as we previously discussed at the beginning of the chapter, real quantum systems
are always to some extent open to the rest of the world, which includes other surrounding
qubits and the operations performed on them. When operations are applied to one qubit,
this can impact others qubits nearby. Below, we give more precise definitions of the two key
assumptions:

1. Locality: an operation is considered “local” if the physical implementation of the
operation does create any correlation between the intended qubit(s) and any other
qubit(s).

2. Independence: an operation is considered “independent” if the physical implementation
of the operation at any given time does not depend on the operation(s) acting on any
other qubit(s) at the same time.

(1) comes from the assumption that gates applied to one or more qubits should act locally
on only the qubits involved in the process. If locality is not violated, then it is necessary
to consider the contextual independence of an operation (2), which assumes the operation
of gates should not depend on the operations being applied to other qubits (unless they are
explicitly involved in an entangling operation). If locality is violated, then the independence
of an operation is not well defined. If both assumptions are respected, then a quantum pro-
cessor can be considered “crosstalk-free.” The above requirements for a quantum processor
to be considered crosstalk-free are platform agnostic.

The most basic form a crosstalk in superconducting quantum processors is stray (or “par-
asitic”) classical EM signals which cause unwanted operations on other qubits. We typically
find microwave control line crosstalk between qubits when performing single- and two-qubit
gates. The dominant crosstalk is between nearest-neighbor qubits, but non-trivial crosstalk
between more distant qubit exists as well. The e↵ects of this type of crosstalk are varied,
depending on the couplings between qubits and their relative transitions frequencies. Some
of the errors that result from crosstalk are products of local operations (termed “classi-
cal crosstalk”), while others involve multi-qubit, entangling operations (termed “quantum
crosstalk”).

A simple model of crosstalk between two nearest-neighbor coupled qubits (Q1 and Q2,
see Fig. 3.2) can be understood as follows: consider the case where we are driving Q1 at
Q1’s frequency, f1. In the presence of crosstalk, a drive on either line will produce a field at
both qubits. Driving down Q1’s line at f1 produces the following Hamiltonian term:

H1 = (a1X + b1Y ) ⌦ I, (3.16)

where a1 = cos�, b1 = sin�, and � the phase of the Rabi drive. However, this will also
produce an e↵ective driving term down Q2’s line at f1 due to crosstalk:

H2 = (c1X + d1Y ) ⌦ (a2Z + b2I), (3.17)
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Figure 3.2: Simple model of crosstalk for two nearest-neighbor coupled qubits. A
drive down Q1’s line (blue) at frequency f1 produces a field at Q2 (red) due to crosstalk.
Similarly, a drive down Q2’s line (red) at frequency f1 produces a field at Q1 (blue). The
explicit Q1 driving term produces a Hamiltonian H1 = (a1X + b1Y )⌦ I. The crosstalk term
at Q2 will also pass through the coupling resonator connecting Q2 to Q1 (top red arrow),
producing a Hamiltonian of the form H2 = (c1X + d1Y ) ⌦ (a2Z + b2I).

where c1 = cos� and d1 = sin�. We assume that f1 is su�ciently far from f2 such that a
pulse down Q2’s line at f1 results in an AC Stark shift on Q2 due to o↵-resonant driving,
and thus a Hamiltonian term of the form (Z + I). The full Hamiltonian is

H = H1 + H2 = ↵[(a1X + b1Y ) ⌦ I] + �[(c1X + d1Y ) ⌦ (a2Z + b2I)], (3.18)

where the ratio �/↵ represents the degree of crosstalk between the two qubits. The Hamil-
tonian term H2 can result from microwave line crosstalk on Q2’s line when explicitly driving
down Q1’s line, as stated above, or from directly driving down Q2’s line at f1; the form of
the Hamiltonian is the same.

It is common to attempt to remove the conditional Rabi drive term (X + Y ) ⌦ Z that
is produced through Q2 when we drive down Q1’s line. We do so by adding an additional
single-qubit compensation pulse (with equal amplitude but opposite phase) down Q2’s line
that cancels this term, thus nulling the field at Q2. This method can be done pairwise for
any nearest neighbors, and operates on the assumption that the crosstalk is su�ciently local
to few qubits.

Crosstalk can also occur between a pair of qubits involved in a two-qubit gate and idling
“spectator” qubits nearby which are not explicitly involved in the gate [75]. Assuming the
frequency of the drive of the two-qubit gate is su�ciently far-detuned from the spectator
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qubits’ frequencies, this can cause unconditional phase errors on the spectator qubits, as
well as conditional entangling errors1. Both errors can be mitigation to some extent. Un-
conditional errors can be corrected with virtual phase gates, and conditional errors can be
corrected with slow Rx(2⇡) pulses on the spectator qubits to echo away the accumulated
phase error, or rotary echos on the qubits involved in the two-qubit gate [76].

3.3 Incoherent Noise

Incoherent processes are typically random or stochastic, as they are not systematic in nature,
but rather result from uncontrolled degrees of freedom within (or outside of) the defined
system that interact with qubits. This can include external EM fields which cause bit-
or phase-flips, 1/f -type noise from defects in substrates (e.g. charge or flux noise), shot
noise due to fluctuations in photon number, noise in qubit parameters (e.g. fluctuations in
transition frequencies), thermal “Johnson” noise in the control lines, etc. In contrast to
coherent errors, which do not result in decoherence, incoherent noise leads to decoherence
and is thus characteristic of being a purity-decreasing process.

An important way of characterizing a time-dependent stationary noise source �̂ is via its
power spectral density (PSD),

S
�̂�̂

(!) =

Z
1

�1

dt0h�̂(t0)�̂(0)ie�i!t
0
, (3.19)

which is the Fourier transform of the autocorrelation function of the noise h�̂(t0)�̂(0)i. This
quantity describes the intensity of a noise source at a given frequency !. For example,
S
�̂�̂

(!q) quantifies the intensity of noise at the qubit frequency !q, and allows us to compute

the susceptibility of qubit to the noise source �̂. We do not go into more detail about
this here, but rather focus on ways to visualize, characterize, and model noise in quantum
computations. (The interested reader is referred to Ref. [28], which goes into exhaustive
detail about the subject of quantum noise and PSDs.) A qubit’s susceptibility to noise can
be reduced in many ways, such as via materials science and device fabrication for improved
qubit design, more stable control electronics and more “hygienic” EM environments, better
cryogenic engineering to isolate qubits from the surrounding environment, etc. The goal
of all of these methods is to reduce noise levels in order to improve qubit coherence times,
which we discuss next.

Decoherence

There are two important characteristic timescales which define the “quantum coherence” of
a qubit. The first timescale – called T1 – describes how long a qubit will remain in an excited

1If the qubits are not far-detuned, then this will cause either direct Rabi driving on the spectator qubit
via crosstalk, or indirect Rabi driving via the cross-resonance e↵ect. Neighboring qubits are far-detuned by
design in order to avoid unintended Rabi e↵ects.
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(a) Coherent errors (b) Longitudinal transitions (c) Dephasing noise

(d) Depolarizing noise (e) Stochastic Pauli noise

Figure 3.3: Errors and noise. (a) Coherent errors manifest as an unwanted unitary rotation
by an angle ✏ (blue arrow) relative to the intended target state (black arrow). The axis
of rotation and erroneous rotation angle are generally di�cult to predict, denoted by the
large blue region around the intended target state. (b) Longitudinal transitions result from
spontaneous decay (cyan) or excitation (purple) of a qubit due to transverse noise. (c) Pure
dephasing typically results from fluctuations in the qubit !01 transition frequency due to
longitudinal noise, such that the qubit Bloch vector along the equator precesses in and out
of the rotating frame (light orange), shrinking the Bloch vector at a rate of �� (orange).
(d) Depolarizing noise acts isotropically around the Bloch sphere, shrinking the length of
the Bloch vector (red) relative to a pure quantum state on the surface of the Bloch sphere
(black). (e) Stochastic Pauli noise does not act isotropically, impacting both the length of
the Bloch vector and the direction that the vector points (orange) relative to the intended
quantum state (black).
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state before it decays to the ground state. From T1, one can quantify a characteristic energy
relaxation rate,

�1 ⌘ 1

T1
= �1" + �1# , (3.20)

which is composed of the rates of spontaneous excitation �1" and decay �1# (see Fig. 3.3b).
Because superconducting qubits are cooled to temperatures approaching . 10 mK, �1" is
exponentially suppressed compared to �1# by a Boltzmann factor,

�1" = e�~!q/kBT�1#, (3.21)

where T is the equilibrium temperature, kB the Boltzmann constant, and !q the qubit
frequency (fq = !q/2⇡ is typically around 5 GHz); this is known as the detailed balance
equation. As such, the steady state of a qubit is typically the ground state |0i, since �1# ex-
ponentially governs �1 via Boltzmann statistics. Because spontaneous transitions are related
to matrix elements connecting |0i to |1i (and vice-versa), one can connect the relaxation rate
to the PSD at the qubit transition frequency via Fermi’s Golden Rule:

�1 =
2⇡

~2 | h0| Ĥ 0 |1i |2S
�̂�̂

(!q), (3.22)

where Ĥ 0

q
= �Ĥq

��̂
is the perturbing Hamiltonian due to fluctuations from a noise source �̂.

For example, if we take Ĥq to be the qubit Hamiltonian Ĥq = 4EC n̂2 � EJ cos �̂ and �̂ = n̂,
then Ĥ 0

q
⇠ n̂ ⇠ (a � a†), where a (a†) is the lowering (raising) operator2. Therefore, Ĥ 0

q

only connects o↵-diagonal matrix elements that di↵er by a single excitation (e.g. |0i and
|1i). �1 is caused by noise that is transversal to the qubit’s longitudinal quantization axis
ẑ, and is often called the longitudinal relaxation rate because it causes depolarization along
the qubit’s quantization axis.

The second characteristic timescale of a qubit – called T2 – describes how long a qubit
can maintain phase coherence in a superposition state. From T2, we can define a transverse
relaxation rate

�2 ⌘ 1

T2
=

�1

2
+ �� , (3.23)

which includes the pure dephasing rate �� (see Fig. 3.3c). As we can see, �2 is due to
both transverse noise causing T1 decay, which completely erases all phase knowledge of
the qubit state, and longitudinal noise causing pure dephasing, which is due to stochastic
fluctuations in the qubit transition frequency !q such that the qubit precesses in and out of
the rotating frame. Pure dephasing will eventually lead to complete loss of phase coherence
of a superposition state, completely depolarizing of the Bloch vector along the equator. If
�� = 0, then T1 intrinsically limits the maximum length of T2 via T2 = 2T1.

2As a reminder, �̂ and n̂ are canonically conjugate variables which take the place of x̂ and p̂, respectively,
in our qubit Hamiltonian. For the quantum harmonic oscillator, x̂ = xZPF(a + a†) and p̂ = ipZPF(a � a†),
where ZPF denotes the zero point fluctuation uncertainty of these variables.
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In a two-level system, T1 and T2 define the 1/e time for energy relaxation and phase
decoherence, respectively. We can modify the ideal single-qubit density matrix (Eq. 3.8) to
account for these decoherence factors:

⇢ =

0

@1 + (|↵|2 � 1)e�t/T1 ↵�⇤e�t/T2

↵⇤�e�t/T2 |�|2e�t/T1

1

A . (3.24)

This is known as the Bloch-Redfield model of two-level systems [77]. As we can see, in
the limit that t �! 1, all matrix elements in ⇢ tend to zero except the upper left hand
entry, which approaches 1. This reflects the fact that an undriven systems with initial
|�|2 6= 0 will eventually undergo decoherence and relax to the ground state, assuming that
the temperature is low enough that random thermal excitations are su�ciently suppressed.

Stochastic Noise

Stochastic noise describes a general class of processes resulting in random, uncontrolled
dynamics in the system. The underlying mechanics of the process can be unitary, but
noise manifests as the average of di↵erent random unitaries, resulting in purity decreasing
processes that are characteristic of non-unitary operations. For example, pure dephasing is
a process which replaces a quantum state ⇢ 7! Z⇢Z with some probability p. Because Pauli
operators are both Hermitian and unitary, dephasing is in theory reversible by application
of a correction unitary operator. However, in practice, one cannot know how the qubit
frequency will fluctuate, as these fluctuations are due to uncontrolled degrees of freedom
either within the system or outside of it (i.e. unwanted couplings with the surrounding
environment). In contrast, incoherent processes such as energy relaxation are fundamentally
irreversible, and are therefore non-unitary. So, what di↵erentiates unitary operations from
stochastic noise which results from unitary operations is that the latter is due to the linear
combination of many di↵erent unitary evolutions3. We can summarize this by stating that
under a stochastic noise process, the quantum state ⇢ undergoes a transformation given by
a convex mixture of unitaries [78]:

⇢ 7!
X

i

piUi⇢Ui, (3.25)

where
P

i
pi = 1. We note that the dynamics of this process is not generated by a linear com-

bination of the Hamiltonians Hi which generate the unitary operators; rather, the dynamics
of this process is a linear combination of unitary evolutions resulting from each Hamiltonian
Hi separately. In the proceeding sections, we will describe various types of noise in quantum
computations and di↵erent methods of representing these processes.

3By expanding the unitary operators up to second order, Ref. [78] shows how one can derive the non-
unitary dynamics in the Linblad Master Equation.
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3.4 Quantum Operations

Quantum operations are defined to be a linear transformation ⇢ 7! ⇢0 that maps a density
matrix ⇢ 2 H in some Hilbert space H to a new density matrix ⇢0 2 H in the same Hilbert
space. Quantum operations representing real, physical processes must satisfy two basic
constraints:

1. Complete Positivity (CP): For any arbitrary initial state ⇢, the final state ⇢0 must have
non-negative probabilities for measuring ⇢0 in the eigenstate of any observable. This
requirement is analogous to the positivity property of density matrices (⇢ � 0).

2. Trace Preservation (TP): For any map ⇢ 7! ⇢0, the total probability must be con-
served. This requirement is analogous to the normalization property of density matrices
[Tr(⇢) = 1].

In order for a quantum operation to be physical and real, it must satisfy both the CP and
TP constraints. Therefore, physical processes are called CPTP maps. Depending on how we
define our system of interest, it may be necessary to relax the trace preservation constraint.
For example, leakage out of the qubit subspace to higher energy levels is non-trace preserving.
In this case, we instead require that total probability must not increase.

Quantum operations taking ⇢ 7! ⇢0 are often called quantum maps or channels, which,
as we will see in the proceeding sections, are often denoted with di↵erent symbols such as
E or ⇤. For example, unitary transformations are maps taking ⇢ 7! U⇢U † = E(⇢); here, E
denotes the map and ⇢0 = E(⇢) the final state.

3.5 The Kraus Operator Formalism

Various representations of quantum operations exist [79], each of which has di↵erent ad-
vantages and disadvantages when modeling error processes. The most basic representation
is the Kraus representation, also called the operator-sum representation [26]. We already
encountered an example of this in the previous section in the form of a unitary transforma-
tion E(⇢) = U⇢U †. However, in order to justify the use of this representation for capturing
general quantum processes in open quantum systems, we must describe the dynamics of
open quantum systems as arising from interactions between the quantum system of interest
⇢ and the surrounding environment ⇢env. If we take ⇢env to represent the state of the rest of
the universe outside of the system of interest, then together ⇢uni = ⇢ ⌦ ⇢env represents the
closed state of the entire universe. In a closed quantum system, all quantum dynamics can
be described by unitary transformations. Therefore, interactions between ⇢ and ⇢env can be
represented by a unitary operator U ,

E(⇢uni) = U (⇢⌦ ⇢env) U †, (3.26)

where U couples ⇢ to ⇢env, and vice-versa. However, we are often concerned with only ⇢
after the interaction and want to ignore the state of ⇢env. To do so, we introduce a set of
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orthonormal basis states of the environment {|eii} and, without loss of generality, define
the initial state of the environment as a pure state, ⇢env = |e0i he0|. By taking the partial
trace of Eq. 3.26 over {|eii}, we are left with a reduced density matrix of only the system of
interest:

E(⇢) = Trenv
⇥
U (⇢⌦ ⇢env) U †

⇤
(3.27)

=
X

i

hei| U (⇢⌦ |e0ihe0|) U † |eii . (3.28)

If we define Ki ⌘ hei| U |e0i as a set of operational elements of E that act on the system of
interest, then we may write the above equation as

E(⇢) =
X

i

Ki⇢K
†

i
. (3.29)

Eq. 3.29 is known as the Kraus (or operator-sum) representation, and the set of operators
{Ki} are known as Kraus operators.

The TP constraint for quantum operations is clearly defined in the Kraus representation.
Consider a trace-preserving map ⇢ 7! E(⇢) for which Tr(⇢) = Tr[E(⇢)] = 1. Using the above
definition of the Kraus representation, we can write this as

Tr[E(⇢)] = Tr

 
X

i

Ki⇢K
†

i

!

= Tr

 
X

i

K†

i
Ki⇢

!

= 1.

Since ⇢ is arbitrary, we see that for trace-preserving processes
X

i

K†

i
Ki = I. (3.30)

This is known as the completeness relation, and is analogous to the resolution of the identity
for orthonormal bases. As outlined in the previous section, we generally relax the TP
constraint for the less stringent requirement that the total probability of a quantum map
simply cannot increase. This equates to the requirement that

P
i
K†

i
Ki  I for non-TP

processes such as leakage, in which information is lost outside of the qubit subspace. Another
trivial example of a non-TP process is projective measurement. Suppose we want to measure
our qubit ⇢ in the computational basis; in this case our Kraus operators are simply projectors
K0 = |0ih0| and K1 = |1ih1|, and the Kraus maps are E0(⇢) = |0ih0| ⇢ |0ih0| and E1(⇢) =
|1ih1| ⇢ |1ih1| with respective probabilities Tr[E0(⇢)] and Tr[E1(⇢)] for measuring the qubit
in |0i or |1i. Because we can only measure our qubit in either |0i or |1i, if there is a
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finite probability of measuring either state then it must be true that Tr[E0(⇢)] < 1 and
Tr[E1(⇢)] < 1. Therefore, our relaxed TP constraint states that for a real, physical process
Tr[E(⇢)]  1, where Tr[E(⇢)] < 1 denotes a non-TP process. Non-TP maps can intuitively be
understood as those in which E does not provide a complete description of the full quantum
process (i.e. non-deterministic processes).

While Eq. 3.29 is the general form of the Kraus representation, Kraus operators are not
unique and it is often useful to express them in a specific basis. For example, in the Pauli
basis we can write Eq. 3.29 as

E(⇢) =
X

P2P⌦n

pPP⇢P † (3.31)

where the Kraus operators are K =
p

pPP with pP the relative probability of an error due
to P , and P⌦n = {I, X, Y, Z}⌦n = Pn the set of 4n generalized Pauli operators. Kraus maps
in this form are often called Pauli channels.

Examples

In this section, we provide some examples of Kraus maps that capture common errors and
noise in quantum computations. However, these examples are by no mean comprehensive,
and generalized Kraus operators are not required to be unitary, Hermitian, or invertible.

• Coherent error by an angle ✓:

E(⇢) = U⇢U † = e�
i
2 ✓n̂·�⇢e

i
2 ✓n̂·�, (3.32)

with Kraus operator K = U = e�
i
2 ✓n̂·�; see Fig. 3.3a. In general, the Kraus representa-

tion for a unitary channel only contains one Kraus operator, and is thus not a sum over
many Kraus operators. This distinction between one versus many Kraus operators is
related to whether or not the Kraus map is purity-preserving.

• Spontaneous emission and amplitude damping with probability p:

E(⇢) = K0⇢K
†

0 + K1⇢K
†

1, (3.33)

with Kraus operators K0 =
p

I � p�+�� =

0

@1 0

0
p

1 � p

1

A, K1 =
p

p�� =

0

@0
p

p

0 0

1

A,

and where �+ = |1ih0| and �� = |0ih1|. Spontaneous emission describes the complete
energy loss of a quantum system ⇢ in an excited state due to the emission of a photon
(i.e. T1 decay), with K1 mapping |1i 7! |0i; see Fig. 3.3b. Amplitude damping is
related to spontaneous emission and describes the relative change in the amplitude of
|1i with respect to |0i when no spontaneous emission event occurs, with K0 reducing
the amplitude of |1i but leaving |0i unchanged. Spontaneous emission is an example
of a non-unital channel, in which E(I) 6= I.



CHAPTER 3. ERRORS AND NOISE IN QUANTUM COMPUTATIONS 62

• Dephasing noise with probability p:

E(⇢) =
⇣
1 � p

2

⌘
⇢+

1

2
Z⇢Z, (3.34)

with Kraus operators K0 =
p

1 � p/2I and K1 =
p

p/2Z; see Fig. 3.3c. Dephasing
noise describes the process in which longitudinal noise acting along the qubit’s quanti-
zation axis due to unwanted coupling to the environment results in fluctuations of the
!01 transition frequency, which causes the qubit’s Bloch vector to precess in and out of
the rotating frame. Dephasing noise is a phase-flip channel in which a quantum state
⇢ experiences complete loss of phase coherence with probability p, and is unchanged
with probability 1 � p.

• Depolarizing noise with probability p:

E(⇢) =

✓
1 � 3p

4

◆
⇢+

p

4
(X⇢X + Y ⇢Y + Z⇢Z), (3.35)

with Kraus operators K0 =
p

1 � p/4I, K1 =
p

p/4X, K2 =
p

p/4Y , and K3 =p
p/4Z. Depolarizing noise describes the process in which a quantum state ⇢ is replaced

by a completely mixed state with probability p, representing the complete loss of
quantum information, and is unchanged with probability 1 � p; see Fig. 3.3d.

• Stochastic Pauli noise with probabilities pX , pY , and pZ :

E(⇢) = (1 � pX � pY � pZ)I⇢I + pXX⇢X + pY Y ⇢Y + pZZ⇢Z, (3.36)

with Kraus operators K0 =
p

1 � pX � pY � pZI, K1 =
p

pXX, K2 =
p

pY Y , and
K3 =

p
pZZ, and where pX , pY , pZ � 0 and pX + pY + pZ  1. Stochastic Pauli noise

is a generalized form of depolarizing noise which does not act isotropically around the
Bloch sphere, thus X-, Y -, and Z-type errors have di↵ering probabilities pX , pY , and
pZ , respectively; see Fig. 3.3e.

3.6 The � Matrix Superoperator Formalism

As previously stated, it is often convenient to represent Kraus operators in the Pauli basis.
While Eq. 3.31 is the Kraus representation for Pauli operators, we can also expand any
arbitrary Kraus operator Ki in the Pauli basis,

Ki =
d
2X

i=1

cijPj, (3.37)

where Pj 2 P⌦n, d2 = 22n is the number of Pauli operators for n qubits, and cij the expansion
coe�cients. Inserting this into Eq. 3.29, we find

E(⇢) =
d
2X

i,j=1

�ijPi⇢P
†

j
, (3.38)
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where �ij =
P

k
ckic⇤kj is a d2 ⇥ d2 complex-valued matrix (i.e. superoperator). � completely

captures the map E in a single matrix and is often called the process matrix 4.
The utility of the � matrix is that it allows us to determine specific properties of E

with relative ease. For example, if � is Hermitian and positive semi-definite, then E is CP.
The Hermiticity of � is governed by the expansion coe�cients, with �ij =

P
k
ckic⇤kj = �⇤

ji
,

and positive semi-definiteness can be determined for any d2-dimensional complex vector v:
v†�v =

P
ij

v⇤

i
�ijvj =

P
ijk

(ckiv⇤

i
)(c⇤

kj
vj) =

P
j
|
P

i
ckiv⇤

i
|2 � 0. Additionally, using the

completeness relation for Kraus maps (Eq. 3.30), we can easily determine the TP constraint
for the � matrix formalism:

X

i

K†

i
Ki =

X

i,j,k

c⇤
ij
P †

j
cikP

†

k

=
X

j,k

 
X

i

cikc
⇤

ij

!
P †

j
P †

k

=
X

j,k

�jkP
†

j
P †

k
= I. (3.39)

Therefore, if E is CPTP, then the above completeness relation enforces d2 constraints, there-
fore the d2 ⇥ d2 Hermitian matrix � has d2(d2 � 1) free parameters.

Examples

Here, we provide the � matrix of the example Kraus maps from Section 3.5.

• Coherent error about the z-axis by an angle ✓:

� =
1

2

0

BBBBBB@

1 + cos(✓) 0 0 i sin(✓)

0 0 0 0

0 0 0 0

�i sin(✓) 0 0 1 � cos(✓)

1

CCCCCCA
(3.40)

• Spontaneous emission and amplitude damping with probability p:

� =
1

2

0

BBBBBB@

(1 +
p

1 � p)2 0 0 p/2

0 p/2 �ip/2 0

0 ip/2 p/2 0

p/2 0 0 (1 �
p

1 � p)2

1

CCCCCCA
(3.41)

4We note that this term is also widely used for other superoperator maps, such as the Pauli-transfer
matrix (see next section), so we avoid assigning this label specifically for the � matrix.
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• Dephasing noise with probability p:

� =

0

BBBBBB@

1 � p/2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 p/2

1

CCCCCCA
(3.42)

• Depolarizing noise with probability p:

� =

0

BBBBBB@

1 � 3p/4 0 0 0

0 p/4 0 0

0 0 p/4 0

0 0 0 p/4

1

CCCCCCA
(3.43)

• Stochastic Pauli noise with probabilities pX , pY , and pZ :

� =

0

BBBBBB@

1 � pX � pY � pZ 0 0 0

0 pX 0 0

0 0 pY 0

0 0 0 pZ

1

CCCCCCA
(3.44)

From the above examples, we see that if the Kraus map is diagonal in the Pauli basis, as
it is for dephasing, depolarizing, and stochastic Pauli noise, then the diagonal components
of the � matrix can be determined directly from the probability coe�cients in the Kraus
representation.

3.7 The Pauli Transfer Matrix Superoperator
Formalism

Of the various representations of quantum processes that exist, the Pauli transfer matrix
(PTM) superoperator representation is perhaps one of the most useful for visualizing di↵erent
error channels. The PTM representation is realized expanding any density matrix ⇢ in the
n-qubit Pauli basis P⌦n,

⇢ =
X

P2P⌦n

↵PP, (3.45)



CHAPTER 3. ERRORS AND NOISE IN QUANTUM COMPUTATIONS 65

Figure 3.4: Pauli Transfer Matrix. The PTM is divided into four blocks: the upper left-
hand entry represents trace-preservation (TP, purple). The lower right-hand block captures
unital (blue) processes, such as Pauli noise or unitary errors. The column to the left of the
unital block captures non-unital (cyan) processes, such as T1 decay. And the the row above
the unital block captures state-dependent leakage (red). The diagonal of the PTM represents
state preservation (SP, orange), i.e. how well the state of each Pauli channel is preserved in
a process.

where ↵P are the expansion coe�cients. This is sometimes referred to as a process matrix
in the Pauli-Liouville representation. By vectorizing the expansion coe�cients, we obtain a

vectorized density matrix |⇢ii =
⇣
↵I⌦n ... ↵Z⌦n

⌘T
. A linear CPTP map ⇢ 7! ⇢0 = ⇤(⇢) in

the PTM representation is completely defined by a d2 ⇥ d2 = 4n ⇥ 4n matrix ⇤, with values
⇤ij = Tr{[PiE(Pj)]}/d that can derived directly from the Kraus representation (Eq. 3.31).
By definition, all entries in the PTM are real and are bounded by ⇤ij 2 [�1, 1]. PTMs
have the useful property that the composite map (i.e. the PTM of a quantum circuit) can
be constructed by taking the matrix products of the individual maps (i.e. the PTMs of the
individual gates).
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For a single qubit, the vectorized density matrix is given as

|⇢ii =

0

BBBBBB@

↵I

↵X

↵Y

↵Z

1

CCCCCCA
. (3.46)

The quantum map ⇢0 = ⇤(⇢) can be expressed in vector form, |⇢0ii = ⇤ |⇢ii, or more
explicitly, 0

BBBBBB@

↵0

I

↵0

X

↵0

Y

↵Z

1

CCCCCCA
=

0

BBBBBB@

⇤II ⇤IX ⇤IY ⇤IZ

⇤XI ⇤XX ⇤XY ⇤XZ

⇤Y I ⇤Y X ⇤Y Y ⇤Y Z

⇤ZI ⇤ZX ⇤ZY ⇤ZZ

1

CCCCCCA

0

BBBBBB@

↵I

↵X

↵Y

↵Z

1

CCCCCCA
. (3.47)

As seen in Fig. 3.4, the details of any given process represented by a PTM can be conveniently
interpreted directly from the components of the matrix. The PTM can be divided into four
blocks: the upper left-hand corner represents trace-preservation, with ⇤II = 1 if a process
is trace-preserving (TP). This constraint can be succinctly summarized by stating that a
process is TP if ⇤0j = �0j (i.e. the first row of the PTM is [1, 0, ..., 0]). The lower right-hand
block is the unital block, which captures processes such as stochastic Pauli noise and unitary
errors. A unital process is one that maps the identity operation to the identity operation
⇤(I) = I (it cannot purify a mixed state). The row above the unital block captures state-
dependent leakage, represented by ⇤IP 6= 0 for P 2 {X, Y, Z}; leakage is therefore not TP.
The column to the left of the unital block is the non-unital block, which captures processes
such as spontaneous emission (i.e. T1 decay) or amplitude damping. This constraint can be
summarized by stating that process is unital if ⇤i0 = �i0 (i.e. the first column of the PTM
is [1, 0, ..., 0]T ). Finally, the diagonal of ⇤ represents state-preservation, with ⇤PP = 1 (< 1)
for processes which (do not) preserve the Pauli channel P 8 {I, X, Y, Z}. One downside to
the PTM representation is that it does not concisely capture whether or not a process is CP.

The process fidelity of a map in the PTM representation is the weighted average of the
diagonal components,

F⇤ =
1

4n

X

P2P⌦n

⇤PP . (3.48)

Therefore, the process infidelity is given as eF = 1 � F⇤. For any CPTP map, eF sets the
upper bound on the infidelity (or survival probability) of any given Pauli channel,

0  1 � ⇤PP  2eF . (3.49)
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Examples

Below, we provide the PTM for the example Kraus maps from Section 3.5:

• Coherent error about the z-axis by an angle ✓ (Eq. 3.15):

⇤ =

0

BBBBBB@

1 0 0 0

0 cos(✓) � sin(✓) 0

0 sin(✓) cos(✓) 0

0 0 0 1

1

CCCCCCA
(3.50)

• Spontaneous emission and amplitude damping with probability p:

⇤ =

0

BBBBBB@

1 0 0 0

0
p

1 � p 0 0

0 0
p

1 � p 0

p 0 0 1 � p

1

CCCCCCA
(3.51)

• Dephasing noise with probability p:

⇤ =

0

BBBBBB@

1 0 0 0

0 1 � p 0 0

0 0 1 � p 0

0 0 0 1

1

CCCCCCA
(3.52)

• Depolarizing noise with probability p:

⇤ =

0

BBBBBB@

1 0 0 0

0 1 � p 0 0

0 0 1 � p 0

0 0 0 1 � p

1

CCCCCCA
(3.53)

• Stochastic Pauli noise with probabilities pX , pY , and pZ :

⇤ =

0

BBBBBB@

1 0 0 0

0 1 � 2(pY + pZ) 0 0

0 0 1 � 2(pX + pZ) 0

0 0 0 1 � 2(pX + pY )

1

CCCCCCA
(3.54)
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With these examples in hand, we can better understand the state-preservation constraint
by considering the duality between quantum maps in the Kraus and PTM representations.
Namely, a Pauli error Q in the Kraus representation that occurs with probability pQ will
reduce the value of ⇤PP for any anti-commuting Pauli channel (i.e. {P, Q} = 0). As a
concrete example, consider a dephasing channel in the Kraus representation,

E(⇢) =
⇣
1 � p

2

⌘
⇢+

p

2
Z⇢Z,

in which a Z error (no error) occurs with probability p (1 � p). The corresponding PTM is
given in Eq. 3.52, where we see that a Z error in the Kraus representation reduces the survival
probability of the X and Y Pauli channels, but leaves the Z Pauli channel unchanged. We
can generalize the connection between the Kraus and PTM representations for the diagonal
terms in Eq. 3.54:

⇤PP =
X

Q8[P,Q]=0

pQ �
X

Q8{P,Q}=0

pQ, (3.55)

where pQ is the probability of an error due to the Pauli Q in the Kraus representation.

3.8 Non-Markovian Errors

In our previous discussion of errors and noise processes, we have made the assumption that
errors impacting a qubit are local to the a↵ected qubit and have no impact on other qubits.
Furthermore, while we have not explicitly discussed the notion of “time” in the Kraus, �,
or PTM representations, the time dependence of the error or noise process is built into the
probability parameter p appearing in the above examples, which is taken to be proportional
to the time t of a finite quantum operation, p ⇠ t. In all of the above examples, ⇢0 is
completely determined by ⇢ according to the map E : ⇢ 7! ⇢0 or ⇤ : ⇢ 7! ⇢0, and has no
dependence on the previous gates or gates applied to other qubits. Therefore, by definition,
all of the error processes we have discussed up until now can be considered “Markovian,” as
they obey assumptions of locality in space and are temporally restricted to a single quantum
operation (i.e. gate). While non-Markovianity is well-defined in the classical regime in terms
of temporal correlations, a rigorous definition of what constitutes a “non-Markovian” process
in the quantum domain does not exist for all systems, as this definition is dependent upon the
system size and timescales under consideration. This is certainly true for NISQ processors,
in which the term “non-Markovian error” is often used yet rarely well defined [80, 81, 82,
83]. Furthermore, for infinitely large systems and infinitely small timescales, all processes
are Markovian.

For the purposes of this work, we define a non-Markovian error as one that cannot be mod-
eled as occurring within a given cycle of gates, for a system defined to contain a given number
of qubits (see Fig. 3.5). We use a “cycle” as the characteristic timescale for Markovian pro-
cesses, as this term is derived from the notion of “clock cycles” on a quantum computer,
which defines the timescale within which discrete operations act on qubits (i.e. quantum
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Figure 3.5: Non-Markovian errors in gate-based quantum computing. Markovian
errors for a given system of qubits (black) are defined to occur within the timescale of a given
cycle of gates (blue rectangle). Sources of non-Markovianity include leakage out of (and later
seepage back into) the computational basis states (purple), unintended entanglement (green)
with qubits outside of the defined system (grey) or two-level fluctuators in the environment,
drift in the system properties (e.g. fluctuations in the qubit transition frequency !, with
!0 = ! + �!), and classical EM signals from outside of the defined system (red) that reach
the system qubits within their pseudo light cone (blue).

gates). Furthermore, the Kraus, �, and PTM representations of quantum errors and noise
are constructed on the assumption that every Markovian error can be captured by a process
matrix for any cycle of quantum gates. Therefore, violations of this assumption (i.e. errors
that cannot be captured by a process matrix) must – by definition – be non-Markovian.
Various common sources of non-Markovianity in NISQ systems include leakage out of the
computational basis states [84, 85, 86, 87, 88, 89], unwanted entanglement between qubits
(e.g. static ZZ coupling), drift in qubit parameters [68], unwanted coupling to sources of
noise in the environment (e.g. two-level fluctuators and nonequilibrium quasiparticles [90,
91, 92, 93]), and qubit heating [94].
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Chapter 4

Noise Tailoring via Twirling

The notion of “twirling” a quantum channel is by now ubiquitous in the field of quantum
characterization, verification, and validation (QCVV). However, it is by no means well-known
in QIS, even though many contemporary methods of benchmarking error rates in quantum
gates utilize it. The basic concept is to average a quantum channel ⇤ over some unitary
group, which has the benefit of simplifying the structure of ⇤, often taking it from dense
to sparse. As we will see in the next chapter, a sparse, diagonal process matrix condenses
information about the physical process into a single number – the process fidelity. However,
twirling can su↵er from the unforeseen consequence of being an inaccurate representation of
⇤ in any actual quantum application. Below, we give a precise definition of twirling, and
discuss the di↵erence between twirling over the Pauli and Cli↵ord gate sets.

4.1 Twirling Quantum Channels

Consider a quantum channel ⇤ representing some quantum gate or process (e.g. in the PTM
representation). Next, consider a unitary operator Û which belongs to the set U(d) of all d⇥d
unitary operators in d-dimensional Hilbert space, where d = 2n for n qubits. Suppose that ⇤
is conjugated by Û , which has been randomly sampled from U(d), mapping ⇤ 7! Û � ⇤ � Û †.
Using this notation, a twirled channel ⇤̄ is given by

⇤̄ =

Z

U(d)

dµ(Û)Û � ⇤ � Û †, (4.1)

where µ(Û) is the uniform Haar measure [95] over the space of d ⇥ d unitary matrices,
ensuring that Û is uniformly sampled from U(d). Thus, ⇤̄ can be thought of as the expected
value of ⇤ conjugated with all possible unitaries Û 2 U(d). Because ⇤ = ⇤(⇢) is a linear
map on a quantum state ⇢, Û also acts on ⇢ by conjugation:

Û(⇢) = U⇢U †, Û †(⇢) = U †⇢U. (4.2)
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| i

Û † ⇤ Û
| i

| i

| i

Figure 4.1: Twirling. Twirling a quantum channel results in the map ⇤ 7! Û � ⇤ � Û †.

Therefore, the twirled channel on a density operator ⇤̄(⇢) can be written as

⇤̄(⇢) =

Z

U(d)

dµ(U)U †⇤(U⇢U †)U. (4.3)

It is often the case that one does not actually twirl over all of U(d) because of the
impracticality of uniformly sampling from U(d). Rather, it is much more common to twirl
a channel over a discrete distribution of unitaries, such as the Pauli or Cli↵ord group. For
example, consider the channel ⇤(⇢) = P⇢Q, where {P, Q} are arbitrary linear operators.
Next, consider some group G = {U1, ..., UK} consisting of K di↵erent unitary operators. In
the discrete case, the twirled channel ⇤̄(⇢) can be written as the weighted average over all
K operators [96]:

⇤̄(⇢) =
1

K

KX

k=1

U †

k
PUk⇢U

†

k
QUk. (4.4)

4.2 Pauli Twirling

One can twirl a channel ⇤ over any group. However, it is often convenient to choose a
particular group – such as the Pauli or Cli↵ord group. Because we often represent our
channels in the Pauli basis, it is educational to first understand the basics of Pauli twirling,
before considering twirling over any other unitary group. As we show in Fig. 4.2, Pauli
twirling a channel ⇤ in the PTM representation can be easily understood by considering the
PTM for a simple Rx(10�) rotation, which contains o↵-diagonal terms only in the lower right-
hand block of the PTM. Under conjugation with any Pauli P 2 {I, X, Y, Z} (also represented
in PTM form), the signs of the o↵-diagonal terms remain the same (are reversed) if P
commutes (anti-commutes) with ⇤. Therefore, for ⇤[Rx(10�)], the o↵-diagonal terms remain
the same for I � ⇤[Rx(10�)] � I or X � ⇤[Rx(10�)] �X, but are reversed for Y � ⇤[Rx(10�)] �Y
and Z � ⇤[Rx(10�)] � Z. Thus, the o↵-diagonal terms change sign with a 50% probability
upon conjugation with a randomly-selected Pauli.
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(a) PTM for Pauli I (b) PTM for Pauli X (c) PTM for Pauli Y (d) PTM for Pauli Z

(e) PTM for Rx(10�) (f) X � ⇤[Rx(10�)] � X (g) Y � ⇤[Rx(10�)] � Y (h) Z � ⇤[Rx(10�)] � Z

(i) 1
2

⇣
X � ⇤[Rx(10�)] �

X+Z�⇤[Rx(10�)]�Z
⌘

Figure 4.2: Basics of Pauli twirling. (a) PTM for the Pauli I gate. (b) PTM for the
Pauli X gate. (c) PTM for the Pauli Y gate. (d) PTM for the Pauli Z gate. (e) PTM for
an Rx(10�) rotation, ⇤[Rx(10�)]. (f) ⇤[Rx(10�)] conjugated with X gates; because Rx(10�)
commutes with X, this is identical to ⇤[Rx(10�)]. (g) ⇤[Rx(10�)] conjugated with Y gates;
because Rx(10�) does not commutes with Y , the signs of the o↵-diagonal terms have been
flipped relative to ⇤[Rx(10�)]. (h) ⇤[Rx(10�)] conjugated with Z gates; because Rx(10�)
does not commutes with Z, the signs of the o↵-diagonal terms have been flipped relative to
⇤[Rx(10�)]. (i) Sum of the Pauli-X ⇤[Rx(10�)] and Pauli-Z twirled ⇤[Rx(10�)], resulting in
a PTM in which the o↵-diagonal terms have been exactly averaged to zero.
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Figure 4.3: Random CPTP channel ⇤ in the PTM representation. The color (trans-
parency) of each cell is determined by the complex angle (magnitude) of each entry.

In general, Pauli twirling is implemented by averaging over N randomly sampled Paulis,

⇤̄(⇢) =
1

N

NX

P2RPn

P⇤(⇢)P †, (4.5)

where R denotes that P is chosen at random from the n-qubit Pauli group Pn each time. In
this case, the magnitude of the o↵-diagonal terms scale as ⇠ (✓/

p
N), vanishing as N �! 1

or if by luck the correct Paulis are sampled which average to zero (see Fig. 4.2i). This is
what is meant by “noise tailoring via twirling.” As a concrete example, in Fig. 4.3 we plot
a random two-qubit PTM and show how the o↵-diagonal terms are averaged to zero under
Pauli twirling as N is increased from 10, to 100, to 10,000 (see Fig. 4.4). However, note that
the diagonal terms remain unchanged for all N . More specifically, Pauli twirling tailors a
physical map into Pauli channels, in which the diagonal entries of the PTM remain distinct
(Eq. 3.54).
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(a) Pauli twirling, N = 10 (b) Cli↵ord twirling, N = 10

(c) Pauli twirling, N = 100 (d) Cli↵ord twirling, N = 100

(e) Pauli twirling, N = 10k (f) Cli↵ord twirling, N = 10k

Figure 4.4: Pauli twirling vs. Cli↵ord twirling. Pauli twirling vs. Cli↵ord twirling as
a function of the number N of randomly-selected gates acting on the random unitary in
Fig. 4.3. Pauli twirling preserves the eigenvalues along the diagonal of the PTM, whereas
Cli↵ord twirling averages them together into a global depolarizing channel.
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P HPH†

I I

X Z

Y -Y

Z X

Table 4.1: P1 under H conjuga-
tion.

P SPS†

I I

X Y

Y -X

Z Z

Table 4.2: P1 under S conjuga-
tion.

4.3 Cli↵ord Twirling

The n-qubit Cli↵ord group [97], denoted Cn, is a group of unitary operators that map Pauli
operators to Pauli operators under conjugation:

8C 2 Cn : CPC† 7! P 0 2 Pn, 8P 2 Pn. (4.6)

Formally, it is said that the Cli↵ord group is the normalizer of the Pauli group for n qubits.
The single-qubit Cli↵ord group C1 contains 24 single-qubit gates; these consist of any integer
number of ⇡/2 rotations about any of the six cardinal axes of the Bloch sphere (±x̂, ±ŷ,
and ±ẑ), which includes all single-qubit Pauli gates (Pn ⇢ Cn). The two-qubit Cli↵ord
group contains 11,520 two-qubit gates, which can be constructed from C1 and a two-qubit
entangling gate, such as a CX, CZ, or (i)SWAP gate. The three-qubit Cli↵ord group
contains 92,897,280 elements.

Typical examples of Cli↵ord gates which are not in the Pauli group are the Hadamard H,
S =

p
Z = Z⇡/2, CNOT-like, and SWAP-like gates. In fact, the subgroup of Cli↵ord gates

G = {H, S, CNOT} is su�cient to generate the full Cli↵ord group between any two pairs of
qubits. In Tables 4.1 and 4.2, we show the action of all single-qubit Pauli operators under
conjugation by the Hadamard H and S gates, respectively. In Tables 4.3 and 4.4, we show
the action of all two-qubit Pauli operators under conjugation by the CNOT and iSWAP
gates, respectively. In all cases, we find that the resulting gate is a Pauli which belongs to
Pn (up to a global phase).

As we can see, the action of conjugating a Pauli operator by a Cli↵ord gate is to map
the Pauli operator to the same (a di↵erent) Pauli operator if the Pauli commutes (does not
commute) with the Cli↵ord gate. In general, under Cli↵ord twirling, a quantum channel
⇤(⇢) is averaged over N randomly sampled Cli↵ords:

⇤̄(⇢) =
1

N

NX

C2RCn

C⇤(⇢)C†. (4.7)
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P CNOT(P )CNOT†

I ⌦ I I ⌦ I

I ⌦ X I ⌦ X

I ⌦ Y Z ⌦ Y

I ⌦ Z Z ⌦ Z

X ⌦ I X ⌦ X

X ⌦ X X ⌦ I

X ⌦ Y Y ⌦ Z

X ⌦ Z -Y ⌦ Y

Y ⌦ I Y ⌦ X

Y ⌦ X Y ⌦ I

Y ⌦ Y -X ⌦ Z

Y ⌦ Z X ⌦ Y

Z ⌦ I Z ⌦ I

Z ⌦ X Z ⌦ X

Z ⌦ Y I ⌦ Y

Z ⌦ Z I ⌦ Z

Table 4.3: P2 under CNOT con-
jugation.

P iSWAP(P )iSWAP†

I ⌦ I I ⌦ I

I ⌦ X Y ⌦ Z

I ⌦ Y -X ⌦ Z

I ⌦ Z Z ⌦ I

X ⌦ I Z ⌦ Y

X ⌦ X X ⌦ X

X ⌦ Y Y ⌦ X

X ⌦ Z I ⌦ Y

Y ⌦ I -Z ⌦ X

Y ⌦ X X ⌦ Y

Y ⌦ Y Y ⌦ Y

Y ⌦ Z -I ⌦ X

Z ⌦ I I ⌦ Z

Z ⌦ X Y ⌦ I

Z ⌦ Y -X ⌦ I

Z ⌦ Z Z ⌦ Z

Table 4.4: P2 under iSWAP con-
jugation.

If we express ⇤(⇢) in the PTM representation, for which the diagonal entries represent
di↵erent Pauli channels, then the act of Cli↵ord twirling ⇤(⇢) results in a PTM in which the
survival probabilities of all of the Pauli channels are averaged together into the same value;
this is called a global depolarizing channel,

Ē(⇢) = (1 � p)⇢+ p
I
d
, (4.8)

where p 2 [0, 1] is the probability that ⇢ is mapped to a maximally-mixed state (see Eq. 3.35).
From p, we can define an e↵ective depolarizing parameter f = 1 � p, which is equal to the
average value along the diagonal of the PTM ⇤:

f(⇤) =
Tr ⇤u

d2 � 1
, (4.9)
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where ⇤u denotes the unital bloch of ⇤ (see Fig. 3.4). In Fig. 4.4, we demonstrate the impact
of Cli↵ord twirling on the random PTM shown in Fig. 4.3. We show that as N increases
from 10, to 100, to 10,000, the o↵-diagonal entries are averaged to zero (like Pauli twirling),
and the diagonal entries slowly converge to the same value.

4.4 Unitary t-designs

The Cli↵ord group holds a special place in quantum computing. According to the Gottesman-
Knill theorem [98], quantum circuits containing only Cli↵ord gates and measurements of
Pauli operators can be e�ciently simulated in polynomial time on a classical computer.
Therefore, Cli↵ord circuits are insu�cient to realize the full potential of quantum computers
over classical computers. In fact, in order to perform universal quantum computation, one
requires a gate set which also contains a non-Cli↵ord gate such the T =

p
S = Z⇡/4 gate

(sometimes called the “⇡/8” for historical reasons). Nonetheless, Cli↵ord gates are ubiquitous
in quantum computations and are essential to a number of important applications. For
example, stabilizer codes in quantum error correction use Cli↵ord gates for encoding and
decoding. Additionally, basic benchmarking procedures for measuring average error rates of
quantum gates, such as randomized benchmarking, are constructed entirely of Cli↵ord gates.

One of the primary reasons that the Cli↵ord group remains important is because it
forms what is known as a unitary 2-design. Classically, the notion of spherical t-designs
defines a finite collection of points on the surface of a unit sphere which provide a “good”
approximation to the integral over the entire unit sphere [99]. Unitary t-designs are the
extension of spherical t-designs to the quantum domain, for which we desire to reproduce
the basic properties of the entire unitary group U(d). More formally, a unitary t-design in
d-dimensions is a finite set of unitary operators {U1, ..., UK} such that the sum over every
polynomial Pt,t(Uk) = U⌦t

k
⌦ (U⇤

k
)⌦t of degree no larger than t in the matrix elements of U

and their complex conjugates is equal to the integral of P(t,t)(U) over U(d),

1

K

KX

k=1

P(t,t)(Uk) =

Z

U

dµ(U)P(t,t)(U), (4.10)

where dµ(U) is the unitarily invariant Haar measure. Statistically, a unitary t-design simu-
lates the properties of uniformly distributed (Haar) random matrices up to the t’th moment.
In lay terms, this means that unitaries in a t-design are evenly spaced around the unit sphere
defining U(d), with larger values of t defining more densely spaced points. For example, the
set of Pauli operators in d-dimensions forms a unitary 1-design.

Generating a random unitary from U(d) using only single- and two-qubits gates is an
exponentially di�cult task, taking of order O(n222n) quantum gates for n-qubits [100], mak-
ing an integration over the uniform Haar distribution practically impossible. However, it
is important to be able to approximate the properties of U(d); for many applications, it
is su�cient to approximate U(d) up to second order. Returning to the topic of twirling,
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for a unitary group G = {U1, ..., UK} to be a unitary t-design, it must satisfy the following
equality:

1

K

KX

k=1

U †

k
⇤(Uk⇢U

†

k
)Uk =

Z

U(d)

dµ(U)U †⇤(U⇢U †)U. (4.11)

More specifically, for G to be a 2-design, it must satisfy the following [101]:

1

K2

KX

k,k0=1

���Tr
⇣
U †

k0Uk

⌘���
4

= 2. (4.12)

The Cli↵ord group satisfies both requirements for t = 2 [96], with

1

|Cn|

|Cn|X

k=1

C†

k
PCk⇢C

†

k
QCk =

Z

U(d)

dµ(U)U †PU⇢U †QU, 8⇢, (4.13)

where we use the notation of Eq. 4.4 containing arbitrary linear operators {P, Q}.
This is a particularly useful result, because arbitrary Cli↵ord gates can be decomposed

into single- and two-qubit gates using only O(n2) quantum gates for n-qubits [96] (see also
the discussion in the supplementary information of Ref. [102]). We note in passing that while
it is considered “common knowledge” that the Cli↵ord group is a unitary 2-design, this in
fact not universally true, as it depends on whether the dimension d is prime or not [103]. In
fact, for any even prime-power dimension d, the Cli↵ord group also forms a unitary 3-design
[104, 105].
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Chapter 5

Quantum Characterization,
Verification, and Validation

Utilizing quantum computers to solve classically-intractable problems like Shor’s algorithm
[106] will require quantum error correction (QEC) [107, 108, 109, 110, 111], which can only
protect against arbitrary errors if the error rate of each physical qubit is below a given
fault tolerance (FT) threshold [112, 113, 114, 115, 116, 117]. With the rapid advancements
being made in the development of better qubits, better quantum gates, and larger quantum
processors — all working toward the ultimate goal of fault-tolerant QEC — the field of
quantum characterization, verification, and validation (QCVV) emerged out of the necessity
for benchmarking this progress, as well as understanding what types of noise and errors
limit our computations. In the past several decades, a vast number of di↵erent QCVV
protocols have been developed, ranging widely from methods which are scalable but provide
less information to methods which provide more information but are less scalable. These
methods can be broadly placed into four di↵erent categories:

1. Characterization of quantum states

2. Characterization of quantum processes or gates

3. Holistic characterization of the capabilities of quantum processors

4. Application benchmarks of quantum algorithms

In this chapter, we aim to give a first-principles understanding of contemporary methods
of benchmarking quantum gates, what these benchmarks can and cannot tell us about al-
gorithm performance, and what we can learn about how close we are to FT thresholds. We
will start by giving a broad overview of di↵erent ways to define the accuracy (or, conversely,
error) of a quantum state or process, and discuss to what extent benchmarked error rates
can inform us about FT thresholds. Then we will cover common benchmarking protocols
such as randomized benchmarking and gate set tomography, as well as introducing more
advanced methods, such as cycle benchmarking and cycle error reconstruction. Finally, we
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will comment on other contemporary benchmarks in the field, and where these fit within the
vast array of current methods available.

5.1 An Overview of Fidelity Measures and Error
Metrics

Various definitions exist for quantifying the “error” of a quantum state or operation. Broadly
speaking, these can be divided into fidelity-based error measures and norm-based error met-
rics (e.g. L1-norm, L2-norm, etc.)1. Which measure or metric to use will depend on many
factors, including what information is desired, which benchmarking method is used, what
application does one want to implement, etc. In this section, we aim to give a broad overview
of the various error measures and metrics that are commonly used in QIS.

Fidelity

State Fidelity

Consider two quantum states ⇢ and �. The state fidelity between these two density matrices
is defined2 to be

F (⇢, �) ⌘
✓

Tr
qp

⇢�
p
⇢

◆2

. (5.1)

The fidelity has several important properties, namely, it is bounded by 0  F (⇢, �)  1 for
any pair {⇢, �}, and it is symmetric in ⇢ and �, with F (⇢, �) = F (�, ⇢). If F (⇢, �) = 1, then
⇢ and � are identical. If F (⇢, �) = 0, then ⇢ and � are orthogonal. For the case in which
⇢ = | ih | is a pure state, Eq. 5.1 simplifies to

F (⇢, �) = Tr[� | ih |] = h | � | i . (5.2)

If both ⇢ and � are pure states, with � = |�ih�|, then F can be written as

F (⇢, �) = | h |�i |2. (5.3)

From Eq. 5.3, we can see that the fidelity is the inner product of ⇢ and �. In fact, the
physical motivation behind the fidelity in quantum mechanics is that it represents a measure
of the overlap between two quantum states. While it is convenient to think about the fidelity
between pure states, if ⇢ or � are potentially mixed states after passing through a noise
channel, then F (⇢, �) can be interpreted as being the lower bound on the overlap between
the two, assuming they were initially pure states [119]. The fidelity also has the convenient

1See Chapter 9 in Ref. [26] for a good overview of this topic.
2Note that our definition of fidelity di↵ers from that of Ref. [26], which defines the fidelity as

p
F (⇢,�),

the square root of our definition. We, however, adhere to the definition of fidelity presented in Ref. [118].
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operational interpretation as being the probability that ⇢ and � are indistinguishable from
one another. For example, suppose ⇢ represents an ideal (pure) quantum state, and � is
our attempt to experimentally prepare ⇢ in the lab; in this case, F (⇢, �) represents the
probability that we were able to successfully prepare ⇢, assuming perfect measurement of �.
The connection between fidelity and probability will become useful later on when we discuss
the how it relates to benchmarks of quantum operations.

A special case of F (⇢, �) exists when ⇢ and � commute, in which case they can be diago-
nalized in the same basis. Writing ⇢ =

P
i
pi |iihi| and � =

P
i
qi |iihi| for some orthonormal

basis {|ii}, F (⇢, �) can be written as

F (pi, qi) =

 
X

i

p
piqi

!2

, (5.4)

where pi (qi) is the probability of measuring ⇢ (�) in the state |ii (see Eq. 3.2). Therefore,
when [⇢, �] = 0, F (⇢, �) reduces to the classical definition of fidelity F (pi, qi) between two
probability distributions. This is sometimes referred to as the Hellinger fidelity, and can be
used to compute the fidelity between two bit string distributions.

Average Gate Fidelity

When we speak of quantum gates, we must discuss the fidelity of quantum operations,
instead of the fidelity of quantum states. Various metrics and measures exist for quantifying
the fidelity of a quantum gate. The most common method for characterizing gate fidelities
is via randomized benchmarks (discussed in the following section), which defines the average
gate fidelity as

F(G, G̃) ⌘
Z

d Tr
h
G†( )G̃( )

i
, (5.5)

where G (G̃) is the ideal (noisy) gate acting on the state | i, and the integral is over the
uniform Haar measure d . Because G̃ = G only in the noiseless limit, F = 1 indicates that
the quantum gate is operationally perfect over all possible input states. By defining G as
an ideal unitary channel U(⇢) = U | ih | U † acting on the quantum state ⇢ = | ih |, and by
defining G̃ as the noisy channel E(⇢), we can re-write Eq. 5.5 as

F(U , E) =

Z
d Tr

⇥
U †(⇢)E(⇢)

⇤
(5.6)

=

Z
d h | U †E(⇢)U | i . (5.7)

Eq. 5.6 is useful for understanding the meaning of F in terms of noisy quantum operations,
since F �! 1 only if U(⇢) is approximated well by E(⇢), which is the case only when the
magnitude of noise and errors impacting U is small.
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Many randomized benchmarking procedures are constructed such that U = I, and there-
fore the noise channel E is (by construction) the identity channel in the noiseless limit. In
this case, the average gate fidelity is typically written as

F(E) =

Z
d h | E(⇢) | i , (5.8)

where F is an integral over all pure states, and is thus a measure of the overlap of E with I that
is independent of the input state. Therefore, F defines the success probability that evolving
an arbitrary pure state ⇢ = | ih | through a noisy channel E(⇢) returns to the original state
upon measurement, where F = 1 indicates that quantum information is perfectly preserved
by the channel E . From Eq. 5.8, we can define the average error rate r(E) in terms of F(E),

r(E) = 1 � F(E), (5.9)

where r(E) defines the probability of an error occurring per gate, or average gate infidelity3.
It is interesting to note that the average gate fidelity is unchanged by twirling. To see

this, we utilize the definition of a twirled channel (Eq. 4.3) in place of E(⇢) in Eq. 5.8:

F(Ē) =

Z
d 

Z
dµ(U) h | U †E(U⇢U †)U | i (5.10)

=

Z
dµ(U)

Z
d h | U †E(U⇢U †)U | i (5.11)

=

Z
dµ(U)F(E) (5.12)

= F(E), (5.13)

where in lines 2-3 we make a change of variables | 0i ⌘ U | i and subsequently drop the
primes. One way to understand this result is to recognize that the average gate fidelity is
only sensitive to the diagonal terms in E(⇢) due to the matrix element h | E(⇢) | i, which is
una↵ected by the twirling of o↵-diagonal terms in the process.

Process Fidelity

A related measure, known as the process (or entanglement) fidelity, defines how well an
entangled state is preserved if the quantum channel E acts only on a subset of a maximally-
entangled state ⇢ = | ih |:

F (E) = h | (I ⌦ E)(⇢) | i , (5.14)

where I is the identity operation acting on the subsystem not passed through E . Oper-
ationally, F can be estimated experimentally by measuring and computing the weighted

3In this work, we do not distinguish between the average error rate and average gate infidelity measured
by randomized benchmarks. However, it should be noted that more precise definitions of these terms are
given in the literature [120, 121]
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F r F eF f

F F 1 � r dF+1
d+1 1 � eF

d

d+1
(d�1)f+1

d

r 1 � F r (1 � F ) d

d+1 eF
d

d+1 (1 � f)d�1
d

F (d+1)F�1
d

1 � r d+1
d

F 1 � eF
(d2�1)f+1

d2

eF (1 � F )d+1
d

r d+1
d

1 � F eF (1 � f)d
2
�1
d2

f dF�1
d�1 1 � r d

d�1
d
2
F�1

d2�1 1 � eF
d
2

d2�1 f

Table 5.1: Summary of the linear relationship between the average gate fidelity
F , the average gate infidelity r, the process fidelity F , the process infidelity eF ,
and the e↵ective depolarizing parameter f . d = 2n for n qubits. (Table adapted from
Refs. [124, 125].)

average of the diagonal components of the Pauli Transfer Matrix (PTM) of an error pro-
cess (see Eq. 3.48). The average gate fidelity and process fidelity are related by a simple
dimensionality factor [122, 123],

F(E) =
dF (E) + 1

d + 1
, (5.15)

where d = 2n (n qubits). Since the process infidelity eF (E) is given as

eF (E) = 1 � F (E), (5.16)

the average gate infidelity and process infidelity are also related by a simple dimensionality
factor:

eF (E) = r(E)
d + 1

d
. (5.17)

The process infidelity is also related to the e↵ective depolarizing parameter (Eq. 4.9) via

f = 1 � eF (E)
d2

d2 � 1
. (5.18)

In Table 5.1, we include a summary of the linear relationships between the average gate
(in)fidelity, the process (in)fidelity, and the e↵ective depolarizing parameter.

The process infidelity is a useful measure for quantifying the error rate of composite
processes in cycles (or layers) of gates, as it is stable under tensor products of quantum
gates of di↵ering dimensions (e.g. single- and two-qubit gates) — whereas the average gate
infidelity is not. To see this, we note that the fidelity of a composite process acting on two
qubits (say, qubit 1 and qubit 2) can be written as

F (E1 ⌦ E2) = 1 � eF (E1 ⌦ E2) = [1 � eF (E1)][1 � eF (E2)],
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where
eF (E1 ⌦ E2) = eF (E1) + eF (E2) � eF (E1)eF (E2) ⇡ eF (E1) + eF (E2),

assuming that both eF (E1) and eF (E2) are small. Note that these relationships do not hold
for the average gate infidelity, which must be converted to the process fidelity via Eq. 5.17
to compute the average error rate of composite processes.

Trace Distance

Consider two quantum states ⇢ and �. The trace distance between these two density matrices
is defined to be

D(⇢, �) ⌘ 1

2
Tr |⇢� �| , (5.19)

where |A| =
p

A†A and 0  D(⇢, �)  1. The trace distance can be understood as being
related to the Euclidean distance between ⇢ and � for the special case of single qubits states
on the Bloch sphere. To see this, we can write ⇢ and � in terms of their respective Bloch
vectors r and q,

⇢ =
1

2
(I + r · �)

and

� =
1

2
(I + q · �)

where � is the single-qubit Pauli vector. The trace distance can be written as

D(⇢, �) =
1

2
Tr |⇢� �| =

1

4
Tr |(r � q) · �|. (5.20)

Because the eigenvalues of � are ±1, the trace of |(r � q) · �| = 2|(r � q)|, and thus

D(⇢, �) =
1

2
|r � q|. (5.21)

In other words, the trace distance between two single-qubit states on the Bloch sphere is
exactly equal to one-half the Euclidean distance between their vectors. This definition of the
trace distance provides some physical intuition behind the di↵erence between the state fidelity
F (⇢, �) (Eq. 5.1) and D(⇢, �): while the state fidelity is a measure of the overlap between
two quantum states, the trace distance is a measure of the distance between the two states.
Therefore, in contrast to the state fidelity being a measure of state indistinguishability, the
trace distance is a measure of the distinguishability between two quantum states. In many
ways the two are dual to each other, and they are in fact closely related via the following
inequalities [126]:

1 �
p

F (⇢, �)  D(⇢, �) 
p

1 � F (⇢, �), (5.22)
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where D(⇢, �) saturates the upper bound only if ⇢ and � are both pure states. If either ⇢ or
� is a pure state, then

1 � F (⇢, �)  D(⇢, �). (5.23)

The trace distance has several important properties. Firstly, it is a proper distance metric
on the space of density matrices because it satisfies the following three properties:

1. D(⇢, �) = 0 i.f.f. ⇢ = �

2. Symmetry: D(⇢, �) = D(�, ⇢)

3. Triangle inequality: D(⇢, �)  D(⇢, ⌧) + D(⌧, �)

While the state fidelity is a symmetric function of its inputs, F (⇢, �) = F (�, ⇢), it does not
satisfy properties 1 and 3 and therefore is not a proper distance metric. For this reason, we
do not refer to the fidelity as a distance metric, but rather a measure of the overlap between
two quantum states. It is worth noting that the state fidelity does give rise to a proper metric
known as the Bures metric, which is related to the Euclidean distance and angle between
two quantum states.

Secondly, the trace distance is contractive for any trace-preserving quantum process E :

D[E(⇢), E(�)]  D(⇢, �). (5.24)

This contractivity property expresses the fact that any TP quantum operation on both qubits
cannot increase the distinguishability of two quantum states. A limiting example of Eq. 5.24
is that of a unitary transformation U , in which case D(U⇢U †, U�U †) = D(⇢, �). Therefore,
the trace distance is invariant under unitary transformations.

Finally, the quantum trace distance is equivalent to the classical trace distance for the case
in which ⇢ and � commute and are thus diagonal in the same basis. Writing ⇢ =

P
i
pi |iihi|

and � =
P

i
qi |iihi| for some orthonormal basis {|ii}, the trace distance can be written as

D(⇢, �) =
1

2
Tr

�����
X

i

(pi � qi) |iihi|

����� (5.25)

=
1

2

X

i

|pi � qi| = D(pi, qi), (5.26)

where pi (qi) is the probability of measuring ⇢ (�) in the state |ii. This quantity is often
referred to as the total variation distance (TVD) or Kolmogorov distance between classical
probability distributions. We will use this metric extensively in the remainder of this work
and choose the former name, defining it to be

dTV(pi, qi) =
1

2

X

i

|pi � qi| (5.27)
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in order to distinguish it from the quantum trace distance. For a countable set, the TVD is
related to the L1-norm:

dTV(p, q) =
1

2
||p � q||1, (5.28)

where p = {pi} and q = {qi} are classical probability distributions, showing that the TVD
is a proper distance metric on the space of classical distributions.

While the trace distance is a fundamental measure of distance between two quantum
states, the TVD is a classical distance metric which depends on the measurement basis. In
fact, for any quantum states ⇢ and �, it can be shown that the TVD is upper-bounded by
the trace distance between for any positive operator-valued measure (POVM) {Mi}:

dTV(p, q)  D(⇢, �), (5.29)

where
D(⇢, �) = max

{Mi}

dTV(pi, qi). (5.30)

Therefore, the trace distance can interpreted as the maximum possible probability of dis-
tinguishing ⇢ from � upon measurement. The TVD of probabilities corresponding to a
measurement {Mi} will saturate the trace distance if and only if {Mi} are projectors on the
eigenbasis of (⇢��). In general, if ⇢ and � are close in trace distance, then any measurement
of the two density matrices in the same basis will result in probability distributions that are
close in total variation distance.

The equivalence between the quantum trace distance and the classical TVD allows us to
define the convexity of the trace distance. In fact, the trace distance is convex in its first
input,

D

 
X

i

pi⇢i, �

!

X

i

piD(⇢i, �), (5.31)

and doubly convex in both inputs,

D

 
X

i

pi⇢i,
X

i

pi�i

!

X

i

piD(⇢i, �i) (5.32)

for probabilities pi. The convexity of the trace distance can be interpreted in the following
way: distinguishing ⇢ from � when the measurement basis |ii is not known cannot be greater
than distinguishing ⇢ from � when the measurement basis is known but randomly chosen
from pi.

Diamond Norm

While the average gate infidelity r(E) and process infidelity eF (E)) quantify average error
rates, they do not guarantee the threshold below which all errors occur, which is required for
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fault-tolerant QEC. Therefore, FT thresholds are typically defined via the worst-case error
rate (i.e. diamond norm [127])4,

✏⇧(E) =
1

2

����E � I
����

⇧
=

1

2
sup

⇢2Hd2

���� [Id ⌦ (E � Id)] (⇢)
����

1
, (5.33)

where the supremum is taken over all pure states in Hilbert space H of dimension d2 and����X
����

1
= Tr

p
X†X is the trace norm. The diamond norm defines the maximum distance

between a noise channel E and the ideal channel, in this case the identity operation I;
therefore, it is sometimes referred to as the diamond distance from the identity. The diamond
norm can also be written in terms of a quantum map G induced by an ideal gate and its
noisy implementation G̃,

✏⇧(G, G̃) =
1

2
sup
⇢

���
���
h
Id ⌦ (G � G̃)

i
(⇢)
���
���
1
, (5.34)

conveniently capturing the maximum probability that the output of a noisy gate can be
distinguished from the ideal output. In practice, ✏⇧(E) represents the worst-case performance
of a quantum gate, whereas r(E) represents the average-case performance for a single instance
of the gate.

Average error rates defined via r(E) or eF (E) can be measured directly via randomized
benchmarks, but there exists no known scalable method for measuring ✏⇧(E). However, the
worst-case error rate is bounded by the average error rate [120, 128, 129, 130] via

r(E)
d + 1

d
 ✏⇧(E) 

p
r(E)

p
d(d + 1), (5.35)

or in terms of the process infidelity,

eF (E)  ✏⇧(E) 
p

eF (E)d , (5.36)

where the lower bound is set by a purely stochastic noise channel, and the upper bound is
set by a purely unitary error channel. Therefore, average error rates and worst-case error
rates can di↵er by orders of magnitude in the presence of coherent errors.

To provide some intuition behind what sets the upper and lower bounds on the diamond
norm, consider a unitary error by an angle ✓ about the x-axis for a single qubit,

U(x̂, ✓) = exp

✓
�i
✓

2
�x

◆
=

0

@ cos(✓/2) �i sin(✓/2)

i sin(✓/2) cos(✓/2)

1

A , (5.37)

4Note that we do not distinguish between the worst-case error rate and the diamond norm. However,
they are occasionally di↵erentiated in the literature [128].
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or in the PTM representation,

⇤ =

0

BBBBBB@

1 0 0 0

0 1 0 0

0 0 cos(✓) � sin(✓)

0 0 sin(✓) cos(✓)

1

CCCCCCA
. (5.38)

For small ✓, the diagonal components of ⇤ scale as cos(✓) ⇡ 1 � 1
2✓

2, and the o↵-diagonal
terms scale as sin(✓) ⇡ ✓. Since state-preservation in PTMs equates to ⇤PP = 1, and since
average gate fidelities are only sensitive to the diagonal terms in ⇤, then one can equate cos(✓)
with the process fidelity F of this error, and therefore eF ⇡ ✓2. However, being a distance
metric that is sensitive to the maximum deviation of an error from the identity operation,
the diamond norm is sensitive to the o↵-diagonal terms in ⇤, which are quadratically larger,
with

p
eF ⇡ ✓. Here, we see that the o↵-diagonal terms due to coherent errors set the ⇠ p

eF
upper bound of Eq. 5.36.

We see that error assessments based on the average gate infidelity or process infidelity are
only sensitive to the diagonal terms of the error process, whereas norm-based error-metrics,
such as the TVD and the diamond norm, will generally be sensitive to the o↵-diagonal terms
in the error process. However, while the diamond norm is always sensitive to the o↵-diagonal
terms, the TVD is a basis-dependent metric and is only sensitive to the o↵-diagonal terms
if the (ideal) target state is orthogonal to the measurement basis, where the orthogonality
implies that a greater number of o↵-diagonal terms can contribute to the error metric. The
TVD and the diamond norm are related via by the following inequality,

dTV(p, q)  ✏⇧(E). (5.39)

The upper bound in Eq. 5.39 follows from considering the definition of ✏⇧(E), when defining
⇢E = I ⌦ E(⇢) and ⇢I = I ⌦ I(⇢), so that

1

2
||⇢E � ⇢I||1  ✏⇧(E). (5.40)

Then, defining the partial trace taking any ⇢ (on the dilated Hilbert space) to �, a density
operator on the (reduced) base Hilbert space, and noting that the partial trace is a CPTP
map and that the norm || · ||1 is contractive under CPTP maps, it follows that

||�E � �I||1  ||⇢E � ⇢I||1. (5.41)

Finally, if we define p (q) as the probability distribution induced by the measurement of �E
(�I), then the definition of the TVD implies

dTV(p, q)  1

2
||�E � �I||1  ✏⇧(E). (5.42)
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By extension, by considering the definition of the diamond norm ✏⇧(G, G̃) in terms of the
noisy and ideal quantum gates G and G̃, respectively, it can be shown that the TVD between
the real and ideal probability distributions of some circuit is upper-bounded by the sum of
the diamond errors ✏⇧(G, G̃) over all gates in the circuit [127]. Because of this, FT thresholds
are defined in terms of the diamond norm, which captures the worst-case error rate of a gate
under repeated operation in a circuit.

5.2 Randomized Benchmarking

Randomized benchmarking (RB) was developed in the mid- to late-2000s [96, 131, 132,
133, 134] in order to provide a method of measuring average gate fidelities of quantum
operations. The idea is based on the notion of the reversibility of unitary operators, and
was born out of the necessity for finding more scalable benchmarks than quantum process
tomography (QPT) [135] that decouple gate errors from state-preparation and measurement
(SPAM) errors. While early papers proposed producing an average fidelity by twirling over
Haar-random unitaries [i.e. randomly sampling unitaries U 2 U(d)], modern variants are
implemented by averaging over the n-qubit Cli↵ord group Cn. Numerous di↵erent flavors
of RB and related methods have been developed since the early proposals; however, RB
remains to this day the de facto standard for benchmarking error rates in quantum gates.

In Protocol 1, we outline the basic procedure for performing RB, and highlight the
procedure in Fig. 5.1. While the constants A and B in the exponential decay function
p̄(m) = Afm + B (Eq. 5.43) are both SPAM-dependent constants, Ref. [136] proposed a
simple modification to the standard RB procedure that allows one to fit an exponential decay
function without B, which they call a “nuisance parameter.” Therefore, in the simplified
decay function p̄(m) = Afm, A can be regarded as the SPAM constant which quantifies
the o↵set from 1 for p̄(0). A additionally contains the error of the RB inversion gate (see
Fig. 5.1); therefore, if the gate errors are significant, this will distort the SPAM parameter.
We note that the decay parameter f that appears in Eq. 5.43 is the same as the e↵ective
depolarizing parameter (Eq. 4.9), and that Eq. 5.44 relates f to the average gate fidelity
F(E), first shown in Table 5.1. We are justified in equating the average gate fidelity to
the e↵ective depolarizing parameter because, as outlined in the previous chapter, Cli↵ord
twirling tailors all gate errors into a global depolarizing channel. Furthermore, as outlined
in Section 5.1, the average gate fidelity is unchanged by twirling, even though the individual
Pauli channel eigenvalues may change.

Because the RB circuit is constructed from Cli↵ord gates, the average gate infidelity
r = 1�F represents the error per Cli↵ord (EPC). The average number of single-qubit (SQ)
gates per single-qubit Cli↵ord is 1.875 [102]. Therefore, the EPC for C1 is given as

rC1 = 1.875rSQ, (5.45)

where we assume that all single-qubit gates have the same error rate rSQ. The average
number of gates per two-qubit Cli↵ord is 1.5 two-qubit gates and 8.25 single-qubit gates
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Protocol 1 Randomized Benchmarking

1. Select m Cli↵ord gates C 2 Cn sampled uniformly at random: Cm �Cm�1 � ... �C2 �C1

2. Compute the inversion gate Cm+1 = (Cm � Cm�1 � ... � C2 � C1)�1 = C�1
1:m.

3. Construct a circuit C composed of the randomly sampled Cli↵ord gates and the inver-
sion gate: C = C�1

1:m � Cm � Cm�1 � ... � C2 � C1

4. Prepare an n-qubit quantum state ⇢, typically chosen to be the ground state: ⇢ =
n⌦|0ih0|⌦n

5. Implement the circuit C on a quantum computer and perform a POVM {M, I � M},
where typically {M = |0ih0| , I � M = |1ih1|} corresponds to a measurement in the
computational basis. The result can be labeled as having returned to the original state
or not.

6. Repeat steps 4 and 5 N times (e.g. N = 1000 “shots”) to construct a probability
distribution p(m, C) = Pr(M |C, ⇢) to some appropriate precision, where p denotes the
success probability of returning to the original state for the circuit C.

7. Repeat steps 1 - 6 for s di↵erent circuits C composed of m di↵erent randomly sampled
gates C 2 Cn (e.g. s = 30)

8. Repeat steps 1 - 7 for l di↵erent values of depth-m random circuits (e.g. l = 3).

9. Compute the average success probability p̄(m) for each depth m and fit the data to an
exponential decay function:

p̄(m) = Afm + B, (5.43)

where A and B are related the state-preparation and measurement (SPAM) error.

10. Compute the average gate fidelity F(E) from f :

F =
(d � 1)f + 1

d
, (5.44)

where F(E) is defined in Eq. 5.8.

[102]. Therefore, the EPC for C2 is given as

rC2 =
3

2
rCZ +

33

4
rSQ, (5.46)
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Figure 5.1: Randomized Benchmarking. Summary of the randomized benchmarking
procedure outlined in Protocol 1.

where we take the CZ gate as the native two-qubit operation on the device.
The utility of RB is that it provides a single number which quantifies the average error

rate of a quantum gate. One can perform RB for isolated single-qubit gates, simultaneous
single-qubit gates (sRB), or two-qubit gates (see Fig. 5.2). Due to the large number of
Cli↵ord gates in the three-qubit Cli↵ord group (92,897,280), it is infeasible to perform three-
qubit RB (or beyond), as it is not possible to uniformly sample from the entire group in
any reasonable amount of time. In Fig. 5.3, we plot some example RB results to show how
the exponential fit changes when benchmarking di↵erent subsets of qubits. For example, in
comparing isolated RB performed on two qubits separately to sRB performed on both qubits
at the same time, we see stark di↵erences in exponential decay rates (note the di↵erence in
the x-axis between the two subsets of plots). This indicates that the infidelity of single-qubit
gates is worse when performed in parallel than in isolation; this discrepancy is likely due
to crosstalk-induced coherent errors acting on both qubits under simultaneous operation.
Furthermore, we note that the exponential decay for two-qubit RB is much faster than
single-qubit RB, a reflection of the fact that two-qubit gates generally have a larger gate
infidelity than single-qubit gates.
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| i C1 C2 · · · Cm�1 Cm C�1
1:m

|0i · · ·

(a) Isolated single-qubit RB

| i C(1)
1 C(1)

2
· · · C(1)

m�1 C(1)
m C(1)�1

1:m

| i C(2)
1 C(2)

2
· · · C(2)

m�1 C(2)
m C(2)�1

1:m

(b) Simultaneous single-qubit RB

| i
C1 C2

· · ·
Cm�1 Cm C�1

1:m
| i · · ·

(c) Two-qubit RB

| i
C1 G C2 G

· · ·
Cm G Cm+1

| i · · ·

(d) Interleaved RB

Figure 5.2: Randomized benchmarking sequences: (a) Isolated single-qubit gates, (b)
simultaneous single-qubit gates (sRB) on qubits (1) and (2), (c) two-qubit gates, and (d)
interleaved RB for a two-qubit gate G. For isolated single-qubit RB, all other qubits are
assumed to be idling in the ground state. For two-qubit RB, all Cm are sampled from C2,
which must be decomposed into available single- and two-qubit gates on the local device.
For interleaved RB, G is the gate of interest whose infidelity can be estimated from (c) and
(d), and Cm+1 represents the inversion gate for the entire sequence.

Interleaved RB

While standard RB captures the error per Cli↵ord gate, it is possible to estimate the average
error rate of an individual quantum gate G using interleaved RB (IRB) [137], where G is
typically some native gate on a quantum device. By interleaving G between every layer of
random Cli↵ords in RB (see Fig. 5.2d), the extracted average gate fidelity F

G̃
now represents

the fidelity of a dressed gate G̃ = GC̄n composed of the bare gate G and an average random
n-qubit Cli↵ord C̄n. However, because RB requires an inversion operator, the interleaved
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(a) Isolated RB on qubit 5 (b) Isolated RB on qubit 6

(c) Simultaneous RB on qubits 5 & 6

(d) Two-qubit RB on qubits 5 & 6

Figure 5.3: Randomized benchmarking results. Randomized benchmarking results on
two qubits (labeled 5 & 6) for the RB circuits in Fig. 5.2.

gate G must itself be a Cli↵ord gate (or locally-equivalent to a Cli↵ord) in order to e�ciently
compute the inversion gate Cm+1 = (G � Cm � G � Cm�1 � ... � G � C2 � G � C1)�1 for the
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entire sequence. Because we add an interleaved gate for every cycle in the circuit, the EPC
interleaved with a native two-qubit gate (e.g. G = CZ) is given as

rC2+CZ =
5

2
rCZ +

33

4
rSQ. (5.47)

By measuring both RB and IRB, one may obtain an estimate of the error rate of G alone
via

rG =
d � 1

d

✓
1 � f

G̃

f

◆
, (5.48)

where f (f
G̃
) is the depolarizing constant measured from RB (IRB), and d = 2n (n qubits).

In Fig. 5.4, we plot the RB and IRB decay curves for a controlled-Z (CZ) gate implemented
on the quantum processor used in this work [60], showing how the IRB sequence decays
faster than the RB sequence due to the inclusion of the interleaved gate; we estimate the
CZ gate fidelity to be FCZ = 1 � rG = 99.44(9)% from measured values of f = 0.9744(9)
and f

C̃Z
= 0.9672(7).

One issue with IRB is that the estimate of rG is subject to a large statistical uncertainty
when f and f

G̃
are comparable. According to Ref. [137], the estimate of rG is only guaranteed

in the range [rG � E, rG + E], where

E = min

8
>><

>>:

(d � 1)

d

����f � f
G̃

f

����+ (1 � f)

�

2(d2 � 1)(1 � f)

fd2
+

4
p

1 � f
p

d2 � 1

f
.

(5.49)

In fact, it has been shown that the upper- and lower-bounds on the fidelity estimate of IRB
can span orders of magnitude [138] depending on the type of errors impacting the gate. For
the CZ gate benchmarking results in Fig. 5.4, the upper- and lower-bounds on rCZ were
determined to be 8.1(2)% and 0.04(1)%, spanning nearly 2 orders of magnitude.

Purity Benchmarking

One disadvantage of RB is that it does not by default provide any information regarding the
contribution to the total error rate due to coherent errors versus incoherent noise, since all
gate errors are tailored into a global depolarizing channel. However, purity benchmarking
(PB) [139] is able to separate the two by measuring the decay in the purity as a function of
sequence depth. To do so, Ref. [139] introduces the unitarity u(E) of a noise channel E ,

u(E) =
d

d � 1

Z
d Tr


E
✓

| ih | � I
d

◆�2
. (5.50)

The unitarity can also be written in terms of the unital block of the corresponding PTM ⇤u,

u(⇤) =
1

d2 � 1
Tr
⇥
⇤†

u
⇤u

⇤
. (5.51)
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(a)

(c)

(b)

(d)

Figure 5.4: CZ gate benchmarking results. (a) Interleaved RB. Exponential decay
curves for RB (Reference, blue) and IRB (Interleaved, gold), with fRB = 0.9744(9) and
fIRB = 0.9672(7), respectively. From these values, we estimate FCZ = 99.44(9)%. (b) Cycle
Benchmarking. The y-axis lists error rate eP for each Pauli eigenstate P (x-axis) for CB
performed on the identity cycle (Reference, blue) and the CZ gate (Interleaved, gold). The
horizontal lines denote the average process infidelities across all Pauli channels; from these
values, we extract a gate fidelity of 99.43(1)%. (c) Leakage RB. By monitoring the |2i state
population for both the target (t) and control (c) qubit (Q) during RB and IRB, we are able
to fit the data to an exponential model to extract the leakage-per-gate for each qubit. (d)
Purity Benchmarking. By measuring the average purity at the end each RB sequence, one
can determine the breakdown between coherent and stochastic contributions to the total RB
error rate (inset). We find stochastic noise to be the dominant source of error, showing that
the gate is nearly coherence limited. (This figure has been reprinted with permission from
Ref. [60].)
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Figure 5.5: Randomized benchmarking and purity benchmarking. Combining RB
and PB allows one to determine which fraction of the total error rate is due to coherent errors
versus incoherent noise: the RB infidelity eF is the total error rate, the PB infidelity eS is
the error rate due to incoherent (or stochastic) noise, and the di↵erence between the two
eU = eF � eS is the error rate due to coherent errors. (a) Isolated vs. Simultaneous RB and
PB. The RB error rate is higher under simultaneous operation, whereas the infidelity from
PR is approximately the same, indicating that crosstalk-induced coherent errors constitute
a larger fraction of the total error rate during simultaneous gates. (b) Two-qubit RB and
PB. The discrepancy between the RB and PB infidelity indicates the presence of calibration
errors in the two-qubit gate. The PB infidelity represents a lower bound on the RB error
rate for coherence-limited operations.

The unitarity is equivalent to the Euclidean norm (i.e. average squared length) of a d-
dimensional Bloch vector after undergoing the error process E(| ih |), excluding the identity
component of the error map, which has been subtracted o↵. In other words, the unitarity is
a generalized measure of the purity of a quantum state after applying E . If u(E) = 1, then
E is a unitary channel.

To perform PB, only a small modification to the standard RB protocol is needed: after
each RB sequence, we perform state tomography to estimate the purity � of the final state
⇢0, where

� = h�xi2 + h�yi2 + h�zi2 (5.52)

for a single qubit, or more generally

� =
d

d � 1
||r(⇢0)||2 (5.53)

for a d-dimensional Bloch vector r in which the identity component has been subtracted o↵.
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Averaging over many random sequences of length m allows one to fit the average purity to
an exponential decay function,

h�(m)i = Aum, (5.54)

where um is the unitarity after m gates and A the SPAM parameter. Therefore, h�(m)i
represents that average purity after m gates, including a reduction in purity due to SPAM
errors.

In Fig. 5.5, we plot RB and PB results for isolated single-qubit gates, simultaneous single-
qubit gates, and two-qubit gates. The RB infidelity eF (E) represents the total error rate due
to E , the PB infidelity eS(E) represents the error rate due to incoherent (or stochastic) noise5,
and the di↵erence between the two eU(E) = eF (E) � eS(E) is the error rate due to coherent
errors. We see that the total RB error rate is worse for simultaneous RB than isolated RB,
but the PB infidelity is approximately the same in both cases. This discrepancy is likely
due to crosstalk-induced coherent errors, which make up a larger fraction of the total error
budget under simultaneous operation. Furthermore, a measure of the unitarity of a noise
channel can be useful for determining whether or not a quantum gate is coherence limited
(i.e. all gate errors are due to incoherent noise, such as T1 and T2). Figure 5.5 shows that
eS 6= eF for both isolated single-qubit RB and two-qubit RB, suggesting that the gates are
not coherence limited and that the residual coherent error contribution eU is likely due to
calibration errors, rather than crosstalk6. We additionally include PB results for the CZ
gate in Fig. 5.4d, with the exponential decay showing a decrease in purity as a function of
sequence depth; we find that the total process infidelity eF = 1.78(3) ⇥ 10�2 is split between
stochastic eS = 1.41(1)⇥10�2 and coherent eU = 0.37(3)⇥10�2 contributions, showing that
the gate is nearly coherence limited.

Leakage Randomized Benchmarking

While PB is useful for determining the ratio of stochastic and coherent errors in an error
process, it does not quantify the rate at which excitations “leak” out of the computational
subspace {|0i , |1i} and occupy higher energy levels (see Fig. 3.4). Leakage is a common
source of error in systems whose energy spacings are not su�ciently well-separated in energy
space to isolate the |0i �! |1i transition from transitions to higher energy levels. For
example, for typical transmon qubits the anharmonicity ↵ 2 [100, 300] MHz, which can lead
to non-negligible leakage into the |2i state.

By monitoring leakage into the |2i at the end of a benchmarking sequence via qutrit
classification (Fig. 2.15), we are able to perform leakage RB (LRB) [86, 87] to quantify the

5The stochastic process infidelity eS(E) is related to the unitarity u(E) via

eS(E) = 1 �
r

(d2 � 1)u(E) + 1

d2
.

6This is not entirely true for two-qubit RB, which includes simultaneous single-qubit gates in the decom-
position of random Cli↵ords.
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leakage rate (or leakage-per-gate) of our quantum gates by fitting the data to an exponential
model. As an example, in Fig. 5.4c we plot the leakage rate of the control and target qubits
during the CZ gate for both RB and IRB as a function of the |2i state population as a
percentage of the total number of experimental measurements. We see that the control
qubit has a much higher leakage rate than the target qubit.

Leakage can depend on many factors. For example, the strength of a driving signal can
increase leakage rates (larger amplitudes equate to larger non-zero matrix elements coupling
|1i to |2i). Additionally, if the !01 transition frequency of one qubit is near the !12 transition
frequency of another, then crosstalk between the two qubits under simultaneous operation
can result in larger leakage rates for the second qubit. Pulse shaping is also important, since
sharper pulse features can lead to the generation of higher frequency harmonics, potentially
leading to more signals and thus more leakage on the quantum processor. One important
pulse shaping method for single-qubit gates is the derivative reduction by adiabatic gate
(DRAG) [86, 140] protocol, which adds a derivative to the quadrature component of the
pulse envelop to combat either leakage or phase errors.

5.3 Cycle Benchmarking

Many di↵erent variants of RB have been developed over the years proceeding the development
of the original method in Ref. [131], and we could exhaust ourselves discussing the di↵erent
methods and their various nuances. However, despite RB’s tremendous success and continued
popularity within the quantum computing community, it has serious limitations. First and
foremost, RB is not scalable beyond two qubits due to the vast size of the three-qubit Cli↵ord
group. Furthermore, RB is limited to isolated single- or two-qubit gates, or capturing the
marginalized (not global) performance of such gates under simultaneous operation. For
these reasons, we instead turn to cycle benchmarking (CB) [141], a scalable protocol that
measures errors a↵ecting all qubits during any parallel gate cycle G. In Protocol 2, we
outline the basic procedure for performing CB, and depict the basic sequence structure in
Fig. 5.6a. CB di↵ers from RB in two key ways: (1) it utilizes Pauli twirling instead of
Cli↵ord twirling, which maps gate errors into stochastic Pauli channels (Eq. 3.36) instead
of a global depolarizing channel (Eq. 3.35); (2) CB benchmarks the global performance of
quantum gates performed in parallel, providing a measure of their infidelity in the context of
multi-qubit quantum algorithms. In contrast, benchmarking the individual constituent gates
of multi-qubit cycles has been shown to be a poor predictor of the global performance of
quantum circuits [142] due to the presence of coherent errors and crosstalk between qubits,
and because such benchmarks fail to capture errors on (or incurred by) idling spectator
qubits [75].

As outlined in Protocol 2, under CB the process fidelity of any parallel gate cycle G
can be measured by preparing the system in a Pauli basis state P , interleaving the cycle
of interest between cycles of n-qubit Pauli operators T randomly sampled from the full n-
qubit Pauli group Pn, and measuring the error rate as a function of sequence depth. For each
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Protocol 2 Cycle Benchmarking

1. Select K random Paulis P from the n-qubit Pauli group Pn. The set P 2 P constitutes
the preparation and measurement basis states, with K = |P|.

2. Select a sequence length m at which the application of the interleaved gate or cycle G
returns to the identity, Gm = I.

3. For each random Pauli P , do:

a) Select m + 1 random Pauli cycles T0, ..., Tm�1, Tm, and construct the following
circuit (shown in Fig. 5.6a),

C(P ) = B†

C(P ) � Tm � G � Tm�1 � G � ... � G � T0 � BP ,

where T denotes the cycles of twirling operators, BP prepares the Pauli state P ,
and B†

C(P ) rotates the system back to P at the end of the sequence.

b) Measure C(P ) N times (e.g. N = 1000 “shots”) and compute the overlap

fP,m = Tr
h
C(P )C̃(⇢)

i
(5.55)

between the ideal result of C(P ) and the noisy implementation C̃(⇢), where ⇢ is a
+1-eigenstate of P .

c) Repeat for L di↵erent random sequences (e.g. L = 20 – 30) and compute the
average overlap

P
L

l=1 fP,m,l.

4. Do steps 2 - 3 for at least two di↵erent sequence lengths m which satisfies Gm = I.

5. Compute the average process fidelity from any two sequence lengths m 2 [m1, m2]:

F =
1

K

X

P2P

 P
L

l=1 fP,m2,lP
L

l=1 fP,m1,l

! 1
m2�m1

. (5.56)

preparation/measurement basis P (i.e. Pauli channel), an exponential decay of the form Afm

can be fit to the dressed cycle (composition of the cycle of interest with the random Pauli
gates), where A is the SPAM parameter, f is the decay parameter, and m is the sequence
length. Therefore, the exponential decays in CB are often referred to as “Pauli decays” and
are labeled by the basis preparation and measurement state P .
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| i BP,1 T0,1

G

T1,1

G

· · · Tm�1,1

G

Tm,1 B†

C(P ),1

| i BP,2 T0,2 T1,2 · · · Tm�1,2 Tm,2 B†

C(P ),2

| i BP,3 T0,3 T1,3 · · · Tm�1,3 Tm,3 B†

C(P ),3

| i BP,4 T0,4 T1,4 · · · Tm�1,4 Tm,4 B†

C(P ),4

(a) CB on the gate cycle G

| i BP,1 T0,1 I T1,1 I · · · Tm�1,1 I Tm,1 B†

C(P ),1

| i BP,2 T0,2 I T1,2 I · · · Tm�1,2 I Tm,2 B†

C(P ),2

| i BP,3 T0,3 I T1,3 I · · · Tm�1,3 I Tm,3 B†

C(P ),3

| i BP,4 T0,4 I T1,4 I · · · Tm�1,4 I Tm,4 B†

C(P ),4

(b) CB on the all-identity reference cycle

Figure 5.6: Cycle benchmarking sequences: (a) Four-qubit gate cycle G, and (b) the
all-identity “reference” cycle. For (a), the gate cycle G can be composed of any combination
of single- and multi-qubit gates, as long as Gm = I for a sequence depth of m. Tn,a denotes
the nth twirling operator acting on qubit q. BP,q denotes the basis preparation gate on qubit
n for the Pauli P , and B†

C(P ),q rotates qubit q back to the eigenstate of P at the end of the
sequence. For (b), the all-identity cycle has been inserted for visual clarity, but this cycle is
either skipped in compilation, or the identity gates can be implemented as true idles for the
normal duration of a single-qubit gate; the choice is up to the experimenter.

In e↵ect, CB measures the eigenvalues ⇤PP of the Pauli transfer matrix (PTM) of G.
For example, CB performed on a two-qubit cycle would produce a PTM with the following
diagonal components,
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where fm

P
is the eigenvalue of the Pauli basis P at a sequence depth of m (for simplicity we

label the eigenvalues by ⇤P instead of ⇤PP , since they are diagonal in the Pauli basis). The
process fidelity of the above PTM can be computed as

F =
1

4n

X

P2Pn

⇤PP =
1

16

X

P2{I,X,Y,Z}⌦2

fP , (5.58)

where we have set m = 1. In practice it is not necessary to measure all 4n Pauli operators,
as the precision of the fidelity estimate is set by the number of Pauli channels K  4n (n
qubits) that are sampled out of the full 4n possible states [141]. This is justified by the fact
that for any CPTP map, the process infidelity eF = 1 � F sets the upper bound on the
infidelity of any given Pauli channel,

0  1 � ⇤PP  2eF , (5.59)

so statistically each Pauli infidelity eP = 1 � ⇤PP cannot deviate significantly from the
average. Therefore, while Eq. 5.56 can be used to compute the process fidelity from two
di↵erent sequence depths [m1, m2], by fitting each Pauli channel to an exponential decay,
the total process fidelity under CB can also be computed as the weighted average over all K
Pauli channels for m = 1,

F =
1

K

X

P2P

fP . (5.60)

Much like IRB, in which the target gate is interleaved between random Cli↵ord gates, CB
interleaves the target cycle between cycles of random single-qubit Pauli gates. Therefore,
CB measures the process fidelity of a dressed cycle GT̄ composed of the cycle (or gate) of
interest G and an average Pauli twirling cycle T̄ ,

FD

⇣
GT̄ , G̃ ¯̃T

⌘
=

1

K

X

P2P

fP
⇣
GT̄ , G̃ ¯̃T

⌘
(5.61)

=
1

K

1

L

X

P2P

LX

l=1

T †

l
G(P )†G̃(P )T̃l (5.62)
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Figure 5.7: Cycle Benchmarking of the all-identity “reference” cycle for four
qubits. (a) Pauli decays for each Pauli channel P , with the SPAM parameter AP and
the exponential fit fP listed in the legend for a subset of P . (b) Pauli infidelities eP = 1�fP
for each Pauli channel, and the average process infidelity eF . The highlighted region denotes
the 95% confidence interval of eF .
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Figure 5.8: Cycle Benchmarking of multi-qubit cycles containing CZ gates. (a) CZ
gate between qubits (5, 6), with qubits 4 and 7 idling. (b) Simultaneous CZ gates between
qubits (4, 5) and (6, 7).

where G(P ) denotes the gate prepared in the Pauli basis P , and the tilde denotes the
noisy implementation of the gates. Therefore, the process infidelity of the dressed cycle
eD = 1 � FD(GT̄ , G̃ ˜̄T ) contains the errors due to the interleaved target cycle G as well
as the Pauli twirling gates T . In the limit that the twirling operators can be perfectly
implemented, then the process infidelity eF = 1 � F (G, G̃) is given in terms of the fidelity
of the cycle of interest alone. However, in any realistic scenario the infidelity of the twirling
operators will contribute to the total process infidelity. Therefore, to separate the infidelity
of the interleaved cycle from the twirling gates, we measure the CB fidelity of the “all-
identity” reference cycle (see Figs. 5.6b and 5.7), which equates to benchmarking the average
performance of only the Pauli twirling gates. Similar to IRB, we can use this to estimate
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Figure 5.9: CS† gate. State tomography performed on the target qubit at the end of the
CS† = CPHASE(�90) gate for the target qubit initially prepared in the |+i state. When
the control qubit is prepared in |0i (C0), the target qubit remains in |+i; when the control
qubit is prepared in |1i (C1), the target qubit is rotated �90 degrees to |i�i. The CS gate
performs the opposite rotation, with the target qubit ending in |i+i when the control is
prepared in |1i.

the process infidelity of the interleaved cycle eG by taking the ratio of the process fidelities
of the dressed (D) and reference (I) cycles,

eG =
d � 1

d

✓
1 � FD

FI

◆
, (5.63)

where d = 2n. Using CB has been shown to tighten the upper- and lower-bounds on the
fidelity estimate of the interleaved cycle relative to IRB [60], which can span orders of
magnitude [138]. For example, we measure a lower [upper] bound on the fidelity estimate of
FCZ = 97.52(2)% [FCZ = 99.764(5)%] for the CZ gate shown in Fig. 5.4b, compared to the
lower [upper] bound of FCZ = 91.9(2)% [FCZ = 99.96(1)%] measured via IRB.

While RB requires that the native two-qubit gate be locally-equivalent to a Cli↵ord, CB
has no such requirement. Rather, CB has two basic requirements: (1) that the gate cycle
G performed m times composes the identity, Gm = I, and (2) the ability to prepare and
measure in the same Pauli basis state P . These basic requirements are easiest to satisfy
if the interleaved gate cycle contains only Cli↵ord gates, making it trivial to determine
which basis operators B†

C(P ) are required to rotate the system back to P at the end of the



CHAPTER 5. QUANTUM CHARACTERIZATION, VERIFICATION, AND
VALIDATION 105

Gate / Qubits: (Q4, Q5) (Q5, Q6) (Q6, Q7)

CZ

RB eF (1 ⇥ 10�2) 1.9(1) 2.04(8) 1.95(6)

CB eD (1 ⇥ 10�2) 1.09(1) 1.05(1) 1.26(1)

CB eCZ (1 ⇥ 10�3) 5.8(1) 4.8(1) 5.9(2)

CS
CB eD (1 ⇥ 10�2) 0.98(1)

CB eCS (1 ⇥ 10�3) 4.3(1)

CS†
CB eD (1 ⇥ 10�2) 0.98(1) 0.91(1)

CB eCS† (1 ⇥ 10�3) 5.0(1) 3.3(1)

Ref. CB eI (1 ⇥ 10�3) 3.24(5) 4.12(8) 4.8(1)

Table 5.2: Benchmarking non-Cli↵ord gates with CB. CB performed on Cli↵ord (CZ)
and non-Cli↵ord (CS and CS†) two-qubit gates on the same pairs of qubits. We include
the RB error rate for the CZ for completeness, as well as the reference infidelity used to
compute the interleaved gate infidelities. (Table reprinted with permission from Ref. [143].)

sequence. However, these requirements do not exclude benchmarking non-Cli↵ord gates
with CB. In Table 5.2, we include CB results for Cli↵ord (CZ) and non-Cli↵ord [CS =p

CZ = CPHASE(90) and CS† = CPHASE(�90), see Fig. 5.9] two-qubit gates. We note
that with the CS and CS† gates, requirement (1) is trivial to satisfy for m being an integer
multiple of four rotations. While satisfying requirement (2) is less trivial and sometimes
requires compiling multi-qubit gates into the final cycle B†

C(P ) in order to rotate the full
system back to P , the cost of doing so is beneficial as long as the fidelity of the multi-qubit
gates are reasonably high so that the final cycle of gates does not add significantly to the
estimated process fidelity of the interleaved cycle. As a concrete example, Ref. [144] reports
benchmarking a fidelity of 98.26(2)% for a three-qubit iTo↵oli gate.

The utility of CB is that it allows one to benchmark the errors across an entire register
of qubits, including spectator qubits that should be idling. For example, Table 5.2 shows
that the error rate of a CZ gate performed on qubits (5, 6) is eCZ = 0.48(1)%. However, in
Table 5.3 we instead show CB results of a CZ gate performed on qubits (5, 6) with qubits
4 and 7 idling, for which the error rate was estimated to be eG = 1.09(9)%. We see that
by including the qubits that are not supposed to be operated on during the two-qubit gate,
we see a 2⇥ increase in the error rate. This type of information is not captured by RB and
related methods, which marginalize errors to be local on the benchmarked qubits. In Table
5.3 we also show the benchmarked error rates of various other parallel gate cycles, such as the
all-Hadamard cycle for preparing a register of qubits in a superposition state, simultaneous
CS† gates, and cycles involving SWAP gates, which decompose into three native CZs on
the device. These results demonstrate the power of CB for characterizing the errors across a
full quantum quantum processor. In fact, the complexity of fully characterizing an n-qubit
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Interleaved Cycle G: I

I
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I

H

H

H

H

I

•
•
I

I

S
•
I

•
•
•
•

S†

•
S†

•

I

⇥
⇥
I

⇥
⇥
⇥
⇥

eI (1 ⇥ 10�3) 9.6(6)

eD (1 ⇥ 10�2) 1.16(6) 2.11(7) 1.67(8) 3.4(1) 2.09(8) 6.3(2) 10.4(4)

eG (1 ⇥ 10�2) 0.19(8) 1.09(9) 0.68(9) 2.3(1) 1.07(9) 5.1(2) 9.0(4)

Table 5.3: CB performed on various di↵erent parallel gate cycles G. Examples
include (from left to right) the all-identity reference cycle, the all-Hadamard cycle, a CZ
gate between idling qubits, a CS gate between idling qubits, parallel CZ gates, parallel
CS† gates, a SWAP gate between idling qubits, and parallel SWAP gates. The (measured)
dressed eD and (estimated) bare eG infidelities are listed for each cycle. (Table reprinted
with permission from Ref. [143].)

system via CB is only polynomially expensive, because it depends only on the number of
distinct cycles one wishes to characterize for any given application.

5.4 Cycle Error Reconstruction

Cycle benchmarking measures the eigenvalues of the PTM of some physical process (Eq. 5.57).
This provides information about what Pauli channels are impacted by the error process (see
the state preservation block of the PTM in Fig. 3.4), but this does not immediately provide
information about which types of errors are causing the degradation of the survival proba-
bility of each Pauli channel. However, as discussed at the end of Section 3.5, there exists a
relationship between Pauli channel eigenvalues and the Kraus operators that cause errors –
namely, the survival probability ⇤PP will be impacted by any Pauli error Q which does not
commute with P (see Eq. 3.55). In this section, we introduce a cycle error reconstruction
(CER) protocol [145, 146, 147] (also called k-body noise reconstruction [148]) based on CB
measurements to produce an error map of the Pauli error rates in our system.

Fig. 5.10a outlines the process by which CB can be used to reconstruct k-body gate errors
that occur during any gate cycle. CER results are based on targeted CB measurements in
which specific Pauli decays are chosen to estimate the error rates a✏icting subsets of the
gates or idle qubits in the specific cycle of interest. The Pauli error rates estimated by CER
are the coe�cients pP in the Kraus representation of a Pauli channel in Eq. 3.31. One can
convert between the Pauli eigenvalues fP from CB and the Kraus coe�cients pP using a
linear transformation,

fP = WpP , (5.64)
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Figure 5.10: Cycle error reconstruction of the Pauli noise measured via cycle
benchmarking. (a) Schematic of the process by which 1- and 2-body gate errors can be
reconstructed using targeted CB measurements of a parallel gate cycle (e.g. CNOT between
Q5 and Q6, with Q4 and Q7 idling), providing detailed information about the Pauli (Kraus)
errors occurring during the cycle, as shown in (b). (b) CER results of four-qubit cycles
containing a single CNOT gate and identity gates on the spectator qubits. The y-axis (x-
axis) labels the type of error (the intended gate acting on the qubit), and the color (gradient)
indicates the marginal error rate from all Pauli contributions (95% confidence interval). The
first (third) row of subplots shows 1-body errors acting in idling (CNOT) qubits, the second
row of subplots shows correlated 1- and 2-body errors between idling qubits, and the last
row of subplots shows correlated 1- and 2-body errors between an idling spectator qubit
and qubits participating in the CNOT. Here, a k-body error is labeled by k non-identity
Paulis acting on n qubits (e.g. k = 1 for CNOT qubits, because these errors occur within a
single gate body acting on 2 qubits). The tensor notation ⌦ between k-body errors indicates
correlators between product states, whereas the lack of tensors indicates errors on entangled
qubits. Curly brackets indicate error types that cannot be distinguished due to degeneracies,
since any local error acting on either qubit in the entangling operation will be transformed
by the CNOT. All rows in which all errors are below 30% of the maximum value have been
omitted for clarity. This detailed information can be used to perform targeted gate tuneup
to address the most harmful errors. The residual errors in our system are broadly distributed
among many pathways, so any further targeted tuneup will come with diminishing returns.
(Figure reprinted with permission from Ref. [145].)

where fP is the vector of Pauli eigenvalues fP , pP is the vector of Pauli error rates, and W is
an n-qubit Walsh-Hadamard transform (see Ref. [146], Section B for further details); W is a
generalization of the transformation given in Eq. 3.55. The Pauli decays in CB are dual to
the Pauli operators which cause errors, so to measure the error rate pP of some fixed Pauli P ,
we measure a set of Pauli decays that commute and anti-commute with P , and then use this
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Figure 5.11: Duality of Pauli decays to Pauli error rates. (a) CB results marginalized
over qubit 6 showing the di↵erent rates of decay for the X, Y , and Z channels during the
CNOT between qubits 4 and 5. The sharp decay in Z suggests that the dominant errors are
due to non-commuting Pauli operators (e.g. X or Y ). (b) CER results show that the most
dominant Pauli errors for all multi-qubit cycles in our system were due to both X and Y
errors on qubit 6 during the CNOT between 4 and 5.

info to reconstruct the error of P via linear inversion: pP = W�1fP . In Fig. 5.10b, we plot
1- and 2-body Pauli (Kraus) errors reconstructed via CER for the gate cycles containing
two-qubit CNOT = CX gates in our system. Using CER, we identify the major sources
of errors in our system and compensate the most harmful e↵ects with targeted decoupling
pulses or virtual phase gates (see Supplemental Material of Ref. [145] for more details.) An
example of the duality of Pauli decays to Pauli errors is given in Fig. 5.11.

As previously discussed, the cost of characterizing a full quantum processor via CB
depends on the number of distinct cycles one wishes to characterize. For this reason, we
restrict the number of possible two-qubit gate cycles in our system by serializing all single-
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Figure 5.12: Full processor characterization via cycle error reconstruction. We
characterize the four distinct two-qubit gate cycles available on our processor to produce an
error map of the dominant errors in our system. We see that the most dominant errors in
our system are 1-body errors (i.e. weight-1 errors on single-qubit gates, weight-1 or -2 errors
on two-qubit gates, etc.), and that 2-body errors are largely suppressed in comparison. The
largest observable error in our entire system is a Z error on qubit y during the CZ gate
between qubits (5, 6). (Figure reproduced with permission from Ref. [149].)

qubit gates with respect to two-qubit gates; in other words, single- and two-qubit gates
are never performed in the same cycle. For the four-qubit processor used in this work, the
possible distinct two-qubit gate cycles are: (1) CZ gate between (4, 5), with qubits 6 and
7 idling; (2) CZ gate between (5, 6), with qubits 4 and 7 idling; (3) CZ gate between (6,
7), with qubits 4 and 5 idling; and (4) simultaneous CZ gates between qubits (4, 5) and (5,
6). In Fig. 5.12, we plot a complete error map of our quantum processor using CER, and
show that the most dominant error in our system is not an error acting on a qubit involved
in a two-qubit gate; rather, it is a Z error on qubit 7 during the CZ gate between (5, 6).
This type of information cannot be gathered from conventional randomized benchmarking
methods.
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By limiting measurements to only 1- and 2-body errors, and making use of marginalized
probability distributions, it is not necessary to measure all K = 4n Pauli decay channels
under CER. More generally, it is possible to reconstruct all 1-body marginals with O(1)
Pauli decays and all 2-body marginals with O[log (n)] Pauli decays for n qubits. However,
while some k-body errors can e�ciently be estimated for k > 2, it becomes exponentially
expensive to estimate all n-body errors. The results in Fig. 5.12 show that the dominant
residual errors in our system are 1-body errors. Therefore, even though only 1- and 2-
body errors were measured, we are justified in only measuring k  2-body errors, since we
observe that 2-body terms are largely suppressed compared to 1-body terms. Moreover,
the probabilities of 2-body errors are the sum of the probabilities of all errors that act
non-trivially on the corresponding two bodies, irrespective of their action on other bodies.
Therefore, the fact that 2-body errors are negligible shows that 3- or more body errors are
also negligible.

5.5 Gate Set Tomography

Gate set tomography (GST) [79, 150, 151, 152, 153] is a robust method for tomographically
reconstructing errors and noise impacting all gate operations within a defined gate set. GST
was developed to improve upon quantum process tomography (QPT) [135], which itself
grew out of quantum state tomography (see Fig. 5.13, which outlines the di↵erences in these
methods). Like traditional QPT, GST fully characterizes the process matrix of a quantum
gate; however, it does so in a self-consistent manner which decouples state-preparation and
measurement (SPAM) errors from gate errors. By decomposing SPAM gates in terms of
native operations, and by amplifying a noise process E(⇢) many times for better accuracy,
GST fully characterizes the set {|⇢ii, hhM |} [ {Gi}, where |⇢ii is the initial state, hhM | is
the POVM, and G = {Gi} the set of native gate operations.

In Fig. 5.13d, all gates are decomposed in terms of the native operations in G, including
the gates F = {Fi} needed to prepare and measure in the Pauli basis states (termed the
preparation and measurement “fiducials”). The set F constitutes the SPAM gates, such that
Fi |⇢ii = |⇢iii and hhMi| = hhM | Fi. Therefore, a process matrix ⇤i for each gate Gj 2 G
can be reconstructed by measuring hhMi| Gj |⇢kii for all Fi, Fk 2 F. This means that all
gates are self-consistently characterized, including SPAM, which allows GST to characterize
a noise process E(⇢) in a manner that is independent of SPAM. An example of a typical
native two-qubit gate set is G = {G1 ⌦ G2 : G1, G2 2 {I, X⇡/2, Y⇡/2}} [ {CX}, where the
CX gate can be trivially replaced with any locally-equivalent two-qubit gate. In Protocol 3,
we describe the GST protocol for a single qubit7.

Using the open-source Python library pyGSTi [154, 155], one can obtain a best-fit model
of the process matrix for each gate in G using maximum-likelihood estimation [152, 153]. The
quality of the model is quantified by computing the log-likelihood ratio � of the likelihood

7This follows Ref. [79].
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⇢0 E(⇢) MX,Y,Z

(a) Quantum State Tomography

⇢X,Y,Z E(⇢) MX,Y,Z

(b) Quantum Process Tomography

⇢X,Y,Z E(⇢)(1) E(⇢)(2) · · · E(⇢)(L�1) E(⇢)(L) MX,Y,Z

(c) Gate Set Tomography, pulse amplification

|0ih0| FX,Y,Z [Gi]L FX,Y,Z

(d) Gate Set Tomography, SPAM independence

Figure 5.13: Tomographic reconstruction methods. (a) Quantum state tomography
characterizes the final state of a noisy process E(⇢) by measuring in all Pauli basis states
P 2 Pn for an initial n-qubit state ⇢0, typically taken to be the ground state. For a single
qubit, this equates to preparing in |0ih0| and measuring in X, Y , and Z (it is not necessary
to explicitly measure in I, as this term can be inferred from any of the other measurements).
(b) Quantum process tomography full characterizes the noisy process E(⇢) by preparing ⇢
and measuring E(⇢) in all basis states P 2 Pn. (c) Gate set tomography characterizes E(⇢)
by preparing and measuring in all Pauli basis states P 2 Pn, but repeats E(⇢) L times for
better accuracy. (d) Gate set tomography completely characterizes all gates in a gate set G,
as well as SPAM. FX,Y,Z denotes the SPAM layers (called “fiducials”), and Gi 2 G denotes
the gate that is being amplified.

L of the GST model with the likelihood Lmax of the “maximal model”,

� = �2 ln

✓
L

Lmax

◆
. (5.65)

The maximal model is the one in which each independent measurement outcome in the data
set is assigned a distinct probability equal to the observed frequencies. Wilks’ theorem [156]
states that if L and Lmax are both valid models, then the log-likelihood ratio is a �2

k
random

variable, where k = Nmax � Np is the di↵erence in the number of free parameters between
the maximal and GST model. If � is not consistent with �2

k
distribution (i.e. it does not lie

within the interval [k �
p

2k, k +
p

2k], with mean k and standard deviation
p

k), then this
indicates that the GST data are inconsistent with the GST model. One can further quantify
the model violation, or “goodness of fit,” by the number of standard deviations that � is
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Protocol 3 Gate Set Tomography

For each Fi, Fk 2 F and Gj 2 G, do:

1. Initialize the qubit in the state |⇢ii, typically taken to be the ground state of the qubit,
⇢ = |0ih0|.

2. Apply the circuit C = Fi � Gj � Fk. Since all Fi 2 F are composed of native gates in G,
the entire circuit C only contains native operations defined in the gate set G.

3. Perform the POVM M . Both M (e.g. |0ih0|) and I � M (e.g. |1ih1|) must be positive
semidefinite Hermitian operators.

4. Repeat steps (1) - (3) a large number of times (e.g. n = 1, 000 – 10, 000 “shots”).
For each repetition r, record the success probability pr, where pr = 1 or 0 if the
measurement was a success (e.g. resulted in |0ih0|) or failure (e.g. resulted in |1ih1|),
respectively.

5. Compute the average result of step (3): hpijki = 1
n

P
n

r=1 nr, which represents an esti-
mation of the expectation value pijk = hhM | FiGjFk |⇢ii, which is a random variable
with mean pijk and variance pijk(1 � pijk)/n.

6. Optional: repeat all steps for Gj amplified L times for better accuracy (e.g. L = 128).

from the expected mean k,

N� =
�� kp

2k
. (5.66)

If N�  1, then the GST model faithfully captures all of the behavior of the device. How-
ever, on actual NISQ hardware, N� > 1 (or even N� >> 1) has been observed [152, 157,
158], indicating the presence of significant model violation. GST makes an assumption of
Markovianity8 (i.e. any Markovian process can – by definition – be captured in a generalized
model based on process matrices), therefore large N� indicates the presence of non-Markovian
errors, but it does not quantify the amount of non-Markovianity in the model or the mag-
nitude of such errors. Because N� will grow linearly with the number of shots and depth
of the GST circuits (which set the accuracy of the model), a large N� simply indicates that
the assumption of Markovianity was violated with high confidence, even if the underlying
non-Markovian errors are small in magnitude. Therefore, large N� does not mean that the
GST estimate cannot be trusted; rather, it simply indicates that some non-Markovianity is
present, which cannot be fit by a process matrix model.

8One can additionally add trace-preserving (TP) and completely-positive (CP) constraints as well.
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Model Fitting in GST

GST enables the comparison of nested error models in a self-consistent manner [158, 159].
To compare two nested models, we utilize the evidence ratio � [159],

� =
�S � �L

Np,L � Np,S

, (5.67)

where � is the model’s log-likelihood ratio, and L (S) denotes the larger (smaller) model
defined in terms of the number of free parameters Np describing the model. If �  1, then
we automatically choose the smaller model, as it describes the data at least as well as the
larger model without extra (potentially unused) parameters. If 1 < �  2, there is weaker
evidence for rejecting the smaller model, but Akaike’s information criterion [160] suggests
that the smaller model is still preferable. Even if � > 2, it may still be preferable to choose
the smaller model due to its simplicity, as it may still accurately capture the vast majority
of the data.

In Fig. 5.14, we include a schematic of a typical GST sequence for two qubits under
simultaneous operation, and show how nested models can be used to fit di↵erent kinds of
crosstalk errors to the data. The di↵erent models of crosstalk are based upon the conditions
that must be satisfied for quantum operations to be crosstalk-free (see Ref. [69] and the
discussion in Sec. 3.2). However, one can go further and assume that a model is free of
coherent errors entirely, in which case data can be fit to a purely stochastic Pauli model.
Therefore, one can fit GST data to the following parameterized error models:

1. General completely-positive and trace-preserving (CPTP) model: each gate’s errors

are modeled by a general CPTP two-qubit PTM ⇤(1,2)
A,B

, where A (B) denotes the gate
acting on qubit 1 (2).

2. General Pauli stochastic (S) model: the errors in the general model are restricted to

be diagonal in the Pauli basis
⇣

⇤(1,2)
S:A,B

⌘
.

3. Context-dependent (CD) model: local gate errors are described by single-qubit PTMs

which can depend on the gate acting on a di↵erent qubit
⇣

⇤(1)
A;B ⌦ ⇤(2)

B;A

⌘
.

4. Stochastic context-dependent (SCD) model: the error generators in the CD model are

restricted to be weight-1 stochastic Pauli errors
⇣

⇤(1)
S:A;B ⌦ ⇤(2)

S:B;A

⌘
.

5. Context-free (CF) model: local gate errors are described by single-qubit PTMs, un-

conditional on the gate acting on the other qubit
⇣

⇤(1)
A

⌦ ⇤(2)
B

⌘
.

6. Stochastic context-free (SCF) model: the error generators in the CF model are re-

stricted to be weight-1 stochastic Pauli errors
⇣

⇤(1)
S:A ⌦ ⇤(2)

S:B

⌘
.



CHAPTER 5. QUANTUM CHARACTERIZATION, VERIFICATION, AND
VALIDATION 114

a)

M

Context-
dependent

c)

Crosstalk-
free

b)

General
Crosstalk

d)

Non-
Markovian

e)

Figure 5.14: Fitting crosstalk errors with simultaneous GST. (a) sGST circuits can
be broken down into an initialization layer ⇢ (taken to be the ground state), a set of gates
to perform state-preparation, a block of operations repeated n times, a set of measurement
basis gates, and finally measurement M in the computational basis. The process matrix for
any combination of parallel operations (e.g. X⇡/2 ⌦ Y⇡/2 acting on qubits 1 and 2) can be fit
to three di↵erent models of crosstalk: (b) the crosstalk free model assumes that each gate
can be described by a single-qubit process matrix. (c) The context-dependent model also
assumes that each gate can be described by a single-qubit process matrix, but that the errors
on each qubit can be conditioned on the gate that is being applied to the neighboring qubit.
(d) The general crosstalk model makes no assumption of locality and fits the data to a full
two-qubit process matrix. (c) Non-Markovian errors cannot be fit by a two-qubit process
matrix. (Figure reproduced with permission from Ref. [158].)

The hierarchy of all of the nested GST models can be seen in Fig. 5.15.
GST can be used to compare nested families of models in a self-consistent manner.

For example, the set of circuits needed to evaluate the CPTP model contains all of the
information needed to evaluated the S (CD) model; similarly, the set of circuits required to
evaluate the S (CD) model contains all of the information needed to evaluate the SCD (CF)
model; etc. In general, models with increasing complexity are able to capture more complex
dynamics; however, they also require fitting a larger number of free parameters. The general
CPTP model makes no assumption of locality and can completely capture all two-qubit
interactions, including quantum crosstalk errors. The CD model assumes that any errors
acting on qubits must be local (weight-1), since the PTMs decompose as a tensor product of
operations, but allows the errors to be classically correlated (i.e. the error impacting qubit 1
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Figure 5.15: Hierarchy of nested GST models. We model all physical gates as an ideal
gate followed by an error generator in the PTM representation [colored (white) PTM cells
denote parameters that are (not) included in the model]. For simultaneous single-qubit gates,
the general CPTP model contains all weight-1 and weight-2 error generators. The S model
restricts the errors to be stochastic (i.e. the error generator is diagonal in the Pauli basis)
[red arrows]. The CD (SCD) model restricts the error generators to be weight-1 (stochastic)
errors [blue arrows], but allows contextual dependence. The CF (SCF) model restricts the
error generators to be context-independent weight-1 (stochastic) errors [purple arrows]. If
one of these models fits the data, the errors are dominantly Markovian [large grey region].
If none of these models fit the data (i.e. if the errors cannot be fit by a full two-qubit process
matrix), the errors are taken to be non-Markovian [orange region with dashed border around
the PTM]. (These models can also be generalized to two-qubit gates with the inclusion of
both weight-1 and weight-2 error generators in the CD and SCD models.)

can be correlated with the gate being applied to qubit 2, but it cannot depend on the state
of qubit 2); this can model errors due to classical crosstalk, but not entangling quantum
crosstalk. In the CF model, the single-qubit GST data is marginalized to weight-1 errors
regardless of the gate acting on the other qubit. The corresponding S-type models make the
same assumptions, but restrict the errors to be diagonal in the Pauli basis. All models make
an assumption of Markovianity.
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Quantifying Non-Markovian Errors in GST

While N� is useful for providing evidence of the existence of non-Markovian errors, to quan-
tify the magnitude of such errors, GST utilizes a wildcard error model [161]. The wildcard
error rate wG 2 [0, 1] quantifies the unmodeled error per logic gate operation; in other words,
it quantifies how much the observed data deviates from the predictions made by the model.
A wildcard error can also be assigned to a circuit C containing gates by summing over the
wildcard error rates for all gates G 2 C: wC =

P
G2C

wG. The wildcard model is chosen
to be minimal, such that assigning wG to a gate G is just su�cient to make the model’s
predictions consistent with the observed data. This is enforced by requiring that the total
variation distance (TVD)

dTV(p, q) =
1

2
||p � q||1 (5.68)

between the observed probability distribution pC and the wildcard-augmented probability
distribution qC be bounded by the total wildcard error for circuit C,

dTV(pC, qC)  wC. (5.69)

The wildcard-augmented model is therefore not unique, as qC can be chosen from any distri-
bution that satisfies Eq. 5.69. Because the wildcard error quantifies the magnitude of unmod-
eled error per gate, and because unmodeled errors are often attributed to non-Markovianity
in the system, it stands to reason that the per-gate wildcard error budget is a good estimate
of the magnitude of non-Markovian errors impacting the gate.

The TVD is a useful metric for quantifying the magnitude of unmodeled error because
it captures the rate at which measurement outcomes are incorrectly predicted by a model.
Because the TVD is upper-bounded by the diamond norm [145], one can compare the wild-
card error wG to the diamond error ✏⇧ for any gate G to inform whether unmodeled errors
in the GST estimate are dominant or negligible, and thus whether the GST model can be
trusted. By extension, comparing wG to ✏⇧ quantifies whether Markovian or non-Markovian
errors dominate the total error. If wG ⌧ ✏⇧, then Markovian errors dominate and non-
Markovian errors are negligible; in this case, the model captures the majority of the errors
in the gate, despite the fact that it is rigorously incomplete. On the other hand, if wG > ✏⇧,
the non-Markovian errors dominate and Markovian errors are negligible; in this case, the
GST estimate is unreliable and should be discarded.

5.6 Overview of other contemporary benchmarking
methods

In this chapter, we have outlined the basics of randomized benchmarks and tomographic
methods of reconstructing quantum processes. These can broadly be distinguished by di↵er-
entiating classes of QCVV methods which are scalable but provide limited information about
a quantum processes (e.g. CB), versus methods which are not scalable but provide complete
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information about a quantum process (e.g. GST9). Another class of QCVV methods which
was not discussed here is holistic benchmarks for characterizing entire quantum processors.
Instead of characterizing individual gates or processes, these “volumetric” benchmarks at-
tempt to measure the capabilities of a quantum device for performing generic tasks, without
necessarily specifying what that task is. For example, IBM’s Quantum Volume (QV) [162,
163] attempts to capture the global performance of a quantum processor with a single num-
ber which quantifies the largest square shaped quantum circuit (where circuit depth = circuit
width) that a quantum processor can successfully implement with reasonable accuracy. This
method captures how well a device can decompose Haar random SU(4) gates; therefore, fully
connected devices are expected to have a larger QV than sparsely connected devices. QV is
not a scalable method, as it requires the ideal circuit results to be simulated on a classical
computer. Instead, scalable methods based on mirror circuit benchmarking (MCB) [164,
165] can similarly measure the capabilities of entire quantum processors [142], but do not
restrict the circuits to be square in shape. MCB can be used to estimate how well random
circuits or structured circuits will perform on average for any given circuit depth and circuit
width. Finally, Google’s cross-entropy benchmark (XEB) [166] was developed to compute
the fidelity of random circuit sampling experiments performed on entire quantum processors.
XEB is – by design – also not scalable, as it requires the ideal results to be computed clas-
sically, specifically in order to demonstrate quantum supremacy by showing that a classical
supercomputer could not sample the output distributions of random quantum circuits in any
reasonable amount of time [7].

While many of the above benchmarking methods involve generating and decomposing
random circuits on di↵erent hardware platforms, it has been shown that these are poor
predictors of the global perform of structured quantum circuits [142]. Prototypical quan-
tum algorithms have much more structure than random quantum circuits, therefore, it is
unclear how well benchmarked error rates predict the performance of these circuits in any
given instance. Instead, application benchmarks have been developed [167] for the pur-
pose of directly measuring the performance of algorithms such as GHZ state preparation,
VQE, QAOA, and Hamiltonian simulation. These have the advantage of providing a direct,
unbiased cross-platform comparison of the performance of di↵erent quantum algorithms.

5.7 QCVV for Improved System Design

Beyond informing about error rates, what types of errors impact gates the most, etc., QCVV
protocols can play an important role in improving the performance of current gates on
contemporary quantum processors, as well as guiding improved designs for future quantum
processors. For existing quantum processors, error rates measured via RB or CB represent
the “cost” of implementing quantum gates. If the gates are coherence limited, then this
cost cannot be reduced without reducing their operational time. However, if there are

9Note that GST can be made more scalable by restricting the error model of quantum gates, as depicted
in Fig. 5.15, and therefore reducing the number of parameters that need to be fit.
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calibration errors or unwanted crosstalk, then the cost can be minimized further by improved
calibration design (e.g. more fine-tuned pulse parameters, including compensation pulses to
null crosstalk, etc.). In this case, RB and CB error rates can be used to improve the
calibration of gate parameters using closed-loop optimization [168], with the infidelity acting
as the cost that must be minimized by an optimizer.

Using protocols such as CER or GST, one can learn more precise information about the
dominant errors e↵ecting entire registers of qubits. This information can be used to address
the most pernicious errors in a closed-loop fashion (see Fig. 5.10). For example, as discussed
above, unconditional and conditional phase errors on spectator qubits during a two-qubit
gate can be mitigated by virtual Z gates or slow Rabi oscillations, respectively. Without
such detailed benchmarking tools, knowledge about which error channels dominate cycles of
gates would remain obscured.

When it comes to improving the design of future quantum processors, all of the aforemen-
tioned QCVV protocols can aid in the design of such processors. For example, being able to
benchmark the coherence limit of quantum gates via purity benchmarking is a measure of
how well qubits are isolated from the surrounding environment, providing quantitative in-
formation about the fundamental noise floor of the device. Furthermore, measuring leakage
rates in qubits is important for improved qubit design, since the anharmonicity of the qubits
can be fabricated to suppress these transitions. Finally, detailed knowledge of what types of
correlated errors impact entire quantum processors can be used to improve the engineering
design of future quantum processors. For example, measurement of the always in ZZ cou-
pling term can be used to design improved qubits which suppress this term [169, 170], or help
improved the design of the qubit-to-qubit coupling element [171, 172, 173]. The suppression
of unwanted correlated errors will be important for fault-tolerant quantum error correction.
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Chapter 6

Randomized Compiling

The accuracy of quantum algorithms is limited by di↵erent types of errors. Interactions be-
tween qubits and the surrounding environment result in incoherent (i.e. non-unitary or irre-
versible) errors, leading to purity-decreasing processes such as the decoherence of a quantum
state. In contrast, systematic imperfections in qubit control (e.g. detuning and calibration
errors) and crosstalk on multi-qubit processors result in coherent (i.e. unitary or reversible)
errors, which are purity-preserving and thus do not result in decoherence. The existence of
coherent errors leads to a disconnect between benchmarked error rates and algorithm per-
formance, namely, while many benchmarking methods use twirling to simplify the structure
of a quantum process E in order to measure error rates, quantum algorithms are not im-
plemented with twirling, and therefore E includes complex error dynamics due to coherent
errors and crosstalk. This disconnect typically results in an observed failure rate of quantum
algorithms which exceeds the failure rates predicted from benchmarked error rates [142].
Therefore, the global impact of coherent errors is hard to predict for structured circuits, due
to both their quadratically-worse impact on gate infidelities relative to average error rates,
and the potential for interference over the course of an algorithm.

In recent years, there has been growing theoretical interest in randomization methods
to mitigate the problem of coherent errors in quantum computations [174, 175, 176, 177,
178, 179, 180, 181]. Experimentally, it has been shown that methods such as Pauli-frame
randomization [175, 176] (PFR) and Pauli twirling can reduce coherent errors in Cli↵ord
circuits [157] and the two-qubit CPHASE gate [182], respectively, as measured by GST.
Randomized compiling (RC) [145, 174] is a related protocol for twirling errors in quantum
algorithms in situ that is more scalable and generalizable than PFR and simple Pauli twirling,
and does not require a priori knowledge of the specific error model. RC uses Pauli twirling
in the same manner as cycle benchmarking (CB); therefore, the e↵ective noise of any cycle
under CB is equal to the tailored noise under RC, enabling accurate predictions of algorithmic
performance under RC via CB process infidelities. In this chapter, we introduce the RC
protocol and demonstrate how it can be used to improve the performance of structured and
random circuits. We further discuss the importance of RC as it relates to fault-tolerant
quantum error correction (QEC).
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Figure 6.1: Randomized compiling protocol. (a) Randomization protocol. The bare
circuit, (top) split into K cycles of easy/hard gates (separated by dashed lines), (middle) is
converted into a logically-equivalent circuit by inserting random single-qubit twirling gates
between each easy and hard cycle, inverting them in the following cycle, and (bottom) then
compiling the twirling gates into new easy gate cycles. (b) Measurements using RC. Use
the randomization protocol to generate N randomizations of a bare circuit. Measure each
randomization n/N times, then combine all the results to obtain an equivalent statistical
distribution for a circuit measured n times. The time it takes to convert N randomizations
into experimental pulse sequences and upload them to the quantum computer scales linearly
in N , but the actual measurement time is unchanged since the total number of shots n
remains the same as the bare circuit. (c) Single-qubit state-tomography for visualizing RC:
the black vector is the ideal (noiseless) final state of the qubit, but coherent errors cause
an over-rotation in the measured state (blue vector). The orange vector represents the final
state of the combined distribution of N = 12 randomizations (orange data points). The
rotation error in the bare result has been tailored into stochastic noise under RC, as the RC
vector has a lower purity than the bare vector.
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6.1 Randomized Compiling Protocol

RC tailors Markovian errors into stochastic Pauli noise by combining the results of many
logically-equivalent circuits. By inserting and compiling random single-qubit (virtual) twirling
gates into a circuit in a way that preserves the overall unitary operation, RC creates a set
of “randomized” circuits that are logically equivalent to the original “bare” circuit, without
increasing circuit depth. In Protocol 4, we outline the basic procedure for performing RC.
Here, we consider a bare circuit composed of K cycles of interleaved single-qubit “easy”
gates and two-qubit “hard” gates, like the one shown in Fig. 6.1a. Step 1 outlines how the
single-qubit gates in a quantum circuit can be randomized by insertion of random twirling
gates from some set T . In step 1a, it is necessary to consider how the tensor product of
inverting gates is commuted through two-qubit gates in hard-gate cycles. Typically, T is
chosen to be the set of tensor products of single-qubit Paulis, with the edge terms T c

0 and
TK set to the identity gate, so that if the two-qubit gates are all Cli↵ord gates (or locally-
equivalent to Cli↵ords), then the correction gates will also lie in T , and we need place no
restriction on the types of allowed easy gates. Therefore, RC is e�ciently compatible with
universal quantum computation. However, if the two-qubit gates in hard-gate cycles are not
locally-equivalent to Cli↵ord gates, then refocusing pulses will be needed, which can result in
additional arbitrary two-qubit correction gates at the end of the circuit. No such restrictions
are placed on single-qubit gates in hard-gate cycles, which can be arbitrary. In step 1b, the
new randomized circuit is logically equivalent to the original bare circuit and has the same
number of elementary gates.

Because the correction gates are computed locally for each cycle, the classical resource
requirements for each randomization scale linearly in the number of qubits and circuit depth.
Therefore, generating many (N) logically-equivalent randomizations of a bare circuit requires
very low classical overhead and can be e�ciently done before runtime. While certain hard-
ware platforms (e.g. superconducting circuits) may be better equipped to measure large N
than others (e.g. trapped ions) due to faster gate times, quantum hardware capable of mod-
ifying pulse phases on the fly will enable the utilization of a new randomization per shot
[157] on platforms whose single-qubit gates only di↵er by a change in virtual phases [55].
By measuring each randomization n/N times and computing the union of all N results, we
obtain an equivalent statistical distribution for a circuit measured n times in which coherent
errors in each computational cycle (except the last) have been averaged into Pauli channels
(Eq. 3.36).

To visualize the RC protocol, we performed state tomography on a single qubit (Q7)
after 50 random single-qubit gates, as shown in Fig. 6.1c. We find that coherent errors
cause a net over-rotation in the measured state compared to the ideal (noiseless) final state.
When RC is applied, each randomization results in a di↵erent net coherent error; however,
the combined result is more aligned with the ideal vector. The state fidelity F = 0.862
and purity � = 0.938 for the bare result, and F = 0.879 and � = 0.881 for the RC result.
The fidelities are comparable, since fidelity is unchanged by twirling (see Sec. 5.1), but the
rotation error in the bare result has been tailored into stochastic noise under RC, as the
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Protocol 4 Randomized Compiling

1. Randomization protocol for a bare circuit:

a) Conjugate each round of easy gates Ck by a twirling gate Tk randomly sampled
from a set T and an inverting operator T c

k�1: Ck ! TkCkT c

k�1, where T c

k�1 is
chosen to undo the twirling gate that was inserted in the previous cycle when
commuted through the hard gate cycle Gk: T c

k
= GkT

†

k
G†

k
.

b) Compile the original single-qubit gates and twirling gates into new easy gate
cycles: C 0

k
= TkCkT c

k�1.

2. Use the randomization protocol to generate N logically-equivalent randomizations of
the bare circuit.

3. For each randomization, convert the abstract gates into experimental pulse sequences
and measure n/N times.

4. Compute the union of all N results, such that the total number of shots over N
randomizations is n.

fidelity and purity of the RC result are approximately equal in magnitude.

6.2 Noise Tailoring via Randomized Compiling

RC can benefit circuit performance in two di↵erent regimes:

1. Single-randomization limit: a single randomization under RC interrupts the coherent
accumulation of unitary errors between cycles of gates, similar to dynamical decoupling
sequences [183].

2. Many-randomization limit: averaging over many randomizations under RC tailors er-
rors into stochastic Pauli channels, completely eliminating o↵-diagonal terms in the
error process (in the limit of perfectly-implemented Pauli twirling).

To understand (1), consider the simple example of applying many Rx(2⇡) rotations to a
qubit in the ground state, but each time the qubit over-rotates by a small angle ✓. The
resulting state of the qubit after M rotations is

| i =
MY

e�i✓�x |0i = cos (M✓) |0i � i sin (M✓) |1i . (6.1)
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The fidelity of this state with respect to |0i is F = |h0| i|2 = cos2 (M✓) ⇡ 1 � (M✓)2, thus
the infidelity r = 1 � F ⇡ (M✓)2. Therefore, the infidelity scales quadratically in both the
over-rotation angle ✓ and the number of rotations M . Under RC, the trajectory from the
initial state to the final state is randomized, thus ensuring that coherent errors will not grow
quadratically between gates. While exact quadratic growth is highly unlikely for longer-
depth multi-qubit circuits due to the complex dynamics of crosstalk, and because coherent
errors can act in any direction (not just along the axis of rotation), coherent errors can still
accumulate in an adversarial fashion and grow faster than average error rates, especially in
structured quantum circuits [142].

Regardless of the rate at which coherent errors accumulate between cycles of gates, they
can still impact each computational gate G in a circuit. We can model this process as an ideal
gate G0 followed by an unwanted unitary operator G = U(n̂, ✓)G0, where U(n̂, ✓) = e�i✓n̂·�/2,
n̂ is the axis of rotation, � the Pauli vector, and ✓ is the rotation angle relative to the intended
target state. For simplicity, consider a unitary error about the x-axis for a single qubit,

U(x, ✓) = exp

✓
�i
✓

2
�x

◆

=

0

@ cos(✓/2) �i sin(✓/2)

i sin(✓/2) cos(✓/2)

1

A . (6.2)

In the PTM representation, this coherent error takes the following form,

⇤ =

0

BBBBBB@

1 0 0 0

0 1 0 0

0 0 cos(✓) � sin(✓)

0 0 sin(✓) cos(✓)

1

CCCCCCA
. (6.3)

For small ✓, the diagonal components of ⇤ scale as cos(✓) ⇡ 1�✓2, and the o↵-diagonal terms
scale as sin(✓) ⇡ ✓. While the infidelity of the diagonal terms is eF ⇡ ✓2, we see that the
o↵-diagonal terms are quadratically larger, with

p
eF ⇡ ✓. While not all error metrics are

sensitive to the o↵-diagonal terms in an error process (e.g. fidelity-based measures), norm-
based error metrics such as the diamond distance (Eq. 5.33) and total variation distance
(Eq. 5.27) are generally sensitive to such terms, setting the ⇠ p

eF upper bound of the
diamond norm (Eq. 5.36).

Under RC in the many-randomization limit, all o↵-diagonal terms in the error process are
completely suppressed in the limit that N �! 1. This is referred to as the “noise tailoring”
property of RC. To understand how this occurs, consider Pauli twirling ⇤, i.e. P⇤P † for any
P 2 {I, X, Y, Z}, where P represents the Pauli superoperator. Under Pauli conjugation,
the signs of the o↵-diagonal terms remain the same (are reversed) if P commutes (does not
commute) with ⇤. Thus, the o↵-diagonal terms change sign with a 50% probability upon
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conjugation with a randomly-selected Pauli. When averaging over N randomizations, the
magnitude of the o↵-diagonal terms scale as ✓/

p
N , reminiscent of a random walk, and thus

vanish as N �! 1 or if by luck the correct Paulis were sampled which average to zero.
While the noise tailoring property of RC rests on assumption that the noise impacting the
easy gates is gate-independent, Wallman et. al. [174] prove that RC is robust to small gate-
dependent errors, which are inevitable in modern-day experiments. As we can see, RC can
provide both suppression (i.e. reduction in magnitude) and mitigation (i.e. averaging away)
of coherent errors.

Single-qubit State Tomography

Single-qubit dynamics provide an intuitive picture for understanding how noise is tailored
under RC: consider the ideal final state of a qubit after performing a sequence of gates. The
ensemble measurements of this final state will yield a probability distribution of 0s and 1s,
which depends on the location of the final state on the Bloch sphere and the measurement
basis. In a circuit dominated by coherent errors, the actual final state of the bare circuit
will have some angle error relative to the ideal state due to the interference of coherent
errors during the sequence of gates. Under RC, the impact of coherent errors is di↵erent for
each randomization, since each circuit represents a slightly di↵erent trajectory to the same
(ideal) final state. Thus, the combined distribution of all the randomizations averages out
the impact of coherent errors, resulting in a stochastic Pauli channel.

To verify this intuitive picture of noise tailoring via RC, we performed state tomography
on all four qubits independently, with and without RC. Random circuits were generated by
randomly sampling K = 100 interleaved cycles of “easy” and “hard” single-qubit gates, as
defined by the following gate sets: the Cli↵ord set, Ceasy = {C1}, and common non-Cli↵ord
gates, Ghard = {X45, Y 45, T = Z45}, respectively. Thus, the total number of single-qubit
gates for each qubit was 2K + 1 = 201. State tomography results were constructed by
performing ensemble measurements in the X, Y , and Z bases at five di↵erent points during
each random circuit, as defined by the circuit depth: K = 5, K = 25, K = 50, K = 75,
and K = 100. These results are plotted in Fig. 6.2; 2d projections of the results are also
included for visual clarity. At each circuit depth, measurements were performed on the bare
circuit (blue vector) and on 12 di↵erent randomizations (orange points). The ideal result is
plotted as a black vector, and the combined RC result is represented by the orange vector.
6,000 shots were taken in each measurement basis for the bare circuits, and 500 shots were
taken for each randomization. Focusing on Q5 as an example, at the beginning of the circuit
(K = 5) all three vectors are more or less co-aligned at the south pole. However, at later
circuit depths, coherent errors manifest as a separation between the ideal and bare vectors.
At all circuit depths, the RC vector is approximately co-linear with the ideal state.

Since each tomography result corresponds to measuring same final state in X, Y , and
Z, the TVD can be calculated with respect to each basis. These results are summarized in
Table 6.1. When the target state is approximately aligned with the measurement basis, as is
the case for all four qubits at K = 5 with respect to Z, the bare and RC TVD performance
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Figure 6.2: Single-qubit state tomography results. K is the circuit depth (number of
cycles of easy/hard gates). The black vector is the ideal result, the blue vector is the bare
result, the orange points are the individual RC results, and the orange vector is the combined
RC result.
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Qubit (Depth)
TVDx TVDy TVDz Purity Fidelity

Bare RC Bare RC Bare RC Bare RC Bare RC

Q4 (K = 5) 0.031(8) 0.006(2) 0.009(8) 0.002(2) 0.009(2) 0.0089(4) 0.985 0.982 0.983 0.982

Q4 (K = 25) 0.074(8) 0.014(2) 0.037(7) 0.020(2) 0.029(6) 0.024(2) 0.935 0.932 0.922 0.932

Q4 (K = 50) 0.077(8) 0.004(2) 0.037(7) 0.062(1) 0.042(8) 0.035(2) 0.891 0.870 0.879 0.869

Q4 (K = 75) 0.130(8) 0.024(2) 0.095(6) 0.072(2) 0.038(7) 0.049(2) 0.887 0.821 0.838 0.820

Q4 (K = 100) 0.111(8) 0.010(2) 0.081(8) 0.038(2) 0.060(4) 0.107(2) 0.845 0.773 0.812 0.772

Q5 (K = 5) 0.029(8) 0.008(2) 0.011(8) 0.006(2) 0.020(2) 0.021(1) 0.963 0.958 0.961 0.957

Q5 (K = 25) 0.014(6) 0.013(2) 0.034(8) 0.033(2) 0.059(7) 0.030(2) 0.945 0.941 0.937 0.939

Q5 (K = 50)) 0.025(5) 0.042(2) 0.104(8) 0.023(2) 0.060(8) 0.046(2) 0.892 0.876 0.868 0.875

Q5 (K = 75) 0.138(8) 0.003(2) 0.097(8) 0.035(2) 0.054(4) 0.090(1) 0.852 0.818 0.800 0.815

Q5 (K = 100) 0.067(6) 0.073(2) 0.195(7) 0.106(2) 0.050(8) 0.015(2) 0.782 0.748 0.716 0.746

Q6 (K = 5) 0.009(8) 0.009(2) 0.010(8) 0.003(2) 0.023(2) 0.023(1) 0.955 0.955 0.955 0.955

Q6 (K = 25) 0.010(6) 0.024(2) 0.041(6) 0.020(2) 0.062(8) 0.009(2) 0.967 0.939 0.957 0.939

Q6 (K = 50) 0.038(5) 0.046(2) 0.020(7) 0.027(2) 0.009(8) 0.029(2) 0.918 0.887 0.918 0.886

Q6 (K = 75) 0.088(5) 0.087(1) 0.003(8) 0.015(2) 0.052(8) 0.045(2) 0.874 0.807 0.861 0.806

Q6 (K = 100) 0.045(7) 0.091(2) 0.077(7) 0.077(2) 0.020(8) 0.039(2) 0.821 0.752 0.820 0.751

Q7 (K = 5) 0.037(8) 0.006(2) 0.044(8) 0.018(2) 0.012(2) 0.017(1) 0.983 0.968 0.977 0.967

Q7 (K = 25) 0.170(8) 0.029(2) 0.069(4) 0.060(1) 0.073(8) 0.008(2) 0.938 0.881 0.862 0.879

Q7 (K = 50) 0.041(8) 0.031(2) 0.105(5) 0.114(2) 0.251(8) 0.052(2) 0.844 0.754 0.705 0.751

Q7 (K = 75) 0.113(8) 0.068(2) 0.090(8) 0.084(2) 0.107(5) 0.149(2) 0.808 0.672 0.762 0.658

Q7 (K = 100) 0.112(7) 0.065(2) 0.136(7) 0.017(2) 0.139(8) 0.210(2) 0.761 0.657 0.688 0.619

Table 6.1: Total variation distance, purity, and fidelity of the single-qubit state
tomography results. The TVD is calculated with respect to each measurement basis for
all qubits at each circuit depth. The state fidelity and purity are calculated for the bare
results and unioned RC results.

is approximately equal. This is a reflection of the fact that RC is not expected to provide
algorithmic improvement when the target state is an eigenstate of the measurement basis
(discussed below).

The consequence of tailoring coherent errors into stochastic Pauli noise is that the tailored
noise becomes a decoherence channel, resulting in a reduction of the purity of the Bloch
vector. The purity and state fidelity of each result are included in Table 6.1, and these
results are summarized in Fig. 6.3, in which both are plotted as a function of circuit depth
for all four qubits. As seen in this plot, the purities of the RC vectors decrease more rapidly
than their bare counterparts. However, the state fidelities of the RC results are approximately
equal in magnitude to their respective purities, underscoring that the most dominant error
mechanism under RC is stochastic noise. Under pure depolarizing noise, the RC vector
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Figure 6.3: Purity and state fidelity vs. circuit depth for the single-qubit state
tomography results. The purity and fidelity of the bare results can di↵er significantly
due to angle errors in the bare states resulting from coherent errors. In contrast, the purity
and fidelity of the RC results are approximately equal in magnitude at each circuit depth,
demonstrating that the most dominant error mechanism under RC is stochastic noise.
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would decrease linearly with circuit depth; the deviation from perfect linearity in our case
shows that the tailored noise under RC is due to Pauli errors with di↵erent contributions.
While both the purity and state fidelity decrease monotonically for the RC results, the same
is not always true for the bare results due to the nature of coherent errors and how they
interfere over the course of a circuit. As an example, we see the bare fidelity of Q7 increases
from K = 50 to K = 75, even though the corresponding purity continues to decrease.

Gate Set Tomography

While single-qubit dynamics are useful for visualizing the impact of noise tailoring via RC,
we really care more about the impact of RC on quantum gates used in an experiment. To
demonstrate the a↵ect of RC on logic gate operations, we perform gate set tomography
(GST) with and without RC. Our gate set consists of all possible combinations of I, X⇡/2,
and Y⇡/2 single-qubit gates applied simultaneously to both qubits, as well as the controlled-Z
(CZ) gate [60]: G = {G1 ⌦ G2 : G1, G2 2 {I, X⇡/2, Y⇡/2}} [ {CZ}. We utilized GST up
to depth L = 128 layers to benchmark the performance of all gates in the gate set. We
apply RC to GST circuits using N = 1, N = 10, and N = 100 randomizations to study the
transition of RC from the single- to many-randomization limit, and compare the results to
GST performed without randomization (N = 0).

To study the types of errors present in a gate’s process matrix G estimated using GST,
we write a noisy quantum gate as

G = ⇤G0 = eLG0, (6.4)

where G0 is the ideal quantum gate, ⇤ the gate error channel, and L the gate error generator
[78]. L can be considered roughly equivalent to the Linbladian superoperator that generates
all gate errors (coherent, stochastic, and non-unital) in the limit that the noisy gate G
estimated by GST is both CP and divisible. However, not all gate errors occurs after
the gate, and L is gauge-dependent, therefore this representation has its limitation. It is
nonetheless useful to utilize the GST estimates of L to visualize the error maps under RC.

To visualize the impact of noise tailoring on Markovian gate errors, in Fig. 6.4 we plot
the error generator L in the PTM representation for the CZ gate. We compare the results
for N = 0, 1, 10, 100 and find that RC e�ciently transforms the error generator from dense
to sparse as we increase N , twirling L into a diagonal stochastic Pauli channel. Going from
N = 0 to N = 1 randomizations significantly reduces the magnitude of L’s diagonal and
o↵-diagonal elements, signifying the presence of coherent errors, but L for N = 1 still has
significant magnitude in its o↵-diagonal elements. As N increases from 1 to 10, and from 10
to 100, the magnitude of the o↵-diagonal terms is greatly reduced.

Because GST enables model fitting, we determine a best-fit model for each dataset (N =
0, 1, 10, 100) by computing the evidence ratio � (Eq. 5.67) and N� (Eq. 5.66) for each pair
of nested models in Fig. 5.15. Shown in Fig. 6.4e, we plot the model violation and list the
� for each restricted model. To be as rigorous as possible, we set � = 1 as our threshold for
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Figure 6.4: Improving model accuracy via noise tailoring. The error generator L in the
PTM representation for the CPTP model of the CZ gate is plotted for (a) N = 0, (b) N = 1,
(c) N = 10, and (d) N = 100 randomizations under RC. If an error channel (i.e. PTM cell) in
L is zero, then this component of the estimated gate matches the corresponding component
of the ideal target gate. (e) The model violation N� for each GST model, plotted as a
function of N . The evidence ratio � (number of free parameters, Np) is labeled above each
nested model (listed in the legend). For each N , we choose the model with the least number
of parameters that satisfies �  1, finding that CPTP is the best fit for N = 0, N = 1, and
N = 10, and S for N = 100; blue (red) text indicates that the model is accepted (rejected).
The CZ gate error generator L is plotted for the S model for (f) N = 10 and (g) N = 100,
showing that the stochastic models capture the dominant error channels for both. Even
though it is ultimately rejected by the evidence ratio for N = 10, the S model could be
reasonably selected for its simplicity. (Figure reprinted with permission from Ref. [184].)

choosing a smaller over a larger model. We find that the CPTP model fits best for N = 0,
N = 1, and N = 10, and that the stochastic (S) model fits as well as the CPTP model for
N = 100. For N = 10, none of the nested models satisfy the evidence ratio criteria, but
the S or context-dependent (CD) model could also be reasonably selected, as � = 2.0 and
2.4, respectively. For N = 100, only the S model satisfies the evidence ratio criteria, and we
therefore prefer this model over the CPTP model. Strictly speaking, RC only completely
tailors the noise in the limit that N �! 1; however, because the S model is the best fit
model for N = 100, and because the S model restricts the error generators to be diagonal in
the Pauli basis, any small residual o↵-diagonal terms do not show up in the model. For the
RC GST data presented in the rest of this work, we fix the model for each dataset using the
best-fit models outlined above.

The large model violation for N = 0 (N� ⇡ 535) and N = 1 (N� ⇡ 1394) provides
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high confidence that there are non-Markovian errors, which cannot be modeled by a PTM.
N = 10 (N� ⇡ 180) and N = 100 (N� ⇡ 25) have significantly less model violation,
indicating less statistical evidence of non-Markovianity. Finally, we note that while the
N = 1 CPTP model has much larger model violation than N = 0, this is entirely consistent
with reconstructing PTMs from pulse-amplified sequences with randomized gates under RC,
even if the underlying gates themselves are Markovian (see below for further discussion).

Method for Performing RC on GST sequences

In order to preserve the circuit depth of GST sequences under RC, randomly sampled single-
qubit Paulis and their correction gates are inserted between every layer. For circuits only
containing single-qubit gates, the random Paulis are compiled into the previous layer and the
correction gates are compiled into the subsequent layer. For circuits containing two-qubit
gates, the correction gates are commuted through the two-qubit gate before being compiled
into the subsequent layer.

To highlight this method, consider a circuit C containing N layers L of single-qubit gates:

C = LNLN�1...L3L2L1. (6.5)

Under RC, a single randomized circuit takes the following form

C = PNLNP †

N�1PN�1LN�1...L3P
†

2P2L2P
†

1P1L1, (6.6)

where P †

N
is omitted in the circuit but taken into account in the final ideal measurement

results. The compiled circuit is

C = L̃N L̃N�1...L̃3L̃2L̃1, (6.7)

where the kth layer L̃k = PkLkP
†

k�1 (except for the first layer, which does not contain
a correction gate). For circuits containing two-qubit gates in layer k � 1, the kth layer
becomes L̃k = PkLkP c

k�2, where P c

k�2 = Lk�1P
†

k�2L
†

k�1. This method therefore randomizes
all layers of single-qubit gates, while also maintaining the original circuit depth, and was
developed within the pyGSTi framework specifically for the purpose of randomizing GST
and related benchmarking circuits.

As highlighted above, we observe larger model violation for a single-randomization un-
der RC than for no randomizations. This is expected behavior for N = 1 even when the
physical gates are Markovian, which we illustrate with the following example: consider two
single-qubit circuits, C1 = GIGI and C2 = GIGIGIGI , and consider a physical gate set
{GI , GX , GY , GZ}, with GX = X⇡, etc. Consider a simple error model where each gate is
followed by a small coherent X✓ rotation error. When we implement C1 with a single random-
ization under RC, we actually implement a circuit that should perform the identity rotation,
but the gates have been randomized according to the method outlined above. Let’s assume
our randomized circuit C̃1 is the same as the original circuit, C̃1 = C1 = GIGI . If we initialize
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our qubit in the ground state, we will observe a small coherent over-rotation error by 2✓,
which will result in some ✓-dependent probability of not measuring 0. Similarly, when we run
C2 we will actually actually implement one of the many length-4 combinations of Pauli gates
that produces the identity rotation. For example, suppose we sampled C̃2 = GZGZGZGZ ;
this combination of gates would echo away the X rotation error, and we would measure 0
with probability 1. Therefore, altogether we observe Pr(0|C1) < 1 and Pr(0|C2) = 1. This
is inconsistent with every possible process matrix for GI (or at least every process matrix
that is close to the target identity matrix), because repeating an identity gate amplifies all
of its error parameters, but does not echo away errors. Finally, note that this argument is
predicated on the assumption that we measure each circuit many times; if we measure each
circuit only once, the results will not be inconsistent, but will also not be very informative.

6.3 Quantum Fourier Transform

RC can be applied to any gate-based quantum algorithm, including those at the heart of many
quantum applications, like the quantum Fourier transform (QFT). Here, we utilized a state-
of-the-art synthesis algorithm [185] that numerically approximates circuit unitaries in order
to reduce the CNOT count for a given hardware topology, which generated two, three, and
four-qubit QFT circuits consisting of only K = 3, K = 8, and K = 13 CNOTs, respectively,
for our linear connectivity. Much like the classical discrete Fourier transform, the QFT
maps singular inputs (e.g. |0000i) into uniform distributions, and maps superposition states
(e.g. |+ + ++i) into singular distributions. To measure the performance of RC for di↵erent
resultant probability distributions, we applied the QFT to various single-qubit product states
involving permutations of Pauli basis states {|0i, |1i, |+i}, as well as random separable input
states (SU(2)⌦n

rand |0i⌦n); see Fig. 6.5a for several examples of the measured distributions for
four qubits. Experimental TVD results for the four-qubit QFT can be seen in Fig. 6.5b; two-
and three-qubit QFT results can be seen in Fig. 6.6. N = 50 randomizations were generated
for each bare circuit, and 100 random inputs were generated for each data set. Each bare
circuit was measured 10,000 times, and each randomization was measured 200 times.

To evaluate the e�cacy of RC, we assess algorithmic performance by the total varia-
tion distance (TVD), a standard metric for the statistical distance between two probability
distributions and a relevant measure in quantum supremacy experiments [8]:

dTV(P , Pideal) =
1

2

X

x2X

|P(x) � Pideal(x)|, (6.8)

where Pideal(x) is the ideal probability of measuring a bit string x in a set of possible
bit strings X, and P(x) is the experimentally-measured probability. The TVD is a basis-
dependent metric which determines the probability of obtaining an incorrect solution, with 0
(1) indicating that the correct distribution of bit strings is always (never) measured. Thus,
improvements in algorithmic performance equate to lower TVDs, as exemplified by the ob-
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Figure 6.5: Improving the QFT with RC. (a) Measured probability distributions for the
QFT applied to |0000i, |000+i, |+ + ++i, and a random input state (SU(2)⌦4

rand |0000i). (b)
Bare and RC TVDs for all four-qubit QFT results, as a function of distribution uniformity
of the ideal results. RC provides more improvement as dTV(Pideal, Puniform) �! 0. Circles
indicate the QFT applied to Pauli basis states ({|0i, |1i, |+i}), and triangles indicate random
inputs states (SU(2)⌦4

rand |0000i). Pearson r values listed in the legend quantify the correlation
strength of each data set, justifying linear fits for the RC data (transparent bands indicate
the 95% confidence intervals). (c) Experimental vs. simulated TVDs from two models
based on the Pauli error rates in Fig. 5.10b. The blue (orange) markers denote the bare
(RC) circuits simulated with the coherent error model, and the cyan markers denote the
bare circuits simulated with the Pauli model. (d) Accuracy of the two models compared to
experimental results. The bare circuits simulated with the Pauli model are plotted against
the experimental RC results in (c), which are also used to compute the model accuracy in
(d). (e) Summary of the improvement under RC for all two, three, and four-qubit random
input QFT results, showing good agreement between experiment (blue) and theory (grey).
Simulations in which single-qubit (green) and two-qubit (pink) error rates have been scaled
down by a factor of 10 suggest that RC performance increases as error rates decrease. (Error
bars on the TVD [O(10�3)] for (b), (c), and (d) are smaller than the markers. This figure
has been reproduced with permission from Ref. [145].)
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served reduction from dTV,bare = 0.073(8) to dTV,RC = 0.008(2) for the single-qubit results in
Fig. 6.1c, as measured in the computational basis.

In Figs. 6.5a/b, we show that the relative RC performance is best (equivalent) when the
algorithm generates a uniform (singular) distribution across all measurement basis states.
This is due to the basis-dependence of the TVD: given a small angle error of ✓ relative to the
ideal final state of a system, the TVD scales as dTV(P , Pideal) ' ✓2 ' r(E) if the target state is
in an eigenstate of the measurement basis (i.e., deterministic algorithms), whereas the TVD
scales as dTV(P , Pideal) ' ✓ if the target state is coherently spread across the measurement
basis (i.e., non-deterministic algorithms; see further discussion below). Therefore, if the
(ideal) target state is in an eigenstate of the measurement basis, the raw probabilities will
not be sensitive to o↵-diagonal terms in the error process resulting from coherent errors
[which scale as ✓ '

p
r(E)], so the TVD will not benefit from the general

p
r(E) �! r(E)

improvement provided by RC. As such, distribution uniformity is a good proxy for the
susceptibility of the target state to coherent errors with respect to the measurement basis,
and is thus correlated with improvement under RC. More generally, error assessments that
are only sensitive to the diagonal terms in the error process (e.g. process or average gate
infidelity, or the TVD of deterministic algorithms) cannot benefit from the suppression of
the o↵-diagonal terms via RC when averaging over many randomizations. In contrast, norm-
based error-metrics, such as the TVD of non-deterministic algorithms and the diamond norm,
generally will be sensitive to the o↵-diagonal terms in the error process, and thus generally
benefit from RC.

We quantify the distance from a uniform distribution by computing the TVD of each
ideal probability distribution with the uniform distribution in d = 2n dimensions for n
qubits, dTV(Pideal, Puniform), which is 0 (maximized) when Pideal is uniform (singular). In
Fig. 6.5b, the bare and RC TVDs are plotted as a function of dTV(Pideal, Puniform) for all
four-qubit QFT results. For singular input states (|0000i or |1111i), RC significantly reduces
the TVD, but for a superposition input state (|+ + ++i), the bare and RC TVDs are
approximately equal. We compute the Pearson correlation coe�cient r to quantify the
correlation strength between the experiment TVD and dTV(Pideal, Puniform), where +1 (-
1) indicates exact positive (negative) correlation and 0 implies no linear correlation. The
RC results are strongly correlated [r = 0.95 (0.80) for basis (random) inputs] compared
to the bare results [r = 0.66 (0.32) for basis (random) inputs], underscoring the stability
and predictability of RC compared to non-randomized circuits. A summary of the TVD
improvement under RC for all two, three, and four-qubit results can be seen in Fig. 6.7,
plotted as the ratio of the bare to RC TVDs, dTV,bare/dTV,RC, as a function of the distribution
uniformity of the ideal results.

In Fig. 6.5c, we predict the TVD performance of the QFT using two models: (1) a Pauli
model of our system consisting of the Pauli error rates extracted from the CER results in
Fig. 5.10b; (2) a coherent error model which, under simulated CER, produces approximately
equal error rates as the experimental results in Fig. 5.10b. The coherent error model is
generated by finding a desired CPTP map for a fixed unitarity [139] (i.e. fixed fraction
of the total error rate due to coherent errors) which has been minimized with respect to
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Figure 6.6: Two- and three-qubit quantum Fourier transform results: (a) Q4 & Q5,
(b) Q5 & Q6, (c) Q6 & Q7, (d) Q4, Q5, & Q6, and (e) Q5, Q6, & Q7. Pearson r values
listed in the legend indicate the linear correlation of each data set. Linear fits are plotted
for the RC data, with transparent bands indicating the 95% confidence intervals.
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Figure 6.7: TVD improvement under randomized compiling. Experimental results
of the TVD improvement under RC for the quantum Fourier transform applied to two,
three, and four qubits, as a function of the distribution uniformity of the ideal results. The
qubit subsets are specified in the legend. Histograms of the Pauli input (pink) and random
input (grey) results are included on both axes to show how the results are distributed. RC
performs better for results in which dTV,bare/dTV,RC > 1, but performs worse for results
in which dTV,bare/dTV,RC < 1. For all random input results, the average improvement is
dTV,bare/dTV,RC = 1.92.

the experimental CER results (see “Simulation Model” subsection below). While based on
experimental error rates, such a model does not accurately capture detailed information
about coherent errors in our system (e.g. context-dependent rotation axes and angles [158]).
Therefore, we do not expect the coherent error model to accurately simulate the performance
of any individual bare circuit; rather, we expect it to only capture the average performance
of the bare circuits, which is possible as long as the magnitude of the unitarity in the model is
correct. We note that, in general, measuring an accurate coherent error model for multi-qubit
systems with a continuous single-qubit gate set is not experimentally tractable.

Using these models, we simulate the QFT circuits and compare the results to the exper-
imental TVDs in three di↵erent ways:

1. Coherent error model applied to the bare circuits vs. experimental bare results
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2. Coherent error model applied to the RC circuits vs. experimental RC results

3. Pauli model applied to the bare circuits vs. experimental RC results

For (3), it is unnecessary to simulate the RC circuits with the Pauli model, since the Pauli
model already contains the tailored error rates. In Fig. 6.5c, we see excellent agreement
between experiment and simulation for (2) and (3), but unreliable predictability (1). This
indicates that we can accurately predict the results of an algorithm a priori with CER error
rates using (a) a Pauli model, as long as the experimental circuit is performed using RC,
and (b) a coherent error model, as long as both the simulated and experimental circuits are
performed using RC. In Fig. 6.5d, we validate the model accuracy by computing the TVD
of the experimental results with the simulated results. Almost all of the simulated results
for (2) and (3) are accurate to within 10% with respect to the experimental RC results, but
the accuracy of the simulated results for (1) are much worse. By utilizing RC in conjunction
with CB/CER, we avoid the di�culty in capturing and modeling the complex interplay
of coherent errors, and thus close the gap between the circuit performance predicted from
benchmarking diagnostics and experimental results.

In practice, the input states to quantum algorithms will not be known a priori, such as
when the QFT is used in Shor’s algorithm [106]. While unknown inputs are not guaranteed
to be random, we use random inputs as a proxy for when the QFT is used as a subroutine in
other algorithms. Fig. 6.5b shows that when the QFT is applied to random input states, most
of the results are improved under RC. A histogram of the TVD improvement for two, three,
and four-qubit random input QFT results can be seen in Fig. 6.5e, showing that the vast
majority of circuits (> 81%) are improved under RC by an average of dTV,bare/dTV,RC ⇡ 1.9.
Here, we include two- and three-qubit results in order to summarize the RC QFT performance
using a larger sample size drawn from systems that include di↵ering error rates. In the rare
instances in which coherent errors in a circuit benignly cancel, RC can hurt performance
(dTV,bare/dTV,RC < 1); however, in general, this becomes vanishingly unlikely for longer
depth circuits.

While the coherent error model may not accurately predict the individual result of any
given bare circuit, it does predict the average performance relative to RC. To demonstrate
this, we compute the TVD improvement under RC (dTV,bare/dTV,RC) for all of the two, three,
and four-qubit random input QFT circuits simulated using the coherent error model. As
seen in Fig. 6.5e, the distribution of improvement under RC predicted by simulation agrees
well with experiment, with an overlapping index of 0.94 (out of a maximum of 1), which
quantifies the percentage that one normal distribution overlaps with another. The good
agreement between experiment and theory in Fig. 6.5e suggests that we can predict the
average improvement under RC as error rates decrease. Included in Fig. 6.5e are simulated
results in which single-qubit error rates are reduced by a factor of 10, resulting in a modest
improvement, and when both single- and two-qubit error rates are reduced by a factor of 10,
in which case RC improves > 94% of the simulated circuits by an average of dTV,bare/dTV,RC ⇡
3.4. In agreement with the predictions made in Ref. [174], these results demonstrate that RC
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is expected to provide a larger relative improvement as gate infidelities decrease (for a fixed
fraction of the total error rate due to coherent errors). Therefore, as quantum processors
improve and error rates decrease, we can expect RC to outperform non-randomized circuits
as long as coherent errors persist.

Basis-Dependence of the TVD

As a norm-based error metric, the TVD is generally sensitive to the o↵-diagonal terms in an
error process resulting from coherent errors. Therefore, in the presence of coherent errors
the TVD can be as large as

dTV(P , Pideal) 
p

r(E)
p

d(d + 1), (6.9)

but under RC it is instead upper-bounded directly by the average error rate r(E),

dTV(PRC, Pideal)  r(E)
d + 1

d
, (6.10)

which is quadratically lower in r(E) and does not scale with the dimension d = 2n (n
qubits). Thus, RC provides a general error reduction from

p
r(E) �! r(E). Because the

TVD depends on simulating the ideal results of a quantum circuit, it is not a scalable error
metric. Therefore, it is important to benchmark the TVD performance under RC while
quantum circuits can still be e�ciently classically simulated, which will inform what TVD
improvements can be expected under RC in the post-NISQ era.

This quadratic improvement depends on the linearity of an error metric and the degree to
which it is sensitive to o↵-diagonal terms in the error process. Whereas the fidelity is always
insensitive to o↵-diagonal terms in the error process, the TVD is generally sensitive to these
terms, except for the case in which the target state is an eigenstate of the measurement
basis. To see this, Consider the case in which ⇢ideal = |0ih0|, but the actual qubit state has
over-rotated by an angle ✓ due to coherent errors: | i = cos(✓) |0i + sin(✓) |1i. The fidelity
of ⇢ with ⇢ideal is

F = | h0| i |2 = cos2(✓) ⇡ 1 � ✓2, (6.11)

where we have approximated cos(✓) in the small angle limit. Here, we can see that to first
order the infidelity scales as r(E) ' ✓2. We can similarly compute the TVD between ⇢ and
⇢ideal as measured in the computational basis |xi 2 {|0i , |1i},

dTV(P , Pideal) =
1

2

X

x=0,1

��Tr[(| ih | � |0ih0|) |xihx|]
�� (6.12)

=
1

2

X

x=0,1

�����Tr

"0

@ cos2(✓) � 1 cos(✓) sin(✓)

cos(✓) sin(✓) sin2(✓)

1

A |xihx|
#����� (6.13)

= sin2(✓) ⇡ ✓2. (6.14)
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Similar to the fidelity, we can see that r(E) ' ✓2 for the TVD when the target state is an
eigenstate of the measurement basis.

Next, consider the case in which the target state is in a superposition state, ⇢ideal = |+ih+|,
and the actual qubit state has over-rotated due to a small rotation about the y-axis,

| i = Ry(✓) |+i (6.15)

=
1p
2

0

@cos(✓) � sin(✓)

sin(✓) + cos(✓)

1

A . (6.16)

The fidelity of this state is

F = | h+| i |2 = cos2(✓) ⇡ 1 � ✓2, (6.17)

where again we see that F is insensitive to the o↵-diagonal terms due to Ry(✓) and that the
infidelity scales as r(E) ' ✓2. This is, however, not the case for the TVD, where

dTV(P , Pideal) =
1

2

X

x=0,1

��Tr[(| ih | � |+ih+|) |xihx|]
�� (6.18)

=
1

2

X

x=0,1

�����Tr

"0

@ �2 cos(✓) sin(✓) cos2(✓) � sin2(✓) � 1

cos2(✓) � sin2(✓) � 1 2 cos(✓) sin(✓)

1

A |xihx|
#�����

(6.19)

= cos(✓) sin(✓) ⇡ ✓. (6.20)

Therefore, we can see that when the target state is coherently spread out among the various
basis states, the TVD scales as

p
r(E) ' ✓, which is quadratically larger than the TVD for

deterministic algorithms. Consequently, the TVD can benefit greatly from the
p

r(E) �!
r(E) reduction in the error under RC for non-deterministic algorithms.

It is also possible to reformulate the basis-dependent improvements of RC in terms of
whether or not an error measure is linear in the output state ⇢. To see this, consider the
noisy output state E(⇢) prepared by a single randomization under RC. Here, the fidelity is
linear in ⇢:

F = h�| E(⇢) |�i , (6.21)

where the ideal final state is ⇢ideal = |�ih�|. When averaging over many randomizations,

F = h�| 1

N

NX

i

Ei(⇢) |�i (6.22)

=
1

N

NX

i

h�| Ei(⇢) |�i , (6.23)
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where, in the second line, the sum over N randomizations can be taken outside of the inner
product. Thus, if a single randomization provides no benefit over the bare circuit, in the
many-randomization limit the fidelity is simply an average of N incorrect results. We note
here, however, that a single randomization under RC can still provide an advantage for
circuits impacted by structured errors by dynamically-decoupling the qubits from noise and
breaking up the coherent accumulation of unitary errors (similar to echoed pulse sequences).
Therefore, metrics that are linear in ⇢ can still benefit from RC if the noisy preparation
ERC(⇢) is more accurate than E(⇢) in the single-randomization limit.

In contrast, TVD is generally not linear in ⇢, and thus the average over N randomizations
cannot be pulled outside of the absolute value. To see this, we first note that the trace
distance is convex in its first input (Eq. 5.31), from which it follows that

D

 
1

N

NX

i

Ei(⇢), ⇢ideal

!
=

1

2
Tr
���
1

N

NX

i

Ei(⇢) � ⇢ideal
��� (6.24)

 1

2N

NX

i

Tr |Ei(⇢) � ⇢ideal|. (6.25)

The equality in the above equation is saturated only for deterministic algorithms, in which
the target state is an eigenstate of the measurement basis. To understand why this is
the case, consider measurements made in the computation basis |xi 2 {|0i , |1i}, where
P(x) = Tr[E(⇢) |xihx|] = hx| E(⇢) |xi and Pideal(x) = Tr[⇢ideal |xihx|] = hx| ⇢ideal |xi. If we take
⇢ideal = |0ih0|, then Pideal(0) = 1 and Pideal(1) = 0. Therefore, we can write the TVD as

dTV(P , Pideal) =
1

2

X

x2{0,1}

|P(x) � Pideal(x)| (6.26)

=
1

2

⇥
|P(0) � Pideal(0)| + |P(1) � Pideal(1)|

⇤
(6.27)

=
1

2

⇥
(1 � P(0)) + P(1)

⇤
(6.28)

= P(1) (6.29)

= h1| E(⇢) |1i . (6.30)

In this case, the TVD is linear in ⇢, and when E(⇢) is the average over many randomizations
under RC, we can write

dTV(P , Pideal) = h1| 1

N

NX

i

Ei(⇢) |1i (6.31)

=
1

N

NX

i

h1| Ei(⇢) |1i , (6.32)

where the TVD is now simply an average over N independent noisy results, all of which are
incorrect.
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TVD vs. Expectation Values in Quantum Algorithms

While many NISQ applications (e.g. variational quantum algorithms) depend on measured
expectation values as opposed to the TVD, the TVD upper bounds the absolute error of all
expectation values measured in the same basis, therefore a small TVD under RC guarantees
a small error in any expectation value estimated from the same probability distribution. To
see this, consider the expectation value of an operator A acting on a quantum state ⇢ is
given as

hAi
⇢

= Tr[⇢A] =
X

x

P(x) hx| A |xi =
X

x

P(x) hAi
x
, (6.33)

where we have written the ⇢ in terms of its spectral decomposition, and hAi
x

is the expec-
tation value of A in the |xi basis. We can write the absolute error in the expectation value
as

| hAi
⇢
� hAi

⇢,true | =
���
X

x

(P(x) � Ptrue(x)) hAi
x

���. (6.34)

It is then possible to bound the absolute error of this expectation value with a simple triangle
inequality,

| hAi
⇢
� hAi

⇢,true | 
X

x

��(P(x) � Ptrue(x))
���� hAi

x

�� (6.35)

 2dTV(P , Ptrue)kAk, (6.36)

where kAk is the operator norm of A, which is defined to be the maximal absolute value of
all eigenvalues of A. Therefore, we can say that the absolute error in the expectation value of
an arbitrary observable is upper-bounded by the TVD computed from the same probability
distribution. While a reduction in the TVD under RC does not guarantee a reduction
in the error of an expectation value measured in the same basis, since the error in the
expectation value is only at most given by the TVD, it does tighten the bound within which
one can accurately estimate the true expectation value. Since multiple expectation values
can be estimated from any given probability distribution, the TVD e↵ectively condenses
information about the errors across all the relevant expectation values. In other words, if
dTV(P , Ptrue) < ✏, then the expectation value of all local observables will be accurate to
within ✏. We therefore generally expect RC to improve the accuracy of expectation values
in scenarios in which it improves the TVD.

Simulation Model

Simulated QFT results were generated using two models: (1) a Pauli model, using the Pauli
error rates directly extracted from the CER results in Fig. 5.10b; (2) a coherent error model
of our system that includes coherent errors, which produces simulated CER results that are
approximately equal to the error rates in Fig. 5.10b. The coherent model of our four-qubit
system is generated by finding a desired CPTP map for a given unitarity by minimizing sim-
ulated CER results with respect to the experimental results; we only considered single-body
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errors in the construction of this model, as these are the most dominant error syndromes in
our system. Our simulator takes into account realistic values for SPAM errors and imple-
ments coherent errors and stochastic noise in each cycle of a circuit. Stochastic noise acts on
each qubit per cycle with a finite probability (Eq. 3.31), and coherent errors are implemented
by adding an over-rotation ✏ to each qubit (Eq. 3.14), where ✏ is set according to the process
infidelity due to coherent errors. A similar model is used for simulating coherent errors on
two-qubit gates.

The circuits we are interested in simulating, as with those performed experimentally, have
been structured to alternate between cycles containing CNOTs (hard cycles) and cycles of
single qubit gates (easy cycles). Simulation comprises of two steps: first, we define a noise
channel for every unique hard cycle in the collection of circuits to be simulated. Next, given
a circuit, we propagate the initial state by simulating each easy cycle ideally, and each hard
cycle ideally but followed by its corresponding noise channel. We do not add any noise to the
easy cycles not because we are assuming they are perfect in practice, but rather because our
noisy channels will be constructed using CER data, which measures the composition of the
errors due to a cycle of random Pauli gates along with a particular hard cycle (see Eq. 5.61).
We do, however, assume no correlations between the errors of each gate in a given cycle: we
take the total noise channel of a cycle as the tensor product of noise channels of each gate
or idling qubit. This assumption allows for noise induced by classical crosstalk (since our
noise model is entirely cycle-dependent, we are explicitly allowing noise on one gate to be
conditional on the existence of another gate in the cycle), but not noise induced by quantum
crosstalk. Our justification is that our CER data shows no such significant correlations
(see Figs. 5.10 and 5.12), so it does not appear necessary to include two-body terms in our
model as the most dominant errors are single-body. Therefore, limiting ourselves to only
single-body errors is su�cient for producing an approximate error model for our system,
and simplifies the process of finding the model. In general, measuring all n-body errors is
manifestly not scalable as the number of such errors grows exponentially with n. Moreover,
the probabilities of two-body errors are the sum of the probabilities of all errors that act
non-trivially on the corresponding two bodies, irrespective of their action on other bodies.
Therefore, the fact that two-body errors are negligible shows that three or more body errors
are also negligible. In what follows, we describe the procedure to generate a noise channel
for a specific gate or idling qubit in a given cycle.

First, given a probability simplex q 2 RN and a real vector h 2 RN�1 we can define a
quantum channel

S(q, h) = UhKq, (6.37)

where Uh is the unitary superoperator corresponding to the unitary matrix

Uh = exp
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!
, (6.38)
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and where Kq is the Pauli Kraus channel

Kq(⇢) =
NX

i=0

p
qiPi⇢P

†

i
. (6.39)

Here, P0, ..., PN�1 with N = 4n is some enumeration of the n-qubit Paulis such that P0 = I.
S(q, h) defines a somewhat arbitrary but large class of CPTP channels which is su�cient
but not necessary to suit our needs: we require a parameterized class of CPTP channels over
which to perform a numerical search.

Next, given any pair (q, h) we can compute the Pauli transfer matrix (PTM) of S(q, h),
whose diagonal vector we denote as d(q, h). We can likewise compute the unitarity of the
channel S(q, h) by taking the 2-norm of the lower PTM block [139], denoting it by u(q, h).

Finally, suppose that for some subset of qubits we experimentally measure the PTM
diagonal to have a value of f 2 RN . This is naturally done with CER (see, for example
the “(5,4): CX” block of the first cycle in Fig. 5.10), where the error Kraus probabilities
are reported for the qubits (4, 5), from which the PTM diagonal for these qubits can be
constructed via the inverse Walsh-Hadamard transform [146]. We wish to define a channel
for simulation whose PTM diagonal matches f up to a user-defined scaling, and such that
the channel has a user-defined unitarity. Therefore, we perform a numerical optimization to
find (q, h) such that

d(q, h) = 1 � s0(1 � f) (6.40)

u(q, h) = 1 � (1 � s1)(1 � f
2
) (6.41)

where s0 2 [0, 1] defines the factor with which to decrease the process infidelity (recall the
process infidelity corresponding to f is 1 � f where f is the mean value of f), and where
s1 2 [0, 1] defines the unitarity fraction, where a value of 1 results in S(q, h) being unitary, and
0 results in S(q, h) being as stochastic as possible given the constraints. This minimization is
performed with SciPy’s BGFS solver for all non-overlapping subsets of qubits of the device,
which is valid because the experimental data show no significant correlated error between
gate-bodies. Minima are consistently found to within numerical precision, though minimum
values are not unique.

The tensor product of the resulting channels, one for each gate or idling qubit in the
cycle, defines the noisy channel for the given hard cycle. We allow a di↵erent value of s
for single- and two-qubit subsets. Guided by our CB results, RB, and PB measurements,
s1 was set to 0.7 (0.9) for single-qubit (two-qubit) gates for all simulated results. s0 = 1.0
for the results in Fig. 6.8 to simulate error rates that are equivalent to experimental values.
However, s0 = 0.1(1.0) for single-qubit (two-qubit) gates for the results in Fig. 6.9, and
s0 = 0.1 for both single- and two-qubit gates for the results in Fig. 6.10. The histograms of
the TVD improvement for random input states under RC for the simulated results (using
the coherent error model) in Figs. 6.8, 6.9, and 6.10 are included in Fig. 6.5e.
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Figure 6.8: Simulated QFT results using the coherent error model with equivalent
error rates. (a) Experimental vs. simulated CER results based on a model of our system
with equivalent single-body error rates in which the fraction of the total error rate due
to coherent errors was set to 0.7 (0.9) for single-qubit (two-qubit) gates. (b) Simulated
results for data in Fig. 6.7 using the model presented in (a). The average improvement
is dTV,bare/dTV,RC = 2.13 for all random input results, showing good agreement with the
experimental results in Fig. 6.7.
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Figure 6.9: Simulated QFT results using a complete model with improved single-
qubit error rates. (a) Experimental vs. simulated CER results, with the single-qubit error
rates reduced by a factor of 10 compared to the model presented in Fig. 6.8. (b) Simulated
results for data in Fig. 6.7 using the model presented in (a). The average improvement is
dTV,bare/dTV,RC = 2.47 for all random input results.
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Figure 6.10: Simulated QFT results using a complete model with improved single-
and two-qubit error rates. (a) Experimental vs. simulated CER results, with both the
single- and two-qubit error rates reduced by a factor of 10 compared to the model presented
in Fig. 6.8. (b) Simulated results for data in Fig. 6.7 using the model presented in (a). The
average improvement is dTV,bare/dTV,RC = 3.39 for all random input results.
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Figure 6.11: Random circuit sampling. The process by which K cycles of interleaved
easy/hard gates are randomly sampled from a universal gate set. All random bare circuits
were measured 4,000 times. N = 20 randomizations were generated for each bare circuit,
each of which was measured 200 times. 100 random bare circuits were generated for each
circuit depth K.

6.4 Random Circuits of Variable Depth

To illustrate the broad applicability and generic benefits of RC for universal circuits, we
demonstrate achievable performance gains for RC applied to four-qubit circuits of variable
depth composed of K interleaved cycles of easy/hard gates randomly sampled from a uni-
versal (Cli↵ord + T ) gate set (see Fig. 6.11). Random bare circuits were generated by
randomly sampling K interleaved cycles of easy Ceasy and hard Ghard gates from a uni-
versal gate set. For the (isolated and simultaneous) single-qubit circuits, Ceasy = {C1}
and Ghard = {X45, Y 45, T = Z45}, where C1 is the single-qubit Cli↵ord set. For
multi-qubit circuits involving entangling operations, Ceasy = {C1, X45, Y 45, T} and
Ghard = {CX = CNOT, CY, CZ}. For easy gate cycles, single-qubit gates are randomly
sampled from Ceasy independently for each qubit. For hard gate cycles in single-qubit cir-
cuits, single-qubit gates are randomly sampled from Ghard independently for each qubit. For
hard gate cycles in multi-qubit circuits, a two-qubit gate is sampled from Ghard for a single
pair of nearest-neighbor qubits, and identity gates are applied to the remaining spectator
qubits. Because the {H, S, T, CNOT} set of gates can be used for universal quantum
computation, and H, S, and CNOT are all Cli↵ord gates, this is typically referred to as the
universal “Cli↵ord + T” set.

As shown in Fig. 6.12a, RC reduces the average TVD at all circuit depths tested (with
N = 20 randomizations for each bare circuit), demonstrating how longer-depth quantum
circuits can be performed under RC given a fixed error budget in the TVD. These results
highlight an important distinction in how RC can improve algorithm performance: because
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Figure 6.12: RC extends the computational reach with respect to circuit depth.
(a) Bare and RC TVDs as a function of circuit depth K. RC reduces the TVD on average for
all circuit depths tested, allowing one to perform longer gate sequences under a fixed TVD
error budget. The semi-transparent blue (orange) points indicate the TVDs of the individual
random circuits (the unioned data over all N = 20 randomizations of the corresponding bare
circuits). Violin plots depict the distribution of results. The TVD error grows approximately
linearly with K for both bare and RC results, suggesting that the dominant reason for an
improvement under RC is an overall reduction in the error for each gate cycle K, rather than a
suppression of the adversarial accumulation of coherent errors (although RC can additionally
provide this benefit). (b) RC TVD improvement factor for the random circuits in (a) as a
function of distribution uniformity. The average improvement is dTV,bare/dTV,RC ⇡ 1.7. (c)
TVD as a function of number of randomizations, with K = 10 fixed. The average TVD
under RC converges to a value close to the 10% quantile level (dashed line) of the non-
randomized circuits for N = 20. However, only N = 10 randomizations are needed to
converge to within 2.7% of the N = 20 level. (d) For a fixed total error rate, RC provides a
larger TVD improvement for systems with a higher fraction of coherent errors. The colored
subsets listed in the legend highlight random single-qubit circuits that were performed in
isolation (purple) or in parallel (blue and red). The average fraction of the total error rate
due to coherent errors was quantified using measurements of RB and PB under isolated or
simultaneous operation. (Figure reproduced with permission from Ref. [145].)



CHAPTER 6. RANDOMIZED COMPILING 148

Qubit(s)
Q4 Q5 Q6 Q7

eF eU eF eU eF eU eF eU

Q4 1.2 (0.57) 0.16 (0.70)

Q5 1.1 (0.46) 0.14 (0.54)

Q6 1.4 (0.35) 0.13 (0.48)

Q7 1.9 (1.1) 0.59 (1.1)

Q4 & Q5 4.8 (6.9) 3.7 (6.9) 6.0 (9.0) 4.9 (9.1)

Q4 & Q6 1.1 (4.8) 0.19 (0.71) 2.0 (2.2) 0.97 (2.4)

Q4 & Q7 0.96 (0.46) 0.23 (0.54) 1.7 (1.0) 0.85 (1.1)

Q5 & Q6 2.2 (1.6) 1.2 (1.6) 1.5 (0.87) 0.40 (0.95)

Q5 & Q7 1.5 (1.0) 0.57 (1.1) 2.4 (2.3) 1.3 (2.5)

Q6 & Q7 4.8 (5.7) 3.7 (5.7) 3.9 (3.7) 2.6 (3.7)

Q4, Q5, & Q6 3.9 (5.1) 2.8 (5.1) 8.3 (13.0) 6.7 (13.0) 3.2 (3.1) 1.9 (3.4)

Q5, Q6, & Q7 3.5 (3.9) 2.5 (3.9) 5.7 (7.8) 4.1 (7.9) 4.4 (4.9) 3.3 (5.0)

Table 6.2: RB (eF ) and unitary RB (eU) process infidelities measured before the
random single-qubit circuits of variable depth experiments. These values are used
to quantify the fraction of the total error rate due to coherent errors [see Fig. 6.12d]. All
process infidelities are ⇥10�3 and all standard deviations are ⇥10�4.

random circuits are already robust to the coherent accumulation of unitary errors, we observe
a linear (not quadratic) growth in the average TVD as a function of circuit depth for both
the bare and RC circuits. Therefore, the reduction in the TVD under RC is not due to the
suppression of the adversarial accumulation of coherent errors (although each randomization
under RC can additionally provide this benefit for structured circuits that are susceptible
to such errors). Rather, it is due to a reduction in the o↵-diagonal terms in the error
process due to coherent errors per computational gate cycle K when averaging over many
randomizations. As previously noted, this improvement is not observed for fidelity-based
error metrics (see, for example, the state fidelity results in Fig. 6.1c), which underrepresent
the global impact of coherent errors on quantum algorithms, as they are only sensitive to the
diagonal terms in the error process. The relative improvement under RC is reduced at longer
circuit depths, since both the bare and RC results will converge to a uniform distribution
(i.e. statistical mixture) due to decoherence in the limit of large K.

The TVD improvement under RC for all of the random circuits in Fig. 6.12a is plot-
ted in Fig. 6.12b as a function of dTV(Pideal, Puniform), with an average improvement of
dTV,bare/dTV,RC ⇡ 1.7. Because randomly sampled circuits approach an approximate unitary-
2 design as a function of circuit depth [186], we observe that the results are not uniformly
spread across dTV(Pideal, Puniform) for small K; rather, they are highly concentrated at several
uniformities, and only begin spreading out for larger K. Given the concentration of results
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Figure 6.13: Single-qubit random circuits of variable depth. RB (eF ) and PB (eU)
process infidelities were measured before each set of experiments to quantify the fraction of
the total error rate due to coherent errors (see Table 6.2). (a) Isolated single-qubit circuits.
(b) Simultaneous single-qubit circuits on two qubits. (c) Simultaneous single-qubit circuits
on three qubits. The K = 5 data from each of the above plots was used in Fig. 6.12d.
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Figure 6.14: Expected performance scaling of RC. As the fraction of the total error
rate due to coherent errors decreases (for a fixed total error rate, depicted by the area of
the circles), the relative RC performance is expected to decrease; in the limit of coherence-
limited operations, RC can hurt performance. However, as the total error rate decreases (for
a fixed fraction of the total error rate due to coherent errors), RC performance is expected
to improve.

in the range between dTV(Pideal, Puniform) 2 [0.2, 0.8] in both Fig. 6.5b and Fig. 6.12b, we
would expect typical algorithms to fall within this range.

Additionally, we show that a small number of randomizations is su�cient to saturate the
lowest-possible TVD under RC for a fixed circuit depth (K = 10), plotted in Fig. 6.12c.
After N = 20 randomizations, the average TVD under RC converges to a value that is
better than approximately 90% of the non-randomized circuits. However, after only N = 10
randomizations, the average RC TVD is already within 2.7% of the N = 20 level, highlighting
the resource-e�ciency of this protocol.

Finally, in Fig. 6.12d we plot the average TVD improvement factor for random single-
qubit circuits (at a fixed circuit depth K = 5) performed in isolation or in parallel as a
function of the average fraction of the total error rate due to coherent errors. From these
data, we see that RC provides a larger relative TVD improvement as the fraction of the total
error rate due to coherent errors increases (for a fixed total error rate). We measured the
average total error rate r(E) using RB and the average error rate due to coherent errors rU(E)
using PB. Even though the average total error rate of any two results are not exactly equal, we
group the data by the number of qubits performed in parallel (di↵erentiated by color), since
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rU(E)/r(E) can be more directly compared across these subsets independently. While RC
performance decreases as rU(E)/r(E) �! 0, we note that even for single-qubit systems which
are close to coherence-limited [rU(E)/r(E ] . 0.1), RC still provides an average improvement.
Therefore, while the trade-o↵ between decreased RC improvement as rU(E)/r(E) �! 0 (for
r(E) fixed) and increased RC improvement as r(E) �! 0 [for rU(E)/r(E) fixed] will depend
on each system individually, our results suggests that any system with coherent errors can
benefit from RC on average, even those which are nearly coherence-limited (see Fig. 6.14).

6.5 Randomized Compiling for Fault Tolerance

Qubits in the NISQ era are short-lived and susceptible to a variety of errors and noise
due to imperfect control signals and imperfect isolation from the surrounding environment.
Therefore, utilizing quantum computers to solve classically-intractable problems (e.g. integer
factoring [106]) will likely require quantum error correction (QEC) [107, 108, 109, 110, 111].
QEC can protect logical qubits from errors, but it is only guaranteed to work if the error
rate of each physical qubit is below some fault tolerance (FT) threshold [112, 113, 114,
115, 116, 117]. Analytic lower bounds on FT thresholds for various QEC codes have been
derived, ranging from ⇠ 10�6 for generic local noise [117] to ⇠ 10�5–10�3 for stochastic
and depolarizing noise [187, 188, 189, 190, 191]. More optimistic estimates obtained via
numerical simulation are orders of magnitude larger than the lower bounds, ranging from
⇠ 10�3–10�1 [192, 193, 194, 195, 196, 197, 198, 199, 200], but often assume stochastic
(e.g. Pauli, dephasing, or depolarizing) noise models. While recent claims of quantum gates
approaching or surpassing FT thresholds boast impressive gate fidelities [102, 201, 202], there
is a discrepancy between these claims and the requisite for FT, which requires that the rate
of all errors fall below a given threshold, not simply the average rate at which errors occur.

As discussed in Sec. 5.1, various error metrics and measures exist for quantifying the
“error rate” of a quantum gate. Randomized benchmarks typically define error rates in
terms of the average gate fidelity, or, equivalently, the process fidelity

F = h | (I ⌦ E)(⇢) | i , (6.42)

where ⇢ = | ih | is a maximally-entangled state, E is the error channel associated with some
quantum gate, and I the identity operation. A gate’s process infidelity eF (E) = 1 � F (or
average error rate) quantifies the probability that the gate induces an error on a random
input state, or, equivalently, the average failure rate of random circuits that contain one
instance of this gate but that are otherwise perfect. However, FT thresholds are typically
defined via the worst-case error rate (also called the diamond norm error rate) [127],

✏⇧(E) =
1
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����E � I
����
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, (6.43)

where the supremum is taken over all pure states and
����X
����

1
= Tr

p
X†X is the trace norm.

Operationally, ✏⇧(E) represents the worst-case performance of a quantum gate in any circuit,
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whereas eF (E) represents the average-case performance for a single instance of the gate.
While the diamond norm is a pessimistic estimate of the error rate of a quantum gate,
it provides much more rigorous performance guarantees than average error rates. This is
because the diamond norm upper bounds the accumulation of error in any quantum circuit,
since the distance between the ideal and actual output probability distributions (measured
via total variation distance) for any circuit is bounded above by the sum of the worst-case
error rates of all its gates [127].

While eF (E) can be measured directly via randomized benchmarks, there exists no known
scalable method for measuring ✏⇧(E). While tomographic methods such as GST can be used
to estimate ✏⇧(E) [152] by means of a semi-definite program [203], they are exponentially
expensive in the number of qubits. However, ✏⇧(E) and eF (E) are related via the following
bounds [120, 128, 129, 130]

eF (E)  ✏⇧(E) 
p

eF (E)d, (6.44)

where d = 2n (n qubits). The lower bound of ✏⇧(E) is saturated when E is a stochastic
Pauli channel, and the upper bound, which is quadratically larger in eF and scales with
the dimension d, is saturated by a unitary channel. While modern experimental platforms
routinely report single- and two-qubit infidelities on the order of eF,1Q . 10�4 and eF,2Q .
10�2 [7, 60, 201, 202, 204, 205, 206], respectively, if coherent errors account for as little as ⇠
1%–10% of this infidelity, the worst-case error rates can be as large as ✏⇧,1Q ⇠ p

eF,1Q . 10�2

and ✏⇧,2Q ⇠ p
eF,2Q . 10�1 [120, 128, 174]. Therefore, eF (E) and ✏⇧(E) can di↵er by orders

of magnitude in the presence of coherent errors. This means that randomized benchmarks
are inadequate for testing whether gates have achieved FT thresholds [120]. Refs. [102, 201]
report benchmarking single- and two-qubit error rates below the FT threshold for the surface
code, but base their claims on average error rates from randomized benchmarking (RB) or
GST, not worst-case error rates. Similarly, Ref. [207] demonstrates a universal gate set
approaching FT thresholds, but only presents gate fidelities not diamond norms. Notably,
Ref. [201] includes estimates of the diamond norm measured via GST which are an order of
magnitude larger than their reported process infidelities.

While it is not generally possible to directly compare eF (E) to a FT threshold for QEC,
if it can be guaranteed that eF (E) ⇡ ✏⇧(E) then randomized benchmarks can be used to
e�ciently verify that gate error rates are below a FT threshold. One method of ensuring
that an error budget is dominated by stochastic noise in a quantum algorithm is via RC,
which converts all gate errors into stochastic Pauli channels via Pauli twirling. This ensures
that the direct measurement of eF (E) (e.g. via cycle benchmarking [141]) accurately captures
the worst-case error rate, which enables comparison to FT thresholds, as well as bounding
the overall failure rate of any quantum circuit or application.

In this section, we use GST to study RC performed on two qubits (Q5 and Q6) on
our superconducting transmon processor. GST enables measurements of both the process
infidelity and diamond norm for all gates in our gate set, allowing us to study the behavior of
RC. In Fig. 6.4, we found that in the limit of many randomizations, RC eliminates signatures
of coherent errors, enabling one to accurately fit the data with error models containing
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only diagonal stochastic Pauli noise. For the purposes of FT, we further show that RC
suppresses spatially-correlated coherent errors impacting both qubits and non-Markovian
errors. Additionally, we show that the diamond norm converges to the process infidelity
under RC, saturating the lower bound of Eq. 6.44, providing strong experimental evidence
that our quantum logic operations are close to or below a threshold for fault tolerance.
By combining RC with GST, our results provide a novel framework for verifying that FT-
required assumptions are satisfied, demonstrating that FT thresholds can be accurately
measured using randomized benchmarks as long as quantum circuits are implemented using
RC or related randomization methods [143, 157, 178, 179, 181].

Impact of Randomized Compiling on Error Budgets

To explore how e↵ective RC is at converting all errors into stochastic Pauli noise, we compute
the fraction of the total error due to coherent errors and stochastic noise, measured via GST,
for all gates in G as a function of N . To do so, we divide each gate’s error generator L into
stochastic and Hamiltonian components, and compute the total rate of stochastic (✏agg)
and Hamiltonian (✓agg) errors as done in Ref. [202]. In Fig. 6.15, we plot the fraction of
the total error (✏tot = ✏agg + ✓agg), which is closely related to diamond norm error [202],
due to stochastic and coherent (Hamiltonian) errors. We find that the error budget of
the simultaneous single-qubit gates is dominated by coherent errors for N = 0, and that
coherent errors account for approximately two-thirds of the process infidelity of the CZ.
For N = 1, coherent errors still dominate the single-qubit gates, but the contribution from
coherent errors and stochastic noise are both approaching 50% for the CZ gate. By N = 10,
stochastic noise makes up the largest contribution to the total error for the CZ gate, but
we observe only a modest change for the single-qubit gates. However, by N = 100 the error
budget for all gates is entirely due to stochastic noise. We note that for the N = 100 data
our model selection chose the S model, which enforces the constraint that the error budget
is entirely due to stochastic Pauli noise (see the diagram in Fig. 5.15). This is because there
is no statistically significant evidence in the data for any coherent errors (if more data were
taken, evidence for some residual coherent errors might be found). These data demonstrate
the e↵ectiveness of RC in eliminating the impact of coherent errors. However, this does not
mean that coherent errors are physically not present; rather, each individual randomization
under RC is impacted by coherent errors in a di↵erent manner, in such a way that the
aggregate e↵ect of the coherent error is stochastic noise.

We additionally compare our N = 0 GST results to results obtained via RB and PB
for the CZ gate and simultaneous single-qubit gates. Here, the average error rate from
RB represents the total error, and purity RB can be used to measure the unitarity [139];
together, these can be used to compute the fraction of the total error rate due to coherent
and stochastic contributions. We find good agreement between the two methods for the CZ
gate, but poor agreement for the simultaneous single-qubit gates. These results indicate a
discrepancy in di↵erent methods for benchmarking the purity of a quantum gate, and that
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Figure 6.15: RC for improving estimates of the diamond norm. (a) Fraction of the
total error due to coherent errors [blue] and stochastic noise [orange] as a function of the
number of randomizations N under RC. As N increases, stochastic noise makes up a larger
fraction of the total error, which is dominated by coherent errors for small N . For (a) and
(b), triangular markers denote the CZ gate, and circular markers denote the single-qubit
gates {G5⌦G6} (small transparent markers depict the individual gates, large markers depict
the averages, and violin plots outline the distribution). We compare the N = 0 GST results
to estimates obtained by taking the ratio of PB process infidelities to RB process infidelities
(markers with error bars to the left of N = 0) and find good agreement for the CZ gate, but
poor agreement for the simultaneous single-qubit gates. (b) Saturation of the lower bound
of the diamond norm under randomized compiling. We plot the GST process infidelity eF
[blue] and diamond norm ✏⇧ [purple] as a function of the number of randomizations N . We
observe that ✏⇧ > eF for all gates for N = 0, 1, 10, but that the two are equal for N = 100.
For visual clarity, we omit the idle cycle for N = 0, as eF,II = 0.0001 and ✏⇧,II = 0.001
fall well below their respective averages. We compare the GST estimates with the process
infidelity measured via cycle benchmarking (CB) for the CZ gate [dashed green line] and
idle cycle {I5⌦I6} [solid green line]. The GST error bars and CB transparent bands indicate
the 95% confidence intervals. Additionally, we compare the benchmarked error rates with
the 1% FT threshold for the surface code [black line] and find that the single qubit gates are
well below the threshold value, whereas the CZ gate is approaching, but does not surpass
the threshold. (Figure reprinted with permission from Ref. [184].)

this discrepancy can depend on the magnitude of coherent errors in the system, and the type
of error measure employed.
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Process Infidelity vs. Diamond Norm

Error rates measured via randomized benchmarks are generally inadequate for benchmarking
FT thresholds because they do not provide any rigorous guarantees on the performance of the
gate relative to any given QEC threshold. The diamond norm (Eq. 5.33) is a better metric
for comparing error rates to FT thresholds, as it captures the infidelity below which all gate
errors can be guaranteed, but it is not trivial to measure experimentally in a scalable manner.
If the error model of a quantum processor is dominated by stochastic noise, the average error
rate and diamond norm will be equivalent, in which case randomized benchmarks provide
the necessary performance guarantees relative to FT thresholds.

In Fig. 6.15, we plot the process infidelity and the diamond norm as a function of N
for all gates in our gate set. We find that ✏⇧(E) converges to eF (E) as N increases. This
is strong experimental evidence that ✏⇧(E) = eF (E) in the many-randomization limit for
N = 100 (saturating the lower bound of Eq. 5.36). We also compare these results with
process infidelities measured independently via CB and find good agreement between the two.
These results demonstrate that randomized benchmarks are su�cient for benchmarking FT
thresholds if — and only if — a quantum application is impacted only by stochastic noise,
which can only be guaranteed if implemented using methods which tailor noise. Similar
results were previously reported using PFR for single-qubit gates [157]. We note that since
these results were obtained via ensemble measurements, it remains an open question as to
whether such results provide any rigorous threshold guarantees for performing QEC on a
single-shot basis.

The largest diamond norm error over a gate set is typically the most relevant quantity
to compare to a FT threshold. The surface code [208] is a popular QEC code due to its high
FT threshold, which is estimated to be between ⇠ 0.75%�3% [195, 209, 210, 211, 212, 213],
with 1% being the threshold that is typically quoted in the literature [102, 201]. In Fig. 6.15,
we find that the diamond norm of simultaneous single-qubit gates is below the surface code
threshold for N = 10 and N = 100, and that the error rate of our CZ gate is approaching
— but does not surpass — the surface code threshold.

Correlated Errors Under Pauli Twirling

A major requirement for reliable fault-tolerant QEC is the absence of correlated errors,
which can occur temporally [214] or spatially [92]. Many-qubit correlated errors cannot be
corrected by QEC (each QEC scheme has a maximal weight of error that it can correct),
causing logical failures. Furthermore, large-scale correlated errors among many qubits breaks
the assumption that only a single error occurs in each block of a quantum error-correcting
code, leading to a failure of QEC to prevent catastrophic error propagation. Therefore, the
rate of correlated errors must be low to achieve reliable FT quantum computation. For
the purposes of FT, we define a correlated error as one which satisfies m < k  n for a
weight-k operator impacting n qubits during an m-qubit gate. For example, for cycles of
single-qubit gates, weight-2+ errors pose a problem. For a two-qubit gate, weight-1 and



CHAPTER 6. RANDOMIZED COMPILING 156

Figure 6.16: Suppressing correlated and non-Markovian errors. Heat maps of the
weight-1 and weight-2 errors acting on Q5 and Q6 during the idle cycle {I5⌦I6} reconstructed
using (a) the Hamiltonian projection of the GST error generator L for N = 0, (b) error rates
calculated from the stochastic projection of L for N = 100, and (c) CER. The x-axis labels
the target gate, the y-axis labels the Hamiltonian [Pauli Kraus] error for (a) [(b) and (c)],
and the cell color [gradient] denotes the over-rotation angle for (a), and error rate for (b) and
(c) [95% confidence interval]; the first [second] row of subplots shows marginalized weight-1
[correlated weight-1 and weight-2] errors. While weight-2 errors are dominant for N = 0,
(b) and (c) show that Pauli twirling suppresses weight-2 errors to negligible levels. (d) Non-
Markovian errors in gate-based quantum computing (see Fig. 3.5). (e) Unmodeled error
versus the diamond norm. The per-gate wildcard wG is plotted on top of the diamond norm
for each gate in G (plus SPAM) as a function of N . As N increases, wG becomes negligible,
indicating that non-Markovian errors are suppressed under RC. The x-axis label X (Y )
denotes the X⇡/2 (Y⇡/2) gate. (Figure reprinted with permission from Ref. [184].)

weight-2 errors cannot be distinguished because a single gate-body acting on two qubits can
transform one into the other; therefore, correlated errors involving a two-qubit gate must
satisfy weight-k > 2.

To characterize the extent to which correlated errors are present in our system with and
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without Pauli twirling, we extract the weight-1 and weight-2 coherent (stochastic) errors for
the idle cycle {I5 ⌦ I6} for the CPTP (S) model for N = 0 (N = 100), shown in Fig. 6.16;
we focus on coherent (stochastic) errors for N = 0 (N = 100), which is justified by the error
budget results in Fig. 6.15a. We observe significant coherent weight-2 errors for N = 0,
which corresponds to unintended entanglement (i.e. quantum crosstalk), such as static ZZ
coupling [170, 171, 173], which can be seen in Fig. 6.16a. In contrast, we observe that
weight-1 Pauli errors dominate the error model for N = 100, and that weight-2 error are
largely suppressed in comparison.

Additionally, we compare the Pauli error rates for N = 100 to the Pauli error rates
measured via CB and reconstructed using CER, shown in Fig. 6.16c. We find good agreement
between the two error maps with respect to correlated errors: both demonstrate that the
dominant errors in our system are weight-1 errors, and that weight-2 errors are negligible
in comparison, showing that Pauli twirling can suppress correlated errors due to entangling
crosstalk and static ZZ coupling between superconducting qubits. (Any discrepancy between
GST and CER regarding which weight-1 Pauli errors are most dominant is possibly due to
the gauge-dependence of either benchmarking procedure).

In general, one can expect RC to provide a quadratic suppression of correlated coherent
errors — RC converts a coherent error that contributes O(✓) to the diamond norm (and
the total error) into a stochastic error that contributes O(✓2) to the diamond norm. Even
though correlated errors might not be entirely suppressed by Pauli twirling, as long as there
is moderate suppression of large-scale and/or long-range correlated errors, QEC can still be
achieved with a reasonable overhead [215].

Non-Markovian Errors

In the context of quantum computing, in particular for characterization and benchmarking,
an error process is typically considered to be non-Markovian if it cannot be modeled by a
process matrix; in other words, a non-Markovian error is one that occurs from outside of
the defined system of qubits and/or outside of the timescale defined by a cycle of gates. We
use a cycle as the characteristic timescale for Markovian processes, as this term is derived
from the notion of “clock cycles” on a quantum computer, which defines the time within
which discrete operations act on qubits (i.e. quantum gates). More precisely, non-Markovian
errors are present if each n-qubit cycle (or layer) of gates cannot be modeled by a fixed,
context-independent n-qubit process matrix. Various common sources of non-Markovianity
in NISQ systems include leakage out of the computational basis states [84, 85, 86, 87, 88, 89],
unwanted entangling interactions (e.g. static ZZ coupling) with qubits outside of the studied
system, drift in qubit parameters [68] (e.g. stochastic fluctuations in transition frequencies),
unwanted coupling to environmental systems with memory beyond the timescale of a cycle
(e.g. two-level fluctuators and nonequilibrium quasiparticles [90, 91, 92, 93]), and qubit
heating [94]; see Fig. 6.16d. Studying and suppressing non-Markovian errors is important
for at least two reasons: they interfere with the quantification of Markovian errors, and their
impacts on QEC are less well-understood.
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GST is designed to reconstruct all possible Markovian errors on any cycle of quantum
gates. So, when GST cannot fit the data, this implies that there are non-Markovian errors.
While model violation N� is useful for providing evidence of the existence of non-Markovian
errors, to quantify the magnitude of such errors, we add a wildcard error model [161] to each
of our GST models. These wildcard error models assign a wildcard error rate wG 2 [0, 1] to
each gate G, and a wildcard error rate to the SPAM wSPAM 2 [0, 1], which quantifies how
much additional error on each operation is missing from the model (i.e. is required to make
the model consistent with the data). By comparing wG to ✏⇧ for each gate, we are able to
quantify whether Markovian or unmodeled non-Markovian errors dominate the error model
[161, 158]. If wG ⌧ ✏⇧ for all gates, then Markovian errors dominate and non-Markovian
errors are negligible. In this case, the model captures the majority of the errors in the gate
(or, more precisely, all those errors that were revealed in this experiment), despite the fact
that there is evidence that the model is incomplete. On the other hand, if wG � ✏⇧, the
non-Markovian errors dominate the Markovian errors, in which case the GST estimate is
unreliable.

Fig. 6.16 shows the wildcard error and the diamond norm error for all of the gates in
our gate set, and SPAM, for N = 0, 10, 100 (we omit the N = 1 data due to its systematic
inconsistency with a Markovian error model; see the section describing RC performed on
GST sequences). Without RC (N = 0), we observe diamond norm errors as large as ✏⇧ ⇡
0.07, with up to 0.01 additional non-Markovian error. For N = 10 randomizations, the
wildcard errors are still significant, but they are much smaller in magnitude than with N = 0
randomizations and they are a small fraction of the diamond norm error rates. By N = 100
randomizations, the wildcard errors are negligible — in absolute terms and as a fraction of
✏⇧ — contributing at most 0.0012 additional error per gate. This indicates that the S model
accurately captures almost all of the N = 100 data (note that in this case the wildcard error
quantifies the combined contribution of both non-Markovian errors and all non-S Markovian
errors). Because wG ⌧ ✏⇧ 8 G 2 G for all N , we consider all of our models trustworthy, even
for N = 0. We additionally note that RC significantly improves the both the wildcard error
and worst-case error rate for SPAM.

The N = 100 data was gathered over a period of over 40 hours, and no re-calibration of
gates was performed during the experiment. Therefore, the negligible amount of unmodeled
error speaks to the robustness of RC to the inevitable drift in gate and qubit parameters dur-
ing this time period. While RC was not designed to specifically target non-Markovian errors,
its apparent robustness to both non-Markovian errors and correlated errors is promising for
future large-scale fault-tolerant applications.
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Chapter 7

Error Mitigation for NISQ
Applications

The potential exists for noisy intermediate-scale quantum (NISQ) computers to solve com-
plex problems even without quantum error correction. However, using NISQ devices to
achieve some kind of quantum advantage will likely require e�cient strategies for improving
the performance of noisy computations, either via randomization methods for circumventing
the impact of di↵erent types of errors (e.g. randomized compiling), or via post-processing
methods which attempt to generate “noiseless” results from a set of noisy measurements.
These methods are broadly termed “error mitigation” (EM) strategies, and in recent years
various EM protocols have been proposed and/or developed in an attempt to improve the
performance of NISQ computations [149, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225,
226, 227, 228]. EM protocols often require a large number of samples and are therefore not
generally scalable in terms of circuit size [229]. However, their relatively small overhead in
terms of qubits and gates makes them suitable for NISQ applications, which are already
limited in circuit depth to begin with.

In this chapter, we introduce several di↵erent error mitigation protocols that are uniquely
enabled by randomized compiling (RC), and show how these can improve the performance
of various di↵erent quantum applications. We additionally comment on their e�ciency and
how they scale to larger system sizes. Finally, we introduce a new randomization method —
equivalent circuit averaging — that is inspired by randomized compiling, but is fundamen-
tally di↵erent in its execution.

7.1 Leveraging Randomized Compiling for the QITE
Algorithm

Many common NISQ applications fall under the category of variational quantum algorithms
(VQAs) [27], by which some variational parameter(s) in a quantum circuit is updated in a
quantum-classical hybrid loop by means of classical optimization. Many VQAs, such as the



CHAPTER 7. ERROR MITIGATION FOR NISQ APPLICATIONS 160

0

250

a
Nrand=1

0

250 Nrand=3

error |Em � E|
0

250co
un

ts

Nrand=8

�0.4 �0.2 0.0 0.2 0.4

error Em � E

0

250 Nrand=20

�1.0 �0.5 0.0 0.5 1.0

Ideal value (E)

0.00

0.05

0.10

0.15

0.20

m
ea

n
er

ro
r
|E

m
�

E|

b

CB prediction

�1.0 �0.5 0.0 0.5 1.0

Ideal value (E)

0.00

0.05

0.10

0.15

0.20

m
ea

n
er

ro
r
|Ẽ
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Figure 7.1: E↵ect of RC on measured expectation values. (a) The variance of the
error in measured expectation values is reduced as the number of randomizations Nrand under
RC is increased. (b) Mean error in measured expectation values as a function of the ideal
expectation value E for all random circuits. The mean error approximates a depolarizing
noise channel as Nrand increases. The dashed line is an estimate of the depolarizing parameter
f = 0.98 measured via CB. (c) Mean error in the renormalized expectation values using the
purification formula in Eq. 7.1. For (b) and (c), standard deviations for the data for di↵erent
Nrand are plotted in the inset. (Figure reprinted with permission from Ref. [236].)

variational quantum eigensolver (VQE) [230, 231], are robust to coherent errors due to the
fact that the optimization step can “learn” and account for calibration errors in gates or
crosstalk-induced coherent errors. One example of a VQA which is not robust to coherent
errors is the Quantum Imaginary Time Evolution (QITE) [232, 233, 234, 235] algorithm,
which is an iterative algorithm that approximates imaginary time evolution with a unitary
operation; in the limit of infinite imaginary time, the algorithm converges to the ground
state of a given Hamiltonian. One advantage of QITE is that it does not require a priori
knowledge of an ansatz, as the circuit used in each iteration is di↵erent and depends on the
results of the previous iteration. However, as previously mentioned, QITE is sensitive to
coherent errors, making it an optimal example of a NISQ algorithm whose performance can
be boosted by RC. We perform QITE on three qubits (Q4, Q5, and Q6) and solve the ground
and first-excited state of transverse-field Ising model (TFIM). We utilize RC to simplify the
errors a↵ecting the computed expectation values of the QITE algorithm, and further improve
their values by means of an RC-enabled purification method. The work presented here is
based on Ref. [236].

Noise Characterization of Random Circuits under RC

In the previous chapter, we demonstrated the impact of RC on random circuits of variable
depth in terms of the total variation distance (TVD). Here, we instead explore the impact of
RC on the expectation values of random circuits. To do so, we generate and measure random
two-qubit circuits of depth 6 CZ gates and compute the expectation values Em of all the
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possible Pauli strings composed of Z and I. In Figure 7.1a, we plot distributions of the error
in the measured expectation values (Em�E, where E denotes the true value) as a function of
the number of randomizations N under RC. We see that as N increases, the variance in |Em�
E| decreases. In e↵ect, by sampling from a greater number of randomizations of each bare
circuit (but keeping the total number of shots the same), we are purposefully undersampling
the bias of each circuit in order to reconstruct more precise, bias-free expectation values.

In Figure 7.1a, we plot the mean error in the measured expectation values as a function
of the ideal value E. We find that with a single randomization, the mean error is essentially
flat across E. However, as N is increased, |Em � E| obtains a linear dependence on E. We
observe that for N = 20, the mean error appears to approximate a ‘V’ shape. Under a
fully depolarizing noise model, we can write Em = fE, where f is the depolarizing constant
(Eq. 4.9), or, more generally, the e↵ective length of the generalized Bloch vector. Therefore,
it stands to reason that under RC, the errors impacting our circuits approximate a fully
depolarizing noise model. This is rigorously not correctly, since RC only tailors errors into
stochastic Pauli channels, but we will see that this approximation is su�cient to perform
error mitigation on QITE circuits.

Estimating the Depolarizing Parameter f

Errors under a fully depolarizing noise model can be mitigated by simple purification. Knowl-
edge of the depolarizing parameter f is su�cient to recover ideal expectation values from
noisy estimations by re-scaling all measured expectation values by this same coe�cient f
[237, 238]. A direct way of estimating f is to perform full state tomography at the end
of a sequence to compute the purity of the final state, and thus extract the length of the
generalized Bloch vector. In this case, the purification is given by

Ẽ =
Em

f
with f 2 =

1

2n � 1

X

P2Pn\{I
⌦n}

E2
P
, (7.1)

where EP denotes the expectation value of the Pauli operator P and Pn is the n-qubit Pauli
group, but we omit the n-qubit identity when computing f . In Fig. 7.1c, we re-normalize all
expectation values by their respective depolarizing parameters and compute the mean error
as a function of the ideal expectation value. We see that as the number of randomizations
N is increased, the mean error in the renormalized expectation values becomes flat across
E, indicating that RC better approximates a depolarizing error model in the limit of large
N .

Limitations of Purification

Full state tomography is, however, ine�cient for determining f , as it is exponentially ex-
pensive in the number of qubits. An alternate, more scalable strategy for estimating f is
via cycle benchmarking (CB), which measures the Pauli fidelities fP for some subset of all
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Figure 7.2: Distribution of Pauli fidelities under cycle benchmarking. Histograms
of Pauli fidelities fP measured via CB for di↵erent two-qubit gate cycles (note that �P used
in Ref. [236] is equivalent to fP used here): (top) CZ between Q5 and Q6, (middle) CZ
between Q4 and Q5 with Q6 idling, and (bottom) CZ between Q5 and Q6 with Q4 idling.
The dashed line is the mean value and the dotted line is the lower bound of all possible
values (see Supplement of Ref. [141]). (Figure reprinted with permission from Ref. [236].)

of the Paulis P 2 Pn (see Eq. 5.57). From this, the process fidelity (Eq. 5.60) can be com-
puted, from which the depolarizing parameter can be derived by multiplication of a simple
dimensionality factor (see Table 5.1). In Fig. 7.1b, we plot f estimated via CB performed
on the native two-qubit CZ gate used in the random two-qubit circuits, which shows good
agreement with the data as N increases, approximating a depolarizing noise model. Note
that because CB measured the process fidelity of a dressed cycle, the depolarizing parameter
f extracted via CB also estimates the depolarization of the Bloch vector due to single-qubit
gates; therefore, it is not necessary to measure this separately. However, in general it is
necessary to benchmark each distinct two-qubit gate cycle under CB separately. For cir-
cuits containing K distinct two-qubit gate cycles, the e↵ective depolarizing parameter for
the entire circuit can be estimated as

fe↵ =
KY

i=1

fNi
i

, (7.2)

where Ni denotes the number of times the ith cycle appears in the circuit.
The utility of using CB for estimating f is that the variance in the fidelities of the various

Pauli channels gives a quantitative measure of the uncertainty in our estimate. In Fig. 7.2
we plot the various Pauli fidelities for di↵erent two-qubit gate cycles measure via CB. We
see that the performance of the cycles is di↵erent under di↵erent Pauli channels, and that
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Figure 7.3: Contributions to fidelity as a function of circuit depth. Fidelity F (blue
points), Bloch vector length f (green points; � used in Ref. [236] is equivalent to f used
here), and angle error cos ✏ (orange points) versus circuit depth. The length error agrees
well with the fidelity for shorter circuit depths, indicating that depolarizing noise is the
dominant source of error. The angle error contributes a larger fraction of the total error at
longer circuit depths, suggesting that the assumption of depolarizing noise breaks down for
large m. Estimates of F and f measured via CB (dashed lines) agree well with the state
tomography results. (Figure reprinted with permission from Ref. [236].)

the spread gets larger as the number of qubits in the cycle increases from two to three. This
poses a problem for purification using CB, as it is not clear which Pauli channel(s) will be
dominant in any given circuit, even if the circuit is performed with RC. Therefore, in some
instances, purification of an expectation value using the mean CB value can produce non-
physical results, in which Ẽ > 1; we discuss this further below in the context of the QITE
algorithm.

Another limitation of using CB for purification is that the measured process fidelity of
any given cycle will include contributions from both coherent errors and stochastic noise. To
see this, we can express the fidelity of a measured state ⇢ with a pure state � in terms of
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their Pauli expectation values:

F (⇢, �) = tr(⇢�) (7.3)

=
1

2n

⇣
1 +

X

P 6=I⌦n

⇢P�P
⌘

(7.4)

=
1

2n
+

✓
1 � 1

2n

◆
f cos ✏ (7.5)

where f is the length of the Bloch vector given by Eq. 7.1 and ✏ is the angle between the
two generalized Bloch vectors. Equation 7.5 indicates that two mechanisms can decrease the
fidelity: a reduction of the Bloch vector length, given by f , and an angle error between the
two vectors, contributing cos ✏. Purification or re-scaling is intended to correct the first type
of error, but does not correct the angle error. Assuming that depolarization is the limiting
error, the fidelity can be approximated as

F (⇢, �) ' 1

2n
+

✓
1 � 1

2n

◆
f. (7.6)

For a circuit with the same two-qubit gate cycle repeated m times and a depolarizing pa-
rameter f from CB, we can simplify the equation for the fidelity:

F (⇢, �, m) ' 1

2n
+

✓
1 � 1

2n

◆
fm. (7.7)

The residual coherent error contribution is given as

cos ✏ =
1

2n � 1

X

P 6=I⌦n

⇢P
f
�P , (7.8)

which is assumed to be small compared to the length error.
To test whether the angle errors are negligible compared to the length errors under RC,

we generated 10 di↵erent random circuits at 10 di↵erent circuit depths m, and computed
depolarizing parameter f , fidelity F (Eq. 7.6), and residual angle error cos ✏ (Eq. 7.8) using
state tomography, and compare these values with the equivalent estimates obtained via CB;
see Fig. 7.3. We observe that the reduction in fidelity at shorter circuit depths is mostly
due to a reduction in the length of the Bloch vector, indicating that the assumption of
depolarizing noise is valid for small m. However, we observe that there is a large deviation
in F and f for longer circuit depths due to the angle error contributing a larger fraction of
the total error, suggesting that the assumption of depolarizing noise breaks down in the limit
of large m. This is likely due to the fact that there is incomplete cancellation of coherent
errors from RC for longer circuits depth, with coherent errors slowly building up with m.
This is coherent build up will likely be worse for structured quantum circuits, since random
circuits themselves are already somewhat robust to the coherent accumulation of unitary
errors.
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Figure 7.4: Quantum Imaginary Time Evolution. Convergence of QITE for solving the
ground state energy of the three-site TFIM (with J = h = 1) for various di↵erent levels of
error mitigation, outlined in the legend. The dashed line (colored region) denotes the mean
(standard deviation) of the last 10 points. Both the relative energy error and the ground
state infidelity converge to a value approaching O(10�3). (Figure reprinted with permission
from Ref. [236].)

Application to the QITE Algorithm

Imaginary time evolution is a well-known classical method in special relativity, statistical
mechanics, and quantum field theory. The key ingredient of this algorithm is that the
imaginary time propagator U(�) = exp(��H) — which is non-unitary — will converge
in the limit of large imaginary time, where � = it. For solving energy levels in quantum
systems, the key convergence criteria for imaginary time evolution is that the initial state of
the system must overlap with the ground state of the Hamiltonian [239, 240]. In Ref. [234],
the authors describe how to use a quantum computer to perform the imaginary time evolution
on NISQ hardware. The core idea is to normalize the evolution operator in Trotterized time
steps, making it a unitary operator that can then be decomposed in terms of quantum gates.
This can be done e�ciently by solving a linear system using classical computers, and thus
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Figure 7.5: TFIM results. Phase diagram for the three-site TFIM as we vary h relative
to J . (a) Energy in units of E/J for the ground state and first excited state. The reported
energy corresponds to the mean of the five last points of the QITE evolution. Error bars
for these data are smaller than the markers. The error shown for each point corresponds
to the relative error. (b) Measured magnetization of the same data, with the corresponding
absolute error. (Figure reprinted with permission from Ref. [236].)

QITE is free of the complex optimizations that arise in VQE [241]. The cost of QITE is that
it is not a fixed-depth algorithm, and the number of gates needed in the quantum circuit
increases for each time step.

Here, we focus on using QITE to solve the Transverse Field Ising Model (TFIM), given
by the following Hamiltonian:

H = J
X

hiji

XiXj + h
X

i

Zi, (7.9)

where J is the interaction exchange between the nearest neighbors, h is the transverse field
applied to the chain, and hiji indicates that the sum is over nearest neighbors. The TFIM
is a well-known model which has been previously solved using QITE and other algorithms
[234, 235, 242, 243]. The state and the evolution operator at a given step can be expanded
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in the Pauli basis:

⇢ =
X

P2Pn

⇢PP and U = exp

 
�i
X

P2Pn

aPP

!
, (7.10)

where ⇢P are the expansion coe�cients of ⇢ in each Pauli basis P , and aP are the generators
of the unitary U . Ref. [234] describes how to solve for the generators aP for each time step
using the results of the previous time step.

To demonstrate the error mitigation strategy presented here, we solve for the ground state
of the three-site TFIM for J = h = 1, and calculate the relative energy error and infidelity
of the measured ground state as a function of imaginary time �, shown in Fig. 7.4. We
compare the performance of QITE with and without RC, and with and without purification.
We empirically find that when using RC + purification, our estimate of the ground state
energy level will sometimes overshoot the true value, which is non-physical with a variational
ansatz, since the true ground state provides a lower bound on the estimated ground state for
any trial wavefunction that is not the true ground state wavefunction. Therefore, to enforce
physicality in our estimates, we perform McWeeny purification on our reconstructed density
matrix ⇢, which projects ⇢ to the closest state in which the purity � = 1. (More formally,
McWeeny purification enforces ⇢ to be idempotent, such that ⇢ = ⇢2; see Sec. 3.1.) We
find that the combination of RC + Purification + McWeeny converges most rapidly to the
ground state, producing a relatively energy error and ground state infidelity of O(10�3).

The utility of the QITE algorithm is that it can also solve for higher energy levels,
as well as other interesting properties of the system, such as the local magnetization. In
Fig. 7.5, we plot a phase diagram of first two energy levels of the three-site TFIM and their
magnetization as we sweep over the transverse magnetic field parameter h relative to the
coupling parameter J . We consistently get errors below 1% for all of these quantities using
the RC + Purification + McWeeny method.

We have demonstrated how iterative VQAs, such as QITE, can benefit from the applica-
tion of both a noise tailoring via RC, and error mitigation via purification. The application
of RC and purification results in an improvement over each technique used separately, but
comes with the cost of needing to estimate the depolarizing parameter either via state to-
mography (which is not scalable) or CB (which is scalable, but necessitates benchmarking
each distinct two-qubit gate cycle that appears in a circuit). Such error mitigation strate-
gies can improve the ability of NISQ systems to perform useful computations, even without
quantum error correction.

7.2 Noiseless Output Extrapolation and Pauli Error
Cancellation

Unlike quantum error correction, error mitigation does not attempt to correct errors, but
rather characterize them in a manner in which they can be removed in post-processing.
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PEC NOX Unmit.

Runtime
(1 � n")�2m

�2

m3

�2

1

�2

Bias �PEC + �rec, with �NOX + �rec, with O(mn")

�PEC = O(mn2"2) �NOX = O(m2n2"2)

Table 7.1: Run time and bias for NOX and PEC in comparison to an unmitigated
implementation of the target circuit. � is the desired standard deviation of the results,
m the circuit depth, and n" the error rate of each cycle, which for simplicity we take to be
the same every cycle, with n the number of qubits and " a constant (Ref. [149] provides a
generalization of this assumption). The quantity �rec depends on the accuracy of the noise
reconstruction (e.g. �rec = 0 if the noise is known exactly).

Several di↵erent categories of EM protocols include (but are not limited to) methods for
intentionally amplifying errors in order to extrapolate to a zero-noise limit [149, 216, 219,
220, 222, 228, 244], methods for characterizing errors and subsequently inverting them via
quasi-probabilities [149, 217, 245], and post-selection protocols which eliminate wrong out-
puts, for example, by checking them against some expected symmetry [246, 247]. Here,
we introduce two novel EM strategies — Noiseless Output Extrapolation (NOX) and Pauli
Error Cancellation (PEC) — which fall into the first two categories, respectively. Both pro-
tocols take as input a quantum circuit and an operator O, and return an estimator of the
expectation value of O for a noiseless implementation of the input circuit. As we will see,
PEC is a quasi-probabilistic protocol that is made scalable through the use of cycle error
reconstruction (CER) and randomized compiling (RC). On the other hand, while NOX does
not implicitly require RC, RC does help satisfy certain assumption we make about the noise
impacting hard gate cycles, and we empirically find that its performance is greatly improved
by RC and therefore build it into the protocol. In what follows, we do not give a formal
derivation of the protocols; rather, we focus on a heuristic description of how they work,
and showcase recent results obtained on our processor. The work presented here is based on
Ref. [149]; formal derivations of the protocols can be found therein.

NOX

NOX relies on the ability to amplify the errors a✏icting individual noisy cycles in a circuit
C. Specifically, it requires replacing a noisy cycle of quantum gates G with Gk for some
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integer k > 1, where G = G̃G0, with G0 the ideal cycle of gates and G̃ the noise acting on the
cycle. Therefore the amplification of G also amplifies G̃. We take G̃ to be a stochastic Pauli
channel, as is the case under RC.

The traditional method for amplifying noise is “Identity Insertion” [222], in which a
noisy cycle G is replaced with G(GG�1)k. This method is e�cient in its construction and
straightforward to implement, but it is accurate only if two conditions are satisfied: (1) G
and G�1 must have identical errors, which is only trivially satisfied if G = G�1 (e.g. CX or
CZ gates). And (2), the noise acting on the cycle G̃ must commute with the ideal cycle
G0: G̃G0 = G0G̃; this is only trivially satisfied under a depolarizing noise channel. Ref. [149]
also introduces a modification of Identity Insertion, which they term “Append Errors,” that
can be utilized for more precise amplification if either of the two conditions are violated.
However, in our experiments we found this to be unnecessary, and therefore do not discuss
it further.

The NOX protocol works as follows (formally described in the supplemental material of
Ref. [149]): NOX takes as input the circuit C, an n-qubit state ⇢0, an operator O such that
the spectral norm ||O||1 ⇠ 1, a number � 2 (0, 1) representing the desired uncertainty of
the results, an integer k > 1, and a Boolean id insert 2 {True, False}. It requires running
m+1 circuits in total. The first circuit is the original circuit C, and the remaining m circuits
are identical to C, except that the jth noisy cycle Gj has been replaced by Gj(GjG�1

j
)k. If

id insert = True, the noise amplification is performed with Identity Insertion, otherwise it is
performed with Append Errors. Each circuit is measured m2/(k � 1)2�2 times and yields a
noiseless estimation of E(O), where E(O) is the estimator of Tr[OC(⇢0)]. We denote eE0(O)
the noisy estimator of the original circuit C, and eEGj ,k(O) the noisy estimator for the circuit
in which the jth noisy cycle has been amplified. After running all the m + 1 circuits, NOX
returns the estimator

bENOX(O) = eE0(O) +
mX

j=1

eE0(O) � eEGj ,k(O)

k � 1
. (7.11)

If successful, this quantity is an estimator of E(O) that is more accurate than E(O) itself.
In addition to the standard protocol, one can also implement the protocol with RC, in which
case each of the m additional circuits is implemented with N di↵erent randomizations under
RC.

NOX di↵ers from other typical noise-amplification EM protocols in that it amplifies the
errors across an entire cycle of quantum gates, rather than the errors a↵ecting individual
quantum gates within a circuit, and therefore can address non-trivial processes such as non-
local correlated errors. This is important because amplifying errors on individual quantum
gates can have unintended consequences on nearby idle qubits, which are not necessarily
correctable in the same post-processing step. As outlined in Table 7.1, to achieve an uncer-
tainty of O(�), NOX requires running m + 1 circuits and measuring each of them O(m2)
times. Thus, NOX has runtime O(m3) and is e�cient in m. Note that the bias of NOX
grows quadratically with m.
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PEC

PEC is based on quasi-probabilistic error cancellation, in which an unbiased estimator is
constructed by sampling from a distribution of biased estimators [216, 217]. The goal of
quasi-probabilistic error cancellation is to calculate a set of probabilities pi, a set of signs
si 2 {�1, +1} and a cost Ctot > 0, such that for any state ⇢0 and operator O,

Ctot

LX

i=1

sipi Tr
⇥
O eUi(⇢0)

⇤
= Tr

⇥
OU(⇢0)

⇤
+ �, (7.12)

where U is a noiseless operation, { eUi}L

i=1 a set of noisy operations, and � a residual bias that
captures the e↵ectiveness of the EM protocol. All EM protocols based on quasi-probabilistic
error cancellation guarantee a negligible bias � ⇡ 0, provided that the noisy maps eUi can be
accurately characterised.

As we can see, the success of PEC relies on the accurate characterization of eUi. Related
works on quasi-probabilistic methods have used Gate set tomography (GST) to reconstruct
the noise a✏icting eUi [217, 218]. However, GST is ine�cient in the number of qubits, and
therefore the error reconstruction is done on individual single- and two-qubit gates, not
cycles containing both. This approach immediately limits the utility of quasi-probabilistic
error cancellation for larger circuits, as crosstalk-induced coherent errors typically play a
major role in multi-qubit circuits [145, 147, 248]. As a result, EM protocols that depend
on GST have only been demonstrated on circuits containing up to two qubits [182, 245].
Instead of GST, we utilize cycle error reconstruction (CER) to characterize all eUi. CER is
both scalable in the number of qubits n1 and provides an accurate characterization of Pauli-
twirled errors under RC [145]. There, our method — PEC — makes quasi-probabilistic
protocols uniquely scalable due to RC.

The PEC protocol works as follows (formally described in the supplemental material
of Ref. [149]): PEC takes as input the circuit C, the Pauli error rates {p(Gj)} of all the
noisy cycles Gj in C (which are computed in advance with CER), an n-qubit input state
⇢0, an operator O such that ||O||1 ⇠ 1, and a number � 2 (0, 1) representing the desired
uncertainty of the result. It uses quasi-probabilistic error cancellation to suppress the noise
a✏icting the noisy cycles Gj, and eventually it returns an estimator bEPEC(O) of Tr

⇥
OC
�
⇢0
�⇤

.

To calculate bEPEC(O), PEC requires running N = (Ctot/�)2 circuits in total, with a cost
given by

Ctot =
mY

j=1

1
⇣
p
(Gj)
0

⌘2
�
P4n

k=1

⇣
p
(Gj)
k

⌘2 . (7.13)

1As discussed in Sec. 5.4, CER is only scalable in the limit in which one wishes to characterize all k-body
errors, where k < n, since measuring all n-body errors is exponentially expensive. For k < n, CER is only
polynomially expensive in n. Typically, k = 2 is assumed to be su�cient, which is justified (and subsequently
verified) under the assumption that Pauli twirling suppresses spatially-correlated coherent errors.
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Each of these circuits is obtained by appending randomly chosen Pauli gates to the noiseless
cycles. Specifically, every circuit in PEC implements an operation of the type

C(PEC)(P1, . . . , Pm) = Rm+1

�
�m

j=1 PjGjRj

�
, (7.14)

where Pj 2 {I, X, Y, Z}⌦n is chosen at random with probability p
(Gj)
kj

, and Rj denotes the
jth cycle of single-qubit gates. Together with the N circuits, PEC also initializes a list of
signs s1, . . . , sN , where sk = 1 if circuit k contains an even number of random Pauli cycles Pj

that are di↵erent from the identity, and sk = �1 otherwise. After initializing the circuits and
signs, PEC applies RC to every circuit, runs the circuits and stores the results r1, . . . , rN .
Finally, it computes the estimator bEPEC(O) as

bEPEC(O) =
Ctot

N

NX

k=1

skrk. (7.15)

As outlined in Table 7.1, to achieve an uncertainty of O(�), PEC requires implementing
C2

tot/�
2 circuits, where Ctot scales exponentially with m. For example, when all the noisy

cycles have the same error rate ", we have Ctot = O[(1 � ")�2m]. Thus, in general PEC (as
well as all other protocols based on quasi-probabilistic cancellation [217]) is exponentially
ine�cient with circuit depth. Nevertheless, as long as the depth m . "�2, PEC remains
e�cient, and therefore is a practical EM protocol for near-term algorithms.

W-state Circuits

To demonstrate the broad applicability of our EM protocols, we test their performance on
several di↵erent types of quantum circuits. Our first experiment is on W-state circuits,
which generate a special type of multipartite entanglement, which can be written as an
equal superposition of all weight-1 basis states. An n-qubit W state is given as

|Wni =
|0 . . . 01i + |0 . . . 10i + |1 . . . 00ip

n
. (7.16)

When decomposed into our linear topology containing only two-qubit entangling CZ gates,
an n-qubit W-state circuit contains 3(n�1) two-qubit gate cycles. We generate and measure
W-state circuits on n = 2, 3, 4 qubits, and compare the error mitigated results with the
unmitigated results, as well as with simulated results using the measured CER data (see
Fig. 5.12). We also apply standard readout error mitigation (REM) [249] to both the EM
and unmitigated results to correct basic readout and misclassification errors on our raw
outputs.

In Fig. 7.6 we plot the W-state results in terms of the most frequent output bit strings
and the total variation distance (TVD)

D(p, q) =
1

2

X

x2X

|px � qx|, (7.17)
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Figure 7.6: W-state circuit results. (a) Numerical simulations and (b) experimental
results for the most frequent bit strings for n = 2, 3, 4 qubits. (c) Numerical simulations
and (d) experimental results for the total variation distance between the ideal and noisy
outputs. m denotes the circuit depth in terms of two-qubit gates, and � denotes the intended
uncertainty in the results. Data points correspond to the results of the individual circuits,
the squares represent their means, the bars represent the standard deviation uncertainty, and
the dashed lines highlight the ideal values for (a) and (b). (Figure reprinted with permission
from Ref. [149].)
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|0i1 H • · · ·

QFT †

|0i2 H • · · ·

...
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|0i
t H . . . •

| i U2t�1
U2t�2 · · · U20

Figure 7.7: Quantum Phase Estimation algorithm. We set U = RZ() for di↵erent ,
where RZ() is defined in Eq. 7.18.

between the ideal qx and noisy px probability distributions, where x is a bit string in a set
X. We find that NOX and PEC (+REM) produce the correct bit string results within a
statistical uncertainty for almost all of the ideal outputs, the same of which is not true for
the unmitigated results (+REM), and that both EM protocols significantly reduce the TVD
compared to REM alone, with average improvements between 47% and 66%. We compare
the experimental results with numerical simulations (which assume perfect readout) and find
that they generally predict the same performance under PEC or NOX (as should be expected
when using RC + CER to simulate the circuits), but that the unmitigated simulated results
perform significantly better than the REM experimental results. The di↵erence between
these two is likely due to the fact that the simulator does not take into account coherent
errors.

Quantum Phase Estimation

In our second set of experiments, we test the performance of NOX and PEC on the quan-
tum phase estimation (QPE) algorithm, an important primitive in many di↵erent quantum
algorithms. Given a gate U , a “target” state | i and a (potentially unknown) number
 2 [0, 1) such that U | i = exp(2i⇡) | i, the task of QPE is to produce an estimate
b of . To do so, QPE requires initialising t � 1 ancillae, entangling each of them with
| i and eventually performing the inverse Quantum Fourier Transform (QFT), as shown
in Fig. 7.7. By measuring the ancillae and post-processing the outputs, QPE returns an
estimate b 2 {p/2t : p 2 {0, . . . , 2t � 1}}, such that |� b|  2�t with high probability. For
t = 2 ancillae and | i = |1i, we estimate the parameter  for a series of gates that perform
rotations of the type

RZ() = diag(1, exp(2i⇡)). (7.18)
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Figure 7.8: Quantum Phase Estimation results. TVDs between the ideal and noisy
outputs for (a) simultation and (b) experiment with t = 2 ancillae qubits and a target un-
certainty of � = 2%; these circuits contain a total of m = 9 two-qubit gate cycles. (c)
Probability that the QPE algorithm returns b 2 {0.0, 0.25, 0.50, 0.75} for various di↵er-
ent values of  and t = 2 ancillae. The mitigated and unmitigated (+REM) results are
compared versus the ideal probabilities. (d) Probability that the QPE algorithm returns
b 2 {0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875} for  = 0.5 and t = 3 ancillae. (Figure
reprinted with permission from Ref. [149].)
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|0i1 V1,1 • V1,2 · · · • V1,m V1,m+1

|0i2 V2,1 • V2,2 • · · · • V2,m • V2,m+1

|0i3 V3,1 • V3,2 • · · · • V3,m • V3,m+1

|0i4 V4,1 • V4,2 · · · • V4,m V4,m+1

Figure 7.9: Four-qubit pseudo-random circuits. Each gate Vi,j is a Haar random single-
qubit gate.

Decomposed into our native gate set, this QPE circuit contain n = 3 qubits and m = 11
two-qubit gate cycles.

In Fig. 7.8 we plot the numerical and experimental results for the QPE circuits for
various values of  and find that NOX and PEC reduce the TVD on average between 42%
and 86% over the results obtained with REM alone. To understand how NOX and PEC
improve the precision of the QPE algorithm, we calculate the probability pest(b|) that the
QPE algorithm returns for b 2 {0.00, 0.25, 0.50, 0.75}, where  is the true value. Fig. 7.8c
shows the probabilities pest(b|) obtained experimentally compared with the probabilities
obtained via noiseless simulation. We see that NOX and PEC are generally closer to the
ideal ones than those obtained in the experiments with only REM. We repeat the same
experiment with t = 3 ancillae, setting  = 0.5. Decomposed into our native gate set,
the resulting QPE circuit contains n = 4 qubits and m = 25 two-qubit gate cycles. As
opposed to the experiments with t = 2 ancillae, both NOX and PEC return less accurate
outputs than the unmitigated (+REM) circuit and visibly decrease the precision of the QPE
algorithm (Fig. 7.8d). We attribute this unsuccessful result primarily due to inaccurate
amplification or cancellation of the noise at longer circuit depths. These unmitigated noise
processes accumulate along the circuit, resulting in a bias that grows linearly in m, which
becomes non-negligible in deep circuits. This failed test demonstrates what happens when
assumptions regarding errors and noise break down, which have the potential to negate the
performance gains of EM protocols.

Pseudo-random Circuits

Our final test was on pseudo-random circuits of the type plotted in Fig. 7.9. These circuits
alternate between cycles containing Haar random single-qubit gates and two-qubit gate cy-
cles. Fig. 7.10 shows the TVDs between ideal and estimated probability distributions of
the outputs obtained numerically (Fig. 7.10a) and experimentally (Fig. 7.10b). As in our
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Figure 7.10: Summary of the results for the pseudo-random circuits. TVDs between
the ideal and noisy probability distributions for (a) simulation and (b) experiments. The
dots correspond to the actual data, the squares represent their means, and the bars their
standard deviations. (Figure reprinted with permission from Ref. [149].)

previous tests, the mitigated outputs are visibly more accurate than the unmitigated ones,
with average improvements between 32% and 56% over the unmitigated (+REM) outputs.

Relation between � and the uncertainty of the estimators

In addition to suppressing the bias of the final estimators, our protocols provide guarantees
about their statistical fluctuations. The input parameter � represents the indented standard
deviation uncertainty of the output estimator, and our EM protocols guarantee O(�) stan-
dard deviation for every estimator, at the cost of running a number N = O(��2) of circuits.
To verify that our protocols are providing the uncertainty guarantees as intended, we nu-
merically and experimentally test the performance of NOX on two-qubit W-state circuits for
di↵erent values of �, shown in Fig. 7.11. For the numerical results in Fig. 7.11a, we observe
a clear linear correlation between the value of � and the uncertainty of the simulated results.
However, for the experimental results in Fig. 7.11b, we observe a saturation in the measured
uncertainty for lower values of �. We find that for � & 2%, the uncertainty of the results
decreases with � as expected, whereas for � . 2% the uncertainty remains approximately
constant.

The simulation results can be considered“ideal” experimental conditions in which the
noise from the “environment” is constant and qubit parameters do not drift. However, in
a real-world setting, a number of uncontrollable factors (such as drift in the noise a✏icting
the device in use) may inevitably prompt fluctuations in the estimators, limiting our ability
to attain the desired statistical accuracy. Implementing NOX with � < 2% requires running
more circuits than with � = 2%, but for the experimental results in Fig. 7.11b it does not
improve the statistical accuracy of the estimators. In other words, our EM protocols cannot
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Figure 7.11: NOX applied to two-qubit W-state circuits for di↵erent values of �:
(a) Simulation, and (b) experiment. We list the standard deviation uncertainty of each result
above the data points. (Figure reprinted with permission from Ref. [149].)

provide performance guarantees below the noise floor of the device.

7.3 Equivalent Circuit Averaging for QAOA

The Quantum Approximate Optimization Algorithm (QAOA) [250] describes a variational
ansatz for solving combinatorial optimization problems described by an objective Hamilto-
nian H. QAOA is characterized by a hyperparameter p that specifies the depth of the ansatz.
Specifically, the ansatz is ei�pBei�pH ...ei�1Bei�1H , where B =

P
i
Xi is a mixing Hamiltonian

and ~�, ~� represent 2p classically optimized variational parameters. It is believed that QAOA
is hard to approximate even at p = 1 and is therefore a leading candidate for demonstra-
tions of quantum advantage [251]. Therefore, it is important to optimize the execution of
QAOA and the components that compose their circuits. We generate and optimize QAOA
circuits corresponding to Sherrington-Kirkpatrick spin-glass model Hamiltonians with edge
weights Jij randomly selected from ±1 (see Fig. 7.14 for the exact symbolic form of the
circuits). Each ei�H is then implemented with a network of ZZ -SWAP gates F±� [143] (see
next section). Parameters �i, �i are sampled uniformly from [0, 2⇡).

ZZ -SWAP

The core operation needed in a QAOA SWAP network is the ZZ -SWAP gate, which is
equivalent to a ZZ interaction followed by a SWAP operation, and is defined as the unitary



CHAPTER 7. ERROR MITIGATION FOR NISQ APPLICATIONS 178

ei�H
F✓01 F✓13

F✓03 F✓12=
F✓23 F✓02

Figure 7.12: SWAP network implementing the Hamiltonian evolution ei�H for a
four-node Sherrington-Kirkpatrick model. H =

P
i<j<4 JijZiZj and ✓ij = �Jij. Note

that the qubit order is reversed after the operation

operation below with input parameter ✓:

F✓ =

0

BBBBBB@

1 0 0 0

0 0 ei✓ 0

0 ei✓ 0 0

0 0 0 1

1

CCCCCCA
. (7.19)

The standard QASM-decomposed quantum circuit implementation of F✓ comprises three
CX gates and a single-qubit Z✓ rotation [252]:

F✓

• •
=

• Z✓
.

(7.20)

It is possible to boost performance beyond this decomposition by leveraging knowledge of
the target hardware’s underlying native gate set. We do not cover this topic here, however,
Ref. [143] demonstrates that the ZZ -SWAP gate can be optimized by having access to an
overcomplete discrete two-qubit gate set, which contains additional two-qubit gates beyond
what is necessary for universal quantum computation. Concretely, they examine the opti-
mized F✓ decompositions possible when they have access to both a CZ and CS =

p
CZ

gate, where the CS is shorter in duration than the CZ (see Tables 5.2 and 5.3).
In typical applications, multiple ZZ -SWAP gates are arranged into a nearest-neighbor

ZZ -SWAP network that carries out t = 0, . . . , n � 1 steps. Each step alternates between
an odd and even pattern. At steps with odd t, each neighboring qubit pair with indices
(2k, 2k + 1) for k 2 [0, n

2 ] is entangled in accordance with a target Hamiltonian and then
SWAPped. Even-t steps perform this interaction for qubit pairs with indices (2k+1, 2k+2).
Note that each step is highly parallel, with ⇠ n/2 operations occurring simultaneously. A
prototypical example is shown in Fig. 7.12, which implements the Hamiltonian evolution ei�H

corresponding to a Sherrington-Kirkpatrick spin-glass model H =
P

i<j<n
JijZiZj on n = 4

nodes. The utility of a SWAP network is that it e�ciently generates an all-to-all interaction
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with a linear-depth circuit of nearest-neighbor interactions, where each interaction is a single
ZZ -SWAP gate corresponding to one of the commuting weight-2 terms in H.

We can optimize the decomposition of ZZ -SWAP gates in the context of larger SWAP
networks (e.g. within QAOA). Various discrete and continuous symmetries in the ZZ -SWAP
operation result in degrees of freedom to its optimized decomposition as follows:

1. F✓ = (1 ⌦ X)F�✓(X ⌦ 1),

2. F✓ = (Z ⌦ Z)F✓+⇡,

3. F✓(q0, q1) = F✓(q1, q0) (qubit interchange),

4. F✓ = F †

�✓
,

5. F✓ = (Z�# ⌦ Z�')F✓(Z' ⌦ Z#) 8 #,' 2 R,

where #, ' are continuous parameters. Symmetry 4 is useful only for F✓ gates implemented
using a CS or CS† gate, in which case it can be used to reverse the order of entangling gates
in the circuit. For the case in which F✓ is implemented using 3 CXs (or equivalently 3 CZs),
the physical implementations of F✓ and F †

�✓
are identical. Furthermore, any F±✓ admitting

a decomposition in terms of CS gates can also be decomposed in terms of CS† gates, so we
are always able to construct both F✓ and F †

�✓
using either one of these gates (see Ref. [143]

for more details).

Equivalent Circuit Averaging

QAOA circuits are highly structured, with repeating patterns of SWAP networks for each
depth p. In Table 5.3 we list the benchmarking results for the various relevant two-qubit
gate cycles appearing our ZZ -SWAP networks. While these results could in theory be used
to predict the performance of our QAOA circuits, as outlined in Ref. [142], randomized
benchmarks are not accurate predictors of the global performance of structured quantum
circuits due to the presence of coherent errors. When averaging over a twirling group, such
as the Cli↵ord (Pauli) group for RB (CB), all errors are converted into a global depolariz-
ing (stochastic Pauli) channel. However, in actual quantum algorithms, the physical error
mechanisms are more complex than depolarizing or Pauli channels, as coherent errors can
interfere constructively or destructively from one cycle to the next.

Being systematic in nature, coherent errors can, in theory, be measured and corrected
via recalibration or added compensation pulses. However, the complexity of fully character-
izing coherent errors (i.e. context-dependent rotation axes and angles [158]) on multi-qubit
processors that arise due to classical and quantum crosstalk is intractable, and no known
scalable methods exist for doing so for systems with continuous single-qubit gate sets. Var-
ious methods exist for suppressing coherent errors, such as dynamical decoupling [253] and
error-correcting composite pulse sequences [254], or randomization methods for “tailoring”
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them into stochastic noise, such as Pauli twirling [177, 181, 182, 224], Pauli frame random-
ization [157, 175, 176], and randomized compiling (RC) [145, 174]. However, these methods
generally require the modification of single-qubit gates or the inclusion of more gates (e.g. in
the case of dynamical decoupling and composite sequences), or require that the two-qubit
gates in circuits are Cli↵ord so that inverting Pauli operators can be e�ciently computed
and applied (as in the case of RC). Adopting these techniques would therefore require for-
going many potential circuit optimizations — both by necessitating additional single-qubit
twirling gates, and precluding the use of non-Cli↵ord CS and CS† gates.

A similar strategy was proposed for circuit synthesis methods, in which systematic ap-
proximation errors are rendered incoherent by averaging over various circuits near a target
unitary generated from ensembles of approximate decompositions [178, 179]. We employ this
general idea (with systematic errors in the physical gates taking the place of approximation
errors) using the space of equivalent ZZ -SWAP decompositions generated by the degrees of
freedom outlined in the previous section. By randomly sampling from these decompositions
for each ZZ -SWAP gate, we can generate a set of randomized but logically equivalent circuits
to average over. We call this strategy equivalent circuit averaging (ECA). The computational
overhead of ECA scales linearly with both the number of logically equivalent circuits to be
generated and the cost of optimized scheduling for each circuit (proportional to the number
of ZZ -SWAP gates in the circuit).

In Fig. 7.13, we measure two-qubit (p = 1) and four-qubit (p = 1 and p = 2) QAOA cir-
cuits (see Fig. 7.14 for example circuits) for various angles � and benchmark the performance
using the total variation distance (TVD),

D(p, q) =
1

2

X

x2X

|px � qx|, (7.21)

where px is the probability of measuring a bit string x in a set X, and qx is the ideal
(noiseless) probability. Standard (Std.) decompositions of the QAOA circuits are given in
terms of the QASM-decomposed F✓ (Eq. 7.20), and the optimized (Opt.) circuits outlined in
Ref. [143] always have a shorter circuit depth. For the ECA results in Fig. 7.13, we generate
M = 20 logically equivalent optimized circuits for each angle � (see Fig. 7.14 for example
circuits). To normalize shot statistics, we measure each equivalent circuit s = S/M times
and compute the union over all M results to obtain an equivalent statistical distribution for
a circuit measured S times; S = 10,000 and s = 500 for the results in Fig. 7.13. We see
that ECA dramatically reduces the TVD on average in comparison to both the standard and
optimized results for all of the two- and four-qubit QAOA SWAP network results, reducing
the average TVD by ⇠ 60% [26%] from DStd. = 0.20(5) to DECA = 0.08(2) [DStd. = 0.23(4)
to DECA = 0.17(6)] for the four-qubit p = 1 [p = 2] QAOA results, and providing the most
accurate measured probability distribution in 88% of all of the two- and four-qubit circuits
measured.

While the classical overhead of generating and measuring M logically equivalent circuits
increases linearly in M , we observe significant improvements in the measured results. These
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results demonstrate that ECA is a useful tool for smart compilers which optimize circuit
decomposition using various degrees of freedom, and is not limited to circuits only con-
taining two-qubit Cli↵ord gates, adding to the toolbox of randomization methods that can
be employed in the NISQ era. We also note that averaging out systematic errors is likely
beneficial even at the expense of gate-level optimizations. The simplest version of ECA,
which samples from the set of all logically equivalent decompositions of each ZZ -SWAP by
randomly applying the symmetries outlined in the previous section without consideration of
circuit depth would have negligible computational overhead.
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Figure 7.13: Improved QAOA SWAP networks via gate-based optimizations. The
TVD performance of QAOA networks of angle � are plotted for qubits (a) (Q4, Q5), (b)
(Q5, Q6), and (c) (Q6, Q7), and four-qubit circuits with (d) p = 1 and (e) p = 2 stages.
The mixing parameter � is chosen at random for each network. The ECA (purple) results
consistently outperform both the standard and optimized decompositions (see Ref. [143]).
The gray shaded regions define the angles for which CS or CS† gates can be utilized in the
circuit decompositions. The results in (e) are plotted against the � from stage 1 (the triangle
markers denote circuits which utilize a CS or CS† gate in stage 2). (Error bars on the TVD
⇠ O[10�3] are smaller than the markers.)
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Figure 7.14: Example SWAP networks for QAOA. Symbolic circuit representations of
QAOA SWAP networks (of depth p) for (a) two qubits (p = 1), (g) four qubits (p = 1), and
(h) four qubits (p = 2). (b) Baseline decomposition of a two-qubit QAOA SWAP network
for a random choice of � and � with CZs. (c) Optimized decomposition of the circuit in
(b) in terms of the native gate set utilizing a CS instead of a CZ. (d) Logically equivalent
decomposition of the circuit in (c). (e) Optimized decomposition of the circuit in (b) in terms
of the native gate set utilizing a CS† instead of a CZ. (f) Logically equivalent decomposition
of the circuit in (e).
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Chapter 8

Outlook

In this work, we have demonstrated the promising capabilities of randomized compiling
(RC), a universal protocol in gate-based quantum computing for tailoring arbitrary Marko-
vian errors that is agnostic to specific error models and hardware platforms. RC provides a
strategy for mitigating complex and intractable crosstalk dynamics, extending the compu-
tational reach of noisy quantum processors. By twirling noise in the same manner as ran-
domized benchmarks, RC enables accurate predictions of quantum algorithms a priori. This
improved predictability is essential for building scalable quantum computers. These results
have broad relevance across many experimental and theoretical e↵orts exploring gate-based
quantum computing applications

RC is not the only method which can tailor noise for quantum algorithms. Various other
randomization methods exists, and to that end we introduced equivalent circuit averaging
(ECA) to mitigate the impact of coherent errors in non-Cli↵ord circuits by utilizing vari-
ous degrees of freedom of quantum compilers to generate many logically equivalent circuits.
Given the di�culty in characterizing and predicting the impact of coherent errors on al-
gorithm performance, such a method negates the need for doing so and assumes that the
average over many circuits will reduce the impact of coherent errors on the algorithm results.
We demonstrate the e↵ectiveness of this approach with application benchmark results, in
which we find that ECA improves the accuracy of the measured probability distribution for
88% of randomly-generated QAOA circuits. While ECA was employed by taking advantage
of the various degrees of freedom in networks of ZZ -SWAP gates, a more sophisticated search
procedure would likely expand the applicability of our methods for scheduling and generat-
ing equivalent circuits for more general applications. We further imagine possible “hybrid”
strategies in which ECA is combined with other randomization protocols (e.g. RC) for max-
imizing the ways in which logically equivalent circuits can be expressed, thus minimizing
residual coherent errors. The cost of ECA (both classically and in terms of single-qubit gate
optimization) in the general case and the degree to which it tailors noise in quantum systems
(i.e. in the manner of other randomization methods which twirl over a specific gate set) are
open questions.

While fault tolerance remains the long-term goal, improving the performance of NISQ
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algorithms is important for intermediate demonstrations of quantum advantage. For this
reason, error mitigation (EM) has become an important subfield in QIS. While many di↵er-
ent EM strategies exist, each with their own benefits and disadvantages, we have shown that
RC uniquely enables several di↵erent classes of methods, including purification-based meth-
ods, methods which amplify noise in a structured manner, and scalable quasi-probabilistic
protocols. These results demonstrate that RC can enhance the performance of quantum
circuits implemented on noisy quantum processors with reasonable overhead.

As we look forward toward fault tolerance, it remains an open question to what extent
EM will remain necessary, and for how long. Recent works have shown the EM schemes
can be built into fault-tolerant quantum computations for correcting errors in non-Cli↵ord
T -gates without magic state distillation [255] and improving QEC code distances [256]. Due
to their ability to suppress multi-qubit errors, we anticipate that EM can be used to correct
large-weight correlated errors that may be beyond the ability QEC codes (depending on the
distance of the code), and therefore reduce errors at the logical level.

While full-scale fault-tolerant QEC is still many years away, contemporary quantum gates
are rapidly approaching the necessary thresholds for some QEC codes, such as the surface
code. Therefore, it is important to be able to accurately benchmark our progress toward
this goal. The field of quantum characterization, verification, and validation (QCVV) was
developed in large part for this reason — to benchmark our progress toward fault-tolerant
QEC. While average error rates measured via randomized benchmarks are useful for tracking
progress, they fall short of capturing the information required to determine whether all gate
errors fall below a given FT threshold, for which the diamond norm is the relevant metric [120,
130]. However, we demonstrate that FT thresholds can in fact be captured by randomized
benchmarks, but only if a quantum application is performed using randomization methods
which tailor noise. This noise tailoring may even impact the kinds of errors that manifest at
the logical level, as, despite the projective nature of QEC, it has been shown that coherent
errors at the physical level can lead to coherent errors at the logical level [257, 258, 259, 260].
An open question remains as to what guarantees these benchmarked values provide for error
correction, which operates in the single-shot, single-randomization limit.

While rapid improvements in two-qubit gates on many hardware platforms engender
optimism for FT, caution must be taken in the claims inferred from gate fidelities, as results
which include estimates of the diamond norm suggest that many contemporary two-qubit
gates fall short of FT thresholds [201, 202, 261, 262, 263]. Furthermore, while isolated single-
and two-qubit gates may be approaching the necessary requirements for fault-tolerance, any
gate(s) performed in parallel with other qubits are likely to be impacted by crosstalk-induced
coherent errors, potentially causing the diamond norm to scale with

p
eF . The figure of merit

for determining whether low logical error rates can be achieved via QEC is the error rate of
a cycle containing all active qubits in a register, not simply the error rate of isolated gates
within the cycle [215]. By utilizing RC, we ensure that fault-tolerant error thresholds are set
by stochastic errors, not coherent errors. To this end, we expect that randomized compiling
is not just a stopgap measure in the NISQ era, but will remain a powerful technique beyond
NISQ.
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