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Can. J. Math., Vol. XXVIII , No. 6, 1976, pp. 1121-1131 

THE NORM OF THE //-FOURIER TRANSFORM, II 

BERNARD RUSSO 

1. Introduction. Let G be a locally compact separable unimodular group. 
The general theory [18] assigns to G a measure space (A, /x) whose points X 
index a family of unitary factor representations of G in such a way that if U\ 
corresponds to X and U\(f) = §Gf{x)U\(x)dx then 

(1.1) f \f(x)\2dx = f tr ([/x(/)*t/x(/)Hu(A) 
J G J A 

for a l l / £ Ll(G)C\ L2(G). Here tr denotes the Murray-vonNeumann trace on 
the factor generated by the operators U\(x), x £ G. 

In the case when G is a group of type I the measure /x, called Plancherel 
measure, is unique, the U\ are irreducible representations, and tr denotes the 
usual trace. The expression (1.1), which is called the Plancherel Formula for G, 
is proved in this case in [4, p. 328]. 

This paper, which is a continuation of [17], is concerned with the problem 
of sharpness in the Hausdorff Young inequality for the class of connected 
simply connected real nilpotent Lie groups. The inequality in question, stated 
for separable locally compact unimodular groups of type I is the assertion 

(1.2) { / j | £ 4 ( / ) | | / ' ^ ( A ) | £\fg\f(x)\>dx 

for / <E L?(G) ([9; 8]). Here of course 1 < p ^ 2, 1/p + l/p' = 1, and 
\\U,(f)\\P^ = tr ((£/x(/)* t/x(/))p ' /2). By rewriting (1.2) as | | / | | , , ^ ||/| |„ 
and denning 

\\^AG)\\ = sup | | / ||,,f 
i i / M p ^ i 

one can express the Hausdorff Young theorem for G by \\^V{G)\\ < 1. 
The work in [17] made it plausible that 

(1.3) | | J%(G) | | < 1 

for any connected, non-compact, locally compact unimodular group G. In 
fact, using the remarkable theorem of Babenko [2] : | | ^ " P (R) | | < 1 for 
1 < p < 2, it was shown in [17] that (1.3) holds whenever G contains the real 
line R as a direct factor or G contains Rn, n ^ 1, as a semi-direct factor with 
compact quotient. 

According to a letter from J. Fournier (cf. [10]), (1.3) holds if and only if G 
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1122 BERNARD RUSSO 

has no compact open subgroups. This confirms a conjecture of the author [17]. 
However, Fournier's estimate, while universal, is very crude, on the order of 
.999999 . . . On the other hand, the estimates made in [17] are sharp enough to 
compute the number 11 ^'v (G) \ | for the two classes of groups considered in [17]. 

Returning to the discussion of nilpotent groups, it follows from [17a, 
Proposition 13] that 

(1.4) | | ^ ( G ) | | < ||J%(R<)H, KP<2 

if G is a connected simply connected real nilpotent Lie group, where / is the 
dimension of the center of G and of course / è 1. The present paper constitutes 
a step in the direction of the computation of \\^P(G)\\ in that (1.4) is im­
proved, with one exception ( r 5 4 ) , for all of the connected, simply connected, 
real nilpotent Lie groups whose Plancherel measures are explicitly known 
(to the author). This includes all the (non-commutative) examples of dimen­
sion <5 , denoted by T3, T4, r5 ,i , r5,2, r5,3, r5,4, r5,5, r5,6 in [3, III], all 
Heisenberg groups Nk, k ^ 1, which are of dimensions 2& + 1 ([11; 16]) and 
the groups Gn, n ^ 3 of real n by n triangular matrices with ones on the diag­
onal, which are of dimensions \n{n — 1) ([3, IV; 6; 14]). 

The improved inequality is 

(1.5) 11^(6)11 < 11^(11^)11, 1 < r < 2, 

where p is the defect of commutativity of G, and q = n — 2p where n is the 
dimension of G. This terminology is taken from [3, II]. 

Note that if G is commutative then p = 0, n = q, G — Rw and equality 
holds in (1.4) and (1.5). On the other hand, for G non-commutative, p + Q = I 
(see Table I) and evidence seems to indicate that equality does not hold even 
in (1.5) (cf. [17a, Proposition 9]). 

The techniques of [17] for semi-direct products rely heavily on the compact­
ness of the quotient and hence do not apply to a nilpotent group, which can" 
always be written as a semi-direct product of a normal nilpotent group of smal­
ler dimension whose quotient group is the real line R. What works here for 
nilpotent groups and what is needed for other classes of groups is the explicit 
knowledge of the Plancherel measure for the group. 

Except for Section 4, (Heisenberg groups) this paper depends heavily on 
the treatment of nilpotent groups given by Dixmier in [3, I-VI]. It seems 
possible that simplifications or improvements might be made using later treat­
ments of the theory ([6; 14; 12]). 

Future papers will deal with this problem for solvable groups (cf. [1 ; 15; 5]) 
semi-simple groups (cf. [13; 19]) and non-unimodular groups (cf. [7]). 

2. The three dimensional Heisenberg group. This group belongs to each 
of the classes of examples mentioned in Section 1, will be denoted by T3 as in 
[3, III], and illustrates the method to be described in Section 3. 
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FOURIER TRANSFORMS 1123 

The underlying set of T3 is R3 and the multiplication is given by 

(o"l, 0"2, O-3) (pi, P2, P3) = (Pi + 0"2, P2 + 0"2, P3 + 0"3 — P2<Tz) [3, I I I , p . 330 ] . 

According to [3, I I I , Proposition 3], for each X ^ 0 in R there is an irreducible 
uni tary representation U\ of T3 on L2(R) given by 

(2.1) (Ux(y)f)(6) = exp i \ (p 3 - P2d)f(d + P l ) 

for 7 = (PI, P2,p3) 6 r 8 , / G £ 2 ( R ) , # G R ; a n d 

(2.2) f \F(y)\2dy = cz f \ \UX(F) \ \2
2\\\d\ for all F G A ^ ) H L 2 ( r 3 ) . 

«̂  r3 ^ x^o 

Here ^7 denotes Lebesgue measure on R3, U\(F) = jr3F(y)U\(y)dyJ and c3 

is a constant . 
A routine calculation using (2.1) shows tha t U\(F), F £ Cc°°(r3) is an 

integral operator on £ 2 ( R ) with kernel k\ given by 

(2 3) kx(ph ^ = J J F^pl ~ ^ P2' P3) e x P ^X p 3 ~~ i^p20)dp2dpz 

= 2T • /^(px - 6, • , -)A(X0, - X ) 

= J &\(pi, (Ux(F)f)(d) = J *x(pi,0)/(pi)dpi, a.e.0. 

In order to determine the constant c3 we first rewrite (2.2) for suitable F in 
the form 

(2.4) F(e) = cz \ tr (U\(F))\\\d\, e = identity element. 
J x^o 

Next, since tr(Ux(F)) = \ kx(d, d)dd, (2.3) yields 

(2.5) F{e) = cz \ I 2TF(0, • , -)A(\d, -\)dO\\\d\ 
J X^O •/ R 

and substi tuting ^ ( 7 ) = exp (— èlMI2) = exp ( —-J (P I 2 + P22 + P32)) into 
(2.5) yields 

1 = cz I I 2TF(0,-,')\\,0)dM6 
J X^O •/ R 

= C 3 -2TT I I exp (~è(X 2 + d2))d\dd = CZ'2TT- (27r)1/2(27r)1/2. 
•^ X^O *^R 

Hence c3 = (27r)-2. 
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1124 BERNARD RUSSO 

By (1.2) and [17, Theorem 3] we obtain for 1 < p ^ 2, 

(2TT)2\\F\\/' = f | |C/x( /OII/ ' |X|dX 
«/x^o 

(2.6) =£ f (||^|L/'||^*IL/')1/2|X^X 
J x^o 

i j j ll^ll,./>|dx}1/2{/ ||*x*||P./'|X|dx| 
By definition, 

INI../' = / { / | * A ( P I , W P I } < 

?, -,-)A(Xe, -X)tP(27r)prfPl!-P '<#. 

Hence 

J ||*xlL/|x|dx 
(2.7) * c a r \v'iv 

= (2*)*' J J J J |F(pi, • , -)A(X0, -X)rdpi| <W|X|dX 

- (2?r) I J I Jx o J |//(P1' ' ' ')A(^' -X)|P,|XI^X^/ dPi\ 

(by Minkowski's integral inequality) 

{ Ci C C )P/P' )P'/P 

= (2T) i J iJX ; ,0 J | / , x p i - ' - • ) A ( x > e ) r ' r f x ^ | dP1j 
(by change of variables as |X| = |Jacobian (X, 6) —> (X0, X)|) 

= (2*r+1{f\\F(P1,-,-)*\\,.*dP1}"' 

s (2^r'+iii^(R2)ir{ f\\F(pU •,-)\\/dPiy
,P 

(by Hausdorff Young Theorem for R ) 

= (2^)p '+1 | |^(R2)|r'{ f VIT)'1 f \F(Ph P2, p^dpzdpzdpjf 'V 

= (2T)2n.F,(R2)iriiFii/. 
By exactly the same argument 

(2.8) f \\h*\\P,P,"'\\\d\ ^ ( 2 7 r ) 2 | | ^ ( R 2 ) | n ^ | | / . 
•/x^o 

Combining (2.6), (2.7) and (2.8) yields \\F\\V> < \\^ P(R2) | | \\F\\„ and 
since Cc

œ(r3) is dense in LP(T3) this proves: 
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PROPOSITION 1. Let T3 denote the unique (up to topological isomorphism) 
non-commutative connected simply connected real nilpotent Lie group of dimension 
3. Then | | i % ( r 3 ) | | g \\^P(R2)\\ for all p, 1 Sp S 2. Hence \\^P(T,)\\ < 1 
for all p, 1 < p < 2. 

3. T h e m e t h o d of in tegra l operators . Let r be a connected simply con­
nected nilpotent real Lie group of dimension n. Write n = 2p + a where p is 
the defect of commutat iv i ty of T and let ^f = L2(KP). According to [3, I I , 
Théorème 4] there is a (Zariski open) set 12 C RQ and for each X = 
(Xi, . . . , Aff) G fl there is an irreducible uni tary representation U\ of T on 
J^f such tha t 

(3-D f \f(y)\*dy = f ||£/x(/)||SV'(Xi 
J r J Q 

. . , X?)|^Xi . . .d\Q 

for a l l / Ç L ^ T ) Pi L 2 ( F ) , where T7 is a real valued rational function with no 
singularities on 12. The underlying point set of T is R* and it is impor tan t for 
us t ha t the Haar measure dy be chosen specifically. For simplicity, we take 
dy to be w-dimensional Lebesgue measure (not normalized in any way) . 
Cc°°(r) will denote the infinitely differentiable functions on T with compact 
support . 

For e a c h / € Cc°°(r), Ux(f) is an integral operator on L2(RP) ([14, p. 108] or 
[3, V, Corollary 1]). Denote its kernel by kx = h(f) : Rp X Rp - > C . Also 
w r i t e / : T - > C a s / ( p , a, /x), p, a £ Rp, /x £ R*. 

PROPOSITION 2. Le£ T be a connected simply connected nilpotent real Lie group. 
With the notation of this section suppose that for all f £ Cc°°(r) 

(3.2) h{p, e) = (27r)<"+«/2/(p -e,-, r(T(\, e)), p, 0 e R*, x <E R< 

where T : RQ+V —» R«+P ^ a transformation with Jacobian JT satisfying 

(3.3) |7 r(X, 0)| = (2ir)p+ff |F(X)|, Â f R ^ G Rp. 

77œ» | | ^ r ( r ) | | g | | ^ r ( R * + * ) | | / 0 r fltfr.Urg 2 . i 7 ^ ^ | | J r
r ( r ) | | < 1/or 

allr, 1 < r < 2. 

The proof is exactly the same as for Proposition 1. The only point to remem­
ber is t ha t application of Babenko's theorem to Rp+q requires the proper 
normalization, i.e. 

| | / (p , • , - r i l r ' ^ | | J S ( R ^ ) | | | | / ( P , • , • ) | | r means 

I" f i/(pI-,-)"r'(2^)-<p+5,/2^A]1/r 

LJRP+Q J 

^ \\^r(R
p+")\\\ [ \î(p,c,T)\T(2ir)-(p+s)lidcdT | . 

L ^ R P + 9 J 

https://doi.org/10.4153/CJM-1976-110-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-110-6


1126 BERNARD RUSSO 

P R O P O S I T I O N 3. Let Y be a connected simply connected real nilpotent Lie group 
of dimension ^ 5. Then \\^~T(T)\\ < 1 for all r, 1 < r < 2. Precisely, 
\\^r(T)\\ ^ \\^r(R^)\\ifY * r 6 > 4 a » d | | J r

r ( r 5 l 4 ) | | ^ | | ^ ( R 2 ) | | . 

Proof. Up to a constant the Plancherel formula for each of these groups has 
been given in [3, III]. Table I summarizes the relevant information where we 
assume non-normalized ^-dimensional Lebesgue measure on each group. 

r n p q \F(X)\dX dimension of center 

T3 3 1 1 C3|X|dX 1 

r 4 4 1 2 C4\dn 1 

r5 ,i 5 2 1 C6iiX
2dX 1 

T5i2 5 1 3 Cbtid\diJ.dv 2 

r 5 ( 3 5 2 1 CBi8X
2dX 1 

r5,4 5 1 3 C^Ad\d[xdv 2 

1 ,̂5 5 1 3 CÔ.ÔX- dXdfidv 3 

r 5 l 6 5 2 1 C\,,X2dX 3 

r constant T(X,6) \JT\ 

r3 (2TT)-2 (xa, - x ) |x| 

r4 è(27rr3 

Table I 

Q \F(X)\dX 

1 C,\X\dX 

2 CidXdfjL 

1 C5,iX
2dX 

3 C^^dXdfidv 

1 C5,3X dX 

3 C^^dXdfxdv 

3 CÔ.ÔX- dXdfidv 

1 C5>6X dX 

Table II 
T(X, 0) 

(xe, - x ) 

k - »«• \x0, - x ) 

r5 ,i (2TT)-3 (X«I, M 2 ) - X ) x2 

r 5 , 2 ( 2 T ) - 4 |-,-TT-2 + ^ > - T 2 ^ L T + ^ , —X, — n I 

r5,s (27rr3 (X02, X0 i , -x ) x2 

r6 ,4 ? ? ? 

5 , 5 ff è(2^r l3X^-2X+"6" '2X~-"2" 'X^-XJ ( 6 X ) 

r5l6 (27r)-3 ( -èx^i 2 + xe2, xeh -x) x2 

Using the explicit formulas for the representa t ions U\ given in [3, I I I ] we 
determine as in Section 2 the cons tan t s c3, c4 . . . c5j6 and the kernels k\ of the 
integral operators U\(f), f £ C c

œ ( r ) . These kernels are shown to satisfy the 
propert ies (3.2) and (3.3) of Proposecion 2. T h e details were carried out in 
Section 2 for T3. 

Th i s procedure can be carried ou t for each of the groups in quest ion except 
for r 5 f 4 which resists calculation. T h e s t ra igh t forward calculat ions are omit ted 
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and the results summarized in Table II. The validity of Proposition 3 for r5(4 

was shown in Section 1. 

4. The Heisenberg groups. Let Nk be the 2& + 1 dimensional Heisenberg 
group, i.e. Nk is the connected simply connected real nilpotent Lie group which 
can be characterized by the fact that its Lie algebra has a basis 
{xi, . . . , xk, yi, . . . , yk, z} with [xjf yj] = z, 1 ^ j ^ k and all other brackets 
are zero. 

The Plancherel formula for Nk is described as follows ([11 ; 16]). In the nota­
tion of Section 3,n = 2k-\-lfp = k,q = l and for each X ^ 0 in R there is an 
irreducible unitary representation U\ of Nk on L2(Rk) satisfying 

(4.1) f | / ( 7 ) | ^7 = c t t+i f ||t/x(/)||2
2 |X|^X 

J Nk J X^O 

for a l l / £ Ll{Nk) C\ L2(Nk). Again we take dy to be (2k + 1) — dimensional 
Lebesgue measure and U\ is given by 

(4.2) (U\(yo)<p)(x) = exp (i\(u0 — (yQj x) + i(xQ} y0)))(f(x — x0) 

where y0 = (x0} y0, u0), x, x0, y0 G R*, u0 £ R, <p G L2(Rk), and (, ) is the 
usual inner product in R*. 

The usual calculation using (4.2) shows that U\(f) is an integral operator 
with kernel k\ given by 

(4.3) h(x', x) = (2irYk^l2f(xf - x, • , • )A(iX(* + x')t - X). 

Note that this differs in form from (3.2) in that the argument depends on x, X 
and xf. Thus we cannot apply Proposition 2 directly. However, exactly as in 
Section 2 we determine that c2k+i = (2ir)~k~1. Then arguing as in Section 2 
starting with (2.6): 

X v r ' ( * + l ) / 2 

x^o 

X J j \ j \f(x' - x, • , -)A(èM* + *'), -X)|rd*'} "dx\\\kd\ 

^ (2x) , '(*+1)/* 

X { i { J J \f(~x',- ,-)A(hH2x-x'), -\)\T'\\\kdxd\j dx'j 

(4.4) = w a + 1 ) / 2 { / { / V 0 / i / ( - * ' . • - -)V, x)r'd*dx}r/r (**'}'/r 

^ (2T)r'(':+1>/2(27r)<t+1)/2||#"r(R':+1)|r'|J||/(-< • , •)||r'd*'}r ̂  

= (2x)*+ 1 | |^ ' r(RM- 1) | r ' | | / | | / ' , and similarly 

(4.5) f ||*x*||,./'|X|*dX £ (2x) w - 1 | | ^ - f (R* + 1 ) | | r ' | | / | | / . 
•/ x̂ o 
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Finally, by (4.1), [17, Theorem 3], (4.4) and (4.5) 

(2*)*+1||/||/' = f ||£/x(i)||/'|X|Vx 
J J x^o 

^ f (INU/'||*X*||r,/')
1/2|X|^X 

4! 
v ^ x^o 

<\\\T,T' ixrdx nt l l*X* | | . r . r< IXfdX 

g (2^+in^r(R*+i)ir'ii/i!/ 
This proves: 

PROPOSITION 4. Le/ iV̂  6e /fee (2k + 1)-dimensional Heisenberg nilpotent group. 
Then \\^T(Nk)\\ £ H ^ ^ R ^ 1 ) ! ! /or all r, 1 £ r ^ 2. ife/M* || JS(iV*)ll < 1 
for allr, 1 < r < 2. 

5. Nilpotent groups of triangular matrices. For « ^ 3 let Gw be the 
(connected simply connected nilpotent Lie) group of all n real matrices x = 
(£jk) such that £jk = 0 if 1 ^ j < k S n, and £̂ - = 1 for 1 ^ j ^ n. Mn will 
denote the set of real w by n matrices, Kixlc denotes the j by k real matrices, 
and En will denote the set {(%jk) £ Afn : f̂ - = 0 if j + fe ^ n + 1}. 

The Plancherel formula for Gn is described as follows [3, IV]. First Gn is of 
dimension \n(n — 1) and it is necessary to consider separately the cases of n 
even or odd. 

Suppose n = 2m, m g: 2. Then each x £ Gn has the form 

(5.1) x-[y °1 

with y, z £ Gm and w G Afm. The set Q can be taken to be 

where 

(5.2) 

[e £ Em: 62«3 

0 
e = 

* o ) 

e2 0 
€ l 

defines ei, • • , em. For each e £ 12 there is an irreducible unitary representation 
£/e of Gn on J ^ = L2(Gm X C7m) (Lesbesgue measure) given by 

(5.3) (£ / . (*) / ) ( / , z') = /(y'y, s's) exp (t tr (ez'wy-1?-1)) 
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for x = \ £ Gn, y', zf £ Gm, f G 3f , such tha t 

( 5 . 4 ) f \$(x)\2dx= ( 2 T T ) - W 2 f | | t / e W | | 2 V € 3 4 . . . € w
2 ( W - 1 ) d e 

J Gn
 J G 

for all $ G Ll(Gn) C\ L2(Gn), where ^ . . . de denotes J . . . dei . . . dem. 
This shows (in the notation of Section 3) tha t p = m2 — m, 

q = m (so p + g = m2) and F(e) = (27r)-m3e2
2e3

4 . . . e ^ - ^ e i . . . dem. Also 
(5.3) implies tha t Ue($) is an integral operator on L 2 (R P ) (identified with 
Jlf ) with kernel ke given by 

(5.5) ke((y, z), {y\ z')) = ( 2 T ) " 1 / 2 ^ ( y - 1 y , z'~% r{-y~lezf). 

A note of explanation might be in order here. T h e identification of Gm X Gm 

with Kp requires tha t the argument — y~lez' in (5.5) be interpreted as a vector 
in Rm2 whose components are the entries of the matrix —y~lez'. 

Suppose now tha t n = 2m + 1, m ^ 1. Then each x G Gn has the form 

(5.6) 
y 0 0 
u 1 0 
w Ï; z 

with y, s G Gm, w G Mm, u G R1Xm, v G R m x l . The set ft can be taken to be 
{e G Em: eie2 . . . em 9e 0} (see (5.2)). For each e G ft there is an irreducible 
uni tary representation Ue of Gw on J^f = L2{Gm X 6 W i ) (Lebesgue measure) 
given by 

(5.7) (Ue(x)f)(yf, zf, v') = f(y'y, z'z, v' + z'v) exp i tr (e(i;'w + z,w)y-iy~l) 

for x G G n (see (5.6)), / , s' G Gm, i;' G ROTX1 ,/ G ^ ; such tha t 

(5.8) f |<î>(x)|2^x= ( 2 7 T ) - 2 - f l l ^ ^ ^ l l / l W . - . e ^ - 1 ^ 

for all $ G Ll(Gn) C\ L2(Gn), where de = dei . . . dem. 
In this case (in the notation of Section 3) p = m2, q = m, p + q = m2 + m, 

F(e) = (27r)~m2~weie2
3 . . . em

2m_1 de, and Ue($) is an integral operator on 
L2(KP) (identified with Jt? ) with kernel ke given by 

(5.9) ke((y,z,v), ( / , * ' , » ' ) ) 

= (27r)(m2+m)/2<î>(y-13;, z ' - ^ , i; - v', • , • ) " ( - y " W - y~W) 

with the same interpretat ion as in (5.5). 

LEMMA, (i) The Jacobian JT of the transformation T : Rw2 —•> Rm2 determined 
by the correspondence 

(5.10) G M X 4 X G J ( / , e, z') -> yW G Mn 

satisfies 

(5.11) | / r | = 62
2634 . . . e ^ - - 1 ) 
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(ii) The Jacobian J s of the transformation S : Rm2+m —» R^2+™ determined by 
the correspondence 

(5.12) G m X £ m X t X RWX1 3 ( / , e, z', *') -> (/*z', y W ) G Mm X RWX1 

satisfies 

(5 .13) | / f l | = | € i € 2 8 . . . € T O
2 m - 1 | . 

Proof, (i) is the content of [3, IV, Lemme 3] and (ii) follows from (i) since 
J8 = JT. det (y'e). 

PROPOSITION 5. Let Gn be the group of all real n by n lower triangular matrices 
with ones on the diagonal. Then \\^r(Gn)\\ < | |^~ r(Rp+«)|| for all r} 1 g 
r ^ 2. Hence \\&~ r(Gn)\\ < 1 for all r, 1 < r < 2 (p is the defect of commuta-
tivity of Gn and 2p + a — the dimension of Gn). 

Proof. If n is even, n = 2m and <£ is conti nuous on Gn with compact support, 
then 

(5.14) ( 2 7 r r 2 | | l | | / ' = f \\Ut{*)\\ZF{e)de 
J Em 

(by (5.4)) 

^ f {\\ke\\r,/\\k*\\r,/)XliF{e)de 
J Em 

(by [17, Theorem 3]) 

= {IE \\ke\\r,rr'F{e)dey{fE \\k *\\r,/'F(e)dej2. 

(5.15) f \\ke\\r,/'F(e)de= (2r)m2r'/2 f ff 
J Em J Em J J 

X I J J | $ ( / " V , s'_12, -Ti-y^ez') | r ^ z J Tdy'dz'F\e)de 

(by (5.5)) 

X I J J J |^(y, z, ')\-y~1y,-\z,)\T'dyfdztF{e)de 

(by Minkowski's integral inequality and translations) 

r / r ' 

dydz 

v m 2 ( r ' + l ) /2 i I 77 / T > m1 "[//' ^ ( 2 T r ' l ' + 1 " z | | F r ( R " , - ) H , [ I | | | * ( y , z , - ) H / d ^ 

(by (5.11) and Hausdorff Young for R"2) 

= (27rr2(r'4i-r'/r)/2ii^r(R"i:!)ii$ii/' = (2 ,rr 2 i^ r ( i r s ) i r ' i i* i i / ' . 
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Similarly, 

f \\k*\\r,/F{e)deik ( 2 , r r 2 | | ^ r ( i r 2 ) i f | | $ | | / ' 
J Em 

so by (5.14) | |* | | r . ^ \\^r(R
m2)\\ | | $ | | r . 

The proof for odd n uses (5.8), (5.9) and (5.13) is exactly the same way that 
(5.4), (5.5) and (5.11) were used above. We omit the details. 
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