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ABSTRACT OF THE THESIS

Analysis of Flows Driven by Gravity and Chemical Potential
in a Microfluidic Channel

by
Adewale A. Oluwatimehin

Master of Science, Graduate Program in Mechanical Engineering
University of California, Riverside, December 2023
Dr. Bhargav Rallabandi, Chairperson

We developed a model for analyzing flows driven chemically by the joint effect
of diffusioosmosis and buoyancy-driven convection in a small microfluidic channel. The
dead-end channel containing fresh water is fed salty water having a higher density. We
simplified and non-denationalized the Navier-Stokes equation, and s derived an
expression for the horizontal velocity, U resulting in a convoluted coupled non-linear
convection-diffusion 2D system. Using Taylor-dispersion arguments to support the
averaging approach, we derived an expression for concentration deviation, C'(X,Y,T)

and simplified the 2D system into a 1D non-linear system involving only the average

concentration, C (X, T)

We obtained a numerical solution for the mean concentration, < € > (T) and the
time to fill the channel using the finite volume method and MATLAB. We varied the fluid
property, (the ratio of density gradient flows to concentration gradient flows) for the

effect of gravity with diffusioosmosis and solely diffusioosmosis and compared with

Vi



results obtained when both factors were involved. The results show that flow proceeds
faster with the joint action of gravity and diffusioosmosis in uncharged systems.

Furthermore, we observed much faster flows when in charged systems due to the ionic
properties of the solute, which further strengthens the electrostatic interactions of the

ions with the charged channel walls.
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Chapter 1. INTRODUCTION AND BACKGROUND

1.1 Microfluidics and microchannels

A system that utilizes a small amount of fluid ranging from 10 to 500 micrometers,
is referred to as microfluidics. The emergence of this technology in the 1980s brought
about live-changing innovations such as DNA chips, inkjet printheads, lab-on-a-chip,
micro-propulsion, micro-thermal technologies, etc [1,2,3]. In the design of systems that
process small quantity of fluids, microfluidics plays a vital role to meeting the demands for
automation, high-throughput screening (testing multiple biological, chemical, or
pharmacological samples), and multiplexing (transferring multiple signals over a single
cable line) [18]. A lab-on-a-chip (LOC) device performs on a miniaturized scale one or
several laboratory analyses [6,10]. It integrates and automates multiple high-resolution
laboratory techniques such as synthesis and analysis of chemicals or fluid testing into a
system that fits on a chip [8]. At this scale, it is easier to control the movement and
interaction of samples, causing reactions to be much more potent, and minimizing

chemical waste. It also minimizes exposure to dangerous chemicals [10].



Figure 1: A microfluidic lab on a chip device. News Medical Life Sciences. https://www.news-medical-.net/life-
sciences/Benefits-of-a-microfluidic-Syatem.aspx [11].

There is an increase in demand for Lab-on-a-Chip (LoC), also known as micro-total
analysis system (u-TAS). The global lab on chip business was estimated at USD 5.75 billion

in 2021 and is predicted to reach around USD 15 billion by 2030 [11].

1.2 Density-driven flow in a micro-fluidic channel

Several works have been recorded of flow enabled by densities of fluids in a micro-
fluidic channel including the production of polymer monolithic surfaces having a gradient
of tiny opening and polymer droplet sizes from ~0.1 to ~0.5 um expressed as the
composition of two polymerization mixtures injected into a microfabricated chip [14]. The
researchers (Kreppenhofer, K., et al.) used a micromixer connected with a
Polydimethylsiloxane (PDMS) microfluidic chip to generate the gradient [14]. The process
also contains a reaction chamber which serves the purpose of producing a continuous
gradient film. Following polymerization inside the microfluidic chip, its inherent reversible

bond open, yielding a 450um thick film on the pore size gradient. When fluids of the



same densities were considered, and flowrates assigned for both convective mixing (20

0.001ml

ml/min ) and diffusive mixing ( ), linear gradients were formed. Using microscopic

min

laser-induced fluorescence (uLIF), and Scanning Electron Microscope (SEM), the

emergence of density-driven 2D wedge-like was verified [14].

Concentration gradients lead to density gradients, driving convective flows. The
dimensionless numbers often used to describe density-driven flows are Grashof (Gr),
Reynolds (Re) and Rayleigh (Ra) numbers. The Grashof number is defined as the ratio of
buoyancy forces to viscous forces [13]. The Reynolds number is the ratio of inertial forces
to the viscous forces within a fluid that is subjected to relative internal movement caused
by varying velocities [13]. The Rayleigh number measures the instability caused by density

and temperature differences on a fluid layer at the top and bottom [13].

In their work on the impact of buoyancy on solute spreading in 2D slit and microchannel
geometries, Salmon et al. (2021) [13] found that for Ra < 103, solutal free convection
does not impact solute diffusion at all time scales. They also predicted that buoyancy
would not influence molecular diffusion at higher Raleigh numbers. The group
demonstrated this in an experiment involving interdiffusion between water and a 1M
aqueous solution of NaCl in a microfluidic slit of height H = 100um. Since Ra = 230 in
this case, free convection is not expected to affect diffusive mixing. According to the

authors, in the early stages of diffusion and advection, the longitudinal velocity of u, =



25um/s which corresponds to 5um/s for the timescale T = H? /D that can greatly

influence the advection of less mobile species dispersed in the solution [13].

1.3 Pressure-driven flow and Diffusion in a micro-fluidic channel

Due to simplicity in set-up, pressure-driven flows are often the choice for some.
Moving fluids by pressure, especially in microfluidics channel of rectangular geometry
poses some challenges in the distribution of analytes given that cross-sectional
dimensions have parabolic velocity gradient. Molecules in the channel, regardless of the
method of introduction into the device, are impacted by a position-dependent
distribution in residence time. Kamholtz and Yager showed that the breadth of such a

distribution is reduced by diffusion across the velocity gradient.

The T-sensor is a simple microfluidics device consisting of two input ports and one

output, allowing for side-by-side flows, and operated at low Reynolds’ number [16, 37].

input

input

Figure 2: Conceptual rendering of the simplest form of the T-sensor. Two fluid inputs enter through channels at the
bottom. In the case shown here, the fluid on the right contains a diffusible analyte (dark gray) that spreads across the d-



dimension as flow proceeds along the channel length. During operation, measurements of optical signal are made a
distance downstream, L, after significant interdiffusion has occurred. Kamholtz and Yager (2001) [16]

Kamholtz and Yager [16] used T-sensor microfluidic device to show the impact of
flow on diffusion due to change in position unlike pressure-driven flows which limits the
usefulness of the device. T-sensor utilized low Reynolds flow conditions in microfluidic
channel for chemical measurements [37]. The Peclet (Pe), is a dimensionless number
used to describe the ratio between convective and diffusive transport [35]. This refers to
the ratio of advection of advection of a physical quantity by the flow to the rate of
diffusion of the same quantity driven by an appropriate gradient [35]. This continuum

transport phenomena number is also used to describe separation and mixing.

1.4 Diffusioosmosis, Chemical potential and Charged flow.

Diffusioosmosis is a movement of fluid created the interaction between the solute
and a solid surface (Huan J. Keh, 2016) [34]. This flow is often driven by an osmotic
pressure gradient emanating from the concentration gradient parallel to the surface.
Unlike other flows where pressure gradient enables movement, diffusioosmotic flows can
occur even in the absence of pressure gradients [21,22,34]. We need not look farther
than the human body where this phenomenon aids the transport of material because of
concentration gradients at solid surfaces [8,21,32]. Whether in large scale industrial
processes or in laboratory settings, we often encounter concentration gradients. We
might make assumptions, choose certain initial conditions, and set specific boundary

conditions, these factors in turn influence the concentration gradients.



Diffusiophoresis is the flow of colloidal particles in an agueous solution of an
electrolyte solution due to concentration gradient of a solute which can direct movement
without the aid of an external force (Huan J. Keh, 2016) [34]. These suspended particles in
solution may be in the nanometer range or possess larger diameters while the interfacial
double layer region at the surface of the colloidal particle will be the order Debye length
wide (typically in nanometers) [22,26,30,34]. This can be a veritable process for
transferring similar small length scale particles in and out of a pore as well as preventing
mixing of colloidal particles, and for several important applications (Huan J. Keh, 2016). In
their work on diffusioosmosis-dispersion of colloids using Taylor dispersion analysis,
Alessio et al (2022) [12] found that in the absence of mean flow, dispersion is driven by
the flow created by diffusioosmotic wall slip such that spreading can be increased by

increasing the diffusioosmotic mobility of the channel wall [26].

Before defining the chemical potential, we should first consider its important
component: Gibbs free energy. If we have a multicomponent system, the Gibb’s free
energy (for pure fluid) is a function of temperature, pressure, and the number of moles of
each species. The partial molar Gibb’s free energy (for mixtures) is the Chemical potential
which is very vital to diffusion [38,39]; it is the driving force for mass transfer; the
molecules of species move from a higher chemical potential to a lower one [40]. For
instance, dissolving salt in water lowers the chemical potential, making the resulting
solution more stable. This is the energy released or absorbed due to changes in the

particle number of a given species [38, 39].



Due to the possibility of changes in fluid properties like viscosity, it is sometimes
impossible to get the optimal benefit from the intended application. The force acting on a
liquid in contact with charged solid surface of the channel relies on the electrolytes in the
solution, roughness, charge, and hydrophilicity [34]. Having a charged surface creates
another layer known as electrical double layer (EDL) around the channel wall [34].
Consequently, at locations near the wall, ionic presence is far greater than at the center.
The movement of fluid through the channel with more charges would be easily
controlled. The impact of such flows can be analyzed using the physical properties of the
system in consideration. Diffusioosmosis of an electrolyte solution occurs due
electroosmosis, that is, the induced macroscopic electric field that is generated because
tangential diffusion and convection fluxes of the two electrolyte ions are unequal [34].
This phenomenon occurs in conjunction with chemiosmosis, a condition describing the
tangential gradient of the excess pressure inside the electric double layer. (Huan J. Keh,

2016) [34].

In this thesis, we develop a model for the chemically driven flow in a small
microchannel caused by the combination of diffusioosmosis and buoyancy-driven
convection. Our development follows that of Alessio et al [12] closely, and we will use the

ideas of averaging to gain insight into the fluid flow and chemical transport.



Chapter 2. PROBLEM SET UP AND THEORY

In this chapter, we develop a modeling framework to describe the chemically driven
flow in a channel due to a combination of diffusioosmotic slip and buoyancy. Using ideas
of dispersion developed in Alessio et al. (2022) [12]. We reduce the coupled system
governing fluid and chemical transport into a single one-dimensional diffusion-like

equation for transport.

2.1 Problem setup

We consider a microfluidic channel represented by a 2D rectangular structure
whose height is 2h and length [, where h is much smaller than [(See Fig. 2.1). The
channel is filled with liquid containing dissolved salt. The concentration of solute is
c(x,t). Gradients of solute concentration drive flow over velocity V, duetoa
combination of (i) buoyancy forces and (ii) diffusio-osmotic slip at the walls due to
interactions of the solute with the surfaces of the wall. The solute is transported through
the channel because of molecular transport and fluid flow. Using the Navier-Stokes
equations, convection-diffusion equation for chemical transport, and applying the
appropriate initial and boundary conditions including diffusioosmotic slip velocities at the
top and bottom walls, V;, we determine the average concentration of solute in channel.

We analyze the system for both uncharged and charged wall conditions.



L V- g 2h

X

o~

l

Figure 3: Schematic representing a 2D microfluidic channel of height of 2h and length [. Both top and bottom have a
slip velocity V; . The fluid is moving with a velocity VV under the influence of gravity g, and chemical potential from the
mixing concentration gradients from the denser solution(left) and the light solution (right)

2.2 Fluid Transport

We describe the fluid flow in the long microchannel using the Navier-Stokes (NS)
equation. Considering the application and geometry, we simplify the equation for laminar
flow having low Reynolds number. The incompressible flow is two dimensional (2D) with
the vertical flow much lower than the horizontal one given the assumption that the
height of the channel, h, is much smaller than the length, [ . The NS equation consists of
the local acceleration and convective acceleration, with mass represented by density term
on the left side of the equation. On the right, we have the pressure gradient, viscous

term, and body force term.

ov 5
p<a+(V-V)V)= —Vp+ u-VV+ pg.

Here, p and u represent the fluid density and viscosity.

We are interested in small channels, where fluid inertia is negligible due to small

Reynolds number (% is small). An estimate for a typical flow scenario is H~ 100

microns, V ~ 10 microns/sec, u = 1073 Pa s, p = 1000 kg/m3 .

9



Implementing the assumptions for negligible local acceleration of fluid in the
microchannel, incompressibility (V + V = 0), and that the vertical fluid flow direction
opposes gravity hence the negative sign, NS equation simplifies to the Stokes equation

below:
Vp= uv?v—pge, .

Accordingto p = po(1 + yc), the density at initial time is p,, and the density at

certain concentration ¢ is py yc which is composed of the solutal expansion coefficient y

The vector notations for pressure, viscous, and gravity terms were decomposed to

horizontal and vertical components, to yield,

o _  (02Vx  O%Vx
5_”(ax2+ay2)' O
ap a%v, = 9%,
2y (32 +25) - po(1+y0)g. @

Here, V, and V,, are the horizontal and vertical velocities.

The following are the boundary conditions representing the diffusion-osmotic slip

velocities at bottom and top of the channel as well as a zero net flux condition.

G =+h) =22 =+h), (3)
L =-h="20=-h, )

10



h
J, %y =0, (5)

Mac . e L :
where a_xc is the diffusion-osmotic slip velocity at the top and bottom walls. M
represents mobility proportionality constant that allows diffusioosmosis to occur as the

. . ac . : .
fluid contacts the static channel wall. i is the concentration gradient along the channel.

2.3 Solute Transport
We now consider the movement of solute through the channel as described by the
following transient diffusion-advection equation.

aC+V Vc = DV? @aC+VaC+VaC—D azc+azc 6
at TV CE ST g T ey T P\ ax2 T 9y2 (6)

Expressed both in vectoral and in 2D Cartesian coordinates, the equation is
composed of a transient term, advection terms, and diffusion terms. D is the diffusion

coefficient, a proportionality constant between flux and concentration gradient.
2.4 Scaling Analysis and Theory

Since the PDEs (1 — 6) are challenging to solve even with the most sophisticated
computer system, scientists and engineers often tackle such problems by expressing
these equations in a simplified form to which approximate solutions can be obtained. To
identify these simplifications, we first non-dimensionalize the system. We re-define each

parameter represented in the equation as another term such that it is dimensionless. As a

11



result, the number of unknowns were reduced, causing the innate complexity to also
decrease. By setting the terms to non-dimensional forms or re-writing the expressions to
equal unity, we can compare each term with others using our chosen assumptions and
determine which can be neglected because it would be significantly smaller than the
other terms. This can bring about a drastic reduction in complexity, as a 3D non-linear
PDE equation can be simplified to 1D linear form. Depending on the initial set up of the

problem we are interested in solving, we can transform the PDE into an ODE.

In this work, we also employ redefine, re-write, compare, and simplify steps to
reduce the difficulty level of the Navier- Stokes equation and the convection-diffusion

equation derived earlier.

We use [ and h as characteristics length scales in the horizontal (x) and vertical (y)
directions, respectively. Using I > h, we derive an expression for pressure, p, the

horizontal pressure gradient, and the vertical pressure gradient after neglecting the less

. 0%V
predominant terms, 3

—. Thus, balancing viscous stress in the horizontal momentum
X

equation, we obtain the pressure scale.

P u uVl
—_ ~ — p ~
l h? h?

Similarly, we perform scaling on equation (2), and neglecting the term containing the

2
d vy
0x?2

smaller horizontal length, . So, we are left with the following equations:

12



L= —py(1+ y0). @)

2
1 (Zyvz" . (8) Taking derivatives with

respect to y on equation (7) and with respect to x on equation (8) and equating the

resulting expressions, we obtain:

ud3Vy _ pogydc
6y3x - ax (9)

We rescale equations (5) and (6) to obtain the expression for characteristic velocity of

flow driven by density gradients, V;,(convective flow) and the characteristic velocity of

flow driven by concentration gradients, V.. A balance between buoyancy forces and

__ Pogyc”

. . v . r
viscous forces, which can be expressed as ‘;1—3 T identifies

pogyc*h?
o~ (10)

where c¢* is a concentration scale. The velocity scale due to diffusion-osmotic slip is

y~Me (11)
We define non-dimensional quantities for horizontal velocity (U), height (Y),
length (X), and concentration C according to:

U=§ =V, =VUX,Y). (12)

c

13



Y=% = y=nhY. (13)
=> x=1X . (14)
C=— = c=c"C. (15)

We note that U and C implicitly also depend on time, we then substitute equations (11)

through (15) into equation (9) to obtain the following:

wve 93U pogyc” aC 16

h3 ay3 1 ax (16)
3 *p3

0°U _ _ pogyc’h” oC (17)

ays3 luv, 0x

Recalling equation (9), and simplifying equation (16), and defining

_ Vg _ pogyc'h?
= f=2r— (18)

we obtain the simplified (approximate) equation for the dimensionless horizontal velocity.

v _ o, (19)

avr3 ax

The non-dimensional boundary conditions obtained from equations (3), (4), and (5)

ac

Uy =1 ==, (20)
Uy = —1) = g—f( 21)

14



[Luar=o0. (22)

To solve the horizontal velocity, we integrate equation (19) three times to obtain an

expression for U,

ac v3 Y2
U——F(£?+d17+d2Y+d3), (23)

where d, , d,, and d; are integration constants.

Applying the boundary conditions and the flux condition (20 — 22), we determined the

. . 3 ac 1 acC .
constants of integrationtobe d; = — T ox ,dy = —=— ,d; = T ox . Substituting

these values into equation(22) and further simplifying yields
— _ 9L ry3 _ 11 _2y2
U= - [6 (Y3—v)+35 (1-3Y )] . (24)

Now that we have obtained an approximation for the horizontal velocity, U, we will

proceed to the get an expression the vertical velocity, V. Like the horizontal velocity U,

C

V= is the non-dimensional vertical velocity, and I,/ = UT is the characteristic

SIS

vertical velocity scale. We apply the continuity equation to establish a relationship

between U and V,

v au
ax ox’

15



We then substitute the expression in equation (24) for U , integrate with respect to,
and apply Boundary conditions at Y = 41 as in equations (20) through (22). The

resulting expression for vertical velocity is therefore:

= - B E-Ee) o) @)

Figure (4) plots profiles of velocities [horizontal(U) and vertical (V)] across the
cross-sectional coordinate, Y of the channel vs the velocities [horizontal(U) and vertical
(V)]. The blue curve represents horizontal velocity, and the red curve is the vertical
velocity. We observed that curve U is maximum close to Y = 0 the center of the channel.
However, the maximum may shift up or down depending on the value of I'.It is also
worthy to note that at Y = +1, the fluid velocity is not zero, confirming the effect of

diffusioosmosis.

— T T T T T T T
u
08 \

06
04

02F

02
0.4
0.6 [

0.8 [

-12 -1 08 06 -04 -02 0 02 04 06

V(U,V)

Figure 4. Velocity profile of channel cross-sectional height, Y vs velocities V (U, V). We consider the effect of gravity
and diffusioosmosis for uncharged system with flow parameters, ' = 1.

16



Next, we rescale each term represented in equation (6). The typical scale of each term is

given below

ac c* .

— ~ = Transient term (l)

at t*
ac c* . .

V;CE ~V n Horizontal Advective term (ll)
d h * .

1/3,—C ~= VCC— Advective term (Il1)

hY% l h

93¢ c* . . .

D — ~ D = Horizontal Diffusive term (IV)
0x2 12
d%¢c c* . . .

D — ~ D — Vertical Diffusive term (V)
oy? h2

Since | > h, that is, the dominant term with which we compare transient term are
the horizontal advective term. Whereas the transient term is compared with the vertical
diffusive term due to the action of gravity, and given the above vertical-horizontal length
scale, it would take longer to diffuse across the length of the channel. To determine the

duration of both advection and diffusio-osmosis in the channel, we linearly compare the

vertical diffusive term (D %) and horizontal advective term (V. CT) separately with the

transient term (%) in equation (6) . This results in advective time scale, t; = — and
c

e h? - . -
diffusive time scale, t; = rE We represent characteristic concentration and characteristic

time (which could be diffusive or advective depending on the reference for comparison)

as c* and t*, respectively.

17



We are then non-dimensionalize equation (6) as shown below:

ac+Vt*Uac+th*t*Vac_Dt*aZCJrDt*aZC 26

aT 1 90X | “h aY 12 9X? h? "~ 9y?’ (26)
) . h Dl

Where we have defined T = t/t*, € = n and D = =

We rewrite equation (26) using €, the geometry scaling factor (which is small), and D, the
non-dimensional diffusivity which compares to the advection across the channel, leading
to

A Usat Voo =D o+ 22— .

oT X ay aY? 0X?

ac ac acC 9°c d%C
’ @27)

Eqn. (27) describes the two-dimensional transport of solute in the channel, written in
dimensionless form. Our goal is to obtain a simplified description of the average solute
transport in the channel, in which the variations across the channel (along the Y axis) are

averaged out. To achieve this, we first decompose the concentration in the channel

C(X,Y,T) as the sum of average concentrations, C and deviation from average, C'.
(Alessio et al., 2022) [12]. The former refers to the cross-sectional average concentration
of solute at different positions and times, and the later describes perturbation,
accounting for the slight variations from the original concentration due to instabilities
emanating from flow in the vector field. Mathematically, these quantities are defined

according to
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CX,Y,T)= C(X,T)+ C'(X,Y,T). (28)
= 1,1
cX,T)= Ef_lC(X,Y,T)
C'X,Y,T)= C(X,Y,T)— C (X, T)
We then substitute equation (28) into equation (27)

a(C+Cy aWU(C+C)) aW(C€+cCh
T T ax T oy

92(C+C) d*(C+CH
— 2
=D (s X2 + 372 . (29)

Next, we take the average of (29) across the height of the channel to determine the

average transport of solute, to arrive at the following:

aE+a ﬁ+ﬁ+a Ve
aT ax( ) aY( )

,0%C 0%
=D EW-I_W(C-FC) . (30)

Integrating (or averaging) equation (29) with respect to Y from-1 to 1 allows for the

elimination of all derivatives with respect to Y. Equation (30) then simplifies to:

2T+ Lue
oT ' aX aX
,0%C
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Approximation for C’

Next, we find an approximation for concentration deviation, C’ by first subtracting

equations (30) from equations (27).

L L R A N, I
ar T Vax TV ox T v T ey T ax ox
_p(2¢,2C 32
~ T \oxz T oavz) (32)

The scale of each term in the equation is estimated and compared with other terms, with
a view to determining which would be neglected while retaining the dominant terms. In

addition to the length (I) being much greater than the height (h), the concentration

deviation (C’) is also much smaller than the average concentration (C). The characteristic

scales of transient and advective terms on the left side of equation (32) are approximated

below:
acr ¢’ ac c acr cr ac c .,oc’ c' 4 T = c
— ~= U=~U-, U— ~U=, V=~V V—~V— —UC ~U-
oT T’ X 1’ 0x 1’ ody n = ay h’ 0x 1’
G| 7 c’
— UC ~U—
ox l

Similarly, the diffusive terms on the right have the following scaling expressions:

a2cr D c’ D d2cr

D
0x2 2’ ay?2

CI
~D
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a2cr d2cr
D
X2 < ay?2

. N ac’ ac .
Since D we neglected the X derivative, and V; K U& in congruent

with the established fact that C’ is much smaller than C . After comparing dominant

terms and neglecting sub-dominant terms, we obtain

ac’ ac o ,—
ar T Vax aX(U)

=D _ (33)

Equation (33) can be simplified further by comparing the transient term with the diffusive

term.

Seeking solutions for long times T > h?/D , we eliminate the transient term. Also, the

advective term, %( UE) = 0. Therefore, the PDE with which we find an approximation

for concentration deviation, C’ is:

ac

0X

a%C’

=D
0Y?

(34)

We then substitute the expression for U in equation (24), using the approximation

(Z—f{) = (Z—;) [since C' K E]. Rearranging, we obtain
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=56 G- ere-

1) . (35)

Upon integrating twice, we have

%(@)2 [E (ﬁ_Y_S)Jr% (f—%z)+dly+d2 :

C'
X 6 6 20

R

!

Applying the boundary conditions: %

0, Y = +1, we obtain the value ford, =

—% . Also, asserting that f_ll C'dY = 0 (which is true by definition), gives the value of

7

d, = 0 Now substituting the values of d; and d, into equation (33) we obtain an
expression for C' .
— 2
C,~1ac r [vy3 vy? Y+1 Y4 Y2+7 36
- D\ox) [12\3 10 2 4\ 2 30/| (36)
We adopt the previous simplification that (g—;) = (Z—)C() , and use Mathematica to
perform integration of equation (35) fromY = —1to Y = 1, resulting in the following
expression for UC’ .
-3
A 4 (ac\" (27+12)
0 = -5 () e (37)
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Substituting equation (37) into equation (31), noting that UC = U C and U = 0, we
eliminate % (UE) term, finally simplifying the equation (31) to the one-dimensional

transport equation

—.3 —
ot _ 9 [(x(ocy’ (27+1?) 220)

aT ~ ax [(D (ax) 2835 ) + (Dg ax /|’ (38)
Starting with Navier Stokes and solute transport equation, which is complicated, we

simplified the equation to a 1D non-linear diffusion-like partial differential equation. The

=3
. ac\” .
non-linear term (5) is the consequence of transport of solute by the solute generated

-3
fluid flow. The term involving I'? is the effect of gravity, whereas the (Z_)C() term

independent of I is the effect of diffusio-osmotic slip. The last term on the right is pure
diffusion, which occurs even in the absence of fluid flow. While equation (38) is a
significant simplification over the original coupled fluid and transport. It is still nonlinear,

so it must be solved numerically (discussed in the following chapters).
2.5 Charged Transport

Often, the walls of the channel have slight net charge. If the solute is ionic (e.g.,
NaCl), there are electrostatic interactions of the ions with the charged wall. In this case,
the mobility M, relation is slightly modified from before. Now the slip velocity at the top

and bottom walls of the channel, V; given by (Alessio et al., 2022) [12]
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{/’<
Il

a
M, (39)

1
Cc

The scaled flow velocities due to gravity I, and concentration ¥, are thus expressed as

follows:
v, =
pogc*h?
TR (40)
_ Mt
¢ c*l -
Y (41)

For charged surfaces, we define gravity parameter.

FC:V—g =
Ve

pogc*h?
boge (42)

Where I'¢ represent the ratio of gravity flow to the concentration flow for the charged

case.

Substitute equation (38) into equation (24) to obtain a modified expression for charged

horizontal fluid velocity, U°€.
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c — __ B_C F_C 3 _ i —
Ut = ax[e ¥ Y)+zc ¢
3v7)|. (43)
Recall D = hlz)‘l/ , substitute I, = % to get the charged representation,D°.

DI
M_h2

Using the same procedures for deriving the expression in equation (30) and replacing U

and D with U¢ and D€ respectively.

oc
U — =
ax

a%c’

D¢ .
ay?2

(44)

Similarly, we obtain the charged expression for the charged C'.

“\2 rrc 3 5 4
Cra (VI (¥ vy 1t o
DC\oX 12 c

7

és)]- (45)

Following steps as before, we obtain the effective transport equation for the charged case

ar — ax || pc\ax

27 2
— — =+TI°€
ac o 4 (ac)3 (52 )
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The above equation is like (38) for the uncharged case, except for one term

corresponding to slip.

Thus, we have reduced the non-linear coupled velocity and concentration 2D system in
equation (6) to a single 1D non-linear equation involving only concentration as shown in
both equation (38) for uncharged, and in equation (46) for charged walls. In the

following chapters we solve these equations numerically, and present results.
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Chapter 3. NUMERICAL SOLUTION METHODOLOGY

In this short chapter we outline the numerical method that we used to solve for the

solute transport.

3.1 Finite Volume Method

We utilized the finite volume method to solve the non-linear equation [equation
(38)]. First, we divided the channel length into n equal cells or segments. The flux, J of
‘material’ leaving a segment is the same entering the next cell. The average concentration
lies at the midpoint of each cell, and the distance between one midpoint and the next is
AX. Figure 3 illustrates a rectangular structure of length [ = 1, and having n = 5 cells.
Each cell serves as the reference point or location for determining the average

concentration. The flux to the far left is J, 5 and to the far right of the grid is J5 5.

<+ 13
Jos X, AX X, X3 Xy Xs  Jss
— =
e
0 02 04 06 0.8 1

Figure 5: A schematic showing flux J in and out of solution whose average concentration C is located at the center of
each grid X. The change in X direction is the distance between two midpoints of adjacent grids, AX. An illustration of
the application of Finite volume method.
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We outline the method through a list of steps.

Step 0: First, we write the transport equation in terms of a general conservation law
ac . @
pre 5] =0 (47)

From the general equation for an arbitrary flux (47) , we define the flux, J as for (i) pure

diffusion, (ii) uncharged wall, and (iii) charged wall cases as —Dz—;,

=+

c? _
(e ) o)) (36575 )+ (o 29

respectively.

Step 1: We write the finite difference approximation for flux by substituting (Eiﬂ — Ei)

for 8C , and AX in place of dX in step 0. The following are the fluxes to the right of each

cellior Ji41/2, for all three categories mention earlier.

Jiv12 = —W (pure diffusion)
~ 4 (Ciy1—C; 3(27+F2) 2 Ciy1—C;
Jivi2 & — 5( Ax ) Py + (DS T) (uncharged)
3(2—7+FC2>
~ 4 (Ciz1—Cj ¢ 2 Cis1—Ci
Jiv1z & — F( +A1X ) Py + (Dce #) (Charged)
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Step 2: We write an equation to advance transport equation (47) in time.

(5), =
aTi_

Ci(T+AT)—C;i(T)
AT

(48)

Where C;(T 4 AT) represent average concentration at next time, and C;(T) the average

concentration at current time. We then use finite differences in space to write
(), =
0x/; -
.1
2 2 (49)
where J;_1 represents fluxes at previous position.
2

We now substitute equations (48) and (49) into equation (47), and rearrange the

resulting equation to get an expression for C;(T + AT)

Ci(T+AT)—Cy(T) + UTE

=0
AT AX

CT +AT) = CT) =5 Uy

Ji2) (50)

We started by discretizing the modified general diffusion equation and used that as
guide also discretize the models (equations 38 and 46) we developed and will solve

numerically. Equipped with the “computer-friendly” form for each component of our non-
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linear PDE, we implemented the necessary codes using MATLAB and obtained interesting

results, which we discuss in the next chapter.
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Chapter 4. RESULTS AND ANALYSIS

We now consider the major result found in equation (46) and then compare for
the charged case. The right-hand side comprises of the fluid properties including gravity
that influences the bulk flow, and a concentration gradient term. The second term
represents the pure diffusion including the channel geometry and concentration gradient.
The finite volume method was implemented into MATLAB to create a model with which
we can tune and modify parameters such as I, D, and € to determine how the
concentration in the channel changes as time progresses. The effect of gravity embedded
in the I term is expected to influence the mixing process causing molecules to move fast
or slow from a higher concentration to a lower concentration until steady state or

equilibrium concentration is reached.

To show that flow can be influenced with both the action of gravity and chemical
potential, we consider the follow four (4) scenarios which includes: (i) pure diffusion; (ii)
gravity or bulk flow; (iii) uncharged flow with diffusioosmosis and gravity; (iv) charged
flow with diffusioososis and gravity. In each case, we study the time taken for the solute

concentration to reach 95 percent of the channel capacity for different parameters.

Filling of a dead-end pore: We now focus our attention on the specific situation of a
dead-end pore initially filled with fresh water (figure 6 a), exposed to salty water (figure 6
b), at inlet or opened end as shown in figure 6. In figure 6 (c, d, e), we show the evolution

of diffusion of salt in the channel. We then write the initial conditions:
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C(X, T =0) =0, and the boundary conditions C(X =0, T) = C, and boundary

T, B
conditions: E(X =1,T)=0,

We solve equation (38) ,and subsequently, equation (46) for the charged case.

Dead-end
Dense Less dense
Inlet —— Co (X’ T) V9 'g l
> c(X,T)
—
Fresh water T=0 Salty water T>0

(b) (c)

Figure 6. (a) A sketch of the dead-end microfluidic channel with an opened left end where the salty solution was
introduced. (b) & (c) describe progression of flow from when the channel contains fresh waterat T = 0, to the
introduction of salty liquid (c) at T > 0 As time evolves to a large T, the blue color will eventually start to fade due to
the action of diffusioosmosis and gravity.

4.1 Pure Diffusion

First, we considered the effect of having a flow strictly controlled by diffusion as the
entire term of the first portion of the right-hand side of equation (46) is set to zero as

expressed below:
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Weset D =1, and € = 0.1 in a classic diffusion to see how the average concentration
varies simultaneously with time and position along the channel. The curves in fig 7 show
how the concertation of solution changes along the length of the channel whose flow is
solely driven by diffusion or concentration gradients. Plots were generated from left to
right,atT1 =1e-9,T2 = 0.025,T3 = 1.0,T4 = 10,and T5 = 40. As time
progresses, the concentration of the light solution increases whilst that of the denser

solution decreases.

Tk T1=1e9
\-\ T2=0.025
\ T3=10
8.8 T4=10
s T5=40
C 06 R
04 '
0.2
0> . 1 A ' ' =
0 0.2 0.4 06 08 1

X

Figure 7. Pure Diffusion plot with average concentration (C) on the vertical axis and channel length (X) on the
horizontal axis. Plot times are 1e — 9 (blue), 0.025 (red), 1.0 (yellow), 10 (purple), and 40 (green). D =1, ¢ = 0.1.

4.2 The effect of gravity, with negligible impact of diffusioosmosis.

We consider the effect of having a predominantly gravity-driven flow by turning off
the entire second term of equation (46) [De&? Z—)C(], and setting D = 1, and ¢ = 0.1.
Although the diffusioosmosis and gravity terms in the same equation are coupled, we

@)3 @7)

. e .4
assume the long channel length renders the impact of diffusioosmosis in > (ax pyn

s _— ac .
significantly less than the contribution from De? x which was set to zero. The plots
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obtained from figures 7 and 8 supports the claim that gravity plays a higher role, in that

T5 plot terminates at a higher C here than the pure diffusion case where I" was

automatically zero. The axis and plot times are the same as the diffusion flow in section
4.1. We observed the impact of increasing the value I' which implied changing the fluid
properties. By reducing the viscosity, the influence of gravity also increases causing flow
to proceed at a faster rate. So, at lower T values, the concentration profile for curves as

time advances show slower progression when compared with higher values.

1h -T1=1e-9
T2=0.025
T3=10
081 T4=10
T5=40
0.6f T
C
041
0.2
OL — — 1 L A -
0 0.2 04 0.6 08 1

X

Figure 8. Plot of average concentration (C_) vs channel length (X) for Gravity-dominated flow channel, with some
impact of diffusioosmosis. Plot times are 1e — 9 (blue), 0.025 (red), 1.0 (yellow), 10 (purple), and 40 (green). D =1,
£=0.1,T=5.

4.3 The combined effect of diffusioosmosis and gravity — uncharged systems

Next, we consider the main situation of interest where both gravity and chemical
potential influence the progression of flow thus favoring mixing. We will keep all
parameters in equation 46 and adopt the same procedure including time plots used in
section 4.2, increasing the value of I' while keeping € at 0.1, and accounting for slip

conditions. As expected, the plot generated in figure 4.3 at T = 40 terminated at slightly
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higher average concentration than the previous case and much higher than the pure
diffusion scenario. We also compared this result with I" values of 1,3, and 10, and
confirmed the flow increased while keeping € and D constant. Comparing figure 9 with
plots from figures 7 and 8, we noticed increase in flow due to the joint action of

diffusioosmosis and gravity.

1h T1=1e9
T2=0.025
T3=10
T4=10
T5=40

08

2l
o
=)

04

02

02 04 0.6 08 1

X

Figure 9. Plot of average concentration (C_) vs channel length (X) for Combined effect gravity and diffusioosmosis in
uncharged systems. Plot times are 1e — 9 (blue), 0.025 (red), 1.0 (yellow), 10 (purple), and 40 (green). D =1, € =
0.1, T =5.

4.4 The combined effect of diffusioosmosis and gravity — charged systems.

When the fluid is charged the flow is faster than the uncharged fluid. Taking into
consideration slip velocity condition at the top and bottom walls of the channel, we show
this by choosingD = 1,and ' = 5. Unlike the in the previous cases, plots were
generatedatT1 =1e-9,T2= 1le—7,T3 = 1le—5,T4 =1e —3,and T5 = 0.025.
The last time plot was particularly chosen to serve as reference for comparison between
the charged systems and the uncharged systems. We observed that in all cases previously

considered, the channel is barely starting to get any flow at T = 0.025 whereas we saw a
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rapid flow which caused the channel to fill up at the same T value. Starting from C=1at
the channel inlet, the average concentration decreases as the effect of gravity increases

and having the impact of diffusioosmosis.

1 : T1=1e-9
\ —T2=1e7
9 T3=1e5
e —T4=1e-3
— T5=0.025
C los & ]
0.4}
02}
O»,,- - ) 1 1 L
0 02 0.4 06 08 1

X

Figure 10. Plot of average concentration (C_) vs channel length (X) for Combined effect gravity and diffusioosmosis in
charged systems. Plot times are 1e — 9 (blue), 1e — 7 (red), 1e — 5 (yellow), 1e — 3 (purple), and 0.025 (green). D =
1, e=01T=5

We have seen how the average concentration € varies in the channel as the solute

moves from one position, X to another as time, T progresses. We have compared

E(X, T) plots for pure diffusion, gravity effect and minimal diffusioosmosis, gravity effect
with diffusioosmosis for both uncharged and charged systems. We observed from plots
which channel fills up faster from the last average concentration gradient plots at time
T5. It will be more beneficial from a product design precision standpoint to determine

how long it would take to achieve a certain capacity of the average concentration.
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4.5 Time to fill the channel.

Now, we seek to determine how long it will take for the average concentration in
the channel to reach a certain target value, say 95% of the inlet concentration. We define

another parameter mean concentration, < € > (T) which is the average of the average
concentration E(X, T) eliminating the X dependence. Thatis, < C > (T) =

[, T, ™.

We refer to tests performed in sections 8,9, and 10 keeping the values of D, and €
constant and changing I . First, we plot < C > vs (T) with each plot representing
different T values (we chose T' =1,2,3,5,10). The following plots (Figure
11(a)through 11(d)) show how the mean concentration increases with time, as the
value of T'is raised. Plot 4.5(c) and (d) represent the effect of both gravity and

diffusioosmosis in charged systems, with (d) being an

expanded image for (c). As seen before, the flow is much faster in charged systems, filling

the channel within a short amount of time. We observe that at around T = 0.025, we
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attained 95 percent of the mean concentration, < C >, whereas the time was about 40

for combined diffusioosmosis with gravity in uncharged systems.

1
038 ——
08F — -
0.6} Gamma = 1
06 < C > Gamma =2
Gamma =3
<C>0‘. ) 0.4 Gamma=5
o Gamma = 10
02§ 0.2
[
0 0
0 10 20 30 40 0 10 20 30 40
T T
(&) (b)
1 Gamma =1 1
Gamma = 2
Gamma=3
08
e Gamma=5
Gamma = 10
< C > 06 - C - 06
04 04t Gamma =3
—Gamma=>5
Gamma = 10
02;
0‘ 0.08 i " N .
0 02 04 06 08 1 0 0.005 001 0015 0.02 0.025
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Figure 11. Plots of mean concentration, < C > vs time, (T) .In plot (a), we have predominantly gravity enable flow
with some diffusioosmosis. In plot (b), we have the combined effect of gravity and diffusioosmosis for uncharged
systems. In plot (c), we have joint impact of diffusioosmosis and gravity for charged systems.D =1, ¢ = 0.1, =

1,2,3,5,10.

The above plots give an idea in agreement with the previous section of which situations

would be favorable for faster flow but, we still do not have a precise time at which we can

reach any desired fraction of mean concentration. So, we extract the mean concentration

values
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generated from MATLAB simulations for each case in sections 8,9, and 10, but with five

(5) values of " as shown in table 1 below.

Table 1. Mean concentration data generated from MATLAB for the effect of gravity and diffusioosmosis in charged
system.D =1, e =0.1,T = 1,2,3,5,10.

<C>

T r=1 r=2 r=3 r=s =10

0 0.0001 0.0001 0.0001 0.0001 0.0001

1.04E-07 | 0.012779 | 0.012806 | 0.012851 | 0.0129%6 | 0.013674

1.00E-05 | 0.040388 | 0.041502 | 0.043255 | 0.048564 0.0675

0.001 | 0.280552 | 0.350759 | 0.407017 | 0.454457 | 0.625557

0.025 | 0.959316 | 0.959652 | 0.59989 | 0.959958 1

This is an example of data obtained for the charged system. We interpolation or
extrapolation depending on where 95 percent (0.95) lies in the table. So, here we would
have five (5) values of Tys . We repeat this process for other two cases to obtain two sets

of five (5) Tyg with the corresponding I" values as shown in table 2.
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Table 2. Calculated time to reach 95 percent of mean concentration. Data generated from MATLAB for the effect of
gravity and diffusioosmosis in charged system.D =1, € = 0.1, T = 1,2,3,5,10.

Gravity Gravity with Gravity with
- only Tses Diffusioosmosis Diffusioosmosis (Charged)
(Uncharged) Tes Tos
1 59.19175 47.288435 0.023087
2 54.93321 45.849411 0.023043
3 51.84218 45. 17041 0.02298
5 47.7718 44.37925 0.0228
10 40.5088 38.79662 0.021791

Next, we plot the Ty with the corresponding values of I in figure 12.

Gamma vs Time to reach 95 percent of Channel Gamma vs Time to reach 95 percent of Channel
] iffusi is with Gravity driven
canaclt thy Gravity driven flow capacity for Diffusioosmosis wit y
for 4 fo flow (Uncharged)
g .
E ¢ s
8 . &
0
< 4 90 « 8 - 4 a“ 46 4
Tos
(@) {b]

Gamma vs Time to reach 95 percent of Channel
capacity for Diffusioosmosis with Gravity driven
flow (Charged)

Gamma
’ o =

{c)

Figure 12. Plots of Gamma vs Time to reach 95 percent of average concentration, Tys. In plot (a), we have
predominantly gravity enable flow with some diffusioosmosis. In plot (b), we have the combined effect of gravity and
diffusioosmosis for uncharged systems. In plot (c), we have joint impact of diffusioosmosis and gravity for charged
systems.D =1, €¢=0.1,I'=1,2,3,5,10.
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Finally, we create a vector field plot for the effect of gravity and diffusioosmosis in
uncharged system. Weset D =1, ¢ = 0.1, ' = 10, to obtain the velocity field in Fig. 13

showing a recirculating flow combined with slip at the walls.

1.5 T T T T T
1F ==z
\\\\\
~
05 B \\\\\\\i\\\\
P ARRARAANNAANAAANNY
........ TaaATAIIAAYTYIAAYYTYYYYY
rerrrrrrrrretrrttLLY
Y __________________ srrrrrrrrrrrrrrrrrrtt
AP PPPLPPIILILILIITT
SPPSSSSSISST
OF AP
-0.5r
_1 o — p—
-1 5 1 1 1 1 L
-0.2 0 0.2 0.4 0.6 0.8 1

Figure 13. Vector field Plots of the combined effect of gravity and diffusioosmosis for uncharged systems at T = 40.
We set the flow parameters forD =1, € = 0.1, I = 10.
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Chapter 5. CONCLUSIONS AND FUTURE WORK

We showed that, without external forces, gravity and chemical potential can drive
flow concurrently. We formulated a problem involving the introduction of saltwater into a
rectangular microfluidic channel containing fresh water. We focused on what happens as
the dense salt solution contacts the less dense fresh water and the impacts on the
resulting solution as time evolved. Starting with the Navier-Stokes equation and non-
dimensionalizing, we obtained an expression for the horizontal velocity,U and substituted
into the convection-diffusion equation, resulted in a complicated 2D coupled non-linear
system. After applying averaging ideas following arguments of Taylor-dispersion, we

derived an expression for concentration deviations, C' and, simplified the 2D system into

a 1D non-linear system involving only the average concentration, C .

We performed mesh discretization using the finite Volume Method on the non-
linear partial differential equation and completed the process with MATLAB simulations.
We varied the fluid property, I' for the effect of predominantly gravity with some
diffusioosmosis, solely diffusioosmosis, and compared the outcomes with those obtained
when both factors were jointly involved. The results show that flow proceeds faster with
the joint action of gravity and diffusioosmosis, and even much faster when the system is

charged.

There are possibilities for achieving further enhancement of solute transport by

flow in future. Choosing a different orientation for the microfluidic channel such that it is
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slightly slanted could enhance the effect of gravity since the results support that gravity
plays a higher role in the mixing process. We could also decrease the length of the
channel to allow for multiple mixing actions, smoothen the surfaces for easy charge
dissipation, and use a cylindrical geometry channel. We could consider a multicomponent
system such as a body fluid: the blood, containing plasma, red blood cells, white blood
cells, and platelets, for drug delivery and therapeutic applications. Finally, careful
upscaling of this work could be applied to various large scale industrial processes

involving mixing.
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