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ABSTRACT OF THE THESIS 

Analysis of Flows Driven by Gravity and Chemical PotenDal 
in a Microfluidic Channel 

 
by 

 
Adewale A. OluwaDmehin 

 
Master of Science, Graduate Program in Mechanical Engineering 

University of California, Riverside, December 2023 
Dr. Bhargav Rallabandi, Chairperson 

 
                  We developed a model for analyzing flows driven chemically by the joint effect 

of diffusioosmosis and buoyancy-driven convecEon in a small microfluidic channel. The 

dead-end channel containing fresh water is fed salty water having a higher density. We 

simplified and non-denaEonalized the Navier-Stokes equaEon, and s derived an 

expression for the horizontal velocity, 𝑼  resulEng in a convoluted coupled non-linear 

convecEon-diffusion 2D system. Using Taylor-dispersion arguments to support the 

averaging approach, we derived an expression for concentraEon deviaEon, 𝐶!(𝑋, 𝑌, 𝑇)  

and simplified the 2D system into a 1D non-linear system involving only the average 

concentraEon, 𝐶	(𝑋, 𝑇) 

        We obtained a numerical soluEon for the mean concentraEon, < 𝐶 > (𝑇) and the 

Eme to fill the channel using the finite volume method and MATLAB. We varied the fluid 

property, (the raEo of density gradient flows to concentraEon gradient flows) for the 

effect of gravity with diffusioosmosis and solely diffusioosmosis and compared with 
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results obtained when both factors were involved. The results show that flow proceeds 

faster with the joint acEon of gravity and diffusioosmosis in uncharged systems. 

Furthermore, we observed much faster flows when in charged systems due to the ionic 

properEes of the solute, which further strengthens the electrostaEc interacEons of the 

ions with the charged channel walls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 

Acknowledgements ........................................................................................................... iv 

Abstract of the Thesis ........................................................................................................ vi 

Chapter 1. INTRODUCTION AND BACKGROUND ................................................................ 1 

  1.1 Microfluidics and microchannels .......................................................................... 1 

         1.2 Density-driven flow in a microfluidic channel....................................................... 2 

         1.3 Pressure-driven diffusion flow in a microfluidic channel ...................................... 4 

         1.4 Diffusioosmosis, chemical potenDal and charged flow ......................................... 5 

Chapter 2. PROBLEM SET UP AND THEORY ........................................................................ 8 

        2.1 Problem set up ...................................................................................................... 8 

        2.2 Fluid Transport ....................................................................................................... 9 

        2.3 Solute Transport .................................................................................................. 11 

        2.4 Scaling analysis .................................................................................................... 11 

        2.5 Charged transport ................................................................................................ 23 

Chapter 3. NUMERICAL SOLUTION METHODOLOGY ........................................................ 27 

      3.1 Finite Volume Method ........................................................................................... 27 

Chapter 4. RESULTS AND ANALYSIS .................................................................................. 31 

       4.1 Pure diffusion ....................................................................................................... 32 

       4.2 The effect of gravity with negligible impact on diffusioosmosis ........................... 33 

       4.3 Combined effect of diffusioosmosis and Gravity – uncharged systems ................ 34 

       4.4 Combined effect of diffusioosmosis and Gravity – charged systems .................... 35 

       4.5 Time to fill the channel ......................................................................................... 37 

Chapter 5. CONCLUSIONS AND FUTURE WORK ............................................................... 42 

References ........................................................................................................................ 44 



ix 
 

LIST OF FIGURES 

Chapter 1 

Figure 1: A microfluidic lab on a chip device ...................................................................... 2 

Figure 2: Conceptual rendering of the simplest form of the T-sensor ................................ 4 

Chapter 2 

Figure 3: SchemaDc represenDng a 2D microfluidic channel .............................................. 9 

Figure 4:   Velocity profile of channel cross-secDonal height, 𝑌 vs velociDes 𝑽(𝑈, 𝑉) ..... 16 

Chapter 3 

Figure 5: A schemaDc showing flux 𝐽 ................................................................................ 27 

Chapter 4 

Figure 6:  A sketch of the dead-end microfluidic channel ................................................. 32 

Figure 7: Pure Diffusion plot ............................................................................................. 33 

Figure 8: Effect of Gravity-dominated flow plot ................................................................ 34 

Figure 9: Effect of Gravity with diffusioosmosis flow plot (Uncharged) ............................ 35 

Figure 10: Effect of Gravity with diffusioosmosis flow plot (Uncharged) .......................... 36 

Figure 11: Plots of mean concentraDon, < 𝐶 > 𝑣𝑠 Dme, (𝑇) .......................................... 38 

Figure 12:  Plots of Gamma vs Time to reach 95 percent of average concentraDon, 𝑇"# . 40 

Figure 13: Vector field Plot ............................................................................................... 41 

 

 

 

 

 



x 
 

                                                           LIST OF TABLES 

Chapter 4 

Table 1: Mean concentraDon data generated from MATLAB ............................................ 39 

Table 2: Calculated Dme to reach 95 percent of mean concentraDon .............................. 40 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

Chapter 1. INTRODUCTION AND BACKGROUND 
 
                                          
1.1 Microfluidics and microchannels 

           A system that uElizes a small amount of fluid ranging from 10 to 500 micrometers, 

is referred to as microfluidics. The emergence of this technology in the 1980s brought 

about live-changing innovaEons such as DNA chips, inkjet printheads, lab-on-a-chip, 

micro-propulsion, micro-thermal technologies, etc [1,2,3]. In the design of systems that 

process small quanEty of fluids, microfluidics plays a vital role to meeEng the demands for 

automaEon, high-throughput screening (tesEng mulEple biological, chemical, or 

pharmacological samples), and mulEplexing (transferring mulEple signals over a single 

cable line) [18]. A lab-on-a-chip (LOC) device performs on a miniaturized scale one or 

several laboratory analyses [6,10]. It integrates and automates mulEple high-resoluEon 

laboratory techniques such as synthesis and analysis of chemicals or fluid tesEng into a 

system that fits on a chip [8]. At this scale, it is easier to control the movement and 

interacEon of samples, causing reacEons to be much more potent, and minimizing 

chemical waste. It also minimizes exposure to dangerous chemicals [10]. 
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Figure 1: A microfluidic lab on a chip device. News Medical Life Sciences. h?ps://www.news-medical-.net/life-
sciences/Benefits-of-a-microfluidic-Syatem.aspx [11]. 

 

         There is an increase in demand for Lab-on-a-Chip (LoC), also known as micro-total 

analysis system (μ-TAS). The global lab on chip business was esEmated at USD 5.75 billion 

in 2021 and is predicted to reach around USD 15 billion by 2030 [11]. 

1.2 Density-driven flow in a micro-fluidic channel  

         Several works have been recorded of flow enabled by densiEes of fluids in a micro-

fluidic channel including the producEon of polymer monolithic surfaces having a gradient 

of Eny opening and polymer droplet sizes from ∼0.1 to ∼0.5 μm expressed as the 

composiEon of two polymerizaEon mixtures injected into a microfabricated chip [14]. The 

researchers (Kreppenhofer, K., et al.) used a micromixer connected with a 

Polydimethylsiloxane (PDMS) microfluidic chip to generate the gradient [14]. The process 

also contains a reacEon chamber which serves the purpose of producing a conEnuous 

gradient film. Following polymerizaEon inside the microfluidic chip, its inherent reversible 

bond open, yielding a 450𝜇𝑚 thick film on the pore size gradient. When fluids of the 
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same densiEes were considered, and flowrates assigned for both convecEve mixing (20 

𝑚𝑙/min	) and diffusive mixing ($.$$&'(
')*

), linear gradients were formed. Using microscopic 

laser-induced fluorescence (μLIF), and Scanning Electron Microscope (SEM), the 

emergence of density-driven 2D wedge-like was verified [14].  

          ConcentraEon gradients lead to density gradients, driving convecEve flows. The 

dimensionless numbers omen used to describe density-driven flows are Grashof (Gr), 

Reynolds (Re) and Rayleigh (Ra) numbers. The Grashof number is defined as the raEo of 

buoyancy forces to viscous forces [13]. The Reynolds number is the raEo of inerEal forces 

to the viscous forces within a fluid that is subjected to relaEve internal movement caused 

by varying velociEes [13]. The Rayleigh number measures the instability caused by density 

and temperature differences on a fluid layer at the top and boIom [13]. 

In their work on the impact of buoyancy on solute spreading in 2D slit and microchannel 

geometries, Salmon et al. (2021) [13] found that for 𝑅𝑎 ≤ 10+, solutal free convecEon 

does not impact solute diffusion at all Eme scales. They also predicted that buoyancy 

would not influence molecular diffusion at higher Raleigh numbers. The group 

demonstrated this in an experiment involving interdiffusion between water and a 1M 

aqueous soluEon of NaCl in a microfluidic slit of height 𝐻 = 100𝜇𝑚. Since 𝑅𝑎 ≅ 230 in 

this case, free convecEon is not expected to affect diffusive mixing. According to the 

authors, in the early stages of diffusion and advecEon, the longitudinal velocity of 𝑢E, ≅
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25𝜇𝑚/𝑠 which corresponds to 5𝜇𝑚/𝑠 for the Emescale 𝑇 = 𝐻-/𝐷 that can greatly 

influence the advecEon of less mobile species dispersed in the soluEon [13]. 

 

1.3 Pressure-driven flow and Diffusion in a micro-fluidic channel 

            Due to simplicity in set-up, pressure-driven flows are omen the choice for some. 

Moving fluids by pressure, especially in microfluidics channel of rectangular geometry 

poses some challenges in the distribuEon of analytes given that cross-secEonal 

dimensions have parabolic velocity gradient. Molecules in the channel, regardless of the 

method of introducEon into the device, are impacted by a posiEon-dependent 

distribuEon in residence Eme. Kamholtz and Yager showed that the breadth of such a 

distribuEon is reduced by diffusion across the velocity gradient. 

          The T-sensor is a simple microfluidics device consisEng of two input ports and one 

output, allowing for side-by-side flows, and operated at low Reynolds’ number [16, 37].  

 

 

 

 

 

 

Figure 2: Conceptual rendering of the simplest form of the T-sensor. Two fluid inputs enter through channels at the 
bo?om. In the case shown here, the fluid on the right contains a diffusible analyte (dark gray) that spreads across the d-
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dimension as flow proceeds along the channel length. During operaSon, measurements of opScal signal are made a 
distance downstream, L, aTer significant interdiffusion has occurred. Kamholtz and Yager (2001) [16] 

           Kamholtz and Yager [16] used T-sensor microfluidic device to show the impact of 

flow on diffusion due to change in posiEon unlike pressure-driven flows which limits the 

usefulness of the device. T-sensor uElized low Reynolds flow condiEons in microfluidic 

channel for chemical measurements [37]. The Peclet (Pe), is a dimensionless number 

used to describe the raEo between convecEve and diffusive transport [35]. This refers to 

the raEo of advecEon of advecEon of a physical quanEty by the flow to the rate of 

diffusion of the same quanEty driven by an appropriate gradient [35]. This conEnuum 

transport phenomena number is also used to describe separaEon and mixing. 

1.4 Diffusioosmosis, Chemical potenQal and Charged flow. 

           Diffusioosmosis is a movement of fluid created the interacEon between the solute 

and a solid surface (Huan J. Keh, 2016) [34]. This flow is omen driven by an osmoEc 

pressure gradient emanaEng from the concentraEon gradient parallel to the surface. 

Unlike other flows where pressure gradient enables movement, diffusioosmoEc flows can 

occur even in the absence of pressure gradients [21,22,34].  We need not look farther 

than the human body where this phenomenon aids the transport of material because of 

concentraEon gradients at solid surfaces [8,21,32]. Whether in large scale industrial 

processes or in laboratory seongs, we omen encounter concentraEon gradients. We 

might make assumpEons, choose certain iniEal condiEons, and set specific boundary 

condiEons, these factors in turn influence the concentraEon gradients.                                                                                      
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           Diffusiophoresis is the flow of colloidal parEcles in an aqueous soluEon of an 

electrolyte soluEon due to concentraEon gradient of a solute which can direct movement 

without the aid of an external force (Huan J. Keh, 2016) [34]. These suspended parEcles in 

soluEon may be in the nanometer range or possess larger diameters while the interfacial 

double layer region at the surface of the colloidal parEcle will be the order Debye length 

wide (typically in nanometers) [22,26,30,34]. This can be a veritable process for 

transferring similar small length scale parEcles in and out of a pore as well as prevenEng 

mixing of colloidal parEcles, and for several important applicaEons (Huan J. Keh, 2016). In 

their work on diffusioosmosis-dispersion of colloids using Taylor dispersion analysis, 

Alessio et al (2022) [12] found that in the absence of mean flow, dispersion is driven by 

the flow created by diffusioosmoEc wall slip such that spreading can be increased by 

increasing the diffusioosmoEc mobility of the channel wall [26].                                                                                    

         Before defining the chemical potenEal, we should first consider its important 

component: Gibbs free energy. If we have a mulEcomponent system, the Gibb’s free 

energy (for pure fluid) is a funcEon of temperature, pressure, and the number of moles of 

each species. The parEal molar Gibb’s free energy (for mixtures) is the Chemical potenEal 

which is very vital to diffusion [38,39]; it is the driving force for mass transfer; the 

molecules of species move from a higher chemical potenEal to a lower one [40]. For 

instance, dissolving salt in water lowers the chemical potenEal, making the resulEng 

soluEon more stable. This is the energy released or absorbed due to changes in the 

parEcle number of a given species [38, 39].  
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           Due to the possibility of changes in fluid properEes like viscosity, it is someEmes 

impossible to get the opEmal benefit from the intended applicaEon. The force acEng on a 

liquid in contact with charged solid surface of the channel relies on the electrolytes in the 

soluEon, roughness, charge, and hydrophilicity [34]. Having a charged surface creates 

another layer known as electrical double layer (EDL) around the channel wall [34]. 

Consequently, at locaEons near the wall, ionic presence is far greater than at the center. 

The movement of fluid through the channel with more charges would be easily 

controlled. The impact of such flows can be analyzed using the physical properEes of the 

system in consideraEon. Diffusioosmosis of an electrolyte soluEon occurs due 

electroosmosis, that is, the induced macroscopic electric field that is generated because 

tangenEal diffusion and convecEon fluxes of the two electrolyte ions are unequal [34]. 

This phenomenon occurs in conjuncEon with chemiosmosis, a condiEon describing the 

tangenEal gradient of the excess pressure inside the electric double layer. (Huan J. Keh, 

2016) [34]. 

In this thesis, we develop a model for the chemically driven flow in a small 

microchannel caused by the combinaEon of diffusioosmosis and buoyancy-driven 

convecEon. Our development follows that of Alessio et al [12] closely, and we will use the 

ideas of averaging to gain insight into the fluid flow and chemical transport. 
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Chapter 2. PROBLEM SET UP AND THEORY 

           In this chapter, we develop a modeling framework to describe the chemically driven 

flow in a channel due to a combinaEon of diffusioosmoEc slip and buoyancy. Using ideas 

of dispersion developed in Alessio et al. (2022) [12]. We reduce the coupled system 

governing fluid and chemical transport into a single one-dimensional diffusion-like 

equaEon for transport. 

2.1 Problem setup 

          We consider a microfluidic channel represented by a 2D rectangular structure 

whose height is 2ℎ and length 𝑙, where ℎ is much smaller than 𝑙(See Fig. 2.1). The 

channel is filled with liquid containing dissolved salt. The concentraEon of solute is 

𝑐(𝑥, 𝑡).	 Gradients of solute concentraEon drive flow over velocity 𝑉,  due to a 

combinaEon of (i) buoyancy forces and (ii) diffusio-osmoEc slip at the walls due to 

interacEons of the solute with the surfaces of the wall. The solute is transported through 

the channel because of molecular transport and fluid flow. Using the Navier-Stokes 

equaEons, convecEon-diffusion equaEon for chemical transport, and applying the 

appropriate iniEal and boundary condiEons including diffusioosmoEc slip velociEes at the 

top and boIom walls, 𝑉., we determine the average concentraEon of solute in channel. 

We analyze the system for both uncharged and charged wall condiEons.   
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Figure 3: SchemaSc represenSng a 2D microfluidic channel of height of 2ℎ and length 	𝑙. Both top and bo?om have a 
slip velocity 𝑉! . The fluid is moving with a velocity 𝑉 under the influence of gravity	𝑔, and chemical potenSal from the 
mixing concentraSon gradients from the denser soluSon(leT) and the light soluSon (right) 

2.2 Fluid Transport 

          We describe the fluid flow in the long microchannel using the Navier -Stokes (NS) 

equaEon. Considering the applicaEon and geometry, we simplify the equaEon for laminar 

flow having low Reynolds number. The incompressible flow is two dimensional (2D) with 

the verEcal flow much lower than the horizontal one given the assumpEon that the 

height of the channel, ℎ, is much smaller than the length, 𝑙 . The NS equaEon consists of 

the local acceleraEon and convecEve acceleraEon, with mass represented by density term 

on the lem side of the equaEon. On the right, we have the pressure gradient, viscous 

term, and body force term. 

𝜌 N
𝜕𝑽
𝜕𝑡 +

(𝑽 ∙ 𝛁)𝐕T = 	−𝛁𝑝 + 	𝜇 ∙ 𝛁-𝑽 + 	𝜌𝒈	. 

Here, 𝜌 and 𝜇 represent the fluid density and viscosity. 

    We are interested in small channels, where fluid inerEa is negligible due to small 

Reynolds number (/01
2
	is small).    An esEmate for a typical flow scenario is H ~ 100 

microns, V ~ 10 microns/sec, 𝜇 = 103+	𝑃𝑎	𝑠 , 𝜌 = 1000	𝑘𝑔/𝑚+ . 
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ImplemenEng the assumpEons for negligible local acceleraEon of fluid in the 

microchannel, incompressibility ( 𝛁 ∙ 𝑽 = 0), and that the verEcal fluid flow direcEon 

opposes gravity hence the negaEve sign, NS equaEon simplifies to the Stokes equaEon 

below: 

                                                    𝜵𝑝 = 	𝜇𝜵𝟐𝑽 − 	𝜌𝑔	𝒆𝒚  .                 

           According to  𝜌 = 	𝜌$(1 + 𝛾𝑐),	the density at iniEal Eme is 𝜌$, and the density at 

certain concentraEon  𝑐  is 𝜌$	𝛾𝑐 which is composed of the solutal expansion coefficient 𝛾 

.  

The vector notaEons for pressure, viscous, and gravity terms were decomposed to 

horizontal and verEcal components, to yield, 

                                                   78
79
= 	𝜇 ^7

!0"
79!

+ 7!0"
7:!

_	.																																																													(1) 

                                                  78
7:
= 	𝜇 ^7

!0#
79!

+ 7!0#
7:!

_ − 𝜌$(1 + 𝛾𝑐)𝑔	.																																		(2) 

Here, 𝑉9 and 𝑉: are the horizontal and verEcal velociEes.  

        The following are the boundary condiEons represenEng the diffusion-osmoEc slip 

velociEes at boIom and top of the channel as well as a zero net flux condiEon. 

                                                      𝑉9(𝑦 = +ℎ) = ;7<
79

(𝑦 = +ℎ)	,																																													(3) 

                                                      𝑉9(𝑦 = −ℎ) = ;7<
79

(𝑦 = −ℎ)	,																																													(4) 
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                                                     ∫ 𝑉9𝜕𝑦 = 01
31 	,																																																																										(5) 

 where ;7<
79

 is the diffusion-osmoEc slip velocity at the top and boIom walls. 𝑀 

represents mobility proporEonality constant that allows diffusioosmosis to occur as the 

fluid contacts the staEc channel wall. 7<
79

 is the concentraEon gradient along the channel. 

2.3 Solute Transport 

           We now consider the movement of solute through the channel as described by the 

following transient diffusion-advecEon equaEon.  

𝜕𝑐
𝜕𝑡	 + 𝑽 ∙ 𝛁𝐜 = D𝛁𝟐𝒄 ⇔	

𝜕𝑐
𝜕𝑡 + 𝑉9

𝜕𝑐
𝜕𝑥 + 𝑉:

𝜕𝑐
𝜕𝑦 = 𝐷 h

𝜕-𝑐
𝜕𝑥- +

𝜕-𝑐
𝜕𝑦-i												(6)	

 

           Expressed both in vectoral and in 2D Cartesian coordinates, the equaEon is 

composed of a transient term, advecEon terms, and diffusion terms. 𝐷 is the diffusion 

coefficient, a proporEonality constant between flux and concentraEon gradient.                     

 2.4 Scaling Analysis and Theory 

          Since the PDEs (1 – 6) are challenging to solve even with the most sophisEcated 

computer system, scienEsts and engineers omen tackle such problems by expressing 

these equaEons in a simplified form to which approximate soluEons can be obtained. To 

idenEfy these simplificaEons, we first non-dimensionalize the system. We re-define each 

parameter represented in the equaEon as another term such that it is dimensionless. As a 



 

12 
 

result, the number of unknowns were reduced, causing the innate complexity to also 

decrease. By seong the terms to non-dimensional forms or re-wriEng the expressions to 

equal unity, we can compare each term with others using our chosen assumpEons and 

determine which can be neglected because it would be significantly smaller than the 

other terms. This can bring about a drasEc reducEon in complexity, as a 3D non-linear 

PDE equaEon can be simplified to 1D linear form. Depending on the iniEal set up of the 

problem we are interested in solving, we can transform the PDE into an ODE.  

        In this work, we also employ redefine, re-write, compare, and simplify steps to 

reduce the difficulty level of the Navier- Stokes equaEon and the convecEon-diffusion 

equaEon derived earlier. 

 We use 𝑙 and ℎ as characterisEcs length scales in the horizontal (𝑥) and verEcal (𝑦) 

direcEons, respecEvely. Using 𝑙 ≫ ℎ, we derive an expression for pressure, 𝑝, the 

horizontal pressure gradient, and the verEcal pressure gradient amer neglecEng the less 

predominant terms, 7
!0"
79!

. Thus, balancing viscous stress in the horizontal momentum 

equaEon, we obtain the pressure scale.    

𝑝
𝑙 	~

𝜇𝑉9∗

ℎ- 		→ 		𝑝	~	
𝜇𝑉9∗𝑙
ℎ- 	 

         Similarly, we perform scaling on equaEon (2), and neglecEng the term containing the 

smaller horizontal length, 
>!?#
>9!

 . So, we are lem with the following equaEons:      
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                                                      >8
>:
≅	−	𝜌$(1 + 	𝛾𝑐)	.																																																														(7)                      

                                                    >8
>9
≅

	µ >
!0"
>:!

	.																																																																															(8)							        Taking derivaEves with 

respect to y on equaEon (7) and with respect to x on equaEon (8) and equaEng the 

resulEng expressions, we obtain: 

                                                      27
$0"

7:$
	= 	− /%@A7<

79
	.																																																															(9) 

We rescale equaEons (5) and (6) to obtain the expression for characterisEc velocity of 

flow driven by density gradients, 𝑉@,(convecEve flow) and the characterisEc velocity of 

flow driven by concentraEon gradients, 𝑉<. A balance between buoyancy forces and 

viscous forces, which can be expressed as 20
1$
		~	/%@A<

∗

(
	,	idenEfies 

                                                	𝑉@	~	
/%@A<∗1$

2(
	,																																																																										(10)	 

where 𝑐∗ is a concentraEon scale. The velocity scale due to diffusion-osmoEc slip is 

                                                  𝑉< 	~
;<∗

(
							.																																																																														(11) 

           We define non-dimensional quanEEes for horizontal velocity (𝑈), height (𝑌), 

length (𝑋), and concentraEon 𝐶 according to: 

                                                       𝑈 = 0"
0'
		⇒ 	𝑉9 = 𝑉<𝑈(𝑋, 𝑌)	.																																										(12)	 



 

14 
 

                                                      𝑌 = :
1
			⇒ 		𝑦 = ℎ𝑌		.																																																									(13) 

                                                     𝑋 = 9
(
				⇒ 		𝑥 = 𝑙𝑋			.																																																									(14) 

                                                  𝐶 = <
<∗
					⇒ 				𝑐 = 𝑐∗𝐶	.																																																								(15) 

We note that 𝑈 and 𝐶 implicitly also depend on Eme, we then subsEtute equaEons (11) 

through (15) into equaEon (9) to obtain the following: 

                                            20'
1$

			7$B
7C$

	= 		− /%@A<∗

(
7D
7E
		.																																																									(16) 

                                            			7
$B

7C$
=	 − /%@A<∗1$

(	20'

7D
7E
			.																																																													(17)         

Recalling equaEon (9), and simplifying equaEon (16), and defining 

                                             Γ = F(
0'
= /%@A<∗1$

2;
																																																																					(18) 

 

we obtain the simplified (approximate) equaEon for the dimensionless horizontal velocity. 

                                          	7
$B

7C$
	= 	−	Γ	 7D

7E
	.																																																																												(19) 

The non-dimensional boundary condiEons obtained from equaEons (3), (4), and (5) 

                                     𝑈(	𝑌	 = 	1) = 	 7D
7E
	.																																																																													(20) 

                                     𝑈(	𝑌	 = 	−1) = 	 7D
7E
	.																																																																										(21) 
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                                      ∫ 𝑈	𝜕𝑌 = 0	&
3& 	.																																																																																			(22) 

To solve the horizontal velocity, we integrate equaEon (19) three Emes to obtain an 

expression for 𝑈,    

                                   𝑈 =	−	Γ	 ^7D
7E
	C

$

G
+ 𝑑&

C!

-
+ 𝑑-	𝑌 + 𝑑+_,																																									(23) 

  where 𝑑&	, 𝑑-, 𝑎𝑛𝑑	𝑑+ are integraEon constants. 

Applying the boundary condiEons and the flux condiEon (20 − 22), we determined the 

constants of integraEon to be 𝑑& =	−	
+
H
	7D
7E
	 , 𝑑- = − &

G
	7D
7E
		 , 𝑑+ =

&
-H
	7D
7E

  . SubsEtuEng 

these values into equaEon(22) and further simplifying yields 

                                      𝑈 =	−	7D
7E
vH
G
	(𝑌+ − 𝑌) + &

-
	(1 − 3𝑌-)w	.																																			(24)		 

            Now that we have obtained an approximaEon for the horizontal velocity, U, we will 

proceed to the get an expression the verEcal velocity, 𝑉. Like the horizontal velocity 𝑈,  

𝑉 = 0#
0#∗

    is the non-dimensional verEcal velocity, and 𝑉:∗ =
?'1
(
	  is the characterisEc 

verEcal velocity scale. We apply the conEnuity equaEon to establish a relaEonship 

between U and V, 

                                                                 70
7E
=	− 7B

7E
	.              
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We then subsEtute the expression in equaEon (24) for 𝑈 ,  integrate with respect to Y, 

and apply Boundary condiEons at 𝑌 = 	±1   as in equaEons (20) through (22). The 

resulEng expression for verEcal velocity is therefore: 

                                𝑉 = 	−	7
!D

7E!
vH
G
	^C

)

I
− C!

-
+ &

I
_ + &

-
	(𝑌 − 𝑌+)w																															(25)     . 

                Figure (4) plots profiles of velociEes [horizontal(𝑈) and verEcal (𝑉)] across the 

cross-secEonal coordinate,  𝑌 of the channel vs the velociEes [horizontal(U) and verEcal 

(V)]. The blue curve represents horizontal velocity, and the red curve is the verEcal 

velocity. We observed that curve 𝑈 is maximum close to 𝑌 = 0 the center of the channel. 

However, the maximum may shim up or down depending on the value of Γ.It is also 

worthy to note that at 𝑌 = ±1, the fluid velocity is not zero, confirming the effect of 

diffusioosmosis. 

 

 

 

 

Figure 4.   Velocity profile of channel cross-sec3onal height, 𝑌 vs veloci3es 𝑽(𝑈, 𝑉). We consider the effect of gravity 
and diffusioosmosis for uncharged system with flow parameters, 	Γ = 1	. 
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Next, we rescale each term represented in equaEon (6). The typical scale of each term is 

given below 

7<
7J
	~	<

∗

J∗
        Transient term (I) 

𝑉9
7<
79
	~	𝑉<

<∗

(
   Horizontal AdvecEve term (II) 

𝑉:
7<
7:
	~ 1

(
	𝑉<

<∗

1
  AdvecEve term (III) 

𝐷 7!<
79!

	~	𝐷 <∗

(!
  Horizontal Diffusive term (IV) 

𝐷 7!<
7:!

	~	𝐷 <∗

1!
	 VerEcal Diffusive term (V) 

            Since 𝑙 ≫ ℎ, that is, the dominant term with which we compare transient term are 

the horizontal advecEve term. Whereas the transient term is compared with the verEcal 

diffusive term due to the acEon of gravity, and given the above verEcal-horizontal length 

scale, it would take longer to diffuse across the length of the channel. To determine the 

duraEon of both advecEon and diffusio-osmosis in the channel, we linearly compare the 

verEcal diffusive term (𝐷 <∗

1!
) and horizontal advecEve term (𝑉<

<∗

(
) separately with the 

transient term (<
∗

J∗
) in equaEon (6) . This results in advecEve Eme scale, 𝑡K∗ 	= 	

(
?'

 and 

diffusive Eme scale, 𝑡L∗ =
1!

M
. We represent characterisEc concentraEon and characterisEc 

Eme (which could be diffusive or advecEve depending on the reference for comparison) 

as 𝑐∗	𝑎𝑛𝑑	𝑡∗, respecEvely. 
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We are then non-dimensionalize equaEon (6) as shown below: 

𝜕𝐶
𝜕𝑇 + 𝑉<

𝑡∗

𝑙 𝑈
𝜕𝐶
𝜕𝑋 +	

ℎ
𝑙 	𝑉<

𝑐∗

ℎ 	𝑡
∗	𝑉

𝜕𝐶
𝜕𝑌 =

𝐷
𝑙- 	𝑡

∗ 𝜕
-𝐶
𝜕𝑋- +

𝐷
ℎ- 	𝑡

∗ 𝜕
-𝐶
𝜕𝑌- 	.																										(26) 

Where we have defined 𝑇 = 𝑡/𝑡∗,  𝜀 = 1
(
	 and 𝒟 =	 M(

1!?'
 

We rewrite equaEon (26) using 𝜀, the geometry scaling factor (which is small), and 𝒟, the 

non-dimensional diffusivity which compares to the advecEon across the channel, leading 

to 

𝜕𝐶
𝜕𝑇 + 𝑈

𝜕𝐶
𝜕𝑋 + 		𝑉

𝜕𝐶
𝜕𝑌 = 𝒟h

𝜕-𝐶
𝜕𝑌- + 𝜀

- 𝜕
-𝐶
𝜕𝑋-i.																																																																	(27)

 

Eqn. (27) describes the two-dimensional transport of solute in the channel, wriIen in 

dimensionless form. Our goal is to obtain a simplified descripEon of the average solute 

transport in the channel, in which the variaEons across the channel (along the 𝑌 axis) are 

averaged out. To achieve this, we first decompose the concentraEon in the channel 

𝐶(𝑋, 𝑌, 𝑇) as the sum of average concentraEons, 𝐶 and deviaEon from average, 𝐶′. 

(Alessio et al., 2022) [12]. The former refers to the cross-secEonal average concentraEon 

of solute at different posiEons and Emes, and the later describes perturbaEon, 

accounEng for the slight variaEons from the original concentraEon due to instabiliEes 

emanaEng from flow in the vector field. MathemaEcally, these quanEEes are defined 

according to 
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  𝐶(𝑋, 𝑌, 𝑇) = 		 𝐶	(𝑋, 𝑇) +	𝐶!(𝑋, 𝑌, 𝑇).																																																																						(28) 

   𝐶	(𝑋, 𝑇) = 	 &
-∫ 𝐶(𝑋, 𝑌, 𝑇)&

3&  

  𝐶!(𝑋, 𝑌, 𝑇) = 	𝐶(𝑋, 𝑌, 𝑇) −		𝐶	(𝑋, 𝑇)	 

We then subsEtute equaEon (28) into equaEon (27) 

𝜕(𝐶 + 𝐶′)
𝜕𝑇 +

𝜕(𝑈(𝐶 + 𝐶′))
𝜕𝑋 +

𝜕(𝑉(𝐶 + 𝐶′))
𝜕𝑌

= 𝒟h𝜀-
𝜕-(𝐶 + 𝐶′)

𝜕𝑋- +	
𝜕-(𝐶 + 𝐶′)

𝜕𝑌- i.										(29) 

           Next, we take the average of (29) across the height of the channel to determine the 

average transport of solute, to arrive at the following: 

𝜕𝐶
𝜕𝑇 +

𝜕
𝜕𝑋 ^	𝑈𝐶 	+	𝑈𝐶′	_ +	

𝜕
𝜕𝑌	(𝑉𝐶) 			

= 		𝒟 |	𝜀-
𝜕-𝐶
𝜕𝑋- +	

𝜕-

𝜕𝑌- 	}𝐶 + 𝐶
!~	�.																								(30) 

IntegraEng (or averaging) equaEon (29) with respect to 𝑌 from -1 to 1 allows for the 

eliminaEon of all derivaEves with respect to Y. EquaEon (30) then simplifies to: 

𝜕𝐶
𝜕𝑇 +

𝜕
𝜕𝑋	𝑈𝐶 	+

𝜕
𝜕𝑋	𝑈𝐶′ 			

= 		𝒟𝜀-
𝜕-𝐶
𝜕𝑋- 	.																																																																																

(31) 
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ApproximaQon for 𝑪′ 

            Next, we find an approximaEon for concentraEon deviaEon, 𝐶′ by first subtracEng 

equaEons (30) from equaEons (27). 

𝜕𝐶′
𝜕𝑇 + 𝑈

𝜕𝐶
𝜕𝑋 + 𝑈

𝜕𝐶′
𝜕𝑋 + 𝑉

𝜕𝐶
𝜕𝑌 + 𝑉

𝜕𝐶!

𝜕𝑌 −	
𝜕
𝜕𝑋	𝑈𝐶 −	

𝜕
𝜕𝑋	𝑈𝐶

! 	

= 𝒟 h
𝜕-𝐶!

𝜕𝑋- +
𝜕-𝐶!

𝜕𝑌- i.															(32) 

The scale of each term in the equaEon is esEmated and compared with other terms, with 

a view to determining which would be neglected while retaining the dominant terms. In 

addiEon to the length (𝑙) being much greater than the height (ℎ), the concentraEon 

deviaEon (𝐶′) is also much smaller than the average concentraEon (𝐶). The characterisEc 

scales of transient and advecEve terms on the lem side of equaEon (32) are approximated 

below: 

7D!
7N
	~ D*

N
	,   𝑈 7D

7E
	~	𝑈 D

(
,  𝑈 7D!

7E
		~	𝑈 D!

(
	, 𝑉 7D

7C
	~	𝑉 D

1
, 𝑉 7D*

7C
	~	𝑉 	D*

1
,  7
7E
	𝑈𝐶		~	𝑈 D

(
, 

7
7E
	𝑈𝐶′	~	𝑈 D*

(
 

Similarly, the diffusive terms on the right have the following scaling expressions: 

𝒟 7!D!
7E!

	~	𝒟 D*

(!
 ,   𝒟 7!D!

7C!
	~	𝒟 D*

1!
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Since  𝒟 7!D!
7E!

	≪ 		𝒟 7!D!
7C!

	 we neglected the	𝑋 derivaEve, and  𝑉 7D*

7C
	≪ 	𝑈 7D

7E
 in congruent 

with the established fact that 𝐶! is much smaller than 𝐶 . Amer comparing dominant 

terms and neglecEng sub-dominant terms, we obtain   

𝜕𝐶′
𝜕𝑇 + 	𝑈

𝜕𝐶
𝜕𝑋 −	

𝜕
𝜕𝑋	^	𝑈𝐶	_

= 	𝒟
𝜕-𝐶!

𝜕𝑌- 	.																																																																																										(33) 

EquaEon (33) can be simplified further by comparing the transient term with the diffusive 

term. 

Seeking soluEons for long Emes 𝑇 ≫ ℎ-/𝒟 , we eliminate the transient term. Also, the 

advecEve term, 7
7E
^	𝑈𝐶	_ = 0. Therefore, the PDE with which we find an approximaEon 

for concentraEon deviaEon, 𝐶′ is: 

𝑈
𝜕𝐶
𝜕𝑋

≅ 𝒟
𝜕-𝐶′
𝜕𝑌- 																																																																																																																																	(34) 

We then subsEtute the expression for U in equaEon (24), using the approximaEon 

^	7D
7E
_ 	≅ 	 ^7D

7E
_ [since 𝐶! ≪	𝐶	]. Rearranging, we obtain 
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                      7
!D!
7C!

		≅ 	 &
𝒟
^7D
7E
_ ^	7D

7E
_ vH

G
	(𝑌 − 𝑌+) + &

-
	(3𝑌- −

1)w	.																																													(35)			 

Upon integraEng twice, we have 

                		𝐶! ≅	 &
𝑫
^7D
7E
_
-
vH
G
	^C

$

G
− C+

-$
_ + &

-
	^C

)

I
− C!

-
_ + d&𝑌 + 𝑑-w	 , 

Applying the boundary condiEons:  7D
*

7C
	= 0, 𝑌 = 	±1 , we obtain the value for 𝑑& 	=

	− H
-I
	 . Also, asserEng that ∫ 𝐶!	𝑑𝑌 = 0&

3&  (which is true by definiEon), gives the value of 

𝑑- =
Q
&-$

. Now subsEtuEng the values of 𝑑&	𝑎𝑛𝑑	𝑑-	into equaEon (33) we obtain an 

expression for 𝐶′ . 

𝐶! ≅		
1
𝒟 h

𝜕𝐶
𝜕𝑋i

-

�
Γ
12	h

𝑌+

3 −
𝑌#

10 −
𝑌
2i +

1
4	h

𝑌I

2 − 𝑌- +
7
30i�.																			(36) 

         We adopt the previous simplificaEon that   ^	7D
7E
_ 	≅ 	 ^7D

7E
_	, and use MathemaEca to 

perform integraEon of equaEon (35) from 𝑌 = 	−1	𝑡𝑜	𝑌 = 1, resulEng in the following 

expression for 𝑈𝐶! . 

                         𝑈𝐶! 				≅ 	−	 I
𝒟
		^7D

7E
_
+ R-QSH!T

-U+#
																																																						(37) 
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SubsEtuEng equaEon (37) into equaEon (31), noEng that 𝑈𝐶 = 𝑈	𝐶	𝑎𝑛𝑑		𝑈 = 0,	we 

eliminate 7
7E
^𝑈𝐶	_ term, finally simplifying the equaEon (31) to the one-dimensional 

transport equaEon 

         7D
7N
=		 7

7E
		�NI

𝒟
^7D
7E
_
+ R-QSH!T

-U+#
	T +	^𝒟𝜀- 7D

7E
	_�.																																							(38) 

       StarEng with Navier Stokes and solute transport equaEon, which is complicated, we 

simplified the equaEon to a 1D non-linear diffusion-like parEal differenEal equaEon. The 

non-linear term ^7D
7E
_
+
 is the consequence of transport of solute by the solute generated 

fluid flow. The term involving Γ- is the effect of gravity, whereas the ^7D
7E
_
+
term 

independent of Γ is the effect of diffusio-osmoEc slip. The last term on the right is pure 

diffusion, which occurs even in the absence of fluid flow. While equaEon (38) is a 

significant simplificaEon over the original coupled fluid and transport. It is sEll nonlinear, 

so it must be solved numerically (discussed in the following chapters). 

2.5 Charged Transport   

         Omen, the walls of the channel have slight net charge. If the solute is ionic (e.g., 

NaCl), there are electrostaEc interacEons of the ions with the charged wall. In this case, 

the mobility 𝑀<  relaEon is slightly modified from before. Now the slip velocity at the top 

and boIom walls of the channel,	𝑉. given by (Alessio et al., 2022) [12] 
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                                                         𝑉. =

		&
D
	𝑀<

7<
79
	.																																																																									(39)                                                             

The scaled flow velociEes due to gravity 𝑉@, and concentraEon 𝑉<  are thus expressed as 

follows: 

                                                                 𝑉@ =

/%@<∗1$

2(
	.																																																																	(40) 

                                                                𝑉< =
;'	<∗

<∗(
=

;'
(
	.																																																																(41) 

For charged surfaces, we define gravity parameter. 

                                                               Γ< = 0,
0'
	=

	/%@<
∗1$

2;'
	.																																																										(42) 

Where Γ<  represent the raEo of gravity flow to the concentraEon flow for the charged 

case. 

SubsEtute equaEon (38) into equaEon (24) to obtain a modified expression for charged 

horizontal fluid velocity, 𝑈<. 
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                               𝑈< =	−	7D
7E
vH

-

G
	(𝑌+ − 𝑌) + &

-D
	(1 −

3𝑌-)w.																																																	(43)	 

Recall 𝒟 =	 M(
1!0'

 ,  subsEtute 𝑉< =
;'
(

  to get the charged representaEon,𝒟V. 

𝒟V =
𝐷𝑙-

𝑀<ℎ-
 

Using the same procedures for deriving the expression in equaEon (30) and replacing 𝑈 

and 𝒟 with 𝑈<  and 𝒟V	respecEvely. 

                                                            𝑈< 7D
7E
≅

𝒟V 7
!D*

7C!
	.																																																															(44) 

Similarly, we obtain the charged expression for the charged 𝐶′. 

                                 𝐶! ≅		 &
𝒟-
^7D
7E
_
-
vH

-

&-
	^C

$

+
− C+

&$
− C

-
_ + &

ID
	^C

)

-
− 𝑌- +

Q
+$
_w.																							(45) 

Following steps as before, we obtain the effecEve transport equaEon for the charged case 

                       	7D
7N
=	 7

7E
		�� I

𝒟-
^7D
7E
_
+ W

!.

/
!SH

'!X

-U+#
	� +

	^𝒟V𝜀- 	7D
7E
_�.																																																		(46) 
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The above equaEon is like (38) for the uncharged case, except for one term 

corresponding to slip. 

Thus, we have reduced the non-linear coupled velocity and concentraEon 2D system in 

equaEon (6)	to a single 1D non-linear equaEon involving only concentraEon as shown in 

both equaEon (38) for uncharged, and in equaEon (46) for charged walls. In the 

following chapters we solve these equaEons numerically, and present results. 
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Chapter 3. NUMERICAL SOLUTION METHODOLOGY 

In this short chapter we outline the numerical method that we used to solve for the 

solute transport. 

3.1 Finite Volume Method 

           We uElized the finite volume method to solve the non-linear equaEon [equaEon 

(38)]. First, we divided the channel length into 𝑛 equal cells or segments. The flux, J of 

‘material’ leaving a segment is the same entering the next cell. The average concentraEon 

lies at the midpoint of each cell, and the distance between one midpoint and the next is 

∆𝑋. Figure 3 illustrates a rectangular structure of length 𝑙 = 1, and having 𝑛 = 5 cells. 

Each cell serves as the reference point or locaEon for determining the average 

concentraEon. The flux to the far lem is 𝐽$.#	and to the far right of the grid is 𝐽#.#. 

 

 

 

 

 

 

Figure 5: A schema3c showing flux 𝐽 in and out of solu3on whose average concentra3on 𝐶  is located at the center of 
each grid 𝑋. The change in 𝑋 direc3on is the distance between two midpoints of adjacent grids, ∆𝑋.	An illustra3on of 
the applica3on of Finite volume method. 
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We outline the method through a list of steps.     

Step 0: First, we write the transport equaEon in terms of a general conservaEon law 

                                       7D
7N
+ 7

7E
𝐽 = 0																																																																															(47) 

 From the general equaEon for an arbitrary flux (47) , we define the flux, 𝐽 as for (i) pure 

diffusion , (ii) uncharged wall, and (iii) charged wall  cases as −𝒟 7D
7E

 , 

−|NI
𝒟
^7D
7E
_
+ R-QSH!T

-U+#
	T + ^𝒟𝜀- 7D

7E
	_� and −�� I

𝒟-
^7D
7E
_
+ W

!.

/
!SH

'!X

-U+#
	� +	^𝒟V𝜀- 	7D

7E
_�, 

respecEvely.                                  

Step 1: We write the finite difference approximaEon for flux by subsEtuEng }𝐶)S& −	𝐶)~ 

for 𝜕𝐶 , and ∆𝑋 in place of 𝜕𝑋 in step 0. The following are the fluxes to the right of each 

cell 𝑖 or 𝐽)S&/- , for all three categories menEon earlier. 

      𝐽)S&/- 	≅ 	−
𝒟RD0123	D0T

∆E
	          (pure diffusion) 

    		𝐽)S&/- 	≅	  −|N
I
𝒟
^D0123	D0

∆E
_
+ R-QSH!T

-U+#
	T +	^𝒟𝜀- 	D0123	D0

∆E
_�        (uncharged) 

    𝐽)S&/- 	≅	  −��
I
𝒟-
^D0123	D0

∆E
_
+ W

!.

/
!SH

'!X

-U+#
	� +	^𝒟V𝜀- 	D0123	D0

∆E
_�     (Charged)                   
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Step 2: We write an equaEon to advance transport equaEon (47) in Eme. 

                                               	^7D
7N
_
)
	≅

D0(NS∆N)3D0(N)
∆N

																																																																				(48) 

Where 𝐶)(𝑇 + ∆𝑇) represent average concentraEon at next Eme, and 𝐶)(𝑇) the average 

concentraEon at current Eme. We then use finite differences in space to write 

                                                ^7]
7E
_
)
	≅

]
012!

3	]
032!

∆E
																																																																												(49)           

where  𝐽)32!
 represents fluxes at previous posiEon. 

          We now subsEtute equaEons (48) and (49) into equaEon (47), and rearrange the 

resulEng equaEon to get an expression for 𝐶)(𝑇 + ∆𝑇) 

                                                   D0
(NS∆N)3D0(N)

∆N
+	

]
012!

3	]
032!

∆E
= 0	 

                                                   𝐶)(𝑇 + ∆𝑇) = 		 𝐶)(𝑇) −
∆N
∆E
	( 𝐽)S2!

−

	𝐽)32!
	)																												(50) 

     We started by discreEzing the modified general diffusion equaEon and used that as 

guide also discreEze the models (equaEons 38 and 46) we developed and will solve 

numerically. Equipped with the “computer-friendly” form for each component of our non-
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linear PDE, we implemented the necessary codes using MATLAB and obtained interesEng 

results, which we discuss in the next chapter. 
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Chapter 4. RESULTS AND ANALYSIS  

            We now consider the major result found in equaEon (46) and then compare for 

the charged case. The right-hand side comprises of the fluid properEes including gravity 

that influences the bulk flow, and a concentraEon gradient term. The second term 

represents the pure diffusion including the channel geometry and concentraEon gradient. 

The finite volume method was implemented into MATLAB to create a model with which 

we can tune and modify parameters such as Γ, 𝒟, and	ε to determine how the 

concentraEon in the channel changes as Eme progresses. The effect of gravity embedded 

in the Γ term is expected to influence the mixing process causing molecules to move fast 

or slow from a higher concentraEon to a lower concentraEon unEl steady state or 

equilibrium concentraEon is reached.  

           To show that flow can be influenced with both the acEon of gravity and chemical 

potenEal, we consider the follow four (4) scenarios which includes: (i) pure diffusion; (ii) 

gravity or bulk flow; (iii) uncharged flow with diffusioosmosis and gravity; (iv) charged 

flow with diffusioososis and gravity. In each case, we study the Eme taken for the solute 

concentraEon to reach 95 percent of the channel capacity for different parameters. 

Filling of a dead-end pore: We now focus our aIenEon on the specific situaEon of a 

dead-end pore iniEally filled with fresh water (figure 6 a), exposed to salty water (figure 6 

b), at inlet or opened end as shown in figure 6. In figure 6 (c, d, e), we show the evoluEon 

of diffusion of salt in the channel. We then write the iniEal condiEons:                                                                      
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𝐶(𝑋, 	𝑇 = 0) = 0 , and the boundary condiEons   𝐶(𝑋 = 0, 	𝑇) = 	𝐶$ and boundary 

condiEons: 7D
7E
(𝑋 = 1, 𝑇) = 0 , 

We solve equaEon (38) ,and subsequently, equaEon (46) for the charged case. 

 

                          Dense                                                               Less dense                                                                                        

  Inlet                                                                                                                                                                                                                                                                                                   

 

Fresh water          T = 0                     Salty water          T > 0 

                                               

Figure 6. (a) A sketch of the dead-end microfluidic channel with an opened leH end where the salty solu3on was 
introduced. (b) & (c) describe progression of flow from when the channel contains fresh water at 𝑇 = 0 , to the 
introduc3on of salty liquid (c) at 𝑇 > 0  As 3me evolves to a large 𝑇 , the blue color will eventually start to fade due to 
the ac3on of diffusioosmosis and gravity. 

4.1 Pure Diffusion 

          First, we considered the effect of having a flow strictly controlled by diffusion as the 

enEre term of the first porEon of the right-hand side of equaEon (46) is set to zero as 

expressed below: 

                                                        7D
7N
= 		𝒟𝜀- 7

!D
7E!

	 

Dead-end 
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We set 	𝒟 = 1, and 𝜀 = 0.1 in a classic diffusion to see how the average concentraEon 

varies simultaneously with Eme and posiEon along the channel. The curves in fig 7 show 

how the concertaEon of soluEon changes along the length of the channel whose flow is 

solely driven by diffusion or concentraEon gradients. Plots were generated from lem to 

right, at 𝑇1 = 1e-9	, 𝑇2 = 		0.025, 𝑇3 = 	1.0, 𝑇4 = 10, 𝑎𝑛𝑑	𝑇5 = 	40. As Eme 

progresses, the concentraEon of the light soluEon increases whilst that of the denser 

soluEon decreases.                                                                                                                                 

 

                                                                                                

 

                                      

Figure 7. Pure Diffusion plot with average concentra3on (𝑪) on the ver3cal axis and channel length (𝑋) on the 
horizontal axis. Plot 3mes are 1𝑒 − 9 (blue), 0.025 (red), 1.0 (yellow), 10 (purple), and 40 (green). 𝒟 = 1, 𝜀 = 0.1. 

 4.2 The effect of gravity, with negligible impact of diffusioosmosis. 

            We consider the effect of having a predominantly gravity-driven flow by turning off 

the enEre second term of equaEon (46) [𝒟𝜀- 7D
7E

], and seong	𝐷 = 1, 	𝑎𝑛𝑑	𝜀 = 0.1. 

Although the diffusioosmosis and gravity terms in the same equaEon are coupled, we 

assume the long channel length renders the impact of diffusioosmosis in  I
𝒟
^7D
7E
_
+ (-Q)
-U+#

  

significantly less than the contribuEon from 𝒟𝜀- 7D
7E

  which was set to zero. The plots 
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obtained from figures 7 and 8 supports the claim that gravity plays a higher role, in that  

𝑇5 plot terminates at a higher 𝐶 here than the pure diffusion case where Γ was 

automaEcally zero. The axis and plot Emes are the same as the diffusion flow in secEon 

4.1. We observed the impact of increasing the value Γ  which implied changing the fluid 

properEes. By reducing the viscosity, the influence of gravity also increases causing flow 

to proceed at a faster rate. So, at lower  Γ values, the concentraEon profile for curves as 

Eme advances show slower progression when compared with higher values.  

 

 

 

                                                                                           

Figure 8. Plot of average concentra3on (𝑪) vs channel length (𝑿) for Gravity-dominated flow channel, with some 
impact of diffusioosmosis. Plot 3mes are 1𝑒 − 9 (blue), 0.025 (red), 1.0 (yellow), 10 (purple), and 40 (green). 𝒟 = 1,
𝜀 = 0.1, Γ = 5. 

4.3 The combined effect of diffusioosmosis and gravity ꟷ  uncharged systems 

           Next, we consider the main situaEon of interest where both gravity and chemical 

potenEal influence the progression of flow thus favoring mixing. We will keep all 

parameters in equaEon 46 and adopt the same procedure including Eme plots used in 

secEon 4.2, increasing the value of Γ while keeping 𝜀 at 0.1, and accounEng for slip 

condiEons. As expected, the plot generated in figure 4.3 at 𝑇 = 40 terminated at slightly 
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higher average concentraEon than the previous case and much higher than the pure 

diffusion scenario. We also compared this result with Γ values of  1, 3, 𝑎𝑛𝑑	10	,	and 

confirmed the flow increased while keeping 𝜀 and 𝒟	constant. Comparing figure 9 with 

plots from figures 7 and 8, we noEced increase in flow due to the joint acEon of 

diffusioosmosis and gravity.   

 

 

 

       

Figure 9. Plot of average concentra3on (𝑪) vs channel length (𝑿) for Combined effect gravity and diffusioosmosis in 
uncharged systems. Plot 3mes are 1𝑒 − 9 (blue), 0.025 (red), 1.0 (yellow), 10 (purple), and 40 (green). 𝒟 = 1, 𝜀 =
0.1, Γ = 5. 

4.4 The combined effect of diffusioosmosis and gravity ꟷ charged systems. 

         When the fluid is charged the flow is faster than the uncharged fluid. Taking into 

consideraEon slip velocity condiEon at the top and boIom walls of the channel, we show 

this by choosing 𝒟 = 1	, and			Γ = 	5 . Unlike the in the previous cases, plots were 

generated at 𝑇1 = 1e-9	, 𝑇2 = 	1𝑒 − 7, 𝑇3 = 	1𝑒 − 5, 𝑇4 = 1𝑒 − 3, 𝑎𝑛𝑑	𝑇5 = 	0.025.  

The last Eme plot was parEcularly chosen to serve as reference for comparison between 

the charged systems and the uncharged systems. We observed that in all cases previously 

considered, the channel is barely starEng to get any flow at 𝑇 = 0.025	 whereas we saw a 
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rapid flow which caused the channel to fill up at the same 𝑇  value. StarEng from 𝑪 = 1	at 

the channel inlet, the average concentraEon decreases as the effect of gravity increases 

and having the impact of diffusioosmosis.  

 

 

 

 

 

 

 

Figure 10.	Plot of average concentra3on (𝑪) vs channel length (𝑿) for Combined effect gravity and diffusioosmosis in 
charged systems. Plot 3mes are 1𝑒 − 9 (blue), 1𝑒 − 7 (red), 1𝑒 − 5 (yellow), 1𝑒 − 3 (purple), and 0.025 (green). 𝒟 =
1, 𝜀 = 0.1, Γ = 5 

           We have seen how the average concentraEon 𝑪  varies in the channel as the solute 

moves from one posiEon, 𝑿  to another as Eme, 𝑇 progresses. We have compared  

𝑪(𝑿, 𝑻) plots for pure diffusion, gravity effect and minimal diffusioosmosis, gravity effect 

with diffusioosmosis for both uncharged and charged systems. We observed from plots 

which channel fills up faster from the last average concentraEon gradient plots at Eme 

𝑇5. It will be more beneficial from a product design precision standpoint to determine 

how long it would take to achieve a certain capacity of the average concentraEon. 
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4.5 Time to fill the channel. 

            Now, we seek to determine how long it will take for the average concentraEon in 

the channel to reach a certain target value, say 95% of the inlet concentraEon. We define 

another parameter mean concentraEon,  < 𝐶 > (𝑇) which is the average of the average 

concentraEon  𝑪(𝑋, 𝑇) eliminaEng the 𝑋 dependence. That is,  	< 𝐶 > (	𝑇) =

	∫ 𝐶(𝑋, 𝑇)&
$ . 

We refer to tests performed in secEons 8, 9, 𝑎𝑛𝑑	10	 keeping the values of  𝒟, and	ε  

constant and changing Γ . First, we plot < 𝐶 > vs	(𝑇)  with each plot represenEng 

different Γ	values	(we	chose	 	Γ = 1, 2, 3, 5, 10). The following plots (Figure 

11(𝑎)through	11(𝑑))  show how the mean concentraEon increases with Eme, as the 

value of  Γ is raised.  Plot 4.5(𝑐)	and	(𝑑) represent the effect of both gravity and 

diffusioosmosis in charged systems, with (𝑑) being an  

expanded image for (𝑐). As seen before, the flow is much faster in charged systems, filling 

the channel within a short amount of Eme. We observe that at around 𝑇 = 0.025, we 
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aIained 95 percent of the mean concentraEon, < 𝐶 >, whereas the Eme was about 40 

for combined diffusioosmosis with gravity in uncharged systems.     

                                               

Figure 11. Plots of mean concentra3on, < 𝐶 > 𝑣𝑠 3me, (𝑇) .In plot (a), we have predominantly gravity enable flow 
with some diffusioosmosis. In plot (b), we have the combined effect of gravity and diffusioosmosis for uncharged 
systems. In plot (c), we have joint impact of diffusioosmosis and gravity for charged systems. 𝒟 = 1, 𝜀 = 0.1, Γ =
1,2,3,5,10. 

The above plots give an idea in agreement with the previous secEon of which situaEons 

would be favorable for faster flow but, we sEll do not have a precise Eme at which we can 

reach any desired fracEon of mean concentraEon. So, we extract the mean concentraEon 

values 
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generated from MATLAB simulaEons for each case in secEons 8, 9, 𝑎𝑛𝑑	10, but with five 

(5) values of Γ as shown in table 1 below.  

Table 1. Mean concentra3on data generated from MATLAB for the effect of gravity and diffusioosmosis in charged 
system. 𝒟 = 1, 𝜀 = 0.1, Γ = 1,2,3,5,10. 

 

 

 

 

 

This is an example of data obtained for the charged system. We interpolaEon or 

extrapolaEon depending on where 95 percent (0.95) lies in the table. So, here we would 

have five (5) values of 𝑇"# . We repeat this process for other two cases to obtain two sets 

of five (5) 𝑇"# with the corresponding Γ values as shown in table 2. 

 

 

 

 

 



 

40 
 

Table 2. Calculated 3me to reach 95 percent of mean concentra3on. Data generated from MATLAB for the effect of 
gravity and diffusioosmosis in charged system. 𝒟 = 1, 𝜀 = 0.1, Γ = 1,2,3,5,10. 

 

         

 

 

 

 Next, we plot the 𝑇"# with the corresponding values of Γ in figure 12. 

 

  

 

 

 

 

Figure 12. Plots of Gamma vs Time to reach 95 percent of average concentra3on, 𝑇"#. In plot (a), we have 
predominantly gravity enable flow with some diffusioosmosis. In plot (b), we have the combined effect of gravity and 
diffusioosmosis for uncharged systems. In plot (c), we have joint impact of diffusioosmosis and gravity for charged 
systems. 𝒟 = 1, 𝜀 = 0.1, Γ = 1, 2, 3, 5, 10. 
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Finally, we create a vector field plot for the effect of gravity and diffusioosmosis in 

uncharged system. We set  𝒟 = 1, 𝜀 = 0.1, Γ = 10, to obtain the velocity field in Fig. 13 

showing a recirculaEng flow combined with slip at the walls. 

 

 

 

 

 

 

 

Figure 13. Vector field Plots of the combined effect of gravity and diffusioosmosis for uncharged systems at 𝑇 = 	40. 
We set the flow parameters for 𝒟 = 1, 𝜀 = 0.1, Γ = 10. 
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Chapter 5. CONCLUSIONS AND FUTURE WORK  

             We showed that, without external forces, gravity and chemical potenEal can drive 

flow concurrently. We formulated a problem involving the introducEon of saltwater into a 

rectangular microfluidic channel containing fresh water. We focused on what happens as 

the dense salt soluEon contacts the less dense fresh water and the impacts on the 

resulEng soluEon as Eme evolved. StarEng with the Navier-Stokes equaEon and non-

dimensionalizing, we obtained an expression for the horizontal velocity,𝑼 and subsEtuted 

into the convecEon-diffusion equaEon, resulted in a complicated 2D coupled non-linear 

system. Amer applying averaging ideas following arguments of Taylor-dispersion, we 

derived an expression for concentraEon deviaEons, 𝐶′ and, simplified the 2D system into 

a 1D non-linear system involving only the average concentraEon, 𝑪 .  

            We performed mesh discreEzaEon using the finite Volume Method on the non-

linear parEal differenEal equaEon and completed the process with MATLAB simulaEons. 

We varied the fluid property, Γ  for the effect of predominantly gravity with some 

diffusioosmosis, solely diffusioosmosis, and compared the outcomes with those obtained 

when both factors were jointly involved. The results show that flow proceeds faster with 

the joint acEon of gravity and diffusioosmosis, and even much faster when the system is 

charged. 

          There are possibiliEes for achieving further enhancement of solute transport by 

flow in future. Choosing a different orientaEon for the microfluidic channel such that it is 
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slightly slanted could enhance the effect of gravity since the results support that gravity 

plays a higher role in the mixing process. We could also decrease the length of the 

channel to allow for mulEple mixing acEons, smoothen the surfaces for easy charge 

dissipaEon, and use a cylindrical geometry channel. We could consider a mulEcomponent 

system such as a body fluid: the blood, containing plasma, red blood cells, white blood 

cells, and platelets, for drug delivery and therapeuEc applicaEons. Finally, careful 

upscaling of this work could be applied to various large scale industrial processes 

involving mixing. 
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