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Abstract

In this dissertation we focus on the application of several design-of-experiments (DOE) methods

to cell culture media development in order to sequentially learn optimal media formulations. These

sequential DOE methods use data collected from an experimental system to simultaneously improve

the model with additional suggested experiments while at the same time learning the optimal

conditions of the experimental system. The purpose of this media is for applications in the cellular

agriculture industry, where animal cells are grown for consumption. Starting with a hybrid scheme

utilizing radial basis functions with a genetic algorithm and coordinate search method, we discovered

that long-term cell growth is not fully correlated with the short-term chemical assays typically used

in cell culture. We solved this by successfully deploying a Bayesian model that correlates long

and short-term growth assays. We could then predict the information value of new experiments

and assays jointly, reducing the overall number of experiments needed to solve the optimization

problem. This improved Bayesian methodology focuses long-term experiments only on the most

promising areas of the design space while allowing simpler short-term growth experiments to fully

explore the design space. Using this new approach, we designed a medium with 181% more cell

growth than a common commercial formulation with a similar economic cost, while doing so in

38% fewer experiments than an efficient DOE method using a desirability function to parameterize

the outcome space. This medium even managed to maintain robust cell growth over four passages.

Next, we used a hypervolume function to design experiments to sequentially learn the trade-off

between cell growth and media cost in a serum-free system. We found a medium with a 184%

improvement in growth over the control at a 71% increase in cost that maintained a high level of

cell growth over five passages. Both optimal formulations resulted in robust long-term proliferation

of cells, indicating the success of our multi-assay Bayesian approach to optimizing media. Future

work could tie imaging software, bio-marker quantification, and techno-economic analysis to improve

the accuracy and usefulness of predictions and experimental designs.
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CHAPTER 1

Introduction and Literature Review

This dissertation is focused on exploring experimental optimization methods for the purpose of

designing cell culture media for cellular agriculture. This chapter will act as an introduction to the

fields of both experimental optimization and cellular agriculture.

1.1. Review of Cellular Agriculture and Cell Culture Media

In cellular agriculture, meat (and other animal products) is derived from populations of cells for

consumption [63] in an attempt to be more resource efficient and ethical than traditional animal

agriculture.

1.1.1. Basic Cellular Agriculture Process. Myoblast, myocytes, and fibroblasts (muscle

cells) are cells of greatest interest for the field of cellular agriculture. For texture and taste,

adipocytes (fat cells) may be used [59] and grown either separately or co-cultured with muscle

cells. The choice of animal will also have an effect on the final product and production process

because cells from different animals will have different growth characteristics, morphology, and

product qualities. The majority of these cell lines are adherent, meaning they require a suitable

substrate (surface) to grow. Ideally, cells may be grown in suspension culture (no surface), bringing

cellular agriculture in line with typical pharmaceutical practice such as CHO cells [72]. Micro-

carriers (small surfaces in suspension) may also be used to increase the surface area of the total

surface [86]. Proliferating many cells is not the only consideration in cellular agriculture. Stem cells

differentiate into more complex tissue structures depending on time and environmental conditions,

which is critical in forming final products that consumers are willing to purchase. For example,

C2C12 immortalized murine skeletal muscle cells differentiate into myotubes at high density and

when exposed to DMEM + 2% horse serum (Figure 1.1a shows proliferating versus differentiating

C2C12 cells). However, because cell differentiation often precludes further proliferation, cells must

be periodically passaged (also called sub-cultured) to provide more physical space for growth. This
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(a) C2C12 Cells

(b) Cellular Agriculture

Figure 1.1. (a) Immortalized cells such as C2C12 (ATCC) have found great use
as test-cases for cellular agriculture. Left and right show a low density proliferating
culture and high density differentiating culture respectively. (b) This figure was
inspired by [77] discussing a theoretical cellular agriculture system: Starting with a
seed train to proliferate a small population of cells into a large population, the cells
then differentiate into their respective final tissue structures, which are harvested
and sold.

is typically done by detaching the cells from the substrate using trypsin enzyme and physically

placing the cells onto additional surface area. Fundamental techniques in cell culture can be found

in [60] and a general overview of mammalian cell culture for bio-production uses can be found in

( [8] pg. 157 - 195). Figure 1.1b shows a high level overview of the cellular agriculture process.

Throughout this entire process, media is used to support cells by providing them with nutrients,

signal molecules, and an environment for growth. We are focused on reducing the cost of the media

while supporting cell proliferation. This is because the media has been identified as the largest

contribution to cost (according to [78] 55% to over 95% of the marginal cost of the final product).

The main considerations for the design of cell culture media in cellular agriculture are (i) the media

must be inexpensive, (ii) it must be free of animal products, and (iii) it must support long-term

proliferation of relevant cell lines and final differentiation into relevant products.

1.1.2. Media in Cellular Agriculture. The most basic part of a cell culture medium is

the basal component, which supplies the amino acids, carbon sources, vitamins, salts, and other

fundamental building blocks to cell growth. The optimal pH of cell culture media is around 7.2 -

7.4 which is achieved through buffering with the sodium bicarbonate - (5% - 10%) CO2 or organic

buffers like HEPES. Temperature should be maintained at around 37◦C at high humidity to prevent
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evaporation of media. Osmolarity around 260 - 320 mOsm/kg is maintained by the concentration

of inorganic ions salts such as NaCl as well as hormones and other buffers. Inorganic salts also

supply potassium, sodium, and calcium to regulate cell membrane potential which is critical for

nutrient transport and signalling. Trace metals such as iron, zinc, copper, and selenium are also

found in basal media for a variety of tasks like enzyme function [3]. Vitamins, particularly B and C,

are found in many basal formulations to increase cell growth because they cannot be made by the

cells themselves. Nitrogen sources, such as essential and non-essential amino acids, are the building

blocks of proteins so are critical to cell growth and survival. Glutamine in particular can be used

to form other amino acids [57] and is critical for cell growth. It is also unstable in water so is

typically supplemented into media as L-alanyl-L-glutamine dipeptide (sold as GlutaMAX). Carbon

sources, primarily glucose and pyruvate, are essential as they are linked to metabolism through

glycolysis and the pentose-phosphate pathway [59]. Fatty acids like lipoic and linoleic acid act

as energy storage, precursor molecules, and structural elements of membranes and are sometimes

supplied through a basal medium like Ham’s F12. Having a sufficient concentration of all of these

components is required for proliferating mammalian cells across multiple passages as per (iii) above.

Having a robust basal media is a necessary but not sufficient condition for long-term cell pro-

liferation and differentiation. Serum is a critical aspect of cell culture because it provides a mix

of proteins, amino acids, vitamins, minerals, buffers and shear protectors (pg 4 [3]). Serum stim-

ulates proliferation and differentiation, transport, attachment to and spreading across substrates,

and detoxification [14]. Serum (often from horse or cow) has large lot-to-lot variability, zoonotic

viruses and contamination ( [6] pg. 18), as well as the ethical issues associated with collecting serum

from animals. Therefore, while it often simplifies cell growth and differentiation, it is critical to re-

move serum as per point (ii). Supplementation with growth factors like FGF2 [39], TGFβ1 [27],

TNFα [17], IGF1, or HGF [40] is a common way to induce growth of mammalian muscle cells

without the use of serum. Transferrin, another protein found in serum, fulfills a transport role for

iron into the cell membrane [3]. PDGF and EGF are polypeptide growth factors that initiate cell

proliferation [14]. Such components enhance cell growth but are expensive and comprise the vast

majority of the cost of theoretical cellular agriculture processes [78]. Much work has been done

on developing serum-free media. The E8 / B8 medium [52] for human induced pluripotent stem
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Figure 1.2. Cell Interactions with Environment | figure inspired by [14] illustrat-
ing different factors, and complexity, in cell proliferation and differentiation. The
complexity and number of interactions is an important reason for using black box
methods to support research.

cells is based on Dulbecco’s Modified Eagle Medium (DMEM) / F12 supplemented with insulin,

transferrin, FGF2, TGFβ1, ascorbic acid, and sodium selenite. Beefy-9 by [80] is similar to E8 but

with additional albumin optimized for primary bovine satellite cells. The approach we will take

in this dissertation is to use prior knowledge of biological processes to construct a list of potential

media components, and use design-of-experiments (DOE) methods to optimize component concen-

trations based on cell proliferation. This will be particularly useful for cellular agriculture because

by developing and using these statistical tools, as we will see in the next section, DOEs will help

develop media quickly and efficiently.

1.1.3. Measuring Cell Growth. One of the most difficult aspects of this work is measuring

the quality of media. Viable cells must be counted after a period of time over which the scientist

believes the medium will have an effect, which changes depending on cell type, media components,

cell density, ECM, pH, temperature, osmolarity, and reactor configuration. If cells grow by adhering

to a substrate, then subculturing / passaging may play a role on the health of a cell population, so

discounting this effect may have deleterious effects on media design quality [22,23]. Counting using

traditional methods like a hemocytometer or more advanced automatic cell counters using trypan
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blue exclusion are labor-intensive and prone to error. Cell growth / viability assays are chemical

indicators that correlate with viable cell number such as metabolism (AlamarBlue [37,53], MTT)

or DNA / nuclei count (LIVE/DEAD, Hoechst 33342) and can also be used to quantify the effect

of media on cells. In chapter 5 we conducted many experiments with different assays and show the

inter-assay correlations in Figure 1.3. Notice no assay (top right / blue plots) is perfectly correlated

with any other assay because they are collected with different methodologies and fundamentally

measure different physical phenomena. For example, AlamarBlue measures the activity of the

metabolism in the population of cells, so optimizing a media based on this metric might end up

simply increasing the metabolic activity of the cells rather than their overall number. As some of

these measurements can be destructive / toxic to the cells (AlamarBlue and LIVE stain for example),

continuous measurements to collect data on the change in growth (not just at a single point in time,

for an example see [10]) can be tedious. Collecting high-quality growth curves over time may

be accomplished using image segmentation and automatic counting techniques. Using fluorescent-

stained cells and images, segmentation can be done using algorithms like those discussed [30]. Cells

may even be classified based on their morphology dynamically if enough training data is collected

to create a generalizable machine learning model. Successfully quantifying the ability of media to

grow cells forms the backbone of the novelty of this dissertation.
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Figure 1.3. Correlations Between Cell Growth Metrics | (upper right blue squares)
correlation between measurements YN of cell growth (with R2 shown) from exper-
iments conducted in chapter 5 using Passage 2, 1, AlamarBlue, and LIVE stain. x
and y axis are the growth measurements of each of the methods located horizontally
(to the left) and vertically (below) from the plot respectively. (center histogram) a
density plot of N assay outputs YN data from Passage 2, 1, AlamarBlue, and LIVE
stain. This shows the output distribution of each measurement type. (left bottom)
Prediction of random data by model in chapter 5.

1.2. Review of Experimental Optimization Methods

The primary means by which this dissertation will improve cell culture media is through the ap-

plication of various experimental optimization methods, often called design-of-experiments (DOE).

The purpose of DOEs are to determine the best set of conditions x (media concentrations for ex-

ample) to optimize some output y (cell growth rate or cell density at a specific time for example)

by sampling a process for sets of conditions in an optimal manner. If an experiment is time /

resource inefficient, then optimizing the conditions of a system may prove tedious. For example,

doing experiments at the lower and upper bounds of a 30-dimensional medium like DMEM requires

230 ≈ 109 experiments. This militates for methods that can optimize experimental conditions and

explore the design space in as few experiments as possible.
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1.2.1. Static DOE. The simplest method of exploring the design space and optimizing media

is one-factor-at-a-time (OFAT), which was used to create E8 and Beefy-9 serum-free media by vary-

ing one component at a time. While good for initial screening, OFAT is inefficient for optimization

because it does not take into account interactions between components that is common in biological

systems. Full factorial designs are an improvement over OFAT. If there are p factors and l levels

(high and low concentration l = 2 for example), then the number of experiments needed in a full

factorial design is N = lp. Fractional factorial designs reduce the needed experiments to N = lp−k

for k generators, where the higher k results in a greater degree of aliasing, or confounding of effects.

While the number of experiments is reduced in fractional designs, the contribution of any given

component on the cells is unclear. Plackett-Burman designs are N = p + 1 economical, typically

for systems where only first order effects are expected because they are aliased with second order

effects. The ’effects’ of a design may be found using the slopes βi of a linear model (Equation 1.1).

If the system is nonlinear, we may model it using a (second order) polynomial model (Equation 1.2),

but this often requires a high-fidelity DOE, and the effect of any given component is not trivial to

ascertain. Central composite designs are particularly useful for fitting polynomial models but are

more experimentally expensive with N = lp+nc+2p experiment using nc center-points in the mid-

dle of the design to evaluate experimental error. Box-Behnken designs, where factors are sampled

along the center-points of all pairs of factors in N = lp+nc total experiments, are good for training

polynomial models where extreme values are not expected to perform well. Figure 1.4 shows an

example of a linear versus polynomial model attempting to replicate a nonlinear underlying process

with N = 5 random experiments. The structure of the data / system should inform the structure

of the prediction and complexity of the DOE.

(1.1) ŷ(x) = β0 +

p∑
i=1

xiβi

(1.2) ŷ(x) = β0 +

p∑
i=1

xiβi +

p∑
i=1

x2iβi +

p∑
i=1

x2iβii
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Figure 1.4. Examples of Simple Models | (left) plot of y(x) = −((x1 − 0.5)2 +
(x2 − 0.2)2), (center) and (right) are fitted polynomial and linear models trained
using ordinary least squares method on N = 5 data points shown as red squares.

Other types of designs need to be solved using a computer or a more sophisticated objective

function. The "alphabet" designs (A, D, G-optimal for example) are popular. The advantage of

them is that (i) we are not limited in the number of experiments to perform at a time, (ii) constraints

may be considered easily, and (iii) prior information on coefficients of the model may be considered.

One such alphabet design, the D-optimal design, is computed using Equation 1.3, for a the Fisher

information matrix (detoted as Σ(x, x) for some set of inputs x). Here we attempt to maximally

reduce the variance of the coefficients of a statistical model and thus have a model that explains

the data well. If the coefficients of the model are multi-variant normal, this becomes Σ = xxT , so

αD(x) = det[xxT ] plotted in Figure 1.4. Notice this method is independent of the predicted output.

There is a Bayesian interpretation of this design as well. If we try to maximize the distance between

the prior and posterior probability distribution of a model we end up with Equation 1.4, which is

similar to Equation 1.3 but with an additional matrix R which acts as the prior variance [49]. A

good rule of thumb is that Bayesian interpretations are similar to standard designs in the limit of

large data, where the prior R is "overwhelmed" by the data Σ(x, x). This will become important as

we try to construct DOEs that conform to our expectations about how the underlying processes work

in order to improve model accuracy and experimental efficiency. Other design criteria exists, for

example the A-optimal design αA(x) = Trace(Σ(x, x)−1) attempts to minimize the sum of diagonal

elements of the Fischer information matrix, which may have more desirable statistical properties

than D-optimal designs depending on the situation [44].
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Figure 1.5. Example of D-Optimal Contour | using Equation 1.3 (left) and 1.4
(right), D-optimal designs were computed when x = [0.5, 0.5] has already been se-
lected for a polynomial model. For the (left) Bayesian plot R = σ2

R ∗ I for variance
matrix on predictor coefficients σ2

R = 10−3. In this above example, we also set
R3,3 = 1 indicating a low prior variance on x2, down-weighting the usefulness of
sampling x2 because we believe the variance on that paramater will be low.

(1.3) αD(x) = det[Σ(x, x)]

(1.4) αD,bayes ≈ det[Σ(x, x) +R]

DOEs where samples are located throughout the design space to maximize their spread and

diversity according to some distribution are called space-filling designs. The most popular method

is the Latin hypercube (Figure 1.6), which are particularly useful for initializing training data for

models [43] and for sensitivity analysis [18]. Maximin designs, where some minimum distance

metric is maximized for a set of experiments, can also allow for diversity in samples, with the

disadvantage being that in high dimensional systems the designs tend to be pushed to the upper

and lower bounds. Thus, we may prefer a Latin hypercube design for culture media optimization

because media design spaces may be >30 factors large. Uniform random samples, Sobol sequences,

and maximum entropy filling designs [16], all with varying degrees of ease-of-implementation and

space-filling properties, also may be used. It cannot be known a priori how many sampling points

are needed to successfully model and optimize a design space because it is dependent on the number
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of components in the media system, degree of nonlinearity, and amount of noise expected in the

response. Because of these limitations, DOE methods that sequentially sample the design space

have gained traction, which will be talked about in the next section.

Figure 1.6. Space-Filling Designs | (left) Latin hypercube. Notice all rows x2 and
columns x1 have a single samples without overlap. Maximin designs, determined by
maximizing the minimum distance (criteria was d =

∑p
j=1(xi − xk)

2) between any
two points in the group of designs, is also shown by sampling for t = 10000 iterations
(right plot shows the distance criteria getting better over t with the final distribution
in blue on the right).

1.2.2. Sequential DOE. A more data-efficient DOE is to split up individual designs into

sequences and use old experiments to inform the new experiments in a campaign. One sequential

approach is to use derivative-free optimizers (DFOs) where only function evaluations y are used to

sample new designs x. DFOs are popular because they are easy to implement and understand, as

they do not require gradients. They are also useful for global optimization problems because they

usually have mechanisms to explore the design space to avoid getting stuck in local optima. The

genetic algorithm (GA) is a common DFO where a selection and mutation operator is used to find

more fit (better y) combinations of genes (combinations of x). In Figure 1.7, notice the GA was able

to locate the optimal region of both problems regardless of the degree of multi-modality. [9] used a

GA to optimize media for rifamycin B fermentation in bacteria where the HPLC titer at the end of

9 days was used to select high performing media combinations from nine metabolites for the next

batch of experiments. They allowed for a 1% chance of mutation of each experiment and component

10



to allow for global search. They also discovered that the response space was multi-modal and had

interactions between components, which confirmed the need for global optimization of fermentation

and bioprocessing problems. [34] discusses 17 cases in which GAs have improved media for different

organisms for chemical fermentation often by > 50% yields for problems of > 10 media components.

Particle swarm optimization [28] is a population-based method that optimizes systems sequentially

based on varying x according to a velocity vector v. At the tth iteration of the algorithm a particle x

will have the velocity update rule vt+1 = wvt+c1r1 ∗(pbest−x)+c2r2(gbest−x) for random numbers

r1, r2, coefficients w, c1, c2 (note the global and particle optimal points gbest, pbest respectively).

c1 and c2 parameterize the exploration-exploitation trade-off, similar to the mutation rate in the

GA. w represents the fraction of velocity saved for the next iteration t + 1. To implement this

one merely computes xt+1 = xt + vt for a large population of particles over time as the population

gradually gravitates to the optimal designs. The Nelder-Mead simplex method, wherein a group of

points is moved closer to better values via expansion and contraction steps, is also a popular DFO

method. Nelder-Mead is a local optimizer and may be hybridized with other global DFO methods

(see section 3.3.4 of [67]) to improve convergence. While DFOs don’t require gradient calculations

and can usually optimize complex multi-modal optimization problems (such as in media design),

they require 100’s, if not 1000’s, of experiments so are limited to fast growing culture systems or

computer experiments where experiments are somwhat costless.

The most powerful experimental optimization technique is arguably the model-based sequential

DOE, in which a response-surface model (RSM) of the relationship between the input x and output

y data is trained, and new samples are constructed based on the predictions of the trained model.

The newly collected data is then fed back into the model and used to generate another sequence

of samples. [74] discusses using combinations of screening DOEs and polynomial RSM to optimize

conditions for the fermentation of metabolites such as chitinase, γ-glutamic acid, polysaccharides,

chlortetracycline and tetracycline among 20 other metabolites from various organisms. This demon-

strates the usefulness of RSMs for fermentation and culture optimization. The primary limitation

of polynomial RSMs is their inability to accurately model many factors (usually >5) at a time or

systems with significant nonlinearity. Due to their generalizability to modeling different response

surfaces, neural networks have been used to optimize bioreactor cultures [46] and multi-objective

11



Figure 1.7. Single vs Multi-Modal Examples for GA | a GA was used to optimize
y(x) = −((x1 − 0.5)2 + (x2 − 0.2)2) (left) and y(x) = sin(10x1) (right) in 100
generations of 100 samples per generation. A mutation rate of 1% was used to
explore the design space. Crossover between parent genes was done by averaging
any two of the 100 parent samples to generate 50 child samples.

protein storage conditions [68]. Radial basis function have been used to optimize yeast [93] and

C2C12 mammalian muscle cell [22] culture growth media. Decision trees and neighborhood analysis

have been used to optimize media for antibiotics [9] and bacteria fermentation [20]. An example of

an RSM can be seen in Figure 1.8 where a radial basis function maps the input / output relationship

in a nonlinear system, then a GA finds new optimal experiments. Over time the predicted contour

looks similar to the true function. While these RSMs tend to be more generalizable compared to

polynomial and linear models, low-data experimental campaigns common in fermentation and cell

culture often obscure the differences between modeling techniques. Additionally, many of these RSM

approaches do not take into account prior information about the system to speed up optimization.

Gaussian process (GP) models can also be used for sequential DOE [70] in a class of methods

known as Bayesian optimization [71] or efficient global optimization [45]. GPs are distributions over

functions f(x) ∼ N(µ,Σ), in a similar way that Gaussian distributions are distributions over param-

eters x ∼ N(µ,Σ). The unique thing about GPs is that we may design a mean µ and covariance Σ

based on domain knowledge of the fermentation or cell culture system. It is known that, given some

input data X and output data Y , a conditional Gaussian distribution f(x|X,Y ) ∼ N(µ,Σ) has the

mean µ(x|X,Y ) and variance matrix Σ(x|X,Y ) in Equation 1.5 and 1.6 respectively. Therefore,

GPs can model uncertainty in the model and experiment, have mathematically well-understood
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Figure 1.8. Example of Sequential DOE | 2-D himmelblau’s function y(x) = (x21+
x2− 11)2+(x1+x22− 7)2 is optimized using a radial basis function regression model
initialized with N = 6 random data points. New experiments are suggested using a
GA. The red square roughly corresponds to the optimal set of parameters.

properties, and are highly customizable due to our ability to tailor the mean and covariance to the

problem of interest. For example, a common covariance that describes the relationship between two

given points x and x′ is the squared-exponential kernel parameterized by a length-scales λk and

output-scale σf with the functional form Σ(x, x′) = σ2
f ∗ exp(−1/2

∑p
k=1

(xk−x′
k)

2

λ2
k

). This encodes

the prior knowledge that culture systems have smooth underlying response surfaces. To further

encode smoothness, we may place a normal prior on the length-scales λk ∼ N(0, σ2
λ) to induce

broader correlations among data points. Another prior might be the knowledge that the underlying

function should be linear, so alter Equation 1.5 to have µ0(x) = cTx.

(1.5) µ(x|X,Y ) = µ0(x) + Σ(x,X)(Σ(X,X))−1(Y − µ0(X))

(1.6) Σ(x|X,Y ) = Σ(x, x) + Σc(x,X)(Σ(X,X))−1Σ(x,X)T

We can compute acquisition functions α to suggest new experiments using the GP predictions.

Expected improvement αEI [41] pushes new experiments over the best previous value y∗ and strikes

13



Figure 1.9. Gaussian Process | (left) real model with N = 5 collected data vs
(center) prediction µ(x) using the data with (right) variance of model. Squared
exponential kernel trained using maximum likelihood with L-BFGS-B (a type of
optimization algorithm that approximates the Hessian of the function using deriva-
tives) of hyperparameters.

a balance between exploration (high σ(x)) and exploitation (better µ(x)). It is often the default

acquisition function for Bayesian optimization due to this balance. The E and (f)+ operators

correspond to the expectation (average) and max{f, 0} for some value f . The upper confidence

bound αUCB [79] allows the user to parameterize the trade-off between exploration and exploitation

using the hyperparameter β. This parameter can be dynamically set depending on the results of the

experimental campaign or adjusted based on prior knowledge of the scientist. Information-based

policies such as max-value entropy search αMES [82] have the advantage of quantifying the value

of a function evaluation at the unknown minimum f(x∗). In this manner, if it is impossible to

define an improvement in the output space, such as collecting data with different units, we can

still design experiments. The H and Ey∗ operators correspond to the entropy of the argument and

the expectation (average) value of the argument given you believe y∗ is the maximum value in the

design space (many more details on the analtical form of this can be found in [82]).

(1.7) αEI(x) = E[(µ(x)− y∗)+]

(1.8) αUCB(x) = µ(x) + βσ(x)
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Figure 1.10. Bayesian Acquisition Functions | (left) expected improvement, (cen-
ter) upper confidence bound with β = 0.5, (right) max-value entropy search.

(1.9) αMES(x) = H(x)− Ey∗ [H(x|x, x∗)]

GPs and Bayesian methods are also flexible. For example, [76] shows us that priors can be

placed on the expected optimal design x∗ in a way that allows for faster learning of the true

optimal design. This is similar to placing prior beliefs on hyper-parameters θ∗ in dynamic systems

[19] or physics-based experimental / simulation data [35] to constraint uncertainty. Measurement

noise can be incorporated into a GP by adding a term to the covariance matrix Σ(X,X) + σ2
ϵ ∗

I where the noise parameter σϵ may be estimated or assumed. This is similar to the Bayesian

D-optimal design discussed in the previous section. [2] describe a heteroskedastic version of this

Σ(X,X)+v(X)∗I where v(X) is a variance model or set of data, which allows more experimentally

uncertain regions of the design space to be modelled as such. [83] describe how, if outliers are to

be expected, a GP can be modified to be a student-t process. Due to the noisiness of fermentation

data it may be useful to consider noise in our process models. Known or unknown constraints can

be incorporated into GPs [54] as well. For example, a known constraint might be that growth

must exceed some minimum value. An unknown constraint might be the existence of excessive

foaming in bioreactors, which may be learned from data, but is generally not known ahead of

time. Multiple objectives, some of which may compete against one another, can be modeled and

optimized using GPs [11] and correlations between tasks (potentially with different length-scales

or units) may be considered [81]. Correlated measurements of the same (or similar) task may be

solved using a Bayesian interpretation as well [61,73]. By correlating measurements, fewer total
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experiments are often needed. Multi-objective versions of acquisition functions α such as max-

value entropy search [11] and hypervolume improvement [26] exist to turn these GP predictions

into a score for a variety of objectives. Fermentation and cell culture systems are often subject

to growth vs cost trade-offs so multi-objective Bayesian methods are useful here. Because most

bioprocessing experiments can be done using multiple bioreactors or cell culture plates, designing

multiple optimal experiments at a time is often necessary. [89] shows how, using monte-carlo samples

of the GP model, arbitrary numbers of experiments can be designed simultaneously. Knowledge that

systems may exhibit separate but interacting local and global responses may militate for additive

GPs [7]. Experimenters with access to separate computer simulations or algebraic process models

may pose their GPs as composites of deterministic or other modeled functions [5] and speed up

optimization. Bayesian models may even fuse historical data-sets together to estimate optimal

model parameters with constrained uncertainty [35], and could perhaps be used for optimization as

well (transfer learning). More closely related to cell culture media optimization, GPs have been used

in a Bayesian optimization scheme to optimize C2C12 growth media for proliferation maximization

and cost minimization in chapter 5 of this dissertation.

1.3. Review of Thesis

This dissertation is divided into roughly two equal parts. The first part (chapter 2 and 3)

are comprised of the development of a radial basis function genetic algorithm sequential DOE

scheme [21, 22]. It drew heavily on the work of [66], where a sequential DOE technique was

developed on the principle of local random search in areas of high performing media. This algorithm

was also dynamic by converging on high performing results and selectively searching the design space

when good results were not forthcoming. Additionally, previous work in our lab [93,95] provided

the framework for a sequential DOE based on a truncated GA. This modified GA incorporates

uncertainty in the optimal samples found by halting algorithm convergence proportional to the

amount of clustering around an optima the GA finds. By hybridizing these two methods, a DOE

algorithm called NNGA-DYCORS was developed that solved various computational optimization

problems better than either method alone. It was used to optimize a 30-dimensional media for

serum-containing C2C12 cell culture with the metric of growth being AlamarBlue reduction after
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48 hrs of growth in 96 well plates (in chapter 3 it was renamed HND). Cells were seeded at the same

time, concentration, and from the same frozen innoculum so that all experiments were roughly the

same. While it was successful at finding media that maximized this metric (as well as minimized a

cost metric), the optimal medium did not grow as many cells over additional passages.

To fix this underlying problem, multiple passages needed to be incorporated into the DOE

process. This is a very time-consuming process as each passage takes multiple days, many more

physical manipulations than simple chemical assays which introduces opportunities for contamina-

tion, and difficulty for manual experimentation. To solve this, chemical assays were supplemented

with small amounts of manual multi-passage cell counts in a multi-information source Bayesian GP

model [31] which was used to successfully optimize a 14-dimensional serum-containing media for

C2C12 cells [23] (chapter 4). Due to the presence of multi-passage data, the final optimal medium

grew cells robustly over four passages, provided nearly twice the number of cells at the end of each

passage relative to the DMEM + 10% FBS control and traditional DOE method, and did so at

nearly the same cost in terms of media components. In the final chapter (chapter 5) the multi-

information source GP model was extended to optimize a 26-dimensional serum-free media based

on the Essential 8 media [52] using a multi-objective metric that improves cell growth while mini-

mizing medium cost. Using this Bayesian metric, a broad set of media samples along the trade-off

curve of media quality and cost were found, showing that a designer can be given options in media

optimization. In particular, one medium resulted in higher growth over five passages while the

control and Essential 8 lagged.

We identify two important future considerations for this work. First, the data collection process,

which is the major innovation of this dissertation, needs to be made more robust by actually

capturing the long-term growth dynamics of the cells. Fluorescent and brightfield imaging, used to

quantify the temporal and spatial changes of the cells, may improve over whole-well AlamarBlue

and LIVE/DEAD stains by couting individual cells and collecting more fine-grained growth curves.

Additionally, bio-markers of proliferation and cell health such as Pax7, MyoD, and Myogenin may

be measured to improve the robustness of predictions and correlations across assays. None of these

metrics will aid in optimization if a sufficient model of the relationship between cell growth, media

cost, and overall process cost is not considered. Therefore, a techno-economic model of the process
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is needed to tie together the large-scale production process to bench-top measurements. Secondly,

further "white-box" studies that focus on the metabolomics [58] of the cell lines would be very useful

in defining the upper / lower bounds and important factors of these DOE studies. Developing robust

cell lines (that are relevant for cellular agriculture such as bovine, porcine, or avian) adapted to

serum-free conditions would open up the design space for use in DOE studies because very poorly-

growing cells are difficult to optimize in DOE studies. In general, white-box or traditional studies

act to constrain the complexity of future DOE studies, so must be conducted in collaboration with

DOE.
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CHAPTER 2

A Generalizable Hybrid Surrogate Framework for Expensive

Design Optimization Problems

Experimental optimization of physical and biological processes is a difficult task. To address

this, sequential surrogate models combined with search algorithms have been employed to solve

nonlinear high-dimensional design problems with expensive objective function evaluations. In this

article (originally published as [21]), a hybrid surrogate framework was built to learn the optimal

parameters of a diverse set of simulated design problems meant to represent real-world physical and

biological processes in both dimensionality and nonlinearity. The framework uses a hybrid radial

basis function/genetic algorithm with dynamic coordinate search response, utilizing the strengths

of both algorithms. The new hybrid method performs at least as well as its constituent algorithms

in 19 of 20 high-dimensional test functions, making it a very practical surrogate framework for a

wide variety of optimization design problems. Experiments also show that the hybrid framework

can be improved even more when optimizing processes with simulated noise.

2.1. Introduction

The design and optimization of modern engineering systems often requires the use of high-fidelity

simulations and/or field experiments. These black box systems often have nonlinear responses, high

dimensionality, and have many local optima. This makes these systems costly and time consuming

to model, understand, and optimize when simulations take hours or experiments performed in the

lab require extensive time and resources.

The first attempt to improve over experimental optimization methods, such as ‘one-factor-at-a-

time’ and random experiments was through the field of Design of Experiments (DOE). Techniques

in DOE have been adapted to many computational [32] and experimental fields [4,74,90] in order

to reduce the number of samples needed for optimization. These methods often involve performing

19



experiments or simulations at the vertices of the design space hypercube. Full-Factorial Designs

are arguably the simplest to implement, where data is collected at all potential combinations of

parameters p for all levels l requiring lp samples in total. Even when l = 2 (for ‘high’ and ‘low’

levels of the design space) the number of experiments or simulations quickly becomes infeasible so

Fractional-Factorial Designs using lp−k experiments for k ‘generators’ are often used to reduce the

burden. While such designs are more efficient, they have lower resolution than full designs and con-

found potentially important interaction effects. Therefore, DOE techniques are often combined with

Response Surface Methodology (RSM) to iteratively move the sampling location, improve model

fidelity as more data is collected [69], and focus experiments in regions of interest. Stochastic

optimization methods such as Genetic Algorithms (GA), Particle Swarm Optimization, and Differ-

ential Evolution have also been used to explore design spaces and perform optimization on both

simulated [55] and experimental data [9,34,90], often requiring fewer experiments than traditional

DOE-RSM techniques.

The quickly developing field of surrogate optimization (also called meta-modeling or active

learning) attempts to leverage more robust modeling techniques (such as radial basis functions

(RBF) [66] or Kriging / Gaussian Process models [88]) to optimize nonlinear systems. They often

employ a stochastic [95], uncertainty-based [45], or Bayesian [49] search algorithm to intelligently

select new sample points to query for experimentation or simulation. Due to the variety of modeling

techniques and search algorithms available, hybrid algorithms, which attempt to leverage each

methods strengths, have proliferated [33, 96]. These hybrid approaches usually involve taking

ensembles of surrogate models and asking each surrogate for its best set of predicted query points.

New queries are then conducted at these points, often weighted in favor of regions/surrogates with

low sample variance or optimal response values. The drawback of many of these algorithms is that

they are not always generalizable to design problems of diverse dimensionality and nonlinearity.

A surrogate optimization algorithm is presented here, which uses an evolving RBF model and

hybrid search algorithm. This search algorithm selects half of its query points using a Euclidean

distance metric truncated to provide diversity in suggested query points. This is based on a neural

network genetic algorithm (NNGA) developed for bioprocess optimization [92], which has been

shown to be more efficient than traditional DOE-RSM methods (note that typically RBF models
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are not considered neural networks, but we will continue to use this terminology in this chapter for

consistency with the original publication). The other half of the query points are selected using

a dynamic coordinate search for response surface methods (DYCORS) algorithm based on work

developed for computationally expensive simulation [66]. DYCORS has been shown to perform

better than a variety of popular surrogate optimization techniques. The performance of the NNGA-

DYCORS hybrid algorithm is tested against NNGA and DYCORS separately. Further evaluation

is performed to probe potentially useful extensions of the hybrid algorithm (1) to address simulated

experimental noise, (2) to improve algorithm convergence over time, and (3) to address cases in

which certain groups of parameters have a greater influence on the response values than others.

2.2. Methods

2.2.1. RBF Surrogate Model. The surrogate model used is the RBF interpolation model.

A cubic RBF ϕ(x) = r3 with a linear tail p(x) is used to map input data x ∈ Rn×p to output data

y ∈ Rn×1 given number of data n with input dimensionality p. The form of the RBF interpolation

sn(x) is shown (Equation 2.1).

(2.1) sn(x) =
n∑

i=1

λiϕ(|(|x− xi|)|) + p(x)

Substituting ϕ(x) and p(x) gives Equation 2.2,

(2.2) sn(x) =
n∑

i=1

λi(|(|x− xi|)|)3 + c0 +

p∑
j=1

cjxj

where ||x − xi|| is the Euclidean norm of a given point x and all RBF nodes xi (also called

centers). The number of nodes in an RBF model is often tuned to give low bias (many nodes) or

low variance (few nodes). For training, the coefficients of the RBF λ ∈ Rn×1 and the linear tail

c ∈ R(d+1)×1 (for a d parameter design problem) are determined by solving the following system of

linear equations shown in Equation 2.3.
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(2.3)

 Φ P

P T 0(p+1)×(p+1)

λ

c

 =

 Y

0d+1


The matrix Φ ∈ Rn×n consists of components Φij = ϕ(|(|xi − xj |)|). The matrix P ∈ Rn×(d+1)

is comprised of the rows of [1, xTi ]. The output of data i is yi contained in vector Y ∈ Rn×1. The

coefficient vector can be inverted using singular value decomposition or any linear solver, solving

the linear transformation for input data x and output data y. Modifying the equation to exclude

the linear terms requires solving Φλ = Y .

2.2.2. NNGA. The NNGA algorithm is based on a RBF-assisted GA. The NNGA uses an

RBF model to suggest points that are close to but not directly on top of optima, using a truncated

genetic algorithm (TGA). One advantage that GAs have over gradient-based methods is that their

randomness allows them to efficiently explore both global and local regions of optimality. This makes

them very attractive for an optimization framework attempting to look for global optima while

facing uncertainty associated with a sparsely explored parameter space, and thus untrustworthy

RBF models. This framework is shown in Figure 2.1(a) and the TGA is illustrated in Figure 2.2.

First, a database of inputs X and outputs Y of No total queries is collected (often through a

DOE, random queries or Latin Hypercube design). An RBF model is constructed using the training

regime discussed in Section 2.2.1. Next, a TGA is run using a randomly initiated population of

potential query points with the goal of minimizing the RBF predicted output. In each iteration of

the TGA, queries expected to perform the best survive a culling process and have their information

propagated into the next iteration by a pairing, crossover and random mutation step. After each

iteration, the best predicted query is recorded. When the average normalized Euclidean distance

between the TGA’s current predicted best query and its next N−1 predicted best queries, dav,norm,

is less than or equal to the critical distance parameter CD = 0.2, the TGA is considered to be

converged and submits this list of N best points for potential querying (or if the maximum number

of iterations has been are clustered down to a final averaged query list of size N using k-means

clustering. The final list is reached). This TGA is run a total of kmax = 4 times, and its query

selections from all rounds of TGA queried to give the next set of data for simulation or experiments.
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Figure 2.1. Flow Charts of Optimization Algorithms. (a) NNGA (b) DYCORS
(c) hybrid NNGA-DYCORS; (d) the step size adjustment and success / failure count
method used in (b) is displayed.

The number of queries per batch N , total number of batches bmax and critical distance parameter

CD, which controls the degree of truncation, are set by the user.
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2.2.3. DYCORS. The DYCORS generates a large list of potential query points based on

Gaussian perturbations of the current best point in the training data set. It is dynamic because,

as the training data set increases in size, the number of parameters perturbed decreases. In this

manner, DYCORS narrows its search of the parameter space overtime. The DYCORS process is

shown in Figure 2.1(b) and the parameters used in the algorithm are presented in the discussion

below.

First a database with inputs X and outputs Y is collected, and an RBF model constructed.

Next, the best point in the current data set x∗ is selected and perturbed by a truncated mul-

tivariate normal distribution [13], bounded by the parameter’s bounds [∆low,∆high] and using a

standard deviation lb × ∆j for each parameter j and current batch step size lb. This is repeated

on d = min{100p, 5000} copies of x∗ and is to taking the best solution and looking in the general

lb ×∆j region around them for the next points to query. The perturbation appears in the form of

Equation 2.4 for a parameter j to be perturbed for a given i copy of x∗:

(2.4) xij = xij +N(0, lb ×∆j)

DYCORS is modulated by the step size selection algorithm shown in Figure 2.1(d), which counts

consecutive successful Csucc and failed Cfail batches of queries and either doubles (if Csucc ≥ Tsucc =

3) or halves (if Cfail ≥ Tfail = max{p, 5} the step size lb for the next batch based on thresholds

T .This heuristic is employed based on the logic that, if numerous consecutive failures to improve

are seen, a minimum parameter set has likely been reached. Thus, the search space is narrowed. In

addition to altering lb over time (with an initial lo = 0.2 and minimum lmin = 0.2(0.5)6), DYCORS

also reduces the probability that a point xij will be perturbed by Equation 2.5 which is dependent

on the current number of queries in the database Nb. This has the effect of narrowing down the

amount of perturbations per batch as time goes on. After the perturbations are made and the step

size lb is updated, the N best perturbations of x∗ are selected to be queried. The process is shown

in detail in Figure 2.1(b). The primary way that this implementation of DYCORS differs from the

original work is that the N best perturbations of x∗ are selected for querying, rather than the single
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Figure 2.2. Truncated Genetic Algorithm. Used as stochastic optimizer for NNGA
based on ranking, pairing, crossover, and mutation steps to generate optimal param-
eter combinations. Maximum iterations set at 100, CD and r (mutation rate) set
by user.

best perturbation. For a given Nmax (total amount of queries) this makes this implementation of

DYCORS less efficient, but allows for multiple queries to be generated at once, and thus parallel

computations/experiments to be carried out.
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(2.5) P (xij = xij +N(0, lb ×∆j)|Nb) = min(20/p, 1)× (1− ln(Nb −No + 1)

ln(Nmax −No)
)

2.2.4. NNGA-DYCORS. To combine the NNGA and DYCORS surrogate optimization al-

gorithms, the algorithms are run in parallel with a shared data set {X,Y } and the RBF model. This

is shown by a flowchart in Figure 2.1(c). By having access to the same data, the two algorithms

can make different conclusions about new optimal queries. To form the new data set, the suggested

queries are combined and a new query conducted. The user can determine how many queries each

algorithm suggests each batch. In this article, the NNGA and DYCORS arms of the hybrid find

the same number of optimal queries.

2.2.5. Test Functions and Algorithm Assessment. To test the ability of these algorithms

to learn arbitrary complex relationships between X and Y and find the minima of the resulting

surfaces, optimization is performed on several test functions as shown in Table 2.1.
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Table 2.1. Test Functions for the NNGA-DYCORS.

To test the ability of these algorithms to learn arbitrary complex relationships between X and

Y and find the minima of the resulting surfaces, optimization is performed on several test functions,

as shown in Table 2.1. Simulations were performed on 10-D and 50-D dimensional variants of each

test function to simulate low and high-dimensional optimization problems. For each evaluation, all

algorithms were run NNNGA = 5 and NDY CORS = 5 queries per batch from NNGA and DYCORS

respectively, in the case 15 times with a randomly selected initial database of size No = 50 and

N = 10 queries per batch (with of the hybrid NNGA-DYCORS algorithm). The total number of

batches was bmax = 15, making a total of Nmax = 200 simulated experimental data points as the

size of the final data set. To evaluate the optimization algorithms, learning curves were plotted

to demonstrate the average optimal (minimum) output of each batch of queries, including error

bars that indicate the standard deviation in the minimum output of each batch for the 15 runs.

The mean, median, minimum, and standard deviations of the final batch of queries are shown in

supplementary Tables A.1 and A.2.

2.2.6. Software and Hardware. Hardware used: Dell Precision 5820 Tower, Intel Xeon W-

2145 DDR4-2666 Processor (3.7 GHz), 32 GB Memory. Software used: MATLAB R2019a with

Bioinformatics Package.

2.3. Results

2.3.1. The Hybrid Framework versus Constituent Algorithms. The NNGA-DYCORS

algorithm was tested against its constituent algorithms, NNGA, and DYCORS individually. Exam-

ining the performance of the constituent algorithms (Figure 2.3), the NNGA algorithm consistently

works well in high dimensions (50-D), while the DYCORS algorithm performs better in low dimen-

sions (10-D). This was the case both over time (Figure 2.3) and at the final optimal query points

(Tables A.1 and A.2). Given these differences in performance, it stands to reason that a hybrid

approach would provide a sensible route to a more robust algorithm that could be used on a wider

variety of dimensions. As seen in Figure 2.3, the hybrid NNGA-DYCORS often outperforms or

performs similarly to the next best constituent algorithm in each experiment. This is reinforced by

the data in Tables A.1 and A.2, where the final optimum of the hybrid NNGA-DYCORS is less
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than or equal to the final optimum of the next best constituent algorithm in 19 of 20 experiments

(all but the Michalewicz 50-D). An optimum may be considered better if its upper bound (mean

plus standard deviation) is less than the mean of another algorithm’s optimum. While this is a

rough approximation of the comparative performance of the algorithm, it strongly indicates that

the NNGA-DYCORS is robust on a wide variety of problem sets and dimensions. In intermediate

cases (those between 10-D and 50-D), the NNGA-DYCORS continued to outperform or perform

as well as its most competitive constituent algorithm(data not shown), showing its usefulness in

design optimization problems where it is not obvious a priori what dimensionality counts as ’high’

and ’low’.

2.3.2. Algorithm Performance in the Presence of Simulated Experimental Noise. To

test the effect of random noise on the ability of the surrogate optimization algorithms to find optimal

parameters, a random noise e (percent of the deterministic output) was added to the output of the

simulation. It is common practice, especially in noisy, low-data, and data-sparse models, to improve

the out-of-sample generalizability by model selection procedures such as cross-validation to avoid

overfitting. To address the issues with stochasticity in these experiments this, a hyperparameter

optimization loop for the number of nodes nnodes in the RBF model was added to the NNGA-

DYCORS algorithm, where cross-validation over the database was used to select the optimal nnodes.

In this case we deliberately trade higher bias for lower variance to reduce overfitting. As can be

seen in Figure 2.4, application of a node optimization scheme improved the learner’s performance

over the regular scheme (where nnodes = Nb) in nearly all cases. It should be noted that in these

experiments, the linear tail of the RBF was excluded, so Equation 2.3 was modified to be Φλ = Y

and was solved.

(2.6) y = y +N(0, e× y)

2.3.3. Evaluating the Effect of Convergence Parameters on Algorithm Performance.

Both NNGA and DYCORS have adjustable convergence parameters that control their design space
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Figure 2.3. Hybrid algorithm performance. Squares = NNGA; dotted lines =
DYCORS; circles = NNGA-DYCORS. The average minimum of response for each
of the test functions in Table 2.1 is plotted against cumulative queries. The hybrid
NNGA-DYCORS performs as well as the best NNGA and DYCORS results.

exploration/exploitation trade-off. In other words, both algorithms have a means of avoiding prema-

ture convergence to local minima, as predicted by an early (i.e. less accurate and general) surrogate

approximation. Here we test the effect of changing these internal search parameters lb (DYCORS)
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Figure 2.4. Algorithm Performance in the Presence of Noise. Circles = NNGA-
DYCORS with node optimization; crosses = NNGA-DYCORS without scheme. The
average minimum of response for each of the test functions in Table 2.1 is plotted
against cumulative queries for noise level e = 0.2 (20% of response). Node optimiza-
tion generally improves learner performance in the presence of simulated experimen-
tal noise.

and CD (NNGA). For DYCORS, this has already been suggested using a time-varying strategy [42]

for current database size Nb. In this method, the step size is recalculated as l(b+ 1) = Cblb.
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(2.7) θ(Nb) = 2(1− ln(Nb −No + 1)

ln(Nmax +No)
)

(2.8) Cb =


1 θ ≥ 1

θ 0.5 ≤ θ < 1

0.5 θ ≤ 0.5


For NNGA, if one defines a maximum and minimum critical distance parameter CD1 = 0.2 and

CD2 = 0.05 respectively, then CD can be changed linearly over time using the following formula:

(2.9) CD(Nb) = ((CD2 − CD1)/(Nmax −No)) ∗ (Nb −No) + CD1

Where Nmax and No are the maximum and initial database sizes respectively. The result of

implementing this dynamic parameter approach (Figure 2.5) was that the hybrid learner did not

have substantially better performance over the regular hybrid learner. Additionally, these results

show that the internal search parameters lb and CD do not need to be substantially altered.

2.3.4. Evaluating the Effects of a Parameter Subset Selection Algorithm. In engi-

neering systems, certain parameters influence outputs more significantly than others, and often few

parameters even matter at all. To simulate this variable response sensitivity while maintaining the

nonlinearity and dimensionality of the test problems, an sensitivity vector γ was used to scale the

test problems. This vector scales each problem as xscaled,j = γj × xj for parameter j so that 20%

of the parameters are scaled up by γ = 2, 30% are un-scaled, 20% are scaled down by γ = 0.5, and

30% are neglected in the deterministic function. An example of γ and a scaled 2-D Ackley Function

is shown in Figure 2.6 and below.

γ = [2, . . . 2, 1, . . . 1, 0.5, . . . 0.5, 0, . . . 0]

Previous work in applying a decision tree-based subset selection strategy to the NNGA algorithm

[94] reduced the number of queries needed in optimization. To explore this further, an RBF-based
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Figure 2.5. Algorithm Performance using Dynamic Convergence Parameter Strat-
egy. Circles = NNGA-DYCORS with dynamic convergence parameter strategy; solid
lines = NNGA-DYCORS without strategy. The average minimum of response for
each of the test functions in Table 2.1 is plotted against cumulative queries. Perfor-
mance is not much improved by using the dynamic strategy.

subset selection strategy was developed. After b = 7 batches of queries (roughly halfway through

the entire set of queries), p RBF models are trained with q = 1 . . . p parameters dropped out. For

each neglected parameter q, a cross-validated and averaged out-of-sample correlation coefficient R2
av
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Figure 2.6. Effect of Scaling on Functions. Left figure Ackley Function, right is
Ackley Function with ordinate axis modified by γ = 0.5.

is found using a separate hold-out-set of data. The most important parameters should have the

lowest R2
av assuming the RBF model is robust for the database. In experiments using this technique,

the DYCORS algorithm selects the most important parameters and only uses that subset in the

coordinate-wise perturbation, and the NNGA operates normally. The result was that, while this

subset selection method was able to speed up learning in some cases (see Figure 2.7 10-D Ackley

Function), it was not able to do so consistently (see Figure 2.7 10-D Michalewicz Function).

2.4. Discussion

There is a seemingly infinite number of modeling techniques, search optimization algorithms, and

initialization/infill strategies in the literature to facilitate optimizing expensive objective functions.

However, the characteristics of the experimental system and design space are never really known

a priori, so having an algorithm that is more efficient than traditional methods and able to work

with a wide variety of problems is advantageous. Therefore, the goal of this article was to develop

a surrogate optimization framework that could be successfully applied to test problems with a wide

range of dimensionality and degrees of nonlinearity. The NNGA-DYCORS algorithm runs two

surrogate optimization algorithms in parallel. The NNGA uses a Euclidean distance-based metric

to truncate a genetic algorithm, whose best members are k-means cluster distilled into a final query

list. This acts as a global optimization process because the internal genetic algorithm searches

over the entire design space. The DYCORS algorithm perturbs the best previous queries using a

dynamic Gaussian distribution, where the perturbations are adjusted based on cumulative success

and the total number of queries in the database. Thus, DYCORS acts as a local search method in
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Figure 2.7. Algorithm Performance using Subset Selection. Diamonds = NNGA-
DYCORS with subset selection; solid lines = regular NNGA-DYCORs. The average
minimum of response for each of the test functions in Table 2.1 is plotted against
cumulative queries. Subset selection does not have a consistently positive effect on
algorithm performance. The subscript (2) indicates that the sensitivity vector has
been applied to the test problem.

the region defined by a Gaussian centred at its best queries. Both arms of the hybrid algorithm use

an RBF for prediction.
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The result was that the NNGA-DYCORS hybrid algorithm was statistically equal to or outper-

formed its constituent algorithms in the 19 of 20 test problems. This demonstrates the robustness

of the NNGA-DYCORS, as it performs as a best case scenario on a variety of test problem dimen-

sions and shapes. This is important because, in real experimental problems, one does not know

the shape of the surface a priori, highlighting the utility of a generalizable optimization framework

such as the NNGA-DYCORS. In addition, it is never clear what constitutes a ‘high’ and ‘low’ -

dimensionality design problem, so an algorithm that performs well in arbitrary dimensions should

have large practical value. The DYCORS algorithm was already shown to be competitive compared

to other heuristics [66], and the NNGA was demonstrated to be significantly more efficient than

traditional experimental optimization methods [92]. It stands to reason that this hybrid framework

should extend the usefulness of both algorithms to test problems of arbitrary dimensionality and

degree of nonlinearity.

Using a node optimization scheme to reduce model variance during query selection improves

hybrid algorithm performance, especially for noisy surfaces (as could be the case in experimental

situations). Practitioners should therefore consider built-in regularization to avoid overfitting of the

data when dealing with expensive, data-sparse and noisy systems. Optimizing the number of nodes

was specific to this RBF variant, but the optimization loop in Section 3.2 could be applied to any

model hyperparameter. In the next set of experiments, the method of making the NNGA-DYCORS

convergence parameters dynamic during query selection did not improve performance. This indicates

that (1) it may not be fruitful to pursue extensive algorithm parameter adjustments/heuristics for

this algorithm, and (2) there is little sensitivity in the selection of algorithm convergence parameters

on the outcome, unlike the results in previous articles on the subject [42,94]. Finally, to mimic

typical engineering scenarios where response sensitivity varies with the inputs, the test functions

were scaled with a sensitivity vector. A subset selection strategy was unable to consistently improve

on the regular NNGA-DYCORS performance by focusing the coordinate search on the most sensitive

sets of parameters. This may be because the RBF does not adequately model a given test function,

so it does not correctly identify the most important parameters in the database, or the coordinate

search method does not properly exploit the narrowed parameter space. Generically, it may be
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useful to reduce the dimensionality of the parameter space, but the strategy of doing so using model

adherence ‘drop-out’ experiments was not uniformly successful.

This article demonstrates that the NNGA-DYCORS hybrid learning algorithm outperforms its

constituent algorithms in the important criteria of robustness and generalizability to different kinds

of problems. Thus, this algorithm can be applied to a wide variety of physical and biological design

optimization problems with a degree of assurance that parameter estimates will be optimal while

minimizing necessary resources. In addition, as this hybrid is both robust and highly generalizable

to many types of design problems, it should be useful for practitioners who are not experts in

surrogate optimization methods, and work on a variety of problems of diverse complexity.
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CHAPTER 3

Optimization of Muscle Cell Culture Media using Nonlinear Design

of Experiments

Optimizing media for biological processes, such as those used in tissue engineering and cultivated

meat production, is difficult due to the extensive experimentation required, number of media com-

ponents, nonlinear and interactive responses, and the number of conflicting design objectives. Here

(originally published as [22]) we demonstrate the capacity of a nonlinear design- of-experiments

(DOE) method to predict optimal media conditions in fewer experiments than a traditional DOE.

The approach is based on a hybridization of a coordinate search for local optimization with dynam-

ically adjusted search spaces and a global search method utilizing a truncated genetic algorithm

using radial basis functions to store and model prior knowledge. Using this method, we were able to

reduce the cost of muscle cell proliferation media while maintaining cell growth 48 h after seeding

using 30 common components of typical commercial growth medium in fewer experiments than a

traditional DOE (70 vs. 103). While we clearly demonstrated that the experimental optimization

algorithm significantly outperforms conventional DOE, due to the choice of a 48 h growth assay

weighted by medium cost as an objective function, these findings were limited to performance at

a single passage, and did not generalize to growth over multiple passages. This underscores the

importance of choosing objective functions that align well with process goals.

3.1. Introduction

Cell culture media is a critical component of bioprocesses such as pharmaceutical manufacturing

and the emerging field of cultivated meat products. Optimizing culture media is a difficult task due

to the extensive experiments required, number of media components, nonlinear and interactive

responses from each component, and conflicting design objectives. Additionally, for cultured meat

products, media needs to be less expensive than those currently deployed for other cell culture
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processes (e.g. biopharmaceutical production), food-grade, consider safety, component stability,

and effects on sensory characteristics of final products. Without much in the way of first principles

models for these objectives, especially for adherent mammalian muscle cells used for cultivated meat

production (as well as fat and connective tissues), media optimization must be done experimentally

with constraints on inputs, outputs, and number of experiments.

Optimizing one factor at a time or with random experiments is still the most common way of

exploring design space. This strategy is very inefficient for large systems (culture media such as

DMEM may have up to 30 components [3]) and is unable to consider interactions among media

components. Design-of-Experiments (DOE) methods are better able to manage large numbers of

components in fewer experiments using Factorial, Fractional Factorial, Plackett-Burman, and Cen-

tral Composite Designs where linear and polynomial models can correlate first order and interactive

effects of media components. In general, DOE methods are able to optimize < 10 variables [74] and

with the help of screening designs can solve problems > 25 variables [90], though at the expense

of ignoring interactions, screened variables, and easily costing > 100 experiments (when combining

typical screening and factorial experiments, although this number can be quite lower if < 5 variables

are explored). Experimental optimization of media has also been done using stochastic methods

such as genetic algorithms [34] and this approach is generally suited to optimizing systems of di-

mensionality > 15 where DOE methods can become experimentally cumbersome, but also take ∼

200 experiments.

Because the size of the design space increases exponentially with the number of design variables,

a natural advance was to use response surface models to capture information about interactions and

nonlinearity. These techniques can then be used to sequentially identify optimal culture conditions

while simultaneously improving modeling accuracy. Oftentimes experimenters will employ polyno-

mial models to find optimal culture conditions [69] but only after extensive DOE to reduce the

dimensionality of the problem space to < 5. More advanced modeling techniques are neural net-

works, decision trees [92] and Gaussian processes [45] which are often better at generalizing noisy,

nonlinear, and multi-modal data. When combined with global optimization methods. Zhang and

Block demonstrated that these response surface methods can optimize problems with > 20 variables

in less than half the number of experiments as traditional DOE [93].
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In the previous chapter, this author further improved the robustness of this algorithm by using

a hybrid optimization scheme validated on simulated design problems (NNGA-DYCORS). Here we

employ this novel nonlinear experimental design algorithm (called HND in this chapter in order to

use the same nomenclature as the publication [22]) to optimize the proliferation of C2C12 cells while

simultaneously reducing media cost by modeling the response surface of culture conditions using

an RBF with a hybridized global/local optimization scheme. We then compare this approach to a

more traditional DOE method. The organization of this article is as follows: Section 3.2 includes

an outline of the experimental and computational methods use in media optimization, Section 3.3

goes over the results and Section 3.4 details a discussion of the results and current challenges.

3.2. Materials and Methods

3.2.1. Media Components and Cell Line. Table 3.1 lists the 30 components of the media

system, concentration ranges, and the concentration of the control growth media (GM) used in

this work. GM is based on a formulation of DMEM + 10% FBS from HiMedia Cell Culture with

4.5 g/L Glucose and L-Glutamine where FBS is fetal bovine serum (Biowest). All components

were stored as aqueous stock solutuions in 2-6 ◦C sterilized using 0.2 µm pore size micro-filtration

(Pall Corporation Acrodisc). The pH was adjusted to 7.2 using 1 M HCl or NaOH solution, and

Sodium Bicarbonate (Sigma) buffer at 1850 mg/L was added. C2C12 muscle cells were used for all

experiments (ATCC). The cells were stored in liquid N2 in 10% DMSO (Sigma), 20% FBS, 70%

GM at passage 15.
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Table 3.1 Details of media design space | components and bounds used in media optimization for

proposed method (HND), control optimization method (DOE), and commercial (GM) indicated.

To generate enough cells for these experiments, cells were taken out of storage, thawed, cen-

trifuged at 1500 × g for 5 min and re-suspended in DMEM (Glibco) + 10% FBS in 15 cm cell

culture plates (Cellstar, Greiner Bio-One). Cells were then trypsinized (Gen-Clone) in their log

phase of growth (∼ 50% confluence, or two days of growth) and plated on 96 well plates (Cellstar,

Greiner Bio-One). To plate the cells, trypsinized cells are suspended in phosphate buffered solution

(PBS Glibco) and counted using a hemocytometer. The PBS volume was then adjusted so that

40



5000 cells per well (∼ 15,625 cells/cm2) could be seeded using 50 µL of PBS into 150 µL of the

media being tested (total well volume of 200 µL). The cells were incubated at 37◦ and 5% CO2 for

48 h post-seeding before measurements of proliferation were made with replicates. For six well plate

experiments (Cellstar, Greiner Bio-One) a total volume of 3 mL was used with the same ratios of

PBS to media and seeding density (150,000 cells per well), with all other steps being the same.

3.2.2. Assays and Objective Function. After 48 h of incubation, the performance of the

media was measured using AlamarBlue [37] metabolic colorimetric assay (AB). After pipetting in

10% volume of AB assay (20 µL) for each well, all wells were left to incubate for 3 h at 25◦ and

5% CO2. The %AB reduction was measured using a microplate reader at 600 and 570 µL using

Equation 3.1 with six replicates of each experimental and control well.

(3.1) %AB =
117216λ570,media − 80586λ600,media

155677λ600,control − 14625λ570,control

To quantify the relative proliferation of cells after 48 h of growth, the ratio of %AB for a

given medium to %AB for basic GM was used as a metric of the success. The economic cost of

a medium was considered by normalizing the %AB ratio by the volume of FBS, which constitutes

the vast majority of the media cost [77]. Therefore, the objective function α and the optimization

problem used in this work (finding the best media components x∗) are as follows, where xFBS is

the normalized volume of FBS ranging from [0, 1].

x∗ = argmaxxα(x)

α(x) = %AB/%ABGM

1+xFBS

x̄ =
xi−xi,low

xi,high−xi,low

This objective function strikes a balance between a proportionality to cell proliferation and

cost, and ease of use. A more elaborate objective function that describes multi-passage dynamics or

further economic costs could be employed, but at the expense of significantly more time and labor.

3.2.3. Experimental Design Algorithm. A novel hybrid nonlinear experimental design al-

gorithm (HND) was developed in the previous chapter to optimize high dimensional experimental

design systems such as the one outlined above. It is based on a truncated genetic algorithm (TGA)
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method [93] hybridized with a dynamic coordinate search framework (DYCORS) [66]. This method

starts by constructing an RBF approximation ŷ of the system from an initial set of experiments

with inputs and outputs {X0, α0}. The RBF takes the form of a sum of nc cluster λi-weighted

radial functions ϕ(x, x′) in Equation 3.2.

(3.2) ŷ =

nc∑
i=1

λiϕ(ri)

The radial functions project a set of [0, 1] normalized inputs x and x′ (in this case two media

concentrations) into a single output space using the Euclidean distance r = ||x−x′||2. This quantifies

the difference between two media combinations. Two media that are more similar have smaller r

values, so are going to have similar predictions of ŷ. The radial function used in this work was

the cubic function ϕ(x, x′) = r3 . The weights are determined by solving the linear equation for

Φ(X,X) for a training set of data that has been collected {X,α}.

(3.3) λ = (ΦΦ)−1ΦTα

To find the optimal locations of the RBF nodes nc we used the K-means clustering algorithm.

This algorithm was repeated for K = 4 cross-validated data splits for each batch of experiments,

where the nc with the lowest cross-validated error for the given training set was chosen as the

optimal number of clusters. Cross-validation is critical for making sure models generalize well for

small amounts of noisy data. In general, higher nc makes the model more complex (wiggly), so here

we balance accuracy with model simplicity / generalizability.

Using the trained RBF model, the two arms of our algorithm, TGA and DYCORS, each sug-

gest five experimental conditions for a total of 10 experiments per batch within the design space

[×1/2,×2] of the GM (see Table 3.1) that optimize α. The TGA arm runs a genetic algorithm (a

stochastic global optimization method) over the RBF model to predict the best designs. Because

the model is based on a small amount of noisy data, the genetic algorithm is stopped before it

can converge to implicitly consider model and experimental uncertainty. The DYCORS arm of the

algorithm searches in the region around the best design and picks the best predicted set of designs
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Figure 3.1. HND Algorithm

in that region, which expands and contracts based on the quality of previous experiments. The new

experiments are conducted and the resulting data is used to correct and retrain the RBF model.

To allow the RBF model to generalize better during early periods of optimization, 30 randomly

selected experimental conditions were taken initially. The optimization loop was stopped when the

α quality of the media showed a lack of improvement. The general framework for the HND is shown

in Figure 3.1.

As a control method, a traditional DOE was used to optimize the same media design problem

in three steps. (i) A ’Leave-One-Out’ (LOO) experiment was conducted where a media composed

of all components at their GM concentrations, excluding each individual component,were tested for

their proliferation capacity using the %AB metric (α was not used because all media had the same

amount of FBS), similar to what was done in previous work [94]. The lowest performing components

had their concentrations fixed at their respective GM concentrations. Next (ii) a Folded/Un-Folded

Plackett-Burman design was implemented with the remaining components at the upper and lower

bounds of the design problem. This was done to determine the first order linear effects of each

component on the objective function α. A linear model to predict α was used in conjunction with

a LASSO algorithm to rank the most important first order effects, and all but the highest impact

components were kept at their GM concentrations. Finally, (iii) the remaining components were

used to design a Central Composite Design (CCD) where experiments are spread out across the
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design space to more thoroughly explore potential optimal designs.The best α design from this DOE

method was considered the optimal DOE design.

3.2.4. Software and Hardware. Hardware used: Dell Precision 5820 Tower, Intel Xeon

W-2145 DDR4-2666 Processor (3.7 GHz), 32 GB Memory. Software used: MATLAB R2019a with

Bioinformatics Package.

3.3. Results

3.3.1. Performance of Traditional DOE for Media Optimization. The DOE-LOO step

identified Ferric Nitrate, MgSO4, Glycine, L-Isoleucine, Choline Chloride, Riboflavin, and Thiamine

HCl as components that, when left out of GM, had no (or positive) statistical effect on %AB after

48 hr post-seeding (30 experiments needed). These components were set to their respective GM

concentration for all subsequent DOE experiments. Next, the DOE-PB with LASSO identified the

six most α-important components of the remaining 23 components (KCl, L-Glutamine, Glucose,

FBS, L-Cystine, L-Serine). To reduce the number of experiments for the DOE-CCD design, L-

Cystine and L-Serine were kept constant at × 1/2 normalized units above and below their GM

midpoint concentrations respectively (10.4 and 28 mg/mL)based on the sign of their coefficients (48

experiments required). The remaining four components in the CCD had their upper/lower bounds

changed to × 1/2 normalized units above (KCl, L-Glutamine, FBS) and below (Glucose) their GM

midpoints. The remaining components were varied in a CCD design, with the best medium being

200 mg/L KCl, 388 mg/L L-Glutamine, 9000 mg/L Glucose, 5% FBS (25 experiments) shown in

detail in Table 3.1. An 80% increase in α at 48 hr post-seeding over GM was measured (Figure 3.2

left) using 50% less FBS than GM.

3.3.2. Performance of Novel HND for Media Optimization. For the HND optimization

loop, α was used as the objective function and calculated using %AB measured at 48 hr post-seeding

at 96 well plate scale (the exact same as the DOE method). The RBF was initially trained with 30

randomly selected experiments. Figure 3.2 shows that the average HND designs improved in both

α and %AB metric over time (both cost and proliferation) quickly overcoming standard GM and

achieving similar results to the best DOE design (an α difference of 13.3%) with 70 experiments. We

have included the proliferation metric (%AB / %AB GM) in Figure 3.2 for completeness even though
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Figure 3.2. Iterative improvement of media using HND and DOE | (left) media
efficiency metric (right) %AB Proliferation. Both HND and DOE improve over GM.

it was not used as the objective function α in this work. The HND was stopped at 70 experiments

because both %AB and α stopped improving. The best medium found had an α measured to be

56% better than GM during the optimization loop using 32.5% less FBS than GM.

3.3.3. Comparison of Media Resulting from Novel HND and Traditional DOE. Fig-

ure 3.3 shows the differences between the optimal media. For the most part the HND identified

optimal concentrations that were slightly elevated compared to DOE, except for KCl, FBS, and

Glucose. It is also notable that both HND and DOE determined that Glucose and FBS should

be elevated and reduced in relative to GM. Figure 3.4 shows the media efficiency metric α plotted

against the component concentrations for all experiments, demonstrating the nonlinear, interac-

tive, and ultimately non-trivial nature of this experimental design optimization problem. These

α-optimal HND and DOE designs were then tested against GM using %AB at 24, 48, and 72 h

post-seeding (Figure 3.5), where the designed media have high %AB relative to GM but that advan-

tage is reduced over time. As a further check, α was calculated using raw cell number normalized

by the volume of FBS in each experiment (at six well plate scale) where it was found HND and

DOE again outperformed GM (Figure 3.5) in terms of the objective function α due to their lower

cost. However, both HND and DOE produced 8% and 9% fewer cells respectively, using 70 and 103

total experiments respectively.
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Figure 3.3. Distribution of components generated by HND | histogram of HND
chosen component concentrations from low to high bound, best DOE and HND
results also compared to GM (as horizontal lines and in Table 3.1.

3.3.4. Evaluation of Optimized Media in Multi-Passage Proliferation. Finally, the

C2C12 cells were grown in optimal HND, DOE, and GM across five passages to mimic an industrial

process where multi-passage dynamics could have a large effect on media design. Figure 3.6 indicates

GM cumulatively grew more cells than HND and DOE optimal media by the second passage, and
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Figure 3.4. Input and output of media generated by HND | each dot represents an
experiment designed by HND at a chosen component concentrations (normalized to
be 0 to 1) and the respective media efficiency metric α

by the third passage had done so at a higher α (again, approximated by number of cells normalized

by volume of FBS). Both the optimal HND and DOE media performed roughly the same in terms

of cumulative number of cells and media efficiency, but with ×9 and ×11 fewer cells than GM

respectively and without a proportional decrease in cost per cell.
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Figure 3.5. Result of optimal HND and DOE experiments | (left) %AB Prolifera-
tion over time in 96 well plates, error bars are standard deviation of six replicates,
seeded at 5000 cells per well (right) cell efficiency metric at 48 h post-seeding in six
well plates, error bars are standard deviations of three replicates, seeded at 150,000
cells per well. The media efficiency metric was approximated here by dividing num-
ber of cells by concentration of FBS. Raw cell number for HND, DOE, and GM were
594,000, 590,000, and 640,000 cells per well respectively.

Figure 3.6. Optimal media over multiple passages | these media were the best
found in optimization experiments. All cell numbers were taken at 48 h post-seeding
using a hemocytometer in six-well plates, error bars are standard deviations of three
replicates, seeded at 150,000 cells per well (left) (right) natural log of approximate
efficiency of media. The media efficiency metric was approximated here by dividing
number of cells by concentration of FBS.
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3.4. Discussion

It is notable that, despite 30 components used, the HND was able to design a similar media to

DOE with a similar degree of proliferation %AB and α in fewer experiments. Additionally, this DOE

was more efficient than any single DOE, suggesting that the HND is much more efficient and simpler

to use than the typical approach to high dimensional optimization. This is valuable in optimizing

media due to the difficulty in collecting large amounts of data with many components. The reasons

for the success of this method are likely (i) the balance between global and local optimization, and

(ii) the ability of the HBD to accumulate information using the RBF, which can regress on nonlinear,

noisy, and interaction-heavy problems, reducing the need for cumbersome dimensionality-reduction

experiments used in the traditional DOE.

For the most part HND suggested higher concentrations of most media components than GM

or DOE, except for KCl, FBS, and Glucose. This is likely because the DOE method utilized

dimensionality reduction. That is, factors that demonstrated insignificant effects were fixed at

their GM level and no longer included in the optimization. On the other hand, HND could vary

components throughout the optimization process, including increasing component concentrations

when they had even a small positive effect. Inclusion of a per component cost (rather than just the

cost of FBS) might dampen this effect.

While the RBF can model nonlinear and interactive processes, the effect of each component on

α is unclear without further experiments or model validation, a disadvantage of the HND approach.

Nonetheless, sensitivity analysis using VARS [64,65] was conducted and indicates FBS, Glucose,

and MgSO4 likely have a significant effect on α, while other effects are more difficult to determine

with the limited data available. Sobal sensitivity analysis utilizing polynomial regression like- wise

determined FBS, MgSO4, and L-Phenylalanine were the most explanatory components when taking

component-component interactions into account. Focusing on optimizing only those components

might bring further improvements, which is now feasible because fewer experiments were needed

to arrive at this conclusion. Another issue was that the HND algorithm often did not change

experimental conditions enough, leading to heavy clustering around early high performing local

optima (as seen in Figure 3.3 and 3.4). Myopia (short-termism) should be encoded into the DYCORS

arm of the HND to allow for more exploration of the design space, while balancing the need for
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exploitation of regions of the design space that show promise. It is also possible that initializing the

optimization with a more dispersed design would yield a more successful optimization. However,

results from [95] indicate that the initialization strategy used may not have a large effect. In reality,

the impact of initialization is likely to be a strong function of the design surface and how close initial

points are to the true optimum, neither of which are know a priori.

Using α as a metric, HND performs similar to DOE, and both better than GM (Figure 3.2). This

is true over multiple days after cell seeding and is true when using cell number to calculate α (Figure

3.5), seemingly validating the use of %AB at 48 hr post-seeding in approximating proliferation more

generally. However, when measuring cell number at multiple passages (Figure 3.6) both designed

media perform worse than GM. This is because the objective function α relied on measurements

without multiple passages, so does not account for the dynamics of long-term cellular growth. This

was a major shortcoming of the objective function picked, but not the HND or DOE itself. Future

work in media design should incorporate more relevant metrics for optimization, such as a multi-

passage objective function. Additionally, the %AB metric was not a perfect measure of cell number.

Figure 3.5 (left) and Figure 3.2 appears to indicate HND and DOE media outperform GM, but

when cell number is measured both optimal media have 8–9% fewer cells. Because AlamarBlue is a

metabolic indicator, using it in the objective function for both methods may have biased the process

towards higher metabolic activity rather than more proliferation.

Despite these shortcomings, the HND has been demonstrated to be able to optimize high dimen-

sional experimental systems. In our previous work in media optimization, fewer variables (21 com-

ponents) required more experiments (73–94 data points) to complete. In this work, we demonstrate

optimization of 30 components with 70 experiments with no dimensionality reduction or screen-

ing designs, to our knowledge, a unique accomplishment in experimental optimization efficiency.

Therefore, this represents a valuable proof of concept in the field of experimental optimization.

While not able to fully replace first principles understanding of systems often based on the DOE

approach (which is ill-advisable in any case), we show that the HND could aid in the optimization

of the hardest design problems, including those found in the bioprocessing and larger cultivated

meat industry, reducing the cost of experimentation and time-to-market for a new product.
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CHAPTER 4

Multi-Information Source Bayesian Optimization of Culture Media

for Cellular Agriculture

Culture media used in industrial bioprocessing and the emerging field of cellular agriculture is

difficult to optimize due to the lack of rigorous mathematical models of cell growth and culture

conditions, as well as the complexity of the design space. Rapid growth assays are inaccurate yet

convenient, while robust measures of cell number can be time-consuming to the point of limiting

experimentation. In this study (originally published as [23]), we optimized a cell culture media

with 14 components using a multi-information source Bayesian optimization algorithm that locates

optimal media conditions based on an iterative refinement of an uncertainty-weighted desirability

function. As a model system, we utilized murine C2C12 cells, using AlamarBlue, LIVE stain, and

trypan blue exclusion cell counting assays to determine cell number. Using this experimental opti-

mization algorithm, we were able to design media with 181% more cells than a common commercial

variant with a similar economic cost, while doing so in 38% fewer experiments than an efficient

design-of-experiments method. The optimal medium generalized well to long-term growth up to

four passages of C2C12 cells, indicating the multi-information source assay improved measurement

robustness relative to rapid growth assays alone.

4.1. Introduction

Every bioprocess in which cells are the final product or used in the production process requires

suitable culture conditions for cell growth and product quality. In the rapidly growing cellular

agriculture / cultivated meat industry, where cells are grown for consumption to replace carbon-

intensive and often unethical animal agriculture, cost-effective media has been identified as the

most critical aspect in scale-up and commercialization [59]. Optimizing these conditions is difficult

due to a large number of media components with nonlinear and interacting effects between cells,
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medium, matrix material, and reactor environment [14]. Typically, culture media used for processes

in cellular agriculture consist of a basal medium of glucose, amino acids, vitamins, and salts (such as

the common Dulbecco’s Modified Eagle Medium [DMEM]) supplemented with fetal bovine serum

(FBS) for improved cell survival. FBS is an undefined, animal-derived serum consisting of proteins,

hormones, and other large molecular weight components, and contributes substantially to the cost

of media [84]. Even when enriched with additional growth factors or FBS, media is often far from

optimal for all cell types and requires adaptation and/or optimization [50], which is difficult for

media mixtures with >30 components, as is common in cell culture.

To manage this complexity, design-of-experiments (DOE) meth- ods are often employed in which

factors (concentrations or environmental conditions) are set to a user-specified value (usually “high”

or “low”) and outputs are measured [74,94]. These DOE designs are arranged in such a way that

statistically meaningful correlations can be found in fewer experiments than techniques like intu-

ition, “one-factor-at-a-time” sequences, or random designs. A more advanced form of this is to

use sequential, model-based DOEs such as a radial basis function [21,93,95] or Gaussian Process

(GP) [51], combined with an optimizer/sampling policy, to automatically select sequences of optimal

designs. These approaches are often more efficient than traditional DOE at optimizing systems using

fewer experiments [22] and allow for more natural incorporation of process priors [19], measure-

ment noise [2,83], probabilistic output constraints and constraint learning [54], multiobjective [11],

multipoint [89], and multi-information source designs [42,73,82].

Even with these methods available, limitations still exist. In previous work, we applied a ma-

chine learning approach to optimize complex media design spaces but had limited success due to the

difficulty in measuring cell number for multi-passage growth [22]. Therefore, in this study, we uti-

lized a multi-information source (IS) Bayesian model to fuse “cheap” measures of cell biomass (rapid

chemical assays which can be done at scale) with more “expensive” but higher quality measurements

(cell numbers over time which represents a high-quality metric of growth media quality) to predict

long-term medium performance. We refer to the simpler and cheap assays as “low-fidelity” IS, and

more complex and expensive assays as “high-fidelity” IS. While not always predictive of long-term

growth, these lower fidelity assays are at least correlated with cell health and can help in identify-

ing interesting regions of the design space for further study with the high-fidelity IS. We used this
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model, with Bayesian optimization (BO) tools, to optimize a cell culture medium with 14 compo-

nents while minimizing the number of experiments, optimally allocating laboratory resources, and

building process knowledge to improve our optimization scheme and model. In Section 4.2 we dis-

cuss the computational and experimental components of this BO method. In Section 4.3 we present

the results of the BO method in comparison to a traditional DOE method, followed by Section 4.4

where we demonstrate the importance off using multiple sources of information to obtain relevant

process knowledge and/or optimization results.

4.2. Methods

4.2.1. Cells and Media Components. The system under consideration was the proliferation

of C2C12 (ATCC) cells. These cells are immortalized muscle cells with similar metabolism and

growth characteristics as other adherent cell lines useful in the cellular agriculture industry. Cells

were stored in 70% DMEM (Gibco), 20% FBS (BioWest), 10% dimethylsulfoxide (Thermo Fischer)

freeze medium at -196◦C until thawed. Vials were thawed to 25◦C and the freezing medium was

removed by centrifugation at 1500 × g for 5 min. The centrifuged cell pellet was resuspended

in 17 mL of DMEM with 10% FBS and placed on 15 cm sterile plastic tissue culture dishes (at

about 106 cells/plate) (Cellstar, Greiner Bio-One). Cells were incubated in a 37◦C and 5% CO2

environment. After 24 h the medium was removed, the culture dish washed with Phosphate Buffer

Solution (PBS) (Gibco), and fresh DMEM with 10% FBS was introduced. After an additional 24

h, cells were harvested using tripLE solution (Gibco), diluted in PBS, and counted using Countess

II with trypan blue exclusion and disposable slides (Invitrogen). The process of removing cells from

a plate, counting, and re-plating them with fresh medium is called subculturing or passaging. How

well the C2C12 cells survive and grow after passaging is indicative of their long-term potential in a

large cellular agriculture process.

The design space was comprised of the components and minimum/maximum concentrations

listed in Table 4.1. These components were chosen because they are often used to supplement

standard DMEM to improve cell growth; this represents a reasonable test case for the industrial

application of these multi-IS BO methods to the cellular agricultural industry. The composition

of standard DMEM (such as the medium used above), is shown in Table 4.3, and should not be
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confused with the base DMEM “supplement” (Gibco), which contains only amino acids, trace metals,

salts, and vitamins and none of the other 14 components. pH and osmolarity are not controlled in

this study, so act as latent variables.

Table 4.1 Note: All components are shown were stored as per manufacturers (PeproTech unless

specified) instructions in stock solutions. The concentration (mg/mL) of all media was between the

minimum and maximum listed. The cost shown is a unitless scalarization of the relative economic

cost of each component. Abbreviations: DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal

bovine serum. ***All media have a 54.3% v/v (volume percent) base of DMEM supplement (liquid

form, no glucose, glutamine, or FBS). Remaining volume (minus component volumes) was made up

in water.

4.2.2. Cell Growth Experiments and Assays. For the high-fidelity IS, 750 µL of cell sus-

pension containing 60,000 cells were placed in a six well plate (three replicates) with 2.25 mL of

the test medium. For low-fidelity IS, 25 µL of cell suspension containing 2000 cells were placed in

96 well plates (four replicates and two control wells without cells) with 75 µL of the test medium.
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All experiments thus had 6250 cells/cm2 and 312.5 ml/cm2 of media. After 72 h, all wells were

measured using the IS methods shown in Table 4.2.

Table 4.2 Note: These sources of information (IS) were used to approximate and model C2C12

cell number. In this study, Passage 2 cell numbers were considered the highest-fidelity IS, while

AlamarBlue and the LIVE stains were the lowest. ***Passage 1 cell number measurements were

necessary to get Passage 2, so were included as a separate IS. Every high-fidelity IS measurement

of a medium was also made in parallel with a low-fidelity measurement. Their inter-IS correlations

are shown in Figure 4.8c.

The AlamarBlue assay required staining wells with 10% v/v (10 µL) AlamarBlue stock solution

(Invitrogen), 4 h of incubation in a 37◦C and 5% CO2 incubator, and measurement of 570 nm λ570

and 600 nm λ600 absorbance wavelengths (Molecular Devices, ImageXpress Pico) as well as the

control wells λ570,c, and λ600,c, (no cells) to get AlamarBlue reduction metric AB%.

%AB = 117216λ570−80586λ600
155677λ600,c−14625λ570,c

The LIVE assay required that the test wells be washed with PBS, and 100 µL of 1 µL LIVE

stain Calcein AM (Biotium) be introduced into the test wells and incubated for 1.5 h at 37◦C and

5% CO2. The biomass/cell number correlates was then measured using a fluorometer (Molecular

Devices, ImageXpress Pico) at Ex/Em 494/530 fluorescein filters and calculated using the emission

F530 . Both LIVE and AB% metrics are correlated with cell number and thus were the low-fidelity

IS metric of cell number.

LIV E = F530

We also measured the cell number using an automatic cell counter (Countess II) with trypan

blue exclusion. This required trypsinization outlined in the previous section. Because we wished to

measure long-term cell viability, after the first cell count (Passage 1), we re-seeded the cells under

the same conditions and measured the cell count after an additional 72 h (Passage 2). The Passage
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2 metric incorporated long-term viability and the effect of trypsinization, and thus was the most

robust measurement of cell number. All measurements/correlates of cell number (AB%, LIVE, cell

number) were reported as ratios, normalized to the DMEM control (whose concentration is shown

in Table 4.3).

Table 4.3 Note: Concentrations (mg/mL) of best BO-designed medium alongside that found by

DOE and the DMEM control used throughout this study. The resulting objective function D(x),

cell number y(x), and cost c(x) of each medium are shown with the required number of experiments

to get the optimal result. Abbreviations: BO, Bayesian optimization; DMEM, Dulbecco’s modified

Eagle’s medium; DOE, design-of-experiments; FBS, fetal bovine serum.

4.2.3. DOE Method. To compare our BO method to a typical method used in the opti-

mization of fermentation / bioprocess systems [74, 93], we used a DOE. We first screened all 14

components using a folded Plackett-Burman (PB) design (which is a normal PB combined with an
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additional PB design with “high” factors set to “low” and vice versa) using the AlamarBlue IS. A

linear model D(x) = β0+Σp
i=1xiβi let us quantify the desirability of each component using the slope

βi (desirability D(x) will be talked about in Section 4.2.4.2). The lower bound of the PB was set to

x = 0 (0 mg/mL) and the upper bound x = 0.28 (28% of maximum concentration shown in Table

4.1, for example, glucose would be set to 0.28 × 15.75 mg/mL = 4.41 mg/mL) so that component

quality could first be judged at modest concentration where nonlinear effects would be minimal. We

then set unimportant or harmful (βi ≤ 0) components to x = 0 for the rest of the DOE study, then

ran a Box-Behnken (BB) design over the remaining useful components using AlamarBlue IS. The

BB was used to estimate an interaction- polynomial model D(x) = β0 +Σp
i=1xiβi +Σ1<i<jxixjβi,j ,

and a multi-start Newton’s Method was used to find the D(x)-optimal concentrations inside the

design space. If the optimal concentrations were found to be on any edge of the current BB, then the

bounds of the design were shifted ∆x = 0.145 dimensionless units in that direction (steepest accent)

and another BB was run using these new bounds. This was done because the optimal boundary of

the design space is uncertain and needed to be found. The sequential BB was run until the optimal

bounds were found or resources exhausted. The best medium was then reported as the optimal

point found using multi-start Newton’s Method within the final optimal bounds.

4.2.4. BO Method. In standard BO, a function g is modeled using a Gaussian Process (GP)

[61], characterized by a prior mean µ0 and covariance Σ, with the property that for any X finite

collection of N points with dimensionality p, the prior distribution of the output g(X) is normal

g(x) ∼ N(µ0,Σ). The prior determines the directionality and "wigglyness" of the function through

the covariance kernel function Σ, which models the relationship between any two points x and

x′. We chose the squared exponential function for the kernel to encode the belief that (i) similar

experiments are more alike than dissimilar experiments governed by hyperparameters σ2
f and λ2

1...p

and (ii) that the overall biological process underlying the response surface is smooth with (iii)

each component response governed by λ2
k, allowing each component k to have different degrees of

"wigglyness".

(4.1) Σ(x, x′) = σ2
f × exp(−1/2

p∑
k=1

(xk − x′k)
2

λ2
k

)
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If we collect N observations of inputs XN = [x1 . . . xN ] and outputs YN = [y1 . . . yN ] from

the generative process y(x) = g(x) + ϵ we can get the posterior distribution g(x)|XN , YN ∼

N(µ(XN ),Σ(XN , XN )) where the mean and variance of g(x) are given by Equations 4.2 and 4.3

respectively for homoscedastic noise Σϵ = σ2
ϵ × I with process noise variance σ2

ϵ .

(4.2) µ(x) = µ0 +Σ(XN , x)(Σ(XN , XN ))−1(YN − µ0)

(4.3) σ2(x) = Σ(x, x)− Σ(XN , x)(Σ(XN , XN ))−1Σ(XN , x)T

A more detailed discussion of GP models can be found in [70]. With a predictive model of the

mean µ(x) and variance σ2(x) of cell number, we can use past experimental data inputs XN and

outputs YN to inform future process optimization.

The key objective of this study was to maximize C2C12 cell growth/accumulation while min-

imizing media costs. To do this, measuring cell growth was critical but experimentally expensive.

Less expensive assays can approximate cell growth, yet with reduced accuracy. Therefore, it was

beneficial to use combinations of cell growth assays to facilitate experimentation while decreasing

the overall experimental burden. This provides a balance between quality of information and exper-

imental cost. To this end we adopted the multi-information source GP model introduced by [61],

which utilizes auxiliary information sources to model an underlying “true” function. We chose this

model over the more typical multi-task GP to encode the prior belief that the generative model in-

cludes an underlying “true” function and several biased/ variable but correlated auxiliary functions,

and to provide the flexibility of allowing different length-scale hyperparameters λk for each IS to be

learned from the data.

Let us assume a generative model y = g(x) + δ(x) + ϵ for a given media combination x at an IS

indexed by m. We, therefore, have one independent GP for the underlying function g(x) and one

for each auxiliary IS deviation function δ(x,m) for the mth auxiliary IS (where m = 0 references

the underlying IS). To implement this, Equation 4.1 is modified by adding an additional kernel
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(squared exponential) to the original kernel anytime an auxiliary datapoint m ̸= 0 is referenced and

x and x′ have the same IS index using an indicator function 1m̸=01m=l.

(4.4) Σ(xm, x′l) = Σ0(x, x
′) + 1m ̸=01m=lΣm(x, x′)

Further details about the noise model of the GP, training, and using prior information can be

found in Appendix B.1. In addition to information on cell numbers, however, we wish to incorporate

information about the process cost of x. Therefore, we formulate a cost function c(x) = cmin +

Σp
j=1cjxj where cj is a scaled marginal cost of each media component whose coefficients can be

found in Table 4.1.

4.2.4.1. BO Acquisition Function. To maximize media utility, we wish to maximize y(x) while

minimizing cost c(x) for the highest-fidelity IS. Therefore, we posed this multi-objective optimization

problem as a single-objective in the form of a desirability function D(x) [1] where cell number and

cost are scaled as ȳ = y(x)−yL
yH−yL

and c̄ = c(x)−cH
cL−cH

respectively.

(4.5) D(x) = ϕ(x)
√
ȳ(x)c̄(x)

where ϕ(x) = 1y(x)≥yL is a feasibility indicator function that is non-zero when the predicted y(x)

is greater than or equal to some minimum cell number metric yL. We set yL = 0.5 and yH = 2.0

to exclude media that fail to be 50% as proliferative as the control media to preferentially select

high-performance media. We scale c(x) as a “smaller-the-better” metric where cL = cmin + Σp
j=1cj

so that we may solve our new cost-aware objective function as a single- objective problem x∗ =

argmaxD(x).

With a predictive multi-IS GP modeling µ(x) ≈ y(x) and computing D(x) from Equation 4.5,

we can use it to suggest optimal media conditions x∗. However, because we would like to solve

for some optimal group of q > 1 experiments X∗ rather than a single q = 1 experiment x∗ (it is

much more efficient to run multiple experiments at a time), we pose the optimization problem as a

p×q-dimensional multi-point optimization problem X∗ = argmaxD(X) for multiple optimal media

conditions at once. This formulation (i) does not consider uncertainty when quantifying the value
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of a particular set of media components and (ii) does not have an analytical form. We solved both

problems by using the multi-point expected improvement function α(X) [89].

α(X) = E{(max{D(X)} −D∗(XN ))+)}

where D∗(XN ) is the D(X)-optimal desirability of the N points collected and max{D(X)} is

the D(x)-optimal desirability of the q points X evaluated by α(X)/ If max{D(X)} −D∗(XN ) ≤ 0

(no improvement from evaluating X) then the "+" operator sets the improvement of the design to

α(X) = 0. Thus, with α(X) we can quantify the value of multiple points X rather than just a single

point x. Evaluating α for any group of experiments X requires further mathematical treatment,

which can be found in Appendix B.2.

4.2.4.2. BO Algorithm. The BO algorithm that designs optimal experiments is shown in Figure

4.1. After collecting some initial data, the multi-IS GP is trained and X∗ found using multi-start

L-BFGS-B for some q maximum allowable number of experiments (based on laboratory constraints).

The L-BFGS-B optimizer was chosen because it performs well on high dimensional problems, can

be ran with multiple restarts thus improving its global optimization capabilities, and has access

to gradients and Hessian approximations thus reducing computational time. Because we want to

optimize the high-fidelity IS (long-term growth as Passage 2) all calculations in the BO algorithm

are done using the high-fidelity IS prediction. With X∗ in hand, we now must find the optimal IS to

sample. We start by defining the number of high-fidelity samples we are willing to measure q0 < q,

with the remaining q − q0 being low-fidelity IS (Figure 4.2).

We can pose the IS-allocation problem as "which q0 designs in X∗ has the highest α(X) in

combination"? This requires calculating α(X) for all combinations
(
q
q0

)
in X∗, and allocating the

highest-fidelity budget to the dominant combination. The remaining q−q0 experiments can be allo-

cated to low-fidelity IS. New experiments are collected using the IS and component concentrations

found, and the procedure looped until the process was optimized to satisfaction or resources are

exhausted.

We started our BO method by initialization with 10 experiments according to Latin Hypercube

designs similar to [61,62] (10 experiments being the approximate capacity of our laboratory at any

given time). The algorithm allocates q = 10 experiments with q0 = 3 high-fidelity IS and q− q0 = 7

low-fidelity Is using the combinatorial heuristic described above for the optimal group X∗. This was
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Figure 4.1. BO Algorithm | This loop describes the Bayesian optimization algo-
rithm to maximize some acquisition function α(X) for a process Y = f(x) give
q0 high-fidelity and q − q0 low-fidelity IS samples per batch of experiments. After
each batch, the process is repeated until the process is optimized or resources are
exhausted. BO = Bayesian optimization.

repeated seven times, with iterative training and optimization stages to improve our model while

simultaneously finding optimal media. After 80 experiments (we stopped after exhausting our cell

bank) a final high-fidelity IS experiment was performed at the theoretical optima argmaxD(x) for

81 experiments total.

4.2.5. Computational Environment and Packages. Hardware used: Dell Precision 5820

Tower, Intel Xeon W-2145 DDR4-2666 Processor (3.7 GHz), 32 GB Memory. Software used: python

3.9.7 (for all programming), gpytorch 1.3.0, pytorch 1.8.1, and botorch 0.4.0 (for modeling

and Bayesian optimization), pydoe 0.3.8 (for initialization using Latin Hypercube experiments).

4.3. Results

4.3.1. Computational Validation of BO Method. Before optimizing our experimental sys-

tem, we tested the BO algorithm on various multi-information source mathematical test functions

{f1, f2, f3, f4} (Appendix B.3) solving argmaxf(x) using the noisy expected multi-point improve-

ment acquisition function on a 10-dimensional problem. Each f had two low-fidelity test functions

(fbias,1 and fbias,2) which differed substantially from the true test function. Given an extremely lim-

ited high-fidelity budget (10 simulations at two per iteration of the optimization loop), the multi-IS

GP saw better average performance (higher outputs) compared to a regular GP with otherwise the

same model architecture (hyperparameters, training method, priors, etc.). The major limitation of
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Figure 4.2. Simulation Results | Number of cumulative high-fidelity simulations
used plotted against average (with standard deviation for five runs of the entire
optimization loop) optimal output from f across five sequential iterations of the
optimization framework. The multi-IS GP (solid) had access to q = 15 total simula-
tions with q = 20 high-fidelity and q − q0 = 13 low-fidelity simulations per iteration
(multi-IS GP has stopped one iteration early to reduce computational burden). The
regular GP (dotted) only had access to the q = 2 high-fidelity simulations per iter-
ation. Each test function {f1, f2, f3, f4} had two biased low-fidelity versions whose
correlations are described by plots (b). Squares and triangles represent a given fbias,1
and fbias2 respectively. The solid line represents the underlying high-fidelity IS f .
Hyperparameter and acquisition function optimization was done using multi-start
L-BFGS-B implemented in botorch/scipy.

this experiment is that these test functions do not represent the true biological process. However, as

the test functions were created to mimic noisy biological processes, we should be able to differentiate

the performance of optimization methods using these results.

4.3.2. Experimental Validation of BO Method. We then applied our BO method to

C2C12 media optimization design problem. The BO method achieved a maximum desirability

of D(x) = 0.94 in 81 total experiments while the DOE only achieved a maximum at D(x) = 0.40

requiring 132 experiments. This represented a 132% improvement over the DOE and a 113%

improvement over the control DMEM with 38% fewer experiments. The optimal BO medium corre-

sponds to y(x) = 2.82 cell number with cost c(x) = 8.22, or a 227% improvement in cell number over

DOE at a 34% increase in cost, and a 181% improvement in cell number over the DMEM control
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Figure 4.3. Learning Curve and Trade-Off Curve of BO Method | (a) Learning
curve of D(x) shows BO and DOE method designing experiments over the course
of the optimization study. The line and dots represent the high-fidelity IS optima
and designs, the dashed and dotted lines represent the DMEM control and DOE
optima values for D(x) respectively. Each IS experiment is shown in (b) the trade-
off curve indicating a clear trade-off between cost c(x) and cell number y(x), where
the dots, triangles, squares, and × represent Passage 2, Passage 1, AlamarBlue, and
Live Stain respectively. (c) Simulated trade-off curve also shown for high-fidelity IS
also showing a predicted parabolic relationship between competing objectives y(x)
and c(x). BO, Bayesian optimization; DMEM, Dulbecco’s modified Eagle’s medium;
DOE, design-of-experiments

at a mere 1.6% increase in cost. As seen in Figure 4.3a the BO method also found a sub-optimal

medium, with higher D(x) than DOE and the DMEM control, within 30 experiments, or a 77%

reduction in experimental effort.

Table 4.3 shows the media concentrations resulting from the BO and DOE methods along with

the DMEM control used throughout this study. The BO method found that transferrin, glutamine,

progesterone, and estradiol should be at a high relative concentration. Ascorbic acid, hydrocortisone,

and dexamethasone should be at a low / zero concentration. The remaining components should be

somewhere in between the two extremes. The DOE method, using only AlamarBlue, used a PB

screening design (32 experiments) to reduce the problem size from 14 components to four, finding

that glucose, glutamine, albumin, and FBS had the highest positive effect on D(x). Next, four

sequential BB designs (25 experiments each), with bounds shifting in the direction of D(x)-steepest
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Figure 4.4. Learned Optimal Concentration | The conditions of each experiment
(concentration ranges in Table 4.1) are shown plotted as a function of the cumulative
number of experiments in the BO (circle) and DOE (box) study. The moving average
(solid and dashed line for BO and DOE respectively) shows how each method searches
for optimal concentrations. The horizontal line represents the final BO optimal
concentration. BO, Bayesian optimization; DOE, design-of-experiments.

accent after each BB, used 100 experiments to find the optimal bounds of the four-dimensional

factor space. Optimal factors were predicted to be nearly identical to the DMEM control, resulting

in nearly identical desirability (D(x) = 0.40 vs 0.44 for DOE and DMEM control respectively).

As expected there was a trade-off between a number of cells y(x) and medium cost c(x) captured

in Figure 4.3b and 4.3c. More nutrients, especially FBS, improved cell number at the expense of

higher cost; this trend then breaks down as more FBS and Albumin have a deleterious effect on

growth. We also note from Figure 4.4 that the BO algorithm found the optimal concentration of

some components faster than others, as indicated by heavier clustering of data. This is a function

of how confident the multi-IS GP was in certain regions of the design space, with denser sampling

being indicative of higher confidence in improvement.

4.3.3. Experimental Validation of Long-Term Cell Number Objective Function. The

robustness of the multi-IS GP model was evaluated by re-sampling the optimal BO medium which

had a cell number metric of y∗ = 2.8 ± 0.29. When measured again the cell number metric was
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Figure 4.5. Long-Term Validation of Optima Media | The optimal BO-designed
(dots), DOE (triangles), and DMEM control (squares) media performance up to
Passage 4 Each passage was 72 h of growth at 37◦C and 5% CO2. Trypsinization
took place after each 72 h period to count cells and re-plate them to allow for further
growth (standard deviations indicated). The BO method designed an optimal media
with substantially improved long-term growth capacity than the DOE or DMEM
control. BO, Bayesian optimization; DMEM, Dulbecco’s modified Eagle’s medium;
DOE, design-of-experiments

y∗ = 2.7± 0.93, indicating measurement and overall system reproducibility. Next, all four optimal

media were cultured for 288 total hours (to Passage 4 with 72 h/passage), to determine how well

our high-fidelity IS generalized to longer-term growth. The optimal medium designed by the BO

method outperformed the DOE and DMEM control substantially in a number of cells grown at

Passage 4, with results summarized in Figure 4.5.

4.3.4. Sensitivity Analysis. We then examined the first and second-order effects of each

component as predicted by the multi-IS GP (training on all N =81 datapoints). Most components

show a parabolic effect in both y(x) and D(x) (Figure 4.6), where the optimal medium is in the

middle of the factor space, often in sample dense regions.

To quantify the magnitude of the predicted global effect of each component, we employ the

VARS method [64,65] of sensitivity analysis because standard methods of sensitivity analysis cannot

capture the “importance” of a given factor in the presence of nonlinear effects. In VARS we defined

|N(h)| as the number of pairs in a set such that all possible pairs of points xA and xB are separated

by a normalized factor distance h. We then integrated the variance r = (y(XA) − y(xB))2) of all

pairs separated by h to get the variogram γi = 1/2|N(h)|
∑

(i,j)∈N(hi)
ri,j . If we set h = 0.1 (10%
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of total normalized factor space for a given component) we are estimating a "local" variability in

the output y whereas h = 0.9 would be an estimate of the "long-range" effect. Figure 4.7 shows

these variograms γi for each component integrated to their "local", "medium", and "global" ranges,
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Figure 4.7. Variogram Sensitivity Analysis | The local (horizontal hatching), global
(diagonal hatching), and mid-range sensitivity of each component on D(x) is indi-
cated by the height of the bars. Albumin, FBS, dexamethasone, and glutamine have
the largest effect on D(x), with FBS being by far the most critical component with
respect to global sensitivity. Predicted variogram γi for each component was formed
from R = 300 random samples from domain [0, 1].

showing albumin, FBS, dexamethasone, and glutamine have the largest effect on D(x), with FBS

being by far the most critical component.

It was also useful to examine the correlations between different IS. The model predicts all IS

to have very linear correlations (Figure 4.8c), while Passage 1, having the most experimental noise,

had the weakest inter-IS correlations. Biases are predicted at the upper end of the output range as

indicated by the deviation from the 45◦ line in Figure 4.8c. This fact is also evident in the predicted

kernel matrix in Figure 4.8c, where the more error-prone Passage 1 data displays high off-diagonal

intra-IS correlation, and the other IS shows nearly identical inter and intra-IS correlations.

4.4. Discussion

Production scale cellular agricultural processes will require > 10 passages of cell growth [59]

so optimizing growth based on single-passage information is not adequate [22]. However, multi-

passage growth assays are difficult / expensive to measure, and even more difficult to optimize

when given many components. We managed this complexity by coupling long-term (i.e., > 1

passages) cell number measurements with simpler but less valuable rapid growth chemical assays
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Passage 2
0.56 0.59 0.71

Passage 1
0.88 0.8

AlamarBlue
0.86

Actual Correlation (Data YN)Predicted Correlation

LIVE

Distribution of YN

(XN, XN) for All N Datapoints

(a) (b) (c)

(x, x) for xFBS [0, 1]

Figure 4.8. Kernel Plots and IS Distributions | (a) and (b) Show the output of the
kernel Σ(xm, x′m) for all data collected {XN , YN} and a simulated data set where only
xFBS is varied from [0, 1], respectively. Darker regions indicate large values of Σ,
and thus a correlation. Also (c) the various IS cell number / correlate distributions
(diagonal histograms) are shown. Above the diagonal (squares) are the actual inter-
IS correlations for each IS with their respective R2 values, and below the diagonal
(circles) are the predicted inter-IS correlations for a random data set

(single passage) in murine C2C12 cultures as a model system for cellular agricultural applications,

capturing a more holistic model of the process. We combined this with an optimization algorithm

that efficiently allocates laboratory resources toward solving argmaxD(x) for desirability function

D(x), a function that incorporates both cell growth and medium cost. This resulted in a 38%

reduction in experimental effort, relative to a comparable DOE method, to find a media 227% more

proliferative than the DMEM control at nearly the same cost. As the longer-term passaging study

suggests, our Passage 2 objective function and IS were well calibrated to mimicking the complex

industrial process of growing large batches of cells over many passages, with Passage 4 cell numbers

well predicted by this objective function.

The reasons for the success of the BO are myriad. The BO method iteratively refines a single

process model to improve certainty in D(x)-optimal regions, whereas the DOE relies on a series of

BB designs where the older data sets are ignored because they were outside of the optimal factor

space. The BO also used a variety of IS, whereas the DOE only used a single low-fidelity AlamarBlue

metric (as is common in analysis of growth media). Looking at Figure 4.8c, the AlamarBlue and
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LIVE tended to cluster around the point y =1, making it difficult to distinguish between high-

quality and low-quality media. This may be due to the deviation of linearity of the %AB and F530

metric at high biomass. The BO method also refined its multi-IS model over the entire feasible

design space, allowing it to take advantage of optimal combinations and concentrations of all 14

components over the entire domain, whereas the DOE needed to reduce the design and factor spaces

to reduce the number of experiments needed, and may have identified the wrong optimal boundary

locations resulting in sub-optimal experimental designs. The BO method was also able to leverage

information about process uncertainty to improve the model is poorly understood regions of the

design space, whereas the steepest accent method used by the DOE chased after improved D(x)

with little regard for overall noise or experimental errors. This was worsened by the sensitivity of

the polynomial model to random inter-batch fluctuations in AB%, which may have driven the DOE

to sub-optimal media. Note that the success of our BO method should not be taken as generic

superiority over all potential instantiations of DOE or commercial media used for C2C12 growth.

While the BO method worked well at solving the experimental optimization problem, the multi-

IS GP accuracy was limited to highly sampled regions of the design space, thus limiting the efficacy of

sensitivity analysis. This was a conscious decision made to trade off post-facto analysis for sampling

media with high desirability D(x). Accuracy was also limited by the low amount of data N available

relative to the large dimensionality p, which is inherently the case in complex biological experiments

where each batch of q experiments takes > 1 week to evaluate. Finally, the hyperparameters θ∗ used

in the multi-IS squared exponential kernel were deliberately regularized with prior distributions to

smooth the posterior of the prediction µ(x). Regularization may have diminished the quality of

the inter-IS correlations; the model hyperparameters ignored features where IS differed in favor of

a simpler correlative structure to explain the data. This is seen in Figure 4.8b and 4.8c, where the

kernel evaluations show nearly equal inter-IS correlative strength for most IS used. This may have

“squished” / ignored features that could have provided additional information, but at the cost of

sampling the design space too widely, again a deliberate choice of model skepticism towards outliers.

Even with these limitations, the BO method clearly performs well on media optimization systems

relevant to cellular agriculture, that is, those with multiple and potentially conflicting information

sources with varying levels of difficulty in measuring. The media resulting from the BO algorithm
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supported significantly more C2C12 cell growth with only a small increase in cost. This algorithm

performs better than traditional DOE in this case, especially in incorporating critical data from

growth after the multiple passages in an affordable manner. With these results, it should be possible

to implement this type of experimental optimization algorithm in other systems of importance to

cellular agriculture and cell culture production processes with difficult-to-measure output spaces,

including for optimization of serum-free media for cell growth and for differentiation.
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CHAPTER 5

Multi-Objective Bayesian Optimization of Serum-Free Culture

Media for Cellular Agriculture

In this chapter we have extended the multi-information source Gaussian process modeling tech-

nique to solve a multi-objective Bayesian optimization problem involving the simultaneous min-

imization of cost and maximization of growth for serum-free C2C12 cells using a hypervolume

improvement acquisition function. In 12 batches of experiments, collected using multiple assays

targeting different cellular growth dynamics, we found a medium with a 184% improvement in

growth over the control at a 71% increase in cost that maintained a high level of cell growth over

five passages. In addition, the algorithm was able to design a variety of high-growth or low-cost al-

ternatives, providing further evidence that sequential DOE techniques can quickly optimize difficult

media design problems and provide options to researchers in cellular agriculture.

5.1. Introduction

In this work we applied the approach in the previous chapter to design a serum-free media, which

is a necessary precondition to the development of cellular agriculture, for C2C12 cells. The work

by [52] on Essential 8 (E8 or B8) media has been a good framework for serum-free formulations.

They developed their medium for human induced pluripotent stem cell proliferation and stability

based on the combination of the DMEM/F12 basal medium and supplementation with insulin,

transferrin, FGF2, TGFβ1, ascorbic acid, and sodium selenite. [80] took this approach and, by

screening multiple growth factors and hormones using a one-factor-at-a-time approach, developed

an albumin-enriched B8 formula for the proliferation of bovine satellite cells. Recent work by

[50] shows that merely seeding cells in serum-free media without additional preparation will be

unsuccessful in optimizing serum-free media. A more robust approach is to slowly adapt a cell line

to serum-free conditions over multiple passages [85]. Sometimes this requires attachment factors or
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extra-cellular matrix (ECM) material to allow adherent cells to affix themselves to the surface of

the culture dish. For a fully animal component-free medium, ECM substitutes like Matrigel may

be replaced by dilution cloning or other genetic techniques. The serum-free medium itself must

contain the standard vitamins, trace elements, carbohydrates, amino acids, and salts discussed in

the previous two chapters, but with additional proteins, enzymes, and growth factors that replace

serum [14]. These components are particularly expensive and militate for a multi-objective approach

to optimizing cell culture media.

The field of multi-objective optimization (MOO) is an extensive and valuable area of research

that attempts to solve optimization problems with multiple, and often conflicting, objectives. The

region of the design space where one cannot improve one objective without degrading another is

the Pareto curve. Usually, there is no single point that dominates the entire design space and

lies beyond the Pareto curve, so the MOO problem becomes a matter of finding sets of points X

that fall on the curve, or designs that sufficiently represent the preferences of the designer. Cell

culture media design, particularly for cellular agriculture, is inherently a MOO problem because

improved growth is often found with expensive components. [48] used central composite designs

to evaluate the effect of several components on a desirability function parameterization of lipid

content, carbohydrate consumption and biomass accumulation. In work done to optimize cytokine

dosing, [29] trained a regularized polynomial model and used a derivative-free optimizer to find

the conditions that maximized a desirability function of cell populations. In work by [34], genetic

algorithms VEGA and SPEA were used to maximize chemical conversion while maintaining biomass

of the cyanobacteria organism. In a conference paper, [87] used a genetic algorithm MOGA to

maximize plant culture biomass and minimize system cost.

There are many ways to solve MOO problems [56]. m Objective functions may be "scalar-

ized" into a single objective function α(x) with the most common being a weighted-sum α(x) =∑m
i wifi(x) where

∑m
i wi = 1 and wi > 0 and preference is given to outcomes with higher wi

weights. The weighted exponential sum α(x) =
∑m

i wifi(x)
γ
i also exists where γi scales the ith

objective. For example, if cell growth is more important than cell morphology then we’d set

wgrowth > wmorph. If we want the relative importance of cell growth to increase at higher re-

sponses, flattening the differences between low and modest growth, then we’d increase γgrowth. In
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lexicographic methods, the objectives are solved sequentially from most to least important objec-

tive, where the i + 1th objective must be optimized such that the ith objective is not degraded,

thus turning the problem into a constrained optimization problem. Another method maximizes

the function α(x) = maxi{wi(fi(x)− fi,o)}, essentially allowing whichever objective’s weighted im-

provement to dominate the design space when it is large. Genetic algorithms, such as the popular

NSGA-II [47] have also been used to solve MOO problems. This algorithm works by balancing

points that dominate others in the evaluated set (are better in one or more objectives y) with a

crowding metric (averaged nearest-neighbor distance) to preserve diversity of solutions across the

objective space. NSGA-II then ranks solutions based on their objective value, and break ties using

the crowding metric. This can be particularly good for media optimization because we often want

a variety of designs along the Pareto curve to consider additional factors like manufacturability and

stability. NSGA-II’s efficiency has allowed it to act as Pareto samplers for Bayesian approaches

to multiple competing objectives [12], uncertainty and sensitivity analysis [36], and engineering

optimization. The challenge with MOO is often in assigning weights such that the optimal designs

are optimal from the point of view of the designer. Additionally, designs meant to optimize α(x)

may not be distributed evenly across the objective space, giving the designer a distorted view of the

objective space. There are also a variety of multi-objective Bayesian optimization (MOBO)

approaches in the literature. The ParEGO [38] approach models each m objective as an indepen-

dent Gaussian process (GP) with an objective function α(x) = maxj{λj , fj(x)} + ρ
∑m

i λifi with

a uniformly drawn weight vector Λ = [λ1 · · ·λm]. In this manner, the Pareto curve is gradually

learned as Λ changes over batches of experiments. [11] propose a multi-objective max-value en-

tropy search method. The information value of a given point x for finding the best value y∗ is

α(x) = H(y|X) − EY ∗ [H(y|X,Y ∗]. [12] then went on to generalize this to a multi-fidelity setting

in which multiple sources of information could be fused. This is valuable in biological experiments

where different assays may be used to measure the same outcome using different chemistry.

Because we have previously worked with GPs to successfully solve Bayesian optimization (BO)

problems, we adopted the MOBO approach to solve the media design problem, specifically the noisy

expected hypervolume improvement function described in [26]. We also used the multi-information

source (IS) GP model described in [61] to successfully optimize cell culture media with multiple
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assays to robustly describe long-term cell proliferation [23]. We will use this multi-IS GP model

again to model long-term cell growth in our serum-free system. In Section 5.2 we will discuss the

laboratory materials needed to solve our media design problem, including the cells and chemicals

needed, as well as the mathematical derivation of the acquisition function used to solve the MOBO

problem. Then in Section 5.3 the results will be presented, followed by Section 5.4 with the discussion

of the implications of the results.

5.2. Materials and Methods

5.2.1. Serum-Free Cells. To get the C2C12 cells (ATCC) to proliferate in serum-free con-

ditions, they were first adapted to survive in the commercial Essential 8 (Gibco) (E8) medium by

passaging the cells, starting in DMEM (Gibco) and 10% FBS (BioWest), in increasing amounts

of E8. Once E8 comprised > 90% v/v of the medium, cell growth slowed and Matrigel (Corning)

was needed to provide ECM. With the Matrigel, the new C2C12 line survived fully in E8. Next

we used a dilution cloning technique to select a subset cell line from these cells that could survive

without Matrigel. The surviving cells were frozen in Synth-a-Freeze (Gibco) at their fourth passage

in -196◦C liquid N2 and are the cells used in the remainder of this chapter. Bovine satellite cells

(BSC) were used for verification experiments after the optimization campaign was finished to de-

termine the generalizability of the designed media. BSCs more closely resemble the phenotypes of

cells desired in the cellular agriculture industry.

5.2.2. Media Components. The media design space was based on the E8 / B8 formulation

[52] comprised of basal medium, FGF2, TGFβ1, insulin, transferrin, ascorbic acid, and sodium

selenite. We chose to supplement this with nine growth factors which have either been found to

improve cell proliferation in [23] or by expert opinion. Because the basal component is comprised of

>30 individual components it was broken down into groups based on function in cell culture. These

component groups (essential and non-essential amino acids, vitamins, salts, trace metals, DNA

precursors, fatty acids) were varied during the optimization campaign by the algorithm which we

discuss in later sections. Components believed to have significant effects on growth (carbohydrates,

ascorbic acid, sodium selenite) were individually varied. NaCl was separated from the general salts

group because it had a large effect osmolarity.
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Abrev. Component Conc. Min Conc. Max Cost (Unitless)
NEAA ***NEAA 0.5x 5x 1.00E-08
EAA ***EAA 0.5x 5x 1.00E-08
V ***Vitamins 0.5x 5x 1.00E-08
Salt ***Salts 0.5x 5x 1.00E-08
Metal ***Trace Metal 0.5x 5x 1.00E-08
DNA ***DNA Precursor 0.5x 5x 1.00E-08
Fat ***Fatty Acid 0.5x 5x 1.00E-08
SS Sodium Selenite 7.00E-06 7.00E-05 1.00E-08
AA Ascorbic Acid 0.03 0.3 1.00E-08
Gluc Glucose 1.35 13.5 1.00E-08
Gluta Glutamine 0.22 2.2 1.00E-08
Pyruv Sodium Pyruvate 0.03 0.3 1.00E-08
NaCl Sodium Chloride 1.40 14.0 1.00E-08
I Insulin 0.01 0.1 0.03
T Transferrin 5.00E-03 0.05 0.004
FGF2 FGF2 3.00E-05 3.00E-04 0.63
TGFb1 TGFβ1 1.00E-06 1.00E-05 0.09
EGF EGF 0 2.50E-05 0.003
P Progesterone 0 2.50E-05 1.00E-08
Estra Estradiol 0 1.25E-05 1.00E-08
IL-6 IL-6 0 6.25E-05 0.08
LIF LIF 0 1.25E-05 0.02
TGFb3 TGFβ3 0 1.60E-05 0.04
HGF HGF 0 2.50E-05 0.03
PDGF PDGF 0 2.50E-05 0.03
PEDF PEDF 0 2.50E-05 0.04

Table 5.1. Serum-Free Medium Design Space | all components were stored as per
manufacturers instructions in stock solutions (PreproTech in the case of growth
factors or Gibco for glutamine, EAA, and sodium pyruvate). The concentration
(mg/mL) of all media was between the minimum and maximum listed. The cost is
a unitless coefficient that corresponds to the marginal dollar-denominated cost on
the [0, 1] scale. Cell culture sterile water was used to make up the remaining volume
not taken up by the components. Notes: ***The max/min concentration is relative
to stock concentrations in Appendix C.1. All media have a sodium bicarbonate
concentration of 2.44 mg/mL and were stored at 5◦C for no longer than 8 days.

5.2.3. Cell Growth Experiments and Assays. We utilized a multi-information source (IS)

Bayesian model to combine "cheap" measures of cell biomass (AlamarBlue and LIVE stain) with

more “expensive” but higher quality measurements (cell count after 1 and 2 passages) to predict

long-term medium performance. We refer to the simpler and cheap assays as “low-fidelity” IS, and

more complex and expensive assays as “high-fidelity” IS. To start an experiment for all IS, vials were
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thawed to 25◦C and the freezing medium was removed by centrifugation at 1500 × g for 4 min. The

centrifuged cell pellet was resuspended in 17 mL of store-bought E8 (Gibco) and placed on 15 cm

sterile plastic tissue culture dishes (Cellstar, Greiner Bio-One). Cells were incubated at 37◦C and

5% CO2 for 48 hrs. Cells were harvested using tripLE solution (Gibco), diluted in PBS, and counted

using a Countess II with trypan blue exclusion and disposable slides (Invitrogen). With the known

concentration of cells, 96 well plates (for the low-fidelity IS) were seeded at 2,000 cells / well (25 µL

of PBS / cell inoculum and 75 µL of test medium) and 6 well plates (for the high-fidelity IS) were

seeded at 60,000 cells / well (750 µL of PBS / cell inoculum and 2,250 µL of test medium). The final

density of both formats should be roughly 20,000 cells / mL of PBS and medium. After 72 hrs, all

wells were measured using the IS methods shown in Table 4.2 and described in Section 4.2.2. Very

briefly, the low-fidelity IS AlamarBlue (Invitrogen) and LIVE (Biotium) assay required staining wells

with a stock chemical and reading with absorbance and fluorescence on a plate reader (Molecular

Devices, ImageXpress Pico). Both signals correlate with cell number. The other low-fidelity IS was

the Passage 1 cell count using a Countess II automatic cell counter. The high-fidelity IS, which

correlates much better with long-term cell proliferation, the Passage 2 metric, was also measured

using the Countess II (but requires an additional 72 hrs of growth and another trypsinization step).

This additional 72 hr period is why it is considered a long-term cell growth metrics, but also why

it is more tedious to use to optimize a complex media.

5.2.4. MOBO Acquisition Function. We have chosen the hypervolume metric HV (x) (Equa-

tion 5.1) to rank the quality of p media combinations based on their growth and cost. If the mth

output to maximize is fm(x) relative to a minimum reference point lm then HV (x) is the product of

fm(x)−lm for each output [25]. The "+" operator in Equation 5.1 sets HV (x) = 0 if fm(x)−lm ≤ 0

(this acts as a threshold). To clarify the connection between the GP and the acquisition function,

the mean µ(x) (Equation 5.2) and variance σ2(x) are shown below, where fm(x) = µ(x).

(5.1) HV (x) =

p∏
m=1

[fm(x)− lm]+
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(5.2) µ(x) = µ0 +Σ(XN , x)(Σ(XN , XN ))−1(YN − µ0)

σ2(x) = Σ(x, x)− Σ(XN , x)(Σ(XN , XN ))−1Σ(XN , x)T

To compute the "improvement" in Equation 5.1 we reformulate the above expression into

the product of the minimum between a max-value called um, and fm(x) [26] where zm(x) =

min{um, fm(x)}. As discussed in the cited Daulton papers, a box decomposition algorithm can

be used to quickly compute HV I(x) by breaking down the above computation into a piece-wise

integration across K rectangles defined by vertices uk and lk. We numerically integrate over the

rectangles to get the approximation of the hypervolume improvement function HV I(x).

HV I(x) =
∏p

m=1[zm(x)− lm]+

HV I(x) ≈
∑K

k=1

∏p
m=1[zm,k(x)− lm,k]

+

Because we can run multiple experiments in a single batch, we can again reformulate HV I(x)

into the "multi-point" qHV I(X) where we wish to predict the best q set of experiments X.

This can be done using the inclusion-exclusion principle for overlapping sets. In practice, this

means summing across q points
∑q

j=1(−1)j+1 and modifying the improvement calculation to in-

corporate all subsets of the proposed candidate pool X of size j for j = 1 · · · q. This addi-

tional calculation prevents double counting of any q overlapping hypervolume sets. Note that

zm,k,Xj
= min{uk, fm(Xi,1) · · · fm(Xi,j)}. Finally, because we have a statistical model in the form

of the GP, we formulate an "expected" qHV I(X) as the integral over the posterior distribution

over the previous formulation, or qEHV I(X) = 1
N

∑q
t=1HV I(X) in the case of monte-carlo (MC)

sampling of N points (MC is needed because there is no analytical solution to qHV I(X)). With

sufficiently large N , the MC approximation of µ(x) should approach Equation 5.2.

qHV I(X) =
∑

Xj∈Ω
∑q

j=1

∑K
k=1

∏p
m=1(−1)j+1[zm,k,Xj

(x)− lm,k]
+

qEHV I(X) = 1
N

∑N
t=1

∑
Xj∈Ω

∑q
j=1

∑K
k=1

∏p
m=1(−1)j+1[zm,k,Xj ,t(x)− lm,k]

+

MC involves generating a fixed set of normal random numbers Z ∼ N(0, IN ) and sampling the

GP using the "reparameterization trick" [91] where the prediction is sampled as Y = µ(X)+L(X)Z

with Cholesky Decomposition of the covariance matrix Σ(X,X) = L(X)L(X)T . Pushing these
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samples through qEHV I(X) and ∇qEHV I(X) allows us to solve X∗ = argmax qEHV I(X)

using the multi-start L-BFGS-B optimization algorithm. This is an optimizer that uses function

evaluations f(x) and gradients ∇f(x) to approximate the Hessian matrix of double derivatives

∇2f(x). This approximation speeds up solving X∗ = argmax f(x) and is commonly used in

MOBO and machine learning methods. As we wish to constrain our experiments to achieve some

minimum level of growth ymin so as not to waste experimental effort in regions of the design

space that cannot support cells, we modify qEHV I(X) by multiplying it by an indicator function

ϕ(x) = 1{µ(x) ≥ ymin}. Because each point q should contribute to the hypervolume proportional to

the extent to which it satisfies the constraint, we arrive at the multi-point version of the constrained

hypervolume function α(X) by averaging out ϕ(x) using the same MC samples. Note that ϕ(x) is

not differentiable so we replaced it with a sigmoid function ϕ(x) ≈ 1
1+exp(−v(x)/ϵ) with temperature

parameter ϵ = 10−3. We finally arrive at Equation 5.3 which will be the acquisition function to be

optimized throughout this work.

(5.3) α(X) =
1

N

N∑
t=1

∑
Xj∈Ω

q∑
j=1

K∑
k=1

p∏
m=1

(−1)j+1[([zm,k,Xj ,t(x)− lm,k]
+)

∏
x′∈Xj

ϕ(x)]

An example of α(x) and ϕ(x) is plotted in Figure 5.1 for glutamine and pyruvate (data collected

in this work). The GP model was used to predict the cell growth of the glutamine-pyruvate design

space, which was then used to predict α(x) and the feasibility score ϕ(x). Notice optimizing α(x)

may not correspond to maximising the feasibility of the experiment. This is because (i) cost and

(ii) uncertainty reduction is considered in α(x) and not ϕ(x).

5.2.5. MOBO Algorithm. The MOBO algorithm that designs optimal experiments is shown

in Figure 5.2. After collecting some initial data from a variety of IS, the model was trained and X∗

found using multi-start L-BFGS-B for some q maximum allowable number of experiments. Because

we want to optimize the high-fidelity IS (Passage 2) all calculations in the MOBO algorithm are

done using the high-fidelity IS prediction. With X∗, we now find the optimal IS to sample. We

started by defining the number of high-fidelity samples we are willing to measure q0 < q. α(X) was

calculated using Equation 5.3 for all combinations
(
q
q0

)
in X∗, and the dominant combination of
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Figure 5.1. Plot of Acquisition Function and Feasibility Score for q = 1 Experi-
ments | (left) expected hypervolume improvement α(x) and (right) mean feasibility
score ϕ(x) for glutamine and pryuvate concentration (normalized to [0, 1], which has
no effect on the results because the models are trained using the normalized data)
calculated using 1000 MC samples using the reparameterization trick. Light / yel-
low represents higher values. The final pytorch model (which was needed to generate
these plots) and data availability is discussed in Appendix C.4. For all experiments,
the lower bound for predicted growth µ(x) was lµ = µ̄−4σ (four standard deviations
below the current mean cell growth metric across all assays. The lower bound for
cost lc = −1.1, or 10% above the highest possible value of cost (which, because of
our unitless scalarization, is always cmax = 1.

experiments was allocated to the high-fidelity IS. The remaining q − q0 experiments were allocated

to low-fidelity IS. We started our MOBO algorithm in the serum-free experiments by initialization

with 10 Latin Hypercube designs [18]. The algorithm then allocated q = 15 experiments with q0 = 3

high-fidelity IS and q− q0 = 12 low-fidelity IS using the combinatorial heuristic. This was repeated

for 12 batches of experiments, where a batch is defined as a single group of q experiments designed

by the MOBO algorithm. Because of the enormous time-cost of measuring biological replicates of q0

cell counts for two passages individually, it was assumed that an averaged technical replicate would

capture the underlying trends of the system. As the results will show, this did not appreciably

detract from the quality optimal media found even over multiple passages. To further bias our

experiments towards high growth regions of the design space, after 9 batches of experiments we

ran an additional high-fidelity experiment solving x∗G = argmax NEI(x) as outlined in [54] where

NEI(x) = 1
N

∑N
t=1[max{ft(x)} − max{f(X)}]+. This is equivalent to maximizing the expected

improvement of a single experiment of a noisy function without consideration of cost.

5.2.6. Computational Environment and Packages. Hardware used: Dell Precision 5820

Tower, Intel Xeon W-2145 DDR4-2666 Processor (3.7 GHz), 32 GB Memory. Software used: python
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Figure 5.2. MOBO Algorithm | this loop describes the MOBO algorithm to maxi-
mize α(X) that describes the value of a given set of experiments given q0 high-fidelity
and q − q0 low-fidelity IS samples per batch of experiments. After each batch, the
process is repeated until the process is optimized or resources are exhausted. Notes:
To increase the presence of high growth conditions, after batch four and nine ymin

was increased from 0.5 to 0.75 and 1.0 respectively. The minimum standardized
variance was thresholded at σ2

min = 0.02 but this needed to be changed to 0.05 to
reduce numerical stability issues with optimizing α(X).

3.9.7 (for all programming), gpytorch 1.3.0, pytorch 1.8.1, and botorch 0.4.0 (for modeling

and Bayesian optimization), pydoe 0.3.8 (for initialization using Latin Hypercube experiments).

For neural network test problem scikit-learn 0.24.1 was used.

5.3. Results

5.3.1. Experimental Validation of MOBO Method. The MOBO algorithm was tested on

the computational test problems introduced in the previous chapter with an additional linear cost

function that turned the single-objective optimization problem into a MOO problem. The results

are in Appendix C.2 and C.3. The new hypervolume acquisition function α(X) (Equation 5.3)

performed similarly to the desirability function discussed in the previous chapter. Therefore, because
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the hypervolume function makes fewer assumptions about the MOO problem, it was chosen to help

design experiments for this novel system. Furthermore, empirical studies of the hypervolume [25]

and noisy-hypervolume [26] acquisition function indicate that it is superior to a wide variety of

MOO and MOBO solvers on synthetic and data-based optimization problems. The most prominent

result from the application of the MOBO algorithm to the serum-free experimental system was

the steady improvement in both hypervolume and the Passage 2 high-fidelity IS growth metric in

Figure 5.3b. Some of the interesting media designs are highlighted in Table 5.2. Only one medium

(OM0) dominated the control medium in both growth and cost, resulting in 23% more growth at

62.5% of the cost of the control. OM0 had notably lower concentrations of major growth factors like

insulin, transferrin, FGF2, and TGFβ1 and higher concentrations of progesterone, estradiol, IL6,

and LIF. OM1 was another interesting medium that had 78% more growth at only and additional

25% cost. This was due to higher concentrations of the growth factors that OM0 lacked. Finally,

OM2 and OM3 had a 112% and 184% improvement in growth at an increase in cost of 62% and 71%

respectively. OM2 and OM3 had even higher concentrations of both the insulin, transferrin, FGF2,

and TGFβ1 growth factors, while also elevating the concentration of all factors from progesterone

to PEDF.
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Figure 5.3. MOBO Application to Serum-Free System | plot (a) shows improve-
ment in both Passage 2 growth and hypervolume over time (batches of experiments
on the x-axis). The dotted line shows the best performing growth experiment per
batch and units are on the right-hand axis. Plot (b) shows the trade-off between
growth and cost from all data and IS types. The final pytorch model and data avail-
ability is discussed in Appendix C.4.

5.3.2. Long-Term Proliferation. We then tested OM0-OM3, the control medium, and an

in-house E8 for five passages to assess the ability of our Passage 2 high-fidelity IS to mimic longer-

term effects of the media on C2C12 cells. The cell density after each passage is shown in Figure 5.4a.

OM3 was the only media that maintained growth up to five passages. Next, BSC cells were cultured

on collagen matrix for three passages with OM0-OM2 media and the control medium. Only OM2

showed significant cell densities throughout the study.
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OM0 OM1 OM2 OM3 Control
NEAA*** 0.75x 1.50x 1.55x 1.20x 1.00x
EAA*** 0.90x 1.35x 1.40x 0.95x 1.00x
V*** 3.60x 4.30x 2.25x 1.60x 1.00x
Salt*** 0.50x 2.50x 1.75x 0.90x 1.00x
Metals*** 5.00x 4.80x 3.40x 3.55x 1.00x
DNA*** 1.95x 3.05x 2.95x 2.00x 1.00x
Fat*** 2.75x 1.25x 2.20x 2.65x 1.00x
SS 4.41E-05 4.83E-05 3.99E-05 4.41E-05 1.40E-05
AA 0.18 0.21 0.23 0.23 0.06
Gluc 1.62 9.59 3.51 6.89 4.05
Glut 1.35 1.95 1.58 1.54 0.43
Pyruvate 0.20 0.25 0.13 0.11 0.06
NaCl 4.76 4.76 5.60 3.64 7.00
I 0.01 0.01 0.02 0.02 0.10
T 5.00E-03 3.35E-02 1.95E-02 2.20E-02 1.00E-02
FGF2 3.00E-05 1.29E-04 1.32E-04 1.35E-04 9.00E-05
TGFb1 1.00E-06 1.00E-06 1.70E-06 2.80E-06 2.00E-06
EGF 4.25E-06 2.25E-05 9.25E-06 1.10E-05 0.00
P 1.73E-05 5.25E-06 1.93E-05 1.50E-05 0.00
Estra 5.75E-06 5.00E-07 4.75E-06 2.38E-06 0.00
IL6 1.13E-05 5.00E-06 3.94E-05 3.94E-05 0.00
LIF 3.75E-07 8.75E-07 4.00E-06 1.63E-06 0.00
TGFb3 0.00 0.00 4.48E-06 7.36E-06 0.00
HGF 0.00 0.00 1.00E-06 2.00E-06 0.00
PDGF 0.00 0.00 9.25E-06 9.50E-06 0.00
PEDF 0.00 0.00 2.50E-06 3.75E-06 0.00
Growth 1.23 1.78 2.12 2.84 1.00
Cost 0.09 0.30 0.39 0.41 0.24

Table 5.2. Optimal Media | groups of media that lie on or near the Pareto curve.
Only OM2 was found by maximizing NEI(x) rather than α(X). The concentration
(mg/mL) of all media was between the minimum and maximum listed in Table 5.1.
The cost is a unitless metric of relative economic cost of each component or group.
Cell culture sterile water was used to make up the remaining volume not taken
up by the components. Notes: ***The max/min concentration is relative to stock
concentrations in Appendix C.1. All media have a sodium bicarbonate concentration
of 2.44 mg/mL and were stored at 5◦C.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Passage (72 hrs)

0.2

0.4

0.6

0.8

1.0

Ce
ll 

D
en

si
ty

 (
ce

lls
 / 

m
L)

1e6 Long-Term Cell Proliferation (C2C12)

OM0
OM1
OM2
OM3
Control
E8

(a)

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Passage (96 hrs)

0

50000

100000

150000

200000

250000

Ce
ll 

D
en

si
ty

 (
ce

lls
 / 

m
L)

Long-Term Cell Proliferation (BSC)

OM0
OM1
OM2
Control

(b)

Figure 5.4. Long-Term Proliferation | C2C12 and BSC cells were grown for an
additional five/three passages. (a) OM1 was contaminated at the third passage.
(b) Media was replaced at second day of each passage. For the BSC experiment,
a cells were seeded at 40,000 cells / well (6 well plates) in 300 µL of PBS and
900 µL of test medium. Standard deviation of cell density shown as shaded region
indicating experimental error in Countess II automatic cell counter. All densities are
the result of combining three replicates together, therefore, the true density / well
is the reported density divided by three.
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NEAA EAA V Salt Metals DNA Fat SS AA Gluc Glut Pyruvate NaCl

I T FGF2 TGFb1 EGF P Estra IL6 LIF TGFb3 HGF PDGF PEDF

y(x) >  Control
Max Growth
Control Concentration

Figure 5.5. Distribution of Optimized Samples | samples were taken from 50
restarts of L-BFGS-B optimization algorithm. The "max growth" condition is solved
as argmaxNEI(x). The y(x) >Control condition solve argmax α(x) for ymin = 1,
or that the solution must result in higher predicted growth than the control. The
x-axis is the [0, 1 normalized concentration of each component and the y-axis is the
density of sampled points.

5.3.3. Sensitivity Analysis. We then used the GP model to understand the correlations

found in the experimental campaign. This was done by optimizing over the final model multiple

times using L-BFGS-B at random starting locations for a single q = 1 experiment. This will show

what the model believes to be the best distribution of experiments. In Figure 5.5 we show the

result of samples for two conditions: (i) optimizing α(x) with ymin = 1 constraint and (ii) only

maximizing growth using NEI(x). Simply put, α(x) considers reducing cost while maintaining

growth above ymin while NEI(x) only maximizes growth. The max growth condition had generally

higher concentrations of most growth factors but not necessarily basal components. This confirms

the previous section where higher growth was achieved through higher growth factor concentrations,

particularly transferrin, FGF2, TGFβ1, EGF, TGFβ3, and PDGF.

Figure 5.5 only tells us what the model thinks are the best conditions and not the relative

magnitude of each factor on growth. As a further means of quantifying this, we computed the

integrated variogram using the VARS technique [64,65] for each factor and show it in figure 5.6.

VARS values suggest that FGF2, IL6, TGFβ1, and several basal components had significant effects

on growth. This mostly confirms the previous section that FGF2, TGFβ1, and several other growth

factors had a large effect on growth, but it is impossible to say anything more suggestive than that.

84



FG
F2 SS IL
6 I

G
lu

c

D
N

A

Es
tr

a

AA

TG
Fb

1

TG
Fb

3

Py
ru

va
te P

Fa
t T V

PD
G

F

Sa
lt

G
lu

t

H
G

F

EG
F

N
aC

l

EA
A

N
EA

A

PE
D

F

LI
F

M
et

al
s

7.9

8.0

8.1

8.2

8.3

8.4

8.5
M

id
-L

ev
el

 Im
po

rt
an

ce
 o

f F
ac

to
r

Figure 5.6. Mid-Level VARS Variogram | ordered by highest to lowest for the
h = 0.3 integrated variogram. The height of the bar indicates the relative impor-
tance of that component in sensitivity of 30% differences in concentration on growth
throughout the design space. Plot was generated using 1000 random samples of the
design space.

5.4. Discussion

The MOBO algorithm was successful because a robust, long-term data set was built over time,

improving the model as more data were collected. Additionally, the acquisition function (Equation

5.3) was tailored to generate high-value experiments near the Pareto trade-off curve between cell

growth and media cost. A separate constraint function translated our need to primarily search for

high-growth designs into a mathematical function, as we expected most of the design space to not

support cell growth. Some shortcomings of this work are that (i) we didn’t compare our MOBO

method to an equivalent DOE method, though we have previously shown similar methods are

significantly more efficient than traditional DOEs [23,93]. Additionally, (ii) Figure 5.4 indicates

media performance tended to decrease over time. This could be due to morphological changes

wrought by the media, physical damage due to passaging, or accumulation of toxins in solution.

Clearly, our Passage 2 metric was not enough to fully predict the rapidly changing dynamics of

cell growth over multiple passages, though it did so reasonably well given the significant savings

in experimental time and resources. Finally, (iii) our media did not generalize well to other cell
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types (the BSCs) which limits the applicability of the designed media OM0-OM3 to C2C12 cells.

However, such a result does indicate the need to re-optimize media and environmental conditions

when studying new cell types or cells with significant genetic or metabolic changes, as such our

methods could prove even more useful.

In general, the MOBO algorithm was able to design media according to the objective func-

tion we picked for this system. Several high-quality serum-free media formulations were discovered

which allows for further, more principled, experiments to be made to accompany and expand on

the discoveries made in this study. Further work should be performed on correlating biomarkers

and morphological attributes to cell differentiation and proliferation, both to improve the robust-

ness of predictions and to simultaneously optimize proliferation and differentiation. Even without

these improvements, this work is still relevant to those interested in quickly optimizing their media

formulations, generally in the serum-free case, and particularly in the case of difficult-to-measure

objectives such as long-term cell growth.
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CHAPTER 6

Review of Thesis and Future Work

The first part of this thesis (chapter 2 and 3) was comprised of the development of a radial basis

function genetic algorithm sequential DOE scheme [21,22]. It drew heavily on the work of [66],

where a sequential DOE technique was developed on the principle of local random search in areas of

high performing media. This algorithm was also dynamic by converging on high performing results

and selectively searching the design space when good results were not forthcoming. Additionally,

previous work in our lab [93,95] provided the framework for a sequential DOE based on a truncated

GA. This modified GA incorporates uncertainty in the optimal samples found by halting algorithm

convergence proportional to the amount of clustering around an optima the GA finds. By hybridizing

these two methods, a DOE algorithm called NNGA-DYCORS was developed that solved various

computational optimization problems better than either method alone. It was used to optimize

a 30-dimensional media for serum-containing C2C12 cell culture with the metric of growth being

AlamarBlue reduction after 48 hrs of growth in 96 well plates (in chapter 3 it was renamed HND).

While it was successful at finding media that maximized this metric (as well as minimized a cost

metric), the 48 hr growth metric did not generalize well to multiple passages, and the best medium

found degraded over time relative to the control.

To fix this underlying problem, multiple passages needed to be incorporated into the DOE

process. This is a very time-consuming process as each passage takes multiple days, many more

physical manipulations than simple chemical assays which introduces opportunities for contamina-

tion, and difficulty for manual experimentation. To solve this, chemical assays were supplemented

with small amounts of manual multi-passage cell counts in a multi-information source Bayesian GP

model [31] which was used to successfully optimize a 14-dimensional serum-containing media for

C2C12 cells [23] (chapter 4). Due to the presence of multi-passage data, the final optimal medium

grew cells robustly over four passages, provided nearly twice the number of cells at the end of each

passage relative to the DMEM + 10% FBS control and traditional DOE method, and did so at
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nearly the same cost in terms of media components. In the final chapter (chapter 5) the multi-

information source GP model was extended to optimize a 26-dimensional serum-free media based

on the Essential 8 media [52] using a multi-objective metric that improves cell growth while mini-

mizing medium cost. Using this Bayesian metric, a broad set of media samples along the trade-off

curve of media quality and cost were found, showing that a designer can be given options in media

optimization. In particular, one medium resulted in higher growth over five passages while the

control and Essential 8 lagged.

There are several avenues for future work. First, improving the quality and robustness of the

data collected. While the Passage 2 metric did generalize to additional passages (chapter 4), it

did not do so for all media (chapter 5). Rather than collect additional long-term cell counts,

future researchers should attempt to find biomarker correlates with long-term growth such as Pax7,

MyoD, and Myogenin. Due to the lack of expertise and resources, in-depth knowledge of the

cascade of signals and molecular interactions in cells were not used to their fullest extent in this

thesis, and should be considered in future. Model accuracy could also be improved by incorporating

additional data such as brightfield image counts of cell number, fluorescent image counts of nuclei

using Hoecht stains, and growth curve data (which is easier to collect with non-destructive techniques

like brightfield). As long as the image segmentation parameters are properly tuned, additional data

points like the rate of change in cell number, final cell number, cell count at each time-point, and

initial cell number could be used to detect high-quality media and elucidate intra-assay correlations.

While metabolomic, genomic, and lipidomic analysis [58] would be time-consuming to conduct

given the amount of experiments we have done here, creating multi-domain models of cellular

systems may be yet another route to optimization. Techno-economic analysis (whole plant analysis,

capital costs, storage and preparations cost of materials etc) of growth and cost conditions may also

allow future DOE studies to translate information collected at the lab-scale closer to the trade-offs

considered in industry and large volume bioreactors. Rather than using multi-objective acquisition

functions such as hypervolume or desirability maximization, future DOEs could feed raw data into

a computer or algebraic techno-economic model and use composite Bayesian optimization [5] to

solve the experimental optimization problem.
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Secondly, fundamental "white-box" studies that focus on non-DOE aspects of the system must

be completed in order to constrain the complexity of future DOE studies and set up more interesting

or profitable design spaces. Studying the metabolomics of the cell lines would be very useful in

defining the upper / lower bounds and important factors of the system. By knowing the limiting

factors of the media using spend-media analysis, upper ranges may be adjusted and by knowing

waste-product profile, potential synthetic routes may be closed. By finding that, for example,

glutamine, is a limiting amino acid in the cell culture system, a higher upper bound may be set

which unlocks entirely new designs (as was considered in chapter 5 after considering the work of [58],

but was not done robustly with every component in chapter 4 or 5). In this thesis, the genetic and

morphological profile of our cell lines was not considered. In fact, the adaptation to serum-free

and Matrigel-free conditions may have appreciably changed these factors to the point that the

optimal media found may not generalize to most C2C12 cells. Therefore, tracking the prevalence of

myotubes during differentiation or staining with α-actin or myosin heavy chain antibody [24] would

both act as a double-check for the way media optimization changes the cell line and as additional

data points to consider during DOE campaigns. For example, one may optimize cell growth but

with a probabilistic constraint that learns which regions of the design space result in low levels of

α-actin or myosin heavy chain response and chooses experiments unlikely to violate that constraint.

Future work must also go beyond C2C12s and consider cells that are relevant for cellular agriculture

such as bovine, porcine, or avian. As we have seen in chapter 5, media designed for C2C12 cells does

not always extend to muscle cells of different animal lineages. These new lines must be adapted

to serum-free conditions which would open up the design space to more industrially relevant cell

lines. All of these ideas would constitute entire projects and require their own feasibility studies,

but would build upon the advances made in this dissertation and body of work.
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APPENDIX A

Optimization of Muscle Cell Culture Media using Nonlinear Design

of Experiments

Table A.1. Final Algorithm Performance Part I. Experiments from Section 2.3.1 where NNGA-

DYCORS performed better than or as well as the next best constituent algorithm by one standard

deviation have their mean bolded. Variants of NNGA-DYCORS are tested in Sections 2.3.2 – 2.3.4.

All data shown are from the final batch of experiments for all algorithms.

90



Table A.2. Final Algorithm Performance Part II. Experiments from Section 2.3.1 where NNGA-

DYCORS performed better than or as well as the next best constituent algorithm by one standard

deviation have their mean bolded. Variants of NNGA-DYCORS are tested in Sections 2.3.2 – 2.3.4.

All data shown are from the final batch of experiments for all algorithms.
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APPENDIX B

Multi-Information Source Bayesian Optimization of Culture Media

for Cellular Agriculture

B.1. Bayesian Model Details

In order to express skepticism over datapoints collected with noise, we incorporated experimental

variance measurements into the noise model to get an additional heteroskedastic noise term Σϵ =

(σ2
ϵ + v)I where vi =

1
ai−1

∑ai
j=1(y

j
i − ȳi)

2 for a given measurement yi with ai replicates (usually 3

or 5 for this study depending on the IS available).

To fit the model, the optimal hyperparameters θ∗ were determined through maximization of the

likelihood L′(X,Y |θ) of the given data XN and YN given a set of hyperparameters θ = λ, σf , µ0, σ.

This was posed as θ∗ = argmin− logL′(XN , YN |θ).

logL′(XN , YN |θ) = −N/2ln(2π)− 1/2Y T
NK−1

y YN − 1/2log|K−1
y |

Ky = Σ(XN , XN ) + Σϵ

∇θi logL
′(XN , YN |θ) = 1/2Y T

NK−1
y YN − 1/2Tr(K−1

y ∇θiKy)

We solved for θ∗ using the limited memory bound-constrained Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS-B) algorithm [15] (bounds of λ, σf and σ set to [10−2, 10]). L-BFGS-B was well suited

to our hyperparameter problem because, as a quasi-Newton method, it has access to first and sec-

ond order (derivative and hessian) information about the negative log likelihood curvature while

inverting hessian matrices using less computation than ordinary Newton methods.

We know biological systems produce smooth, unimodal responses to environmental conditions

rather than steep, multimodal ones. This assumption can be encoded by placing prior distributions

over the hyperparameters and solving for θ∗ jointly. A normal prior was placed over the length

scale and output scale hyperparameters λ, σf ∼ N(1, 0.25) and a gamma prior over the underlying

noise σϵ ∼ Gamma(1.1, 0.05) with gamma function Γ(1.1). This has the effect of (i) regularizing λ
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and σf values such that they remain near to their lower bound, and thus enforce more interaction

between datapoints to smooth the response surface while (ii) constraining the underlying noise σϵ

so the response does not flatten out in the presence of little data.

Pr(λ) = 1√
0.25×2π

× exp(−1/2( λ−1√
0.25

)2)

Pr(σf ) =
1√

0.25×2π
× exp(−1/2(

σf−1√
0.25

)2)

Pr(σϵ) =
0.051.1
Γ(1.1) × σϵ × exp(−0.05× σϵ)

If the priors are independent of each other, they can be expressed as a product Pr(θ) =∏(p+1)M+2
i=1 Pr(θi) and incorporated into the solution to θ∗ by modifying the log likelihood.

logL(XN , YN |θ) = −N/2ln(2π)− 1/2Y T
NK−1

y YN − 1/2log|K−1
y |+Σ

(p+1)M+2
j=1 logPr(θj)

∇θi logL(XN , YN |θ) = 1/2Y T
NK−1

y YN − 1/2Tr(K−1
y ∇θiKy) +∇θi logPr(θi)

If θ∗ is solved for then we can model the output y(x) given x for any IS.

B.2. BO Acquisition Function Details

To take uncertainty captured by σ2(x) into consideration, we take the expectation "E" under

the distribution described by θ∗ and the N datapoints XN and YN . This was done using the

"reparameterization trick" [91] where the prediction was sampled as Y = µ(X) + L(X)Z with

Cholesky Decomposition of the covariance matrix Σ(X,X) = L(X)L(X)T and multivariant random

normal vector Z ∼ N(0, 1). If we take R random samples of Z for points Y , we capture the

uncertainty modeled by the GP and utilize it in calculations that do not have analytically tractable

integrals such as α(X). First, we sample Y using Z, then calculate D(X) for each sample, thus

propagating uncertainty through D(X) as a composite of y(x) and c(x). Note that the cost c(x)

was not modeled by a GP, so does not contribute to the uncertainty of D(X). For more information

on composite Bayesian optimization see [5].

α(X) ≈ 1
R

∑R
r=1(max{D(Yr|X)} −D∗(XN ))+

We also express uncertainty in the current optimal point D∗(XN ) by using the samples Z to

calculate a distribution of predictions of the union of all points Ω = {X
⋃
XN} and get the noisy

modification of the multi-point expected improvement objective function [54]. A sampling policy
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that maximizes α(X) would, therefore, sample uncertain regions multiple times to improve estimates

of the posterior.

α(X) ≈ 1
R

∑R
r=1(max{D(Yr|X)} −max{D∗(Yr,N |Ω})+

Gradient estimates of the above equation ∇α(X) were computed by taking an average of the

gradient of each R sample.

∇α(X) ≈ 1
R

∑R
r=1(max{∇D(µ(X) + L(X)× zr|X)} −max{∇D∗(µ(XN ) + L(XN )× zr|Ω})+

where ∇µ(X) can be easily calculated and ∇L(X) calculated as per [75], both propagated to find

∇D(X) using chain rule to estimate ∇α(X). In practice, this was done using auto-differentiation

of R− 2000 samples Z. These gradient were used in L-BFGS-B to maximize α(X) for a group of q

experiments of p-dimension on the domain [0, 1].

B.3. Computational Validation of BO Method Test Function Details

The test functions {f1, f2, f3, f4} used in the computational experiments in this work are shown

below.

f1(x) =
∑10

i (xi − 0.5)2 + U(−0.2, 0.2)

f1bias,1(x) = 3
∑10

i (xi − 0.4)2 + x2 − x4 + x10 + U(−0.3, 0.3)

f1bias,2(x) =
∑10

i (xi − 0.75)2 + x1 − x5 + x9 − x10 + U(−0.2, 0.2)

f2(x) =
∑10

j x2j +
∑9

i=2 xixi−1 + U(−0.1, 0.1)

f2bias,1(x) = f2(x)− 2(x3 − x6 + x10) + 1 + U(−0.1, 0.1)

f2bias,2(x) = f2(x) + 2(x2 − x5 + x9) + x1x5

c = {0, 0.5, 0.3, 0.8, 1.0}

b = {0,−2.5, 0.3, 0.8,−5}

f3(x) =
∑5

i=1(xi − ci)
2 +

∑1
i=6 0xibi + U(−0.35, 0.35)

f3bias,1(x) =
∑5

i=1(xi − 0.35− ci)
2 +

∑1
i=6 0xibi − 2(x3 − x6 + x10) + 1 + U(−0.7, 0.7)

f3bias,2(x) =
∑5

i=1(xi + 0.35− ci)
2 +

∑1
i=6 0xibi + 2(x1 + x5 − x9) + 2 + x1x5 + U(−0.35, 0.35)
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f4(x) =
∑5

i=1(xi − ci)
2 +

∑1
i=6 0xibi + x1x2 + 2x6x4 − 3x8x9

f4bias,1(x) =∑5
i=1(xi − 0.2− ci)

2 +
∑1

i=6 0xibi + x1x2 + 2x6x4 − 3x8x9 − 2(x2 + 3x5 − x10) + U(−0.35, 0.35)

f4bias,2(x) =
∑5

i=1(xi + 0.2− ci)
2 + 2

∑1
i=6 0xibi + 2x1x2 + 4x6x4 − 6x8x9 + 2(x1 − 3x5 + x9)

B.4. Data and Model Availability

Using Github link https://github.com/ZacharyCosenza/GradStuff_Cosenza the input and

output data should be available under DBO_Data_BO_data.txt (X matrix arranged as experiments

in rows and concentrations normalized [0, 1] in columns with last column being the IS indicator, 0 =

Passage 2, 1 = Passage 1, 2 = AlamarBlue, 3 = LIVE Stain) and BO_outputs.txt (first column Y

second column variance v). The final optimal model parameters may be loaded from BO_Model8.pnd

into DBO_Solver.py using standard pytorch framework.
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APPENDIX C

Multi-Objective Bayesian Optimization of Serum-Free Culture

Media for Cellular Agriculture

C.1. Serum-Free Media Components

These tables show the composition of the components in the MOBO design space. These

chemicals were grouped together to reduce the dimensionality of the design space while still providing

the opportunity for the optimization algorithm to vary their concentrations. There are also various

non-grouped components with their own preparation and reconstitution schemes shown in bullet

points.

• Sodium Selenite: store in PBS at -20◦C.

• Ascorbic Acid: store in PBS at 5◦C, remake every 1-2 weeks.

• Insulin: store in water at -20◦C. Adjust pH for solubility to 2-3.

• Transferrin: store in PBS at -20◦C.

• FGF2: dilute in 5 mM tris buffer to around 0.1-1 mg/mL and store in PBS at 5◦C +

0.10% BSA (bovine serum albumin). PeproTech cat. no. 100-18B.

• TGFβ1: dilute in 10 mM citric acid (pH of 3) to around 0.1-1 mg/mL and store in PBS

at 5◦C + 0.10% BSA. PeproTech cat. no. 100-21.

Component Conc. (mg/mL)
Glycine 0.75
Alanine 0.89
Glutamic Acid 1.47
Proline 1.15
Serine 1.05
Aspartic Acid 1.33
Asparagine-H2O 1.32
Cysteine-HCl-H2O 1.76

Table C.1. Non-Essential Amino Acids (NEAA) | to make this purchase MEM-
NEAA (Gibco) 100x and add Cysteine-HCl-H2O. Store solution in -3◦C.
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Component Conc. (mg/mL)
Histidine HCl-H2O 2.10
Isoleucine 2.62
Leucine 2.62
Lysine HCl 3.64
Methionine 0.76
Phenylalanine 1.65
Threonine 2.38
Tryptophan 0.51
Valine 2.34
Tyrosine Disodium Salt Dihydrate 1.80
Arginine HCl 6.32
Cystine 1.20

Table C.2. Essential Amino Acids (EAA) | to make this purchase MEM-EAA
(Gibco) 50x. Store solution in -3◦C.

Component Conc. (mg/mL)
Choline Chloride 0.1
D-Calcium Pantothenate 0.1
Folic Acid 0.1
Nicotinamide 0.1
Pyridoxine HCl 0.1
Riboflavin (Vitamin B2) 0.1
Thiamine HCl 0.1
i-Inositol 0.2
Biotin (Vitamin B7) 1.75E-04
Cobalamin (Vitamin B12) 3.40E-02

Table C.3. Vitamins (V) | to make this purchase MEM-Vitamin Solution (Gibco)
100x and add Biotin (Vitamin B7) and Cobalamin (Vitamin B12). Store solution in
-80◦C away from sunlight.

Component Conc. (mg/mL)
Calcium Chloride (anhyd) 5.83
Potassium Chloride 15.59
Magnesium Sulfate (anhyd) 5.00
Magnesium Chloride (anh) 3.06
Sodium Phosphate Dibasic 6.70
Sodium Phosphate Monobasic 3.13

Table C.4. Salts Solution | to make this it is best to make a separate solution for
Sodium Phosphate Dibasic and Monobasic and add both solutions to the medium
to the desired concentrations. Store both solutions in -3◦C.
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Component Conc. (mg/mL)
Ferric Sulfate 4.17E-02
Ferric Nitrate 5.00E-03
Zinc Sulfate 4.32E-02
Cupric Sulfate Pentahydrate 1.30E-04

Table C.5. Trace Metals Solution. Store in -3◦C away from sunlight.

Component Conc. (mg/mL)
Linoleic Acid 8.40E-03
Lipoic Acid 2.10E-02

Table C.6. Fatty Acids Solution | Lipoic Acid only soluble in ethanol. Store in
-80◦C.

Component Conc. (mg/mL)
Hypoxanthine Na 4.78E-01
Putrescine 2HCl 1.62E-02
Thymidine 7.30E-02

Table C.7. DNA Precursor Solution | Hypoxanthine Na soluble in DMSO, which
results in at most 0.2% v/v DMSO in media. Unlikely to by highly toxic to C2C12
cells. Other components are water soluble. Store stock in -3◦C away from sunlight.
Solution should be remade every 1-2 months.

• EGF: reconstitute in sterile water 0.1-1 mg/mL and dilute in PBS + 0.10% BSA, store at

-20 - -80◦C. PeproTech cat. no. AF-100-15.

• Progesterone: store in 100% ethanol at -20◦C.

• Estradiol: store in 1:4 DMSO:PBS at -20◦C.

• IL-6: reconstitute in sterile water 0.1-0.5 mg/mL, gently shake for 10 min, and dilute in

PBS + 0.10% BSA, store at -20◦C.

• TGFβ3: reconstitute in 5-10 mM citric acid to 0.1-1 mg/mL, and dilute in PBS + 0.10%

BSA, store at -20◦C. PeproTech cat. no. 100-36E.

• HGF: reconstitute in water to 0.5 mg/mL, dilute in PBS + 0.10% BSA, store at -20 -

-80◦C. PeproTech cat. no. 100-39H.

• PDGF: reconstitute in water to 0.1-1 mg/mL, dilute in PBS + 0.10% BSA, store at -20 -

-80◦C. PeproTech cat. no. 100-14B.

• PEDF: reconstitute in water to 0.1-1 mg/mL, dilute in PBS + 0.10% BSA, store at -20 -

-80◦C. PeproTech cat. no. 130-13.
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C.2. Computational Validation of MOBO Method

We first tested our MOBO algorithm on various multi-objective and multi-information source

test functions solving argmax[f(x), c(x)] by maximizing α(X). Four of the test problems (sphere,

trid, bowlline, bowlline_hard) had two low-fidelity test functions and another had three (cells).

Each had a cost function c(x) = Σp
i=1cixi. Looking at HV (X) over time, α(X) performed similar

to the desirability function (developed in the previous chapter) for all test problems using the same

GP architecture and data availability. We decided the use α(X) for the fact that it did not require

choosing parameters to scale the trade-off between growth y and cost c. This is in contrast to

the desirability function that requires a specific scalarization through various weights. Particularly

when looking at a novel media system, it was useful to remain agnostic to the outcome space and

allow for more exploration of the Pareto curve.
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Figure C.1. Computational Test Results | x-axis and y-axis display batch of exper-
iments and average max value found by the experimental design algorithm. sphere,
trid, bowlline and bowlline_hard were the same as in Appendix B.3 and C.2.
cells is discussed in Appendix C.2.
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C.3. Computational Test Problem Information

For cells test problem a Latin Hypercube (LH) sample was used to initialize 15 samples for 3

information sources, with 2 random samples being of the highest fidelity. Subsequently 5 samples

of 2 of the information sources were made, with 2 additional high-fidelity samples per batch for 5

batches. (The last low-fidelity information source was not used due to a bug in the code). This

resulted in a total of 15× 3+2+ (2× 5+2)× 5 = 107 samples of all information sources. This was

repeated 18 times to get a standard deviation. For sphere, trid, bowlline, and bowlline_hard,

only 2 low-fidelity information sources were available so 92 total samples where used, again for 18

repeats. Hyperparameter and acquisition function optimization was done using multi-start L-BFGS-

B implemented in botorch/scipy. These test problems are described in Appendix B.3. For cells

the data-set found in the previous chapter (N = 248 for a 14-dimensional design problem with four

different information sources) was used to train a neural network model for each information source.

The optimal architecture was found using K-fold cross validation error over the entire data-set for

MSE minimization for num_layers = [100, 10], α = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1],max_iters

= [100, 1000, 5000],tol = [1−4, 1−6, 1−8, 1−10]. The final architecture was α = 1−5, num_layers

= 10, max_iters = 100, tol = 1−6. An example of the different information sources being used

with the same optimal architecture is shown below. For neural network test problem scikit-learn

0.24.1 was used for training and testing.
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Figure C.2. Prediction for Neural Network on cells | for the midpoint X = 0.5
this figure shows the predictions for four different information sources for x = [0, 1].

C.4. Data and Model Availability

Using Github link https://github.com/ZacharyCosenza/GradStuff_Cosenza the input and

output data should be available under X.txt and Y.txt respectively. Each row in X.txt is an

experiment with conditions along the columns in [0, 1] normalized format. The last column is

the information source where 0 = Passage 2, 1 = Passage 1, 2 = AlamarBlue, 3 = LIVE Stain.

For Y.txt the columns are replicates. The final optimal model parameters may be loaded from

MOBO_Model13.pth into MOBO_Solver.py using standard pytorch framework.

101

https://github.com/ZacharyCosenza/GradStuff_Cosenza


Bibliography

[1] B. Akteke-Ozturk, G. Koksal, and G. W. Weber, Nonconvex optimization of desirability functions,

Quality Engineering, 30 (2018), pp. 293–310.

[2] B. Ankenman, B. L. Nelson, and J. Staum, Stochastic Kriging for Simulation Metamodeling, Operations

Research, 58 (2010), pp. 371–382.

[3] M. Arora, Cell Culture Media: A Review, 2013.

[4] G. E. Arteaga, E. Li-Chan, M. C. Vazquez-Arteaga, and S. Nakai, Systematic experimental designs for

product formula optimization, Trends in Food Science and Technology, 5 (1994), pp. 243–254.

[5] R. Astudillo and P. I. Frazier, Bayesian optimization of composite functions, 36th International Conference

on Machine Learning, ICML 2019, 2019-June (2019), pp. 547–556.

[6] ATCC, ATCC Animal Cell Culture Guide.

[7] S. Ba and V. R. Joseph, Composite Gaussian process models for emulating expensive functions, Annals of

Applied Statistics, 6 (2012), pp. 1838–1860.

[8] R. H. Baltz, A. L. Demain, and J. E. Davies, Manual of Industrial Microbiology and Biotechnology, vol. 15,

2010.

[9] P. M. Bapat and P. P. Wangikar, Optimization of Rifamycin B Fermentation in Shake Flasks Via a Machine-

Learning-Based Approach, Biotechnology and Bioengineering, 86 (2004), pp. 201–208.

[10] A. Barbero, V. Palumberi, B. Wagner, R. Sader, M. J. Grote, and I. Martin, Experimental and

mathematical study of the influence of growth factors on the growth kinetics of adult human articular chondrocytes,

Journal of Cellular Physiology, 204 (2005), pp. 830–838.

[11] S. Belakaria, A. Deshwal, and J. R. Doppa, Max-value entropy search for multi-objective Bayesian opti-

mization, Advances in Neural Information Processing Systems, 32 (2019).

[12] , Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space Entropy Search Approach, Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), pp. 10035–10043.

[13] Z. I. Botev, The normal law under linear restrictions: simulation and estimation via minimax tilting, Journal

of the Royal Statistical Society. Series B: Statistical Methodology, 79 (2017), pp. 125–148.

[14] D. Brunner, H. Appl, W. Pfaller, and G. Gstraunthaler, Serum-free Cell Culture : The Serum-free

Media Interactive Online Database, (2010), pp. 53–62.

102



[15] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization,

Journal of Scientific Computing, 16 (1995), pp. 1190–1208.

[16] C. C., M. T. J., M. M. D., and Y. D., Bayesian Prediction of Deterministic Functions, With Applications

to the Design and Analysis of Computer Experiments, J. Am. Stat. Assoc., (1991), p. 953– 963.

[17] . L. Y. P. Chen S. E., Jin B., TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK.,

American Journal of Physiology - Cell Physiology, (2007).

[18] T. M. Cioppa and T. W. Lucas, Efficient nearly orthogonal and space-filling Latin hypercubes, Technometrics,

49 (2007), pp. 45–55.

[19] M. C. Coleman and D. E. Block, Retrospective Optimization of Time-Dependent Fermentation Control

Strategies Using Time-Independent Historical Data, Journal of Chemical Technology and Metallurgy, 51 (2006),

pp. 726–734.

[20] M. C. Coleman, K. K. S. Buck, and D. E. Block, An integrated approach to optimization of Escherichia

coli fermentations using historical data, Biotechnology and Bioengineering, 84 (2003), pp. 274–285.

[21] Z. Cosenza and D. E. Block, A generalizable hybrid search framework for optimizing expensive design prob-

lems using surrogate models, Engineering Optimization, (2020).

[22] Z. Cosenza, D. E. Block, and K. Baar, Optimization of muscle cell culture media using nonlinear design

of experiments, Biotechnology Journal, 16 (2021), p. 2100228.

[23] Z. Cosenza, D. E. Block, P. I. Frazier, and K. Baar, Multi - information source Bayesian optimization

of culture media for cellular agriculture, (2022), pp. 1–12.

[24] M. Das, K. Wilson, and J. J. Hickman, Differentiation of skeletal muscle and integration of myotubes with

silicon microstructures using serum-free medium and a synthetic silane substrate, Nature Protocols, 2 (2007),

pp. 1795–1801.

[25] S. Daulton, M. Balandat, and E. Bakshy, Differentiable expected hypervolume improvement for paral-

lel multi-objective Bayesian optimization, Advances in Neural Information Processing Systems, 2020-December

(2020), pp. 1–30.

[26] , Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement,

Advances in Neural Information Processing Systems, 3 (2021), pp. 2187–2200.

[27] C. M. E., C. M. J., H. M., L. Barchas, J. J., A. A., and C. I. M., Relative roles of TGF-β1 and Wnt in

the systemic regulation and aging of satellite cell responses., Aging Cell, (2009).

[28] K. J. Eberhart R., A new optimizer using particle swarm theory, Proceedings of the 6th International Sym-

posium on Micro Machine and Human Science, (1995).

[29] J. M. Edgar, Y. S. Michaels, and P. W. Zandstra, Multi-objective optimization reveals time- and dose-

dependent inflammatory cytokine-mediated regulation of human stem cell derived T-cell development, npj Regen-

erative Medicine, 7 (2022).

103



[30] E. A. M. M. M. A. M. C. N. B. H. Far, (2013).

[31] P. I. Frazier, A Tutorial on Bayesian Optimization, (2018), pp. 1–22.

[32] A. A. Giunta, S. F. Wojtkiewicz, and M. S. Eldred, Overview of modern design of experiments methods

for computational simulations, in 41st Aerospace Sciences Meeting and Exhibit, 2003, pp. 1–17.

[33] J. Gu, G. Y. Li, and Z. Dong, Hybrid and adaptive meta-model-based global optimization, Engineering Opti-

mization, 44 (2012), pp. 87–104.

[34] J. Havel, H. Link, M. Hofinger, E. Franco-Lara, and D. Weuster-Botz, Comparison of genetic

algorithms for experimental multi-objective optimization on the example of medium design for cyanobacteria,

Biotechnology Journal, 1 (2006), pp. 549–555.

[35] D. Higdon, J. D. Mcdonnell, N. Schunck, and S. M. Wild, A Bayesian Approach for Parameter Esti-

mation and Prediction Using a Computationally Intensive Model, J. Phys. G: Nucl. Phys, (2014).

[36] C. J. Hopfe, Uncertainty and sensitivity analysis in building performance simulation for decision support and

design optimization, PhD thesis, Technische Universiteit Eindhoven, 2009.

[37] Invitrogen, AlamarBlue Assay Manual, tech. rep.

[38] K. J., Parego: a hybrid algo- rithm with on-line landscape approximation for expensive multiobjective optimiza-

tion problems, IEEE Transactions on Evolutionary Computation, (2006), p. 50–66.

[39] M. K. J., T. D., M. S., and P. G. K., Hepatocyte growth factor affects satellite cell activation and differen-

tiation in regenerating skeletal muscle., American Journal of Physiology - Cell Physiology, (2000).

[40] S. J., Y. Y., G. L., K. Y., and K. H., Involvement of Ras and Ral in chemotactic migration of skeletal

myoblasts., Molecular and Cellular Biology, (2000).

[41] A. Z. J. Mockus, V. Tiesis, The application of Bayesian methods for seeking the extremum, Toward Global

Optimization, (1978).

[42] P. Jiang, C. A. Shoemaker, and X. Liu, Time-varying hyperparameter strategies for radial basis function

surrogate-based global optimization algorithm, IEEE International Conference on Industrial Engineering and

Engineering Management, 2017-Decem (2018), pp. 984–988.

[43] S. T. W. Jin R., Chen W., Comparative Studies of Meta- modeling Techniques Under Multiple Modeling

Criteria, Struct. Multidiscip. Optim, (2001).

[44] B. Jones, K. Allen-Moyer, and P. Goos, A-optimal versus D-optimal design of screening experiments,

Journal of Quality Technology, 53 (2021), pp. 369–382.

[45] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient Global Optimization of Expensive Black-Box Func-

tions, Journal of Global Optimization, 13 (1998), pp. 455–492.

[46] O. K., S. P., P. A. K., and M. B. N., Modelling of nutrient mist reactor for hairy root growth using Artificial

neural network, Eur. J. Sci. Res., (2013), p. 516–526.

[47] A. P. Kalyanomy DEB, A fast and elitist multi-objective genetic algoritm:NSGA -II, 6 (2001), pp. 182–197.

104



[48] K. Kanaga, A. Pandey, S. Kumar, and Geetanjali, Multi-objective optimization of media nutrients for

enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738, Biore-

source Technology, 200 (2015), pp. 940–950.

[49] I. V. Kathryn Chaloner, Bayesian Experimental Design Review, Statistical Science, 10 (1996), pp. 273–304.

[50] A. M. Kolkmann, M. J. Post, M. A. Rutjens, A. L. van Essen, and P. Moutsatsou, Serum-free media

for the growth of primary bovine myoblasts, Cytotechnology, 72 (2020), pp. 111–120.

[51] L. Kotthoff, H. Wahab, and P. Johnson, Bayesian Optimization in Materials Science: A Survey, (2021),

pp. 1–15.

[52] H.-h. Kuo, X. Gao, J.-m. Dekeyser, K. A. Fetterman, E. A. Pinheiro, C. J. Weddle, M. V. Orman,

M. Romero-tejeda, M. Jouni, M. Blancard, T. Magdy, C. Epting, A. L. George, and P. W.

Burridge, Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture Hui-Hsuan, (2019).

[53] K. Kwack, A New Non-radioactive Method for IL-2 Bioassay, (2000), pp. 575–578.

[54] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy, Constrained Bayesian optimization with noisy experi-

ments, Bayesian Analysis, (2019).

[55] Malinowski, Comparative Study of Derivative Free Optimization Algorithms, Industrial Informatics, 7 (2011),

pp. 592–600.

[56] R. T. Marler and J. S. Arora, Survey of multi-objective optimization methods for engineering, Structural

and Multidisciplinary Optimization, 26 (2004), pp. 369–395.

[57] Meng, S. Chen, T. Lao, D. Liang, and N. Sang, Nitrogen anabolism underlies the importance of glutaminol-

ysis in proliferating cells, Cell Cycle, 9 (2010), pp. 3921–3932.

[58] E. N. O. Neill, J. C. Ansel, G. A. Kwong, M. E. Plastino, J. Nelson, K. Baar, and D. E. Block,

Spent media analysis suggests cultivated meat media will require species and cell type optimization.

[59] E. N. O’Neill, Z. A. Cosenza, K. Baar, and D. E. Block, Considerations for the development of cost-

effective cell culture media for cultivated meat production, Comprehensive Reviews in Food Science and Food

Safety, 20 (2021), pp. 686–709.

[60] K. Phelan and K. M. May, Basic techniques in mammalian cell tissue culture, Current Protocols in Toxicology,

2016 (2016), pp. A.3B.1–A.3B.22.

[61] M. Poloczek, J. Wang, and P. I. Frazier, Multi-information source optimization, in Advances in Neural

Information Processing Systems, 2017.

[62] , Multi-information source optimization, Supplementary Material, Advances in Neural Information Pro-

cessing Systems, (2017).

[63] M. Post and J. F. Hocquette, New Sources of Animal Proteins; In Vitro Meat, Elsevier Ltd, 2017.

[64] S. Razavi and H. V. Gupta, A new framework for comprehensive, robust, and efficient global sensitivity

analysis: 1. Theory, Water Resources Research, 52 (2016), pp. 423–439.

105



[65] , A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application, Water

Resources Research, 52 (2016), pp. 440–455.

[66] R. G. Regis and C. A. Shoemaker, Combining radial basis function surrogates and dynamic coordinate search

in high-dimensional expensive black-box optimization, Engineering Optimization, 45 (2012), pp. 529–555.

[67] L. M. Rios and N. V. Sahinidis, Derivative-free optimization: A review of algorithms and comparison of

software implementations, Journal of Global Optimization, 56 (2012), pp. 1247–1293.

[68] K. S., B. V., P. V., T. R., T. C. K. M., and G. V. D., Maximizing the native concentration and shelf life

of protein: a multiobjective optimization to reduce aggregation., Appl. Microbiol. Biotechnol., (2011), p. 99–108.

[69] S. Saval, L. Pablos, and S. Sanchez, Optimization of a culture medium for streptomycin production using

response-surface methodology, Bioresource Technology, 43 (1993), pp. 19–25.

[70] E. Schulz, M. Speekenbrink, and A. Krause, A tutorial on Gaussian process regression: Modelling, ex-

ploring, and exploiting functions, Journal of Mathematical Psychology, 85 (2018), pp. 1–16.

[71] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, Taking the human out of the

loop: A review of Bayesian optimization, Proceedings of the IEEE, 104 (2016), pp. 148–175.

[72] A. R. Shazid Md Sharker, A Review on the Current Methods of Chinese Hamster Ovary (CHO) Cells

Cultivation for the Production of Therapeutic Protein, Curr Drug Discov Technol, (2021), pp. 354–364.

[73] L. Shu, P. Jiang, and Y. Wang, A multi-fidelity Bayesian optimization approach based on the expected further

improvement, Structural and Multidisciplinary Optimization, 63 (2021), pp. 1709–1719.

[74] V. Singh, S. Haque, R. Niwas, A. Srivastava, M. Pasupuleti, and C. K. M. Tripathi, Strategies for

Fermentation Medium Optimization: An In-Depth Review, Frontiers in Microbiology, 7 (2017), pp. 1–16.

[75] S. P. Smith, Differentiation of the cholesky algorithm, Journal of Computational and Graphical Statistics, 4

(1995), pp. 134–147.

[76] A. Souza, L. Nardi, L. B. Oliveira, K. Olukotun, M. Lindauer, and F. Hutter, Bayesian Optimization

with a Prior for the Optimum, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 12977 LNAI (2021), pp. 265–296.

[77] E. A. Specht, D. R. Welch, E. M. Rees Clayton, and C. D. Lagally, Opportunities for applying

biomedical production and manufacturing methods to the development of the clean meat industry, Biochemical

Engineering Journal, 132 (2018), pp. 161–168.

[78] L. Specht, An analysis of culture medium costs and production volumes for cell-based meat, tech. rep., 2018.

[79] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, Gaussian process optimization in the bandit

setting: No regret and experimental design, Proc. Int. Conf. Mach. Learn., (2010), p. 1015–1022.

[80] A. J. Stout, Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell

cultured meat, (2021), pp. 1–18.

[81] K. Swersky and R. P. Adams, Multi-Task Bayesian Optimization, pp. 1–9.

106



[82] S. Takeno, H. Fukuoka, Y. Tsukada, T. Koyama, M. Shiga, I. Takeuchi, and M. Karasuyama,

Multi-fidelity Bayesian optimization with max-value entropy search, arXiv, (2019).

[83] B. D. Tracey and D. H. Wolpert, Upgrading from gaussian processes to student’s-T processes, AIAA Non-

Deterministic Approaches Conference, 2018, 0 (2018).

[84] J. van der Valk, K. Bieback, C. Buta, B. Cochrane, W. G. Dirks, J. Fu, J. J. Hickman, C. Ho-

hensee, R. Kolar, M. Liebsch, F. Pistollato, M. Schulz, D. Thieme, T. Weber, J. Wiest, S. Win-

kler, and G. Gstraunthaler, Fetal Bovine Serum (FBS): Past - Present - Future, Altex, 35 (2018), pp. 99–

118.

[85] J. van der Valk, D. Brunner, K. De Smet, Å. Fex Svenningsen, P. Honegger, L. E. Knudsen,

T. Lindl, J. Noraberg, A. Price, M. L. Scarino, and G. Gstraunthaler, Optimization of chemically

defined cell culture media - Replacing fetal bovine serum in mammalian in vitro methods, Toxicology in Vitro,

24 (2010), pp. 1053–1063.

[86] S. Verbruggen, D. Luining, A. van Essen, and M. J. Post, Bovine myoblast cell production in a

microcarriers-based system, Cytotechnology, 70 (2018), pp. 503–512.

[87] A. Villegas, J. Pablo, D. Aragón, and M. Arias, Determination of the optimal operation conditions to

maximize the biomass production in plant cell cultures of thevetia peruviana using multi-objective optimization,

2014.

[88] G. G. Wang and S. Shan, Review of metamodeling techniques in support of engineering design optimization,

Journal of Mechanical Design, Transactions of the ASME, 129 (2007), pp. 370–380.

[89] J. Wang, S. C. Clark, E. Liu, and P. I. Frazier, Parallel Bayesian Global Optimization of Expensive

Functions, Operations Research, 68 (2020), pp. 1850–1865.

[90] D. Weuster-Botz, Experimental Design for Fermentation Media Development: Statistical Design or Global

Random Search?, Journal of Bioscience and Bioengineering, 90 (2000), pp. 473–483.

[91] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth, The reparameterization trick for acqui-

sition functions, (2017), pp. 1–7.

[92] G. Zhang and D. E. Block, Integration of Data Mining Into a Nonlinear Experimental Design Approach for

Improved Performance, AIChE Journal, 55 (2009), pp. 3017–3021.

[93] , Using highly efficient nonlinear experimental design methods for optimization of Lactococcus lactis fer-

mentation in chemically defined media, Biotechnology Progress, 25 (2009), pp. NA–NA.

[94] G. Zhang, D. A. Mills, and D. E. Block, Development of chemically defined media supporting high-cell-

density growth of lactococci, enterococci, and streptococci, Applied and Environmental Microbiology, 75 (2009),

pp. 1080–1087.

[95] G. Zhang, M. M. Olsen, and D. E. Block, New experimental design method for highly nonlinear and

dimensional processes, AIChE Journal, 53 (2007), pp. 2013–2025.

107



[96] J. Zhang, S. Chowdhury, and A. Messac, An adaptive hybrid surrogate model, Structural and Multidisci-

plinary Optimization, 46 (2012), pp. 223–238.

108


	Abstract
	Acknowledgments
	Chapter 1. Introduction and Literature Review
	1.1. Review of Cellular Agriculture and Cell Culture Media
	1.2. Review of Experimental Optimization Methods
	1.3. Review of Thesis

	Chapter 2. A Generalizable Hybrid Surrogate Framework for Expensive Design Optimization Problems 
	2.1. Introduction
	2.2. Methods
	2.3. Results
	2.4. Discussion

	Chapter 3. Optimization of Muscle Cell Culture Media using Nonlinear Design of Experiments 
	3.1. Introduction
	3.2. Materials and Methods
	3.3. Results
	3.4. Discussion

	Chapter 4. Multi‐Information Source Bayesian Optimization of Culture Media for Cellular Agriculture 
	4.1. Introduction
	4.2. Methods
	4.3. Results
	4.4. Discussion

	Chapter 5. Multi‐Objective Bayesian Optimization of Serum-Free Culture Media for Cellular Agriculture 
	5.1. Introduction
	5.2. Materials and Methods
	5.3. Results
	5.4. Discussion

	Chapter 6. Review of Thesis and Future Work 
	Appendix A. Optimization of Muscle Cell Culture Media using Nonlinear Design of Experiments 
	Appendix B. Multi‐Information Source Bayesian Optimization of Culture Media for Cellular Agriculture 
	B.1. Bayesian Model Details
	B.2. BO Acquisition Function Details
	B.3. Computational Validation of BO Method Test Function Details
	B.4. Data and Model Availability

	Appendix C. Multi‐Objective Bayesian Optimization of Serum-Free Culture Media for Cellular Agriculture 
	C.1. Serum-Free Media Components
	C.2. Computational Validation of MOBO Method
	C.3. Computational Test Problem Information
	C.4. Data and Model Availability

	Bibliography



