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Abstract 

In this paper we propose a hidden Markov model (HMM)-
based method to analyze eye movement data. We conduct-
ed a simple face recognition task and recorded eye move-
ments and performance of the participants. We used a vari-
ational Bayesian framework for Gaussian mixture models 
to estimate the distribution of fixation locations and mod-
eled the fixation and transition data using HMMs. We 
showed that using HMMs, we can describe individuals’ eye 
movement strategies with both fixation locations and tran-
sition probabilities. By clustering these HMMs, we found 
that the strategies can be categorized into two subgroups; 
one was more holistic and the other was more analytical. 
Furthermore, we found that correct and wrong recognitions 
were associated with distinctive eye movement strategies. 
The difference between these strategies lied in their transi-
tion probabilities.      
Keywords: Hidden Markov Model (HMM); eye move-
ment; scan path; holistic processing; face recognition.  

Introduction 

In the late 19
th

 century, soon after Edmund Huey’s in-

vention of the world’s first eye tracker, researchers dis-

covered that in many daily life activities, eye movements 

were rapid, discontinuous, and interrupted by temporary 

fixations (Wade & Tatler, 2011). Nowadays, this finding 

has been widely accepted and described as the ‘saccade 

and fixate’ strategy (Land, 2011). Eye movements were 

found to facilitate face learning and recognition. For in-

stance, Henderson et al. (2005) showed that when partici-

pants were restricted to view face images only at the cen- 

ter of the images, their recognition performances were 

significantly lowered than when they were allowed to 

view the images freely. Autistic patients, who could not 

judge facial expressions correctly, were found to have 

abnormal eye fixations patterns (Pelphrey et al, 2002). 

 Empirical studies on the relationship between eye 

movement and face recognition have primarily been fo- 

cusing on identifying the regions of interest (ROIs). A 

ROI is a region on the face which people frequently fixate 

in, such as the two eyes. Early studies often divided a face 

into several regions and then identified the ROI through 

comparing the frequencies of each region being fixated in.  

However, this approach suffered from the lack of an obje- 

ctive manner to divide faces. For instance, Barton et al. 

(2006) defined the two eyes as two irregularly shaped 
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ROIs, while Henderson et al. (2005) defined the two eyes 

as one ROI. Another problem is that the predefined ROIs 

may not really represent the data because different indi-

viduals have different saccade patterns. More recent stud-

ies attempted to discover ROIs directly from data. A 

commonly adopted way was to generate statistical fixa-

tion maps. A fixation map can be created by identifying 

the location of fixations and convolving a Gaussian kernel 

on each fixation. Two fixation maps can be compared by 

Pixel test, which discovers statistically significant differ-

ences in pixels (Caldara & Miellet, 2011). Using fixation 

maps, it was found that the upper center (i.e. the nose) and 

the upper left (i.e. the left half of the nose and the left eye) 

parts of a face were the two most frequently viewed areas 

(Hsiao & Cottrell, 2008). This result was consistent with 

an earlier study which used the Bubbles technique in dis-

covering regions with diagnostic features in face recogni-

tion (Gosselin & Schyns, 2001). Fixation maps also 

showed that children from different cultural backgrounds 

demonstrated different eye fixation patterns (Kelly et al, 

2011). 

The use of fixation maps in face recognition studies 

had been fruitful. However, as discussed earlier, eye 

movements combine saccades and fixations. The fixations 

recorded in eye movement studies should be considered 

as time-series data that are collected over time. The eyes 

fixate at a location shortly, before a saccade brings them 

to the next location. Many studies showed that saccades 

can be influenced by top-down expectations as well as 

bottom-up inputs. Yarbus’s (1965) well-known eye 

movement studies showed that depending on what people 

expect to see, they exhibited different saccade patterns 

when looking at the same target image. Mannan et al. 

(1997) discovered that saccades were more likely to be 

driven to the more ‘informative’ areas of an image, such 

as the edges and the high-spatial-frequency areas. These 

findings imply that the target location of a saccade could 

be a variable that has a set of possible values; different 

values could be associated with different probabilities. In 

this sense, eye movements may be considered as a sto-

chastic process, which could be better understood using 

time-series probabilistic models. The fixation maps, how-

ever, do not contain temporal information. 

Currently, there are two methods for describing the tem- 

poral information in eye movement data. One is the 

string-editing method. It requires an image to be divided 
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into several ROIs, each labeled with a letter, so that a se-

quence of eye fixations can be described by a string. Two 

strings are then compared by measuring their Levenshtein 

distance (Goldberg & Helfman, 2010). This method does 

not capture the temporal information very precisely because 

the measure of Levenshtein distance does not precisely rep-

resent the sequential differences between two strings. For 

instance, the strings CAT and BAT differ in their first ele-

ment, while the strings CAB and CAT differ in their last 

element. In both cases, however, the Levenshtein distance is 

one. The other method is to generate fixation maps by fixa-

tion and compare between conditions (Caldara & Miellet, 

2011). For instance, if an experiment has two conditions, all 

the first fixations in each condition can be used to generate a 

fixation map. A comparison between the two fixation maps 

will show whether the two groups differ significantly in 

their first fixations. However, the problem associated with 

this method is that the significant areas are likely to be scat-

tered so that the pattern could be hard to interpret. In this 

paper, we propose to use a time-series statistical model, the 

hidden Markov model (HMM) with Gaussian emission den-

sities, to analyze eye movement data. We show that HMMs 

can 1) summarize a person’s general eye movement strate-

gy, including person-specific ROIs and saccade patterns, 2) 

reveal between-subject similarities and differences of eye 

movement patterns, and 3) discover the association between 

recognition performance and eye movement strategies. In 

the next section, we will 1) briefly describe the experiment 

in which we collected the data, and 2) explain the HMM-

based method in more length. 

Method 

Experiment 

A total of 32 Chinese participants were recruited at the 

University of Hong Kong. The experiment was divided into 

a training phase and a testing phase. In the training phase, 

participants were shown a total of 20 frontal face images. In 

the testing phase, participants were shown 40 frontal face 

images; 20 were new images and 20 were the ones appear-

ing in the training phase. They were asked to judge whether 

they had seen the faces before. Their responses in the testing 

phase were recorded together with the fixations they made 

before the response. Eye movements were tracked and rec-

orded using the Eyelink II eye-tracking system. On average, 

participants made 2.5 fixations per trial, ranged from one to 

three (this average was 1.8 fixations in Hsiao & Cottrell, 

2008). 

Model 

HMMs are widely used to model data generated from 

Markov processes (Barber, 2012). A Markov process is a 

process whose present state is determined only by its previ-

ous state. The states in an HMM are not directly observable, 

so that the current state of the process can only be inferred 

from 1) the association between the assumed hidden state 

and the observed data, and 2) the likelihood of transiting to 

the assumed state from the previous state. The association 

among the observable data and the hidden states are summa-

rized using probability distributions; each distribution repre-

sents the likelihood of a hidden state generating the data. 

The probabilities of transiting from one state to other states 

are summarized in a transition matrix; each element repre-

sents the probability of that transition. An HMM also has a 

vector of prior values; each value indicates the probability 

of the HMM starting from the corresponding state. 

For instance, natural language processing is one area in 

which HMM has been widely applied. The observable data 

are the words in a corpus, and the hidden states are the 

word-class tags, such as nouns, verbs, and adjectives. An 

HMM cannot directly observe the word-class tags of the 

words, but can infer them from the observed words and the 

likelihood of transiting from one word-class to another. 

In the context of face recognition, the HMM contains a 

number of hidden states, which each represents a different 

ROI of the face.  The directly observable data is the fixation 

location, which belongs to a particular hidden state (ROI).  

The distribution of fixations in each ROI is modeled as a 

two-dimensional Gaussian distribution in a Cartesian space.   

Over time, the transition from the current hidden state to the 

next state represents the saccade pattern, i.e., movement 

between ROIs, which is modeled by the transition matrix of 

the HMM.  In summary, the hidden states of the HMM cor-

respond to the ROIs of the face, where each is observable 

through a two-dimensional Gaussian emission density of 

fixations, and the transitions between hidden states represent 

the saccade patterns.  

Given a set of chains of fixations, we estimated the pa-

rameters of the HMM using a two-stage procedure.  We first 

learned the ROIs on the face from the fixation data.  Ignor-

ing the temporal information, the ROIs can be seen as a 

mixture of two-dimensional Gaussian distributions, i.e., a 

Gaussian mixture model (GMM). In this study, we used the 

variational Bayesian framework for Gaussian mixture mod-

els (VBGMM) to estimate the Gaussian parameters, as well 

as the number of GMM components (Bishop, 2006). This 

Bayesian hierarchical method puts prior distributions on the 

GMM parameters, and uses approximation methods to find 

the maximum a posteriori (MAP) estimate. One important 

feature of VBGMM is that it can automatically estimate the 

optimal number of ROIs and ‘deactivate’ the redundant 

ones. After discovering the GMM components, or the ROIs, 

we next estimated the transition probabilities and prior 

probabilities of the hidden states, using the forward-

backward algorithm (Bishop, 2006). 

In this study, we aim to use HMMs to address two ques-

tions. Firstly, we wanted to discover the eye movement 

strategy of each individual in order to reveal the common 

strategies shared by a subgroup of the participants. Second-

ly, we wanted to explore whether accuracy at face recogni-

tion was related to eye movements. To address the first 

question, we trained one HMM per subject, using fixations 

collected from all the trials of the subject, in order to repre-

sent the general eye movement pattern of that subject. To 
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cluster the subjects' HMMs, we used the variational hierar-

chical EM algorithm (VHEM) for HMMs (Coviello et al, 

2012). The VHEM algorithm takes HMMs as inputs, sepa-

rates the inputs into subgroups, and estimates a representa-

tion HMM for each subgroup. 

To address the second question, we trained two HMMs 

per subject, using fixation sequences collected from all the 

correct trials (i.e., correct HMM) and all the wrong trials 

(i.e., wrong HMM), respectively, to represent two eye 

movement strategies that led to different performances.  We 

compared the correct HMMs to the wrong HMMs using 

subject analysis, based on the differences in log-likelihoods 

of the observed data, in order to examine whether eye 

movement strategies that lead to correct or wrong responses 

have significantly different patterns. Specifically, for the 

fixation sequences of a participant leading to correct re-

sponses, we calculated the log-likelihoods of observing the 

sequences from the correct HMM, and then computed the 

mean.  We also calculated the mean log-likelihood from the 

wrong HMM using the same sequences. Doing this on all 

the 32 participants yielded two vectors of mean log-

likelihoods, one represented the mean log-likelihoods of the 

correct HMMs generating the correct eye movements, and 

one represented the mean log-likelihoods of the wrong 

HMMs generating the correct eye movements.  The differ-

ences between the mean log-likelihoods for each subject is 

an approximation to the Kullback-Leibler (KL) divergence 

between the correct HMM and the wrong HMM, which is a 

measure of difference between two distributions (Bishop, 

2006). Similarly, we also calculate the mean log-likelihoods 

of the fixation sequences leading to incorrect responses un-

der the wrong and correct HMMs.  

Results 

Section 1.1- Summary of all eye movement patterns 

In order to model a participant’s eye movement patterns, 

we pooled all the fixations that a participant made, regard-

less of their sequential order, and applied the VBGMM to 

discover a mixture of Gaussian distributions. We then used 

the found Gaussian components and the fixations in the 

forward-backward algorithm to estimate the transition prob-

abilities and the prior values of the Gaussian components. 

The fixations put into the forward-backward algorithm were 

in their sequential orders. Each participant’s eye movements 

were modeled by an HMM. Using the VHEM to group all 

HMMs into one cluster, the VHEM generated a representa-

tion of the cluster which summarized the eye movement 

patterns of all the participants in one HMM. Figure 1 below 

shows the representation HMM and the fixation map of all 

the fixations combined. Figure 2 below shows the fixation 

maps per each fixation. 

The left image in figure 1 shows the HMM model. For in-

stance, the prior value of the red region suggests the proba-

bility of a first fixation belonging to that region. The proba-

bility of the next fixation transits from the red into the green 

region is 0.07.   

 
 to red to green to blue 

prior values 0.39 0.16 0.45 

from red 0.69 0.07 0.24 

from green 0.17 0.68 0.15 

from blue 0.21 0.06 0.73 

 

Figure 1: The image on the left shows the three GMM 

components of the HMM. Each colored region represents a 

ROI (red, green, or blue). The transition probabilities and 

the prior values are summarized in the table beneath. The 

image on the right shows the fixation map of all the fixa-

tions. 

 

Figure 2: From the left to the right, the three images show 

the first, second, and third fixations that all subjects made. 

From the comparison between the VHEM output and the 

fixation map of all the fixations combined, it can be seen 

that the VHEM output was spatially similar to the fixation 

map. The fixation map showed that most fixations landed in 

the middle of the face, with some slightly to the right. The 

three Gaussian components found using the VHEM demon-

strated a similar tendency. One advantage that the VHEM 

output has over the fixation map is that on top of the spatial 

distributions, it provides the temporal information of the eye 

movement data in the forms of the prior values and the tran-

sition probabilities. 

The transition probabilities and the prior values suggested 

that in general, fixations were more likely to start from the 

red and the blue regions and to remain in or shift between 

the two regions. The chance of beginning from the green 

region was lower. However, these fixations were more like-

ly to stay in the same region than moving to the other re-

gions. The fixation maps are shown in Figure 2. While there 

appears to be some movement between fixations, the fixa-

tion maps carry no information about the actual saccade 

pattern.  However, using the results from the HMM analy-

sis, we can better interpret the fixation maps. The higher 

probabilities of remaining in the same regions and the lower 

probability of starting from the green region may have re-
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sulted in the fixations forming three separate clusters at the 

third fixation; the cluster corresponded to the green region 

was less compacted. 

Section 1.2 - Two general strategies 

Another advantage of using the HMM-based method is 

that the VHEM can group the input HMMs into several 

subgroups and generate a representation HMM for each 

subgroup. These would reveal the eye movement patterns 

shared by the participants in the same subgroup. The VHEM 

adopts a bottom-up, data-driven approach. It estimates the 

distance between an input HMM and a representation 

HMM. The distance between an input HMM and all the 

representation HMMs are then normalized, which gives a 

probability-based measure of how likely the input HMM 

belongs to a subgroup. 

Using the VHEM, we discovered two subgroups, as 

shown in Figure 3 below. 

 

 
Holistic to red to green to blue 

prior values 0.33 0.39 0.28 

from red 0.65 0.24 0.11 

from green 0.22 0.61 0.17 

from blue 0.12 0.25 0.63 

Analytic to red to green to blue 

prior values 0.06 0.47 0.47 

from red 0.39 0.22 0.39 

from green 0.03 0.75 0.22 

from blue 0.05 0.25 0.70 

 

Figure 3: The two representation HMMs of the two sub-

groups are shown in the left and the right images respective-

ly. 

It can be seen that the representation HMM on the left 

was more ‘condensed’. The three Gaussian components 

were relatively small in size and were squeezed toward the 

center of the face. This pattern was similar to the “Eastern 

pattern” found in a previous study (Kelly et al., 2011) that 

was argued to represent a more holistic strategy. The HMM 

representation on the right, on the other hand, was more 

‘spread’. The three Gaussian components were large and 

more separated from one another. This pattern could be 

loosely associated with the “Western pattern” (Kelly et al., 

2011) that represented a more analytic way of perceiving a 

face.  

The table below shows the probabilities of the 32 HMMs 

belonging to the two subgroups. Each HMM was a model of 

a participant’s eye movement patterns, so that the two num-

bers of each participant can be conceptualized as the degree 

to which the participant was biased to holistic or analytic 

eye movement strategies.  Overall, 10 participants used ho-

listic pattern, while 22 used the analytic strategy. 

 

Table 1: Summary of the normalized log-likelihoods of 

the subjects belonging to the two subgroups. 

 

ID Holistic         Analytic ID Holistic Analytic 

01 0 1 17 0 1 

02 0 1 18 .04 .96 

03 1 0 19 0 1 

04 1 0 20 1 0 

05 0 1 21 1 0 

06 0 1 22 0 1 

07 1 0 23 0 1 

08 0 1 24 0 1 

09 0 1 25 0 1 

10 1 0 26 1 0 

11 0 1 27 0 1 

12 0 1 28 1 0 

13 1 0 29 1 0 

14 0 1 30 .02 .98 

15 0 1 31 0 1 

16 0 1 32 0 1 

 

The log-likelihoods suggested that the two subgroups 

were very distinctive from each other. To confirm whether 

they really represented two distinctive eye movement pat-

terns, we randomly created 50 pseudo-data chains; each was 

a sequence of three pseudo fixations. We measured the log-

likelihoods of the two HMMs generating the pseudo-data. 

Paired t-test showed that the log-likelihoods generated by 

the two HMMs were significantly different, t (49) = -12.81, 

p < .001; mean log-likelihood difference was 13.84. The 

finding further confirmed that the two eye movement pat-

terns were distinctive from each other. 

Section 2 – Association between performance and eye 

movement patterns 

To investigate whether the differences in recognition per-

formance are associated with different eye movement pat-

terns, we trained per participant an HMM on all the fixa-

tions collected from the correctly responded trials (correct 

HMM), and an HMM on all the fixations collected from the 

incorrectly responded trials (wrong HMM). We compared 

the mean log-likelihoods of the data being generated by the 

two HMMs. 

Paired t-test showed that the mean log-likelihoods of cor-

rect data being generated by the correct HMMs (M = -

18.13) were significantly higher than the mean log-

likelihoods of correct data being generated by the wrong 

HMMs (M = -18.42), t (31) = -2.58, p = .01. The mean log-

likelihoods of the wrong data being generated by the wrong 

Holistic strategy       Analytic strategy 
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HMMs (M = -17.9) was also significantly higher than the 

mean log-likelihoods of correct data being generated by the 

wrong HMMs (M = -18.53), t (31) = -4.58, p < .001. The 

results suggested that the two sets of HMMs were signifi-

cantly different from each other. Figure 4 – 7 below illus-

trate the HMMs and the fixation maps of a few subjects. 

correct HMM      wrong HMM 

 
correct HMM to red to green 

prior values 0.81 0.19 

from red 0.19 0.81 

from green 0.81 0.19 

wrong HMM to red to green 

prior values 0.50 0.50 

from red 0.60 0.40 

from green 0.87 0.13 

 

Figure 4: The correct and wrong HMMs of subject 1. 

correct HMM  wrong HMM 

 
correct HMM to red to green 

prior values 0.61 0.39 

from red 0.36 0.64 

from green 0.66 0.34 

wrong HMM to red to green 

prior values 0.51 0.49 

from red 0.54 0.46 

from green 0.47 0.53 

 

Figure 5: The correct and wrong HMMs for subject 2. 

correct HMM     wrong HMM 

 
correct HMM to red to green 

prior values 0.63 0.37 

from red 0.68 0.32 

from green 0.63 0.37 

wrong HMM to red to green 

prior values 0.39 0.61 

from red 0.89 0.11 

from green 0.83 0.17 

 

Figure 6: The correct and wrong HMMs of subject 3. 

 

Figure 7: From the left to the right, the three images show 

the difference between the fixation maps of correct and the 

wrong responses of the three subjects shown in Figure 4-6. 

From the figures above, we see that in some cases, the 

key difference between the wrong and correct HMMs can be 

discovered from the temporal rather than the spatial domain 

of the data. For instance, for subject 1, the correct and the 

wrong HMMs were spatially similar, but the wrong HMM 

had a different set of prior values and transition probabili-

ties. If the subject started looking at the image from the right 

eye, the response is more likely to be incorrect. 
1
 

One disadvantage of comparing fixation maps between 

correct and wrong responses can be seen from figure 7 

above. The pixel test in each case discovered many signifi-

cantly different regions. These regions are all over the face, 

which make them very hard to be qualitatively explained. 

Discussion 

                                                           
1 We decided to restrict the correct and wrong HMMs to two 

hidden states because there was not enough data to train three hid-

den states in the wrong HMMs. 

332



In this paper, we have proposed an HMM-based method 
to analyze eye movement data and demonstrated several 

advantages. 

Firstly, our method can learn the ROIs for each person 

from the data together with their temporal information. This 

provides the information for describing and inferring the 

scan paths. Although fixation maps can be generated by 

fixations, such that the maps could be used to show the dis-

tributional difference of fixations over time, they do not 

contain transition information so that describing and infer-

ring scan paths are impossible.  

 Secondly, using VHEM, the HMMs can be grouped into 

clusters based on their similarities. Our finding of this clus-

tering showed that participants demonstrated either a holis-

tic strategy or an analytic strategy. The two strategies were 

significantly different from each other. 

Lastly, by comparing the correct and the wrong HMMs, 

we showed that the ‘correct’ eye movements were signifi-

cantly different from the ‘wrong’ eye movements, and that 

the difference to a considerable extent can be attributed to 

the transition differences instead of spatial distribution dif-

ferences. Comparison of the fixation maps of correct and 

wrong responses also showed the differences between the 

‘correct’ and ‘wrong’ eye movements, but the differences 

were too spread so that the results lacked identifiable pat-

terns. Also, the fixation map method was not able to show 

the difference in transition probability between eye move-

ments in correct and wrong trials.  

The lack of empirical findings to support the scan path 

theory caused eye movement researchers’ lack of interest in 

sequential information (Henderson, 2003). Our findings, 

however, suggest that sequential information could be asso-

ciated with performance. Theoretically, given a chain of 

fixations, using the two HMMs, the accuracy of the re-

sponse can be predicted. This further justifies using HMMs 

to describe and analyze eye movement patterns. Future work 

will test this hypothesis. 

In the current study, we pooled all the fixations together 

to find the ROIs because we assumed that the ROIs are the 

same across fixations. An alternative approach that does not 

rely on this assumption is to train the GMMs by fixation, so 

that at each fixation, there are a unique set of ROIs. An 

HMM in this case will have time-dependent states. For fu-

ture research, we attempt to investigate this further.  

In summary, here we show that eye movements can be 

better studied and understood using HMMs. With HMMs, 

we can describe both the spatial and the sequential aspects 

of eye movements. We also show that clustering the HMMs 

can yield interesting between-group differences. The two 

subgroups roughly correspond to more holistic and more 

analytic strategies. We further show that correct and wrong 

recognitions have different eye movement patterns and that 

the differences can be found in the transition probabilities. 
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