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Summary
Background Alterations in ileal Paneth cell (PC) density have been described in gut inflammatory diseases such as
Crohn’s disease (CD) and could be used as a biomarker for disease prognosis. However, quantifying PCs is time-
intensive, a barrier for clinical workflow. Deep learning (DL) has transformed the development of robust and
accurate tools for complex image evaluation. Our aim was to use DL to quantify PCs for use as a quantitative
biomarker.

Methods A retrospective cohort of whole slide images (WSI) of ileal tissue samples from patients with/without in-
flammatory bowel disease (IBD) was used for the study. A pathologist-annotated training set of WSI were used to
train a U-net two-stage DL model to quantify PC number, crypt number, and PC density. For validation, a cohort
of 48 WSIs were manually quantified by study pathologists and compared to the DL algorithm, using root mean
square error (RMSE) and the coefficient of determination (r2) as metrics. To test the value of PC quantification as
a biomarker, resection specimens from patients with CD (n = 142) and without IBD (n = 48) patients were
analysed with the DL model. Finally, we compared time to disease recurrence in patients with CD with low
versus high DL-quantified PC density using Log-rank test.

Findings Initial one-stage DL model showed moderate accuracy in predicting PC density in cross-validation tests
(RMSE = 1.880, r2 = 0.641), but adding a second stage significantly improved accuracy (RMSE = 0.802, r2 = 0.748).
In the validation of the two-stage model compared to expert pathologists, the algorithm showed good performance
up to RMSE = 1.148, r2 = 0.708. The retrospective cross-sectional cohort had mean ages of 62.1 years in the
patients without IBD and 38.6 years for the patients with CD. In the non-IBD cohort, 43.75% of the patients were
male, compared to 49.3% of the patients with CD. Analysis by the DL model showed significantly higher PC
density in non-IBD controls compared to the patients with CD (4.04 versus 2.99 PC/crypt). Finally, the algorithm
quantification of PCs density in patients with CD showed patients with the lowest 25% PC density (Quartile 1)
have significantly shorter recurrence-free interval (p = 0.0399).

Interpretation The current model performance demonstrates the feasibility of developing a DL-based tool to measure
PC density as a predictive biomarker for future clinical practice.

Funding This study was funded by the National Institutes of Health (NIH).

Copyright © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
Paneth cells have been established as a cellular biomarker for
clinical outcome in CD by multiple groups. At the time this
study was undertaken, there was no other published study
that could be found using common search engines such as
PubMed or Google Scholar that had developed any
computational pathology or deep learning algorithms to
quantify Paneth cell density.

Added value of this study
Our study shows a deep learning algorithm that can robustly
quantify Paneth cell number and density (Paneth cell per
crypt) with enough accuracy to show predictive value in a

clinical validation cohort, and can analyse Paneth cells using
deep learning algorithms.

Implications of all the available evidence
Paneth cells are an important intestinal epithelial cell type
that has been shown to be lost or dysfunctional in many
intestinal diseases, and there is increasing interest to use
them as a biomarker for disease activity. However, accurate
quantification requires substantial time to perform and some
specialised training, which currently impedes clinical utility.
Our Paneth cell quantification algorithm is a crucial
innovation that could aid in translating using Paneth cells as a
biomarker in routine surgical pathology clinical practice.
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Introduction
Paneth cells (PCs) are specialised intestinal epithelial
cells with diverse functions in immunity and host
defence.1–3 In humans, PCs are located at the base of the
crypts of Lieberkühn throughout the small intestine and
in the proximal portion of the large intestine.4 PCs are
morphologically distinct from other intestinal epithelial
cell types and are identified by the presence of
numerous cytoplasmic eosinophilic granules, which
contain antimicrobial proteins and peptides, such as
α-defensins and lysozyme.5 PCs also secrete niche fac-
tors to support the homeostasis of adjacent intestinal
stem cells.6,7 Therefore, PCs are critical regulators of gut
innate immunity, and PC defects have been implicated
in the pathogenesis of several gut inflammatory disor-
ders, including inflammatory bowel disease (IBD).8–10

The pathogenesis of Crohn’s disease (CD), a major
subtype of IBD, involves host genetic susceptibility and
environmental triggers.11–14 We and others have shown that
gene–environmental interactions regulate PC function,15–20

and more importantly, PC function correlates with clinical
outcomes in patients with CD undergoing surgical resec-
tion in multiple cohorts.15–17,21 However, integrating these
findings into routine clinical/surgical pathology practice is
cumbersome, largely because quantifying PC density or
morphology pattern is time-consuming and expertise-
dependent, and thus not suitable for daily practice.
Therefore, developing an automated, unsupervised algo-
rithm that can quantify PC density would allow us to
efficiently use PC as a biomarker to enhance clinical
evaluation and care for patients with CD.

Recently, deep learning (DL) methods have been
transformational in developing robust and accurate tools
for complex and time-consuming image evaluation chal-
lenges such as PC quantification.22 DL techniques, partic-
ularly convolutional neural networks (CNNs), are widely
used on large datasets of images such as tumour detection,
segmentation of organs, abnormality detection, and clas-
sification within medical images.23,24 CNNs are a powerful
tool due to their ability to learn complex patterns from
large-scale medical imaging data, their robustness to vari-
ability, and their state-of-the-art performance for a wide
range of medical image analysis tasks. We have previously
used CNNs to generate algorithms to quantify the extent of
steatosis in the context of donor liver examination,25 as well
as glomerulosclerosis for donor kidney evaluation.26,27

Algorithms that may have clinical relevance to eval-
uate histopathologic features of IBD are being devel-
oped, such as for mucus (a product of goblet cells)28 and
PC granule areas,22 and for prediction of outcome in
paediatric ulcerative colitis29 as reported. While these are
of interest, none of these algorithms provide accurate
goblet cell or PC densities as readouts, thus the appli-
cability of these algorithms is limited. Herein we report
the development of a DL algorithm for PC density
quantification and demonstrate that this algorithm is
capable of accurately determining PC densities on his-
topathology slides and is comparable to assessments
made by expert gastrointestinal (GI) pathologists. We
further confirmed the real-world applicability of this
algorithm PC density differences using whole slide
images (WSI) from a large clinical cohort, showing that
PC density correlates with disease status and risk of
recurrence in CD. Thus, the PC algorithm could be an
ancillary tool to improve the care for patients with IBD.
Methods
Ethics
This study was performed in compliance with the
approved Institutional Review Board protocol
#201703119 at Washington University School of Medi-
cine. This study is classified as a retrospective/secondary
data analysis study and was approved for waiver of
consent by the institutional review board.

Sex and gender reporting
Tissue from male and female sexes were used for the
study. There was no selection or exclusion based on sex
or gender for the current study.
www.thelancet.com Vol 110 December, 2024
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Patient samples
Haematoxylin & eosin (H&E)-stained histopathology
sections cut from formalin-fixed paraffin embedded
tissue blocks from archival clinical cases were used for
secondary analysis for this study.

The sections used for algorithm training included
cases identified from a small series of consecutive his-
tologically normal terminal ileum biopsies and ileal
resection margins identified by study pathologists in the
course of clinical service, as well as ileal resection
margin specimens from ileocolectomy cases from pa-
tients with IBD that had been curated for another clin-
ical retrospective study, spanning from 2009 to 2013. No
demographic or other selection criteria were used for
the training slide selection. These cases are summarised
in Supplementary Table S1.

The validation study patient cohort, retrospective by
design, consisted of a total of 190 slides from Barnes-
Jewish Hospital in St. Louis, Missouri, USA and Cedars-
Sinai Medical Center, Los Angeles, California, USA, a
subset of which were previously described in a cohort
study of patients with CD,15 as part of IBD consortium
studies funded by the Helmsley foundation SHARE con-
sortium and NIDDK IBD Genetics Consortium. Briefly,
patients with CD were prospectively recruited between
2005 and 2013 at Washington University/Barnes-Jewish
Hospital and between 1999 and 2013 from Cedars-Sinai.
Clinical metadata of the patients collected include de-
mographics, family history, disease duration, CD clinical
phenotype (per Paris criteria), and follow up information
(postoperative prophylaxis, disease recurrence) after sur-
gery. Disease recurrence was defined by endoscopy and/
or radiology as we previously described.15–17 For follow-up
time interval, the start time was defined as the date of
surgery, and the end date was defined as the date of
confirmed recurrence, or if no recurrence occurred by the
last known follow up, the patient was censored at the date
of last known clinical follow-up. Additional ileal resection
specimens from patients without IBD in the from the
same consortium enrolment (2006–2013), were used as
cross-sectional study controls for one of the experiments.
All non-IBD cases were from Barnes-Jewish Hospital as
previously reported.18 No matching criteria were used to
select patients without IBD patient samples. All available
slides from Barnes-Jewish Hospital and Cedars-Sinai co-
horts were scanned (see below for technical details of
scanning) and acceptable quality scans were used for the
validation study.

Whole slide imaging
H&E-stained histopathology sections were scanned for
WSI. Slide scanning was performed using Hamamatsu
NanoZoomer 2.0-HT System (Alafi Neuroimaging Lab-
oratory, the Hope Center for Neurological Disorders) or
Aperio XT (Digital Imaging Center, Department of Pa-
thology & Immunology) scanners at 20× and 40× objec-
tive magnification, respectively. The initial round of
www.thelancet.com Vol 110 December, 2024
annotations was conducted using 40× images, while all
subsequent data was collected at 20X. To ensure consis-
tency, the initial round of annotations was resolved to
20×. Each slide had 0.5 microns per pixel (mpp).

Image annotation by GI pathologists
Study pathologists used a custom graphical user inter-
face, written as a plugin for ImageJ, to manually create
the annotations.30 Due to ImageJ memory constraints,
each WSI was sliced into sub-images of approximately
10,000 pixels on a side. Each crypt was denoted by an
outline drawn around it while each PC was denoted by
point annotation (Fig. 1a and b). For each input image,
3 separate pixel-mapped targets with the same spatial
dimensions from the annotations were generated. The
‘crypt-label’ target sets pixels ‘1’ in areas associated with
crypts containing PCs and zero elsewhere; the ‘PC-label’
target sets pixels ‘1’ in all areas within a 10-pixel radius
of each PC and zero elsewhere; and the ‘PC-number’
target creates a probability mapping across each crypt
area with the values corresponding to the total number
of PCs included within that area of the crypt (zeros
elsewhere). The resulting training dataset of 122 sub-
images (“patches”), from 14 annotated WSI, identified
a total of 4338 crypts with PCs and 20,065 PCs. The
clinicopathologic demographic information for the
training set is provided in Supplemental Table S1.

DL model architecture
Fig. 1c depicts a graphical overview of the model training
and prediction procedure. Briefly, we applied a two-stage
approach. The stage 1 model uses image patches extrac-
ted from the training WSI dataset to train against patches
extracted from the corresponding targets. WSIs were
processed by the algorithm tile by tile— with appropriate
padding — and reassembled into a heatmap covering the
entire slide. We used conventional segmentation tech-
niques to threshold the heatmap and identify segment
crypt regions from predictions. The number of PCs in
each crypt was either read directly from the ‘PC-number’
output or input into another model (stage 2) to further
refine the computation of the number of PCs in each
crypt. We used Tensorflow version 2.13.1 to code the
model and 1.16 GB T V100 GPU to train and test the
model.

Stage 1 model
Fig. 2a depicts the stage 1 model, a modified U-net ar-
chitecture31 with three outputs. The outputs corre-
sponded to the three targets: ‘crypt-label’, ‘PC-label’, and
‘PC-number’. The ‘crypt-label’ and ‘PC-label’ outputs
minimise cross-entropy loss, while the ‘PC-number’
output minimises the sum-of-squares loss. We weighted
the ‘crypt-label’ and ‘PC-label’ losses at each pixel 20:1
and 10:1 relative to the background, respectively, to ac-
count for class imbalance. The model was trained with
the Adam optimiser (learning rate of 10−4) for 30 epochs
3
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Fig. 1: Overview of quantification of PCs using a deep learning algorithm. a) PCs (marked by arrows) are shown in an intestinal crypt on H&E
stain. Each whole slide image (WSI) of H&E-stained histology slides is processed into sub-images for annotation b) by the study pathologists,
with annotation mask denoting crypts in “X” and individual PCs in “N”. c) The Stage 1 model trains on image patches of these WSI, along with
input annotations from study pathologists denoting the crypt and PCs present in the image. The Stage 1 model utilises a U-net architecture.
Stage 2 uses the output from Stage 1 to improve the accuracy of the number of PCs per crypt.
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using TensorFlow in minibatches of 8. To generate the
training input, we divided each training image into
overlapping image patches (892 × 892 pixels, stride of 678
pixels) and only kept those that contained at least 20%
non-whitespace. No preprocessing was performed on the
input data. Image augmentation was performed with
random 0/90/180/270-degree rotation and up/down
flipping. The training was performed with 5-fold cross-
validation, such that 5 models were each trained with-
holding a separate 20% of the complete dataset, and
evaluation was performed on the withheld data.

The stage 1 model ‘crypt-label’ output helps to deter-
mine the position and spatial extent of crypts with PCs.
After stitching stage 1 prediction patches into an image
co-registered with the input H&E image, a threshold level
of 0.8 on the ‘crypt-label’ result yields connected candidate
crypt regions. These were individually segmented and
labelled using the open-source scikit-image package.32

A threshold value of 0.5 on the stitched ‘PC-label’
indicates the location of PC areas. Any region without at
least one corresponding positively labelled ‘crypt-label’
pixel within that region’s boundary was excluded. The
coordinates of the resulting regions segment the stage 1
model ‘PC-number’ output. In the initial version of the
study protocol, the number of PCs in a specific crypt re-
gion was read directly from the maximum value of the
‘PC-number’ output within that region.

Stage 2 model
To improve the final PC counting performance, a second
stage of modelling was performed. This model used the
output of the stage 1 model as input, specifically the ‘PC-
label’ output segmented by crypt. Fig. 2b depicts the stage
2 model which uses a fully convolutional model archi-
tecture. The model output received 280 × 280 pixel
patches as input and output a single number giving the
number of PCs in the patch. The stage 1 ‘PC-label’
SoftMax prediction provided the patches for input, where
www.thelancet.com Vol 110 December, 2024
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Fig. 2: Detailed graphical overview of deep learning model architecture. a) The Stage 1 model trains on image patches of the whole slide
image using a U-net architecture with three output targets. b) Stage 2 uses the output from Stage 1 as input, and the output from Stage 2 is a
single value of PC density (number of PCs per crypt).

Articles
each patch was centred on a detected crypt. The target
value was the number of PCs given in the associated
crypt annotation. Input data was augmented with random
0/90/180/270-degree rotation and up/down flipping. The
model was trained with 5-fold cross-validation to mini-
mise the sum-of-squares loss between the output and
target value using the Adam optimiser with a learning
rate of 10−6 for 200 epochs in mini-batches of 8.

Validation studies
For an external validation of the model, a set of 48 new
WSIs were collected. We chose a single region of
www.thelancet.com Vol 110 December, 2024
interest (ROI) for each of the new WSIs covering, on
average, 148 crypts per ROI. Each ROI was annotated by
at least two GI pathologists counting the number of PCs
and the number of crypts using QuPath.33 The average
number of PCs per crypt was computed from these
numbers. The fully trained stage 1 and 2 models were
used to predict these new ROIs.

In addition to the validation study, another 142 WSIs
(with both patients with CD and patients without IBD
included) were analysed with the stage 1 and 2 models,
and PC/crypt was calculated. Clinical demographics and
outcomes were extracted from any available clinical
5
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records for all WSIs. Portion of this cohort was previ-
ously described.15

To compare the time it takes for the DL model to
analysed and calculate the PC density in comparison to
manual counting of crypts and PCs by pathologists, ten
images were randomly selected from the training set
images using GraphPad free Random Number Gener-
ator (https://www.graphpad.com/quickcalcs/randomN1/).
These images were evaluated by two study GI patholo-
gists, and time needed to finish counting was recorded.
The same images were analysed by the DL model and
processing time was recorded.

Sample size estimation
The number of WSI needed to design and optimise the
Paneth cell DL algorithm was estimated from our pre-
vious work developing DL algorithms for liver steatosis
and glomerulosclerosis,25–27 in which 8458 glomeruli or
10,653 annotations for foci of hepatic steatosis were
used to train the respective models. In the 122 sub-
images we generated from small intestinal 14 WSI,
there are annotations for 4338 crypts with PCs and
20,065 PCs. Given the similar scale of annotated fea-
tures of interest in the training set, we predicted this
would be adequate based on our previous experiences
with the other CNN models. The number of CD sam-
ples for outcome correlation was based on previous
studies from our group and others in examining Paneth
cell morphology phenotype and time to recurrence after
surgery in CD,15–17,21 which was previously established as
requiring at least 90 patients in a cohort study to resolve
differences in recurrence-free survival.17

Statistics
The stage 1 model uses the whole slide images as the
independent variable. The dependent variables are a
pixel-level map of (1) whether a pixel falls within a crypt,
(2) false within a PC, and for crypt-overlapping pixels,
(3) the number of PC in this specific crypt, as described
in the DL Model Architecture section (Fig. 2a).

For the stage 2 model, the independent variables are
the outputs of stage 1. The dependent variable is the
number of PCs within each crypt, assessed at a per-crypt
level, as described in DL Model Architecture section
(Fig. 2b).

Several metrics were used to evaluate performance
including root mean square error (RMSE) and the co-
efficient of determination (r2). RMSE measures the
average difference between the model predictions and
the ground truth. A lower RMSE is optimal as this im-
plies that the predictions are close to the ground truth.
The coefficient of determination is a measure of how
well a model fits the data. A high r2 implies there is a
strong correlation. We calculated these metrics for the
average number of PCs per crypt, the total number of
crypts, and the total number of PCs. Non-parametric
comparison between two groups was performed using
the Mann–Whitney test. Survival curves were compared
using Log-rank (Mantel–Cox) test. Statistics were per-
formed using the Python library sklearn34 and GraphPad
Prism v10 (GraphPad Software, Boston, Massachusetts
USA, www.graphpad.com).

Sensitivity and specificity at a pixel-level on the crypts
and PC masks were used to evaluate the stage 1 per-
formance of the model. Sensitivity, or the true positive
rate, refers to the proportion of positive pixels (labelled
with a 1) with a prediction greater than 0.5. Specificity,
or the true negative rate, refers to the proportion of
negative pixels (labelled with a 0) with a prediction less
than 0.5, though the large regions of easy to classify
negative pixels may confound this metric. These metrics
were computed using all the pixels in each slide alone,
and then averaged across all slides.

Role of funders
The funder (NIH) did not have any role in study design,
data collection, data analyses, interpretation, or writing
of report or submission decision.
Results
Patient characteristics
We scanned histology slides of ileal resection margins
ileal/ileocolonic resections or endoscopic biopsies from
patients with or without IBD to generate WSIs for gen-
eration of DL model. The characteristics of the patients
whose ileal resection or slides were utilised for the
training set are listed in Supplementary Table S1. In the
training set, eight out of 14 patients (57.1%) of patients
were male, with a mean age of 47.2 years at time of
procedure. Eleven of 14 patients had a history of IBD
(78.6%); however, the majority of cases had non-inflamed
terminal ileum in the histologic sections used (85.7%).

For DL algorithm application in CD and non-IBD
patients (“validation set”), we obtained WSIs from
uninflamed ileal sections from additional 48 non-IBD
and 142 CD patients (Table 1). The mean age of the
patients at the time of surgery was 62.1 years in the non-
IBD cohort and 38.6 years in the CD cohort. In the non-
IBD cohort, 43.75% of the patients were male, while
49.3% of the patients with CD were male. The average
BMI at time of surgery was 30.7 in non-IBD patients,
while patients with CD had an average BMI of 23.0.
Both cohorts were predominantly White/Caucasian
(79.17% in non-IBD patients, 91.55% in CD patients).
Multiple disease-specific clinical parameters were also
extracted for the CD cohort. The average age of diag-
nosis with CD was 27 years of age, with an average in-
terval between the time of diagnosis and the present
surgery of 10.92 years. The majority of patients with CD
had either ileal disease (49.30%) or ileocolonic disease
(38.73%). 23.24% also had perianal disease. Most had
stricturing disease (67.61%), and 40.14% had pene-
trating disease behaviour. 76.06% had post-operative
www.thelancet.com Vol 110 December, 2024

https://www.graphpad.com/quickcalcs/randomN1/
http://www.graphpad.com
http://www.thelancet.com


Non-IBD controls Crohn’s Disease
cohort

n = 48 n = 142

Paneth cell per crypt (Stage 1 + 2; ±SD) 4.04 (±0.71) 2.99 (±1.12)

Age at surgery, mean age in years (n; ±SD) 62.1 (n = 48; ±13.3) 38.6 (n = 140; ±16.0)

Age at diagnosis, mean age in years (n; ±SD) N/A 27 (n = 135; 14.34)

Sex, n (%)

Male 21 (43.75) 70 (49.3)

Female 27 (56.25) 71 (50)

Data not available 0 (0) 1 (0.70)

Body Mass Index, mean (n; ±SD) 30.7 (n = 44; ±9.4) 23.0 (n = 126; ±4.90)

Race, n (%)

Caucasian 38 (79.17) 130 (91.55)

African-American 9 (18.75) 8 (5.63)

Asian 1 (2.08) 2 (1.41)

Hispanic 0 (0) 0 (0)

Other 0 (0) 1 (0.70)

Data not available 0 (0) 1 (0.70)

Smoking history (n, %)

Never smoker 22 (45.83) 90 (63.38)

Active or ex-smoker 14 (29.17) 47 (33.10)

Data not available 12 (25.00) 5 (3.52)

Duration between diagnosis and surgery,
mean age in years (n; ±SD)

n/a 10.92 (n = 134;
±10.71)

Family history of IBD, n (%)

No n/a 54 (38.03)

Yes n/a 22 (15.49)

Data not available n/a 66 (46.48)

Disease location (Paris criteria), n (%)

L1: distal ileal n/a 70 (49.30)

L2: colonic n/a 4 (2.82)

L3: ileocolonic n/a 55 (38.73)

L4: upper GI involvement n/a 11 (7.75)

Data not available n/a 2 (1.41)

Perianal disease, n (%)

No n/a 95 (66.90)

Yes n/a 33 (23.24)

Data not available n/a 14 (9.86)

Disease behaviour: stricturing, n (%)

No n/a 31 (21.83)

Yes n/a 96 (67.61)

Data not available n/a 15 (10.56)

Disease behaviour: penetrating, n (%)

No n/a 69 (48.59)

Yes n/a 57 (40.14)

Data not available n/a 16 (11.27)

Post-operative prophylaxis (summary), n (%)

No n/a 25 (17.61)

Yes n/a 108 (76.06)

Data not available n/a 9 (6.34)

Post-operative prophylaxis: Immunomodulators,
n (%)

No n/a 52 (36.62)

Yes n/a 81 (4.91)

Data not available n/a 9 (6.34)

(Table 1 continues on next page)

Articles
prophylactic treatment. The mean length of follow up
was 16.78 months (n = 138; SD ± 23.10 months).

Output visualization of model-predicted crypts and
PCs
Graphs were generated to visualise the output of the model
in comparison to the annotated “ground truth” training
images, in an in situ spatial orientation, for both crypt
identification, as well as predicted number of PCs for each
crypt. The Stage 1 predicted image outputs were qualita-
tively similar to the target annotation maps generated from
the pathologist annotations (Fig. 3). The annotations given
included where the crypt was and the exact number of
Paneth cells per crypt. Stage 1 predicted where each crypt
was located, shown by an outline. Stage 1 also predicted a
linear output, or probability mapping, over each crypt.
When this data was displayed, the colour mapping reflects
where within each crypt the model predicted Paneth cells
as opposed to a total number per crypt like the annotations.

Evaluation of stage 1 and 2 models
The stage 1 model performed well when modelling the
total number of crypts (RMSE = 6.872, r2 = 0.962) and the
total number of PCs (RMSE = 78.230, r2 = 0.913)
(Fig. 4a). However, the stage 1 model consistently pre-
dicted the average number of PCs per crypt slightly
higher than the ground truth, resulting in lower perfor-
mance (RMSE = 1.880, r2 = 0.641). When we incorpo-
rated the use of stage 1 and 2 models for predictions, this
improved the performance of the average number of PCs
per crypt (RMSE = 0.802, r2 = 0.748; Fig. 4b). Modelling
performance for the total number of crypts remained
consistent (RMSE = 6.872, r2 = 0.962), while the perfor-
mance for the total number of PCs improved slightly but
not significantly (RMSE = 51.736, r2 = 0.919).

We then computed the same metrics using the max
and the mean of the predictions from Stage 1 as a
baseline comparison to determine whether the stage 2
model was necessary. There was a decrease in perfor-
mance using the max (RMSE = 1.880, r2 = 0.641) and
mean (RMSE = 1.830, r2 = 0.636) of the predictions
from Stage 1 alone (Supplementary Figure S1). Thus,
the addition of the stage 2 model was also an improve-
ment over baseline metrics.

The model demonstrated strong performance in
identifying crypts and PCs. The model correctly identi-
fied 75.1% of crypts pixels. The specificity for crypt
pixels was 99.6%, reflecting a favorably high true posi-
tive rate. The model also successfully identified 87.8% of
PC pixels. The specificity for PC pixels was 99.9%,
indicating that the model accurately identifies true
negatives with virtually no false positives.

Comparison of DL model to expert GI pathologists’
annotations
Using a subset of the additional validation WSIs, study
pathologists manually quantified crypts and PC to
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Non-IBD controls Crohn’s Disease
cohort

n = 48 n = 142

(Continued from previous page)

Duration of follow-up until recurrence or last
follow-up, mean in months (n; ±SD)

n/a 16.78 (n = 138;
±23.10)

Table 1: Clinical demographics and parameters for whole slide image clinical cohort.
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calculate PC density. To demonstrate the rigor of the
algorithm, the performance of the validation study was
compared to the manual annotation of the senior expert
GI study pathologist, with decades of expertise in PC
manual quantitation15–19 (RMSE = 1.148, r2 = 0.708;
Fig. 5a) and was very similar to the performance of the
average number of PCs per crypt based on the training
dataset with cross-validation (Fig. 4b). The other two GI
fellowship-trained pathologists also had comparably
good correlation with the algorithm output (Fig. 5b).
This result demonstrates the generalizability of the stage
1 and 2 model system.

To evaluate for the efficiency of the algorithm
compared to the time it would take for a pathologist to
manually quantify numbers of crypts and PCs, the time
needed to tabulate the number of crypts and PCs in an
image was compared to manual quantification by two
study pathologists, portrayed graphically in
Supplementary Figure S2. The algorithm took an
average of 20.598 s (range 2.3–40.8 s) to process each
image and generate a result. For the same images, it
took Pathologist 1 an average of 227.4 s (range 75–475 s)
and Pathologist 2 an average of 398.2 s (range
103–887 s). The algorithm was faster than both pathol-
ogists for all ten cases. The time efficiency of the algo-
rithm compared to the pathologist time spent ranged
from a factor ∼2.5 times more efficient to over 180
times.

DL algorithm-generated PC density correlates with
clinical outcome in CD
As a proof-of-concept experiment, we next defined the
PC densities in the ileal section slides from all of the
validation CD and non-IBD cases using the DL algo-
rithm. The average PC density in patients with CD was
significantly lower than that of the patients without IBD
(4.04 [±0.71]) cells/crypt for patients without IBD versus
2.99 (±1.12) cells/crypt in patients with CD (p < 0.0001)
(Fig. 6a), which is consistent with what was reported in
the literature.21,35–37 PC density did not appear to corre-
late with patient demographics (Supplementary
Table S2). Using the 25 percentile (first quartile) of
the average PC density among patients with CD as a cut-
off for PC density “high” versus “low”, we found that
patients with low PC density were more likely to have an
early postoperative recurrence (p = 0.0399) (Fig. 6b).
Therefore, the PC density DL algorithm may be used to
predict outcomes in patients with CD undergoing sur-
gical resection.
Discussion
Dysfunction and loss of PCs have been well-established
as risk factors and part of the disease progression in a
number of diseases affecting the small intestine,
including graft-versus-host-disease38 and IBD, particu-
larly CD.15,39,40 Clinically validated biomarkers to predict
recurrence in CD are lacking, and while numerous
studies have quantified PC number and morphology in
human patients and found a strong correlation to the
outcome,17,21 these were time-intensive manual counts
of up to hundreds of crypts and frequently utilise
immunohistochemical stains to highlight the PCs for
counting. This process is impractical from both a time
and resource standpoint in the clinical setting. Thus, the
goal of this study was to use DL to develop a robust way
of accurately quantifying the number of PCs in the
small intestine on H&E-stained slides. To date, to our
knowledge, there has been no other study that has
attempted to accurately quantify PC cell number and
density using computational pathology for a possible
future application as a biomarker for CD prognosis and
treatment response, among other possible applications.

The DL algorithm we have developed successfully
demonstrates that it is feasible to use DL models to
accurately count PCs and crypts in a WSI. While we
initially achieved strong correlation to the ground truth
with the Stage 1 quantification of crypts and PCs sepa-
rately, the final density was less accurate. However,
refinement of the model with a second stage greatly
strengthened the correlation of the algorithm output to
the training set. Moving forward with this two-stage
model, we were able to demonstrate translatability of
the model to a large validation cohort of 190 WSI. The
performance of the model in analysing PC density in the
validation cohort WSIs was comparable to its perfor-
mance in cross-validating to the training set, with an
expert GI pathologist providing the ground truth in the
validation cohort for comparison. Key confirmation of
the powerful potential clinical utility of the DL algorithm
is demonstrated in the clinical correlation studies we
performed on the validation cohort: using PC density as
a single quantitative histologic biomarker, we were able
to confirm that subjects with CD harbour fewer PCs/
crypt compared to subjects without IBD, and more
importantly, showed that the lowest quartile of PC
density among patients with CD correlated with a
higher risk of recurrence.

The development of this model is pivotal for using
PCs as a biomarker because this type of quantitative
assessment would not otherwise be possible to integrate
broadly into healthcare practice. The DL model can
quantify PCs more efficiently, with the current model
able to process an image anywhere from ∼2.5 times to
www.thelancet.com Vol 110 December, 2024
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Fig. 3: Stage 1 predictions are qualitatively similar to the target annotation maps. a and b) Representative WSIs used for training, along
with annotation and predicted PC numbers. The H&E scanned image (left) was annotated by a study pathologist (centre). The annotations were
used as targets during training for Stage 1. The Stage 1 predictions are displayed on the right panels. The pathologist annotation and Stage 1
predictions are depicted with tissue overlay for orientation. Additionally, corresponding selected areas at higher magnification are shown in the
outset plots. Axes scales are XY coordinates by pixel number.
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Fig. 4: Modelling crypts and PCs is more accurate with Stage 1 + Stage 2 in cross-validation of training results. a) Stage 1 model performs
well when modelling the total number of crypts and the total number of PCs (RMSE = 6.872, r2 = 0.962, RMSE = 78.230, r2 = 0.913,
respectively). b) When stage 2 is incorporated, performance of the average number of PCs per crypt improves (RMSE = 0.802, r2 = 0.748).

Articles

10
>150 times faster than pathologists. Additionally, the
algorithm can run in the background on a computer or a
server. But beyond absolute time savings of a few or
several minutes for the pathologist, the conservation of
the intense mental energy that it takes to efficiently
count images for quantitative biomarkers cannot be
overstated from the perspective of the pathologist.
Fig. 5: Stage 1 + Stage 2 algorithm correlates similarly well with path
validation. Study pathologists annotated a new WSI validation cohort.
(representative pathologist: TL: RMSE = 1.148, r2 = 0.708). The perform
formance shown in Fig. 4B (RMSE = 0.802, r2 = 0.748). b) The algorithm
fellowship trained pathologists.
Rescue from the cumulative mental fatigue of quanti-
tative biomarker manual evaluation frees up the
pathologist to focus their concentration on more com-
plex diagnostic challenges.

While this study demonstrates the feasibility of
quantifying Paneth cells using the proposed algorithm,
it is important to acknowledge that it serves as a proof of
ologist annotations in validation study as it did in model cross-
a) The model performed closely with the pathologist’s annotations
ance of the model is comparable to the cross-validation study per-
also compared well with the density annotations of two other GI-
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Fig. 6: Paneth cell density, as calculated by the deep learning algorithm, strongly correlates with disease status and recurrence-free
survival. a) Patients without IBD (n = 48; mean of 4.04 [±0.71]) cells/crypt) have significantly higher PC density than patients with CD
(n = 142; mean 2.99 (±1.12) cells/crypt), p < 0.0001 by Mann–Whitney test; bars shown are mean ± SD. b) Patients with CD with the lowest
25% PC density (Quartile 1) have significantly shorter recurrence-free interval (p = 0.0399; Log-rank test).

Plain language summary

In gastrointestinal (GI) inflammatory diseases, like CD, changes in number and quality of PCs, specialised intestinal cells that help with host immunity and
gut health, can be associated with disease outcomes. However, counting these cells by hand is very time-consuming, making it difficult for doctors to
efficiently quantify PCs as a predictive marker for use in clinical practice. To address this, we developed a computational model to quickly and accurately
count PC density. We trained the model using tissue samples from people with and without inflammatory bowel disease, for which pathologists identified
all the PCs ahead of time. After testing the trained model, we added a second stage model, which takes the output from Stage 1 and improves accuracy of
predicted PC density. Fig. 7 shows a flow diagram of the inputs and outputs of the model. We compared the results of the Stage 2 model to counts
provided by experienced pathologists on a validation set of images and found the two-stage model was highly accurate in quantifying PC density. Using
the model, we found that intestinal samples from patients without IBD had a higher density of PCs than patients with CD. Furthermore, when we used the
model to study samples from people with CD, we found that those with lower density of PCs had shorter time to disease recurrence. This suggests that the
number of PCs could help predict how CD will progress. In the future, this tool could help doctors more accurately predict risk of recurrence for a patient
with CD, among other applications. This study demonstrates feasibility for measuring PCs to help predict disease outcomes in clinical settings.

Fig. 7: Overview of quantification of PCs using a deep learning algorithm. The stage 1 model trains on image patches of these WSI, along with input annotations
from study pathologists denoting the crypt and PCs present in the image. Stage 2 uses the output from Stage 1 to improve the accuracy of the number of PCs per
crypt.
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concept rather than a fully deployable clinical tool. There
are some limitations to this study and additional vali-
dations to be done before this prototype can be further
developed for possible clinical application. This study
used a modestly sized dataset for training and valida-
tion, where all WSIs were scanned by the same two
machines and were of similar quality. To be ready for
direct and broad use, the training and validation datasets
should be expanded to include WSIs from a range of
scanners with different scanning qualities. In addition,
there is also lack of stain normalization, which may
impact the model’s robustness across varying staining
conditions commonly encountered in clinical practice.
In future work, we would likely benchmark stain
normalization and other techniques to manage stain
variability, which could further enhance the algorithm’s
reliability and generalizability. Further validation with
more CD cohorts with accompanying clinical outcomes,
and a prospective study to see if the algorithm can
predict recurrence with comparable or improved accu-
racy to other clinical indicators, are also needed.

A natural extension of this work would be to leverage
DL to not only quantify PCs, but also identify abnormal
PC morphologies and quantify the relative proportion of
normal to abnormal PCs, the ratio of which has been
demonstrated by our group and others to correlate with
patient outcome in CD.15,17 In addition, we recently
showed that PCs also correlate with clinical outcomes in
patients with ulcerative colitis (another major form of
IBD).41 Therefore, our DL algorithm can potentially be
used in all patients with IBD histopathology evaluations.

In summary, we developed a two-stage DL model
that successfully demonstrates feasibility, generaliz-
ability, and efficiency of use. Further development of
this algorithm may aid in facilitating the integration of
PC density as a biomarker into clinical practice for in-
testinal diseases.
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