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NOTATIONS AND NOMENCLATURE

This section provides a concise reference describing notation used throughout the thesis.
Some of the notations were adapted from

Numbers and Arrays
a scalar a

a variable a

~a vector a

A matrix A
~A tensor A

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by
context

Sets and Graphs
A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

G A graph

Indexing
ai Element i of vector ~a, with indexing starting

at 1

a−i All elements of vector ~a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor ~A
~A:,:,i 2-D slice of a 3-D tensor

x



Linear Algebra Operations
A> Transpose of matrix A

det(A) Determinant of A

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x∫

f(~x)d~x Definite integral over the entire domain of ~x∫
S
f(~x)d~x Definite integral with respect to ~x over the set

S

Probability and Information Theory
a⊥b The random variables a and b are independent

η Learning Rate

a⊥b | c They are conditionally independent given c

P (a) A probability distribution over a discrete vari-
able

p(a) A probability distribution over a continuous
variable, or over a variable whose type has not
been specified

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

N (~x; ~µ,Σ) Gaussian distribution over ~x with mean ~µ and
covariance Σ

xi



Functions
f : A→ B The function f with domain A and range B

f(~x; ~θ) A function of ~x parametrized by ~θ. (Sometimes
we write f(~x) and omit the argument ~θ to
lighten notation)

log x Natural logarithm of x

||~x||p Lp norm of ~x

||~x|| L2 norm of ~x

x+ Positive part of x, i.e., max(0, x)

Datasets and Distributions
pdata The data generating distribution

p̂data The empirical distribution defined by the train-
ing set

X A set of training examples

~x(i) The i-th example (input) from a dataset

y(i) or ~y(i) The target associated with ~x(i) for supervised
learning

Hydraulic and Electric Nomenclature
m soil water content
~P precipitation
~E evaporation
~T transpiration
~R total surface runoff
~D deep layer recharge

θ(t, z) moisture function in time and space in soil

q water flux ms−1

K(ψ) hydraulic conductivity coefficient ms−1

ψ soil water potential

I quantity of electrical current flowing per unit
time (A)

xii



Hydraulic and Electric Nomenclature 2
L length (m)

σ specific electrical conductivity (Siemens/cm)

A cross-sectional area or area m2

V1, V2 voltages (V)

(V2 − V1)/L potential gradient per length (V/m)

R resistance (Ohms)

ψ2, ψ1 hydraulic heads (m)

(ψ2 − ψ1)/L hydraulic gradient

i, i(t) infiltration rate as a velocity

I cumulative measure of infiltrated water

is the steady state infiltration rate

a, b, k constants

s sorptivity of the soil

C water storage capacity of the soil surface

Q0 initial moisture content

Q(t) moisture content function

ic represent the final infiltration capacity

i0 the initial infiltration capacity

xiii



Hydraulic and Electric Nomenclature 3
ET0 reference evapotranspiration [mm day−1],

Rn net radiation (crop surface) [MJ m−2 day−1],

G soil heat flux density [MJ m−2 day−1],

T air temperature at 2m height [◦C],

u2 wind speed at 2 m height [m s−1],

es saturation vapor pressure [KPa],

ea actual vapor pressure [KPa],

es − ea saturation vapor pressure deficit [KPa],

∆ slope vapor pressure curve [KPa ◦C−1],

γ psychometric constant [KPa ◦C−1].

Kc crop factor/constant,

xiv



ACKNOWLEDGMENTS

Although, I believe it is formally needed and informally required to acknowledge Dissertation
Committee for their individual contributions into the dissertation, but I would like to make
it clear that these words are candid and are representative of my unique experience at UC
Irvine. I am thankful and honored to have the Professors Kurdahi, Eltawil and Al Faruque
on my "dream" committee, and without their direct contributions, this work wouldn’t have
been possible.

I am fortunate to have been advised by Professor Kurdahi, who has empowered my professional
and personal ambitions into realizable objectives. His keen eye for creative and interdisciplinary
research problems have challenged me to consider engineering research from multifold of
perspectives. I started working with Professor Kurdahi from Undergraduate Research
Capstone Project in 2011, indeed, after nearly 7.5 years of work, I am certain that I am
fortunate to have been mentored by him. Thus, I would like to thank my advisor, mentor,
role model, Dissertation Committee Chair, Professor Kurdahi, for not giving up on me and
supporting in every way possible. I am truly grateful for everything he has done!

I am also blessed to have been mentored by Professor Eltawil, whose insightful, analytical and
engaging discussions about the big picture helped me to think beyond the scope of projects
by submerging me into contemplation about the future of technology, science and innovation.
I am grateful for Professor Eltawil’s candid and eloquent commentaries regarding my work
which have broadly enriched and stimulated my experiences.

I am honored to have been advised by Professor Al Faruque, who unlike others have always
provided earth bringing advice, at times reality check and mostly lighthouse guardianship.
Professor Al Faruque determination in crafting and shining graduate students is unwavering
and I had the privileged to have been exposed to his school of thought for more than one
semester. I am thankful for the inspiration and guidance. Indeed, I am extremely happy to
have landed myself the dream team advisors, however, there were many of you who helped
me along the way and I shall individually acknowledge your support. If I have forgotten to
mention you, I apologize in advance, nevertheless, thank you!

I would like to thank my Qualifying Exam Committee members Professor Aghakouchak and
Professor Doemer, Professor Al Faruque, Professor Eltawil and Professor Kurdahi.

I would like to thank my Preliminary Examination Committee.

I would also like to thank and recognize Vinduino LLC, in particular, Reinier Van Der Lee,
for heroic work done in experimental work done in Temecula Valley. My expertise would be
incomplete without our joint work done together.

I would like to thank UC ANR South Coast Research Center and specifically Dr. Darren
Haver, Christopher Martinez and rest of the UC ANR South Coast Research Center staff.

I acknowledge grants and other funding assistance: Electrical Engineering and Computer

xv



Science Department, Saudi Arabic International Program and Engineering Department.

I would also like to thank Tim Schmidt, for helping organize my thoughts on writing this
dissertation, being a real champion and an exemplary scholar.

I would like to thank Sergey Shaboyan for his dedicated efforts in keeping me in good mood,
sharing lunch and a lot of coffee with me. Will never forget discoveries made from missing
HDMI cables to repairs of cars and computers.

I would like to thank all those who donated their time. I would also like to thank my dear
friends who were there for many lunch breaks and occasional pick me up to name few of
you: Farshad Yazdi, Cemil Can Coskun, Caner Guclu, Ahmed Almutawa, Ahmed Alouhani,
Ahmed Khorshid, Ahmed Ibrahim, Jason Lou, Maryam Shakib, Zara Nemati, Sarkis Babikian,
Garineh Shamirian, Dmitry Oshmarin (Board Game Nights, Gym, Ping-Pong and Beer Nights
- Will never forget), Saman Jafarlou, Ahmed Nassar, Wael Elsharkasy, Hasan Yantir.

I would also like to thank following people who helped in one way or another: Maher
Zaher, Charles Zaher, Saadallah Kasir, Amy Phum (Special Thanks for Submitting Lots of
Exceptions), Jean Bennett, Melanie Killian, Grace Wu, Peng Fei, Mohammed Fouda, Farhan
Alenizi, Ibrahim Alquaydheb, Ihsen Alouani, Vahe Tshitoyan, Rana Abdelaal, Mohammad
Khairy, Sujit Chhetry, korosh Vatanparvar, Anthony Lopez, Haeseung Lee, Jiang Wan,
Kiarash Amiri, Sina Faezi, Mohammad Ibrahim and Salam Zantaut I was fortunate to have
all of you by my side. I would like to thank you all for keeping in touch and forming my
safety net.

I would like to thank Lily Wu for offering me an opportunity and a position at Engineering
7A&B series of Introduction to Engineering Design.

I would also like to thank Patrick Zhang for offering me to be his intern at Google Cloud in
2017-2018. I would like to thank Jeff Monks for extending an offer to continue my work at
Google. I would also like to thank Google recruiters and staff: Michele, Binar, Selma, and
others.

I would like to thank my family, my parents and my brother, who supported me in this
pursuit. I would like to thank my beautiful wife, who was there with me all throughout the
difficult times from application to defense. I would like to thank all the rest of you, you are
my family, and I acknowledge without you I wouldn’t have made it.

xvi



CURRICULUM VITAE

Davit Hovhannisyan

EDUCATION

Doctor of Philosophy in Computer Engineering 2019
University of California, Irvine Irvine, CA

Masters of Science in Computer Engineering 2015
University of California, Irvine Irvine, CA

Bachelors of Science in Computer Science and Engineering 2012
University of California, Irvine Irvine, CA

RESEARCH EXPERIENCE

Graduate Research Assistant 2013–2017
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant, EECS 114, ENG 7A&B 2014–2017
Teaching Associate, ENG 7B 2018

University of California, Irvine Irvine, California

FELLOWSHIP EXPERIENCE

Lead Mentor 2013–2016
Saudi Arabic International Program Irvine, California

INTERNSHIP EXPERIENCE

Software Engineer, Tools and Infrastructure Intern 2017–2018
Google LLC Sunnyvale, California

xvii



REFEREED PUBLICATIONS

Poster Abstract Unifying Modeling Substrate for Irri-
gation Cyber-Physical Systems

2016

ACM/IEEE 7th International Conference on Cyber-Physical Systems ICCPS, Vienna
Austria

Insights into Irrigation from Internet of Things Perspec-
tive

2017

Irrigation Conference

Circuit Inspired Modeling Method for Irrigation 2018
2018 21st Euromicro Conference on Digital System Design (DSD) Prague, 2018, pp.
328-335.

Testing Topology Adaptive Irrigation IoT with Circuits 2019
FOOD CAS from 2019 IEEE International Symposium on Circuits and Systems; Sapporo,
Japan

Feasibility Study of Plant Health Monitoring 2019
FOOD CAS from 2019 IEEE International Symposium on Circuits and Systems; Sapporo,
Japan

Monitoring Vineyard Irrigation Performance with Inter-
net of Things

Submitted 2018

Irrigation Science

Topology Adaptive, Resilient and Scalable (TARS) IoT
for Irrigation CPS

Submitted 2019

Computer and Electronics in Agriculture

xviii



ABSTRACT OF THE DISSERTATION

Cyber-Physical Systems Approach to Irrigation Systems
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Professor Fadi Kurdahi, Chair

The semiconductor industry has successfully brought silicon technology to a price point that

is accessible for application domains such as irrigation systems, which currently wastefully

utilizes 70% of all fresh water. Moreover, worldwide fresh water resources will soon reach a

deficit due to ever growing demand. However, the state of the art precision irrigation systems

utilize sophisticated water delivery drip lines, yet are only controlled at source by the gut of

the end user. This work demonstrates that the scientific foundation of cyber-physical systems

(CPS) can be used to design automated, distributed and intelligent precision irrigation systems

that improve irrigation efficiency. Therefore, this work explores and analyzes in depth the

cross section of irrigation practices and cyber-physical systems knowledge to show a path

toward a successful adaptation of silicon technology that solves one of the greatest challenges

of the 21st century: the fresh water scarcity.

To that end, this work presents contributions that complete a novel vision for next generation

precision irrigation systems, which can be grouped into three main thrusts: (1) circuit inspired

models for irrigation system components and scheduling strategies by analogy method, (2)

CPS approach based (a) design methodology capable of comparing irrigation controllers,

(b) simulation tools and software for analyzing the distributed behavior of the specialized

irrigation controllers, (c) topology adaptation technique that utilizes multi-graphs to mine the
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hydro-wireless topology of the IoT controllers, and (d) a distributed controller implementation

with novel energy harvesting and low power support for irrigation controllers and sensors,

(3) overhead vision solutions for health and growth monitoring. The observations, analysis

and insight from experimental studies were in collaboration with Rancho California Water

District, growers and practitioners.
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Chapter 1

Introduction

Semiconductor industry has successfully brought silicon technology to a price point that it

is accessible for application domains such as irrigation systems, which presently wastefully

utilize 70% of all fresh water (see Figure 1.1a) [126]. The statistics of irrigation fresh water

use is particularly worrysome because under-developed countries and rural settings have

much higher dependence on irrigation, which entails that technological advancements are

particularly difficult to apply (see Figure 1.1b) [126]. Moreover, worldwide fresh water

resources will soon reach a deficit due to ever growing demand. Meanwhile the state of the

art precision irrigation systems utilize sophisticated water delivery drip lines, yet are only

controlled at source by the gut of the end user. This work demonstrates that the scientific

foundation of cyber-physical systems (CPS) can be used to design automated, distributed

and intelligent precision irrigation systems that improve irrigation efficiency. Thus, this work

explores and analyzes in depth the cross section of irrigation practices and cyber-physical

systems knowledge to show a path towards a successful adaptation of silicon technology that

solves one of the greatest challenges of the 21st century: fresh water scarcity.

Different methods of irrigation have been developed for reducing water usage; some activities
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Figure 1.1: Fresh Water Usage Statistics Comparison of Least Developed Countries and Rural
to the World Average [126]

start even before seeding. For example, leveling fields, surge flooding, and run-off capture are

done prior to seeding [128]. Remaining methods for water saving practices belong to irrigation

techniques. There are three major irrigation methods: surface irrigation, drip irrigation and

spray irrigation. Surface irrigation is a traditional method, which is done by completely or

partially flooding the field with use of furrows. Surface irrigation is wasteful, as at least 50%

never reach near crops, but still is the most widespread irrigation technique to date. Spray

irrigation is the method that uses sprinklers to spray water on the soil surface. Common

type of spray of irrigation is the center-pivot, which is done with use rotating pivoted pipe,

typically 1250 - 1300ft in length. The most modern of all is the drip irrigation technique.

Drip irrigation uses perforated pipes to supply water near the root zone and operates under

pressure from the applicators, which are placed either on or below the surface of the ground

[131].

Although many empirical studies have been conducted, there are no conclusive results as to

which method of irrigation has the superiority over others due to differences in irrigation

scheduling, geography and climate. Essentially, all of the variables need to be studied together,

2



Figure 1.2: Why do we Irrigate?

because complete disassociation of domains is complex if at all achievable.

This dissertation introduces circuit inspired modeling approach for modeling water flow in

soil. To evaluate this concept we used IoT based irrigation validation scheme and developed

extensible infrastructure by applying Cyber Physical Systems approach to irrigation systems.

1.0.1 Significance of the Problem

The United States ensures dependable access to clean water with a sophisticated system of

dams, aqueducts, levees, treatment facilities, and pipelines. Yet, new levels of population

growth, urbanization, climate change and aging infrastructure threaten its ability to scale.

Indeed, Irrigation systems are at cross layers of scientific subjects and engineering marvels

as depicted in the Figure 1.3. Addressing these neverseen before scale of challenges require

multidisciplinary, integrative and innovative investments.
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Figure 1.3: Overview of Cross Layer Irrigation CPS

Innovators and investors shy away from novel water technologies due to low rates of adaptation

and lengthy validation cycles. This has created a vacuum of technology in the water sector

unlike in the power sector where novel, renewable and distributed generation is outpacing

the traditional forms of energy production. This is more evident in California where the

most severe drought in history is still threatening Southern California. In particular, in

the Rancho California Water District (RCWD) the drought is considered an ongoing issue,

which motivated a collaboration between local farmers/residents, educators and inventors.

This integrative effort yielded a cross domain innovative approach to water management,

particularly, to precision irrigation management.

1.0.2 Theoretic Basis for the Study

We believe that to advance irrigation practices the advances in Infrastructure, Analytics and

Intelligence must happen in sequence and in parallel as depicted in Figure 1.4. This process

flow ensures that each can individually advance, and thus push the boundaries of the possible.
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Figure 1.4: Systems Engineering Workflow for Advancing Irrigation Practices

Irrigation science was formed on the foundation of substituting for the water deficit, but

today it has broader influences as it is tightly connected with food and fresh water supply

chains. Thus, it is not appropriate to approach it as by the naive logic of “if dry then water it”.

In fact, researchers have been predicting irrigation influence on modern life and suggesting

to extend the expertise of irrigation experts from common civil engineering foundation of

hydrology and hydraulics to economics and beyond [91]. Moreover, we can distinguish areas

of application from economics science: developmental, decision theory, environmental and

etc, biology: crops, fungi and bacteria; soil-physics and etc. Irrigation has really grown from

a single user or single field problem into a water district, state or regional agricultural and

even technological challenge.

In one hand, studies [21] [57] suggest that improving agricultural irrigation requires improve-

ments at a system level and cannot be achieved by addressing an improvement in a single

process. This is evidence that the next generation of irrigation systems will have to take place

across layers of the stakeholders: from district managers to all the way down the applicator.

This vertical integrative approach crosses the conventional small operation interests where

preferences of farmers were in mismatch of the needs and policies of water distribution [58].

One approach to unify the irrigation performance was by Hellegers [46], who presented a work
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in which the variability in Crop Water Productivity (CWP) is analyzed on the basis of actual

water consumption and associated biomass production using the Surface Energy Balance

Algorithm for Land (SEBAL). SEBAL generates input for the socio-economic analysis with

aims to quantify the foregone economic water productivity (EWP) of policy decisions to

socially optimal allocation of water resources. In this particular work, SEBAL was used for

the basis of such decisions, but it can be inferred that there will be number of ways in which

this may be possible - the key takeaway being that policies can be quantified and evaluated

if the CWP parameter is taken into consideration. Thus, it is possible to improve water

management strategies even at policy making level with the granularity of the particular

district in mind where CWP parameters are utilized with caution.

That said, Alexandridis [5] was able to bring up slow recharging groundwater information

for assessment of irrigation efficiency, which means that even groundwater recharge rates

need to be taken into account by district managers. Moreover, those with most information

would be most effective in preventing possible disaster - yet another link in the system to be

accounted for. Fundamentally, irrigation water availability is not as much a social problem

as it is a revenue problem due to the expectation of the link between water used and yield

[51]. However, [99] proposed to look for sustainable irrigation strategies with the quality of

natural resources (land, water, and etc) throughout an irrigated region in mind. The scope

there was to look for ways to balance both irrigation water and salts drainage as well as

build up throughout the regions, as the two together impact the future of farming altogether,

to keep an opportune setting for the future as well. On the other hand, the [146] study

shows that water saving practices indeed significantly improve groundwater level even in large

district areas, which means that in the scope of hydrological health, there can be trade-offs

in between farming short term objectives.

There is also another factor to take into account, which is often overlooked. [29] argued that a

mismatch between expected water efficiency improvement and the efficiency actually observed
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was due to a mismatch between potential savings and actual savings that the approach offers.

This further emphasizes that potential losses in potential savings and actual practice may as

well be due to lack of integrative solutions available, which would in place track source of

losses between expected and potential savings and observed actual consumption.

That said, there seems to be a solution to closing the gap between irrigation management

and attractive profits, such as the observations that 60+% of profit and revenue are possible

even for row crops with less advanced technology: sensing [108]. The challenge is not only in

saving water, but also in fine tuning a very large and complex natural and a cyber-physical

system, because over-irrigation also has adverse effects such as nutrient leaching [108] [22]

[17][123][10][75][14][18].

However, farmers are not inclined to use advanced tools and technologies as indicated by

the USGS 2013 Survey. The statistics are quite simple: more users are inclined to look into

what their neighbor is doing than use any sensors or computerized technology as evident

from Figure 1.5 [102]. This means that even localized needs of a single operation may be

difficult to automate, let alone be governed by district policy.
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Figure 1.5: Irrigation 2013 USGS Survey on Methods Used for Irrigation

Although demand for water saving global deficit of fresh water poses challenges just like

energy, but it has not been addressed with the same intellectual investment. Particularly, the
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expected deficit in electrical energy has been successfully addressed by computer aided design

and design automation tools empowering energy saving circuit design and development, as

well as solar energy harvesting. Water deficit demands must be treated with the same level

of emphasis as other main stream domains. Thus, to move towards new level of rigor in

irrigation systems, new engineering tools and infrastructure need to be used.

Until recently, this was not easy to achieve, because smart irrigation devices were complex,

expensive and prone to failures. The proliferation of new IoT components and devices that

have gone through numerous improvements in cost, size, performance, power and overall

capabilities are starting to drive a paradigm shift towards the new desired goals.

In order to be successful and garner adoption of advanced precision irrigation systems, the

end devices must be affordable, scalable and dependable. An affordable design utilizes

high volumes of production by limiting design variations. A scalable device in the context

of irrigation systems, would efficiently handle variable watering demands without failures.

Moreover, a dependable irrigation system would be one that is easy to use, maintain and

replace.

The next generation of devices will have integrated configurable or "plug and play" sensors,

actuators, valves, micro-controllers, battery and redundant energy supply/harvesting options.

This integration results in reduced overall production cost, and more importantly, makes

it possible to scale the number of devices to be deployed while reducing the time, effort

and complexity of deployment as one does not have to worry about the communication of

multitudes of devices (e..g connecting sensors and actuators separately to a central controller).

Maintaining the deployed infrastructure is also simplified since there is only one component

type.
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1.0.3 Dissertation Contribution and Outline

These proposed methods allow for a complete rework of current stagnating irrigation practices,

with the use of circuit inspired models for irrigation systems, IoT multi-depth tensiometer

monitoring studies in Temecula Valley with RCWD, self powered scalable IoT controller and

sensor wireless networks.

Chapter 2

Lack of rigorously designed models that can provide actionable intelligence to the user

motivated us to start our irrigation studies journey through circuit inspired modeling. This

chapter proposes the integration of circuit-inspired modeling of natural phenomena and

man-made artifacts to generate end-to-end irrigation system circuit models as described in

Figure 1.6. Such models can take advantage of existing circuit design and simulation tools

that have been perfected over the past decades to efficiently process large input sets. We

show that circuit-inspired models are indeed qualitatively sound and quantitatively accurate

in capturing both natural phenomena and engineered physical irrigation systems.

Cyber-Physical System 

Simulation Model 

(Represented in Domain Z)

Domain X Domain YInterface

Cyber-Physical

System

Melding

Figure 1.6: Melding of Multiple Domains to a Single Domain Simulation Model
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Chapter 3

No control system can be stable if there is no appropriate feedback; thus, with that in mind,

we then delved into developing state of the art scalable data collection and monitoring system

design research inspired by Internet of Things (IoT). IoT integration with Precision Irrigation

practices brings Internet enabled Irrigation Monitoring, while fully monitoring Irrigation

systems entails monitoring key performance indicators from water source to applicator and

all the way to the plant. These indicators could be the flow speed, soil water content, water

tension, leaft uptake, pressure regulation, pressure settling time and many other parameters.

In this chapter are presented our observation on a multi-year case study conducted in vineyard

irrigation setting. During this study, we aimed to understand and expose modern challenges

of precision vineyard irrigation systems and how to use existing technologies such as Internet

of Things to empower vineyard management in terms of water productivity. We have learned

that precision monitoring tools are an effective method for preventing over-watering and

under-watering. In fact, our results show that IoT using monitoring tools with 87% confidence

reduces water usage, and in some cases saves up to 33.8% of water usage, while improving

overall performance.

Internet

Irrigation Precipitation

ET

Figure 1.7: Future of Irrigation Systems
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Chapter 4

As we have covered models and monitoring, the next most important subject to cover is to make

sure that scheduling algorithms based on models can actually be implemented. Indeed, there

is a significant unrealized potential in developing state of the art electronics for agriculture.

Thus in this chapter, we discuss design challenges of next generation crop monitoring and

water flow control systems, in particular, designing IoT Stations with localization and energy

harvesting in mind. Our studies show that it is possible to have self-powered, self-configurable

and highly functional water flow stations that will transform and free Micro-Irrigation from

centralized control as visualized in Figure 1.8. In this chapter is covered design methodology,

strengths and weaknesses, topology aware localization multi-graph technique as well as lessons

learned from prior experiments, which will ultimately help to fulfill the next generation of

CPS-IoT Precision Irrigation Systems.

TURBINE

FLOW

PRESSUREPRESSURE

VALVE

VALVE

SOLAR CELLS

Figure 1.8: Proposed Redesign of the Irrigation Controller

Chapter 5

In hindsight, the previous chapters paint a pretty clear picture of how to approach irrigation

with state of the art models, controllers and scalable monitoring/feedback systems. However,

what we have missed is the essence of irrigation the crop centric nature of it. Thus, in final

Chapter 5, the final set of contributions which relate to imaging and image processing of
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crops are presented for development of health and growth feedback - an essential tool that

confirms and validates irrigation schedules.

Continuous monitoring of crops is an essential task of agricultural practices for the detection of

diseases or pests, precision irrigation and fertilization. State of the art monitoring and imaging

systems use aerial imaging to obtain visual feedback as well as multi-spectral imagery to

determine crop growth factors. Our findings indicate that plant health and growth assessment

could be moved from lab and expensive monitoring tools to ubiquitous silicon technology

based cost effective solutions without much loss of accuracy. This if done properly, will entail

that additional hierarchical loops of control can be added on top of the irrigation period and

intensity control to fit the crop needs, to notify for human intervention or targeted pesticide

control as depicted in Figure 1.9.

Figure 1.9: Hierarchical Control View of the Proposed Irrigation System

Chapter 6

Finally, Chapter 6 presents the conclusions and implication of this dissertation.
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Chapter 2

Models for Irrigation: Circuit Inspired

Modeling Method for Irrigation

2.1 Abstract

Precision irrigation systems promise to bring significant improvement in resource efficiency and

crop yield by providing analytics and smart tools for the growers. While significant amounts

of data can be collected in a sensor-rich system, there are no rigorously designed models

that can provide actionable intelligence to the user. This paper proposes the integration of

circuit-inspired modeling of natural phenomena and man-made artifacts to generate end-

to-end irrigation system circuit models. Such models can take advantage of existing circuit

design and simulation tools that have been perfected over the past decades to efficiently

process large input sets. We show that circuit-inspired models are indeed qualitatively sound

and quantitatively accurate in capturing both natural phenomena and engineered physical

irrigation systems.
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2.2 Introduction

Irrigation is a man-made phenomena to compensate for lack of rain, to increase productivity

in terms of agricultural yield, and to support aesthetically pleasing turfs. Over 38% of all

fresh water resources go into irrigation [52] which uses $2.67B worth of electricity annually

in the United States [130]. Fresh water is a resource soon to be in global scarcity as it is

expected that by 2030 a massive 40% deficit [125] in water will happen. In order to avoid

this expected deficit, current highly inefficient [50] irrigation practices must be optimized

to improve yield and reduce water consumption. This paper proposes the use of circuit

based modeling for irrigation systems for design time and run time irrigation management by

providing representation, by qualitative and quantitative description.

Irrigation systems are Cyber-Physical Systems (CPS) composed of computing, actuating and

sensing systems, as well as multiple physical domains comprised of natural phenomena and

man-made artifacts. The integration of man-made and natural systems is inherently difficult

to accomplish. The cyber-physical subsystems of cyber-natural systems must be designed

and operated with real world constraints in mind, which can only be accomplished if all of

the system components are rigorously modeled and studied.

Current state of the art Irrigation Systems are designed with trial-error and are not done

by use of system models. To advance CPS modeling rigor, this work purposes use of circuit

analogy based modeling substrate atop of which natural and man-made systems can be

seamlessly integrated. Specifically, the main contributions of this work are in: “analogy based

modeling method for development for man-made and natural systems model as a circuit for

irrigation systems”.
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2.2.1 Motivation

Electronic Design Automation (EDA) has developed a wide repertoire of modeling, simulation

and evaluation approaches to deal with the increased complexity of stochastic systems as one

might expect in a complex system of this nature [30] [69] [68]. Lessons from development

of these tools can be used to develop domain independent simulation environments. For

example, at an abstract level one can consider the water cycle as a circuit, where water

is transported (via resistors) from one storage medium to another (capacitors), due to the

impact of different physical processes such as precipitation, run-off, and irrigation, as shown

in Figure 2.1. These processes exhibit spatial-temporal variability [9], but can be analyzed

using EDA tools such as those that encapsulates phenomena such as capacitive coupling,

thermal impacts, and aging.

Atmosphere

Evaporation Run-Off

Ice

Precipitation

Figure 2.1: Circuit Representation of Water Cycle

The main motivation to use circuit inspired modeling for irrigation systems is that every

aspect of the water cycle can be modeled in varying levels of details as an RC-based system,

ranging from minute details regarding water uptake by plants [148], to large-scale water

cycles [136]. Studies dating back to the 1960s [24] have studied in scrupulous mathematical

detail how certain aspects of plant models (e.g. root systems etc.) could be constructed

using RC circuit analogs. However, larger scale unified studies do not exist because circuit

simulation and available computational resources were not mature enough at the time. Since
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then, major advances in circuit simulators such as (SPICE) [90] or similar tools became the

corner stone of electrical circuit simulation. Faster computers, sophisticated modeling and

simulation techniques have allowed the analysis of larger circuits under uncertainty in system

parameters, as well as other circuit components such as transistors, diodes, inductances etc.

2.2.2 Central Challenge

Existing modeling approaches produce compartmentalized and complex system simulation

models. Cyber-physical system modeling challenges span from practice to theory. Indeed,

researchers have identified modeling distributed behaviors as one of the central cyber-physical

system modeling challenges [28]. In particular, irrigation systems are centrally controlled

as there are no practical distributed models to be used for developing distributed control.

Moreover, the most common practices use simple apply-when-dry principal and cannot be

considered precise methods. This is an end result of lack of scalable models within a single

framework: a circuit.

2.2.3 Background

Natural hydrological and meteorological phenomena, as illustrated in Figure 2.2, affect

irrigation systems as part of a greater soil-plant-atmosphere system [39], [42], [24]. Yet, crop

yield is a function of the moisture content of soil [84] [118] [137], which changes due to in-flow

and out-flow. Irrigation, run-in and precipitation increase the moisture content; meanwhile,

evaporation, transpiration, run-off, and percolation reduce the moisture content of the soil.

Unlike irrigation, which is a man-made phenomenon of fulfilling water deficit, the laws of

physics govern evaporation, transpiration, run-off, and percolation [117].

Thus, the moisture content of a single grid cell of soil is described by the following equation
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Figure 2.2: Hydrology of Irrigation: Processes and Soil Zones

[117]:

∂m

∂t
= P − E − T −R−D (2.1)

Soil

The principal ingredients of soil are clay, sand and silt; hence, soils are categorized by the

percentage amount of the soil’s principal components. The soil composition triangle is also

used for identifying and mapping of soil types see Figure 2.3.

Soil is usually abstracted into two zones: saturated and unsaturated. Unsaturated is the zone

where water content is much lower the water holding capacity of the soil, whereas saturated

is the zone where water is more than the holding capacity and soil is acting like a permeable

material in the water flow, this zone is usually in the lower layers as Depicted in Figure 2.2.

Darcy’s law and Richard’s equation describe the flow of water in permeable materials such as
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Figure 2.3: Triangle of Soil Composition [141]

soil, respectively, for saturated and unsaturated soil. According to Darcy’s law, water flux

q(m/s) is proportional to the gradient of water potential and the coefficient of proportionality

is the water conductivity coefficient.

According to [81], Darcys Law states:

q = K(ψ)∇ψ (2.2)

This can also be rewritten in the analogous form:

q =
KA(ψ2 − ψ1)

L
(2.3)
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of Ohm’s Law [61]:

I = −σA(V2 − V1)/L = V/R (2.4)

On the other hand, Richard’s Equation (2.5)[60] represents the flow of water in unsaturated

soils.

∂θ

∂t
=
∂θ

∂z
[K(θ)(

∂θ

∂z
+ 1)][60] (2.5)

This nonlinear partial differential relation does not have a closed-form analytic solution, but

can be expressed as:

θ(z, t) =
∑∞

n (Ane
−α2

nDtcosαnz +Bne
−α2

nDtsinαnz) (2.6)

and approximated as [60]

Q(t) = Q0(1− 8

π2
e−( π

2L
)2Dt) (2.7)

Infiltration

Infiltration of water to soil also doesn’t happen instantaneously and depends on the soil type.

Infiltration is important for understanding heavy storm-water capacity that can be stored
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in soil without overflow and designing appropriate discharge infrastructures. Among many

empirical equations notable ones are the Kostiakov’s and Horton’s equations.

One of the earliest, equations is the Green and Ampt (1911) equation:

i = is +
b

I
(2.8)

Whereas Kostiakov’s (1932) equation says [60]:

i(t) = Bt−n (2.9)

According to Horton’s (1940) equation [60], infiltration is described in soil physics literature

as:

i(t) = ic + (ic − i0)e−kt (2.10)

Philips equation (1957):

i(t) = ic +
s

2t0.5
(2.11)

Holtan’s equation (1961) [61]:

i = ic + a(C − I)n (2.12)
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Evapotranspiration

Evapotranspiration (ET ) is the combined measure representing evaporated water from soil

and transpired water from plants. It can be calculated with Penmon-Monteith method [34]

ET0 (see equation 2.13) and has been adapted by UN for estimation of reference ET . In this

method, ET0 is periodically updated and remotely calculated measure of evapotranspiration

for the turf and is used to estimate crop factor for evapotranspiration ETc by using developed

crop constants (see equation 2.14), e.g. for wine grapes it is 0.35 initially, mid season 0.7,

and ends with 0.4 at harvest [34].

The Penman-Montheith Combination Method, see Figure 2.4, uses information such as wind

speed at 2m, grass length of 12cm and analytical equations 2.13 to estimate a reference value

of ET namely ET0 for estimating crop specific ET factor (ETc, see Equation 2.14).
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Figure 2.4: Penman-Monteith combination method

The California Irrigation Management Information System, CIMIS [20], web service that

utilizes sensor stations deployed in California provides periodic estimates of ET0 by zip code.

Similar services exist around the United States, however, due to low resolution, estimates

can significantly vary in field. Hence, the ET0 measurements are intended as reference points
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and cannot be the sole measure for irrigation decision calculations.

ET0 =
0.408∆(Rn −G) + γ 900

T+273
u2(es − ea)

∆ + γ(1 + 0.34u2)
(2.13)

ETc = KcET0 (2.14)

2.2.4 Related Work

While multi-domain, multi-physics modeling approaches and tools could in principle be used

for modeling both man-made and natural systems, the scale of most irrigation systems limits

the usability of such tools. For example, the work in [143] describes how complex system

analysis can be adopted to the irrigation system at a scale that is not captured by available

tools, such as Hydrus [113] and Comsol multi-physics [23]. Nevertheless, the work offers a

turf simulation model with 60000 mathematical equations and 900 constraints.

On the other hand, circuit inspired models are not new and have been used in the past to

address research challenges associated with heating and hydrological modeling. For example,

researchers have used the event based scheduling of radiant systems by using circuit inspired

thermal models. This model used electro-thermal analogy to model heat storage and exchange

between water in the radiant system and the building zones [13]. Moreover, researchers have

used another analogy, the hydro-electric analogy, to develop groundwater hydrologic models

[144].
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2.3 Materials and Methods

To properly explore and demonstrate the circuit-inspired modeling method, we share our

work on man-made and natural/physical phenomena to demonstrate the robustness of the

modeling framework. Generally, when modeling physical systems and processes, it is difficult

to bridge qualitative description with quantitative evaluation. However, it is easy to notice

the similarities between different domains, which express knowledge. We illustrate this task

through two examples: water transport in the soil (a natural phenomenon) and irrigation

valve (a man-made artifact). To validate the domain fusion translation and fusion approach,

we conducted a series of experiments from in-lab to field.

2.3.1 Proposed Approach

In some simulation environments, such as Ptolemy, domains are differentiated by regions,

which are governed by a single director. Moreover, hierarchical compositions use continues

time models with domains such as finite state machines and (partial) differential equations

for modeling hybrid system models. Thus, by conventional approach each domain is assigned

to a single model of computation which are implemented by directors [28].

In applications, such as irrigation systems, modelling of the entire system is challenging as

all physical processes are interacting with one another across the entire space. This is due to

complexity associated within physical models, which are heterogeneous: multi-domain and

multi-physics. One of objectives of the simulation models is to hint about the current state

of the system given the initial conditions and time passed. In particular, irrigation system

simulation models would hint to make optimized decisions: when to irrigate and by how

much.

We believe that melding multiple domains into a single substrate will avoid complexity
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explosions in Cyber-Physical Systems model development. Unlike multi-domain multi-physics

models, an equivalent single domain model will avoid inter-domain complexity explosions by

complexity reduction prior to simulation without significant losses of fidelity, see Figure 2.5.

Domain X

Grey Model

Domain X

Grey Model

Domain Z

Domain Y

Grey Model

Domain Y

Grey Model

Domain Z

Cyber-Physical System 

Simulation Model 

(Represented in Domain Z)

Merging

Building        Block
Model       Reduction

Building        Block
Model       Reduction

Analogy  TransformationAnalogy  Transformation

Interface

Cyber-Physical

System

Merging

Figure 2.5: Melding of Multiple Domains to a Single Domain Simulation Model in Detail

Analogies of fundamental scientific modeling approaches are found in thermal, electrical,

mechanical, hydraulic and acoustic domains. These analogies, e.g. Table 2.1, have congruent

mathematical representations [110][106][124], thus, allowing researchers to use representation

of one domain’s physics in another domain’s model. In past, cross-domain analogies were

applied to model different physical processes by one mathematical model (see Figure 2.6) [60].

This idea of equivalencies or similarities, can be used to convert multiple simulation processes
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Electric Hydraulic Thermal Mechanical
Charge Water Volume/Mass Vibration Mass
Current Discharge Rate of Heat Conductance Force

Potential Difference Potential Difference Temperature Difference Velocity Difference
Capacitance Storage Heat Capacitance Inertance
Resistance Transfer Resistance Resistance

Earth Sea Atmosphere Immobile
Generator Element Pump Heat Source Generator

Table 2.1: Analogies Between Electric, Hydraulic, Thermal and Mechanical [110]

into a single domain simulation with use of the mathematical models. Thus, we propose the

following framework where domains with their physical processes is to be transformed into a

single-domain simulation model, which encompasses multi-physics nature of all domains, and

conform or integrates interfaces of the original domains (Figure 2.4).

Physical 
Processes

X1, X2 ... Xn

Physical 
Processes

Y1, Y2 ... Yn

Mathematical
Analogy 

Mathematical Model
F = f(Xi)        G = g(Yi)

F       G

Figure 2.6: Analog models: Same mathematical model is used to describe two completely different
physical processes

2.3.2 Experimental Setups

In our hydroponic laboratory setup, we used different components to study their hydraulic

properties. This is where we devised the hydro-electric analog switch model as depicted in

Figure 2.12 with resistive capabilities to allow conforming with characterization of different
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types of hydraulic valves. This setup has different pressure and flow meters as analogous to

current and voltage sensors in an electrical circuit, see Figures 2.7a and 2.7b.

(a) System Setup

(b) System Breakdown

Figure 2.7: Hydroponic Experimentation Setup (a) and System Breakdown (b)

We have conducted our final experiments in the field, where sensors monitored moisture

changes in the soil. Throughout the study, there were 6 irrigation events and 1 precipitation

event. A data set gathered from outdoor soil moisture sensor in a 16-day duration with 15

min sampling period.
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2.4 Model Development

Although the goals of irrigation practices depend on specific needs, such as greenness of the

turf or sweetness of grapes, all irrigation systems are affected by physical phenomena. The

science behind these phenomena is not new and is quite well studied, however, quantitative

models that can be integrated with other systems do not exist.

2.4.1 Circuit Inspired Physical Modeling

Our approach to modeling physical processes is to use existing hydroelectric analogies [144],

which have been developed to model complex systems nature of hydrological processes (see

table 2.1). In this work, we show how to use this circuit inspired method for irrigation systems

modeling.

Equation 2.1 demonstrates how one would approach studying hydrological systems with

respect to soil. Moreover, if we add irrigation to the picture, as in Equation 2.15, the result

changes by the addition of I, the irrigation component. These equations are similar to

Kirchhoff’s laws of conservation of charge in the circuit, where current at any junction can be

accounted for by all components. Hence, on the surface we can visualize every soil segment as

a junction of conductors and in this junction current will flow in the direction as appropriate

to the phenomena.

∂m

∂t
= P − E − T −R−D + I (2.15)

In fact, these phenomena can be reduced to a single junction of a soil segment in the

unsaturated zone as illustrated in Figure 2.8 under the assumption that to prevent run-
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Figure 2.8: Hydrologic Processes on Single Segment of Soil

off/run-in have been taken by users/farmers. Otherwise, the development of the model would

integrate the segments of soil by surface connections in a 2D plane, which can be done by

using transfer components such as resistors. The interconnected circuit then would represent

the entire field as opposed to a single lot.

To model water transport in soil, we note that Darcy’s law and Richard’s equation do not have

closed form solutions; thus, we chose to model and simulate the phenomena using electrical

circuit components. To expose the underlying soil physics, we modeled vertical segments of

soil as layers of water storage (capacitive), and transport (resistive) components. Thus, water

transport in soil can theoretically be modeled as an infinite series of resistors and capacitors.

Depending on the granularity of the modeling, the circuit in Figure 2.9 can be expanded

vertically to model the different soil layers. Although we cannot know exactly the values

of the resistances and capacitance of the infinite series at every instance in time, we will

describe a lumped estimation method, which is known in the electromagnetic transmission

line model, or mathematical cable theory.

In a similar manner, evapotranspiration can also be modeled as a resistor whose value depends

on factors such as temperature, wind and other phenomena as reflected in Equation 2.13. It
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(a) Soil Layers

(b) RC Model

Figure 2.9: Soil Layers and Analog RC Model

can also be learned and inferred using historical data for simplicity.

Optimization

In order to find the best model structure and parameter values we used mixed approaches

from design parameter tuning using Mean Squared Error (MSE) as the loss function and

Machine Learning approach of differentiating data into training and testing data sets. While

design parameters were being tuned on train data, test data was used to pick the best model

order, in the presented findings, for example, model order of 3 was the best one (see Figure

2.10). An example of the design space tuning is presented graphically in Figure 2.11.

2.4.2 Man-made Systems Characterization

The circuit models can factor in man-made artifacts using design characteristics. Specifically,

we looked at the typical infrastructure of irrigation systems. The system is composed of

pipes, valves and emitters. We can think of a water pipe as conductive connection, but valves,

header and emitters are not as simple. The most commonly used ball valves are essentially
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Figure 2.10: Irrigation and Soil Lumped Model Evolution

binomial state objects with open and close states. However, the process of switching between

open and close states can create a resistance to water flow. Thus, if the switching is slow or

uses perforation diameter changes between different open states, a variable resistance must

be used to capture this flow resistance as depicted in the Figure 2.12a.

2.5 Results

To turn these analogous representations into models, we conducted several experiments and

studies. To show predictive accuracy, we utilize existing techniques, optimization and time

series decomposition, respectively, for natural systems (soil) and man-made systems (pump,

valve).
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Figure 2.11: Single Optimization Step

(a) Hydraulic Valve (b) Electric Valve

(c) Hydraulic Pump (d) Electric Pump

Figure 2.12: Hydroelectric Analog Models

2.5.1 Manmade - Pump and Valve

Parameter estimation approaches differ by models. Man-made artifacts can usually be

characterized. Indeed, data-sheets of irrigation components can be used as a starting point.

Augmented with characterization experiments as many of these models and evaluation tools

are already developed by the institutes such as the Center for Irrigation Technology [100].

Thus, it is possible to derive accurate and stable electrical analog models of such components.

For example, we experimented with a 1/4 horse power water pump. In the experiment, we

collected data over different resistance to the flow obtained by opening and closing a ball

valve. We see in Figure 2.13 how flow rate changes over time, yet, pressure has a very steady

response. This observation means that we can model a pump as composition of a DC and an
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AC source. Thus, by looking into pressure frequency response the signal can be decomposed

into the DC, which is the mean over time, and AC series, which are sinusoidal parts of the

signal; and the remaining fits a Normal Distribution. Thus, we can effectively think of this

man-made water pump as a combinational composition of electrical power sources as depicted

in Figure 2.12d. Of course, in many cases such as the presented model, AC part may be

small in comparison to the DC, and so it can be further simplified as just a DC source.
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Figure 2.13: Pump Experiment Outcomes

2.5.2 Nature Made - Soil

Natural phenomena, on the other hand are much harder to characterize due to the fact that

their physics are much more complex and they are also influenced by many other phenomena
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that are themselves much harder to predict. Furthermore, these phenomena are also time

varying with a multitude of epoch due to daily, monthly or seasonal fluctuations for instance.

For example, the soil water transport phenomena is possible to model using different levels

of RC circuits as shown in Figure 2.10. In essence, all these circuits are low pass filters of

different orders. It becomes a matter of choosing which filter and what parameters to pick for

the different RC values. In order to accomplish that, we use a learning algorithm, which uses

past precipitation and soil moisture data to tune and evolve the model complexity starting

with a single layer of storage. First, the simplest form of a circuit is chosen with a pair

resistive and capacitive elements as the basic building cell, which represent transport and

storage moisture in storage, connected to a current source. we can think of addition of water

to soil surface as analog to addition of current in electrical circuit, hence, the current source

and not a voltage source is used. This qualitative model is then randomly initialized and

optimized for fitness with respect to target or observed moisture data. If the result fits the

desired outcome, then this process ends, otherwise a new set of resistors and capacitors is

added and evaluated following previous steps until results fit desired criteria.

The data presented in Figure 2.14 shows the soil moisture measurements, where spikes

indicate irrigation events and the last (smaller) spike is due to a precipitation (rainfall) event.

In the modeling phase data was split into training and validation sets, where the training

data was used to (1) determine which soil model in Figure 2.10 is best fit, and (2) estimate

the corresponding R and C values of that model. Validation results show that model order

3 (Figure 2.10) has the best fit of experimental data with R2 = 0.923(Figure 2.14). Thus,

this ODE based simulation methodology describes transient behavior of vertical moisture

transport in soil.

As irrigation and precipitation have similar impact on soil, they increase the water content.

Similarly, in electrical circuits, current source adds a predetermined amount of charge per

unit time just like the sprinklers, furrows and sprayers do. Hence, irrigation events can be
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modeled with the current source (Figure 2.19a) with controllable impulse train.
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Figure 2.14: Soil Moisture Simulation Training and Validation Data

2.6 Qualitative Implications of the Method

In this section, we will introduce some of the future directions in further melding of domains

related to irrigation systems. The presented ideas will have mostly qualitative nature, but is

envisioned that the presented method could as well apply to quantitatively evaluate these as

well.

2.6.1 Hydraulic Microturbines

The future irrigation systems will include more exotic parts such as microturbines to power

distributed irrigation systems. One of the reasons that turbines are particularly important for

the study of hydroelectric analogy is that turbines are devices that convert the hydro energy

into an electric energy. In theory, this transfer of energy can indeed be captured by circuit

components, as the water flow through a turbine can be qualified as a flow of electrons in an
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inductor. If this is true, and we can fit this complex process of flow and energy conversion into

a single parametric circuit, then the opportunities for design space exploration of irrigation

systems can be even further studied.

To that end, we have studied how a conventional micro-turbines operate and are structured

as depicted in Figure 2.15. The essential mechanical components of any micro-turbine are

turbine, shaft, rotor and the enclosure. Rotor includes the magnet that interacts with airfoils

to generate electrical alternating current due to the rotation or the changing magnetic field.

These coupled coils than are connected with an electrical circuit that converts into the desired

output.

Figure 2.15: Micro-turbine Skeleton [127]

In our experimental micro-turbine, the converter circuit delivers Direct Current (DC) power.

To achieve this, we present a basic buck converter schematic in the Figure 2.16, which is

connected on one side to the rectifier and on the other side to a load. Therefore, rest of the
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circuit is well known and studied and can be now even further analyzed within the irrigation

setting.

Figure 2.16: Micro-turbine Electrical Circuit of DC Power Supply with Hydrological Inductive
Component

2.6.2 Flow in Pipes

Although, we have so far assumed that the water flow in pipes is much like the electron flow in

ideal conductors, it is not without resistance to flow. In fact, Hagen-Poiseuille Equation 2.16

describes the relation of the pressure drop across its length and width of the pipes diameter.

This is indeed something can be parameterized as non-ideal resistors utilizing Ohm’s Law

and can be omitted in calculation when it is insignificant much like in other electrical circuits.

We will see more on the use of this in Chapter 4.

∆P =
8µLQ

πR4
(2.16)
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2.6.3 Electromagnetic Wave Propagation in Wireless Communica-

tion Channels

Another interesting aspect of analog models is found in the electromagnetic domain, where

we know that exists a method of effectively modeling propagation electromagnetic of waves

through wireless channel [78]. One such model that is widely used is the transmission line

modeling. The essential building block of the transmission line is made of the basic RLC

circuit blocks as depicted in Figure 2.17.

Figure 2.17: Transmission Line Cell Comprised of Series and Parallel Rs for Resistance, L for
inductance and C for Capacitance.

Whats more fascinating is that transmission line model has again very similar infinite series

of the cell component (see Figure 2.18). Although, this transmission model much like the soil

model presented earlier is comprised of infinite series, but it can be approximated by using

only few elements. There are extensive studies done to derive best approximation models for

different medium and different signal properties [78].

Figure 2.18: Transmission Line Model Comprise of Infinite Transmission Line Cells. One end
is usually connected to the transmitter and the other connected to the receiver.
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2.7 Discussion of the Method

Once models have been developed for all the relevant components, they must be integrated in

one single model. There are several issues to be considered at this point. First, the granularity

of the modeling must be decided. As in many different domains, one can trade-off accuracy of

the model for computational efficiency (or memory footprint). The circuit-inspired modeling

is ideally suited for this trade-off where one can represent different subsystems using lumped

or distributed models. One of the determining factors is the nature, accuracy and resolution

of sensing devices. Remote sensing, for example has a limited resolution (about 1km x 1km)

and therefore components sensed by this method must be coarsely represented while in-situ

sensors have a much finer resolution and would therefore be represented using more complex

equivalent circuits. However, there may be a limited number of these sensors and that may

limit the granularity of the equivalent circuit. In between these is proximal sensing which has

a fine resolution (e.g. drone-mounted thermal imaging of canopies), but a limited sampling

rate. All of these factors must be taken into consideration when building the equivalent circuit

models. Figure 2.19 shows as an example, models of hydrology: evaporation, precipitation

and soil water transport are integrated with pump and valve models to form a scalable electric

irrigation circuit.

While this extensive analogy may be attractive at first sight, one must be cautious as there

is some disconnect between the two domains (hydrology and electricity) : (1) Fields: water

waves travel at the speed of sound while electrons travel much faster and drag other electrons,

and (2) leakage in pipes results in change in water volume while charge remains mostly

constant in an electric circuit. Thus, it may be wiser to keep the component repertoire to

basic elements such as resistors and capacitors with only a few exceptions.

Variability is another key issue to be considered. Even when parameters are estimated, there

is variability in those estimates, as well as in the input data. Variability awareness in these
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(a) Multiblock Irrigation System (MIS) (b) MIS with Added Valves and Pump Mod-
els

Figure 2.19: Irrigation System Model for Distributed Control

systems is similar to what electronic circuit simulation face today when component models are

becoming more statistical in nature. Sophisticated Monte-Carlo methods have been developed

and built into simulators such as SPICE to efficiently simulate large circuits with variability.

In fact, SPICE allows most component parameters to be designated as random variables and

will automatically spawn a user-specified Monte-Carlo sampling during simulation.

Unlike most Cyber-Physical Systems where software intermittent delays may be critical,

irrigation systems have longer periods of control. That said, in future irrigation system

models could use software and computational cost models as well.

2.8 Conclusions

In this paper, the objective was to demonstrate ways one can utilize circuit models and

simulators for use in the water system such as irrigation system modeling. We hope that our

results will be encouraging for practitioners to support circuit inspired modeling method for

precision irrigation and will yield efficiency improvements in water use.
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Chapter 3

Monitoring Vineyard Irrigation

Performance with Internet of Things

Enabled Multi-depth Tensiometer Sensor

Stations

3.1 Abstract

Internet of Things integration with Precision Irrigation practices brings Internet enabled

Irrigation Monitoring. Fully monitoring Irrigation systems entails monitoring from water

source to applicator and even plant uptake. In this chapter are presented our observation on

a multi-year case study conducted in vineyard irrigation setting. During this study, we aimed

to understand and expose modern challenges of precision vineyard irrigation systems and how

to use existing technologies such as Internet of Things to empower vineyard management in

terms of water productivity. We have learned that precision monitoring tools are an effective
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method for preventing over-watering and under-watering. In fact, our results show that IoT

using monitoring tools with 87% confidence reduces water usage, and in some cases saves up

to 33.8%, while improving overall performance.

3.2 Introduction

Limited water supply is the new norm for agricultural practice and it cannot be ignored. In

the past, irrigation science was solving the water deficit in soil, but today global fresh water

shortage is imminent and irrigation water supply is at a deficit [125]. To mitigate the impacts

of imminent global water shortage and intermittent shortages such as droughts, water use

needs to be monitored, appropriated and optimized. Therefore, there is an urgent need for

science on how to irrigate under source-to-end water deficit from the water supply to the

moisture in soil.

Water resources are managed by resource mandated organizations such as districts and are

consumed by users such as farmers. Water suppliers are challenged to fulfill the demand under

the infrastructure constraints, for example, regulating water pressure under intermittent water

use, and applying pricing policies that are fair and encourage water conservation. However,

water use optimization is also entrusted to the end users’ judgment; however, the end user

doesn’t always have ability to gauge its own performance. For example, evapotranspiration

(ET) reference estimate based irrigation is a widely accepted form of precision irrigation

scheduling [34] which estimates the soil water balance deficit, but the ET reference of leaf

area indexes is not enough to determine the best performance of the irrigation schedule for

vineyard owners as ET has no relation with performance of irrigation, total cost of use and

the return on water use investment.

Soil water balance is no more a "checkbook" problem as it was before [75] - soil is not a single
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"bank account", but a complex system. In a bank account, there are two processes, debits

and credits, or respectively, deposits and withdrawals, similar to replenishment and loss of

water content in the field. However, soil, weather and crop are not separate and independent

variables: they are interlinked. The physical process linking water content changes is the

tension: (widely accepted to be) a potential force that impacts water suction. State of the

art complex system models use different techniques to represent and describe this physical

process. With this in mind, water content management of large supply/demand constrained

irrigation systems crosses boundaries of conventional models. Hence, novel contributions are

required to deal with micro and macro irrigation management challenges.

In micro scale, quantitatively inferring gaps between demands of soil water tension and deficit

water supply is needed, such as the amount and the frequency of irrigation, to fully take

control of precision in irrigation systems. Conventional approaches to solving this in the

past has brought about a circuit modeling approach to irrigation systems, which enables

intertwining tension and content parameters in a single physical model [49]. However, even

with a model in place, in order to apply precision irrigation, there must be a feedback loop

guiding the control decisions.

In order to establish a feedback loop, the conventional approach to control systems uses

sensing of parameters along side with models that make the system controllable and observable

[80]. When it comes to irrigation systems, there are many different parameters from the

infrastructure and environment to sense as the dynamic changes in the system are difficult to

predict. There are two major source of parameters the infrastructure and the environment.

For example, in the irrigation infrastructure parameters are water flow, supply line pressure

[140], dripline emitter uniform flow rates [96], and many other parameters of interest. On

the other hand, environmental parameters are ambient temperature, humidity, wind speed,

solar radiation and etc [107]. Putting all of these metrics together one could make irrigation

decisions. Thus, it is important to provide this information to the end users who is making
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the final decisions on irrigation schedules. The state of the art approach to providing access

to data is by Internet enabled devices, which allow universal access to persistent data stored

by remote computing services. This approach to monitoring is commonly referred as Internet

of Things (IoT).

Although, the Internet can be utilized for precision of irrigation systems as a practice, the

very existence of connectivity cannot be taken for granted in the rural and semi-rural settings.

However, major internet service providers in the United States are moving to provide coverage

for Internet of Things [120] [8] [135], which will fill an important gap between theory and

practice.

3.2.1 Proposed Solution

In this work, study of Internet of Things based monitoring of Irrigation in Vineyards is

presented. The central hypothesis of this work was trying to test whether Internet of Things

based irrigation management can improve on key performance indicators such as water usage

and whether this monitoring will have positive impact on irrigation usage productivity. In

general, this work sheds light on multi-depth IoT monitoring impacts on irrigation practices.

Presented here are findings and observations with regards to experiments conducted in

Temecula Valley vineyards in collaboration with Rancho and Santa Rosa Water Districts and

growers.

3.2.2 Prior Art

There are lots of empirical studies showing irrigation efficiency improvement by one or another

technique, whether it is done by adding local evapotranspiration [101] or estimating targeted

references [63, 6] as opposed to regional [20], improved control granularity control [143] or
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applicators with targeted watering patterns [89]. However, transition of these technologies

into practice is hindered due to a number of factors, which is apparent from surveys conducted

by USGS [102]. In fact, farmers are more inclined to trust their neighbors in making irrigation

decisions than all advanced technologies already existing (Figure 3.1). On the other hand,

with the turn of the past century the Internet went viral and enabled users to share even

their personal information in virtual social networks. Similarly, irrigation could benefit from

having larger shared ecosystem of users, who can proactively contribute and share their

findings across geographies, crops/plants and practice norms. Something that users seem to

be more inclined to do then install more advanced wetting front detector stations [119].
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Figure 3.1: 2013 USGS Irrigation Survey on Methods Used for Irrigation [102]

Indeed, simulation show that site-specific adaptive control techniques can save significant

water and improve the variability across fields [87]. However, to achieve this no study has

been conducted to the best of our knowledge that shows that it is possible without using

localized sensing techniques.

3.2.3 Prior Works: Circuit Models for Irrigation Systems

This experiment used multiple sensors around the active root zone to monitor the available

water to the plants and below the root zone to detect percolation past the root zone as
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depicted in Figure 3.2a. This was motivated from the idea that by looking at the soil as

a circuit model in Figure 3.2b starting from the ground level and moving down, a tension

wave will pass down and can be controlled [49]. This is reflected in Figure 3.3, which was

obtained using simulation of the soil water transport model in Figure 3.4 that shows that

water moisture level is less varying at lower soil layers and at higher frequency of irrigation.

This predicted behavior in simulation was verified by actual measurements at different soil

levels shown in Figure 3.5, where higher resistance values stand for lower tension. The tension

at deeper and shallower levels track reasonably well, and the deeper sensor tension levels

looks like the moisture level at the shallower level.

(a) Soil

Irrigation Precipitation

ET

(b) Irrigation circuit model

Figure 3.2: Irrigation and Soil Circuit Model

In the design of Internet, every two computers are connected to routers, switches, hubs or

base stations 3.6b. These base stations than route, hence the name, pockets of information

to next station while effectively routing the shortest path between any 2 devices. This allows

having low communication latency and elastic throughput. It is important to note that once

devices are connected to the Internet via any base station, they are connected to each other.
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Figure 3.3: Soil Tension Wave Propagation Visualization
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Figure 3.4: Irrigation SPICE Simulation

Thus, Internet of Things simplifies the inter-device communication, given that these devices

can connect to any base station.

Originally, Internet was designed to be a wired network, where wires were the hard carriers

of signal, but over time, it grew into mix of wired and wireless communication systems [147].

Wireless communication is one of the key components in our vision for the Internet of Things

for Agriculture as large distance in fields require. In fact, significant work has been done in the

science behind wireless sensor networks [95] and underground wireless sensor networks [138]

to achieve the desired performance [55] while going as far as developing dedicated operating

systems [67]. For example, there is significant work done to connect camera networks as a

wireless sensor network
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Figure 3.5: Sensor Measurements at 1 foot (Top) and 4 feet (Bottom)

[77] to detect pest control issues, damages and health risks. In fact, many communication

protocols have been developed to address challenges associated with information flow in the

networks, for example, Zigbee [73] and Bluetooth [59].

Internet is the magical tool that connects devices in a way that you can access information

from anywhere. Everything is organized in layers of abstraction, which utilize rigorous

scientific methodologies. Basic transmission of modulated signals is used to transfer bits

of data from point A to B. This layer is called the physical layer (Figure 3.6a). On top of

this layer, is the data link layer. Each pocket of information is communicated independently

and in isolation in the physical layer. This is the layer that actually handles transmission

of information. The layer above is the Network layer. In this layer, information exchange

is handled between the nodes on the same network. However, it is in the Transport layer,

that one of most important decisions was made, which allows devices to be far closer to each

other. The approach was in a hierarchy that allows connection of different small networks to

other networks by Internet Protocol Addressing, a unifying mechanism that allows to make

logarithmic (with respect to the total count of devices) hopes between devices as depicted

in Figure 3.6b. Up the ladder of these communication layers as depicted in the Figure 3.6a,

information exchange is used for cohesion and unification of systems into the network of

networks, the Internet.
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Figure 3.6: Internet of Things Foundamentals

3.3 Materials and Methods

The traditional irrigation practice for vineyards is a weekly long soak [114]. However, long

irrigation drains deep in the soil, whereas short irrigation causes majority of irrigated water

to stay at higher levels [145]. Thus, irrigating once a week, and replacing the weekly amount

of water in one irrigation cycle, applies more water than what can be used in one or two days.

The surplus of water will drain deeper and eventually become out of reach of the active roots.

Unlike popular belief even for plants with long roots, like grapevines, most of the actual

uptake of water takes place at shallow soil levels (up to 4 feet) [115]. Draining excessive water

washes fertilizers away - reducing fertilizer efficiency and polluting aquifer [18] . Irrigating

more frequently, e.g. daily, precision of irrigation can be improved to closely follow the (daily)

evapotranspiration transient needs. The main goal is to supply the precise amount of water

needed and have it delivered only to the soil layers with the active root system, where uptake

is stronger.

Rancho California Water District is located in Southern California’s Temecula valley, which

is famous for its wineries and vineyards. The Temecula Valley climate is characterized by a
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Mediterranean climate, with most of the rain occurring in the winter. Average annual rainfall

is 12.6 inches, which is not enough to successfully grow winegrapes without the additional

irrigation. Temecula, with 3, 000− 3, 500◦C degree days according, to the Winkler scale is in

climate Region III [142]. The Winkler Scale is calculated as as the sum of degree days over

10◦C from April 1 until October 31.

T =
October 31∑
i=April 1

max(T iavg − 10, 0) (3.1)

In the region, the traditional irrigation practice for vineyards is a weekly good long soak.

However, long irrigation drains deep in the soil, whereas short irrigation achieves majority

of irrigated water staying at higher levels. Thus, irrigating once a week, and replacing the

weekly amount of water in one irrigation cycle, applies more water than what can be used in

one or two days. The surplus of water will drain deeper and eventually become out of reach

of the active roots. Unlike popular belief, even for plants with long roots, like grapevines,

most of the actual update of water takes place at shallow soil levels (up to 4 feet). Together

with the draining water fertilizers also wash away, thus, reducing fertilizer efficiency and

polluting aquifer. The ultimate goal is to supply the precise amount of water needed and

have it delivered only to the soil layers with the active root system, where the plant uptakes

it.

3.3.1 Sensor Calibration and Monitoring

A tensiometer is a measuring instrument used to determine the matric water potential (soil

moisture tension) in the soil root area. The main idea behind soil tension is that dryness of

soil and roots creates a negative pressure gradient. This negative difference in pressure can
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be observed by attaching a water probe as depicted in the Figure 3.7a, where the difference

in water levels h estimates the soil tension. A better way to measure this tension is done

by gauge tensiometer device that has a ceramic cap attached on one end and a pressure

gauge on another as depicted in Figure 3.7b. Although gauge sensor significantly simplifies

measurements, but it is still only available by eyesight. To improve this, we used electrical

resistance based measuring soil tension devices that were connected to self powered IoT

enabled devices, which were calibrated using the gauge sensors.

h

(a)
(b)

Figure 3.7: Methods of measuring Soil Tension a) Water Suction Tensiometer, b) Ceramic
Cap Gauge Tensiometer

The electrical equivalent sensing device that utilizes the resistive property of the water and

gypsum mix was used to develop a low cost and high fidelity sensor. The design of the sensor

is minimalistic as it uses only electrodes and a gypsum casing (see Figure 3.8). This case

absorbs water when the tension is low and looses water content when the tension is high.

Thus, it is possible to track the tension in other words sense it.
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Sensors need about two seeks before they fully reach equilibrium with the surrounding soil

and provide data, which are calibrated using a vacuum tensiometer and "sandbox" method.

The tensiometer calibration is done on a terracotta container filled with soil which is then

saturated with water and through evaporation gradually loses water content. In the soil a

tensiometer and sensor under test are placed and readings are taken until the tensiometer is

out of measurement range. To accelerate the calibration phase active calibration techniques

were used which utilized vacuum pumping technology (see Figure 3.9).

Figure 3.8: Sensor Structural Design

Even after calibration, sensors can deviate from their accuracy margins; thus, anomaly

detection and secondary validation studies were performed alongside sensor deployment.

Anomalies observed could be categorized into few groups such as event triggered, where a

single sensor data was out of expected bounds, inconsistent, where 1 or 2 sensors were far off

from the other station sensors, insensitive, which were sensors that did not detect controlled

irrigation event and finally to quick to detect irrigation meaning probing effect was significant

and required re-installation. Moreover, to further correct and replace defective units, manual

checks were performed using leaf tensiometer devices.

3.3.2 Pressure Chamber Leaf Tensiometer

The idea behind leaf tensiometers is to evaluate pressure difference in the stem and leaf for

the characterization of the plant stress. The belief is that the higher the stress on the plant,
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(a) Passive Calibration
(b) Active Calibration

Figure 3.9: Calibration Setups, in a) and b) gauge tensiometer is depicted on left and sensor
under calibration is depicted on right

the higher the pressure difference will be between the leaf and the stem. To measure this

pressure, special chambers are made that allow pressure intake from the outside and release

by the leaf stem. By carefully increasing the pressure, the visual observation establishes the

pressure leaf tension as depicted in the Figure 3.10. The leaf tensiometer used in this project

was PMS 615 [62] [103].

Figure 3.10: Pressure Chamber Leaf Tensiometer: As pressure in the chamber increases to
the leaf water tension water escapes from the leaf xylem and can is observed visually
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3.3.3 Soil Compositions in Experimental Sites

Experimental site soil compositions are predominantly sandy loam and rough broken land,

with on average 8 percent slopes. Each site was studied using the USDA survey on soil make

up [129]. We summarized the sites geo-images in the Figure 3.11 and the soil composition

data here in Table 3.1.

Site Symb Description Acres Percent
1 ChD2 Cieneba sandy loam, 8-15% slopes, eroded 0.8 17.80%

CkD2 Cieneba rocky sandy loam, 8-15% slopes, eroded 3.4 77.50%
MmC2 Monserate sandy loam, 5-8% slopes, eroded 0.2 4.70%

2 GyD2 Greenfield sandy loam, 8-15% slopes, eroded 0.9 16.70%
GzG Gullied land 0.2 4.10%
HcC Hanford coarse sandy loam, 2-8% slopes 2.6 46.00%
HcD2 Hanford coarse sandy loam, 8-15% slopes, eroded 1.1 19.70%
RuF Rough broken land 0.8 13.50%
SeD2 San Emigdio fine sandy loam, 8-15% slopes, eroded 0 0.10%

3 GyD2 Greenfield sandy loam, 8-15% slopes, eroded 1.7 14.20%
HcC Hanford coarse sandy loam, 2-8% slopes 5.8 49.70%
HcD2 Hanford coarse sandy loam, 8-15% slopes, eroded 0.9 7.80%
RuF Rough broken land 3.3 28.30%

4 HcD2 Hanford coarse sandy loam, 8-15% slopes, eroded 3.8 45.60%
RuF Rough broken land 4.5 54.40%

5 AtD2 Arlington and Greenfield fine sandy loams, 8-15% slopes 2.7 26.90%
GzG Gullied land 3.2 32.00%
HcC Hanford coarse sandy loam, 2-8% slopes 3.6 36.70%
HcD2 Hanford coarse sandy loam, 8-15% slopes, eroded 0.2 1.80%
TvC Tujunga loamy sand, channeled, 0-8% slopes 0.3 2.60%

6 AtC2 Arlington and Greenfield fine sandy loams, 2-8% slopes 1.4 72.2%
GzG Gullied land 0.5 27.8%

Table 3.1: Soil Compositions by site and symbol

3.3.4 Network Structures

Network architecture for networks differs due to its physical connectivity range and type.

Local connection by wired Ethernet create a different type of network than Wi-Fi connections.

However, when thinking about agriculture and using sensors that are connected to one
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(a) Research Site 1 (b) Research Site 2

(c) Research Site 3 (d) Research Site 4

(e) Research Site 5 (f) Research Site 6

Figure 3.11: Research Site Geo-imagery and Soil Composition [129]
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another ranges can exceed a few hundred meters. Therefore, the conventional use cases are

impractical and longer range solutions are needed.

Wi-Fi and Bluetooth, which are the two dominant consumer wireless communication protocols

use a 2.4GHz band and can support devices up to 100m in unobstructed view. However, in

practice this number is far lower considering that quality of communication efficiency tends

to get lower causing multiple repeated transmissions, delays, and higher energy costs. Energy

is an important metric particularly for wireless sensor networks which need to harvest their

own energy. For this reason, lower frequency bands such as 400-900MHz were used. One of

main consumer use drawbacks of lower frequencies is that receiver and transmitter antennas

need be longer with respect to communication frequency, which is not a significant issue in

agricultural settings where devices are stationary. Two dominant technologies in this domain

are LoRa (Long Range) [112] and NB-IoT [1], [86]. For this study, LoRa networks were

utilized to link the sensor stations to Internet.

3.3.5 Monitoring System Design

For test site recruitment the trial program was promoted in the Temecula Valley Winegrowers

Association (TVWGA) and the Small Winegrowers Association Temecula (SWAT). The

trial offer was free installation of sensor stations with 4 soil moisture sensors each and a

smartphone application.

The standard sensor station is composed of 4 sensors, placed in the upper, mid and lower

limits of the active root zones of winegrape plants. The current installation method was

not an easy task and can be further enhanced, but it does allow for permanent and semi

permanent placement of the sensors. In case of a hill location, the sensors were placed quarter

way from the top of the hill. Each sensor is a solid state tensiometer design utilizing electrical

resistance measurements for soil water tension (KPa). Sensor’s internal design allowed for
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water tension to directly impact electrical resistance.
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Figure 3.12: LoRa IoT Sensor Stations and Base Station based connection to Internet

To manually check the soil tension data, leaf water potential measurements using leaf

tensiometer measurements were conducted using a leaf tensiometer. The data collected is

presented in Table 3.2 which shows that electrical resistance soil tensiometer measurements

were

mostly in agreement with leaf water tensiometer readings. High soil stress levels were observed

at above 60KPa and low stress level at below 10KPa (absolute values here, in measurements

they are negative), which respectively aligned with 9Bars and 16Bars of leaf tensiometer

readings [116].

All of the selected sites used their conventional irrigation technique, which are mostly based

on manual and arbitrary irrigation, or were left to management. Two of the six test sites

(Site #1 and #4) used a controller for setting irrigation times, and the other 4 sites used

manual irrigation valve control.
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Figure 3.13: Complete IoT System Description

Site/Station 2/1/17 3/1/17 3/2/17 3/3/17 6/1/17 6/2/17 6/3/17
1 foot (KPa) 33 70 43 64 9 9 9
2 feet (KPa) 22 80 75 40 9 9 11
3 feet (KPa) 16 97 93 74 9 9 8
4 feet (KPa) 68 69 90 85 8 9 11

Leaf Tension* (Bar) 11, 13.5 16, 16 17, 15 18, 17.5 10, 10 9, 7.5 10, 9.5

Table 3.2: Soil tension and plant leaf tension relationship (*Two separate readings were
performed and recorded)

Sensor installation was done with local winery support. Locations were selected in collabora-

tion with the wineries. In case of a hill location, we placed the sensors quarter from the top

of the hill.

3.4 Results - Data and Analysis

The Web based application calculates a daily irrigation recommendation time based on

CIMIS ET data [20] and the specific vineyard properties (like vine spacing, canopy width,

emitters, etc), and can be customized for the applied deficit level. This data is displayed in
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the application as a chart and table. It provides information and allows editing of reference

daily intake (RDI), evapotranspiration (ET), crop factor (Kc), reference ET (ET0), crop ET

(ETc), and displays water use in hundred cubic feet (HCF).

3.4.1 Soil Tension data

The sensor system provided were in hourly measurements and were presented as charts and

tables. In the trial, the sensor at 1 foot detected irrigation and rain events, as soil can be

very dry in deficit irrigated vineyards. The sensors installed at 2 and 3 feet were used by

users to determine under-watering events. The sensor at 4 foot acted as a drainage sensor as

any significant changes in the sensor value would hint the user that they are over-watering.

During the 2015 and 2017 Rancho California District users have used all together about the

same amount of water (see Figure 3.15) and was under very similar ET demands (3.14). In

this same periods, the Research sites all together saved water although 1 of the research sites,

and had to increase their usage due to underwatering practices while another had major

leaks (see Figure 3.16). Altogether, results show with 87% confidence that multi-depth IoT

monitoring of soil tension in the water use has improved water use efficiency with paired

t score of 1.31 (see equations 3.2 and 3.3) for the research sites 2-6. Meanwhile, research

site 1 had overall 33.8% savings (see Table 3.3 and Figure 3.17), and was an outlier and was

excluded from the summary comparison of research sites. This is in part due to the fact

that research site 1 has been using the stations prior to 2015 and is evidence that even more

savings can be expected with prolonged use.

t =

∑n
i=1(Xi−Yi)

n√∑n
i=1(Xi−Yi)2−

(
∑n
i=1

(Xi−Yi))2

n

(n−1)(n)

= 1.31 (3.2)
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Figure 3.14: Monthly Cumulative ET of 2015 and 2017

Site/Year 2017 2015
1 1634(HCF) 2470(HCF)
2 2170(HCF) 2829(HCF)
3 3943(HCF) 4620(HCF)
4 6360(HCF) 5960(HCF)
5 4915(HCF) 5902(HCF)
6 9324(HCF) 9152(HCF)

Table 3.3: Usage Data in 5 Sites

df = n− 1 = 4 (3.3)

3.4.2 Discussion

Having the ability to use IoT sensing can further improve water productivity methods already

known to be effective, such as drip irrigation [37]. On the other hand techniques such partial

root drying and regulated deficit irrigation require having effective tools for conducting such

59



Feb Apr Jun Aug Oct Dec
0

1

2

3

4

5

6

W
a
te

r 
U

s
a

g
e
 A

c
re

 F
o
o
t

10
4

2015

2017

Figure 3.15: Cumulative Water Usage Date of the Water District

practices [3].

For successful deployment of the water saving system, having tight control over irrigation

time is critical for success. This can be provided by using (battery operated) irrigation valve

controllers, or by using the sensor stations with valve control capability [143]. That said, with

all the great capabilities enabled by IoT solutions, large variability could be present in the

ways these devices operate. However, variability in geophysical processes is a studied topic

and there are existing tools to counter it such as wavelet transforms [94]. In fact, significant

work has been done to improve uniformity of emitters performance [11].

Indeed, precision in irrigation systems can be interpreted differently, from wetting patterns

of water to delivery of nutrients and conditioning. Automating precision irrigation requires

not only advanced models, but also tools and infrastructure in place to operate by sensing

and actuation. Most importantly, it reveals fortuitous business opportunity in the form of

returns on investment, where users will be benefiting in every investment step towards the

theoretical limit of precision and automation.

Irrigation systems are truly part of both the physical domain, such as precipitation and
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Figure 3.16: Research Centers 2-6 comparative Total usage between 2015 and 2017

cyber domains (controllers, sensors and applicators), yet, they are also often overlooked and

under-appreciated for their significance in the whole scheme of engineering systems. It is

possible that lack of such interest can also be attributed to the not so obvious complexity of

water ’faucet’ operation in the farmland. However, we should start thinking about irrigation

scheduling automation more seriously to handle the ever increasing irrigation demand under

declining water availability. Enabling better decision-making in farms and policies for water

districts is opportune as upgrades to networks of irrigation systems pay off short and long

term. This is where the phenomena of Internet of Things will be playing a critical role as we

have observed in this work.

3.4.3 Opportunities

In parallel to our work with vineyards, Gallo Winery and IBM have been collaborating to

bring Variable Rate Irrigation Control (VRIC) to fruition [109][54]. Their result indicate up

to 25% water savings and up to 25% yield in quality improvement. This is very exciting as it

entails that further research can be done to bring VRIC into IoT domain. However, to the
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Figure 3.17: Research Site 1 Usage Data

best of our knowledge, there are no widespread affordable, self-contained and resilient systems

to utilize in practice. To that end, in Chapter 4 we will discuss how that actually could

be done with use of Cyber-Physical System Designed Controller Networks called Topology

Adaptive, Resilient and Scalable (TARS) Controllers.

3.5 Conclusion

Indeed, IoT monitoring of Irrigation systems performance is a small, but an ambitious step

towards global water savings. Moreover, a significant step can be made by closing the

loop with remote controlled valves, which may further improve irrigation performance by

cutting human error from irrigation actuation. That said, the study was limited to Southern

Californian vineyards, thus, it is difficult to predict whether water savings can be expected in

other geographies and crop choices, but with versatile IoT monitoring there may be other

ways of improving the performance.
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Chapter 4

Topology Adaptive, Resilient and

Scalable (TARS) IoT for Irrigation CPS

4.1 Abstract

There is a significant unrealized potential in developing state of the art electronics for

agriculture. This paper tries to lay down foundations for the vision in which we can use

existing technologies of Internet of Things and Cyber-Physical Systems to enhance water

infrastructure and precision in irrigation efficiency. We discuss design challenges of next

generation crop monitoring and water flow control systems, in particular, designing IoT

Stations with localization and energy harvesting in mind. Our studies show that it is possible

to have self-powered, self-configurable and highly functional water flow stations that will

transform and free Micro-Irrigation from centralized control. This chapter covers proposed

design methodology, topology aware localization multi-graph technique as well as lessons

learned from prior experiments, which will help to fulfill the next generation of CPS-IoT

Precision Irrigation Systems.
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4.2 Introduction

Cyber-physical systems approach to engineering enables design of highly complex engineering

systems [47]. For example automotive [134], designs of silicon processors [35], medical

devices [72], and smart manufacturing systems [19] utilize cyber-physical systems approach

to shape novel, sophisticated and integrative solutions. An essential characteristic of cyber-

physical systems approach is the underlying design methodology that supports scalability

and complexity management through (1) modularity and composability, (2) synthesis, and

(3) support of legacy systems.

This work demonstrates that CPS approach can also be applied to precision irrigation

management by introducing novel design patterns that investigates both present and future

irrigation needs and opportunities of modern technology in one plane. In particular, irrigation

emitter operation, distributed control and system management can significantly benefit by

utilizing topology adaptive, resilient and scalable (TARS) controllers. To this end, here

are presented (1) design methodology capable of comparing Irrigation IoT controllers, (2)

simulation tools and software capable of analyzing the distributed behavior of the TARS

controllers, (3) topology adaptation technique that utilizes multi-graphs to mine the hydro-

wireless topology of the IoT controllers, and (4) a TARS controller implementation with

novel energy harvesting and low power operational support.

4.2.1 The CPS Design Pattern

The ultimate goal of any CPS designer is to develop delicate solutions that utilize key areas

of computing, sensing, communication, hardware, software and actuation under the design

space constraints and trade-offs. We define the design space as a medium of designs with

vectored measures of intertwined bases, such that each base is not necessarily orthogonal to

64



others, and is in technological balance with other bases. We introduce 6 such basis vectors as

depicted in Figure 4.1a, e.g. flexibility, resilience and reliability. We combine all these pillars

into the "design hexagon" of cyber physical systems as depicted in Figure 4.1a. However,

these vectors are not the only ones - these have been chosen for brevity of discussion and

importance to the irrigation subject. Nevertheless, we shall not forget the setting in which

context implementations of design are utilized. Indeed in this paper, unique characteristics of

the future needs of irrigation CPS are discussed, as well as how the CPS design pattern applies

to Irrigation and where the shortcomings may be present. Before delving into irrigation

system design needs some of the fundamental irrigation science needs to be understood

because the design must be considered in the context of the hydro-meteorological setting (see

Figure 4.1b).

4.2.2 Background

Irrigation systems are cyber-physical systems, because they are composed of man-made

systems: irrigation networks and their controllers, and physical world: soil, atmosphere and

plants (see Figure 4.1b). The hydrological processes driven by solar radiation changes and

climate either add or subtract water in soil-plant system. The main purpose of any irrigation

system is to substitute for lack of precipitation in soil or in some cases to improve quality

of agricultural yield in the plant. Irrigation systems are everywhere from non-constrained

spaces such as urban and rural settings to constrained spaces like in warehouse, greenhouse

or in home settings. Thus, the approaches to solving certain challenges may not universally

be applied to all settings, although certain common characteristics are shared.

The state of the art drip irrigation systems are feedback control systems that depend

on environmental factors such as air humidity, radiation and temperature, meteorological

phenomena such as rain and also type of the plant, plants growth stage and etc. One can
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(a) CPS Design
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Figure 4.1: Design of CPS in the Context Irrigation Systems

visualize this in a block diagram as presented in the Figure 4.2a, where irrigation amount

and scheduling periods are the control variables.

Conventionally, irrigation controllers are placed near main irrigation water source and are

wired to control the valves of each group of irrigation drip lines. The most updated controllers

are capable of having their own designated mobile internet connectivity for remote connection.

However, most frequently these controllers are just stand alone devices that are capable

of collecting some soil data as well as rain indicator data to shut off the valves during

rain. On top of that, for control only simple decision trees are used for irrigation decisions

and most commonly an interval based scheduling is used which must be determined by

the irrigation managers. Some of these internet enabled irrigation controllers allow for

remote reprogramming by hydrologists, who look at reference meteorological data, such as

Evapotranspiration (ET), to adjust scheduling periods. To that end, some irrigation users

place weather stations to more precisely measure the ET reference values or entering the

ET estimates into the central controllers. However, as we are proposing this finer grain

distributed actuation system, control decision can occasionally be made in the edge as well
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Plant

Controller

PeriodIrrigation 

Humidity(H), Pressure(P), 

Temperature(T), Radiation(R) and 

Moisture Sensors

H, P, T, R

(a) Control System
SensingControlled 

Actuation

(b) Power Cost

Figure 4.2: Model of the Control System (in this figure "Plant" refers to the system under
control, which comprised of the soil-atmosphere-plant)

as in the center, where center could be a centralized control system of a scale of a water

district or larger. The reason for this type of aggregated thinking is first powered through

the computational capabilities of modern computing systems, which can aggregate Terabytes

of data and apply artificial intelligence for optimizing use for the entire system with the level

of detail of each individual emitter. This may seem like a very ambitious goal, but we hope

that with careful planning it can outweigh the initial costs.

Although there are some far fetched applications of modern technology in irrigation systems

drip irrigation remains the most commonly adopted state of the art technology. For example,

for soil moisture sensing there are quadcopter based soil sensing and sampling systems that

utilize augmented reality [53], and robotic in row weed controllers for chemical reduced

operations of weed control [132].

Conventional drip irrigation system has a single source and network with a single path to

emitters as depicted in Figure 4.3. In the figure, we introduce two different types of control

points, main block controller which usually is the only control point used, and emitters control

point or valves. The reason for this distinction is that our central hypothesis states that

by utilizing distributed control we can improve water distribution as many researchers have

67



shown and ultimately improve irrigation precision and efficiency.

Drippper/Emmiter

Main and Drip Lines

Pressure Reducer/Regulator

Main and Drip Lines

Figure 4.3: Drip Irrigation System

On the other hand, much like all cyber-physical systems, the drip irrigation system, is

vulnerable to all kinds of attacks ranging from physical degradation to arbitrary leakages.

These vulnerabilities are caused by animals chewing on drip lines or improper installations

and intentional/adversarial attacks much like other CPS[7] [82] [79] [19]. Single source-path

to delivery point systems, such as the drip tapes used for raw crops, are even more vulnerable

as there is plurality of points of failure at any point in the drip line where each point causes a

failure of the entire subsystem. This can be mitigated by adding more supply lines, duplicated

routes and in some cases even utilizing new topology to further regulate pressure. However,

even with the most precise pressure regulation a failure is inevitable which could cause a

domino effect due to a single line failure. This is because there is no good way of figuring out

a leak or breakage until it is observable by management.

In the past, irrigation research focused on developing models that can be used to deduce

irrigation needs by estimating lost water due to evaporation and transpiration. However,

new models and methods are present that can be used to model system, even as a circuit.

With these models in mind, one can put together a circuit voltage controller like irrigation
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controllers as depicted in the Figure 4.4.

Precipitation

Irrigation

Percolation

ET

Controller

Period

Moisture
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Humidity(H), Pressure(P), 

Temperature(T), Radiation(R) 

Sensors

Plant

H, P, T, R

Sensor

Figure 4.4: Circuit Control Representation

Wireless sensor networks as opposed to wireless controller networks have much lower energy

and power demands as is depicted in Figure 4.2b. There is significant effort put forward in

wireless sensor networks to localize [139], and to extend the communication protocols [45]

along with the means for powering them [111]. However, there is little or no work done to

utilize the same technologies for actuation networks such as IoT irrigation controllers [74].

One of the challenges of identifying absolute location or the relative location of two wireless

devices is by using the Received Signal Strength Indicator (RSSI) measurements (per Equation

4.1) of the devices to use anchoring or relative distance measurements [12]. There is also

significant research done to utilize path loss models for localization purposes [83]. In fact,

customized models exist for specific use agricultural cases as described in Equation 4.2. On

the other hand, when it comes to measuring or inferring the relative distance using water

pipes by means of measuring the pressure drop (∆P ) per Hagen-Poiseuille Equation (see

Equation 4.3). Thus, one can put together a circuit emulator for the hydraulic connections
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tuned using these equations.

Pr
Pt

= GrGt

( λ

4πR

)
(4.1)

PL[dB] = PL0 + 10nlog
( d
d0

)
+Xσ (4.2)

∆P =
8µLQ

πR4
(4.3)

4.2.3 Motivation

Networked devices must operate without supervision. Thus, may need to be a priory, or

statically, and dynamically configurable to adapt changes. However, this goal is not always

achieved, and failures of devices can in many cases be only resolved by replacement. For

example, to replace a failed device we have to first of all be able to identify and locate that

device. However, a self-contained failure is a challenge to distinguish in a field of other devices,

unless the rest of the devices can locate and hint the supervisory node of the failures. This

and many other needs must be addressed to be able to have a fully distributed system of

components that work independently of each other yet collaborate towards a common goal.

In general, these systems can be described in a graph, where each vertex is the node that

can sense, actuate and communicate, and each edge represents a connection. Usually, in a

graph two vertices may be connected by a single undirected edge or a pair of directed edges.
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However, in a graph that describes networked devices in irrigation settings, this might not be

true. First of all, there may be different types communication links that connect nodes to

each other. Moreover, irrigation controller valves are also connected by the water network

too. Thus, to fully capture the system description we have to use multi-graphs, which are

general forms of graphs that allow same vertices to be shared in topology multiple graphs as

depicted in Figure 4.5 with colors of edges representing different planes of graphs or types

of dependencies. Another concept that can be utilized with graphs, is the weights of the

edges. A graph in a multi-graph representing the water irrigation water network may have a

different weight depending on the distance and diameter; or, it may be split into two parallel

graphs each represented with weights of edges as the parameters of the plane.

Figure 4.5: A Multi-Graph Representation, where Vertices are the Irrigation IoT Nodes and
Edges are Communication, Water, or any other type connection (or relation) each on its own
plane or individual graph representation.

One application of multi-graphs is that the graph representation allows to deduce minimum

spanning trees, shortest paths and critical points of failure for communication message passing

and/or water routing in case of emergencies.
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4.2.4 Purpose

The Purpose of this work is to define the future direction of IoT enabled distributed irrigation

networks that can be easily proliferated to bring maximum water savings and quality of yield.

Projections on water budget are only derived from empirical studies, which result in ranges

of needs with large variations (see [33]) between 50-100%. For example, grain is reported to

have 400-800 gal/season and carrots 1200-1900 gal/season. Indeed, demands of plants can be

different, furthermore, their demands change over their growth stages. In the past researchers

have been able to fit the growth patterns of different crop to different mathematical functions.

For example, it is known that the rate of growth of the maize crop has the function described

in Equation 4.4, where BM is biomass in t Ha−1 and T is time in days [88].

GBM(T ) =
12

23 + 0.08e−0.08T
(4.4)

The function derived requires the continuous application of a very little amount of water soil

throughout the farming practice. In some cases this may be possible. As in some greenhouse

or hydroponic farming practices precision of irrigation can be tuned very accurately, however,

in open field farming, which has the majority stake in farming and is mostly irrigated through

furrows, is difficult to achieve. That said, sprinkler based irrigation system can be tuned

to provide certain amount water [87]; yet, given intrinsic variability it cannot be used for

continuous control. On the other hand, this may be plausible for drip irrigation systems

while being very complicated to implement as the entire farmland would require homogeneous

precision irrigation system control. Thus, it is important to consider other forms of control,

which do not require such costly methods. For example, discrete control with predictive power

may be able to alleviate this by stacking the needed water demands in discrete irrigation

periodic events.
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For example, Figure 4.6 represents the control signal for daily irrigation events of 15 minutes.

Moreover, by adding the control signal magnitudes relative budgets can be computed. Thus,

one can then use this graph to choose an optimal water saving scheduling scheme or water

saving plant much like by using advanced crop models [27] [85] [88] [38] [122] [16]. This would

be possible given that all scheduling schemes are possible to implement, while trading off

accuracy or efficiency of irrigation as with longer periods there will be more over and under

irrigation events.
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Figure 4.6: Comparison of continuous and discrete control moisture variations. Continuous
control tightly follows growth demand curve after initial settling while discrete control
significantly varies over time.

With control needs in mind, we came up with a design of next generation controllers, which

are equipped with intelligent flow and pressure sensors, reliable network connectivity and

resilient energy harvesting. These design requirements are essential for resilient long lasting

operation that are worthy of investment as they each have a necessary application for the

modern irrigation systems. First, we would like to discuss localization of networked nodes,

which is part of studies in wireless sensor networks. Second, we will discuss energy harvesting

functions of irrigation controllers which can generate enough power to be able to handle not

just sensing but also actuation functions for servo-valve functions or solenoid valves. Finally,

we will discuss image processing opportunities for growth feedback and health monitoring.

We studied these applications in laboratory setup.
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4.3 Material and Methods

The methods of designing next generation Irrigation CPS must adhere to the overall CPS

design pattern (see Figure 4.1a). With this in mind, refinement of needs in distributed

irrigation CPS conforms to following directives:

• Resilience: Essentials of Resilient Design are its ability to support its energy and power

needs, and be secure from physical and environmental attacks and risks. There has

been significant effort to bring about design methods for cross layer resilience [121].

• Scalability: Fundamentally, scalability in distributed CPS entails having ability to add

and subtract units in the network with constant effort. This means that we can add

and take out components without disturbing every part of the system. An integral

part of any solution is its ability to handle more workload in a manner that does not

significantly reduce its performance or accuracy. Such systems are said to have elastic

scalability, an example of this are cloud virtualized workloads. However, when it comes

to distributed irrigation control, we have to realize that the challenges associated with

scaling may be due to lack of water availability. Further we need to also consider the

complexity associated with interactions of different units and coherent operation of the

distributed system as a single entity.

• Flexibility: In the context of modular design and support of legacy systems, we can

think of degree of flexibility as the designs ability to conform, plug and played in the

existing system as by increasing reuse.

• Reliability: Reliability in the irrigation context really means an ability to give guarantees

on environmental adversities associated with material or physical performance. This

can be observed from biochemical changes of the plastic drip tapes to salt build ups

in valves and emitters. There has been some work done on CPS systems by utilizing

machine learning as well [64].

• Affordability: Any design needs to be affordable and realizable. Of coarse having gold
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wires is great, but it costs much less with copper, and maybe much less without having

any wiring.

• Intelligence: Intelligence is a new paradigm that has shifted the focus of many embedded

and Cyber-physical systems. It can be interpreted as the means of optimizing operation

to meeting stringent deadlines and having predictive power in the system as a whole.

TURBINE

FLOW

PRESSURE

VALVE

(a) Simple

TURBINE

FLOW

PRESSUREPRESSURE

VALVE

VALVE

SOLAR CELLS

(b) Modified

To this end, the design space exploration that test and validate different patterns can be

done analytically using simulation environments that capture a multi-domain nature. One

approach to the communication and water connectivity is to use graph coloring techniques,

that said, a single graph cannot represent multiple domains, but multiplicities of graphs can.

Once we abstract a node that is shared in the plane of communication and water network we

will obtain a multi-graph. Thus, the approach is based on Graph Theory algorithm, where

the Nodes and pipes are respectively modeled by the vertices and edges of an undiscovered

graph. Using a graph node search DFS algorithm, we let the water flow through the pipes

network discovering each and every node and pipe in the setup. Our method is based on the

Depth-First Search recursive algorithm, and generates an ordered list of instructions to the

Nodes, indicating which valve should open or close during the whole discovery phase. This

algorithm minimizes the number of valve switching in the network as each and every node

is open and closed only once. We have, therefore, for V nodes and E edges an O(V + E)

complexity algorithm, which is both scalable and energy efficient because switching a valve

requires a non-negligible amount of power.

75



1

(a)

1

2 3 4

(b)

1

2

3 4

(c)

1

2

3

4

(d)

1

2

3

4

5

(e)

1

2

3

4

5

(f)

Figure 4.8: Communication Network Topology Discovery

This algorithm is supposed to run chronologically after a first stage of network discovery,

where all the wireless sensors advertise themselves to the network. Our proposed algorithm

is then executed, discovering all the physical neighbors of every Node so that a proper water

delivery algorithm can be executed as a subsequent stage. A sate machine describing each

individual nodes behavior can be visualized as in Figure 4.10.

One drawback of that algorithm is that if new nodes need to be added at a later stage, after

all the nodes have been registered to the network, the algorithm will have to be executed and

ran from scratch, which can be very inefficient in case of very large scale sensor networks.

We can improve the topology adaptation by making it resilient to unit failures and dynamic

changes in the system structure. We can define the failure of a need as failure of its essential

parts, for example, failure of sensing, computing, and communication. If we can communicate,

seems like the problem can be simplified down to letting others know that a particular node

is missing and there is either a need to redo the topology discovery algorithm or let the

centralized system deduce a better path. If the failure also includes the communication cost
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Figure 4.9: Water Network Topology Discovery

then we can expect two behaviors, either the device failed before closing its valve or after.

Knowing the difference between these two cases is important as it determines the severity of

the situation; for example, an open valve is potentially leaking.

Thus, we propose having handshake procedures after every operation with a neighboring

node. In other words, every node has a supervisor node, which means that although there

is one Master node all across that manages the main water supply, but all nodes have a

corresponding peer supervisor to introduce a redundancy and avoid single points of failure.

This is similar to the Neighbor Discovery Protocol [92] link layer protocol stack and can be

embedded in the physical layer of IoT networks.

Indeed, it seems that in the future TARS controllers will solve many future irrigation

challenges including self-awareness conceptualization, which is hot topic at the moment [32].

However, our analysis was limited to a single water supply plot whereas the future may require

having multiple water supply sources for additional resilience to failure to mitigate failures

from source of water supply. Towards further understanding and developing methods of

analysis, simulation tools are in development to study behaviors of multi input self structuring

algorithms.

In order to further test our algorithms, we have designed a MATLAB based Graphical User
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Figure 4.10: State Machine Describing the Topology Identification Process
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(a) Centralized Controller [31]
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ReliableAffordable

(b) Generic IoT Node

Interface enabling the user to build a graph and run virtually the algorithms previously

developed on the interface instead of running them directly on the physical system. That

interface is also a good tool for future algorithm developers to easily compare different

alternatives. It is meant to be user friendly so that anyone can build a graph easily and

visualize the different steps of the discovery phase, even without having any background in

MATLAB programming. Graphs can also be saved and loaded in a subsequent session.

Whenever the user presses on the ’Start’ button, the algorithm runs and generates a list of

instructions based on the graph previously built using the interface. The program then reads

the list of instructions and highlights on the graph the specific Node that is being open or
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Figure 4.12: Envisioned TARS Controller Characteristics

closed, as well as the neighbor Nodes discovered at that step and the edges/pipes flooded

with water according to the legend below.

Nonetheless, we have also developed a Python version of this software which was also used to

make the Figures 4.9 and others by utilizing open source Python code [40].

4.3.1 Powering TARS Controllers

In order to properly discuss powering IoT system needs, here is formal perspective to needs

vs demands. It may be intuitive and simple however it is worth to cover fundamentals of any

responsible power system designs.

We can formulate power constraint in the design of any irrigaiton CPS system as follows:

• Power Balance: PD = PC + PA + PS + PN + P0 at every t

where

• PS, PA, PC and PN , respectively, stand for the power required for Sensing, Actuation,

Communication, Computation
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• P0 is power needed for the remaining system parts, e.g. power supply.

• PD is the power demand.

This means that energy gathered by the energy providing sources (e.g. photovoltaics, turbines,

grid . . . ) should not be less than the energy needed within any period of time. Indeed, for

non intermittent powering of services, we may have to go beyond conventional harvesting

techniques such as photovoltaics and use others such as micro-turbines. To that end, we have

experimented with powering our nodes using only micro-turbine energy and we demonstrate

that in some cases, it can not only be an alternative but also a main power supply. For

example, in underground networks or with plants that quickly grow over the field, it would

cost enormous man power to maintain a solar panel.

To properly validate our irrigation system design ideas we introduce an in-lab testbench

comprised of a water reservoir, pump and PVC pipes circulating water as depicted in Figure

4.13, which instead of electrical circuit now used pressure/flow sensory.

Figure 4.13: Laboratory Setup where hydraulic pressure sensors were used to detect incoming
pressure and open close the operations

In an experiment to test and validate that micro-turbine as an energy source meeting the

above mentioned requirement we compared conventional basic valve controllers with valves

to our servo-valve design. First, we measured how much energy the conventional valve alone

without controller uses, then measured the setup with valve On state and valve Off state

to deduce the power consumption of the valve alone as depicted in the Figure 4.15. We

also measured the amount of power/and energy it would take to operate the servo valve
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Figure 4.14: Pressure Edge detected at above set threshold

as depicted in the Figure 4.16 and the amount of power our micro-turbine would normally

generate. Although, the generated power was adequate for operating the servo valve, but it

was not high enough for the solenoid valve due to on power consumption, which in the case

of the servo-valve is negligible. That said, there are designs of latching solenoid valves that

may well be within power range generated by a micro-turbine.

In the experiments described in the Figure 4.15, the AC Power Meter was used for measuring

power consumption of the irrigation controller [97] [98]. In the case of the experiment

described in the Figure 4.16, the USB data acquisition device [93] was used for measuring

the DC power usage.

Irrigation

Controller

Valve

Valve

Valve

Power Source Meter

Figure 4.15: Controller Power Metering of Conventional Wired Valve Controller

Basic

Controller
ValvePower Source Meter

(DC)

Figure 4.16: Controller Power Metering of Designed Servo-Valve
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4.4 Results

(a) Original Micro-Valve [31] (b) Top Cover

(c) Bottom Base (d) Partially Assembled Model

Figure 4.17: Modular Design of the Micro Enclosure Drawings and Assembled Model with
Motor Attachment and Drip Tubes

Networked devices must operate without supervision; thus, this need to be a priory and

dynamically configurable to adapt changes. However, it is not always the case and failures

of devices can in many cases be only resolved by replacement. For example, to replace a

failed device we have to first of all be able to identify and locate that device. However, a

self-contained failure is not really obvious to distinguish in a field of other devices, unless the

rest of the devices can locate and hint the supervisory node of the failures. This and many

other needs must be addressed to be able to have a fully distributed system of components

that work independently of each other yet collaborate towards a common goal. In general,

these system can be described in a graph, where each vertex is the node that can sense,

actuate and communicate, and each edge represents a connection. Generally, in a graph, two

vertices may be connected by a single undirected edge or a pair of directed edges, however, in

a graph that describes networked devices in an irrigation setting this might not be true. First
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of all, there may be different types of communication links that connect nodes to each other.

Moreover, irrigation controller valves are also connected by the water network too. Thus, to

fully capture the system description, we have to use multi-graphs, which are general forms of

graphs that allow same vertices to be shared in topology, or multiple graphs as depicted in

Figure 4.5 with colors of edges representing different planes of graphs. Another concept that

can be utilized with graphs, is the weights of the edges. A graph in a multi-graph representing

the water irrigation water network may have different weight depending on the distance and

diameter, or may be split into two parallel graphs each one representing the weights of the

edges as the parameters of the subgraph.

We have also developed a Servo Valve that is capable of turning standard 1/2" ball valve

using 35n*m toque servo with metal shaft. The assembly utilizes both bent metal rods and

3D printed enclosures, see Figure 4.18.

Figure 4.18: Modular servo-valve design for block line operation fits on top of a legacy PVC
ball valve
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4.4.1 Validation

With use of software using a circuit analog model of the irrigation system, the software

simulation results were validated. The experimental setup utilized Bluetooth enabled nodes,

such as CSR1010 and CSR1011 Bluetooth LE modules [104]. In the Figure 4.20a, a breadboard

circuit that stands for irrigation networks functionally demonstrated the simulated algorithm

with wireless communication enabled. Although, this type of analog test-bed based validation

is not a formal verification technique of the design, however, it shows an initial integration

testing of algorithms and communication plane. The next experiment further validated this

on a smaller setup of the hydroponic test-bed, see Figure 4.20b.

Figure 4.19: MATLAB based IoT Topology Adaptation Simulator

4.5 Discussion

Irrigation is itself not just a science but also a business practice. Thus, we shall also look into

it from the entrepreneurial stand point. It is indeed difficult entering the market as there are

not many IoT controllers used in field, which means that there are many legacy system that
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(a) Electrical IoT (b) Hydraulic IoT

Figure 4.20: Irrigation IoT System Testing with Circuits - Electrical circuit used for validation
of the topology adaptive communication plane.

need to be taken into account. That is why interfacing with legacy systems will help support

challenges associated with market barriers.

Increased costs from added sensors and communication circuits reduces usability of the tools,

but can lower installation costs. The complexity of installation of these units will depend

on the precision of location and quantity needed to be installed, tracked separately, and

maintained. However, when supply feature that enable wireless network to self manage and

provide actionable insight one can expect reduced recurring costs. Moreover, installation

expertise would be reduced in terms of needed specialization, for instance, only plumbing

experience would be required as opposed to high/low voltage expertise.

Nevertheless, security concerns such as side channel attacks [2] [4], which can be used to

manipulate irrigation schedules, are valid and will play a critical role in the future research of

irrigation CPS.

Current drip irrigation practices use emitters that are manufactured to output nominal flow

rates, however, we know that these flow rates are inconsistent across drip lines and are sources

of variations in irrigation. To reduces these variations in flow, drip system designers would

use pressure regulators, which within their design limitations, reduce the pressure in areas

with high pressure - ultimately normalizing the pressure across different segments of drip
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system. In an ideal world this would be enough, but we know that even identifying these

pressure build up zones takes practice and in many cases ruptures to identify them. In one

hand, we can blame the emitters for not being perfect; on the other hand, can blame drip

lines, or even the designers. However, there is a fundamental flaw in the practice, which is

that these components are all passive - not active or aware of the operational mode they are

in.

The other fundamental element of control is the feedback. Feedback enables control to be

more resilient to uncertainties in design and practice. For example, active pressure step down

regulation would allow to maintain the pressure across a range of high inputs, and active

step up pressure regulation would enable increasing pressure. In electronics, these devices are

called DC-DC (or AC-DC) step up, or step down converters which use the feedback of voltage

output response for the control. One electronic design that enables this control is the famous

buck converter. The principal of operation can be fundamentally applied to water as well,

although in many cases realizations maybe unnecessarily costly. However, what the power

conversion science does teach is that pressure regulation can be fine tuned with feedback

control.

Fundamentally, feedback relies on sensing, which in context of an irrigation setting is

extracted/evaluated from water flow, water pressure, soil water tension, humidity, temperature

and etc. For example, in the case of pipe pressure regulation sensing, the pressure at the

output and passing this information for control to refine internal operation makes up the

foundation of the feedback control which stabilizes the system. In the example of the pressure

regulators, pressure sensing becomes essential. Unlike flow sensing, pressure sensing is actually

a lot easier with current semiconductor pressure transducers, whose costs are reducing as the

technology is evolving.

Going back to emitters, with finer pressure regulation at the emitter input, we can then

guarantee finer output. However, note that the emitters don’t have a feedback of their own.
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They take the water in and out put the flow rate needed, but where the water goes and

how much should go is on only controlled by the main controller of the drip line. These

emitters are also passive devices, and require yet another feedback that tell them to stop

per application needs. Not every emitter emits to the same identical plants. In fact, drip

emitters provide not to the plant, but to the soil - exposing it to uncertainties in the soil,

environment and climate. Thus, feedback from the soil, or the plant is required to adjust

each individual emitters total output.

The irrigation control feedback from soil can be either from the water content in it, in terms

of volume or mass, or tension, respectively, by using a moisture sensing device or tensiometer.

However, unlike pressure regulation in the drip line, where feedback is instantaneous (assuming

fluid flow is incompressible), we know that infiltration delays in soils. This depends on soil

type and depth of interest, where the roots are located, because they are significantly large

in both magnitude and variation.

Traditionally, we are used to building electrical circuits or systems by linking input power

to all components by wiring around the system or circuit. However, currently technology

allows us to harvest and generate our own electrical energy and we can generate power right

where it is needed. For example, solar power photo-voltaic cells require small footprints

for energy generation and can be used for various applications from control to sensing, and

communication. PV arrays heavily rely on sun and weather conditions and thus its considered

to be intermittent and prone to variations in power generation. Another form of power

generation is from water flow in hydropower systems to small micro-turbines that can generate

as high as 1W power with high efficiency - taking very little kinetic energy from the water

line (as opposed to 750W input power of the Pump). Also, a hybrid approach to power

generation can be applied in an electrical circuit to generate power from both water flow and

ambient light for all purposes of irrigation system. Results of pressure and power generated

is summarized in the Figure 4.21.
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Figure 4.21: MATLAB based IoT Topology Adaptation Simulator

If we can generate power, then we can also implement this distributed control mechanism

using valves with minimal energy demands. In the market currently, there are solenoid small

valves that can be turned on and off with a few watts of power. These valves can be further

improved for energy consumption by having mechanical locks; in other words, having low

power or shut down modes.

On the other hand, we see a great potential in using valves that have finer control applications.

For example, valves instead of having binary, on/off, operational modes could also have flow

control features, as in opening the perfusion to enable partial, but known flow mechanisms

as well as fully open and closed operations. For this purpose, currently there exist low cost

servo motors which can fine-tune control ball valves even with modular design. We have used

a modular design approach to demonstrate this for valve sizes for common drip lines and 3
4
”

pipes. We expect finer integration of servo-valves to have much higher efficiency in terms of

energy and power consumption.
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4.6 Conclusion

In irrigation CPS, all the involved elements must be carefully weighted because in some cases

irrigation must be designed once but used for decades. Moreover, a complete solution to

irrigation systems must incorporate every step from design and development to deployment.

In other words, there should be means to make design decisions a priori, to re-calibrate

system settings during or after the final stages of installation and to use the current knowledge

to engineer tailored or standardized solutions in the farm.

By putting the puzzle together, we can deduce that the next generation of precision irrigation

requires new devices for control that can handle many different tasks from energy harvesting

to regulation of pressure/flow, thus, requiring sensing for feedback operation. Although there

are many self regulating mechanical applications, it is more common and convenient to make

electrical, electronic or digital smart devices. Moreover, micro-irrigation systems can be

enhanced with CPS approach by cost reductions, automation and improved monitoring.

4.6.1 Future Work

In future works, we intend to improve the modularity of the design of the servo valve to

support attachment to more legacy components. Additionally, it would be a good idea to

redesign controller valves with more sensitive flow sensors and active pressure regulation

features. To further validate our current findings we would need new field experiments with

IoT controllers that automate and improve irrigation efficiency.
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Chapter 5

Multi-Modal Imaging Feedback For

Health and Growth Monitoring

5.1 Abstract

Continuous monitoring of crops is an essential task of agricultural practices for the detection

of diseases or pests, precision irrigation and fertilization. State of the art monitoring and

imaging systems use aerial imaging to obtain visual feedback and multi-spectral imagery

to determine crop growth factors. The main idea is that the features can be automatically

calculated and assessed after pre-processing the images. After pre-processing, the parameters

can then be computed using image processing techniques. For example, key leaf function

traits like leaf life span and leaf mass per area can be calculated. Our findings indicate that

plant health and growth assessment can be moved from lab and expensive monitoring tools

to ubiquitous silicon technology based cost effect solutions without much loss of accuracy.

The covered contributions in this chapter are: (1) leafsnap dataset based feasibility study of

leaf venation based health assessment, (2) experimental case study of growth tracking using
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pigmentation, on site measurements and derivation of a fidelity model for growth tracking;

(3) a thresholding-overlapping technique for recognizing plants between frames of overhead

images; (4) a dataset that was labeled for plant recognition and pest identification; and (5) a

Deep Learning architecture that can identify pest infected images bounding rectangles of the

bush bean plants.

5.2 Introduction

Continuous monitoring of crop is an essential task of agricultural practices for detection of

diseases or pests, precision irrigation and fertilization. The state of the art monitoring and

imaging systems use aerial imaging to obtain visual feedback and multi-spectral imagery to

determine crop growth factors. These are in most cases coarse tools and do not focus on

providing close up information, such as particular plant health assessment. Moreover, most

of the time detected diseases are already advanced to the point that nothing can be done

to isolate, countermeasure and reverse the spread. On the other hand, studies show that it

is possible to visually determine plant health characteristics by looking at individual leaf

internals such as distances between veins at etc [15]. In this work, we show that it is possible

to use computer vision algorithms to automate the health assessment process and enable

further assistance to overhead imaging based monitoring.

This work will describe image processing methods that can be applied to agricultural image

processing settings and will provide a few novel contributions in the application area. The

main motivation being for this thrust is to close the feedback loop at different modalities

of imaging and processing. The main contributions presented here are: (1) a novel health

assessment technique that automates an existing technique and utilizes dataset, that was

previously used for plant identification only; (2) an experimental case study of growth tracking

using pigmentation, in situ measurements and derivation of fidelity model for growth tracking;
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(3) a thresholding-overlapping technique for recognizing plants between frames of overhead

images; (4) dataset that was labeled for plant recognition and pest identification; and (5) a

Deep learning architecture that can identify pest infected images bounding rectangles of the

bush bean plants.

5.2.1 Background

In computer vision, image segmentation is the process of partitioning a digital image into

multiple segments. The goal of segmentation is to simplify and even change the representation

of an image into something that is more meaningful and easier to analyze. Image segmentation

is typically used to localize objects and their boundaries. More precisely, image segmentation

is the process of assigning a label to every pixel in an image such that pixels with the

same label share patterns. One of the common unsupervised techniques for doing so is the

super-pixelation technique that looks at each pixel and its neighbors’ and determines whether

these pixels can be clustered into a single entity.

Modern agriculture is driving agricultural production towards intelligent automation by

applying scientific and technological achievements. Providing more precise information using

image processing and machine-vision techniques can be an effective substitute to naked eye

based judgment on irrigation/water stress, fertilizers, pesticides and quality of yield. Thus,

it is important to discuss areas that show the potential of machine vision techniques in the

agriculture field as they can be extremely cost effective, quick and automated.

Morphological Image Processing

There are several fundamental morphological processing techniques used in image processing.

Some of the fundamental morphological processing methods are Translation, Reflection,
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Figure 5.1: Color Representation RGB and HSL Models

Erosion, Dilation, Opening, Closing and etc, and are summarized in Table 5.1. These

operation in their essence are bitwise operations, which are processing either once per each

individual pixel such as in the case of complimentary operation, or by window which is

moved around the image. Some of these are region growing operators, while all of them

are also called filters. These filters are said to be convolving around the 2D space, which is

a fundamental utility of Convolutional Deep Learning, where learnable filters are used to

produce desired feature extraction and supervisory learning (a visual description is available

in Figure 5.2).

These operations in their essence are bitwise operations, which are processing either once

per each individual pixel such as in the case of complimentary operation, or by window

which is moved around the image (see more in Appendix B Chapter 8). Some of these are

region growing operators, while all of them are also called filters. These filters are said to

93



Compliment Ac = {c| /∈ A}
Translation Az = {b|b = a+ z, a ∈ A and z = (z1, z2)}
Reflection Â = {b|b = −a, a ∈ A}
Erosion A	B = {z|(B)z ⊆ A}
Dilation A⊕B = {z|(B̂)z ∩ A 6= �}}
Opening A ◦B = (A	B)⊕B
Closing A •B = (A⊕B)	B}

Table 5.1: Morphological Image Processing Fundamental Operations

*
=

Figure 5.2: Graphical Visualization of 3D Convolution. The overlapping areas are then
elementwise multiplied and added.
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be convolving around the 2D input space, which is the foundation of Convolutional Deep

Learning where the input is passed through consecutive learnable filters that produce desired

feature extraction. Learning in the context of Deep Learning is the process of optimization

of parameters by the means of matching and optimizing set of input and output pairs.

Deep Convolutional Learning

Indeed, Deep Convolutional Learning has come a long way with tools enabled to provide

means for modeling the most complex phenomena such as taste [133] [44] [56], objects [65]

and even artistic style transfer [36]. That said, there is little work done to apply deep learning

techniques to agricultural practice although there are several efforts to do so in the forms of

studies on using deep learning for certain tasks. For example, plant phenotyping has been

studied with improvement of segmentation quality on the previously tradition computer

vision heuristic method of leaf edge curvature estimation. However, we shall acknowledge and

review much of intuition that is utilized in deep learning as it has been extensively studied in

the past.

Most conventional Deep Learning models are constructed as tensor layers where input is

passed from one layer to next chaining the data flow from input to output. However, there

are certain architectures that have additional features such ResNet that allows data in

between layers to skip and pass forward through skip connections [43]. Although, some of the

architectures have different unique characteristics, most of them share many common utilities.

Utilities that are universally used to connect the layers of modern deep learning computer

vision architectures include Convolutional Filters, Pooling and Activation Functions.

• Convolutional Filters are filters much like in conventional signal processing, but in

2 or 3 dimensions. Usually they are used in multiplicity allowing to filter out different

features or signals. A basic filter operation can be described by convolution operation
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Average pooling (x, y) −→ (
x
, y)

Max pooling (x, y) −→ max(x, y)
L1 Norm (x, y) −→ |x+ y|
L2 Norm (x, y) −→

√
x2 + y2

Table 5.2: Pooling Methods and definitions

that passes through an input signal. When applying convolutional filters to the input

image there are three considerations: number of filters used at that layer, strides to be

taken when moving the filter window around the input and padding or zero-padding

added to the image constraints. The intuition is to take as much locality information

while lowering overall dimensionality.

• Pooling is a technique that maps many values to a single value. It is usually a very

coarse decision model that picks a single value out of many or some kind of simple

operation. That said, much work can be done to improve pooling techniques. However,

there are already known and widely used different pooling techniques such as:

• Activation Functions: ReLU (Rectifier Linear Unit), ELU (Exponential Linear Unit)

Saturating hyperbolic tangent, Sigmoid and Softmax. The main Recursive Formula

describing Fully Connected Networks is following: Zn+1 = W n+1An + Bn+1, An+1 =

Activation(Zn+1)

– ReLU - max(x, α), where α is usually 0.

∗ Leaky Relu -

 αx x ≤ 0α < 1

x x > 0

∗ ELU -

 α(ex − 1) x ≤ 0

x x > 0

– Saturating hyperbolic tangent - tanh(x)

– Sigmoid - 1
1+e−x

– Softplus log(1 + ex)
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– Softmax - ex

Σex
is usually used for distinguishing between classes of classification. It

is considered a loss function as it determines how far off the predictions are from

intended target training and is usually placed at the last layer.

– Others -

∗ erf(
√
π

2
x)

∗ x√
1+x2

∗ 2
π
gbd(π

2
x)

∗ x
1+|x|

– Loss Functions - These are functions that are present in the last layer of the

network where predictions and the estimates are compared.

∗ Absolute Loss - absolute difference between predictions and estimates. |X−Y |

∗ Squared/Mean Squared/Mean Squared Error loss - squared difference between

predictions and estimates.(X − Y )2

∗ Kullback-Leibler/Cross Entropy - Entropy based function Σ(X−Y ) log (X − Y )

∗ Hubert loss -


1
2
(X − Y )2 |x− Y | < δ

δ(|X − Y | − 1
2
δ) otherwise

∗ Hinge loss - max(0, 1−X.Y ) where Y is -1, +1.

For optimization of the model parameters, the most commonly used technique in networked

models such as neural networks and deep learning is the back-propagation. That said, back-

propagation utilizes optimization catalyzing techniques to speed up the optimization. The

most common catalyzers are Adam, AdaBoost, Ridge regularization, general boosting and

bagging, which speed up the optimization process and help to reach the global optima. In the

very high dimensional functions under optimization usually the optimization target moves

from between local minima and global minima (see Figure 5.3b), to between lots of saddle

points and the global minima. Saddle points are points where the function has more than one
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curvature much like a saddle, where in one projection its a convex function, while on another

projection it is not. An example of a function that has a saddle point is F (x, y) = x3 − xy2

as depicted in Figure 5.3a.

(a) Saddle f(x, y) = x3 − xy2

2 4 6 8 10 12 14

-0.2

0.2

0.4

(b) Convex Function f(x) = cos(x)
x

Figure 5.3: Optimization Challenges Low-Dimensional Local Minima and High Dimensional
Saddle

Optimization Methods

The gradient descent method utilizes linearized learning rate:

θt = θt−1 − η∆J(θ) (5.1)

One of the known disadvantages of gradient descent method is that it tends to converge upon

local minimas and may even oscillate between values and never reach a minimum. To avoid

this a more robust, momentum optimization is used:

µt = αµt−1 − η∆J(θ)

θt = θt−1 + µt

(5.2)

Momentum optimizer is generally faster than gradient descent, and there are some different

ways similar idea is used to accelerate the step by adding extra momentum on step size.

However, it applies the same learning rate to very parameter, thus, an improved algorithm
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has been proposed, Adagrad:

ηt,i =
η√
Gt,ii

θt,i = θt−1,i − ηt,igt

(5.3)

Although Adagrad personalizes learning rates it also lowers the magnitude of learning rates

the the converge closer to the desired objective, thus, it makes it difficult to quickly reach

the minima. To avoid this, the most widely used algorithm has been proposed Adam, which

utilizes both momentum and scaling of learning rates:

mt = β1mt−1 + (1− β1)∆J(θ)

µt = β2µt−1 − (1− β2)[∆J(θ)]2

ηt =
η
√

(1− βt2)

(1− βt1)

θt = θt−1 −
ηtmt√
µt + ε

(5.4)

Thus, in our optimization techniques we used Adam method, which adds few more hyper-

parameters as evident in the Equation 5.4, but significantly cuts on optimization time and

improves convergence likelyhood.

Convolutional Models

Some of the most successful Convolutional Networks are LN5 (see Figure 5.4), AlexNet3

(see Figure 5.5) and VGG16 (see Figure 5.6). They have been utilized for MNIST [71] and

other datasets for predicting handwritten digits and etc. These architectures of convolutional
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networks provide insight into the anthropological development of deep learning. Chrono-

logically, going from earliest LN5 to somewhat new VGG16 (there many more complicated

and improved models) how the depth and the width of the architecture expands. This is

no surprise as over time more computational power has been available as there is a certain

length of time that any researcher is willing to spend on waiting for simulations to complete.

Thus, it is important to notice that fast simulations have a catalyzing impact on machine

learning domain and may have much similar impact on irrigation and agricultural sciences.
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Figure 5.5: AlexNet Network (S stands for Stride of the filters )

5.3 Materials and Methods

In this section are presented materials and methods used for feasibility analysis of health and

growth monitoring using machine vision techniques.
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5.3.1 Leaf Venation Networks

Leaf venation networks are the skeleton connection of the leaf. They determine how much

water or nutrients have to go to the plant how it will react to environmental factors such heat,

humidity and solar radiation. In the past, researchers have identified features that capture

plant health [15]. Some of the parameters to be estimated are:

• Density (σ) is the total path length of veins in a region of interest (ROI) divided by

the ROI area.

• Distance (d) is the mean diameter of the largest circular masks that fit in each areole

(closed loop).

• Loopiness (ξ) is the number of areoles in the ROI divided by the ROI area.

The main idea is that the features can be automatically calculated and assessed after pre-

processing the images. After pre-processing, the parameters can then be computed using
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image processing techniques.

LL = k1d (5.5)

LMA = πr2
V (ρV − ρL)σ +

2ρL

k0

d (5.6)

Nm = k2Am +
k3

k0

2d− k0πr
2
V σ

LMA
(5.7)

For example, key leaf function traits leaf life span (LL) and leaf mass per area (LMA) can

be calculated, respectively, using Equations 5.5 and 5.6 by determining the d and σ.

To study this, a dataset of over 185 tree species called leafsnap [66] was used which has over

30,000 images. The dataset consisted of lab and field images of the leafs. The original work

extracts the leaf contour curvatures as features to identify plants from leafs. However, it is

not limited in use, as our method demonstrates that it can be used for health assessment as

well.

In order to extract the needed venation diagrams we used ridge filtering, binarization and

skeletonization technqiues [76] [25]. These techniques utilize ridge filter transformation

method to identify ridges which closely follow the venation networks. To that end, we

have extensively experimented with leaf snap dataset. The process can be repeated using

Mathematica code published in Github [48].
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Generally, a Gaussian function is defined as in Eq. 5.8, however, for an image there are two di-

rection or variables x, y as in Eq. 5.9. That said, we know that the image can be approximated

using second order approximation as in Eq. 5.10 (whereHg, theHessian, isdefinedinEq.5.11).

Note, in the Eq. 5.8 and 5.9 σ is the standard deviation and not the vein density.

G(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (5.8)

G(x, y) =
1

σ
√

2π
e−

x2+y2

2σ2 (5.9)

g(x, y) =
1

2

[
x

y

]
Hg[x y] +

[
x

y

][
∂g
∂x

∂g
∂y

]
(5.10)

Hg =

[
∂2g
∂x2

∂2g
∂x∂y

∂2g
∂y∂x

∂2g
∂y2

]
(5.11)

In fact, to calculate the ridges, only the eigenvalues of Hessian need to be computed, as it is

the second order derivative and eigenvalues only determine whether it is a ridge or not. In

the following steps, skeletonization uses the erosion process to narrow these into a single line.

After preprocessing into a binary images as presented in the Figure 5.15 we used the following

methods for calculating the parameters. To calculate σ we used the semi perimeter divided

103



by the area; in other words, we counted the non black pixels and divide the result by the

considered area. On the other hand, computing d was a very tedious process. To find d

we first have to calculate minimal cycles - the cycles that don’t contain subcycles in them.

After that, we can find the largest inscribable circle’s diameter in each cycle utilizing Voronoi

Regions and Chebyshev Center.

5.3.2 Case Study: Practice of Drip Irrigation on Bush Beans

In this subsection, the experimental case study of growth tracking using pigmentation is

covered using in situ measurements and derivation of fidelity model for growth tracking is

presented.

To study this growth based crop demand model for control as well as other irrigation scheduling

techniques, an experiment was conducted at the University of California Agricultural and

Natural Resource South Coast Research Center on Bush (Green) Beans. In the experiment,

12 rows of seeds were planted, then sprinkled with water during the germination week and

followed with drip tape irrigation (See Figure 5.7). To easily track field growth progress, the

field was randomly sampled with 7 samples from every other row as depicted in Figure 5.8.

Field growth parameters such as plant height and largest leaf dimensions were recorded on a

weekly basis (see 3-Week Summary of results Figure 5.9).

5.3.3 Thresholding

In this Subsection we present a thresholding-overlapping technique for recognizing plants

between frames of overhead images for use in application such as relative localization, plant

tracking or plant counting. Our method to determine the threshold is, firstly, to convert

the plant image into binary image, and then segment every single plant into a Region of
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Figure 5.7: Experimental Field and Setup.

Interest (ROI) box, so they become separated, independent components. By overlapping the

components in different images one by one, we can get the percentage of their overlapping

area.

The next step is to look for identical plants in original images by hand, record the least

overlapping percent of the identical plant pair where the upper threshold and the lower

threshold are the largest overlapping area percent of any other plants which do not match

with each other.

5.3.4 Labeled Dataset

In the field experiment, a dataset of about 200 images was collected from 1m above ground

by using a reference rod. Later, the dataset that was labeled for plant recognition and pest

identification. Plants were marked with their ROI rectangles, and labeled with size: small,

medium and large; health as healthy or not, and three options for the plants occlusion level:

separate, overlapping and partial. For labeling commercial tools, we used LabelBox [70] and

Dataloop [26] (see Figure 5.13).
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Figure 5.8: Every other row was randomly sampled at 7 points. Horizontal Axis are the
row numbers, vertical axis is the distance from beginning of row in ft. The position were
randomly generated.

Figure 5.9: 3 Week Sampled Data of Plant Leaf Height, Largest Leaf Length and Width as
metrics of growth

The dataset contains a series of row plant images, and in any two continuous images, there

are some repeating plants. Our initial goal was to count the number of plants through finding

these same components and recognition of unique plants.

At first, we planned to distinguish every plant by principle component analysis, so that we

can find the distance of different plants in dimension-reduced coordinate, and classify them

by k-means clustering. But we only have 2 or 3 samples for each plant; thus, lack of samples

makes us unable to run an accurate PCA on these images. Hence, we changed the method

into direct morphological operation and comparison, which is to compare the overlapping

area percent of two plants. If the overlapping percent is larger than a certain threshold, we

can say they are identical, otherwise they are not.

106



25.43%

28.44% 32.77%

37.61%

46.24%

43.53%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

5
/1

7

5
/1

8

5
/1

9

5
/2

0

5
/2

1

5
/2

2

5
/2

3

5
/2

4

5
/2

5

5
/2

6

5
/2

7

5
/2

8

5
/2

9

5
/3

0

5
/3

1

6
/1

6
/2

6
/3

6
/4

6
/5

6
/6

6
/7

6
/8

6
/9

6
/1

0

P
e
rc

e
n
t 

 o
f 

G
re

e
n
n
e
s
s

Date

Growth by Greenness

Figure 5.10: Pigmentation based growth Tracking

5.3.5 Deep Learning Architecture

In this subsection, a new deep learning architecture is presented that can identify pest infected

images bounding rectangles of the bush bean plants and other labels as described in the data

(see Figure 5.23).

5.4 Results

In this section, the discussion of results of experiments are covered within respective subsec-

tions where there was quantitative data present.
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Figure 5.11: Histograms of Sample 1 Image in RGB and HSL

5.4.1 Health Assessment using Leaf Venetian Networks

In the Fig. 5.15, 3 different preprocessed results are presented. These results demonstrate

that indeed, there is a significant potential to utilize simple camera imaging. To finally

complete the d, σ calculations, we present an image with shaded regions for the respective

calcualtions in the Fig. 5.16.

In order to demonstrate the lighting impact on final results we present 4 different lighting

situations observed for one of the leaves of Acer Palmatum plant in Fig. 5.17.

Our results indicated close to 80% results of successful estimation of the parameters; however,

a much lower rate of 38% is observed on the images from field settings or in not so well lit
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Figure 5.12: Segmented Image Small Sample

Figure 5.13: Label Sample

samples (See more details in Figure 5.18).

5.4.2 Thresholding

For the thresholding experiment, we examined 74 images in total. The objective was to

identify repeated images of the same plant, which means that the same plant that appears in

any of the 74 images would have to compared to others. However, this can be simplified, as

we know that the images taken are in sequence, thus, only comparing pairs of images, for

repeated plants is required - only 73 pairs of comparison. When there are no wrong matching
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Figure 5.14: Our Network Architecture (S stands for Stride of the filters)

plants in the images - the upper threshold is less than lower threshold, we record it as positive

matching. Through drawing the histogram of upper and lower threshold, we got the result of

optimal threshold, [0.438, 0.46], which can satisfy the 58/62 images, so the actual matching

rate after determining the threshold was 59/73, which is good but there is really not much

space for improvement. A sample of the overlapping process is demonstrated in the Figure

5.19. However, findings show that it is impossible to have a threshold which can meet the

need of all the images.

After an examination of 10 images, the counting result by hand is 23, while the number

generated by computer is 18, it is smaller because of failure of recognizing the linked or

overlapping plants. Sometimes two or more plants are close to each other and have overlapping

leaves, thus they are linked together. We may know that they are different plants by naked

eyes, but the computer doesn’t. And the cause of wrong matching is mainly because of linked

plants, too. Take Figure 8 for an example, in the first line leaf 6 and 7 are separated, but

in another image taken in another view, they become one (leaf 3 in the second line), and

that is why wrong matching happens. The biggest uncertainty results from binarization

and the image opening operation. Large sized filters when applied on image opening will

damage the integrity of leaf edge, but if it is too small, the linked area of different plants can

not be deleted. Therefore, we need to think beyond the simple morphological operation to
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(a) Original Image 1 (b) Processed Leaf 1

(c) Original Image 2 (d) Processed Leaf 2

(e) Original Image 3 (f) Processed Leaf 3

Figure 5.15: In Lab Leaf Segmentation using Ridge Filtering

improve the binarization results or we can eliminate it by planting with a larger gap between

individual plants. For one, Deep Learning Convolutional Networks can be used.

5.4.3 Row Crop Images and Deep Convolution Network Result

Our architecture demonstrates 78% accuracy in the training set and 65% accuracy in the

test set. Most of the inaccuracies can be contributed to the occluded images, which indeed is
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Figure 5.16: Demonstration of calculated d, σ

an open ended research challenge. On the other hand, even human error rates of marking

the occlusions were very high as the data set was marked and corrected for occlusions with

6x more likelihood than the separate plants. This means that one can expect a significant

human error rate present in the labeled data (even after twice repeated labeling process) that

contributes to the overall performance.

5.5 Discussion

Our findings show that these calculations can be done with high fidelity as further research

may be needed to compensate for quantization errors and other assumptions done by the

process. The presented method has certain pitfalls such as lack of flexibility to lighting

changes, which can be improved by introducing the adaptive techniques such as cost function

that determines quality of the transformation.

However, in this work we did not calculate the exact parameters as the Leaf size as it is

not determined directly from the image. Although the results are only relativistic, but we

believe it provides means for tracking the progression of health for every leaf by σ and d,

which implies that calculating LMA, LL, Am and Nm may be bypassed.
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(a) Original 1 (b) Original 2 (c) Original 3 (d) Original 4

(e) Processed 1 (f) Processed 2 (g) Processed 3 (h) Processed 4

Figure 5.17: Lighting impact on processing: left original, right processes.

Figure 5.18: Health Estimation Results

On the other hand, there were issues associated with the data set as well. many of the images

were taken of the same plant under different lighting conditions, however, the files were saved

in JPG compression format which is a lossy compression method which can compress images

up to 10:1 without significant loss of quality [41].

Histogram-based methods are very efficient compared to other image segmentation methods

because they typically require only one pass through the pixels. In this technique, a histogram

is computed from all of the pixels in the image, and the peaks and valleys in the histogram

are used to locate the clusters in the image. Color or intensity can be used as the measure.
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Figure 5.19: Overlapped Images
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Figure 5.20: Segmented Image Samples

A refinement of this technique is to recursively apply the histogram-seeking method to clusters

in the image in order to divide them into smaller clusters. This operation is repeated with

smaller and smaller clusters until no more clusters are formed. However, a disadvantage of

the histogram-seeking method is that it may be difficult to identify significant peaks and

valleys in the image.

Histogram-based approaches can also be quickly adapted for application to multiple frames

while maintaining their single pass efficiency. The histogram can be done in multiple fashions

when multiple frames are considered. The same approach that is taken with one frame can be

applied to multiple, and after the results are merged, peaks and valleys that were previously

difficult to identify are more likely to be distinguishable. The histogram can also be applied

on a per-pixel basis where the resulting information is used to determine the most frequent

color for the pixel location. This approach segments based on active objects and a static

environment, resulting in a different type of segmentation useful in video tracking.

There are some interesting issues to be considered further. We can compare morning and night

images to eliminate the shadow or use information of shadow/sun position for perspective
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Figure 5.21: Training, Testing and Validation Results of DCN

Figure 5.22: Health in the Control Loop

registration for better area calculation. The thresholding method is not adaptive and it

would require, human intervention for situations when results don’t make sense, or are out

of expected bounds. The satisfiability criteria calculation is a very lengthy and tedious

process, but with unsupervised learning techniques, perhaps one can adjust the threshold

automatically.
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Figure 5.23: Growth in the Control Loop

5.6 Conclusion

Results show that quad-copter based overhead imaging could be an effective method for

tracking growth parameters. Unfortunately, this method does not do well on overlapping

images, which are intended to be improved in the future works.

On the other hand, the findings indicate that plant health assessments could be moved

from lab and expensive monitoring tools to ubiquitous silicon technology based cost effective

solutions without much loss of accuracy. In fact, these parameters can also be computed on a

mobile device. This work used ridge filters to identify a skeleton for distance and density to

quantify traits such as LL and LMA, but that does not mean that other parameters cannot

be estimated as only these parameters were attempted for their simplicity of computation.
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5.6.1 Future Works

That said, we see a significant drop in quality of processing due to luminescence changes.

Moreover, our method of using conventional image processing techniques is light-weight.

However, by using deep learning techniques we hope to obtain improved results. This can

also be done on a mobile device by using neural accelerators.

Although we ended this Chapter with introduction to our Deep Learning results, the study

itself has just started and is promising to yield far better results than observed in the presented

study.

We are also interested in building apparatuses that have fixed background lighting to allow

improved imaging as well markings to determine the exact size of the plant. In this work we

have not found/presented effective ways of calculating the σ, d. However, utilizing the method

described in [105] for computing inscribed radius may be useful or again maybe trying some

of the more advanced Deep Learning techniques could be worthy.
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Chapter 6

Conclusions

This dissertation addressed the open ended research challenges in the domain of irrigation

systems, a man-made practice that is often wasteful and has global implications such as food

and water security. Although this work addressed parts of the not well understood pitfalls,

there are other aspects to irrigation science that still need thorough investigation. That said,

the results indicate that significant progress can be made towards improvement of irrigation

practice by utilizing state of the Cyber-Physical Systems approaches to modeling, monitoring,

design, sensing and control of irrigation systems.

Our initial contributions presented here were in the field of model development. In particular,

our initial contribution was novel modeling substrate that enables circuit simulation software

to simulate real world irrigation scenarios as covered in Chapter 2. The significance of this

work is not just in the result that enables simulation of irrigation phenomena specifically but

also in the method of the development of hydroelectric analogy inspired models, which are

developed using non conventional optimization techniques on a transfer medium, an electric

circuit modeling substrate.

Thereafter, this work presented and delved into the actual practice of irrigation to establish
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a monitoring and sensing strategy that can be utilized towards water improvement by human

management (see more in Chapter 3). That said, even better practices can be established

with a quantum leap improvement in design/development of connected, communicating and

self reconfigurable controllers such as the presented design methodology and TARS controllers

in Chapter 4.

Finally, any system, no matter how sophisticated, needs to be surveyed from end point for

yet another layer of scrutiny. Moreover as presented in Chapter 5, overhead imaging can

achieve this with machine vision to track health and growth of plants in the ultimate product

of the irrigation agricultural system.

In summary, here we introduced contributions in modeling, monitoring, control, design,

machine vision. These contribution are small pieces of a bigger puzzle that irrigation science

attempts to answer. I have hope that this work can improve irrigation practices from vineyards

to row crops and indoor farms. Indeed, advancements in silicon technology enable a great

deal integration of computational tools at fraction of production cost.

6.1 Implications

We have explored the circuit inspired modeling approach which utilized both continuous

differential models and machine learning principals and optimization techniques. We utilized

these models to devise control mechanisms and designed infrastructure to support such

controls.

Thank You for reading! That’s it.
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