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Abstract

We describe the perceptual foundations of a sensorimotor
model of early childhood phonetic and articulatory develop-
ment. The model’s auditory perception is sensitive to prosodic
and syllabic structure and simulates the categorical phonetic
perception of late infancy. Importantly, the model relies on
exclusively acoustic cues and their statistical distribution in
the linguistic environment, avoiding prior assumptions of
articulatory-acoustic correlations or linguistic contrasts which
are inappropriate for a model of perceptual development. The
model detects and categorizes speech segments, which, despite
their acoustic basis, correlate with linguistic events and articu-
latory gestures. The resulting representation supports not only
word recognition but also the unique demands of articulatory
motor control and its development. In simulations examining
the distinctiveness and faithfulness of the representation, we
find that it preserves and makes explicit information about the
phonetic properties of the acoustic signal.

Motivation

Human speech and human listening evolved together. It is
therefore plausible that speech perception is specialized not
only for word and sentence recognition but also for the
unique demands of articulatory motor control and that it
plays an important role in articulatory and phonological
development. Perception’s role in motor control is seldom
acknowledged except as the source of target sounds to be
imitated or learned. However, milestones of perceptual
development always precede corresponding milestones of
motor development. We hypothesize that the categorical
character of auditory perception which underlies robust word
recognition also acts as a grammar which defines the well-
formedness of children’s speech, shaping the distribution of
sounds in their productive repertories. The connection is
deeper: we conjecture that without the ability to parse speech
into discrete perceptual events, learning to speak would be
difficult, and it would not be possible to account for the com-
positional structure of speech which emerges in childhood.
In this paper we describe the perceptual foundations of a
sensorimotor model of early childhood articulatory and pho-
netic development (Markey, 1993). The model features an
auditory system that categorizes and recognizes speech
sounds, an articulatory system that includes a realistic vocal
tract model, and a central cognitive architecture that bridges
the two. The environment in which the model resides is also
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simulated, including an adult speaker and objects to be refer-
enced. Like an infant, the model’s auditory perception is sen-
sitive to prosodic and syllabic structure, organizes speech
sounds syllabically (Jusczyk et al., 1993), and simulates the
categorical phonetic perception of late infancy (e.g., Werker
et al., 1981; Kuhl et al., 1992), although it does not attempt
to explain the shift from acoustic to categorical phonetic dis-
criminations (see, though, Jusczyk, 1993).

Importantly, the perceptual model relies on exclusively
acoustic cues and their statistical distribution in the child’s
linguistic environment; it avoids prior assumptions of articu-
latory-acoustic correlations or linguistic contrasts. It is inap-
propriate to model perceptual development with features
which assume prior knowledge of articulatory-acoustic cor-
relations or semantic contrasts, knowledge the prelinguistic
infant does not possess. Segments and categories the model
detects are not the mature phonemes of adulthood; nor do
they correspond to distinctive features (Chomsky & Halle,
1965), traditional articulatory features (Ladefoged, 1972), or
any of myriad alternatives (e.g., Shillcock et al., 1992). The
model’s acoustic segments are longer in duration, at least
long enough to capture coarticulation between contiguous
consonants and vowels and to detect features of syllable
structure. They correspond to coarse-grained changes in
voicing, friction, and spectra. They identify the most salient
spectral features of an utterance.

Although such segments and categories are based on
exclusively acoustic measures, they correlate with linguistic
events and delineate articulatory gestures. The model’s audi-
tory perception is specialized to segment and categorize
acoustic feedback into discrete phonetic events which
closely correspond to discrete gestures learned by the vocal
tract’s articulatory apparatus. To imitate words, the model
need not solve the hard problem of relating continuous
speech sound and continuous vocal tract motion. It learns the
correspondence between one discrete sequence of events and
another. The model’s babble conforms to the linguistic envi-
ronment by learning to match the simplest categories of
sounds. Syllabic representations are stored in a lexicon and
shape whole word pronunciation.

As children master the production of new subsyllabic
sounds, they quickly generalize them to new lexical con-
texts, revealing a primitive compositional structure. Poorly
mastered and erroneously pronounced sounds reveal the
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same structure. Elemental articulatory skills seem to be
acquired in the context of larger more abstract phonological
patterns, but phonological competence may not be acquired
or demonstrated without articulatory skills.

In order to resolve this dilemma, the model views speech
as a hierarchical control problem. An abstract phonological
level of control composes each utterance out of one or more
elemental sounds, choosing which among lower level articu-
latory controllers is most likely to generate each sound. The
discrete perceptual events of segmented auditory feedback
thus regulate the timing and decisions of the abstract level of
phonological control. With continuous proprioceptive feed-
back as a guide, the articulatory control level choreographs
the exquisite timing of vocal tract and pulmonary motions
necessary to produce each elemental sound. A non-hierarchi-
cal motor control strategy is possible, but demands more
structure from the perceptual machinery. The hierarchical
control strategy seems to offer a more parsimonious distribu-
tion of structure between articulatory and perceptual compo-
nents and synergistic developmental strategies.

An acoustic-based phonetic representation

Auditory perception’s input is an unsegmented acoustic rep-
resentation of parental speech or feedback from the model’s
own speech. Its output is a phonetic representation of the
sequence of acoustic segments and spectral categories
detected in the utterance. We use “duck” as an example to
introduce how the model segments and categorizes speech
parcels. Figure 1a illustrates the model’s continuous acoustic
input as a schematic spectrogram of “duck”. Its vertical axis
is frequency (using the “Bark” scale), the horizontal axis is
time, and dark patches represent high energy sound. The
thick dark bands represent formants, the changing resonant
frequencies of the vocal tract; the variously-shaded vertical
area near 450 msec is a burst of noise. The horizontal bar
near zero frequency represents the underlying vibration of
the vocal cords.

A reasonable first step in parsing the unsegmented acous-
tic signal is to divide it into broadly classified periods of
sound — continuous periods of silence, voicing, and friction
(aspiration or frication). This approach yields a period of
voicing between 40 and 330 msec, friction between 370 and
410 msec, and three periods of silence. This is plausible,
given the broad segmentation of speech patterns by the audi-
tory nerve's adaptation properties (Seneff, 1988), but it is
clearly not sufficient to identify linguistically relevant spec-
tral features.

To further divide the utterance, we consider locating tem-
porally stable spectral patterns associated with the steady-
state portion of vowels and other sonorants, fricatives, and
aspiration. Consonants and diphthongs are the result of the
vocal tract in motion, and hence are not associated with a
single static acoustic pattern. Even the spectral pattern which
accompanies some vocal tract closures, such as the nasal
undertone which accompanies /m/, /n/, and /N/,! does not
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Figure 1: Schematic spectrogram of “duck” without (1a)
and with (1b) segmentation.
Segments are numbered as follows: (1, 6, 8) Silence, (2)

Prevoicing, (3, 5) Transitions [dA] and [Ak], (4) Static
segment [A], and (7) Burst [k"].

reveal the consonant’s place-of-articulation.

Consequently, consonant identity can be determined only
indirectly from dynamic spectral patterns. Points of maxi-
mum spectral change are the most salient portion of an utter-
ance for consonant and syllable perception in adults (Furui,
1986; see also Lindblom & Studdert-Kennedy 1967) and are
especially salient for young children (Nittrouer & Studdert-
Kennedy, 1987; Nittrouer, 1992). Thus, a reasonable second
step in parsing this signal is to identify periods of maximal
and minimal spectral change.

By this method, there are eight acoustic segments in
“duck”. Their location in the utterance is portrayed in Figure
1b, which divides the time axis by segment rather than equal
units of time. After an initial silence (segment 1), a period of
prevoicing (segment 2: 50 msec) is detected during which
vocal-cord vibration is audible, but the spectrum of the vocal
tract’s resonant sound structure is obscured by the /d/’s clo-
sure. Once a spectrum becomes apparent, it is scanned for
the relative degree of spectral change. Transitions (3, 5 at
100 and 300 msec) are segments corresponding to maximal
spectral change; formant slopes are greatest. The static seg-
ment (4: 200 msec) corresponds to a period of minimal spec-
tral change; formants are relatively flat. After a period of
silence (6: 350 msec) during the unvoiced /k/'s closure, a
burst (7: 370 msec) of intense but rapidly decaying friction is
detected when the contact of tongue body and velum is
released. This is followed by a final period of silence (8).

Once segmented, the next step is to draw a sample static
spectrum from each static segment and match it with proto-
type categories of steady-state sounds. Likewise, the model
samples dynamic spectral properties during transition or
burst segments and matches the sample against prototype

1. UNIBET (MacWhinney, 1991) instead of IPA phonetic
symbols are used. Some UNIBET symbols which differ from
IPA’s include: N as in ping, T ether, D either, S shoe, Z azure,
I bit, E bet, & bat, A but, U foot, O law, 6 above.



categories of dynamic sounds. The model learns an inven-
tory of prototype categories for static and transition spectra
from its linguistic environment. In the example above, let us
assume that the model has already learned an inventory of
prototype spectral categories. Then static spectral properties
of segment 4 match the prototype static spectrum corre-
sponding to the vowel [A]. The dynamic spectral properties
of segments 3, 5, and 7 match transition spectrum prototypes
corresponding to demisyllables [dA] and [AKk], and aspirated
stop consonant release [k"] respectively.

Form of the phonetic representation

This process generates information about the type, absolute
order, and spectral properties of each acoustic segment.
Other requirements of the complete sensorimotor model
such as motor control, lexical access, and short term memory
place additional constraints on the optimal form of the mod-
el’s phonetic representation. They demand a representation
whose size does not vary with the length of the utterance,
which encodes relative order of acoustic segments, and
which nonetheless faithfully captures important acoustic
properties of the entire utterance and admits an accurate met-
ric and efficient algorithm for determining the phonetic dis-
tance among utterances.

The model employs a phonetic feature vector with one unit
for each feature. A unit’s activation is increased each time
the property it encodes is detected in an utterance, by a
degree inversely related to the acoustic distance between
speech token and feature prototype. Spectral features encode
spectral properties and their relative order in the utterance.
Segmental features encode acoustic segment properties and
their relative order in the utterance.

Spectral features

Prototype categories of static and transition spectra provide
the raw material for spectral features. Activations corre-
sponding to prototypes of [dA], [A], [Ak], and [k"] are
increased as each segment is detected in “duck”.

Transition and static segment categories implicitly encode
spectral properties and their relative order. For example, in
“duck” the [dA] segment encodes the spectral change which
occurs as the tongue moves from an alveolar closure for /d/
or // to the opening for the intended vowel /A/. Static seg-
ment [A] must follow transition segment [dA]. Segment
[Ak] encodes the spectral change which occurs as the tongue
makes contact with the velum for the /k/. It cannot precede
[dA] except in a multi-syllabic utterance.

Segmental features

Acoustic segment classifications and a contextual encoding
of segmental order are the ingredients of segmental features.
Segment type is distinguished by five acoustic cues — voic-
ing, friction, spectral change, spectral stability, or moments
of relatively intense, quickly changing sounds. Eight seg-
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Table 1: Segment Types and Defining Acoustic Cues

Segment type Voice Fric- Tran- Stable Un-

tion sient stable
Silence (0) 0 0 0 0 0
Prevoicing (P) | 0 0 0 0
Static (S) 1 0 0 | 0
Transition (T) 1 0 1 0 0
Voiced friction (Z) 1 1 0 1 0
Voiceless friction (F) 0 1 0 1 0
Transition friction (H) 0 1 1 0 0
Burst (B) 0 1 1 0 1

ment types observed in English are described in Table 1. As
“duck” is perceived, segment type activations are increased
as each segment is encountered.

The model encodes the relative, not absolute, order of seg-
ment types. It does so by forming a cluster of the three most
recently detected acoustic segment types. This coding
scheme is similar to Wickelgren’s (1969) context-dependent
allophone sequence encoding. Many segment type clusters
encode important linguistic cues. Contiguous prevoicing and
transition segments (PT or TP) indicate a voiced stop conso-
nant in many contexts (e.g., the initial consonant in “duck™);
a transition-silence-burst subsequence (TOB) signals a word-
final unvoiced stop (e.g., the final consonant in “duck™); a
transition-static-transition (TST) cluster usually signals a
consonant-vowel-consonant syllable; and a static-transition-
static (STS) cluster signals a diphthong,

Because of the role of the three-segment clusters in encod-
ing the temporal patterns of voicing, friction, silence, and
syllable structure, we call them “prosodic triads”, where
“prosodic” is used here in the Firthian sense as suprasegmen-
tal but subsyllabic and syllabic structural features.

Superimposed activations and phonetic distance

To summarize, there are four classes of phonetic features —
acoustic segment types, prosodic triads, static spectrum cate-
gories, and transition spectrum categories. Static and transi-
tion categories are learned from the linguistic environment.
The phonetic representation is an activity pattern over a vec-
tor of units, one for each feature. Activations accumulate
until the end of an utterance. This superposition of contex-
tual and global phonetic features is a faithful representation
(Smolensky, 1990) of any one-syllable utterance.

Phonetic categorization and category learning

Phonetic features are learned. The model builds an inventory
of prototype acoustic segments that correspond to phonetic
feature categories. They represent those transition and static
spectra recognized as relatively distinct according to an
acoustic distance measure and statistically important accord-
ing to their relative frequency in parental speech.

Each time an audible segment is detected, auditory percep-
tion measures the acoustic distance between the token’s



spectral properties and the corresponding inventory of spec-
tral prototypes, activating each by an amount inversely
related to acoustic distance. New prototype categories are
learned by a simple competitive process (Grossberg, 1976;
Carpenter & Grossberg, 1987). If a token segment is close to
existing prototypes, winning prototypes are updated. Other-
wise, a new prototype is added probabilistically, using the
current token as the new prototype. Such probability is pro-
portional to the token's distance from its nearest neighbor,
but is low enough to discourage a proliferation of gratuitous
categories.

Relationship between acoustic segments, gestures,
and linguistic units

Transitions usually signify demisyllables, diphthongs, or
glides. Static segments signify the stable portion of vowels,
nasals, approximants, and fricatives. Grounding the sen-
sorimotor model is a one-to-one correspondence between
phonetic segments and articulatory gestures — its funda-
mental perceptual and articulatory building blocks. Several
investigators have proposed that humans produce speech as
a sequence of articulatory gestures as from a musical score
(Browman & Goldstein, 1989; Saltzman & Munhall, 1989;
Kelso et al.,, 1986). Moreover, Fowler (1991) argues that
humans perceive speech as gestures instead of as phonemes.

The model’s mechanism for gesture perception is its detec-
tion of spectral transitions. This is based on the observation
that transitions correspond approximately to the zenith of
articulatory gestures and that static segments correspond to
the ends of gestures. It is also motivated by research showing
that spectral transitions are essential for consonant and sylla-
ble perception in adults (Furui, 1986) and young children
(Nittrouer, 1992), as well as by the performance of automatic
speech recognition systems which use dynamic spectral data
(e.g., Lee, 1990). Moreover, distinctive nonlinear acoustic
changes usually occur between a gesture's terminal configu-
rations (Stevens, 1989), enhancing spectral transitions and
ensuring their reliability as linguistic codes.

Perceptual Model Implementation
and Simulations

We have implemented the perceptual model and are cur-
rently integrating it into the full sensorimotor model. Here
we report results showing the properties of the transition and
static spectra, the distinctiveness and faithfulness of its
demisyllabic encoding. The results indirectly indicate the
reliability of the segmentation algorithm.

Stimuli are synthetic consonant-vowel (CV) syllables gen-
erated by an adaptation of Haskins Laboratories’ ASY artic-
ulatory synthesizer (Rubin et al., 1981). The synthesizer
employs 6 vocal tract articulators representing a total of 10
degrees of freedom to specify the vocal tract’s configuration.
Voicing and frication is modeled by a simple mechanical-
acoustical model of respiration. Low level dynamics of the

598

Smoothed static Bark spectra for “duck” onset

30 v
184 msec 2nd Formant
6 208 msec__ /A\ motion \ _
o 20F =
o 154
10¢ 4
i . 7 Bark
R 5 0 15
Difference spectra for “duck” onset
h "2nd Formant "
u 5 motion -\ .
L] '\\ -~
£ o
-‘5-_ 184 msec
§ 7 208 msec_ Bark
% s 10 15
Transition spectra averaged 184 to 208 msec.
1
L*]
ol e N Lo ol
E'.:. 2nd Formant motion indi- —— ]
ated by transiti ctru
cate Y transition spe m B ark
7 3 0 s

Figure 2: Static and transition spectra for onset
demisyllable of “duck”

Steps in spectral analysis are shown above. The first step
is conversion from Hertz to Bark frequency and Gauss-
ian smoothing. The peak near the 10 bark detector is the
2nd formant, dropping in frequency between the two
sample times of 184 and 208 msec. The difference spec-
trum effectively normalizes the spectrum for changes in
amplitude. The 2nd formant frequency shift is evident

The 2nd formant's change is captured in the transition
spectrum during the period of maximum spectral
change. The positive value at 10 bark reflects the for-
mant’s drop in frequency and the increased amplitude of
the difference spectrum at that frequency. The negative
value at 11 bark occurs behind the formant’s motion,
where the difference spectrum has fallen in amplitude.

articulators are simulated as simple gestures which resemble
the motion of a critically damped spring of a given stiffness
from some displacement to its equilibrium point. A script
language specifies a queue of gestures and proprioceptive
triggering conditions (an intrinsic timing device) necessary
to produce an utterance. Each stimulus employs one of three
stop consonants (b, d, g) and one of ten target vowels. Opti-
mal vocal tract configurations necessary to accurately render
each target vowel are determined, and gesture script tem-
plates are designed and fine-tuned by the experimenter for
bV, dV and gV frames. Selecting target vowel and consonant



amplitude

Figure 3: Transition magnitude for duration of “duck”

The transition magnitude T (solid line) and the norm of
the difference spectra (dashed line) are shown for the
entire utterance in the graph above. Also shown are the
approximate locations of linguistic segments. Spectra in
figure 2 correspond to the first transition peak between
/d/ and /A/.

at random, we generate 1,350 syllable tokens — about 45
tokens per syllable type.

To generate each token, Gaussian noise is added to each
vowel’s articulatory parameters. There is no way to deter-
mine if each resulting sound actually corresponds to the
intended syllable type or even whether it is a legal sound of
English without actually listening to it. The experimenter
transcribes each token, rejecting any non-English sound and
rejecting any sound whose phonetic transcription does not
agree with the intended type. The 892 remaining tokens are
divided into training, validation, and test sets for supervised
classification tasks.

Sounds are sampled once every 8 msec for periodic sound
(voicing) amplitude, aperiodic sound (frication or aspiration)
amplitude, and 256-frequency power spectrum. Spectral
analysis converts the power spectrum from Hertz to Bark,
performs Gaussian smoothing over time, and normalizes for
total amplitude by computing a difference spectrum. The
momentary transition spectrum is the first derivative of the
difference spectrum with respect to time. The transition mag-
nitude is the L; norm of the transition spectrum minus the L,
norm of the difference spectrum. The peak transition spec-
trum is sampled as an average of the momentary transition
spectra for a 50 msec period centered at the point when the
transition magnitude is at a local maximum. An example is
presented in Figures 2 and 3, above. Further details are avail-
able in Markey (1993).

We then measure phonetic distance 2 among all syllable
stimuli. This is determined as a function of the linear correla-
tion p between each pair of token transition spectra
D(T,T) = I.O—p{T", T) (e.g., Pomerleau, 1993). We use
this distance measure here and as the basis for unsupervised
classification of parental speech by the full sensorimotor
model because it factors out irrelevant differences in scale
between two spectra.

As a further test of the encoding’s faithfulness, a multi-
layer back propagation network is trained to classify sylla-
bles by eight features for vowel quality and consonantal

399

place-of-articulation using transition spectra as input. The
same test is performed with both transition and difference
spectra as input, since acoustic information is lost by the
transition spectrum. As a control, we train a time-delay neu-
ral network (TDNN; Waibel et al., 1989) on the same task,
using as input smoothed bark spectra over the entire duration
of the consonant-vowel transition (averaging 168 msec).
Each network is trained until a validation dataset indicates
overtraining and then is tested using separate test dataset.

Results

The average phonetic distance between pairs of syllables of
the same type is 0.211. The average distance between pairs
of syllables of different types is 0.955. Thus, tokens of the
same type appear to be relatively clustered in the representa-
tional space. A tabulation of average cross-distances for all
bV syllable types appears in Table 2.

Table 2: Mean phonetic distance measured between bV
syllable tokens

bA ba bo bO bu bU b& BbBE bi bl
bA 018 089 092 095 106 053 119 080 125 1.09

ba 033 088 072 094 092 081 096 115 093
bo 039 085 1.05 093 079 075 1.02 0.86
b0 013 09 1.03 086 091 129 1.12
bu 062 1.18 099 1.01 081 077
bU 033 123 079 021 121
bé& 008 065 098 0.85
bE 0.13 1.06 063
bi 0.12 0.80
bl 0.09

Syllable types with the same vowel type but with different
consonants (gE, dE, bE) are less distant with respect to each
other (see Table 3) than syllables with the same consonant
but different vowels (bE, bi, bo, b&, etc., below). Several
tokens in the simulation corpus (especially Co and CO sylla-
bles) are not phonetically distinct. These tokens are also dif-
ficult for the experimenter to transcribe phonetically.

Table 3: Additional Phonetic Distance Comparisons

Same Vowel Hard Discrimination
bE dE gE bo do go
bE 0.13 055 0.50 bo 039 0.52 039
dE 0.08 0.57 do 043 0.39
gE 0.10 go 0.27

Supervised classification tests also suggest that the transi-
tion spectrum is a robust demisyllable representation. Sylla-
ble classification errors by the network which uses only the
transition spectral coefficients as inputs is 5.29%. Error rates
are substantially lower when both transition and difference
spectra coefficients are used as inputs, dropping to 0.85%
when both transition and difference spectra coefficients are
rescaled to range between 0 and 1.



Table 4: Supervised Training Error Rates

Method and Inputs %0 Error
Backpropagation, 44 Transition spectrum coef- 5.29%
ficients as inputs.

Backpropagation, 44 Transition and 44 Differ- 1.77%
ence spectrum coefficients.

Backpropagation, 44 Transition and 44 Differ- 0.85%

ence spectra coefficients rescaled.

TDNN, 44 Bark spectrum coefficients for each
of 21-8 msec frames, 3-frame input window.

1.59%

The TDNN network’s performance is similar. This is not
surprising, as it must discover those static and dynamic fea-
tures necessary to classify each syllable (Waibel et al., 1989).

Typical errors for all methods include single mistaken fea-
tures, features just under threshold, or confusion in deciding
the place-of-articulation.

Supervised classification results are encouraging for the
use of transition data for segmentation and syllable classifi-
cation without needing to learn segmentation strategies first.
However, results point out that both dynamic and static spec-
tral information is essential for accurate classification.

Although the sensorimotor model and these simulations
employ synthetic speech, it may be possible and desirable to
extend the method to automatic human speech recognition.
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