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Abstract: Based on sea surface height anomaly (SSHA) from satellite altimeter and microwave
radiometer datasets, this study investigates atmospheric responses to oceanic eddies in four subdomains
of the North Pacific Ocean with strongest eddy activity: Kuroshio Extension (KE), Subtropical Front
(SF), California Coastal Current (CC) and Aleutian Islands (AI). Analyses show that anticyclonic
eddies cause sea surface temperature, surface wind speed and precipitation rate to increase in all
four subdomains, and vice versa. Through a further examination of the regional dependence of
atmospheric responses to oceanic eddies, it is found that the strongest and the weakest surface wind
speed responses (in winter and summer) are observed in the KE and AI region, respectively. For
precipitation rate, seasonal variation of the atmospheric responses to oceanic eddies is strongest in
winter and weakest in summer in the KE, CC and AI regions, but stronger in summer in the SF area.
The reasons for such regional dependence and seasonality are the differences in the strength of SST
anomalies, the vertical kinetic energy flux and atmospheric instability in the four subdomains.

Keywords: mesoscale eddies; atmospheric responses; regional dependence; North Pacific Ocean

1. Introduction

Mesoscale eddies are ubiquitous in oceans globally [1–6] and play integral roles in redistributing
ocean heat, salt, momentum and nutrients [7–20]. These structures span tens to hundreds of kilometers
and can occur from tens to hundreds of days.

Recently available high-resolution satellite measurements of the global ocean and the rapid
development of supercomputing resources has led to more intensive mesoscale air–sea interaction
research. Extensive research shows that the majority of sea surface temperature anomaly (SSTA)
phenomena are associated with oceanic mesoscale processes such as oceanic mesoscale eddies and
fronts [2,9,21–23]. Several studies [24–30], using satellite and numerical data to investigate air–sea
interactions over mesoscale oceanic eddies and frontal regions, show a high positive correlation between
wind speed and SST. Their results are contrary to basin-scale ocean circulation and variation driven by
the overlying atmosphere (wind stress), which portray a negative correlation between wind speed
and SST in the extratropics. The effects of transient oceanic eddies on the overlying atmosphere are
examined in Kuroshio Extension [24], Kuroshio, Gulf Stream, Agulhas Return Current, and Southern
Ocean [28–30] regions, respectively. In these studies, it is found that cyclonic (anticyclonic) eddies can
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promote decreases (increases) in SST, wind speed, cloud liquid and precipitation rate. Recent studies
also indicate that oceanic frontal-scale variations in some strong current regions impact the marine
atmospheric boundary layer (MABL) [29,31], and even the troposphere [21,24,32].

Two primary mechanisms are responsible for sea surface wind responses to SSTA: (1) the vertical
mixing mechanism [32,33], in which the near-surface atmosphere becomes unstable over warmer SSTs,
thereby inducing an enhanced downward momentum transport from higher up in the atmospheric
column and consequently, intensifying surface winds; (2) the sea level pressure (SLP) adjustment
mechanism [34], where SST anomalies alter the MABL’s air temperature, resulting in an SLP increase
on the cold side. Over warm SST, these low-pressure anomalies generate cyclonic circulation and
induce surface wind convergence.

As discussed above, several previous studies have investigated the effects of mesoscale eddies
on the overlying atmosphere in specific regions [24,27–32,35–37], such as Kuroshio Extension [24],
Gulf Stream, Agulhas Return Current, Southern Ocean, and Kuroshio [27–30] regions. Such separate
studies do not answer how the oceanic and atmospheric conditions affect the atmospheric response
to the oceanic eddies, which is essential to understand the problem fully. In the present study, we
chose four areas to investigate how the oceanic eddies impact the atmospheric physical processes
under different oceanic and atmospheric conditions. However, studies on the regional dependence of
atmospheric responses to oceanic eddies are still lacking. To bridge this gap, we used high-resolution
satellite data and a reanalysis product to establish two air–sea coupled mesoscale eddy data sets
in four eddy-rich subdomains of the North Pacific Ocean: Kuroshio Extension [KE, (28◦N–42◦N,
140◦E–180◦E)], Subtropical Frontal region [SF, (15◦N–23◦N, 123◦E–150◦W)], California Coastal Current
[CC, (20◦N–40◦N, 105◦W–140◦W)] and Aleutian Islands [AI, (48◦N–56◦N, 165◦E–155◦W)]. We used the
two datasets to examine the regional dependence of atmospheric responses to mesoscale eddies with
temporal variations by comparisons among the four subdomains. The underlying mechanisms are
also discussed.

The remainder of the present paper is organized as follows: Section 2 introduces the data and
method; Section 3 investigates eddy characteristics and atmospheric responses to mesoscale eddies.
Sections 4 and 5 are a discussion of the underlying mechanisms and a summary, respectively.

2. Data and Methods

2.1. SSHA

Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) produce and
distribute altimeter SSHA datasets at a spatial resolution of 1/3◦ × 1/3◦ and a weekly time resolution.
Data covering 2002–2010 in the four North Pacific subdomains are used.

2.2. AMSR-E

The Advanced Microwave Scanning Radiometer (AMSR) is a passive microwave radiometer with
twelve channels and six frequencies installed on the National Aeronautics and Space Administration’s
(NASA’s) Aqua satellite. It measures brightness temperatures in vertical and horizontal polarizations
at 6.9, 10.7, 18.7, 23.8, 36.5 and 89.0 GHz. Footprint spatial resolutions are 75 × 43 km, 51 × 29 km,
27 × 16 km, 32 × 18 km, 14 × 8 km and 6 × 4 km, respectively. Wind speeds can be inversed with
measured brightness temperatures in multi-channels at both low (6.9 and 10.7 GHz) and high (36.5 GHz)
frequencies. Moreover, the low frequency 6.9 and 10.7 GHz channels are applied to retrieve SST and
the 23.8 GHz channel is chosen as the water vapor absorption frequency. For the precipitation rate
and cloud liquid water, inversion techniques are based on brightness temperature at channels 36.5
and 89.0 GHz. The detailed algorithms could be found in Shibata et al. [38]. The present study applies
the grid daily data (SST, sea surface wind, water vapor, cloud liquid water and precipitation rate)
distributed by Remote Sensing Systems (REMSS) with a spatial resolution of 25 km. We focus on the
period 2002–2010 in the four North Pacific subdomains.
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2.3. J-OFURO3

The latent and sensible heat fluxes are estimated from the bulk formula: QS = ρCpCSU10(ts −

ta), QL = ρLECLU10(qs − qa), with SST, wind speed, air temperature and specific humidity, where QS
and QL are the latent and sensible heat fluxes; Cp, CS and CL are the specific heat capacity of air, sensible
and latent heat transfer coefficients, respectively; LE represents the latent heat of evaporation; U10 is
the wind speed at 10 m above the sea surface; ta and ts are the air and sea temperature, respectively;
and qs and qa are the 10 m specific humidity at the sea surface and above, respectively. The Japanese
Ocean Flux with Use of Remote Sensing Observations (J-OFURO) [39] version 2 dataset is employed
to obtain latent and sensible heat fluxes at a spatial resolution of 0.25◦. Both high-resolution fluxes
are obtained from satellite data provided by the School of Marine Science and Technology at Tokai
University and are available from January 1988 to December 2013. We focus on the period of 2002–2010
in the four North Pacific subdomains.

2.4. CFSR

The Climate Forecast System Reanalysis (CFSR) dataset is a global coupled atmosphere–ocean–land
surface–sea ice system reanalysis product. SST, surface winds (10 m) and heat fluxes (latent and sensible)
data with a spatial resolution of 0.313◦ × 0.313◦, and wind, vertical velocity and air temperature data
at isobaric levels and sea surface pressure on a 0.5◦ × 0.5◦ grid are employed. The 6-hourly product
spans from 2002 to 2010.

2.5. Eddy Detection Scheme

In this study, we apply the eddy-detection algorithm proposed by Nencioli et al. [40]. This method
is based on eddy vector geometry and has successfully used in a variety of earlier eddy-related
studies of different oceans [41–43]. The detection scheme is applied to 9 years (2002–2010) of altimetry
SSHA-derived geostrophic velocity anomalies to obtain the eddy dataset used in this study. The eddy
detection scheme is briefly introduced below; four criteria are defined to determine an eddy center
based on the geometry of velocity vectors:

1. Along an east–west (E–W) section, the v′ component of velocity changes sign across the eddy
center, and its magnitude increases away from the center.

2. Along a north–south (N–S) section, the u′ component of velocity changes sign across the eddy
center, and its magnitude increases away from the center. In addition, the u′ or v′ component
should rotate in the same direction.

3. The minimum velocity, which is defined at the eddy center in a region which extends up to a
specific grid point.

4. The directions must change with an invariable rotation direction of two neighboring velocity
vectors around the eddy center, and be located within the same or two adjacent quadrants.

u′ and v′ are the geostrophic current anomalies as calculated from the AVISO SSHA dataset.
Only where a point satisfies all the criteria listed above is an eddy center defined. The outermost
closed streamline around the center is then searched for and the eddy boundary is regarded as the
point where the velocity magnitude ceases to increase in the radial direction.

2.6. Method of Matching Atmospheric Variables with Oceanic Eddies

The fine-scale characteristics of atmospheric and oceanic variables (such as SST, wind speed and
precipitation rate) are obtained through an 8◦ zonal moving average subtracted from each variable (the

formula is X(i,k) = X(i,k) −
(
X(i,k)

)
8◦zonal_average

, where X represents SST, precipitation rate, wind speed,

etc.). Eddies with SSTA at the eddy center less than −0.05 ◦C (for cyclonic eddies) and larger than
0.05 ◦C (for anticyclonic eddies), and radii larger than 20 km, are selected. As a result, there are about
14,677, 19,636, 16,684 and 12,220 cyclonic eddies, and 14,469, 22,043, 16,747 and 13,195 anticyclonic
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eddies in the KE, SF, CC and AI regions, respectively. The matching method is adopted from Ma et
al. [24]. Figure 1 is the schematic diagram for the matching method. The 4◦ × 4◦ bin is large enough to
cover the oceanic eddy to undertake composite analysis. The bin 12◦ × 12◦ is selected as the background
for the eddy field.
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Figure 1. The schematic diagram for the matching method.

3. Results

3.1. Statistics of Eddy Characteristics

Eddy kinetic energy (EKE) is used to characterize eddy activity intensities and is calculated by the
formula: EKE = 1

2 (u′
2 + v′2), where u′ and v′ are the geostrophic current anomalies. Figure 2 shows

the 90-day high pass-filtered surface EKE averaged from 2002 to 2010 in the North Pacific. The highest
EKE occurs in the KE and SF regions [42,43]. In addition, compared with adjacent areas, EKE is also
high in the AI and CC regions. The largest EKE in the KE region is primarily caused by the strong
horizontal shear and the meandering of the Kuroshio path [42]. The higher EKE in the SF region
is predominantly modulated by the baroclinic instability of the background currents [44]. The CC
region is characterized by strong eddy activity where the persistent equatorward wind causes coastal
upwelling fronts. Instability of these upwelling fronts results in eddy generation. The instability of the
coast shelf trapped jet causes the eddy formation in the AI region. One can see that the eddy generation
mechanisms are varied in the four subdomains, which could cause a difference in mesoscale air–sea
interaction characteristics in the four regions.
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Satellite altimetry data provides an opportunity to characterize eddies in terms of their basic
parameters such as polarity, lifetime, size, vorticity and moving speed in the four subdomains. We utilize
two eddy counting methods. Eddy number is defined using the trajectory method (Lagrangian method:
counting all the eddies over the course of its lifetime as one eddy [1]), and also through the snapshot
method (Eulerian method: counting each individual eddy on the snapshot in each moment as one
eddy [45]). Figure 3 shows the histogram of eddy radii and lifespans. The eddy size is the largest in
the SF region and the smallest in the AI region (upper panels in Figure 3). Eddy sizes in the KE and
CC regions are similar. The peak eddy radius differs in each subdomain, with 60–70 km in the SF
region, about 50 km in the KE and CC regions, and only 40 km in the AI region. Eddy size decreases
from the low to high latitudes. Eddy sizes at each latitude are close to the first baroclinic Rossby wave
deformation radius [46], which mainly controls the eddy characteristics. According to Chelton et al. [46],
when the latitude is greater than 5◦, the first baroclinic Rossby wave deformation radius decreases
poleward. Eddy lifespans are displayed on the bottom panels of Figure 3. Both cyclonic and anticyclonic
eddy numbers decrease as lifespan increases. Eddies with lifespans equal to and longer than 4 weeks
are selected for the present study, which reduces uncertainties in eddy detection.
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Figure 3. Histograms of eddy sizes (upper panel) and eddy lifespan (bottom panel).

Vorticity is one of the main parameters used to describe eddy intensity. Figure 4 presents the
distributions of the eddy vorticity normalized by the local Coriolis coefficient for the four subdomains
where it can be observed that the pattern follows a normal distribution. The eddy vorticity is defined
at the approximate eddy center. The largest normalized eddy vorticity at the peak occurs in the SF
domain (anticyclone: −0.13, cyclone: 0.14), the smallest in the AI region (anticyclone: −0.03, cyclone:
0.03). Normalized vorticity at the peak is about −0.1 (0.1) for anticyclonic (cyclonic) eddies in the KE
region and −0.04 (0.04) in the CC region. The oceanic eddies are stronger in SF and KE due to the
strong baroclinic instability in these two areas. In detail, in the SF and KE regions, the strong density
front is presented around the year. Due to the baroclinic instability, the high available potential energy
stored in the density front in the SF and KE regions is released to the eddy kinetic energy, causing
strong eddy activities in these two regions.
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Eddy movement is also an essential eddy characteristic. Westward movement is a common feature
for the eddies in all four domains (left panel in Figure 5). In the SF area, the westward propagation
speed is between 3.8–11.1 cm·s−1. Furthermore, the speed decreases with increasing latitude. The same
distribution is observed in the CC region but with zonal speeds ranging from 0.8 to 3.93 cm·s−1. In the
KE region, the westward movement increases with the latitude till 30◦N, then decreases to almost zero
at around 33◦N. It increases between 33 and 36◦N, and then decreases with the latitude. This behavior is
because the main axis of the eastward KE current located near 35◦N obstructs the westward movement
of eddies. In the AI domain, the eddies propagate westward with a small zonal speed in a range of
0 to 0.93 cm·s−1. These results are generally congruent with results observed by Chelton et al. [46],
which show that eddy propagation speed is of the same order as the first baroclinic Rossby wave
propagation speed decreasing with the latitude. The curves of the northward movements of eddies in
the four subdomains share a similar "Z-shape" (right panel of Figure 5). Eddies in the southern part of
each subdomain tend to move northward with larger speeds, while eddies in the northern part move
southward with smaller speeds.
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3.2. Atmospheric Responses to Eddies

3.2.1. Wind Speed

Atmospheric responses to oceanic mesoscale eddies are primarily manifested in sea surface winds,
precipitation and heat fluxes. Figures 6 and 7, respectively, show the winter and summer composites
of SST and sea surface wind speed anomalies in response to the oceanic eddies. In each subdomain,
wind speed anomalies are positive for anticyclonic eddies both in winter and summer, and negative for
cyclonic eddies. Furthermore, the maximum wind speed anomalies are located over the eddy center,
corresponding to the maximum SST anomalies. However, the magnitudes of the wind speed anomalies
vary from region to region and exhibit a distinct seasonal variability. During the wintertime, the wind
speed anomaly and SSTA is the strongest in the KE region (0.5 m·s−1, 0.7 ◦C). However, little difference
can be observed in the other three subdomains (0.2–0.3 m·s−1, 0.15–0.3 ◦C). In summer, wind speed
anomaly and SSTA is still the largest in the KE region (0.35 m·s−1, 0.7 ◦C) and the smallest in the AI
region (0.1 m·s−1). The wind speed anomaly (SSTA) is about 0.2 m·s−1 (0.25 ◦C) in both SF and CC
regions. Therefore, regardless of season, the eddy impacts on the sea surface wind speed and sea
surface temperature are the strongest in the KE region.
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3.2.2. Precipitation

As shown by the previous analyses, oceanic eddies thus contribute to SST and wind speed
anomalies. Moreover, mesoscale eddies also influence the local cloud coverage and precipitation due
to changes in atmospheric stability and anomalous secondary circulation. Previous studies [6,28] show
that this can happen in two ways: vertical motion caused by anomalous surface divergence (dynamic
effect), and changes in the water vapor content (thermodynamic effect).

Figure 8 displays composites of precipitation above oceanic eddies. The precipitationrate anomaly
above anticyclonic eddies is positive (negative in cyclonic eddies) in agreement with previous
studies [24,28]. However, the magnitudes of the precipitation rate anomalies differed among the
subdomains. In winter, the largest and smallest anomalies occur in the KE and AI regions, respectively.
The CC and SF regions follow after the KE region. Summer and winter present distinct, regional
dependence of precipitation. The maximum value is still located in the KE region while the minimum
value appears in the CC region, instead of the AI area. In addition, in comparison with the winter
season, the magnitude of the precipitation rate anomaly increases in the SF region, in contrast to the
wind speed anomaly displayed in Figures 6 and 7. This observation may be related to the difference in
the atmospheric environment of each subdomain. More detailed discussions are given in Section 4.
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3.2.3. Heat Flux

Latent and sensible heat fluxes are two crucial factors in the transfer of heat between the ocean
and atmosphere. When an air mass moves over a mesoscale eddy, a turbulent heat flux anomaly
is caused by differences in humidity in addition to SST and wind speed anomalies at the ocean
surface. For anticyclonic eddies, warm SST anomalies increase the temperature difference between the
ocean and atmosphere, and increase the sensible heat flux transfer from the ocean to the atmosphere.
Simultaneously, the anomalous warming also increases the saturated specific humidity, which in turn
increases the humidity difference between sea and air. Thus, the evaporative cooling at the sea surface
is enhanced and the latent heat flux increases. Therefore, anticyclonic eddies correspond to upward
turbulent heat flux anomalies; that is, the ocean heats the atmosphere. On the other hand, cyclonic
eddies correspond to downward turbulent heat flux anomalies, where the ocean absorbs heat from the
atmosphere [24].
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The contours in Figure 9 show that negative latent heat flux anomalies are indeed found above
cyclonic eddies in winter and summer (sensible heat flux anomalies are not shown since they have
the same pattern). The shading in Figure 9 shows the opposite case of an anticyclonic anomaly.
Table 1 shows the maximum sensible and latent heat flux anomalies, enhanced by the oceanic mesoscale
eddies in the KE, SF, CC and AI regions. The heat flux altered by oceanic mesoscale eddies is stronger
in winter than summer. The atmospheric response to SST anomalies of oceanic mesoscale eddies is the
strongest in the KE region and the weakest in the AI region. Here, the influence of eddies on heat flux
is slightly stronger in cyclonic than anticyclonic eddies.

Table 1. The maximum heat fluxes anomalies over anticyclonic (cyclonic) eddies.

Variables
Subdomain KE

Cyclone/Anticyclone
SF

Cyclone/Anticyclone
CC

Cyclone/Anticyclone
AI

Cyclone/Anticyclone

Sensible heat flux Winter
(Summer)

Unit: W·m−2
12.6 (3.2)/−14.8 (−4.4) 2.9 (1.1)/−3.7 (−1.7) 2.6 (2.0)/−3.6 (−1.9) 2.1 (0.5)/−3.2 (−0.6)

Latent heat flux Winter (Summer)
Unit: W·m−2 19.6 (6.9)/−24.5 (−9.9) 9.3 (5.1)/−12.1(−7.4) 6.9 (4.1)/−7.8 (−4.5) 2.1 (0.5)/−2.3 (−0.6)
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4. Possible Mechanisms for Atmospheric Response and Regional Dependence

To investigate the regional dependence of the atmospheric response to oceanic mesoscale eddies
in the four eddy activity regions, we quantify the change of various properties with the SST anomaly.
There is a high correlation between atmospheric parameters (wind speed, precipitation rate) and SSTA
(correlation coefficients are not shown here). The regression of SSTA and wind speed (precipitation
rate) anomaly in the four subdomains and seasons are investigated in Figures 10 and 11. In addition,
Table 2 summarizes the linear regression coefficients of wind speed and precipitation rate anomalies
onto SST anomalies for cyclonic and anticyclonic eddies in each subdomain during winter and summer.
The response of wind speed to oceanic mesoscale eddies is much stronger during winter in the four
subdomains than during summer. However, regardless of the subdomain, the wind speed anomaly
above the cyclonic eddies is slightly stronger than that above anticyclonic eddies. Comparing the
response of wind speed to SST in all four subdomains, the strongest response occurs in the KE region,
followed by CC and SF domains, and the weakest is in the AI region.
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Table 2. Linear fitting coefficients of atmospheric parameters anomalies with SSTA, showing by how
much the wind speed and precipitation rate increase (decrease) above anticyclonic (cyclonic) eddies in
response to an SST anomaly of 1 ◦C in the four regions.

Variables
Subdomain KE Cyclone/Anticyclone SF Cyclone/Anticyclone CC Cyclone/Anticyclone AI Cyclone/Anticyclone

Wind speed Winter (Summer)
Unit: m s−1

·
◦C−1 0.461 (0.291)/0.407 (0.284) 0.246 (0.168)/0.234 (0.166) 0.285 (0.241)/0.267 (0.201) 0.211 (0.137)/0.2 (0.116)

precipitation rate Winter (Summer)
Unit: mm h−1

·
◦C−1

2.27 × 10−2 (1.52 × 10−2)/2.22
× 10−2 (1.37 ×10−2)

1.09 × 10−2 (1.35 × 10−2)/0.73
× 10−2 (0.94 × 10−2)

1.15 × 10−2 (0.23 × 10−2)/0.93
× 10−2 (0.2 × 10−2)

1.37 × 10−2 (1.12 × 10−2)/1.17
× 10−2 (0.81 × 10−2)

Due to the limited observational data, a CFSR reanalysis dataset is used to provide atmospheric
variables both at the surface and in the vertical levels, which allow us to further investigate the
mechanism underlying atmosphere responses to oceanic eddies. Although not shown, composites of
SST, wind speed, precipitation and heat flux anomalies from the reanalysis data show similar patterns,
but the magnitude is slightly smaller than that of observed data. Furthermore, the SST anomaly has a
good linear relationship with other variables (wind speed, precipitation rate, sensible heat flux and
latent heat flux). The maximum SST anomaly corresponds to the largest wind speed, precipitation
rate, sensible heat flux and latent heat flux anomalies. Previous studies show that the wind speed
weakens or strengthens above oceanic eddies depending on the strength of atmospheric vertical kinetic
energy flux [24,47]. In this study, we propose three parameters which could influence the vertical
energy transport: (1) intensity of SST anomalies (or eddy size), (2) stability of atmospheric stratification
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(potential temperature shown in Figure 13), and (3) vertical mixing term (the transient kinetic energy
flux shown in Figure 14).

The main factor which increases or decreases the wind speed happens through SST anomalies
due to heat fluxes across the air–sea interface. The eddy size controls the area that can be influenced
by SST anomalies. Sun et al. [48] suggest two main impacts of SST-wind speed coupling: the SST
gradient associate with mesoscale progresses and wind speed steadiness. For detectable mesoscale
coupling to occur, they determine that a constant wind speed plays a crucial role, especially when the
SST gradients associated with mesoscale progresses are relatively weak. Chelton et al. [49] find that
variations in the wind directional steadiness mainly modulate mesoscale SST-wind coupling. It should
be noted that the SST anomaly in this study is defined as a spatial anomaly with respect to the SST
in the surrounding area. The SST anomaly inside an eddy is equivalent to the SST gradient, except
that it is divided by the eddy radius. Therefore, one can consider that the relationship between the
wind speed anomaly and SST anomaly inside an eddy is equivalent to the wind speed anomaly and
SST gradient, as discussed by Sun et al. [48] and Chelton et al. [49]. As the Kuroshio region carries
the warm water far from the equator, the water temperature contrast in KE to the adjusting area is
large, so the eddies shed off the Kuroshio region are highly energetic, which makes the SST anomaly in
the KE area is the largest among the four selected areas. As Figures 6 and 7 show, SST anomalies are
noticeably larger in the winter regardless of the domain, and the SSTA maximum occurs in the KE
region, followed by the CC and SF area, and the smallest in the AI subdomain. Furthermore, Figure 12
illustrates the rose scatter distribution and the Probability Distribution Function (PDF) of wind speed
in the four areas in summer and winter. By comparing the magnitude of wind speed in winter and
summer, it is noted that the wind is stronger in winter than in summer in all subdomains. The PDF of
wind speed in the KE and AI regions shows a similar distribution both with a peak value of 3–4 m·s−1.
However, the wind speed anomalies in the KE region are stronger than in the AI area (Figures 6 and 7).
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Figure 12. Rose scatter distribution (upper and bottom panels) and the PDF (middle panels) of wind
speed in four subdomains in winter (blue) and summer (red).

Wallace et al. [33] proposed that variability in atmospheric stability could influence vertical
momentum transport, and hence the sea surface wind. The vertical profile of potential temperature
is used to represent the stability of the MABL. Figure 13 displays the composited vertical profiles of
potential temperature over the eddy centers in winter and summer. Steeper slopes correspond to weaker
stratifications (stronger instability), indicating that kinetic energy can be transported to the sea surface,
ultimately leading to larger wind speed anomalies. In the KE region, potential temperature changes
little with an altitude below 900 hPa in winter, indicating that the atmosphere is relatively unstable. By
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contrast, potential temperature decreases with altitude in summer, suggestive of a stable atmosphere.
Similarly, the slope of potential temperature profile under 900 hPa in the SF region is steeper in winter
than summer. In the CC and AI regions, the potential temperature increases quickly above 950 hPa in
summer, rather than during the winter. The difference in atmospheric stability between winter and
summer may be the primary cause of the seasonal dependence of atmospheric responses in the KE
region. Among the four subdomains, the slope of potential temperature profile below 900 hPa is steepest
in the KE domain, followed by the SF, AI and CC regions, indicative of the strongest instability in the
KE region. This observation is potentially linked to the strongest surface wind speed response in the
KE region.
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The transitional kinetic energy (TKE) flux ω′
(
u′2 + v′2

)
is an important parameter which is used

to represent how ocean eddies affect the above atmosphere through the vertical mixing mechanism,
where ω′, u′ and v′ are synoptic scale transient vertical, zonal and meridional wind velocities at

isobaric levels. If ω′
(
u′2 + v′2

)
is positive (negative), the transitional energy is transported downward

toward (upward and away from) the sea surface, thus increasing (decreasing) the wind speed at the

sea surface. Figure 14 shows the longitude-height cross-section of composite ω′
(
u′2 + v′2

)
along the

eddy center. From Figure 14, it can be seen that ω′
(
u′2 + v′2

)
is almost positive for anticyclonic eddies,

showing downward energy transport; the opposite is true of cyclonic eddies. Further, the maximum
TKE flux is located in the KE region regardless of the season, followed by the SF and the CC regions,
and the weakest in the AI area. It is consistent with the wind speed anomalies shown in Figures 6 and 7.
In addition, the maximum TKE flux for anticyclonic eddies is observed above 800 hPa and almost
reaches 900 hPa in the SF, CC and AI regions. The TKE flux in the AI region is the weakest among the
four subdomains. Moreover, the maximum TKE flux of the cyclonic eddies is slightly larger than that
of the anticyclonic eddies. Furthermore, the TKE flux is weaker during summer than in winter in all
four subdomains. It corresponds to larger wind speed anomaly in winter than in summer (Table 2).
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The SLP adjustment mechanism was first suggested by Lindzen et al. 1978 [21], which requires
that negative pressure anomaly occurs over the anticyclonic eddy, and positive pressure anomaly
occurs over the cyclonic eddy. Figure 15 shows the composites of SLP anomaly over anticyclonic and
cyclonic eddies in the four areas. The SLP anomalies are characterized by dipole patterns, different
from what is expected from the SLP adjustment mechanism. Therefore, we conclude that the SLP
adjustment is not a dominant mechanism for the atmospheric responses to the oceanic eddies in these
four regions.

The seasonal difference in precipitation rate anomalies to 1 ◦C of SSTA differs among the four
subdomains, with stronger responses in winter over the KE, CC and AI regions, but a larger response
in summer over the SF region (Figure 8). These results may be related to the seasonal variations in
precipitation over these regions. In the SF region, more precipitation occurs in summer due to the influence
of the summer monsoon. Wang et al. [50] showed that the SF region is one of the peak rainfall regions
during the Asia–Pacific summer monsoon. In the midlatitudes, the majority of winter precipitation is
associated with frontal systems and related cyclonic activities. In the KE region, the extratropical storms
may be the primary contributor to heavy precipitation in winter [51]. The Aleutian Low (AL) is one of
the principal causal factors of both the synoptic and climatic conditions in the AI region. In addition,
the AL is a deep baroclinic atmospheric system with a low-pressure center that can almost reach the
surface. That is why the wind direction in the AI region displays a circular pattern (Figure 12). The CC
region is influenced by a tropical Mediterranean-type climate characterized by wet winters and dry
summers [52]. The westerly wind path is located closer to the tropical area in winter than in summer,
which means that the path of the extratropical cyclone through California could bring more vapor
through the atmospheric river. Winter storm tracks and extratropical cyclones heavily influence rainfall
in the CC region. In the summer, northeasterly wind prevails (upper panel in Figure 12), carrying less
humidity as east of California is a desert area and induces upwelling along the coast. Cold bottom
water is brought up to the surface, thus cooling the air above the current and reducing evaporation.
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 Figure 15. Composites of sea level pressure anomalies (colors, hPa) and SSTA (contours, ◦C) over the
cyclonic (e–h, m–p) and anticyclonic (a–d, i–l) eddies. Bottom (upper) two panels: winter (summer).
(a,e,i,m) KE; (b,f,j,n) SF, (c,g,k,o) CC, (d,h,l,p) AI. The plus sign represents the eddy center.

5. Conclusions and Discussion

In this study, we chose four eddy rich regions, which are separated from each other by over
1000 km geographically, so there is no mutual relationship between them and they do not affect
each other. Based on the above discussion, one can clearly see that there are common influencing
factors and also differences in the atmospheric responses to the oceanic eddies among these four areas.
The common parts can be summarized as: The increase in the SSTA can cause increases in the sea
surface wind, precipitation rate and heat flux, and vice versa. The underlying mechanism driving the
atmosphere responses is the vertical kinetic energy flux among the four areas. The different parts can
be summarized as: The atmospheric responses (wind speed, precipitation rate) are the strongest and
weakest in the KE and AI (or CC) regions. The strong seasonal variation difference in the atmospheric
responses are presented. As any type of observational and reanalysis product, uncertainties exist in the
data we use in the present study. Based on the validations by the producer of these products, the level
of uncertainty is acceptable for the scientific studies. Therefore, these uncertainties associated with the
data used do not change the conclusion reached by the present study.

Through the above investigation, the EKE, eddy characteristic, SSTA and atmospheric stability
vary across the four subdomains and seasons, and could be responsible for differences in mesoscale
air–sea interaction characteristics. In addition, several meteorological quantities (SST, wind speed,
precipitation, potential temperature, and the heat and TKE fluxes) are statistically examined and a
dynamic analysis is performed. It is observed that anticyclonic eddies lead to an enhancement of
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SST, surface wind speed, precipitation and heat flux over the eddy center, while cyclonic eddies show
the opposite.

By comparing composites for the SST, wind speed and heat flux anomalies in the four subdomains,
the strongest response is always observed in the KE region, followed by the CC and the SF regions, and
the AI region shows the weakest response. However, it is slightly different for precipitation anomalies
over the oceanic eddies. The observations might be related to the different magnitude of seasonal
precipitation over the four subdomains. The strongest responses are found in the KE, CC and AI in
winter. However, in summer it is worth noting that the weakest response shows in the CC region
instead of the AI region like the other variables mentioned above, and the strongest response is still
observed in the KE area. In addition, the precipitation in the SF region is contrary to the other three
subdomains: the strongest response shows in summer with the influence of the summer monsoon
acting as the background of the atmosphere.

The same method is applied to the CFSR product. Similar variations for each variable occur in
the four subdomains. It also shows that surface wind speed responses to oceanic eddies are stronger
in winter than in summer, which can be partially explained by the potential temperature profile and

the TKE flux ω′
(
u′2 + v′2

)
anomalies. The slope of the potential temperature profile below 900 hPa is

steepest in the KE domain, followed by the SF, AI, and CC regions, indicative of the strongest instability
in the KE region, which is related to the strongest surface wind speed. The TKE flux is positive above
anticyclonic eddies, indicating that energy transport is downward as sea surface wind speed increases;
the opposite is true for cyclonic eddies. Through the analysis of SSTA, potential temperature and
the TKE flux, it was found that there exists a regional dependence of the atmospheric responses to
oceanic eddies.
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