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Abstract

Active Systems with Uncertain Parameters: an Information-Theoretic Perspective

by

Gireeja Vishnu Ranade

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

with a Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Anant Sahai, Chair

The sister fields of control and communication share many common goals. While com-
munication aims to reduce uncertainty by communicating information about the state of the
world, control aims to reduce uncertainty by moving the state of the world to a known point.
Furthermore, transmitters must communicate over the unreliability in the communication
channel, while controllers must overcome unreliability in the sensing and actuation channels
of the system to stabilize it. Extensive work in information theory has provided a framework
with which we can understand the fundamental limits on the communication capacity of a
communication channel. This dissertation builds on the information-theoretic perspective
to understand the limits on the ability of controllers to actively dissipate uncertainty in
systems.

High-performance control systems include two types of uncertainty: noise that might
be introduced by nature, and inaccuracy that might be introduced by modeling, sampling
errors or clock jitter. The first of these is often modeled as an additive uncertainty and
is the object of most prior work at the intersection of communication and control. This
dissertation focuses on the multiplicative uncertainty that comes from modeling and sampling
inaccuracies. Multiplicative uncertainty could be introduced from the observation mechanism
that senses the state (the sensing channel) or from the actuation mechanism that implements
actions (the actuation channel). This dissertation examines the control capacity of systems
where the parameters of these channels are changing so fast that they cannot be perfectly
tracked at the timescale at which control actions must be performed. This parallels the
fast-fading models used for wireless communication channels.

This dissertation defines a notion of the “control capacity” of an unreliable actuation
channel as the fundamental limit on the ability of a controller to stabilize a system over that
channel. Our definition builds from the understanding of communication capacity as defined
by Shannon. The strictest sense of control capacity, zero-error control capacity, emulates
the worst-case sense of performance that the robust control paradigm captures. The weakest
sense of control capacity, which we call “Shannon” control capacity, focuses on the typical
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behavior of the zeroth-moment or the log of the state. In between these two there exists a
range of η-th moment capacities of the actuation channel. These different notions of control
capacity characterize the impact of large deviations events on the system. They also provide
a partial generalization of the classic uncertainty threshold principle in control to senses of
stability that go beyond the mean-squared sense.

Since the “Shannon” control capacity of an actuation channel relates to physically sta-
bilizing the system, it can be different from the Shannon communication capacity of the as-
sociated communication channel. For the case of actuation channels with i.i.d. randomness,
we provide a computable single-letter expression for the control capacity. Our formulation
for control capacity also allows for explicit characterization of the value of side information
in systems. We illustrate this using simple scalar and vector examples.

These ideas also extend to systems with unreliable sensing channels. Somewhat surpris-
ingly, we find that in the case of non-coherent sensing channels, the separation paradigm
that is often applied to understand control problems with communication constraints on the
observation side, can fail. Active learning and control of a system state is possible (i.e. the
control capacity is finite), even though passive estimation is not. An interesting aspect of
this result is the techniques used. The problem is reduced to estimating the initial state of
the system using a prior and the non-coherent observations. Then a genie-based argument
can be used to lower bound the Bayesian problem using a minimax-style hypothesis testing
bound.

The results throughout are motivated by observations made using simplified bit-level
“carry-free models.” These models are generalized versions of deterministic bit-level models
that are commonly used in wireless network information theory to capture the interaction
of signals. Here, we modify them to capture the information bottlenecks introduced by
parameter uncertainty in active systems.
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Chapter 1

Introduction

The past few decades have seen technology and society take ever larger steps towards au-
tomation of activities in our daily lives. Today, the Internet of Things presents a vision
that is strikingly close to what was futuristic science fiction fifty years ago. There has been
extensive development in sensing and data processing for applications in home automation,
civic and environmental systems, and medical monitoring technology. The larger vision of
the Internet of Things (IoT) includes not only sensing but also simultaneous actuation of
numerous wirelessly connected devices. The goal is to enable a large number of globally dis-
tributed computing devices that communicate with each other and interact with the physical
world at both personal and industrial scale. Truly immersive IoT applications with humans
in the loop require highly-reliable communication, and latency requirements on the control
loop are on the order of human-response times, i.e. tens of milliseconds. Industrial control
applications have similar latency constraints and require reliability on the order of 10−8. The
next generation of 5G wireless communication protocols are being developed today to target
these applications in the high-performance regime. The processing speedup from Moore’s
law and more bandwidth can move us closer to this vision, but they cannot get us all the
way there.

This push towards high-performance control really forces us to ask the question: what
are the fundamental bottlenecks in control applications? This dissertation provides an
information-theoretic approach to understand the fundamental performance limits on ac-
tive control systems.

There are many parallels between the sister fields of communication and control. While
communication aims to reduce uncertainty by communicating information about the state of
the world, control aims to reduce uncertainty by moving the state of the world to a fixed point.
Furthermore, transmitters must communicate over the unreliability in the communication
channel, while controllers must overcome unreliability to stabilize the system. Extensive
work in information theory has provided a framework with which we can understand the
fundamental limits in communication. Communication capacity is a standard metric in
wireless system design that has motivated work in coding theory and influenced protocol
design in wireless communications.
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This dissertation develops a notion of “control capacity” to understand the impact of
uncertain parameters in control systems. High-performance systems might have systems pa-
rameters that cannot be perfectly tracked at the timescale at which control actions must be
performed. Further, systems can include both uncertainties that are introduced by nature
but also inaccuracies that are introduced by the system model itself. While nature-introduced
uncertainties tend to be additive, model parameter errors can introduce multiplicative un-
certainties in the system.

Within control theory, system identification and adaptive control have developed algo-
rithms by which a controller can gather information to better model a system. The controller
first uses known perturbations to learn the system dynamics to a desired accuracy and then
stabilizes it. This may be done in an active fashion where the input signals are chosen on-
line, in response to the system’s observed behavior. Alternatively, it might be done passively
with a predetermined set of inputs. Robust control tends to deal with uncertainty using a
non-stochastic worst-case perspective, and often focuses on linear strategies for stabilization.

However, traditional information theory ignores message semantics and focuses on system
rate. Complexity, delay and reliability are secondary considerations. On the other hand,
traditional control theory has a natural focus on interpreting an observation to perform the
right action and cares about the rate of convergence and computable solutions. As a result
the tools in both of these fields have largely been developed independently of each other
and do not quite mesh. There have been previous attempts to try to develop a theory of
information that is compatible with the cost function and structure of control systems, as
indicated by this quote from Witsenhausen in 1971 [1]:

Changes in information produce changes in optimal cost. This suggests the idea
of measuring information by its effect upon the optimal cost, as has been proposed
many times [2]. Such a measure of information is entirely dependent upon the
problem at hand and is clearly not additive. The only general property that it is
known to possess is that additional information, if available free of charge, can
never do harm though it may well be useless.This simple monotonicity property
is in sharp contrast with the elaborate results of information transmission theory.
The latter deals with an essentially simpler problem, because the transmission
of the information is considered independently of its use, long periods of use of
a transmission channel are assumed, and delays are ignored.

Efforts to establish a new theory of information, taking optimal cost into account,
have not as yet been convincing [3]–[6].

This dissertation proposes a novel information-theoretic approach to understand the bot-
tlenecks due to parameter uncertainties in control systems. The notion of “control capacity”
proposed depends on the problem formulation and is also additive, i.e. it can easily account
for additional side information.
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1.1 Basic system model

To set up a framework for the dissertation, we give the general system model (Fig. 1.1).
Elements on the observation and control side mirror each other.

This thesis considers three types of channels in the system: communication channels,
sensing channels, and actuation channels. Communication channels are the channels that
are traditionally considered in information theory, and may occur on the input or on the
output side of the plant. These model unreliability and noise introduced after the data
collection process is completed or before the actuation has started. As a result, encoders
and decoders can be used to combat the uncertainty of these channels. The remaining two are
illustrated in the figure below. The bottlenecks presented by the sensing and the actuation
channels are related to the physical limitations of the devices.

Y [n]

X[n]
X[n]

U [n]

System/Plant 

Observer/
Controller 

Actuation  
channel 

Sensing 
channel 

Figure 1.1: A general model for control and estimation of a system over networks.

• System/plant: The system determines the physical evolution of the system state.

• Observer/controller: This is a box with computational power that can estimate the
system state and compute controls. The desired control actions are sent to the actuator
via the actuation channel. There might be communication channels inside this box that
use encoding and decoding.

• Sensors and sensing channels: The sensors and sensing channel is the output interface
of the system to the rest of the world. The sensing channel has access to (noisy) mea-
surements of the system state, but has little to no computational power. It transmits
the observations out of the system. In a sense, decoding of these transmissions by the
controller is possible, but encoding isn’t. This might also be a network. We can think
of this as the physical sensor that is actually collecting the data.

• Actuators and actuation channels: The actuation channel is the input interface for the
controller to interact with the system. Control signals are transmitted over this to the
system actuators. This also has little to no computational power and can only execute
the controls sent to it by the controller. This represents the physical actuator that is
implementing the control. So here, encoding might be possible, but decoding isn’t.
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Standard linear system models for estimation often have the format below:

~X[n+ 1] = A · ~X[n] + ~W [n]

~Y [n] = C · ~X[n] + ~V [n] (1.1)

~X[n] is the m × 1 state vector and A is a known m × m constant matrix. n is the

time index. C is also known and may or may not be full rank. ~W [n], ~V [n] are a additive
m × 1 noise matrices. With no observation encoding or rate-limits, the optimal open-loop
estimation in the presence of additive noise is given by the traditional Kalman filter [7].

This setup is slightly modified in the case of control, with the control signal ~U [n] which

is a function of ~Y [n], added in. B is the control gain matrix.

~X[n+ 1] = A · ~X[n] +B · ~U [n] + ~W [n]

~Y [n] = C · ~X[n] + ~V [n] (1.2)

The objective of a good controller is to minimize the cost function associated with the
system. This cost usually involves both the state magnitude and the control power. Papers
such as [8] and related works successfully use dynamic programming to tackle these problems.
However, it can be difficult to deal with rate-constraints in a system in the presence of
a control cost. To simplify the setting, many works in the community tend to focus on
asymptotic system stability, since it is the precursor to understanding the full control cost.
This dissertation also focuses on stability as a first step to understand control capacity.

Much of the previous work at the intersection of communication and control has focused
on the channels on the output of the system, i.e. the observation and sensing side. This
is because there is an obvious connection between communication and control when we
think of the state of the control system as an information source. The system is generating
messages that must be transmitted to the controller at adequate rate so that the system can
be tracked and also stabilized. In this context, estimation theory is the natural bridge from
communication to control.

The next section gives a history of related work at the intersection of communication and
control.

1.2 Previous work

We divide the related previous work into four subsections. The first subsection focuses on
performance bottlenecks in the sensing and observation channels in a control system, while
the second focuses on performance bottlenecks due to the control and actuation channels
in the system. When thinking of communication (or sensing or actuation) channels that
are being used for control, the required rate and required reliability are the two relevant
measures. We discuss both of these here. The impact of observation-side bottlenecks are
much better understood than the control side bottlenecks, and this thesis tries to fill in some
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of the gaps on the latter side. There has been very little work on actuation channels that is
compatible with information-theoretic tools. Many of the arguments are separation-based.

Two survey papers give a very good idea of the state-of-the-art for both these subsections.
The survey paper by Schenato et al. [8] highlights the use of Riccati equations and LMI
techniques to provide numerically computable bounds and thresholds for system stability.
A second survey paper (from the same IEEE special issue) by Nair et al. [9] focuses on
rate constraints in control systems and uses statistical and information-theoretic tools. The
models in [8] use an infinite capacity real-erasure channel in their model. The formulations
considered in [8] do not allow for encoding and decoding over the sensing and observation
channels. This allows for a focus on the the reliability bottleneck that is generated by
observation and sensing channels: errors are caused when information is received “too late”
as opposed to because “too few” bits are received. On the other hand, the models in [9]
are rate-constrained and the results extensively use information-theoretic tools. However,
these models cannot capture the critical aspects of reliability for control. The work discussed
in [9] considers powerful encoders and decoders on the sensing and observation channel in
the system. The following sections discuss the relationships between both sets of models as
well as the complementary perspectives they provide.

The third subsection provides a discussion of uncertain parameters and multiplicative
noise in systems, which is the focus of this dissertation. Finally, we discuss previous discus-
sions on the value of information in systems.

1.2.1 Sensing and observation channels

bX[n + 1]Observer

Y [n]

System
X[n]

Encoder 

Channel

Figure 1.2: Estimation of the system state based on observation-feedback over a lossy link.
The decoder is part of the observation box.

Information theorists look to rate as the parameter that characterizes a communication
system. A natural first attack is to bring in tools from information theory and look at
estimation and control over rate-limited channels.
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Rate-limited observation channels

Explicit encoding and decoding with rate-limited channels was was first considered in papers
such as Wong et al. [10], Nair et al. [11] and Tatikonda and Mitter [12]. [12] looked at the
estimation and then control of an unstable system over a noiseless rate-limited channel, with
access to a full encoder and decoder on either end of the channel (Fig. 1.2). They showed
there is a threshold on the rate required over a communication channel for stable estimation
and stable control, and that the threshold is the same in both cases! First, they showed that
for an observer to be able to track the state with finite mean squared error, the observation
channel must be able to support a rate R >

∑
log |λ(A)|, where λ(A) are the unstable

eigenvalues of the matrix A. The proof technique was non-standard in control at the time,
and hinged on showing that the volume of uncertainty in the system was growing as the
product of the unstable eigenvalues of A.

Observer

Y [n]

System
X[n]

Encoder 

Channel

Controller

U [n]

Figure 1.3: Rate-limited control allows an encoder and decoder for communication across
the channel. The decoder box can be thought to be merged with the observer/controller box
and is not shown separately here. Further, the controller provides feedback of the control
signal sent to the encoder box so that only the innovation in the system need be encoded.

Their basic argument to show that the threshold for stabilization is the same as for
estimation is based on the separation paradigm. First, they note that the controller can
simulate an observer and estimate the system state in open-loop. Since it has memory of
the previous controls it applied, it can also estimate the closed-loop system state. Then, it
can compute the optimal control from the current state-estimate as the one that will cancel
out the state. The necessary condition on the rate is given from the estimation results.
Subtracting the state estimate at each time (using knowledge of the controls that have been
previously applied by the controller) gives a matching sufficient condition. Full knowledge
of the actual impact of the applied controls is critical in this strategy, and the results in [12],
[13] use control feedback to the encoder to achieve stabilization (see Fig. 1.3).

A large set of data-rate theorems for control over (noiseless and noisy) rate-limited chan-
nels have built on these ideas and follow from separation theorems, as in [11]–[13], and more
recently in results like [14]. In these problems, it is common to think of the observer and
controller as lumped into one box (Fig. 1.3), with a noiseless channel between controller and
actuator.
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One property of messages/bits transmitted in a communication system is the transmission
rate. A second one is the reliability at which the bits are received by the decoder. This
reliability is particularly important in control systems [15]. However, this reliability, or
the probability of error associated with a bit is ignored in noiseless rate-limited channels.
[15] used a binary erasure channel to show that just large enough Shannon capacity is not
sufficient to ensure bounded estimation error. The most significant bits (MSBs) of the
state must be estimated to greater reliability, i.e. the communication system must guarantee
a lower probability of error for the MSBs of the state as time goes on. This was fully
understood for scalar systems by Sahai and Mitter [13]. This paper showed that for a scalar
system with eigenvalue a, a necessary and sufficient condition for a finite η-moment error is
that the anytime capacity for reliability η log a is greater than log a.

Using the discussions in [16] and deterministic style models such as those proposed by
Avestimehr, Diggavi and Tse (ADT models), we can illustrate this result. Think of the
system state as a stack of bits, with the LSBs at the bottom and MSBs at the top. This
stack is growing taller with each clock tick as the unstable system is multiplied by a gain
(Fig. 1.4). The observer must estimate each bit before it gets too large, and so the required
reliability on the bits increases as they take higher positions in the stack. Since the cost bits
are proceeding upwards by η log a positions each time, i.e. the magnitude of the η-moment
of the state is growing by 2η log a, the probability of error on that state bit must shrink by
at least 2−η log a. Hence, η log a is the required reliability. The communication rate is given
by the number of new bits that are pulled into the system state at each time, which is log a.
(We emphasize this picture because it has been useful to understand the information flow in
other decentralized estimation and control problems [17]–[19]).

Time	  n	  

Time	  n+1	  

Time	  n+2	  

x2[n] = 1

x1[n]

x0[n]

x�1[n]
. 
. 
. 

. 

. 

. 

. 

. 

. 

Figure 1.4: The system state can be thought of as a stack of bits marching upward.

The scalar anytime ideas can be extended to vector systems through a change of coordi-
nates and diagonalization [20]. Projected on to the appropriate basis, a vector system is like
multiple (possibly interacting) scalar systems. This may come at the cost of finite delay: if
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the observations belong to a lower dimensional subspace than the system due to the struc-
ture of the B matrix, then the system must wait to accumulate enough observations. [20]
gives a characterization of stable regions involving reliability vectors. While we can compute
these in the scalar case, for the vector setup the regions are hard to compute even for simple
channels like the BEC with feedback. We do not even have non-trivial bounds. Hence, the
result is somewhat dissatisfying.

The special case of the real-erasure channel (with arbitrary encoding and decoding) is
easier to understand [20]. The rate constraint is removed with the infinite-capacity-real-
erasure channel, and the limit arises due to the reliability constraint alone. Then, the
critical erasure probability is dictated only by the maximal eigenvalue of the A matrix, and
is 1

λmax(A)η
for η-moment stability of the error1.

This shows that reliability constraints have a “max” nature: they combine to give the
strictest of the constraints (when rate is not an issue). On the other hand, rate constraints
naturally add, as we know from Tatikonda and Mitter [12].

Real-erasure observation channels

The vector real-erasure channel in the anytime results requires a very non-trivial encoding to
be able to meet the 1

λmax(A)η
constraint: a vector is packed into a scalar by bit interleaving!

Does the result hinge on this complex encoding strategy?
This question leads to the intermittent Kalman Filtering model, which also considers

mean-squared estimation of a system over a real-erasure channel [21]. This model simply
takes encoding off the table and focuses on reliability. A basic block diagram is in Fig. 1.5.

bX[n + 1]
Observer

Y [n]

System
X[n]

Lossy 
Link 

Figure 1.5: Estimation of the system state based on observation-feedback over a lossy link.
Note that encoding is not allowed.

1Consider the following strategy: at each time encode the real-valued observations for each element of the
system state vector into one real number by interleaving the bits. We have access to a powerful decoder and
so the state-estimation error is renewed every time an observation arrives. As long as the erasure probability
is low enough that it can catch the growth due to the maximal eigenvalue, the estimation error remains
bounded. This is caricatured by the deterministic model picture of bits running off to infinity along the
eigenvectors for each eigenvalue of A.
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To be able to use the traditional Kalman Filtering tools, Sinopoli et al. modeled packet
drops over a network as an additive noise with infinite variance, i.e. a noise that wiped out
the observation entirely. Subsequently, they showed that the results also hold with packet
drops modeled as a discrete-valued multiplicative noise, β[n] = Bernoulli(1−pe), in addition
to the additive noise for the system observation [8], as below:

~X[n+ 1] = A · ~X[n] + ~W [n]

~Y [n] = β[n]( ~X[n] + ~V [n]) (1.3)

Using a Riccati equation approach, they show that the optimal Kalman gain for this
problem is time-varying and depends on the arrival sequence β[n]. They then restrict the
solution to be linear and time-invariant to give a Modified Algebraic Riccati Equation which
can be analyzed using LMI techniques as shown in [21]. With this, they show that the
critical erasure probability for the mean-squared error is upper-bounded by 1

λmax(A)2
, where

λmax(A) is the maximal eigenvalue of the matrix A. The estimation error is unstable for
higher packet loss probabilities. This matches the result of the vector anytime problem with
η = 2 in the previous section: a strategy without encoding cannot beat a strategy with
encoding. However, this bound is not tight, and they find that in certain cases the LMI
predictions do not match this bound. This left a gap open to explore.

In a decentralized setup, simultaneous encoding of the different components of a vector
system-state might not even be possible. What happens if all of the required observations
are not generated by the same sensor and hence have different erasure probabilities? This
question was noted and explored by Liu and Goldsmith [22]. By holding one of the two
drop probabilities constant, they formulate a problem similar to [21] and provide LMI-based
bounds for the critical erasure probabilities. In this case as well, there is gap between the
upper and lower bounds in the general case. However, the authors show how the bounds can
help design decisions. Engineering considerations might allow a designer to allocate more or
less resources to a particular channel and these bounds can guide the allocations to ensure
system stability.

Mo and Sinopoli [23] further explored the gap above and gave clear examples of systems
where the critical erasure probability can be either 1

λmax(A)2
or 1

Πλ(A)2
based on the nature of

the matrix A with no restriction on the filter gain (i.e. it was allowed to vary with time and
depend on the specific observation arrival sequence). This gap was then fully understood
by the introduction and analysis of eigenvalue cycles in [24]. If the pattern of observation
erasures is such that the observer keeps receiving redundant information, it will not be able
to decode the state. It turns out that this can only happen in special cases where the
eigenvalues of A have a very specific cyclic structure. For instance, if the system dimension
and cycle period are both n, then the critical erasure probability is 1

Πλ(A)2
. However, for

generic A the critical erasure probability is exactly 1
λmax(A)2

, cleanly resolving the estimation

problem [24]. In principle, these results have brought closure to the erased observations
problem.



10

It is important to note that the works above did not allow for the possibility of an encoder
with memory or delay. The estimate for X[n] must be produced at time n. One of the ideas
in [24] is to break up the eigenvalue cycles by non-uniform sampling. This could also be
achieved by an encoder of memory-n that takes a random linear combination of samples
before sending them across the channel, which would get us back to the 1

λmax(A)2
bound [24].

1.2.2 Control channel

In addition to unreliable and noisy sensing and communication channels on the output side,
real-world systems also have to contend with unreliable or delay-prone actuation channels
or communication channels on the control end.

Consider

~X[n+ 1] = A · ~X[n] + γ[n] ·B · U [n],

~Y [n] = ~X[n], (1.4)

where ~X[n] is the m×1 state vector, A is an m×m constant matrix, B is an m×1 constant
matrix, and γ[n] are i.i.d. Bernoulli(1− pe) random variables.

Elia and co-authors were among the first to consider control actions sent over a real-
erasure actuation channel (eq. 1.4)and ask: how can we control a system (with perfect
observations) when the control packets to the actuator might be lost over a real-erasure
channel [25]–[27]? They restricted the search space to consider only linear time-invariant
(LTI) strategies so that the problem might become tractable2. [8], [28] also looked at this
problem using dynamic programming techniques and showed that LTI strategies are in fact
optimal in the infinite horizon. Riccati equation techniques and dynamic programming can
show a separation result in the case of simultaneous lossy observation and control channels [8],
[28].

[8], [25], [28] also identified the importance of acknowledgements on the actuation channel.
In the case where packet losses over the actuation channel are acknowledged (i.e. the control
transmission is over a “TCP-like” protocol, Fig. 1.6), separation between estimation and
control holds. The optimal control strategy is a linear function of the state-estimate, and
the optimal controller gain converges to a constant in the infinite horizon case [8]. On
the other hand, in the case where control packets are not acknowledged (i.e. the actuation
transmission uses a “UDP-like” protocol), separation does not hold. In the generic case,
non-linear and possibly time-varying strategies are necessary [8], [28]. The estimator error

2This restriction is essentially the same as in [21]. Elia showed that pe <
1

Πλ(A)2 , where λ(A) are

the unstable eigenvalues of the matrix A, is the critical probability for stabilization using LTI controllers.
The techniques here provides an insight into the theorem that is hidden when seen through the dynamic
programming lens and are discussed further in Chapter 7.

Sinopoli et al. restricted the Kalman gain to be time-invariant to be able to approach the problem using
standard Riccati techniques.
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Y [n]

System
X[n]X[n]

Controller
U [n]

Lossy 
Link 

Lossy 
Link Ack  

Figure 1.6: Control packets are acknowledged as in a TCP protocol.

covariance depends on the control input, and the erasure probabilities of the observation and
the control channel may interact.

Combining the fact that LTI strategies are optimal (with packet acknowledgements) [8],
[28], with the bound for LTI controllers from [26] we can conclude that the pe <

1
Πλ(A)2

bound holds for all control strategies3. The restriction to LTI strategies in [26] was in fact
not a restriction at all!

Liu and Goldsmith [22] considered the case of physically separate sensors for estimation.
What about the control problem with physically separate actuators and separate channels
between different actuators and the controller? This problem is considered by Garone,
Sinopoli, Goldsmith and Casavola in [29], [30]. They extend the techniques of [8] to show
that just as with a single channel, the separation principle still holds with both multiple
sensor and actuator channels and acknowledgements for the control channel. In [30], it is
interesting that the optimal control is a linear function of the state that explicitly depends
on the loss probabilities of each channel (Remark 4 of [30]). This is different from the case of
a single channel, where the controller can afford to remain agnostic to the drop probabilities.
There, the optimal control at time k is computed assuming that it will get through the
channel.

We provide a simple scalar example (not in the paper [30]) helps illustrate what is going
on here:

X[n+ 1] = A ·X[n] + 2 · γ1[n] · U1[n] +
1

2
· γ2[n] · U2[n],

Y [n] = X[n] (1.5)

Let γ1[n] and γ2[n] be independent Bernoulli-(p1) and Bernoulli-(p2) random variables. Then,
the optimal control vectors U1[n] and U2[n] must take p1 and p2 into account: for instance
the control with p1 = 0 and p2 = 1 is clearly different from p1 = 1 and p2 = 0 and also

3The assumption of noiseless perfect observations in [26] is equivalent to assuming control acknowledge-
ments.
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different from p1 = p2 = 0.5. In the last case, some kind of average control action is the right
thing to do. The two independent random variables combine to form a random multiplicative
scaling for the control action. The control must account for this multiplicative noise and
hence depends on the drop probabilities.

Gupta, Spanos, Hassibi and Murray [31] used dynamic programming techniques to show
that an observation/sensing channel can tolerate more erasures if the system is allowed an
encoder and decoder around the channel: the critical probability goes from depending on
the product of the eigenvalues to depending only on the maximal eigenvalue. While this can
be seen directly using an information-theoretic perspective, it is more challenging to arrive
at the result using other arguments. The problem considered by Gupta, Sinopoli, Adlakha,
Goldsmith and Murray in [32] builds on this. Here authors consider the utility of an actuator
with memory, which can be thought of as an approach to understand the control case with
encoding over control packets allowed. For a generic A matrix with no cycles and rank-1
B matrix, an actuator memory equal to the dimension of the system changes the tolerable
erasure probability from 1

Πλ(A)2
as in [26] to 1

λmax(A)2
. We provide a simple example (not in

the paper [32]) to understand the spirit of the result:

X[n+ 1] =



λ1 0 0
0 λ2 0
0 0 λ3


X[n] +




1
1
1


U [n],

Y [n] = X[n], (1.6)

with distinct λ1, λ2, λ3. Then the system can be set to 0 in three time steps. If these
controls can be precomputed and sent to the actuator in advance (i.e. the actuator has a
memory buffer of 3), one time step is sufficient, which brings us to the 1

λmax(A)2
bound since

now we only have to account for the fastest eigenvalue. This helps interpret the simulation
results presented in [32]: for a two dimensional system the control cost became constant with
actuator memory of 2. The authors use these simulations to point out that such memory
would be most useful in the case of correlated or bursty losses, which are common in real-
world networks.

Unlike the estimation setup, which is now well understood, the space of control problems
still has open questions. So it seems that the duality between estimation and control does not
always hold. Consider the simple case of a scalar observation sent over a real-erasure channel
for estimation and the dual control problem with perfect observations but a scalar real-
erasure control channel. We know from [24] that the critical drop probability for estimation
of a system, as in eq. (1.3), with generic matrix A is 1

λmax(A)2
. This is different from the

erasure probability tolerable in the dual control problem, as in eq. (1.4), considered by
Elia [26] which is 1

Πλ(A)2
. This is significantly more stringent than in the observation case.

Why does the duality of estimation and control break down in the case of lossy sensing
and actuation channels? Why is the control problem harder? We will try to address these
questions in this dissertation.
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1.2.3 Parameter uncertainty as multiplicative noise

Parameter uncertainty has a long history in controls, communication and learning, and
usually manifests as multiplicative randomness in the system. The erasure sensing and
actuation channels considered in the earlier sections are specific examples of multiplicative
uncertainty on a channel, Bernoulli uncertainty. This dissertation explores more general
multiplicative noise on the sensing and actuation channels in a system.

Since linear systems are additive and commutative, additive noise in the actuation channel
has the same effect as additive noise in the plant itself would. Hence, the data-rate theorems
discussed in the earlier section effectively capture the effect of additive uncertainty on the
actuation channel. However, the examples in the previous section show that multiplicative
noise can break this duality between the sensing and actuation channels, and we explore the
two aspects separately in this thesis.

Communication systems

Communication channels with multiplicative noise have been extensively studied in infor-
mation theory. Non-coherent channels in communication systems emerge when phase-noise,
frequency hopping or fast-fading make it impossible for the receiver to perfectly track the
channel state. Such communication has been studied as far back as 1969 when Richters
conjectured that even for continuous unknown fading-distributions the optimal input distri-
bution is discrete [33]. The conjecture was proved in 2001 [34], [35]. Since then we know that
the capacity of channels with unknown Gaussian fading scales as log log(SNR) as opposed
to the log (SNR) scaling of channels with known fading [36], [37].

Control and estimation systems

Non-coherent observations in control systems can similarly arise from synchronization and
sampling errors in control systems [38]. Consider a nearly trivial continuous-time system:

Ẋ(t) = a ·X(t).

The system collects samples at regular intervals t0, 2t0, 3t0 and so on. The system differential
equation above implies X(t) = eatX(0), which gives the difference equation:

X[n+ 1] = eat0 ·X[n].

Say we are recording a sample Y [n] at time nt0, but clock noise leads to the sample actually
being collected at time nt0 + ∆t0, where ∆t0 is a continuous-valued random noise variable.
Then we have:

Y [n] = ea(nt0+∆t0)X(0) = β[n]ea(nt0)X(0).

where β[n] = ea∆t0 is necessarily a continuous-valued random variable. We would have liked
to observe Y [n] = ea(nt0)X(0), but we must make do with the multiplicative random noise.
Thus, with timing jitter, state information is received over a non-coherent channel.
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Estimation with multiplicative noise was explored around the same time as questions
regarding non-coherent transmission were being asked [39], [40]. Furthermore, the very idea
of robust control [41] and adaptive control [42] is about dealing with parameter uncertainty.

On the control side, the paper [43], by El Ghaoui is an example of a discussion of control
of systems with multiplicative noise. This paper takes a convex optimization approach and
solutions involve linear matrix inequalities. The author states that: Some of these problems
have a known “analytical solution” (via a nonstandard Riccati equation...); most do not.
After this, multiplicative uncertainty has also been explored in a robust control context for
example by Phat et al. [44] or Gershon et al. [45]. These papers take a worst-case perspective
and primarily use LMI techniques. There is also work in robust control that focuses on the
H2 norm and takes a stochastic approach.

Elia [26] builds on the robust control approach. Using a restriction to LTI strategies,
he is able to connect the results back to the system eigenvalues. However, in general, while
LMI based approaches allow us to numerically get a handle on the system parameters, they
do not provide much intuition into the fundamental bottlenecks of the problem and are
not compatible with information-theoretic approaches. Other attempts to characterize the
behavior of systems with parameter uncertainty (i.e. multiplicative noise) have been limited
to linear strategies [26], [39], [40] or a priori stable systems [46]–[48].

A classical result in control theory that deals with multiplicative uncertainty in systems
is the uncertainty threshold principle [49]. They consider a scalar linear system with Gaus-
sian randomness in both the system gain and the control gain. The observation channel
is perfect. Using Riccati equation techniques as developed in Aoki [50], they provide an
explicit threshold on the uncertainty in the system and control gain that can be tolerated for
mean-squared stabilization of the system. Unfortunately, there is no analytical solution for
the imperfect information counterpart of this model [51, p. 229]. Furthermore, these general
dynamic programming techniques are difficult to apply beyond the quadratic cost case.

The separation theorem often comes to the rescue in the imperfect information case [51, p.
233], and dynamic programming techniques can give linear strategies for quadratic cost case.
However, it is more difficult to understand general cost functions on the state. Furthermore,
as we will see later in this thesis, the separation theorem might not hold in examples with
multiplicative noise.

Finally, it is worth mentioning that parameter uncertainty and multiplicative noise has
also been studied in through the reinforcement learning paradigm. Bandit problems focus
on the tradeoff between exploring unknown parameters in a system and taking actions based
to exploit the system [52].

1.2.4 Value of information

As mentioned by Witsenhausen [1], the idea of measuring information by it’s impact on
optimal cost has be proposed many times. In fact, the uncertainty threshold principle can
be thought of as one way to measure this. The change in the threshold based on information
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that decreases the entropy of the system or control gains can be interpreted as the value of
that information. Can we extend these ideas beyond the Gaussian mean-squared case?

There have also been many other efforts to extend the ideas of information theory into a
domain that also takes into account the semantics of the information being communicated
(the optimal cost in the the case of control problems.) Goldreich et al. [53], Juba and
Sudan [54] and Sudan [55] take a computational complexity approach to the problem. They
define communication to be successful if two agents can achieve a common goal as determined
by an oracle, and indirectly explore notions of value of information in “universal” systems.

There have been many attempts to understand the value of information within control
theory, such as the works described by Witsenhausen [3], [6]. Other later works include
Davis [56] and Back and Pliska [57]. These are discussed in further detail in later chapters
in the thesis. However, these all focus on a mean-squared sense of stability and are not
compatible with information-theoretic notions. For example, side information is hard to
understand in these contexts. This dissertation tries to generalize beyond those concepts.

1.3 Contributions

This thesis develops a framework and a set of tools to illustrate and quantify information
flows in active control systems with uncertain parameters. One of the key developments is
the notion of control capacity, an information-theory-compatible measure of the fundamental
limit on the stabilizability of a system. This is developed towards the end of the thesis
starting in Chapter 5. The presentation starts with building bit-level carry-free deterministic
models for uncertain parameters in communication networks in Chapter 2. These ideas are
then ported to the control and estimation framework in Chapter 3. The investigation of
real-valued control and estimation systems begins with multiplicative uncertainty on the
sensing channel in Chapter 4. We build on this to understand parameter uncertainty in the
control channel and the value of side information in Chapters 6 and 7.

The organization of the thesis and key results in each chapter are discussed below as a
guide to the reader.

1.3.1 Bit level models

Chapter 2 builds from the deterministic models for information flows in wireless network
information theory presented by Avestimehr et al. [58] and Niesen and Maddah-Ali [59]
to understand communication in networks with unknown fading. These models provide a
natural intuition for the log logSNR capacity of non-coherent channels, i.e. channels with
unknown fading [37]. In the unknown fading context, a carry-free model can be further
simplified to a max-superposition model, where signals are superposed by a nonlinear max
operation. Surprisingly, unlike in relay-networks with known fading and linear superposition,
we find that decode-and-forward can perform arbitrarily better than compress-and-forward
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in max-superposition relay networks with unknown fading. “Beam-forming” is critical in
these networks despite the parameter uncertainty.

We extend carry-free models to understand control and estimation systems in Chapter 3.
We prove a version of the uncertainty threshold principle in the carry-free models. Surpris-
ingly, these models show that the underlying bottlenecks that give rise to the log log SNR
result in communication and the uncertainty threshold principle are exactly the same: they
stem from the bit scrambling that happens due to multiplicative noise. These models high-
light difference between multiplicative and additive uncertainties and form a basis for the
discussions in the subsequent chapters.

1.3.2 Uncertainty in the sensing channel

Chapter 4 studies the problem of estimating and controlling an unstable system over a non-
coherent channel. We find that carry-free models predict a result that is quite hard to predict
or prove using standard techniques in estimation and control. Systems with non-coherent
sensing channels do not obey the separation theorem, which is somewhat surprising in the
context of the large body of work on data-rate theorems for the sensing channel. It is shown
that such an unstable system is not mean-squared observable regardless of the density of the
random observation gain: the mean-squared estimation error for any estimator must go to
infinity. Standard dynamic programming techniques as well as estimation error lowerbounds
like the Cramer-Rao bound fail to give this result. We use a novel genie based proof to
convert the Bayesian problem to a minimax style hypothesis testing problem to give the
lowerbound.

Achievable strategies to stabilize plants with non-coherent observations have been well
known. Carry-free models help illustrate why active learning helps extract information and
stabilize the system even though passive estimation of the system is not possible. This
is not clear from standard dynamic programming techniques as well as information theory
rate-distortion approaches.

1.3.3 Control capacity: uncertainty in the actuation channel

Chapter 5 finally delivers the promised perspective on control capacity. We provide defini-
tions for the control capacity of carry-free models as well as for simple scalar models of un-
certain actuation channels. Our definition builds from the understanding of communication
capacity as defined by Shannon. The strictest sense of control capacity, zero-error control
capacity, emulates the worst-case sense of performance that the robust control paradigm
captures. The weakest sense of control capacity, which we call “Shannon” control capacity,
focuses on the typical behavior of the zeroth-moment or the log of the state. In between
these two there exists a range of η-th moment capacities of the actuation channel. These
different notions of control capacity characterize the impact of large deviations events on the
system, and provide a partial generalization of the classic uncertainty threshold principle in
control to sense of stability that go beyond the mean-squared sense.
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Since the “Shannon” control capacity of an actuation channel relates to physically sta-
bilizing the system, it can be different from the Shannon communication capacity of the
associated communication channel. For the case of actuation channels with i.i.d. random-
ness we provide a single-letter expression for the control capacity. Our formulation for control
capacity allows for explicit characterization of the value of side information in systems. We
believe these ideas will extend to vector systems as well as to uncertainties in the sensing
channels and the system gain itself, but this development remains as future work.

1.3.4 The value of information in control

Chapter 6 focuses on the value of side information in control systems from the perspective
of the “tolerable growth rate” for a system. This is the maximal gain that the system can
tolerate while there still exists a strategy that can potentially stabilize it. Information theory
and portfolio theory have extensively studied the growth rates of systems (e.g. the size of
the message set and the value of a portfolio). Control systems on the other hand care about
“decay rates” since the objective is to shrink the system as fast as possible. As in portfolio
theory, we can think of the value of side information in a control system as the change in
the “growth rate” due to side information. A scalar counterexample (motivated by carry-
free deterministic models) shows the value of side information for control does not exactly
parallel the value of side information for portfolios. Mutual-information does not seem to be
a bound here.

We extend this concept to vector systems through a “spinning” system toy example.
The control directions for this system are re-oriented at each time so that the control or
observation direction is partially unknown. The value of side information can be calculated
in this setup and it behaves quite differently in a control vs. estimation context.

1.3.5 Future information in control

Chatper 7 circles back to the classically studied vector observation and control problems
over (scalar) real-erasure channels studied by [21], [24] and [8], [26] respectively. In this
case we try and measure the value of side information though the change in the critical
packet-drop probability for the system. We show that in the case of maximal periodicity
in the eigenvalues of the system matrix, the dual observation and the control problems
actually will have exactly the same critical threshold probability, which is bottlenecked by
the maximal eigenvalue of the system matrix.

However, we find that in the generic case, with no eigenvalue cycles, non-causal side
information regarding the actuation channel drops can be very valuable for the control
problem. The same side information would not improve the performance of the estimation
problem. Full-lookahead on the drops by the actuation channel can help the control problem
match the performance of the observation problem! Using dynamic programming, we can also
show that even partial lookahead can improve the scaling behavior of the critical probability
for the control problem. It seems that an align-and-kill strategy, which is similar to the zero-
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forcing equalization strategy in communications is the optimal strategy with and without
lookahead in the control counterpart to the “high SNR” regime (i.e. as system eigenvalues
tend to infinity).
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Chapter 2

Bit-level models for uncertain
parameters: communication

2.1 Introduction

This chapter develops a new set of bit-level channel models, called “carry-free” models for
uncertain and unknown communication channels. These build on previous bit-level models
developed in wireless network information theory. Chapter 3 extends these to dynamical
systems.

Channel models have always formed the foundation for understanding and engineering
wireless communication systems. The choice of model involves a tradeoff between simplicity
and “distance” from the real-world. Fig. 2.1 shows a spectrum of these models. Rayleigh-
faded Gaussian models are among the most commonly used and have undoubtedly furthered
the state-of-the-art in the field. However, these models are complex, and this complexity
can obscure the essential interaction between channels and the information flowing through
them.

Wireless 
media 

“real world” 

Rayleigh- 
faded 

Gaussian 

Deterministic 
(ADT) models 

[2]  

Carry-free 
models [1] 

Quantization /
Superposition 
Models [3, 4] Max-superposition 

model 

Figure 2.1: Models for wireless media. Carry-free models lie between the Rayleigh-faded
Gaussian and quantization models on one side, and ADT models on the other.

This led to the development of the simple deterministic “bubble-model” by Avestimehr,



20

Faded Quantization Carry-free ADT
Gaussian [61], [62] [59] [58]

2× 2 IC X X X X
Relay channel X X X X

(1
2
, 1

2
) d.o.f.

in MAC w/o X X X ×
timesharing & CSIT

Real IA X X X ×
Direct map to

Gaussian Networks X X × ×
Beam-forming gain X X × ×

Unknown fading X X∗ X ×

Table 2.1: A comparison of communication models. The X∗ under Quantization models
indicates that while these models can be extended to capture the effects of unknown fading
in channels, the references [61], [62] do not show this.

Diggavi and Tse (ADT model) [58], which pictorially represents information flows and their
interactions. The simplicity of these models led to progress on the relay and interference
channels. However, the same simplicity prevents them from capturing the interference align-
ment phenomena observed in Gaussian fading channels. ADT models only represent gains
that are powers of two—they are limited in their ability to capture real-valued channel gains.

Real interference alignment exploits channel diversity and channel state information at
the transmitter [60]. Channel gains that are not just powers of two are essential to capture it.
However, the naive approach with full bit-level multiplication leads to a different problem:
the “carries” in the multiplication of the channel gain and the signal break the bit-wise
linearity (and hence the simplicity) of the model. To circumvent this issue, the models
recently proposed by Maddah-Ali and Niesen [59] ignore these carries to preserve linearity
and yet model generic channel gains. This inspires us to call these models “carry-free”
models. Essentially, these carry-free models replace a single real channel input by a discrete
valued signal and a real channel gain by an LTI system (Fig. 2.2). Sections 2.2 and 2.3 give
details of the carry-free interpretation of [59]. Section 2.3.3 deals with MIMO channels.

As a summary, Table 2.1 provides a comparison of the different families of models. While
neither ADT nor carry-free models provide direct mappings for individual instances of Gaus-
sian networks, carry-free models are able to capture fractional degrees of freedom and real
interference alignment [59].

Armed with this new richer model, Section 2.4 attempts to understand another Gaussian
phenomenon: communication over unknown i.i.d. fading channels. A first curiosity about
such channels was conjectured in 1969 [33]—even for continuous fading distributions the
optimal channel input distribution is discrete. Since then many works have followed up
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to characterize unknown point-to-point models [34], [36], [37]. Gaussian channel capacities
in this case behave as log(logSNR), as opposed to the logSNR scaling for channels with
known fading.

Carry-free models prove to be particularly useful in understanding information flows
in control theory. Historically, the fields of communication and control have developed
independently. Traditional information theory ignores message semantics and focuses on
system rate, with complexity, delay and reliability being secondary considerations. On the
other hand, traditional control theory has a natural focus on interpreting an observation to
perform the right action and cares about the rate of convergence and computable solutions.
In the past decade, questions in the area of control over communication networks have forced
the two fields to interact. We believe carry-free models help connect these two fields and
provide a information-centric perspective. This idea builds on the previous use of ADT
models in control problems [17]–[19]. We discuss how carry-free models can help understand
the information bottlenecks in estimation and control of simple linear systems, in the presence
of both explicit rate-limits and implicit uncertainty bottlenecks. Since carry-free models can
model unknown fading in communication channels they are particularly useful to model
parameter uncertainty in control systems.

The final set of models we introduce remove the randomness from the carry-free models
for unknown fading channels. We propose the max-superposition model in Section 2.4 that
removes this randomness. The model builds from the observation that only the position
of the highest non-zero bit in a signal conveys information when the channel is unknown.
The max-model explains how the energy level modulation scheme, which is optimal in the
case of real channels [37], can in fact be thought of as simple pulse-position-modulation.
A similar fact is true in networks with unknown fading. In the max-superposition model,
superimposed signals are combined through the non-linear max-operator, as opposed to a
linear sum (hence, the name).

Finally, we note that the max-superposition model of the relay channel offers a surprise:
partial-decode-and-forward can offer an unbounded gain over compress-and-forward1.

2.2 Carry-free operations

Just as in the ADT models [58], the generalized deterministic models of Niesen and Maddah-
Ali [59] consider the binary-string representation of real numbers as a starting point. To
be able to interpret these models as “carry-free” models we define carry-free arithmetic,
i.e. arithmetic without the usual carryovers that result from addition.

Consider such a string anan−1...a1a0a−1.... Let B be the set of all semi-infinite binary
strings. We define carry-free addition, ⊕c, and multiplication, ⊗c, over B in the obvious way.

1Most of the results in this chapter are joint work with Se Yong Park [63].
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Addition and Multiplication

Let cn...c1c0c−1... = an...a1a0a−1...⊕c bn...b1b0b−1.... Then ci = ai + bi, where the sum is over
F2. The addition operation involves no carryovers unlike in real addition. We derive the
name “carry-free” from this property. Bit interactions at one level do not affect higher level
bits.

Let cn...c1c0c−1... = an...a1a0a−1... ⊗c bn...b1b0b−1... . Then ci =
∑
k

akbi−k, where the

summations are in F2. Thus, multiplication is basically “convolution” (Fig. 2.2), as noted
in [59]. We note that it is commutative and associative.

…. 

Convolution in time 

 1 1 0 1 
      1 1 
1 1 0 1 

1 1 0 1 X 
1 0 1 1 1  

Bit multiplication 

1  0  1  1  1 

1  1 time 

Figure 2.2: Carry-free multiplication as “convolution”

Signal notation

The bit-levels of carry-free numbers are like a fake “time”. Signals convolve to interact—just
as carry-free strings multiply. The string an...a1a0a−1... can also be denoted as signal samples
from −∞ to n: a[n]a[n− 1]...a[0]a[−1]....

Polynomial notation

Under the multiplication and addition defined above, (B,⊕c,⊗c) forms a commutative ring.
There is a natural mapping from this ring to the polynomial ring. an...a1a0a−1... in B
corresponds to the formal power series anz

n + ... + a1z + a0 + a−1z
−1.... We can check the

natural addition and multiplication in the polynomial ring is equivalent to ⊕c and ⊗c of B.

Truncation

We will use a truncation operation similar to [58], [61], [62] to capture the effect of noise in
a channel. For a formal power series (polynomial) a(z) =

∑
i

aiz
i, we define ba(z)c =

∑
i≥0

aiz
i.
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2.3 Carry-free models

This section walks through the development of the lower triangular or carry-free approxima-
tion to standard Gaussian models, similar to that in [58], [59].

2.3.1 The point-to-point channel

Tx Rx Tx Rx 

(a) (b) 

Tx Rx Channel Truncation 

Impulse Response 

(c) 

. . . 

Figure 2.3: (a) ADT model for point-to-point channel with gain 25(1 + 2−2) (b) The carry-
free model for point-to-point channel with gain 25(1 + 2−2) captures the bit-level structure
more finely (c) Signal processing system representation of the carry-free model

Consider a real Gaussian point-to-point channel,

y = 2n · h · x+ w. (2.1)

h is a fixed realization of a random channel gain uniform in [0, 1). (2n)2 represents the signal-
to-noise ratio (SNR). The noise w is N (0, 1). For simplicity, we assume signal x has a peak
power constraint of 1 as in [58]. We develop a carry-free model for this channel, parallel to
the development of the ADT model, and like them consider bounded additive noise instead
of Gaussian.

Considering the binary expansions of h and x, we have

y = 2n(h−12−1 + h−22−2 + ...)(x−12−1 + x−22−2 + ...) + (w−12−1 + w−22−2 + ...) (2.2)

Replacing the binary expansion with polynomial notation, we get

y(z) = zn(h−1z
−1 + h−2z

−2 + ...)(x−1z
−1 + x−2z

−2 + ...) + (w−1z
−1 + w−2z

−2 + ...), (2.3)
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We shorten this as y(z) = znh(z)x(z)+w(z). For i ≥ 1, w−i are modeled as Bernoulli−(1
(
2))

random variables. This captures the idea that any bits of x(z) that are below the noise level
are unobservable at the receiver. We can write the channel equation as y(z) = bznh(z)x(z)c.
Here, h(z) is the channel polynomial, 1

2
log(SNR) = n and x(z) is the message polynomial.

In matrix form this is:




y0

y1
...

yn−3

yn−2




=




h−1 h−2 · · · h−(n−2) h−(n−1)

0 h−1 · · · h−(n−3) h−(n−2)
...

...
. . .

...
...

0 0 · · · h−1 h−2

0 0 · · · 0 h−1







x−(n−1)

x−(n−2)
...
x−2

x−1



, (2.4)

or y = H · x. Thus, the capacity of the channel is the rank of the (n− 1)× (n− 1) matrix
H, which is determined by the highest location where hi is non-zero.

Theorem 2.3.1. (from [59]) The capacity of the carry-free point-to-point channel with the
channel coefficient h(z) =

∑
ihiz

i and 1
2

log(SNR) = n is Rank(H) = n − min{i|h−i 6= 0},
where H is the matrix as above.

Remark 2.3.2. The ADT model for a point-to-point channel is a special case of the carry-
free model. The ADT model can only capture the behavior of a one-tap impulse response,
whereas the carry-free model captures an infinite impulse response with a truncated received
signal. Similarly, in the polynomial framework the ADT model allows the channel gain
polynomial h(z) to be a monomial, and thus the gain is experienced as a bit shift. The
capacity gap between the Gaussian and the ADT model is exactly the same as the gap
between the Gaussian and the carry-free model, since in both cases it only depends on the
highest bit. Fig. 2.3(a), (b) compare the ADT model to the corresponding carry-free model.
Fig. 2.3(c) shows the parallel between bit-levels and “time” in carry-free models.

2.3.2 The multiple-access channel

For completeness we discuss the fractional degrees of freedom in the multiple-access channel
as in [59]. We introduce the notion of degrees of freedom of a channel as the achievable
rate normalized by 1

2
log(SNR). Let C(h(z), n) denote the capacity of the channel with gain

vector h(z) and 1
2

log(SNR) = n.

Definition 2.3.3. Let h(z) be the channel gain vector. Then the degrees of freedom (d.o.f)
of the channel under the carry-free model is defined as

d.o.f. = lim sup
n→∞

C(h(z), n)

n
. (2.5)
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Tx1 

Rx 

Tx2 

Noise 
Level 

a-1 

a-2 

0 

0 

b-1 

b-2 

0 

0 

a-1+b-1 

a-2+b-2 

b-1 

a-1+b-2 

Figure 2.4: MAC with channel gains h(z) = z4(1 + z−3), h′(z) = z4(1 + z−2). (1
2
, 1

2
) d.o.f.

are achievable using the scheme described.

An interesting question about fractional degrees of freedom was implicitly posed and
answered positively by Motahari et al. [60] and Wu at al. [64]: can an encoder achieve (1

2
, 1

2
)

d.o.f. without time-sharing or CSIT (channel state information at transmitters)? We can
answer this question in a carry-free MAC model, as explored in [59] by Niesen and Maddah-
Ali 2.

Consider a MAC with no CSIT: y(z) = b2nh(z)a(z) + 2nh′(z)b(z)c with 1
2

log(SNR)
= n. In other words, h(z) and h′(z) are only known to the receiver, and transmitters are
not allowed any cooperation or common randomness for time-sharing. Clearly, the cut-set
bound implies that the maximum d.o.f. of the channel are bounded by 1. The scheme we
use follows [60], and sets the lower order bits to zero as described in Fig. 2.4.

Theorem 2.3.4. (from [59]) Each transmitter can achieve 1
2

d.o.f. without timesharing or
CSIT for almost all channel gains.

Proof: For ε > 0, let l = bn(1−ε)
2
c. To achieve d.o.f. (1

2
, 1

2
) we set the message polynomials

as a(z) = a−1z
−1 + ... + a−lz

−l and b(z) = b−1z
−1 + ... + b−lz

−l. The relationship between
the coefficients received y and the message is then given by eq. (2.6).

Denote eq. (2.6) as y = H · x, where x is the stacked vector
[
a−l b−l . . . a−1b−1

]
. To

prove the theorem, we will put a random measure on the channel coefficients and prove that
for all ε > 0 the probability of H being rank-deficient goes to zero. Let h−1, ..., h

′
−1, ... be

2The fundamental issue is that of symmetry — can a symmetric scheme be implemented without pre-
coordination? Successive-decoding schemes in Gaussian models are inherently asymmetric. For instance,
consider a scheme where one encoder reduces its power to

√
P while the other transmits at full power P .

This requires a pre-coordination on which encoder must reduce power and is equivalent to a time-sharing
scheme in cooperation burden. The same must occur in ADT models since the bit shift alignments at the
receiver are unknown to the transmitter.
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y0

y1
...

yn−l−1

yn−l
...

yn−2




=




hl−n h′l−n hl−1−n h′l−1−n · · · h1−n h′1−n
hl+1−n h′l+1−n hl−n h′l−n · · · h2−n h′2−n

...
...

...
...

. . .
...

...
h−1 h′−1 h−2 h′−2 · · · hl−1−n h′l−1−n

0 0 h−1 h′−1 · · · hl−2−n h′l−2−n
...

...
...

...
. . .

...
...

0 0 0 0 0 h−1 h′−1







a−l
b−l
...
a−1

b−1




(2.6)

Bernoulli(1
2
) random variables. To guarantee unique decodability, it is enough to show that

for all x 6= 0, H · x 6= 0, since the code is linear.
We do this by partitioning the vectors x into the sets A1 to Al based on the first non-zero

location. We then use the union bound to bound Pr{Hx = 0}. Let A1 = {x|a−1 6= 0 or b−1 6=
0}. Ai = {x|a−j = b−j = 0 ∀ j < i , a−i 6= 0 or b−i 6= 0} for 1 < i ≤ l. The calculations are
below.

Pr({Hx = 0 for some x 6= 0})
≤Pr(Hx = 0 for some x ∈ A1) + Pr(Hx = 0 for some x ∈ A2) + · · ·+ Pr(Hx = 0 for some x ∈ Al)
≤max

x∈A1

Pr(Hx = 0) · |A1|+ max
x∈A2

Pr(Hx = 0) · |A2|+ · · ·+ max
x∈Al

Pr(Hx = 0) · |Al|

= 2−(n−1) · (3 · 22l−2) + 2−(n−2) · (3 · 22l−4) + · · ·+ 2−(n−l) · 3
≤ l · 2−(n−1) · (3 · 22l−2)

= bn(1− ε)
2

c · 2−(n−1) · (3 · 22bn(1−ε)
2
c−2)

→ 0 as n→∞

For eq. 2.7, note that maxx∈A1 Pr(Hx = 0) is happens in the case where x is 0 in all locations
except a−1 or b−1. To get |A1|, note that there are 3 configurations of (a−1, b−1) that work,
and then there are 22l−2 choices for the other values.

Therefore, the probability that H is full-rank goes to 1 as n→∞. Hence, we can achieve
the d.o.f. (1

2
, 1

2
) for almost all channels.

In the above proof, we only use the upper n
2

coefficients of the message polynomials. The
Gaussian counterpart of this idea would be to increase the quantization bin size to make
room for the interference, as in [60]. The proof of this idea in the carry-free model relies on
simple matrix invertibility and the union bound, and may offer some insight into the heart
of the Khintchine-Groshev theorem used in [60].

Wu et al. [64] suggests the importance of probability distributions that have Rényi di-
mension 1

2
to achieve fractional degrees of freedom. One such distribution over numbers

involves setting every other bit to zero, while the remaining bit are random, and Cadambe
et al. [65] showed that the notion of fixing the values of alternate bits works for the K user
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interference channel for a restricted set of ADT models. However, since this strategy worked
only for the specific set, it was unclear whether the phenomenon was a corner case or was in
fact the typical situation in Gaussian channels. We can prove that an alternating bit scheme
works for almost all carry-free models in the same way as the above proof. This fact gives
an accessible intuition for why Wu et al.’s scheme works.

2.3.3 Modeling point-to-point MIMO

The following 2× 2 MIMO example from [58] illustrates a limitation of the ADT model:

Y = 2k
[

3
4

1
1 1

]
X +N (2.7)

This channel has 2 d.o.f under the Gaussian model, but only one under ADT models. How-
ever, carry-free models represent the channel as h11(z) = zk−1 + zk−2, h12(z) = zk, h21(z) =
zk, h22(z) = zk and can capture the 2 d.o.f.

Unfortunately, the carry-free model cannot solve this problem generally. There is no
simple correspondence between a specific instance of a real 2×2 MIMO model and a specific
carry-free model. Consider the channel

Y = 2k
[
9 3
3 1

]
X +N, (2.8)

with 1 d.o.f. under the real Gaussian model. However, the corresponding carry-free model
with h11(z) = z3 + 1, h12(z) = z + 1, h21(z) = z + 1, h22(z) = 1 has 2 d.o.f., since its
determinant in the polynomial ring is non-zero. But

Y = 2k
[
5 2
2 1

]
X +N, (2.9)

has 2 d.o.f. under the real Gaussian model. Under the carry-free model, the channel co-
efficients are h11(z) = z2 + 1, h12(z) = z + 1, h21(z) = z + 1, h22(z) = 1, which lead to
determinant 0.

This inconsistency between the carry-free model and the Gaussian model seems to arise
from the fact that numbers behave differently under the two algebras because of the lack
of carryovers. For instance, 5, a prime integer, is composite in the carry-free ring (101 =
11⊗c 11). This is the primary difficulty in building a direct map from Gaussian instances to
their carry-free counterparts.
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Figure 2.5: This figure shows a carry-free model for an unknown fading channel. The
maximal non-zero bit of the input contaminates output at all lower-levels. y1 = h0x1 remains
correlated to x(z). However, y0 = h0x0 + h−1x1, is now a Bernoulli−1

2
random variable

independent of x(z) if x1 = 1. The same is true for all lower levels of y(z).

2.4 Channels with unknown i.i.d. fading

2.4.1 Point-to-point carry-free model

Consider the carry-free model for a channel with unknown i.i.d. fading as in Fig. 2.5. The
basic setup builds from earlier sections3: y(z) = bh(z)x(z)c where h(z) = h0 + h−1z

−1 + · · ·
and x(z) = xnz

n + xn−1z
n−1 + · · · + x0. Here, hi are i.i.d. Bernoulli−1

2
random variables

which are unknown to both the transmitter and the receiver, and xi ∈ {0, 1}.
The first thing to note is that this carry-free channel is not deterministic—the randomness

from the fading introduces randomness in the input-output relationship. Next, observe that
once the maximum non-zero bit-level in the output is fixed, the randomness introduced by
the channel forces all bits below the maximum level to be Bernoulli-1

2
random variables which

are independent from the input. Therefore, we focus our attention on the highest 1 received
in y(z). Define,

yq =

{
−1 if y(z) = 0

max{i|yi = 1} if y(z) 6= 0
(2.10)

Similarly we can also define the maximal bit of x(z) as,

xq =

{
−1 if x(z) = 0

max{i|xi = 1} if x(z) 6= 0
(2.11)

Given that y(z) = bh(z)x(z)c and the degree of h(z) is 0, xq ≥ yq. The key observation
is that xq and yq are sufficient statistics of x(z), y(z) for y(z), x(z) respectively, and this is
captured in the following lemma.

3For ease of exposition we adopt slightly different model parameters and incorporate the channel power
gain zn+1 (not zn) into x(z) and h(z).
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Theorem 2.4.1. P (yq = xq − i) =
(

1
2

)i+1
for 0 ≤ i ≤ xq and P (yq = −1) =

(
1
2

)xq+1
. More-

over, x(z)—xq—yq—y(z) form a Markov chain, and I(y(z);x(z)) = I(yq;x(z)) = I(yq;xq).

Proof: yxq = h0 · xxq . Hence, P (yq = xq) = P (h0 = 1) = 1
2
. Similarly,

yxq−i =

xq∑

j=0

hj−i · xxq−j (2.12)

P (yq = xq − i) = P (h0 = 0, h−1 = 0, · · ·h−i+1 = 0) =
(

1
2

)n
.

I(y(z);x(z)) = H(y(z))−H(y(z)|x(z)) (2.13)

= H(yyq , yyq−1 . . . y0)−H(yyq , yyq−1 . . . y0|xxq , xxq−1 . . . x0) (2.14)

= H(yyq) +H(yyq−1, yyq−2 . . . y0|yyq)−H(yyq |xxq , xxq−1x+0 . . .)

−H(yyq−1, yyq−2 . . . |yyq , xxq , xxq−1 . . .) (2.15)

= I(yyq ;xxq , xxq−1 . . . x0) +H(yyq−1, yyq−2 . . . y0|yyq)
−H(yyq−1, yyq−2 . . . y0|yyq , xxq , xxq−1 . . . x0) (2.16)

= I(yyq ;x(z))− I(yyq−1, yyq−2 . . . y0;xxq , xxq−1 . . . x0|yyq) (2.17)

= I(yyq ;x(z)) (2.18)

We must show that

I(yyq−1, yyq−2 . . . y0;xxq , xxq−1 . . . x0|yyq) = 0 (2.19)

to get eq. (2.18).

I(yyq−1, yyq−2 . . . y0;xxq , xxq−1 . . . x0|yyq) =

yq−1∑

i=0

I(yi;xxq , xxq−1 . . . x0|yyq , yyq−1 . . . yi+1)

(2.20)

Now, we note, since xq ≥ yq we can write:

yyq−i = hyq−i−xq · xxq +

xq−1∑

j=0

hyq−i−xq+jxxq−j (2.21)

= hyq−i−xq · 1 +

xq−1∑

j=0

hyq−i−xq+jxxq−j (2.22)



30

So yyq−i is independent of all xi, i < xq due to the Bernoulli−1
2

additive random variable
hyq−i−xq . xq ≥ yq guarantees that hyq−i−xq is included in the sum. So conditioned on yyq all
lower bits are independent of all input bits and we have:

I(yyyq−1 ;xxq , xxq−1 . . . x0|yyq , yyq−1 . . . yyq−i+1) = 0 (2.23)

which gives the required result eq. (2.19).

I(yyq ;x(z)) = H(yq)−H(yyq |xxq , xxq−1 . . . x0) (2.24)

= H(yq)−H(yyq |xxq) (2.25)

= I(yyq ;xxq) (2.26)

= I(yq;xq) (2.27)

For eq. (2.25), H(yyq |xxq , xxq−1 . . . x0) = H(yyq |xxq) since yyq = hyq−xq ·xxq , where hyq−xq =
maxi{hi = 1} is the highest 1 in c(z). So bits lower than xq are independent of yyq , since all
hi, i > yq − xq are 0. For eq. (2.26), the only randomness in xxq = 1 and yyq = 1 comes from
their indices xq, yq.

We use the lemma to calculate the capacity of this channel, Ccf = maxp(x(z)) I(x(z); y(z)).

Theorem 2.4.2. The capacity of the carry-free point-to-point channel with unknown fading
is log (n+ 2)− 3 ≤ Ccf ≤ log(n+ 2).

Proof: The achievable scheme involves using monomials zxq as the channel input x(z) and
parallels pulse-position modulation. The converse follows from Lemma 2.4.1.

Remark 2.4.3. This behavior does not manifest in an ADT model. Consider a point-to-
point ADT model where the degree of the gain h is drawn uniformly from 0 to n and is
unknown to the transmitter and the receiver. Let xq be the position of the highest 1 on the
transmitted signal, and let hq be the realization of the degree of the gain. Then the receiver
can only see xq + hq. Since both these quantities are unknown, it is not possible to decrease
the entropy of xq below log n based on the received signal, and this model predicts that no
information could be transmitted across the channel.

No, what about the case where the channel gain h has degree larger than 1 with more
than 1 deterministic bits (e.g. Fig. 2.6)? This is discussed in the next corollary.

Corollary 2.4.4. Let

h(z) = hg · zg + hg−1[n] · zg−1 + · · · (2.28)

= 1 · zgdet + 0 · zgdet−1 + 0 · zgdet−2 + · · ·
+ hgrand · zgrand + hgrand−1 · zgrand−1 + · · · (2.29)
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Figure 2.6: Here both h1 and h0 are known. h1 = 1 and h0 = 1 say. Then both x2 and x1

can be decoded from y(z).

where

grand = max{i|ci ∼ Bernoulli(
1

2
), gc ≥ i ≥ −∞}. (2.30)

and

gdet = g. (2.31)

If y(z) = bh(z)x(z)c, then I(y(z);x(z)) ≤ gdet−grand+log n where n is the maximum possible
degree of x(z).

Proof: The proof follows exactly the same as that of the previous lemma.

I(x(z); y(z)) = I(x(z); yxq+gdet , yxq+gdet−1, · · · , yxq+grand , · · · y0) (2.32)

yxq+grand−i =

gdet−grand∑

j=0

hgrand+j−i · xxq−j (2.33)

= hgrand−ixxq +

gdet−grand∑

j=1

hgrand+j−i · xxq−j (2.34)

Since hgrand−ixxq is a Bernoulli−(1
2
) random variable, yxq+grand−i is independent of xi for

all i. So we have

I(x(z); y(z)) = I(x(z); yxq+gdet , yxq+gdet−1, · · · , yxq+grand+1) (2.35)

≤ H(yxq+gdet , yxq+gdet−1, · · · , yxq+grand+1) (2.36)

= gdet − grand + log n (2.37)
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gdet − grand bits of x(z) can be decoded from yxq+gdet to yxq+grand+1. The position xq is a
deterministic function of yxq+gdet .

2.4.2 Point-to-point max-superposition

The observations above suggest that the essence of communicating over unknown fading
channels is captured by the location of the highest non-zero bits of the input and output.
Hence, we propose the max-model, which depends only on the maximal bit of the signal.
Let x ∈ {0, 1, 2 · · ·n} represent the position of the maximal bit in the input signal. Then, y,
the position of the maximal bit in the output signal is represented as simply as

y = x. (2.38)

Theorem 2.4.5. The capacity of this channel is Cmax = log(n+ 1).

Proof: Since the channel is noiseless and the input can take n + 1 values, clearly Cmax =
log(n+ 1).

2.4.3 Point-to-point real model

The carry-free models give an intuitive explanation of the log logSNR result for communica-
tion over unknown fading channels. For a channel with uniform distribution: Y = H ·X+W ,
unknown i.i.d. fading H ∼ U [0, 1], input power constraint E[X2] ≤ P and noise W ∼ U [0, 1].

We know from [37] that the optimal achievable scheme for this channel is to modulate
the energy-level, and there are n = logP of those available (i.e. the number of bit-levels
in the carry-free model). The different signal values (logarithmically spaced) that are used
as inputs can be thought of as pulse-positions for standard pulse-position-modulation. The
observation that blog |Y |c+ is an approximate sufficient statistic for Y , clearly illustrates the
insight and applicability of the max-model to this problem.

2.4.4 The carry-free MAC with unknown fading

Next we move to the carry-free unknown MAC. User A has message a(z) and User B has
message b(z). y(z) = bh(z)a(z) + h′(z)b(z)c where h(z) = h0 + h−1z

−1 + · · · and h′(z) =
h′0 + h′−1z

−1 + · · · are unknown at the transmitter and receiver. Let a(z) = an1z
n1 + · · ·+ a0

and b(z) = bn2z
n2 + · · ·+ b0, and yq, aq, and bq are defined as in the previous section.

Just as in the point-to-point case, the randomness introduced by the fading restricts the
information communicated across the channel to the maximal power level over the two input
signal, and yq depends only on max{aq, bq}. This intuition is captured in Lemma 2.4.6.
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Lemma 2.4.6. P (yq = max{aq, bq} − i) =
(

1
2

)i+1
for 0 ≤ i ≤ max{aq, bq} and P (yq =

−1) =
(

1
2

)max{aq ,bq}+1
. Further, a(z), b(z)—aq, bq—max{aq, bq}—yq—y(z) form a Markov

chain. Hence, I(y(z); a(z), b(z)) = I(yq; a(z), b(z)) = I(yq; aq, bq).
Proof: This proof follows exactly as the proof of Lemma 2.4.1.

Just as in the point-to-point case, Lemma 2.4.6 suggests a deterministic model, described
in the next section.

2.4.5 The max-superposition MAC

Finally, we come to the example which gives the max-superposition model its name. Let
a ∈ {0, 1, 2 · · ·n1} and b ∈ {0, 1, 2 · · ·n2} represent the highest non-zero bits of the two input
signals in a MAC that carry the messages of user A and user B respectively. Then the
output, y, of the channel depends only on the maximum of the two signals:

y = max{a, b}. (2.39)

The very nature of this model suggests that it is not possible for both encoders to simulta-
neously communicate information. We believe this also captures the behavior in the AWGN
MAC with unknown gains. Theorem 2.4.7 below proves that the timesharing rate region is
optimal to within one bit.

Theorem 2.4.7. The achievable rate region for the max-superposition MAC consists of all
positive rate pairs (R1, R2) such that

log(n2 + 1)R1 + log(n1 + 1)R2 ≤ log(n1 + 1) log(n2 + 1) (2.40)

Further, this region is tight to within 1 bit for both R1 and R2 — namely all achievable pairs
must satisfy:

log(n2 + 1)(R1 − 1) + log(n1 + 1)(R2 − 1) ≤ log(n1 + 1) log(n2 + 1)

The achievable rate region is a simple timesharing scheme. For the converse we use the
converse for the DMC MAC and evaluate bounds using the two lemmas below. The proofs
are given in the Appendix 2.5.

Lemma 2.4.8. For the max-superposition MAC with channel inputs X1, X2 ∈ {0, 1, 2 · · ·n}
that are independent, and with Y = max(X1, X2),

I(X1;Y |X2) + I(X2;Y )|X1) ≤ log(n+ 1) + 1 (2.41)
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Lemma 2.4.9. Let X1 ∈ {0, 1 · · ·n1} and X2 ∈ {0, 1 · · ·n2} be independent, and n1 > n2.
Let Y = max(X1, X2). Then there exists 0 ≤ p ≤ 1 and Z1 ∈ {0, 1 · · ·n2} independent of X2

such that

I(X1;Y |X2) ≤ (1− p) · log(n1 + 1) + p · I(X2; max(Z1, X2)|Z1)) + 1 (2.42)

I(X2;Y |X1) ≤ p · I(Z1; max(Z1, X2)|X2)) + 1 (2.43)

I(X2; max(Z1, X2)|Z1)) + I(Z1; max(Z1, X2)|X2)) ≤ log(n2 + 1) + 1 (2.44)

2.4.6 Relay network

Rel1	  

Rel2	  

Rx	  Tx	  

R1

R1

Figure 2.7: A max-superposition relay network with an approximately optimal partial-
decode-and-forward scheme. The cross-links between X3, X4 and Y3, Y4 are weaker than
the direct links and lead to downward bit-level shifts by b√nc. X1 = b√ncm0 + m1 and
X2 = b√ncm0 +m2 are transmitted by the two relays.

Having understood point-to-point links as well as multiple-access channels with unknown
channel gains, we move to networks with unknown fading. In particular, we consider a relay-
network here.

Successive decoding is not possible in a MAC with unknown fading — the best scheme
is essentially time-sharing. This suggests that there might not be any point to try and
understand coordination or beam-forming style gains by relays in more complex networks.
Compress-and-forward would seem like the right approximately optimal scheme.

This section gives an example of a relay network with unknown fading where surprisingly,
partial-decode-and-forward can infinitely outperform compress-and-forward style schemes.
There is a significant coordination gain (traditionally known as beam-forming gain) to be
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exploited. This observation is quite interesting when we remind ourselves that the beam-
forming gain is usually bounded by a constant in known-fading Gaussian networks with linear
superposition, and compress-and-forward is the optimal in linear ADT relay networks [58]. 4

In the previous section, we saw that the max operation essentially captures superposition
in i.i.d. unknown fading networks. We focus on a specific max-superposition relay network
shown in Fig. 2.9. Channels connecting X1 to Y1 and X2 to Y2 are orthogonal noiseless links
with rate R each. The MIMO channel connecting X3, X4 to Y3, Y4 is a max-superposition
deterministic model. We consider X3 ∈ {0, 1, · · · , n}, X4 ∈ {0, 1, · · · , n} and

Y3 = max(X3, (X4 − b
√
nc)+) (2.45)

Y4 = max((X3 − b
√
nc)+, X4) (2.46)

The shifted max-operation captures the difference between the direct-link and cross-link
gains in the original Gaussian MIMO channel. The cross links are weaker than the direct
links, but not by much in a proper scaling.

First, observe that when X3 − X4 ≥
√
n, Y3 = X3 and Y4 = (X3 − b

√
nc)+. Thus,

both the received signals only depend on X3, and X4 is essentially useless. Moreover, when
X3 and X4 are independent and their ranges are large, with high probability the difference
between X3 and X4 is greater than

√
n and both Y3 and Y4 only depend on either X3 or

X4. Therefore, in compress-and-forward (where X3 and X4 are chosen independently), the
throughput is essentially bounded by log n which is the maximum entropy of a single input.

However, decode-and-forward can exploit the coordination gain between X3 and X4. We
can keep the difference within

√
n and let Y3, Y4 depend on both X3, X4. The key observation

is that when the quotients of X3, X4 divided by b√nc are the same, X3, X4 have to be within√
n. To keep the quotients the same, we transfer a common message m0 to both relays as

the common quotient.
An approximately optimal partial-decode-and-forward scheme is described in Fig. 2.9.

The transmitter divides the message into three parts m0,m1,m2 ∈ {0, 1, · · · , b
√
nc − 1}.

The common message m0 is sent to both relays and used as a quotient. m0 essentially
is like synchronization and helps to set the appropriate levels for both transmitters. This
coordination is key for the scheme. The private messages m1 and m2 are transmitted to
Rel1 and Rel2 respectively and used as remainders. In other words, X3 and X4 are chosen
as b√ncm0 +m1 and b√ncm0 +m2 respectively. Since the signals are within

√
n, Y3 and Y4

also have to equal X3 and X4 (eqs. (2.45), (2.46)). Moreover, since the ranges of m0,m1,m2

are b√nc, the achievable rate of this partial-decode-and-forward can increase to 3
2

log n.
We summarize our understanding in Thm. 2.4.10 and Fig. 2.8. The proof is included in

the Appendix 2.5.

4It was already known that partial-decode-and-forward is also optimal in semi-deterministic single-relay
channels [66].
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Theorem 2.4.10. Let Crel be the capacity of the relay channel given as above. The proposed
partial-decode-and-forward scheme gives the following lower bound.

Crel ≥ min{2R,R + log(b√nc), 3 log(b√nc)} (2.47)

The cut-set bound gives the upperbound

Crel ≤ min{2R,R +
1

2
log(n+ 1) + 2 log 3,

3

2
log(n+ 1) +

3

2
log 2} (2.48)

Compress-and-Forward 

Decode-and-Forward 
Optimal 

Figure 2.8: Generalized d.o.f. plot for the relay network in Fig. 2.9. 3
2

d.o.f. capacity is only
achievable by partial-decode-and-forward, not by compress-and-forward. Therefore, the gap
between the two goes to infinity as n grows.

Hence, the achievable scheme is approximately optimal within a constant gap. Since
compress-and-forward cannot exploit a “beam-forming gain”, it can perform infinitely worse
than the partial-decode-and-forward scheme.

2.5 Appendix

2.5.1 Proof of Lemma 2.4.8

Lemma 2.4.8. For the max-superposition MAC with channel inputs X1, X2 ∈ {0, 1, 2 · · ·n}
that are independent, and with Y = max(X1, X2),

I(X1;Y |X2) + I(X2;Y )|X1) ≤ log(n+ 1) + 1 (2.41)
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Proof:

I(X1;Y |X2) + I(X2;Y |X1) (2.49)

= I(X1;Y |X2) + I(X2;Y )− I(X2;Y ) + I(X2;Y |X1) (2.50)

= I(X1, X2;Y )− I(X2;Y ) + I(X2;Y |X1) (2.51)

= I(X1, X2;Y )−H(X2) +H(X2|Y ) +H(X2|X1)−H(X2|Y,X1) (2.52)

= I(X1, X2;Y )−H(X2) +H(X2|Y ) +H(X2)−H(X2|Y,X1) (2.53)

(since X1 and X2are independent)

= I(X1, X2;Y ) +H(X2|Y )−H(X2|Y,X1) (2.54)

= I(X1, X2;Y ) + I(X1;X2|Y ) (2.55)

≤ log(n+ 1) + 1 (2.56)

The intuition for the bound on I(X1;X2|Y ) is simple. Conditioned on the value of the
max of two numbers, the mutual information between them is just one bit: who is bigger.

I(X1;X2|Y ) = I(X1;X2|max(X1, X2)) (2.57)

= H(X1|max(X1, X2))−H(X1|max(X1, X2), X2) (2.58)

≤ H(X1|max(X1, X2))−H(X1|max(X1, X2), X2,1(X1≥X2)) (2.59)

(conditioning reduces entropy)

= I(X2;X1,1(X1≥X2)|max(X1, X2)) (2.60)

= I(1(X1≥X2);X2|max(X1, X2)) + I(X1;X2|1(X1≥X2),max(X1, X2)) (2.61)

≤ 1 + 0 (2.62)

(The conditioning of the second term reveals either X1 or X2)

2.5.2 Proof of Lemma 2.4.9

Lemma 2.4.9. Let X1 ∈ {0, 1 · · ·n1} and X2 ∈ {0, 1 · · ·n2} be independent, and n1 > n2.
Let Y = max(X1, X2). Then there exists 0 ≤ p ≤ 1 and Z1 ∈ {0, 1 · · ·n2} independent of X2

such that

I(X1;Y |X2) ≤ (1− p) · log(n1 + 1) + p · I(X2; max(Z1, X2)|Z1)) + 1 (2.42)

I(X2;Y |X1) ≤ p · I(Z1; max(Z1, X2)|X2)) + 1 (2.43)

I(X2; max(Z1, X2)|Z1)) + I(Z1; max(Z1, X2)|X2)) ≤ log(n2 + 1) + 1 (2.44)

Proof:
Let p = P (X1 ≤ n2).
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Now consider,

I(X1;Y |X2) (2.63)

= H(Y |X2)−H(Y |X2, X1) (2.64)

= H(Y |X2) (2.65)

= H(Y,1(X1 > n2)|X2)−H(1(X1 > n2)|X2, Y ) (2.66)

≤ H(Y,1(X1 > n2)|X2) (2.67)

= H(1(X1 > n2)|X2) +H(Y |X2,1(X1 > n2)) (2.68)

≤ 1 +H(Y |X2,1(X1 > n2) = 1)P (X1 > n2)

+H(Y |X2,1(X1 > n2) = 0)P (X1 ≤ n2) (2.69)

≤ 1 + (1− p) · log(n1 + 1) + p ·H(Y |X2,1(X1 > n2) = 0) (2.70)

= 1 + (1− p) · log(n1 + 1) + p ·H(max(X2, Z1)|X2) (2.71)

(since X1 ≤ n2 we can replace it by Z1 which is uniform in {0, 1, . . . n2})
= 1 + (1− p) · log(n1 + 1) + p (H(max(X2, Z1)|X2)−H(max(X2, Z1)|X2, Z1)) (2.72)

(because H(max(X2, Z1)|X2, Z1) = 0)

= 1 + (1− p) · log(n1 + 1) + p · I(max(X2, Z1), Z1|X2) (2.73)

I(X2;Y |X1) = H(Y |X1)−H(Y |X1, X2) (2.74)

= H(Y |X1) (2.75)

≤ H(max(X1, X2)|X1,1(X1 > n2)) (2.76)

(conditioning reduces entropy) (2.77)

= H(max(X1, X2)|X1,1(X1 > n2) = 1) · P (X1 > n2) (2.78)

+H(max(X1, X2)|X1,1(X1 > n2) = 0) · P (X1 ≤ n2) (2.79)

= p ·H(max(X1, X2)|X1,1(X1 > n2) = 0) (2.80)

= p · (H(max(Z1, X2)|Z1)−H(max(Z1, X2)|Z1, X2)) (2.81)

(since X1 ≤ n2 we can replace it by Z1 which is uniform in {0, 1, . . . n2})
= I(max(Z1, X2);X2|Z1) · P (X1 ≤ n2) (2.82)

Finally, we can use Lemma 2.4.8 for Z1 and X2 ∈ {0, 1, . . . n1} implies that

I(X2; max(Z1, X2)|Z1)) + I(Z1; max(Z1, X2)|X2)) ≤ log(n2 + 1) + 1 (2.83)
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2.5.3 Proof of Thm. 2.4.7

Theorem 2.4.7. The achievable rate region for the max-superposition MAC consists of all
positive rate pairs (R1, R2) such that

log(n2 + 1)R1 + log(n1 + 1)R2 ≤ log(n1 + 1) log(n2 + 1) (2.40)

Further, this region is tight to within 1 bit for both R1 and R2 — namely all achievable pairs
must satisfy:

log(n2 + 1)(R1 − 1) + log(n1 + 1)(R2 − 1) ≤ log(n1 + 1) log(n2 + 1)

Proof: Consider a timesharing scheme where time t1 slots are used by user A and t2 slots
are used by user B, with t1 + t2 = 1. Then user A achieves rate R1 = t1 log(n1 + 1), and user
B achieves rate R2 = t2 log(n2 + 1). Then we have that R1

log(n1+1)
+ R2

log(n2+1)
= 1, which gives

the achievable region.
For the converse, we use the converse for a DMC MAC [67]. With channel input X1, X2

and output Y we have:

R1 ≤ I(X1;Y |X2) (2.84)

R2 ≤ I(X2;Y |X1) (2.85)

R1 +R2 ≤ I(X1, X2;Y ) (2.86)

We know from Lemma 2.4.9 that there exists 0 ≤ p ≤ 1 and Z1 ∈ {0, 1 · · ·n2} independent
of X2 such that

I(X1;Y |X2) ≤ (1− p) · log(n1 + 1) + p · I(X2; max(Z1, X2)|Z1) + 1 (2.87)

I(X2;Y |X1) ≤ p · I(Z1; max(Z1, X2)|X2) (2.88)

I(X2; max(Z1, X2)|Z1) + I(Z1; max(Z1, X2)|X2) ≤ log(n2 + 1) + 1 (2.89)

Let I(Z1; max(Z1, X2)|X2) = C1 and I(X2; max(Z1, X2)|Z1) = C2. We can rewrite the
inequalities above as:

I(X1;Y |X2) ≤ (1− p) · log(n1 + 1) + p · C2 + 1 (2.90)

I(X2;Y |X1) ≤ p · C1 (2.91)

C2 + C1 ≤ log(n2 + 1) + 1 (2.92)
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Now consider log(n2 + 1)R1 + log(n1 + 1)R2, and apply eq. (2.90) and eq. (2.91)

log(n2 + 1)R1 + log(n1 + 1)R2 (2.93)

≤ log(n2 + 1) [(1− p) · log(n1 + 1) + p · C2 + 1] + log(n1 + 1) [p · C1] (2.94)

= (1− p) log(n1 + 1) log(n2 + 1) + p[C2 log(n2 + 1) + C1 log(n1 + 1)] + log(n2 + 1)
(2.95)

= (1− p) log(n1 + 1) log(n2 + 1) + p[C2 log(n1 + 1) + C1 log(n1 + 1)] + log(n2 + 1)
(2.96)

( since n2 < n1)

= (1− p) log(n1 + 1) log(n2 + 1) + p log(n1 + 1) [C2 + C1] + log(n2 + 1) (2.97)

≤ (1− p) log(n1 + 1) log(n2 + 1) + p log(n1 + 1) [log (n2 + 1) + 1] + log(n2 + 1) (2.98)

(by eq. (2.92))

= log(n2 + 1) log(n1 + 1) + log(n2 + 1) + log(n1 + 1) (2.99)

Rearranging this, we get:

log(n2 + 1)(R1 − 1) + log(n1 + 1)(R2 − 1) ≤ log(n1 + 1) log(n2 + 1)

2.5.4 Proof of Thm. 2.4.10

Before we go into the proof of Thm. 2.4.10, we state and prove a few lemmas.
The first lemma establishes an upperbound on the information that can flow between the
relays and the receiver.

Lemma 2.5.1. Let X1, X2 ∈ {0, 1, · · · , n} and Y1 = max{X1, (X2−b
√
nc)+}, Y2 = max{(X1−

b√nc)+, X2}. Then,

max
p(X1,X2)

min{I(X1;Y1, Y2|X2), I(X2;Y1, Y2|X1)} ≤ 1

2
log(n+ 1) + 2 log 3 (2.100)

Proof: We divide X1 and X2 into quotient and remainder when divided by
√
n. These

different components help us communicate the message. Let

X1 = b√ncX1q +X1r (2.101)

X2 = b√ncX2q +X2r (2.102)

where 0 ≤ X1r, X2r ≤ b
√
nc − 1.
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The intuition here is that for X1 and X1 to both have an influence on Y1 and Y2 they
need to be not too far apart in value. Define

A =





1 if X1q ≥ X2q + 2

0 if X1q −X2q = 1 or 0 or − 1

−1 if X1q ≤ X2q − 2

(2.103)

Then we have:

I(X1;Y1, Y2|X2) (2.104)

≤ I(X1, A;Y1, Y2|X2) (2.105)

= I(A;Y1, Y2|X2) + I(X1;Y1, Y2|X2, A) (2.106)

≤ log 3 + I(X1;Y1, Y2|X2, A) (2.107)

= log 3 + I(X1;Y1, Y2|X2, A = 1)P (A = 1)

+ I(X1;Y1, Y2|X2, A = 0)P (A = 0) + I(X1;Y1, Y2|X2, A = −1)P (A = −1) (2.108)

Similarly, we can also show:

I(X2;Y1, Y2|X1) (2.109)

= log 3 + I(X2;Y1, Y2|X1, A = 1)P (A = 1)

+ I(X2;Y1, Y2|X1, A = 0)P (A = 0) + I(X2;Y1, Y2|X1, A = −1)P (A = −1) (2.110)

First, consider the case A = 1. Then we have X1q ≥ X2q + 2 and so

X1 − b
√
nc = b√ncX1q +X1r − b

√
nc (2.111)

≥ b√nc(X1q − 1) (2.112)

≥ b√nc(X2q + 1) (2.113)

≥ X2 (2.114)

Therefore, Y1 = Y2 = X2 if A = 1.

I(X1;Y1, Y2|X2, A = 1) = I(X1;X2, X2|X2, A = 1) = 0 (2.115)

In this case both Y1 and Y2 only depend on X1, and we can’t get the benefit of having two
links. The same thing holds if X1q ≤ X2q − 2, i.e A = −1.

I(X2;Y1, Y2|X1, A = −1) = 0 (2.116)

Further, in these cases we are bottlenecked by the entropy of one of the signals.

I(X1, Y1, Y2|X2, A = 1) ≤ H(X1) = log(n+ 1) (2.117)

I(X2, Y1, Y2|X1, A = −1) ≤ H(X2) = log(n+ 1) (2.118)
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The interesting case is when A = 0

I(X1;Y1, Y2|X2, A = 0) (2.119)

= H(X1|X2, A = 0)−H(X1|Y1, Y2, X2, A = 0) (2.120)

≤ H(X1|X2, A = 0) (2.121)

≤ log(3b√nc) (2.122)

(For every choice of X2 there are 3 choices for X1q (since A = 0) and b√nc choices for X1r.

Thus there are 3b√nc choices for X1 given X2 and A = 0)

≤ log 3 +
1

2
log(n+ 1) (2.123)

By symmetry we can show

I(X2;Y1, Y2|X1, A = 0) ≤ log 3 +
1

2
log(n+ 1) (2.124)

Collectively, these give us

max
p(X1,X2)

min{I(X1;Y1, Y2|X2), I(X2;Y1, Y2|X1)} ≤ log 3 +
1

2
log(n+ 1) + log 3 (2.125)

= 2 log 3 +
1

2
log(n+ 1) (2.126)

Rel1	  

Rel2	  

Rx	  Tx	  

R1

R1

Figure 2.9: A max-superposition relay network with an approximately optimal partial-
decode-and-forward scheme. The cross-links between X3, X4 and Y3, Y4 are weaker than
the direct links and lead to downward bit-level shifts by b√nc. X1 = b√ncm0 + m1 and
X2 = b√ncm0 +m2 are transmitted by the two relays.
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Theorem 2.5.2. The cutset bound applied to the system in Fig. 2.9 gives the following
upperbound on the achievable rate R for the system. R1 is the rate across the links between
the transmitter and each of the relays.

R ≤ 2R1 (2.127)

R ≤ R1 +
1

2
log(n+ 1) + 2 log 3 (2.128)

R ≤ 3

2
log(n+ 1) +

3

2
log 2 (2.129)

Proof: Applying the cutset bound to (1) the cut between the transmitter and the two
relays (eq. (2.130)), (2) the cut between the receiver and Rel2 on one side and Rel1 and the
transmitter on the other side and the other symmetric cut (eq. (2.131)) and finally (3) the
cut between the relays and the decoder (eq. (2.5.4)) gives:

R ≤ 2R1 (2.130)

R ≤ max
p(X1,X2)

min{R1 + I(X3;Y2, Y3, Y4|X4), R1 + I(X4;Y1, Y3, Y4|X3)} (2.131)

R ≤ max
p(X1,X2)

I(X3, X4;Y3, Y4) (2.132)

We get eq. (2.127) directly from eq. (2.130). To get eq. (2.128), we apply Lemma 2.5.1:

max
p(X1,X2)

min{R1 + I(X3;Y3, Y4|X4), R1 + I(X4;Y3, Y4|X3)} ≤ 1

2
log(n+ 1) + 2 log 3 (2.133)

Now, we investigate .
If |X3 −X4| >

√
n, then Y3 and Y4 both are equal to either X3 or X4. So |{(Y3, Y4)}| ≤

n+ 1, and I(X3, X4;Y3, Y4) ≤ log(n+ 1).
So to maximize the mutual information, the other case we want to consider is −b√nc ≤

X3 −X4 ≤ b
√
nc. In this case we have

−b√nc ≤ Y3 − Y4 ≤ b
√
nc (2.134)

And then we have

|{(Y3, Y4)}| (2.135)

≤ (n+ 1) · (2√n+ 1) (2.136)

(Once Y3 is fixed ((n+ 1) choices) there are at most (2
√
n+ 1) choices for Y4,

such that −b√nc ≤ X3 −X4 ≤ b
√
nc)

≤ (n+ 1) ·
√

8(n+ 1) (2.137)

= 2
3
2 (n+ 1)

3
2 (2.138)

So we have

I(X3, X4;Y3, Y4) ≤ H(Y3, Y4) =
3

2
log(n+ 1) +

3

2
log 2 (2.139)

which gives us eq. (2.129).
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Chapter 3

Bit-level models for uncertain
parameters: dynamical systems and
active control

3.1 Introduction

This chapter extends the carry-free approach to model dynamical systems and active control.
As expected of models that grew out of the information-theory community, it is very easy
to model communication constraints in control systems using these models. The pictures
associated with the model make it very easy to understand classic results in rate-limited
control.

We build from the rate-limited control perspective to understand a carry-free uncertainty
threshold principle. The uncertainty threshold principle is a classical result from control that
provides a threshold on the tolerable uncertainty in system parameters for mean-squared
stabilization. If the uncertainty is too high, the system cannot be stabilized. Carry-free
models highlight the fact that the uncertainty threshold principle [49] stems from the same
bottleneck that lead to the log log SNR result for the capacity unknown fading channels [37]
(discussed in Chapter 2.).

We start by introducing some basic notions of system stability in real-valued systems.

Definition 3.1.1. A system with state X[n] at time n, where X[n] is a random variable is
said to be mean-square stable if there exists M ∈ R, M <∞, s.t. E[|X[n]|2] < M for all
n.

Definition 3.1.2. Let the evolution of system state X[n] be governed by a linear system

X[n+ 1] = A[n] ·X[n] +B[n] · U [n] +W [n]

Y [n] = C[n] ·X[n] + V [n] (3.1)



45

A[n], B[n], C[n], V [n],W [n] are random variables with known distributions. Let σ(Y n
0 ) be

the sigma-algebra generated by the random variables Y [0] to Y [n]. The system is said to
be mean-square stabilizable if there exists a causal control strategy Un

0 (·) ∈ σ(Y n
0 ) such

that X[n] is mean-square stable, i.e. there exists M ∈ R, M < ∞, s.t. E[|X[n]|2] < M for
all n.

Definition 3.1.3. Let the evolution of system state X[n] be governed by a linear system

X[n+ 1] = A[n] ·X[n] +W [n]

Y [n] = C[n] ·X[n] + V [n] (3.2)

A[n], B[n], C[n], V [n],W [n] are random variables with known distributions. The system is

said to be mean-square observable if there exists a casual estimator X̂[n] that is a function

of Y [1], Y [2], · · ·Y [n] such that |X[n]− X̂[n]| is mean-square stable.

3.2 Rate-limited estimation and control

Observer

Y [n]

System
X[n]

Encoder 

Channel

Controller

U [n]

Figure 3.1: The rate-limited control allows the system to use an encoder and decoder for
communication across the rate-limited sensing channel. We can assume the decoder box
is merged with the observer/controller box and is not shown separately here. Further, the
controller provides feedback of the control signal sent to the encoder box so that only the
innovation in the system need be encoded.

Information theorists look to rate as the parameter that characterizes a communication
system. As discussed in the introduction, a natural first attack is to bring in tools from
information theory and look at control over rate-limited channels. This setup was first
considered in papers such as [10], [11] and [12]. Consider,

X[n+ 1] = A ·X[n] +W [n] . (3.3)

Let W [n] ∼ N (0, 1) i.i.d., and X[0] ∼ N (0, 1). A is a known constant. With a perfect
observation, Y [n] = X[n] this system is clearly mean-square observable.



46

In [12], Tatikonda and Mitter looked at the problem of first estimating and then control-
ling an unstable system over a noiseless rate-limited channel, with access to a full encoder
and decoder on either end of the channel (Fig. 1.2). They showed that for finite estimation
error the channel must be able to support a rate R >

∑
log |λ(A)|, where λ(A) are the

unstable eigenvalues of the matrix A. The proof technique was non-standard in control at
the time, and hinged on showing that the volume of uncertainty in the system was growing
as the product of the unstable eigenvalues of A.

X[n+ 1] = A ·X[n] + U [n] (3.4)

The basic argument for the control problem in eq. (3.4) is based on the separation prin-
ciple and follows from the estimation result. Since the controller has memory of previously
applied controls, it can simulate an observer and estimate the system state in open-loop.
Using this, it can also estimate the closed-loop state and compute the optimal control from
the current state-estimate, as the one that will cancel out the state. The necessary condition
on the rate is also given from the estimation results. Subtracting the state estimate at each
time (using knowledge of the controls that have been previously applied by the controller as
in Fig. 3.1) gives a matching sufficient condition. Full knowledge of the applied controls is
critical in this strategy, and the results in [12], [13] use control feedback to the encoder to
achieve stabilization.

This idea extends to other data-rate theorems for control over (noiseless and noisy) rate-
limited channels, as in Sahai and Mitter [13], Nair et al. [11], and more recently in results
like [14]. In these problems, it is common to think of the observer and controller as lumped
into one box (Fig. 3.1), with a noiseless channel between controller and actuator.

3.2.1 Bit-level models

ADT models

We can use ADT models [58] to understand the information bottlenecks in the real-valued
systems described in the earlier section. Let us consider a scalar system, with A = a. Then,
building from the previous chapter, let the state as it evolves in time be represented in binary
expansion by the bits

xm[n]xm−1[n] · · ·x1[n]x0[n].x−1[n]x−2[n] · · · . (3.5)

For convenience, we’ll call this sequence of bits the state at time n. m is the highest non-zero
bit-level occupied by the state at time n. In formal polynomial notation, we denote the state
as

x[n](z) = xm[n]zm + xm−1[n]zm−1 + · · ·+ x0[n] + x−1z
−1 · · · . (3.6)

The system noise is w[n](z) = w−1[n]z−1 +w−2[n]z−1 + · · · . Thus, all bits below the zero
level are replaced at each time step. The gain of the system is fixed as a[n](z) = a(z) = 1·zga .
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Then, we can think of the open-loop state evolution as

x[n+ 1](z) = a(z)x[n](z) + w[n](z) (3.7)

Intuitively we can see that the stack of bits is growing taller by ga bits with each clock
tick (Fig. 3.2) as discussed in the introduction to the dissertation. The relationship between
the real-valued scalar gain a, and the ADT gain a(z) is through the degree of a(z). Since
the ADT models represent numbers in binary, we have ga = log a. Hence, the minimum
communication rate required for estimation is given by the number of new bits that are
pulled into the system state at each time, which is log a.

Time	  n	  

Time	  n+1	  

Time	  n+2	  

x2[n] = 1

x1[n]

x0[n]

x�1[n]
. 
. 
. 

. 

. 

. 

. 

. 

. 

Figure 3.2: The system state can be thought of as a stack of bits marching upward with the
gain a.

For control, we can consider the closed-loop system

x[n+ 1](z) = a(z)x[n](z) + u[n](z) + w[n](z) (3.8)

where u[n](z) is the control applied at time n.
The control system needs the ability to dissipate the new uncertainty in the system

pulled into the system. To dissipate ga bits, it must know about ga of them. So the same
rate-threshold applies for stabilizability with control: for R > ga we can ensure that the
magnitude of the system is bounded.

We can think of these bit-level models as an alternative perspective to quantization-box or
mutual-information style understandings of information flow for these well known problems.
With deterministic system gains we see that the underlying uncertainty is initialized by the
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initial state x[0], and then is refreshed at each time. The unstable gain pumps an additional
g bits from that reservoir above the decimal point at each time and creates the need to
dissipate the uncertainty.

Carry-free models

We now express the same idea as a carry-free model to build towards the next section. Both
ADT models and carry-free models are particularly conducive to modeling explicit rate
constraints. A rate limit simply caps the number of levels that are visible to the estimator
or controller at any given time.

The carry-free model for this particular system with a fixed gain a(z) is essentially
identical to the ADT model, except now we no longer restrict a(z) to be a monomial.
a(z) = 1 · zga + aga−1z

ga−1 + · · · , and is not time varying. The highest bit of the gain a[n](z)
is always 1. Fig. 3.3 shows a bubble-picture for this system. This figure captures the same
effect as Fig. 1.4 except that the multiplication has a different effect.

Thus, the state evolution is still as below, but we use carry-free addition and multiplica-
tion.

x[n+ 1](z) = a(z)x[n](z) + w[n](z) (3.9)

x1[n]

x0[n]

x�1[n]

+

+

+

+

+

x2[n] = 1

x3[n + 1]

x2[n + 1]

x1[n + 1]

x0[n + 1]

x�1[n + 1]

a5

a1

a2

a3

a4

Figure 3.3: Carry-free for models with highest bit at level 3, and power g = 1.

In this case, again the uncertainty is refreshed by the randomness introduced by the
additive system noise. At each time step, the gain ga pulls up ga new bits of information
from the noise and introduces it into the state above the noise level. Then if R > ga (i.e. our
observation allows us to infer the same volume of information as is being introduced into the
system) we will be able to keep track of the state even though it grows at every time step.
The control problem behaves similarly, since we assume we have a perfect reliable control
channel.
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3.3 The uncertainty threshold principle

The uncertainty threshold principle [49] is a classical result from the control literature that
deals with parameter uncertainty in systems. It provides a threshold beyond which the
uncertainty in the system is simply too large for the system to be stabilized. Consider the
system below:

X[n+ 1] = A[n] ·X[n] +B[n] · U [n] +W [n],

Y [n] = X[n] (3.10)

Both A[n] and B[n] are Gaussian i.i.d. sequences. Let E[A[n]] = µA, V ar(A[n]) = σ2
A,

and E[B[n]] = µB, V ar(B[n]) = σ2
B. A[n], B[m] are independent for all n,m and are also

independent of all system parameters1. E[W [n]] = 0, V ar(A[n]) = 1, i.i.d..

Theorem 3.3.1. (from [49]) The system in (3.10) can be stabilized in a mean-squared sense

if and only if σ2
A + µ2

A − (µAµB)2

σ2
B+µ2B

< 1.

This condition is derived using a standard stochastic dynamic programming approach
using a Riccati equation. However, these techniques hide the flow of information in the
system that actually lead to these bottlenecks. We will use carry-free models to provide an
information-centric perspective on this.

To better understand the information bottlenecks in this system we separately consider
randomness first on the system gain A[n] and then on the control B[n] so we can understand
how they behave differently.

If B[n] is a constant this threshold reduces to σ2
A < 1. If A[n] = µA (a constant) the

condition becomes
σ2
Bµ

2
A

σ2
B+µ2B

< 1. We will explore these particular setups in detail using a

carry-free model below.

3.3.1 Unknown system gain

For systems with random system gain, we first consider the simplest problem of predicting
a system that is evolving as below (3.11). This is just to highlight that the duality between
observation and control breaks down in the presence of random parameters. Hence, tradi-
tional techniques might not work to incorporate rate limitations for these problems and the
subsequent carry-free techniques we introduce will be particularly valuable.

X[n+ 1] = A[n] ·X[n] +W [n],

Y [n] = X[n] (3.11)

1Athans and Ku [49] also allow for a cross correlation term between A[n] and B[n] and provide a threshold
for this case. We focus on the case where all the random parameters are independent.
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Here, A[n] ∈ R can randomly vary with time, and W [n] is additive noise. The observer
observes X[n] perfectly. Let A[n] ∼ N (µA, σ

2
A) ∀ n be i.i.d.. w[n] ∼ N (0, 1) also i.i.d. and

independent of other system parameters. Let Y [n] = X[n], i.e. full past state information

is available to the estimator/controller. Let X̂[n + 1] be state-estimate by the estimator at

time n, and let the expected estimation error E[e[n]2] = E(X[n+ 1]− X̂[n+ 1])2.

Theorem 3.3.2. The system (3.11) is not mean-square predictable if µA > 1.
Proof:

X̂[n+ 1] = E[X[n+ 1] | Y [n]] (3.12)

= E[A[n]]X[n] + E[W [n]] = µAX[n] (3.13)

E[e[n]2] = E[(A[n]− µA)2X[n]2] + E[W [n]2] (3.14)

= σ2
AE[X[n]2] + 1 (3.15)

where (3.14) follows since W [n] is independent of the state X[n]. Hence, our estimation
error grows as the state E[X[n]2], which tends to infinity as n→∞ if µA > 1.

This shows that prediction can be a hard problem if the gain of the system is larger than
1 and varying. Even with perfect observation of the current state, there is not much we can
do.

It might seem that control for such systems is a lost cause given that prediction is
impossible. However, we know from the uncertainty threshold principle that in fact such
systems are stabilizable if σ2

A < 1. It is interesting to note here that µA does not play
any role whatsoever. The prediction error thus does not depend on how fast the system is
growing, but only the amount of uncertainty introduced by the system gain. We state this
theorem to be able to later compare it to the corresponding carry-free model.

Consider the system, where we have access to a control signal as in (3.16).

X[n+ 1] = A[n]X[n] + U [n] +W [n],

Y [n] = X[n] (3.16)

a[n] ∼ N (µA, σ
2
A) ∀ n be i.i.d.. W [n] ∼ N (0, 1) also i.i.d. Instead of just estimating the

system state, the task is to stabilize the system.

Theorem 3.3.3. System (3.16) is stabilizable in a mean-square sense if σA < 1.
Proof: (⇐=)
Choose U [n] = −µA · Y [n] = −µA ·X[n]. Then,

E[X[n+ 1]2] = E[(A[n]− µA)2X[n]2] + E[W [n]2] (3.17)

= σ2
AE[X[n]2] + 1 (3.18)

For such a recurrence, E[X[n+ 1]2] is finite for all σA < 1.
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So we can control a state of an unstable system (E[A[n]] > 1), even though we would not
able to predict it if it were uncontrolled.

The following sections will use carry-free models to illustrate the underlying information
flow in these systems that lead to the difference in the prediction/estimation and the control
cases.

3.4 Carry-free models for the uncertainty threshold

principle

The carry-free models in Chapter. 2 show that parameter uncertainty is essentially also an
informational bottleneck that plays a role similar to a rate limitation, even though there
is no explicit rate constraint. We know this from Lapidoth’s [37] log log SNR result, the
intuition for which was seen in the previous chapter. As the SNR goes to infinity, so does
the capacity. But all bits much lower than the MSB are lost, as we saw earlier. Reaching
capacity requires a careful optimization on the input distribution.

Carry-free models therefore allow us to merge explicit rate constraints as considered
earlier in this chapter, with parameter uncertainty and multiplicative noise. Using these
models we try to give a unifying perspective on the information flows in systems, be they
because of rate constraints, additive noise or multiplicative noise. One of the most interesting
points that we will show in this section are that in fact, the informational bottleneck that
leads to the uncertainty threshold principle is the same one that leads to the log logSNR
result.

Let us now develop these carry-free models for these systems.
The state as it evolves in time is represented by the bits

xdn [n]xdn−1[n] · · · x1[n]x0[n].x−1[n]x−2[n] · · · , (3.19)

and we use polynomial notation as below:

x[n](z) = xdn [n]zdn + xdn−1[n]zdn−1 + · · ·+ x0[n] + x−1z
−1 · · · . (3.20)

dn is the degree of the polynomial at time n. For ease of notation, we will often suppress
the dummy polynomial variable z wherever obvious. The additive system noise is w[n](z) =
w−1[n]z−1 + w−2[n]z−1 + · · · . Thus, all bits below the zero level are replaced at each time
step as in the ADT model.

3.4.1 Estimation with unknown system gain

First we consider the carry-free parallel to the eq. (3.11). Let a[n](z) = 1·zga+aga−1[n]zga−1+
aga−2[n]zga−2 + · · · ), with the first bit fixed as 1. Thus the system has one deterministic bit.
The restriction of the first bit of a[n](z) to be 1 just ensures that there is no uncertainty in
the position of the highest bit, even though lower down individual bits may be random. We
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can think of this as having knowledge of the variance of a random gain in the real system.
This idea will be generalized to finer models later.

Beyond the first bit, each ai[n] is a Bernoulli-(1
2
) random variable. The observer noise-

lessly observes the entire state x[n]. This system evolves according to the equation

x[n+ 1](z) = a[n](z) · x[n](z) + w[n](z),

y[n](z) = x[n](z) (3.21)

The state evolution in this system can be thought of as a carry-free channel with unknown
fading [63], with channel gain a[n], channel input x[n] and output x[n+ 1]. Figure 3.4 shows
the bit-level interactions.

We define the estimation error for this problem.

Definition 3.4.1. Let x̂[n](z) be any estimate of x[n](z) based on y[n]. Then the estimation
error at time n is defined as e[n](z) = x[n](z)− x̂[n](z).

Theorem 3.4.2. Let ge[n] be the highest non-zero bit-level of e[n](z). If the system gain,
g ≥ 1, then E[ge[n]]→∞, i.e. the degree of the error polynomial is unbounded.
Proof: Recall dn is the degree of x[n] and thus represents the position of the highest
non-zero bit. We know from Lemma 2.4.1 in the previous chapter that I(x[n];x[n + 1]) =
I(dn; dn+1), i.e. the position of the maximal non-zero bits are sufficient statistics. This means
that the observation x[n] only contains information about the maximal bit of x[n + 1]. All
of the remaining information has been lost due to the scrambling by the random bits of a[n].
For example, in Fig. 3.4, with random ai, we are only able to predict x3[n+ 1].

Further, note that dn+1 is a deterministic function of dn, i.e. dn+1 = dn + ga. Hence, the
observations after y[0] do not provide any new information. With ga > 1 then E[dn]→∞ as
n→∞. Hence, E[dn−1] also goes to infinity. Since xdn−1 cannot be predicted, E[ge[n]]→∞.

3.4.2 Control with unknown system gain

What changes in the case of control? The carry-free parallel to system (3.16) is:

x[n+ 1](z) = a[n](z) · x[n](z) + u[n](z) + w[n](z),

y[n](z) = x[n](z) (3.22)

We define a notion of stability for carry-free control systems that is similar to “in-the-box”
stability. The system is stabilizable if it is always bounded.

Definition 3.4.3. Recall that dn is the degree of x[n] at time n. Then the system (3.22)
is said to be stabilizable if there exists u[n] that is a function of y[1], · · · y[n], and M < ∞,
such that dn < M for every n.

Theorem 3.4.4. System. (3.22) is stabilizable if ga ≤ 1.
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Figure 3.4: An observer can only see the top bit x3[n+ 1]. However, a controller can act and
kill x3[n+ 1] to maintain the level of the state at 3 bits above the noise level.

Proof: (⇐=)
Let a[n] · x[n] = p[n]. Again, dn is the degree of x[n]. The degree of a[n] is ga, and let the
degree of p[n] be gp,n, and the degree of y[n] be gy,n.

This proof builds off of Corollary 2.4.1, which implies that: I(p[n];u[n]) = I(p[n]; y[n]) =
I(gp,n; gy,n) = I(gp,n; dn).

Now, since the highest bit of a[n], ag[n] = 1, the controller can exactly know the position
of the highest bit of x[n] based on y[n]. So dn is perfectly known to the controller. So the
controller can make sure it chooses a control that cancels the first bit of x[n]. It chooses
u[n](z) = zdn+ga . The controller can therefore always maintain dn+1 = dn, as long as the
increase in uncertainty through ga is no more than the deterministic bits in the gain, which
is 1. So if ga ≤ 1, the system is stabilizable. See Fig. 3.4.

The interesting phenomenon here is that we can reduce the uncertainty about the system
by changing the system state. The carry-free pictures provide an illustration for this and an
intuition for what leads to the difference between estimation and control.

3.4.3 Unknown control gain

Now consider the carry-free system with a random gain for the control input, but constant
gain on the system:

x[n+ 1](z) = a(z) · x[n](z) + b[n](z) · u[n](z) + w[n](z) (3.23)

We restrict attention to the case where the gain on the state is a known constant a(z) =
1 · zga for all n.

We model the random bits of the gain b[n](z) as Bernoulli(1
2
) variables. gb is the highest

non-zero bit-level of b[n](z) for every n. The model in [63] focused on random gains where
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all the bits were random. However, this model does not accurately capture non-zero-mean
random variables. We generalize that model to the one in eq. (3.25), which allows for
both deterministic and random bits. Without loss of generality, we can assume that the
deterministic bits of the gain b[n] are a 1 followed by a series of 0’s. All of our arguments
would extend to any other set of deterministic bits, led by a 1.

b[n](z) = bgb [n] · zgb + bgb−1[n] · zgb−1 + · · · (3.24)

= 1 · zgdet + 0 · zgdet−1 + 0 · zgdet−2 + · · ·+ bgran [n] · zgran + bgran−1[n] · zgran−1 + · · ·
(3.25)

Define:

gran = max{i|bi ∼ Bernoulli(
1

2
), gb ≥ i ≥ −∞}. (3.26)

gran is the index of the highest random bit of b[n](z) ∀n. gran does not vary with n.
On the other hand, the value of the bit at level gran, i.e. bgran [n], does. Further, bi[n] ∼
Bernoulli(1

2
),∀i ≤ gran and the realizations of these bits are unknown to the controller. If

gran < gb, then we also define gdet as the highest deterministic bit-level of b. bgdet = 1. All
bits from bgdet−1 to cgran+1 are fixed to be 0, and these bits are known to the controller 2.

gdet =

{
max{i|bi = 1} if gran < gb

gran, otherwise.
(3.27)

By construction, we have gdet ≥ gran. So there are gdet − gran deterministic bits in the gain,
and all lower bits are random. See Fig. 3.5 for details.

Theorem 3.4.5. The carry-free system (3.23) is stabilizable if and only if gdet − gran ≥ ga
for ga > 0. For ga ≤ 0 the system is self stabilizing. This system is extensively discussed in
Chapter 5, and so here we provide an intuition.

Intuition At every time step the magnitude of the system state increases by ga bits.
gdet − gran ≥ ga is sufficient to ensure that the state does not grow in magnitude. Further,
the unknown nature of the control only allows us to control only gdet− gran bits of the state
— the controller can force the top gdet− gran bits of the state to any value it desires (since it
knows what the state there is going to be), but the next bit can be correct with probability
only 1

2
. So with probability 1

2
there will be an increase in the degree of x[n], i.e. dn, which

we cannot tolerate. See Fig. 3.5.

2The bits are fixed to zero for simplicity. This can be done without loss of generality, since we can choose
u[n] appropriately to cancel the right bits of x[n] as long as bgdet = 1. The values of the bits of u[n] would
have to be set differently for different values of the deterministic bits by solving the linear equations that
related them to the bits of x[n].
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Figure 3.5: Carry-free model for system (3.23). The system gain has ga = 1, gdet = 1
and gran = 0. So b1[n] = 1 is a deterministic value that is the same at each time step.
gran[n] = 1, so bits b0[n], b−1[n], b−2[n], · · · are all random Bernoulli-(1

2
) random bits. As a

result the controller can only influence the top bit of the control going in.

Consider the uncertainty threshold principle for the corresponding real-valued system
σ2
Bµ

2
A

σ2
B+µ2B

< 1 with constant system gain µA. If we take logs on both sides this condition is the

same as log σ2
B − log(µ2

B + σ2
B) + log µ2

A < 0 or log(µ2
B + σ2

B)− log σ2
B > log µ2

A.
log(µ2

B + σ2
B) is the counterpart to gdet and log σ2

B is the counterpart to gran. System
growth ga is the counterpart to log µ2

A. So as long as the number of bits we can control is
larger than the growth rate of the system, we can stabilize. This matches with the prediction
of the carry-free model, considering that the carry-free model is a bit-level representation.

Remark 3.4.6. Unlike the case with deterministic system gains, ADT models would not
suffice to understand systems with random control gains, since they only capture bit shifts.
The loss of information due to multiplicative scrambling by the random gains is essential to
understand the uncertainty bottleneck.

Remark 3.4.7. The bit-levels in the state fall into different categories. First, some bits are
simply unpredictable since they are hit by the random part of the system gain or the random
additive system disturbance. The second category of bits are predictable and these we hope
to control. Our control is limited to gdet − gran bits of those that are predictable. In this
sense, the “shakiness” of the control limits the number of bits that we can reliably alter the
same way that observation noise prevents us from learning anything about certain bits in
the state. However, there is a crucial difference between the observation and control cases.
As soon as we aim to control the bits that we can control, we transmute a whole set of bits
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that might have been known into being unknown, since they are beyond the gdet− gran limit
imposed by the random control gain.
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Chapter 4

Non-coherent sensing channels

4.1 Introduction

This chapter explores control and estimation over non-coherent sensing channels, i.e. channels
with multiplicative noise.

bX[n + 1]

U [n]

X[n + 1] = aX[n] + U [n] + W [n]

Y [n] = C[n]X[n] + V [n]

X[n + 1] = aX[n] + W [n]

Y [n] = C[n]X[n] + V [n]

Observer Controller

Y [n] Y [n]

System System

Figure 4.1: This chapter considers the estimation and control of a system with random
multiplicative observation gain, C[n], and random initial state X[0]. V [n],W [n] are white
noise and a is a scalar constant.

Non-coherent channels in communication systems emerge when phase-noise, frequency
hopping or fast-fading make it impossible for the receiver to perfectly track the channel
state. Such communication has been studied as far back as 1969 when Richters conjec-
tured that even for continuous unknown fading-distributions the optimal input distribution
is discrete [33]. The conjecture was proved in 2001 [34], [35]. Since then we know that the
capacity of channels with unknown Gaussian fading scales as log log(SNR) as opposed to
the log (SNR) scaling of channels with known fading [36], [37].

Systems with multiplicative noise were explored around the same time as questions re-
garding non-coherent transmission were being asked. In 1971, Rajasekaran et al. derived the
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optimal linear filter for systems with unknown continuous observation gain [39]. However,
this work did not consider non-linear strategies. This optimal linear filter was further ana-
lyzed by Tugnait [40], who noted that error turns out to be stable only in situations when the
system is stable. The question of whether a non-linear filter could do better remained open.
Kalman filtering with multiplicative noise was studied in [46]–[48], however these works were
also limited to a priori stable systems.

The interaction of information theory and control theory has highlighted the importance
of non-linear strategies (e.g. [68], [69]), and it is natural to explore the more general setting
for the problems above. The optimality of discrete input distributions for transmission
over non-coherent channels suggests that optimal estimation and control strategies for non-
coherent systems may also be non-linear. However, to the best of our knowledge, these have
not been investigated.

In fact, the recently introduced MMSE dimension [70] can be interpreted as characterizing
the gain achievable by non-linear estimation over linear estimation in the high-SNR regime.
The MMSE dimension measures the scaling behavior of the MMSE relative to the SNR
as SNR grows in the presence of additive noise. For purely continuous distributions, the
MMSE-dimension is 1, which implies that non-linear estimation offers the same scaling as
linear estimation. This leads to a conjecture for the case of multiplicative noise: for systems
with continuous distributions on the state, linear strategies should be essentially optimal.
On the other hand, the MMSE-dimension for discrete random variables is 0, i.e. non-linear
estimation can offer significant gains. In a control problem, actions may or may not be able
to discretize a continuous-valued random state1. So can we use control to estimate better?

Unfortunately, the results from [70] cannot be directly applied to the problem at hand
since the noise is multiplicative, and a naive strategy of taking logs of the system also does
not help as is discussed later in Sec. 4.4.2 (Footnote 6). Instead, we reduce the estimation
problem to a hypothesis-testing problem and use that to provide a lower-bound for the
open-loop estimation error that itself must grow unboundedly with time.

The estimation result in this chapter contrasts with previous works in this vein that
provide insightful thresholds to serve as design guidelines for systems. These thresholds
provide a metric for the “uncertainty” in the system and provide regimes for observability
and controllability. For instance, intermittent Kalman filtering results provide a threshold
for the observation packet-drop probability parameter p, below which it is possible to track
the system in a mean-square sense [21], [23], [24]. Neither the intermittent Kalman filtering
setup nor the setup in this chapter allow for coding over the observations, however, the
discrete randomness in the Kalman filtering result allows for a threshold result.

Tatikonda and Mitter provide a joint threshold for observability and controllability with
R bits of feedback with coding allowed [12]. R > log a, where a > 0 is the gain of a scalar,
linear system is necessary and sufficient for both estimation and control. The separation
principle states that often the optimal control is a function purely of the optimal state
estimate. This leads to the estimate-then-control paradigm. Tatikonda and Mitter in [12]

1In this problem, it turns out they cannot.
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observe: “If the state estimation error increases with time in an unbounded fashion there
will come a point when we can no longer satisfy the control objective.”

This raises the natural question: can a system that cannot be tracked in open-loop
be stabilized with feedback? The answer is: sometimes yes. The ability to interact with
the system lets the controller use a simple linear strategy stabilize if the uncertainty is
small enough. This is reminiscent of the uncertainty threshold principle [49], which gives
stabilizability threshold in the presence of random multiplicative system gains with perfect
noiseless observations2.

The control problem here is similar to the larger set of rate-limited control and estimation
problems such as [26], which looks at control over fading channels with erasures, or [14], [71]
which provide a data-rate threshold for stabilization. Even though technically the feedback
in the problem at hand may include infinitely many bits, the systems’s inability to choose
and code these bits precludes the transmission of useful information.

So why are non-coherent observations different? One intuition is as follows: since the sys-
tem is unstable, even a small multiplicative observation uncertainty leads to a large variation
in the state estimate. The proof of the negative estimation result comes from first ignoring
the additive noise in the state evolution and observations. Then the estimation problem is
reduced to a hypothesis-testing problem with the help of a carefully constructed genie who
sidesteps the prior on the initial state to provide side-information to the observer. With
this reduction, the Chernoff-Stein lemma provides a lower-bound on the MMSE. The key
technical lemmas for estimation are presented in Sec. 4.4.1 to distill the components above,
before the proof of the theorem in given in Sec. 4.4.2.

We start by setting up the problem below (Sec. 4.2). Sec. 4.3 uses carry-free models
to provide an intuition for why the estimation error cannot be tracked and illustrates the
mechanics of a control strategy3.

4.2 Problem setup

Before we set up the problem, some notational conventions: scalars and constants are denoted
by lower-case, random variables are denoted by upper-case letters, realizations are lower-case.
We use the Y n

0 to denote the sequence Y [0], Y [1], · · ·Y [n], and so on. The density of X is
denoted by fX(·), and expectation by E[X].

2The estimation results in this chapter can also be thought of as the observability counterpart to the
uncertainty threshold principle.

3As a side note, [70] implies that a finite number of bits of side information cannot change the scaling
behavior of the MMSE, and carry-free models provide a visual interpretation for this.
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4.2.1 Estimation

Consider the real-valued discrete-time scalar linear system (4.1) as shown in Fig. 4.1:

X[n+ 1] = a ·X[n] +W [n],

Y [n] = C[n] ·X[n] + V [n] (4.1)

a ∈ R, a > 1 is a fixed and known scalar. W [n] and V [n] are i.i.d. white noise N (0, 1) at
each time n. C[n] are i.i.d. random variables.

The observer has perfect recall and receives Y [n] at time n. Let Fn be the σ-algebra

defined by Y n
0 . The observer generates an estimate X̂[n+1] ∈ Fn of X[n+1] at time n, based

on all the past observations Y n
0 . Then the mean-squared estimation error is E[Err[n]2] =

E[|X[n + 1] − X̂[n + 1]|2]. This chapter will focus on systems with only a multiplicative
bottleneck and no additive noise for the estimation problem.

4.2.2 Control

Consider control of the same system:

X[n+ 1] = a ·X[n] + U [n] +W [n],

Y [n] = C[n] ·X[n] + V [n] (4.2)

where C[n] ∼ N(µ, σ2), µ, σ are known constants and σ2 6= 0. X[0] ∼ N (0, 1). Again, Fn is
the σ-algebra defined by Y n

0 , and U [n] ∈ Fn.
While we focus on scalar systems here, the results also extend to vector systems4.

4.3 Carry-free models for non-coherent systems

Chapter 2 discussed the development of carry-free models to understand non-coherent com-
munication. Here, we use these models to understand non-coherent estimation and control.

Let the state as it evolves in time be represented by bits as

x[n] = xdn [n]xdn−1[n] · · · x1[n]x0[n].x−1[n]x−2[n] · · · (4.3)

n is the time index. The subscript denotes the bit-level, i.e. dn is the highest non-zero bit-
level occupied by the state at time n. In polynomial notation, we denote the carry-free state
as x[n](z).

x[n](z) = xdn [n]zdn + xdn−1[n]zdn−1 + · · ·+ x0[n] + x−1z
−1 · · · (4.4)

4For estimation, consider a genie that provides the exact values of all but one component of the vector
valued state to the observer. The arguments here show that even that last remaining component cannot be
estimated. For control, standard extensions from the literature (e.g. looking at the spectral radius of the
system) would establish a sufficient condition for control.



61

We will suppress the dummy polynomial variable z wherever obvious. The gain of the system
is fixed as a(z) = 1 · zga and is not time varying.

For simplicity we ignore the driving disturbance. Define the state evolution as:

x[n+ 1] = a · x[n] (4.5)

The initial state x[0](z) is a binary polynomial of degree d0, with Bernoulli-(1
2
) coefficients

P (xi[0] = 1) = 1
2
, ∀ i ≤ d0. Eq. (4.5) implies that at each time step, the system magnitude

increases by ga bit-levels due to the gain a(z). The observation y[n](z) is:

y[n] = c[n] · x[n] (4.6)

We model the random bits of the gain c[n](z) as Bernoulli(1
2
) variables. gc is the highest

non-zero bit-level of c[n](z) for every n. The model in [63] focused on random gains where
all the bits were random. However, this model does not accurately capture non-zero-mean
random variables. We generalize that model to the one in eq. (4.8), which allows for both
deterministic and random bits.

c[n](z) = cgc [n] · zgc + cgc−1[n] · zgc−1 + · · · (4.7)

= 1 · zgdet + 0 · zgdet−1 + 0 · zgdet−2 + · · ·
+ cgran [n] · zgran + cgran−1[n] · zgran−1 + · · · (4.8)

Define:

gran = max{i|ci ∼ Bernoulli(
1

2
), gc ≥ i ≥ −∞}. (4.9)

gran is the index of the highest random bit of c[n](z) ∀n. gran does not vary with n.
On the other hand, the value of the bit at level gran, i.e. cgran [n], does. Further, ci[n] ∼
Bernoulli(1

2
),∀i ≤ gran and the realizations of these bits are unknown to the transmitter and

the receiver. If gran < gc, then we also define gdet as the highest deterministic bit-level of c.
cgdet = 1. All bits from cgdet−1 to cgran+1 are fixed to be 0, and these bits are known to the
transmitter and receiver 5.

gdet =

{
max{i|ci = 1} if gran < gc

gran, otherwise.
(4.10)

By construction, we have gdet ≥ gran.
This setup is illustrated in Fig. 4.2. The xi’s represent the state and yi’s are the received

signal at time n. The gain c[n] has one deterministic bit c1[n] = 1. Bits c0[n], c−1[n] · · · are
unknown Bernoulli−(1

2
) random variables.

5The bits are fixed to zero for simplicity. This can be done without loss of generality, since the information
the number of bits about x[n] that can be decoded from y[n] depends on the number of deterministic bits
of c[n](z) not the specific values. As long as cgdet=1 there are enough independent equations to decode the
bits.
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Consider the figure on the left, at time n. Then y3[n] = x2[n] can be observed, and is
a clean bit. Bit-levels y2[n] and lower are contaminated by the multiplicative noise. The
clean level of x[n], i.e. x2[n] can be perfectly estimated, but the observer can extract no
information from the contaminated levels. So x1[n] and lower are invisible and cannot be
estimated.

The visibility of the estimator does not change at time n + 1: it can only learn the
value of the top bit. Because x3[n + 1] = x2[n] = 1, the estimator learns the exact same
information again. The level of contamination is increasing as the magnitude of the state
(i.e. the maximum bit-level above noise) increases and hence the state estimation error grows
unboundedly.

x1[n]

x0[n]

x�1[n]

+

+

+

+

+

x2[n] = 1

?

?

?

Time	  n	  

?

+

+

+

+

+

?

?

?

Time	  n+1	  

?

x3[n + 1]

= x2[n]

= 1

?

Figure 4.2: Since the stack of contaminated bits goes to infinity, so must the estimation
error.

Consider on the other hand, Fig. 4.3. A controller can knock-off the top clean bit-level
x2[n] at each time step, thus keeping the state bounded. As long as the rate of increase of
bit-levels is not higher than the ability to control, the state can be stabilized.

Lemma 4.3.1. xdn+1−i = xdn−i, 0 ≤ i ≤ dn, for every n.
Proof: From eq. (4.5) we have:

x[n+ 1](z) = a · x[n](z) (4.11)

= zga · (xdn [n]zdn + xdn−1[n]zdn−1 + · · ·+ x0[n] + x−1z
−1 · · · ) (4.12)

= xdn [n]zdn+ga + xdn−1[n]zdn+ga−1 + · · ·+ x0[n] + x−1z
−1 · · · (4.13)

= xdn+1 [n]zdn+1 + xdn+1−1[n]zdn−1 + · · ·+ x0[n] + x−1z
−1 · · · (4.14)

We know that dn+1 = dn+ga. Then, comparing the coefficients of the polynomials, xdn+1−i =
xdn−i.
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Figure 4.3: A control action can cancel out the top bit that is observable, and a fresh bit is
learned every time. This strategy ensures a bounded state magnitude.

Definition 4.3.2. Let x̂[n](z) be any estimate of x[n](z) based on y[n]. Then the estimation
error at time n is defined as e[n](z) = x[n](z)− x̂[n](z).

Theorem 4.3.3. Let ge[n] be the highest non-zero bit-level of e[n](z). Then E[ge[n]] → ∞,
i.e. the degree of the error polynomial is unbounded.
Proof: At time n, the estimator receives y[n](z), and can use this to generate x̂[n](z). At
time 0, following Thm. 2.4.1 in Chapter 2, I(x[n]; y[n]) = gdet − gran + log dn. Lemma 4.3.1
implies that xdn = xd0 . Further, ydn+gc = yd0+gc , since ydn+gc is a deterministic function of
xdn . Since both dn and xdn−i where i < dn are deterministic functions of x[0](z), the estimator
learns only the same bits of information over and over again, and I(x[n]; y[n]|y[0]) = 0. Hence
the error must grow unboundedly.

Remark 4.3.4. The second piece of information that is in the state is the highest non-zero
level of x[n](z), dn, which can be decoded from the highest non-zero level of y[n](z). This
is the part of the information that supposedly scales with the magnitude of the state, a la
the log logSNR result. But according to our model, dn is a deterministic function of dn−1,
dn = dn−1 + ga, and so the value of dn+1 has no entropy conditioned on dn.

Control Intuition: The carry-free model also provides an intuition for why the condition
a2 < µ2+σ2

σ2 is sufficient to control system (4.2). Taking logs of this expression, we have
log a2 < log (µ2 + σ2) − log σ2. The carry-free model suggests that if ga < gdet − gran then
the system can be stabilized, since at each step, we observe the top gdet − gran bits of
x[n]. Through these, we can extract information and then cancel them with an appropriate
control. This cancellation allows new bits to be learned at the next time step. Hence, the
state remains bounded. (µ2 + σ2) is the second-moment of C[n] and its log is the parallel
to gdet, and log σ2 captures the randomness in the system. This provides a direction to
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attack rate-limited control problems even when the pure estimation problem is fragile to
multiplicative noise.

4.4 Estimation

To focus on the multiplicative noise bottleneck we consider a simpler system eq. (4.15) and
remove the additive noise6.

We focus on the Gaussian case with C[n] ∼ N (µ, σ2) and X[0] ∼ N (0, 1) since the proof
is the most intuitive and elucidates the proof strategy. Sec. 4.5 remarks on extensions to
other densities.

X[n+ 1] = a ·X[n],

Y [n] = C[n] ·X[n] (4.15)

This simplification reduce the problem to a tracking problem to a problem of estimating the
initial state X[0] using Y n

0 . However, the estimation error on X[0] cannot be reduced fast
enough to compensate for the rate at which the state is growing. The key idea of the proof
is to bound the estimation error by a hypothesis-testing problem and use the Chernoff-Stein
lower bound on the probability of error.

Theorem 4.4.1. For the system in eq. (4.15), with C[n] ∼ N (µ, σ2), σ > 0 and X[0] ∼
N (0, 1), and |a| > 1 (i.e. the system is unstable), limn→∞ E[Err[n]2] =∞.

The ideas from these results can be generalized to more general densities on C[n] and
X[0] (see Sec. 4.5).

6It is tempting to think that by removing the additive noise to get system (4.15), we have reduced the
problem to a known one with additive observation noise as below. Indeed, if we assume the quantities are
positive and take logs:

log Y [n] = logX[n] + logC[n].

One can use the average 1
n

∑
i(Y [i]−i log a) (with appropriate scaling to account for logC[n]) as an estimator

for the initial state. The central limit theorem then says that the error on logX[0] decays as 1√
n

. However,

this is not sufficient for us to get a tight lower-bound on the MMSE error for X[0]: at best the logarithmic

bound only helps bound the percentage error (ratio between X[0] and X̂[0]). For large values of the argument,

the log function is flat and does not discriminate between its inputs, so a bound on | logX[0] − log X̂[0]|
cannot provide a tight bound on the error E[Err[n]]. On the other hand, when X[0] is close to 0, the steep
slope of log can allow for very accurate estimation of X[0]. This second situation is what prevents us from
appropriating the log analysis for the lower-bound on the error. Similarly, results from [70] also cannot
directly apply.

Further, the central limit theorem can only bound the one particular estimator at hand, and does not
help us bound the other non-linear estimators that might perform better.
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4.4.1 Lemmas

Before we go into the proof of Thm. 4.4.1 we state a series of lemmas. Proofs of Lem-
mas 4.4.2, 4.4.3, 4.4.4 are discussed in the Appendix.

Lower bounds for estimation problems have been widely studied in the statistics litera-
ture, for instance in [72], [73] among many other references. However, many of these standard
techniques to lowerbound the Bayesian MMSE error do not work in this particular case as
is explored in Sec. 4.4.4. The key step is to reduce the estimation problem to a binary
hypothesis testing problem. With this, we can use a modification of Stein’s Lemma [67, p.
383] to provide the necessary lowerbound for the Bayesian problem.

Le Cam’s lemma provides another lowerbound for the minimax error of an estimator. A
modification of this bound for the Bayesian case as presented by Guntuboyina in [73] can be
used to provide an alternative proof as well (see Sec. 4.4.3).

Lemma 4.4.2 states that we can lower-bound the MMSE of a Gaussian random variable
by the MMSE of a binary random variable. While there are some details, the crux of the
argument says that a genie giving the estimator more information about the parameter Θ
can only help the scaling of the MMSE error. This is the first step to reduce the problem to
a hypothesis-testing problem.

Lemma 4.4.2. Let Y [0], Y [1], · · ·Y [n] ∼ PΘ. Θ is the parameter for the distribution and
Θ ∼ N (0, 1). Let Fn be the σ-algebra defined by Y [0], Y [1], · · ·Y [n]. Given fixed r0, r1, ε such
that r1 > r0 and r1 − r0 > ε > 0, there exist random variables R,R1, C and a σ-algebra Hn,
such that

• R1 ∼ Uniform[r0, r1 − ε]

• R is a discrete random variable conditioned on R1. R = R1 with probability 1
2

and
R = R1 + ε with probability 1

2
.

• C is a Bernoulli-(γ) random variable, where 0 < γ < 1 is a constant that depends on
r0, r1 but does not depend on ε.

• Hn = Fn∪FR1 ∪FC, where FR1 ,FC are the σ-algebras generated by R1, C respectively.

• min
Θ̂∈Fn

E|Θ− Θ̂|2 ≥ min
R̂∈Hn

γ · E|R− R̂|2.

The second Lemma 4.4.3 shows that the MMSE for a binary random variable can increase
by at most a factor of four if the estimator is restricted to the two values in the range of the
random variable.

Lemma 4.4.3. Let S be a discrete random variable, with distribution PS(·) that takes values
only on two points s1 < s2. PS(s1) > 0, PS(s2) > 0 and PS(s) = 0 ∀s 6= s1, s2. Let Hn be
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the σ-algebra of the observations. Then,

min
Ŝ∈Hn

E[|S − Ŝ|2] ≥ 1

4
min

Ŝ∈Hn,Ŝ∈{s1,s2}
E[|S − Ŝ|2]. (4.16)

Lemma 4.4.4 uses the Chernoff-Stein Lemma to calculate the probability of type-2 error
in a hypothesis-testing problem when the type-1 error is small and the two hypotheses are
getting closer and closer together. If the KL-divergence between the hypotheses is small
enough, the probability of error is constant.

Lemma 4.4.4. Let S be a random variable taking values s1 and s2 6= 0 with equal probability,
PS(s1) = PS(s2) = 1

2
, and let Y [1], Y [2], · · ·Y [n] ∼ N (µS, σ2S2) = Q. σ 6= 0. Let P1 be

N (µs1, σ
2s2

1) and P2 be N (µs2, σ
2s2

2). Consider the hypothesis test between H1 : Q = P1 and
H2 : Q = P2. H1, H2 have priors P (H1) = P (H2) = 1

2
and g(Y n

0 ) is the decision rule used.
Then define the probabilities of error as αn = P (g(Y n

0 ) = s2|H1 true) and βn = P (g(Y n
0 ) =

s1|H2 true).
If s2 − s1 = 1

n
, s1 < s2, and 0 ≤ αn <

1
n1+ζ = δn, for some ζ > 0, then, limn→∞ βn ≥

e
− 1
s2 2

1
s2 = κ > 0, a constant that does not depend on n.

Remark 4.4.5. The central limit theorem states that the error of the averaging estimator
decays as 1√

n
, and it is natural to think that (s2−s1) scaling as 1√

n
would be the right choice

to get a constant probability of error. However, this turns out to be a little too slow, and in
this case the probability of error can only be lower bounded by 0 using the techniques from
this chapter.

4.4.2 Proof of Thm. 4.4.1

Theorem 4.4.1. For the system in eq. (4.15), with C[n] ∼ N (µ, σ2), σ > 0 and X[0] ∼
N (0, 1), and |a| > 1 (i.e. the system is unstable), limn→∞ E[Err[n]2] =∞.

Proof: Recall X[0] ∼ N (0, 1), C[n] ∼ N (µ, σ2) i.i.d..
Let Fn be the σ-algebra defined by Y [0], Y [1], · · ·Y [n].

min
X̂[n+1]∈Fn

E|X[n+ 1]− X̂[n+ 1]|2

= min
X̂[n+1]∈Fn

E|an+1X[0]− X̂[n+ 1]|2 (4.17)

=a2(n+1) min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2. (4.18)

where X̂[n+ 1] = an+1X̂n[0].
The only uncertainty in the system (4.15) comes from the initial state X[0]. For sys-

tem (4.15), X[n] = an+1X[0] and estimating of X[n] is equivalent to estimating X[0]. Scaled
appropriately, Y n

0 are observations drawn i.i.d. from PX[0](·), where X[0] is a parameter.
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Note that Y [n]
∣∣X[n] ∼ N (µX[n], σ2X[n]2). Also, Y [n]

an

∣∣X[0] ∼ N (µX[0], σ2X[0]2) =
PX[0](·). Fn is the σ-algebra generated by Y n

0 .

We start with the term min
X̂n[0]∈Fn

E|X[0] − X̂n[0]|2 and use Lemma 4.4.2 to lower-bound

the estimation error of X[0] by the estimation error that would result if X[0] were a binary
random variable.

Choose r0 = 1, r1 = 2 and ε = 1
n
, n ≥ 1. Lemma 4.4.2 implies that ∃ R,R1, C and

0 < γ < 1 such that R is a discrete random variable, with distribution PR(·), that takes
only two values r and r + ε between r0 and r1, and PR(r) = 1

2
,PR(r + ε) = 1

2
and C is

Bernoulli-(γ). This gives (4.19). Hn = Fn ∪ FR1 ∪ FC , where FR1 ,FC are the σ-algebras
generated by R1 and C respectively.

min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2

≥ min
R̂∈Hn

γ · E|R− R̂|2 (4.19)

≥ min
R̂∈Hn,R̂∈{r,r+ε}

γ

4
· E|R− R̂|2 (4.20)

=
γ

4
· pe(n, ε) · ε2 (4.21)

≥ γ

4
· 1

2
· (αn + βn)

1

n2
. (4.22)

Eq. (4.20) states that the MMSE error considered can only be increased by a factor of 4

by reducing the domain of the estimator R̂ to {r, r + ε} and follows from Lemma 4.4.3. To

see eq. (4.21), note that the probability of error pe(n, ε) = P (R̂ = r, R = r + ε) + P (R̂ =

r + ε, R = r), and hence, E|R− R̂|2 = pe(n, ε) · ε2 if R̂ ∈ {r, r + ε}.
For eq. (4.22) define αn = P (R̂ = r|R = r + ε) and βn = P (R̂ = r + ε|R = r). Then,

pe(n, ε) = 1
2
(αn + βn).

At this point, the estimation problem is effectively reduced to a binary-decision problem
between the two hypotheses R = r and R = r + ε. The mean-squared error in both cases is
symmetric and equal to ε2. R̂ is an estimator restricted to two values. The Chernoff-Stein
lemma characterizes the probability of error of such a binary-decision problem. This lemma
is used to prove Lemma 4.4.4 which gives us the key step below. Let δn = 1

n1+ζ , ζ > 0. First,
consider the case where αn > δn,

lim
n→∞

a2(n+1) min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2

≥ lim
n→∞

a2(n+1) · γ
4
· 1

2
· (αn + βn) · 1

n2
(4.23)

≥ lim
n→∞

a2(n+1) · γ
4
· 1

2
· 1

n1+ζ
· 1

n2
(4.24)

=∞. (4.25)
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On the other hand if αn < δn, by Lemma 4.4.4 we have limn→∞ βn > κ

lim
n→∞

a2(n+1) min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2

≥ lim
n→∞

a2(n+1) · γ
4
· 1

2
· βn ·

1

n2
(4.26)

> κ lim
n→∞

a2(n+1) · γ
4
· 1

2
· 1

n2
(4.27)

=∞. (4.28)

Since κ > 0 is a constant the exponential term dominates as n→∞ which gives eq. (4.28).

Remark 4.4.6. This proof can be extended to include the case with a driving disturbance
W [n] and an additive noise term V [n] as in eq. (4.1) using a genie that just gives the
disturbance and the noise as side information to the estimator. The carry-free models imply
that the result should be true in the additive noise case as well.

4.4.3 Alternate proof using Le Cam’s lemma

We can use the technique of reducing the problem to a hypothesis testing problem and apply
a version of Le Cam’s lemma to get the result as well.

Let Θ denote a parameter space. Let L(θ1, θ2) denote a non-negative loss function on this
space. X is an observation whose distribution Pθ depends on the realization θ of unknown
parameter Θ. Pθ is a probability measure on a space X .

Definition 4.4.7. Minimax error: The minimax error Rminimax for a problem is defined by

Rminimax = inf
d

sup
θ∈Θ

E[L(θ, d(X))
∣∣θ] (4.29)

where d is a function that maps from X to Θ.
Let (X ,F) be a measurable space and let P and Q be two probability measures on

(X ,F).

Definition 4.4.8. Total variation distance: The total variation distance between P and Q
is defined as

V (P ,Q) = sup
A∈F
|P(A)−Q(A)| (4.30)

Lemma 4.4.9. (Le Cam, 1973) Let w1 and w2 be two probability measures that are supported
on subsets Θ1 and Θ2 respectively. Also, let m1 and m2 denote the marginal densities with
respect to w1 and w2 respectively, i.e. mi(x) =

∫
Θi
Pθ(x)wi(dθ) for i = 1, 2. Then, the

minimax error in the estimation of parameter θ, Rminimax, satisfies [73]:
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Rminimax ≥
1

2
d(Θ1,Θ2)V (m1,m2). (4.31)

Here, d(Θ1,Θ2) = inf{d(θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2}, and V (·, ·) is the total-variation distance.

Theorem 4.4.1. For the system in eq. (4.15), with C[n] ∼ N (µ, σ2), σ > 0 and X[0] ∼
N (0, 1), and |a| > 1 (i.e. the system is unstable), limn→∞ E[Err[n]2] =∞.

Proof: (Thm. 4.4.1) The steps of this proof are identical to the proof in Sec. 4.4.2 until
eq. (4.20). Once the problem has been reduced to a hypothesis-testing problem for R we can
use Le Cam’s lemma.

Define PR(r) = P(R)
∣∣
R=r

and PR(r + ε) = P(R)
∣∣
R=r+ε

. Further, define PY |R(y|r) =

P(y|R)
∣∣
R=r

and PY |R(y|r + ε) = P(y|R)
∣∣
R=r+ε

. Let d(r1, r2) = inf
a∈R
{(r1 − a)2 + (r2 − a)2}.

Then following the proof of Le Cam’s lemma in Chapter 2 of Guntuboyina [73]:

min
R̂∈Hn,R̂∈{r,r+ε}

(
E|r − R̂|2 + E|r + ε− R̂|2

)
(4.32)

= min
R̂∈Hn,R̂∈{r,r+ε}

∫
(r − R̂(~y))2PY |R(~y|r)d~y +

∫
(r + ε− R̂(~y))2PY |R(~y|r + ε)d~y (4.33)

≥ min
R̂∈Hn,R̂∈{r,r+ε}

∫ [
(r − R̂(~y))2 + (r + ε− R̂(~y))2

]
min (PY |R(~y|r),PY |R(~y|r + ε))d~y

(4.34)

≥ min
R̂∈Hn,R̂∈{r,r+ε}

∫
d(r, r + ε) min (PY |R(~y|r),PY |R(~y|r + ε))d~y (4.35)

= min
R̂∈Hn,R̂∈{r,r+ε}

d(r, r + ε)

∫
min (PY |R(~y|r),PY |R(~y|r + ε))d~y (4.36)

= d(r, r + ε)

∫
min (PY |R(~y|r),PY |R(~y|r + ε))d~y (4.37)

= d(r, r + ε) ·
(
1− V (PY |R(~y|r),PY |R(~y|r + ε))

)
(4.38)

≥ d(r, r + ε) ·
(

1−
√
D(PY |R(~y|r)||PY |R(~y|r + ε))

2

)
(4.39)

(4.38) follows from Scheffe’s theorem7 [72, p. 84, Lemma 2.1]. (4.39) follows from
Pinsker’s Inequality8 [72, p. 88, Lemma 2.5].

7Scheffe’s theorem: V (P,Q) = 1−
∫

min(dP, dQ)

8Pinsker’s Inequality: V (P,Q) ≤
√

D(P ||Q)
2
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Now, choose ε = 1
n
. Then, we have d(r, r + 1

n
) = 1

4
1
n2 . Further, we have that the

KL-divergence between two normal distributions N0(µ0,Σ0) and N1(µ1,Σ) is given by:

D(N0||N1) =
1

2

(
tr(Σ−1

1 Σ0) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)− n− ln

detΣ0

detΣ1

)
(4.40)

So we can follow from eq. (4.39) with

D(PY |R(~y|r)||PY |R(~y|r + ε)) =
1

2

(
nσ2r

σ2(r + ε)
+

nµ2ε2

σ2(r + ε)2
− n− n ln

σ2r2

σ2(r + ε)2

)
(4.41)

=
1

2

(
nσ2r

σ2(r + 1
n
)

+
nµ2 1

n2

σ2(r + 1
n
)2
− n− n ln

σ2r2

σ2(r + 1
n
)2

)
(4.42)

=
1

2

(
nr

(r + 1
n
)

+
µ2 1

n

σ2(r + 1
n
)2
− n− n ln

r2

(r + 1
n
)2

)
(4.43)

=
1

2

(
nr

(r + 1
n
)

+
µ2 1

n

σ2(r + 1
n
)2
− n− ln

(
1− 1

nr + 1

)n)
(4.44)

lim
n→∞

1

2

(
nr

(r + 1
n
)

+
µ2 1

n

σ2(r + 1
n
)2
− n− ln

(
1− 1

nr + 1

)n)
=

1

2
(−1) ln(e

−1
r ) =

1

2r
(4.45)

Hence, we have the lowerbound

lim
n→∞

min
X̂[n+1]∈Fn

E|X[n+ 1]− X̂[n+ 1]|2

≥ lim
n→∞

an+1 · γ
8
· 1

4n2
·
(

1− 1

2

(
nr

(r + 1
n
)

+
µ2 1

n

σ2(r + 1
n
)2
− n− ln

(
1− 1

nr + 1

)n))
(4.46)

≥ lim
n→∞

an+1 · γ
8
· 1

4n2
·
(

1− 1

2r

)
(4.47)

=∞ (4.48)

Thus, the MMSE is unbounded.

4.4.4 Connections to other lowerbounds

The Bayesian Cramer-Rao bound

It would be sacrilege to not mention the Cramer-Rao bound in the context of lowerbounds for
estimation problems. The traditional Cramer-Rao bound [67, p. 395], states that variance of

any unbiased estimator θ̂ for a parameter θ is lower bounded by the reciprocal of the Fisher
information, J(θ),

E[(θ − θ̂)2
∣∣θ] ≥ 1

J(θ)
. (4.49)
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Here J(θ) = E
[(

∂
∂θ

ln f(Y ; θ)
)2∣∣θ

]
, where {f(Y ; θ)}, θ ∈ Θ is an indexed family of densi-

ties of the random variable Y with parameter θ.
This approach is extended to Bayesian settings with a prior on θ and for biased estimators

with the Van-Trees Inequality, also called the Bayesian Cramer-Rao bound [74]. This in-
equality provides a lower-bound on the mean-squared error in the estimation of a parameter
θ, with prior π over θ.

∫
E[(θ − θ̂)2

∣∣θ]dπ(θ) ≥ 1∫
J(θ)dπ(θ) + J(π)

∀θ̂ (4.50)

where J(·) is the Fisher Information. Here, J(π) =
∫ (∂lnπ(θ)

∂θ

)2

π(θ)dθ. Both the Fisher

Information of the observation and the Fisher Information of the prior are involved.
In the setup here, θ = X[0] and we have π as N (0, 1). It is well known that J(π) = 1.

To calculate J(θ) with n i.i.d. observations Y
′
[i]
∣∣θ = Y [i]

ai

∣∣θ ∼ N (µθ, σ2θ2):

J(θ) = n · E
[(

∂

∂θ
ln fY [1](y)

)2∣∣∣∣θ
]

(4.51)

= n · E
[(

∂

∂θ
ln

(
1√

2πσ|θ|
e
−(y−µθ)2

2σ2θ2

))2∣∣∣∣θ
]

(4.52)

= n · E
[(−sgn(θ)

|θ| +
y(y − µθ)
σ2θ3

)2∣∣∣∣θ
]

(4.53)

= n · E
[(
−1

θ
+
y(y − µθ)
σ2θ3

)2∣∣∣∣θ
]

(4.54)

= n ·
[

1

θ2
− 2

σ2θ4

(
E[y2

∣∣θ]− µθE[y
∣∣θ]
)

+
1

σ4θ6

(
E[y4

∣∣θ]− 2µθE[y3
∣∣θ] + µ2θ2E[y2

∣∣θ]
)]

(4.55)

= n ·
[

1

θ2
− 2

σ2θ4

(
µ2θ2 + σ2θ2 − µ2θ2

)
+ (4.56)

1

σ4θ6

(
µ4θ4 + 6µ2θ2σ2θ2 + 3σ4θ4 − 2µθ(µ3θ3 + 3µθσ2θ2) + µ2θ2(µ2θ2 + σ2θ2)

)]

(4.57)

= n ·
[

1

θ2
− 2

σ2θ4
(σ2θ2) +

1

σ4θ6

(
3σ4θ4 + µ2σ2θ4

)]
(4.58)

= n ·
[

1

θ2
− 2

θ2
+

1

σ2θ2

(
3σ2 + µ2

)]
(4.59)

= n ·
[

1

θ2

(
2σ2 + µ2

σ2

)]
(4.60)
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Now, let us consider,

·
∫ ∞

−∞
J(θ)dπ(θ) = n ·

∫ ∞

−∞

(
1

θ2

(
2σ2 + µ2

σ2

))
1√
2π
e
−θ2
2 dθ (4.61)

=∞ (4.62)

As a result, a direct application of the Van-Trees inequality only provides a trivial lower
bound of 0 for the MMSE. For this family of distributions, the value θ = 0 removes all
randomness from the system, and so the Fisher information is dominated by this one highly
informative member of the family.

Ziv-Zakai bounds

The Ziv-Zakai family of bounds relate the mean squared error of an estimation problem
to the probability of error in a binary hypothesis testing problem, as we do in the proof
here. The original Ziv-Zakai bounds were derived for the estimation of a parameter with
a uniform prior [75], [76]. This bound was extended to include general priors by Bell et
al. [77]. However, we cannot evaluate this extended bound, called the Bell-Ziv-Zakai bound,
to provide a closed form lowerbound in this case. Let π(θ) be the prior on the parameter θ.

The bound states that the MMSE in the estimation of a parameter Θ can be lowerbounded
as:

E[(θ − θ̂)2] =
1

2

∫ ∞

0

P

(
|θ − θ̂| ≥ h

2

)
h dh (4.63)

P

(
|θ − θ̂| ≥ h

2

)
≥
∫ ∞

−∞
(π(x) + π(x+ h)) pe(x, x+ h) dx (4.64)

where pe(x, x+h) is the minimum probability of error obtained from the optimum likelihood
ratio test to distinguish between x and x+ h using the observations.

The solution we provide uses eq. (4.63) in the regime where h→ 0. This lets us ignore the
prior on x and thus we do not need to average over x to calculate the bound as in eq. (4.64).

Here, π(x) = 1√
2π
e−

x2

2 and pe(x,x+h) = 2−nD(P1||P2), with

D(P1||P2) = log
x+ h

x
+

1

2

(
x2

(x+ h)2

(
µ2 + σ2

σ2

)
− 1

)
+
µ2

σ2

(
− x

x+ h
+

1

2

)
. (4.65)

While this integral can be evaluated numerically, it does not have a clean closed form
expression that we could use to obtain a bound.

4.4.5 Information bottleneck approach

Consider system (4.1). As n → ∞ the power of X[n] increases to infinity and it is feasible
that the observations Y [n] get more and more informative aboutX[n] since the SNR increases
to infinity. But the theorem below shows that the mutual information, I(X[n];Y [n]), is in
fact bounded, even as n→∞.
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Theorem 4.4.10. I(X[n];Y [n]) ≤ 1
2

log(µ
2

σ2 + 2) + 0.48.

The proof is given in the Appendix 4.8.9. A similar result is also shown in [78] for non-
coherent communication.

This says the amount of new information an estimator can gain in any single time step is
bounded. However, this approach is not sufficient to prove Thm. 4.4.1. If the estimator learns
1
2

log(µ
2

σ2 + 2) + 0.48 bits each time, as time grows to infinity the estimator can accumulate
an infinite number of bits about the state. However, we know from the deterministic model
picture that the estimator goes not learn new bits at each time step, it keeps learning the
same bits over and over again. A simple mutual information bound is unable to capture
this. Partly this comes from the fact that the system must send the raw state value across
the non-coherent channel. The ability to encode, and this send new bits across the channel
at each time would allow the system to be tracked, but this is not possible in the setup we
have.

4.5 Other distributions for C[n]

Is there something special about the Gaussian distribution on C[n] that leads to the system
being non-trackable? In particular, does the inestimability of the system stem from the
fact that the estimator does not know the sign of C[n]? It turns out this is not the case.
The main results of this chapter are true for any continuous distribution on C[n] as well as
general densities on X[0]. Below we work this out first for an exponential density and then
a uniform density for C[n].

4.5.1 Exponential C[n]

For the system in eq. (4.15) but with C[n] ∼ Exp(λ), λ > 0, we have the following result.

Theorem 4.5.1. For the system eq. (4.15), with C[n] ∼ Exp(λ), λ > 0, X[0] ∼ N (0, 1),
and |a| > 1 (i.e. the system is unstable), limn→∞ E[Err[n]2] =∞.

In this case we have, Y [n]
an
∼ Exp( λ

x[0]
). The rest of the proof follows exactly as in the case

of Gaussian C[n], except with Lemma 4.5.2 applied instead of Lemma 4.4.4. The proofs for
these lemmas are given in the Appendix.

Lemma 4.5.2. Let η[1], η[2], · · · η[n] ∼ Exp( λ
S

) = Q, where S is a random variable taking
values s1 and s2 6= 0 with equal probability. Let P1 = Exp( λ

s1
) and P2 = Exp( λ

s2
). Consider

the hypothesis test between the hypothesis H1 : Q = P1 and hypothesis H2 : Q = P2. H1, H2

have priors P (H1) = P (H2) = 1
2

and g(ηn1 ) is the decision rule used. Then define the
probabilities of error as αn = P (g(ηn1 ) = s2|H1 true) and βn = P (g(ηn1 ) = s1|H2 true). If

(s2 − s1)2 = 1
n2 , s1 < s2, and 0 ≤ αn <

1
n1+ζ , ζ > 0, then, limn→∞ βn =≥ e

1
s2 2

1
s1s2 = κ > 0,

where κ is a constant that does not depend on n.
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4.5.2 Uniform C[n]

The uniform distribution offers a challenge that the exponential and Gaussian distributions
did not: a bounded support set. This bounded support set means that there is always a small
probability that the observer will get a very highly informative sample which immediately
distinguishes between the two hypotheses. As a result, the construction of the hypothesis
testing problem in Lemma 4.5.4 the serves are a lowerbound to the estimation problem
depends on the value of a. This is not required for the exponential or Gaussian distributions.

Theorem 4.5.3. For the system eq. (4.15), with C[n] ∼ Uniform[µ1, µ2], a 6= b, X[0] ∼
fX(x) such that ∃[r0, r1], r1 > r0 such that ∃0 < γ < 1 s.t fX(x) > γ

r1−r0 ∀ x ∈ [r0, r1], and

|a| > 1 (i.e. the system is unstable), limn→∞ E[Err[n]2] =∞.

Note that the theorem above allows for a very general distribution on X[0]. All that
is important is that a small uniform density can fit inside the density of a uniform to be
able to apply the relevant lemmas. The proof is similar to the proof of Thm. 4.4.1, with
Lemma 4.5.4 replacing Lemma 4.4.2 and Lemma 4.5.5 replacing Lemma 4.4.4. The main
difference in the proof comes through the application of Lemma 4.5.5. The probability of
error when distinguishing between two probability distributions with disjoint support can be
0 even with just a finite number of observations. For instance, for the uniform distributions
in Fig. 4.4 a single observation in [µ1s1, µ1s2] is sufficient to distinguish the underlying
distributions. A key aspect of the proof is choosing hypotheses that are close enough to have
large probability in the overlap region.

µ1s1 µ1s2 µ2s2µ2s1

Figure 4.4: Two overlapping uniform distributions. The key to the proof is constructing
a genie that maintains a sufficient amount of probability in the overlapping region µ1s2 to
µ2s1.

This first lemma reduces the estimation problem to a hypothesis testing problem again.
This is possible regardless of the density of X[0], as long as a small uniform density can fit
inside the density. Here, the two hypotheses that are generated to have a specific ratio, α,
as opposed to a specific distance in the Gaussian proof.

Lemma 4.5.4. Let Y [1], Y [2], · · ·Y [n] ∼ PΘ. Θ is the parameter for the distribution and
let Θ ∼ fΘ(θ). fΘ(θ) is such that ∃ [r0, r1], r1 > r0 and ∃ 0 ≤ γ ≤ 1 such that fΘ(θ) >
γ

r1−r0 ∀ θ ∈ [r0, r1]. Let Fn be the σ-algebra defined by Y [1], Y [2], · · ·Y [n].
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For all l > 1, there exists α such that l > α > 1, a random variable R, and a constant
0 < γ < 1, such that

min
Θ̂∈Fn

E|Θ− Θ̂|2 ≥ min
R̂∈Fn

γ · E|R− R̂|2 (4.66)

and R is a discrete random variable that takes only two values r, α · r such that

PR(r) =
1

2
,PR(α · r) =

1

2
(4.67)

This second lemma characterizes the probability of error between two hypotheses s1 and
s2 when they are observed through a multiplicative noise drawn from a uniform distribution,
and is used to eventually bound the MMSE error.

Lemma 4.5.5. Let µ1, µ2 > 0. Let η[1], η[2], · · · η[n] ∼ U [µ1S, µ2S] = Q, where S is a
random variable taking values s1 and s2 6= 0 with equal probability, such that µ1s2 < µ2s1.
Let P1 = U [µ1s1, µ2s1] and P2 = U [µ1s2, µ2s2]. Consider the hypothesis test between the
hypothesis H1 : Q = P1 and hypothesis H2 : Q = P2. H1, H2 have priors P (H1) =
P (H2) = 1

2
and g(ηn1 ) is the decision rule used. Then define the probabilities of error as

αn = P (g(ηn1 ) = s2|H1 true) and βn = P (g(ηn1 ) = s1|H2 true). Then, the probability of error

pe(n) = P (g(ηn1 ) = s1, S = s2) + P (g(ηn1 ) = s2, S = s1) ≥ 1
4
·
(
µ2s1−µ1s2
s1(µ2−µ1)

)n
.

Proof: (Thm. 4.5.3) The proof follows exactly as the proof of Thm. 4.4.1. Using Lemma 4.5.4
and Lemma 4.4.3 we can get

min
X̂[n+1]∈Fn

E|X[n+ 1]− X̂[n+ 1]|2

≥ a2(n+1) · γ
4
· min
R̂∈Fn

E|R− R̂|2 (4.68)

where R is a discrete random variable that takes only two values r, α · r such that PR(r) =
1
2
,PR(α · r) = 1

2
, with 1 < α = µ2

µ1

(
1− 1

a2

)
+ 1

a2
− ρ, where 0 < ρ < µ2

µ1

(
1− 1

a2

)
+ 1

a2
− 1.

Such α and ρ exist since by Lemma 4.5.6, 1 < µ2
µ1

(
1− 1

a2

)
+ 1

a2
.

Lemma 4.5.6. 1 < µ2
µ1

(
1− 1

a

)
+ 1

a
.

The proof is included in the Appendix.
r and α · r are both in the support of the original distribution fX[0](·) by Lemma 4.5.4.
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To apply Lemma 4.5.5 with s1 = r and s2 = α · r, we need to ensure that µ1s2 < µ2s1,
i.e., α < µ2

µ1
. But since µ2

µ1
> 1 we have,

µ2

µ1

>
µ2

µ1

− 1

a2

(
µ2

µ1

− 1

)
(4.69)

>
µ2

µ1

(
1− 1

a2

)
+

1

a2
(4.70)

>
µ2

µ1

(
1− 1

a2

)
+

1

a2
− ρ (4.71)

= α (4.72)

for a > 1. Then Lemma 4.5.5 gives a bound on pe(n), and continuing from eq. (4.68),

a2(n+1) · γ
4
· min
R̂∈Fn

E|R− R̂|2 (4.73)

≥ a2(n+1) · γ
4
· pe(n) · (r(1− α))2 (4.74)

≥ a2(n+1) · γ
4
· 1

4
·
(
µ2r − µ1αr

r(µ2 − µ1)

)n
· (r(1− α))2 (4.75)

= a2(n+1) · γ
16
·
(
µ2 − µ1α

(µ2 − µ1)

)n
· (r(1− α))2 →∞ as n→∞ (4.76)

since a2 · µ2−µ1α
(µ2−µ1)

> 1 by Lemma 4.5.7.

Lemma 4.5.7. a2 · µ2−µ1α
(µ2−µ1)

> 1

The proof is included in the Appendix.

Remark 4.5.8. This proof does not require that the hypothesis keep getting closer to
each other as in the case of a Gaussian setup. Instead, the two hypothesis are a constant
ratio apart, but this ratio depends on the growth factor a. A brute-force calculation of the
probability of error allows us to bypass the use of Chernoff-Stein entirely.

4.5.3 C[n] with a general continuous density

Since the uniform distribution is the prototypical continuous density, using Thm. 4.5.3, we
can prove that the estimation error for a system (4.15) is unbounded with any continuous
C[n]. The general density case reduces to to the uniform case by considering a piecewise
constant approximation to the density for C[n], i.e. thinking of a general density as a mixture
of tiny uniform densities. Then reduce the problem to the uniform case with a genie that
reveals which interval C[n] was drawn from.
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Theorem 4.5.9. For the system eq. (4.15), if C[n] has a continuous density with no atoms
and X[0] also has continuous density (possibly with atoms but such that a small uniform can
fit inside the density), and |a| > 1 (i.e. the system is unstable), limn→∞ E[Err[n]2] =∞.

4.6 Control

Theorem 4.6.1. The system in eq. (4.2), with C[n] ∼ N (µ, σ2), X[0] ∼ N (0, 1), and

|a| > 1, is mean-square stabilizable if a2 < 1 + µ2

σ2 .

Proof: This shows that appropriate feedback control can stabilize the system in a certain
parameter range in closed-loop, even though it may not be mean-square observable in open-
loop. Choose U [n] = −dY [n] for some d ∈ R. Then

X[n+ 1] = aX[n]− dY [n] +W [n] (4.77)

= (a− dC[n])X[n]− dV [n] +W [n]. (4.78)

Hence,

E[X[n+ 1]2] (4.79)

= E
[
(a− dC[n])2X[n]2

]
+ E

[
d2V [n]2

]
+ E

[
W [n]2

]
(4.80)

= (a2 − 2adµ+ d2(µ2 + σ2))E[X[n]2] + d2 + 1. (4.81)

If K = a2−2adµ+d2(µ2 +σ2) < 1 the control can stabilize the system. Minimizing K gives

d = aµ
µ2+σ2 , and for this choice, K < 1 reduces to a2 < µ2+σ2

σ2 = 1 + µ2

σ2 .

4.7 The slow-fading case

The system in eq. (4.15) is being observed over a fast-fading channel, i.e. a channel that is
changing faster than the time scale of the control operation. What if instead we were dealing
with control in a block fading or slow fading setup, so that the observation scaling C[n] = C
was unknown but constant over time? Consider

X[n+ 1] = a ·X[n] (4.82)

Y [n] = C ·X[n] (4.83)

Let X[0] ∼ N (0, 1) and C ∼ N (µc, σ
2
c ). Then, X[n] = an · X[0], and Y [n]

an
= C · X[0].

Effectively, the observer receives the exact same observation every single time. No new bits
are conveyed. We know from Thm. 4.4.10 that I(X[0];Y n

0 ) ≤ 1
2

log(µ
2

σ2 + 2) + 0.48 for every
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n. Since even as time grows we only learn a finite number of bits in total, the converse proof
follows easily from the mutual information calculation. in this case the converse proof is
easy, as X[n]→∞, there is no way to estimate X[n] with finite mean squared error. When
the C[n]s change with time (i.e. the fast fading case), we do not have identical observations.
What happens though is that the extra information we learn is about the C[n], which is not
useful. The varying C[n] case gives us the chance to average over a set of noisy of X[0] and
is easier in that sense. But as a result, proving the negative result converse is more difficult.

On one hand, it seems that a slow-fading system might offer an easier estimation problem,
since certainly higher communication rates can be achieved in cases when the channel fading
is known or can be learned. However, unlike the the communication setup, we cannot use a
pilot signal here to learn the unknown “fading coefficient” in the estimation problem. The
system state is randomly chosen and is what it is.

Of course, this changes entirely with the introduction of a control signal:

X[n+ 1] = a ·X[n] + U [n] (4.84)

Y [n] = C ·X[n] (4.85)

X[0] ∼ N (0, 1) and C ∼ N (µc, σ
2
c ). For this system, the first control U [0] = 1 can serve

as a pilot signal. Then, Y [0] = C · X[0] and Y [1] = C · (a · X[0] + 1) = a · Y [0] + C. The
controller can solve for C as Y [1]− aY [0] in one time step!

In the presence of additive noise C can be learned to within a bounded error using a
Kalman filter.

4.8 Appendix

4.8.1 Proof of Lemma 4.4.2

Lemma 4.4.2. Let Y [0], Y [1], · · ·Y [n] ∼ PΘ. Θ is the parameter for the distribution and
Θ ∼ N (0, 1). Let Fn be the σ-algebra defined by Y [0], Y [1], · · ·Y [n]. Given fixed r0, r1, ε such
that r1 > r0 and r1 − r0 > ε > 0, there exist random variables R,R1, C and a σ-algebra Hn,
such that

• R1 ∼ Uniform[r0, r1 − ε]

• R is a discrete random variable conditioned on R1. R = R1 with probability 1
2

and
R = R1 + ε with probability 1

2
.

• C is a Bernoulli-(γ) random variable, where 0 < γ < 1 is a constant that depends on
r0, r1 but does not depend on ε.

• Hn = Fn∪FR1 ∪FC, where FR1 ,FC are the σ-algebras generated by R1, C respectively.

• min
Θ̂∈Fn

E|Θ− Θ̂|2 ≥ min
R̂∈Hn

γ · E|R− R̂|2.
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Proof: Our proof shows that we can reduce the estimation problem over the entire range
of Θ ∼ N (0, 1) to an estimation problem over just two points. We do this by generating Θ
as a mixture of two random variables S and T and using a genie argument.

Let R1 ∼ Uniform[r0, r1 − ε]. Let

S =

{
R1 with prob. 1

2

R1 + ε with prob. 1
2

(4.86)

for some fixed ε < r1 − ε− r0. The density of S, fS(s), is given by:

fS(s) =





1
2(r1−ε−r0)

, r0 ≤ s < r0 + ε
1

(r1−ε−r0)
, r0 + ε ≤ s ≤ r1 − ε

1
2(r1−ε−r0)

, r1 − ε < s ≤ r1

0, otherwise.

(4.87)

The density of T is essentially a Gaussian density minus fS(·) with a scaling. Choose

γ = 1
2

1√
2π
e−

1
2
r21 . Note γ does not depend on ε.

fT (t) =





1
1−γ ( 1√

2π
e−

t2

2 − γ 1
2(r1−ε−r0)

), r0 ≤ t < r0 + ε

1
1−γ ( 1√

2π
e−

t2

2 − γ 1
(r1−ε−r0)

), r0 + ε ≤ t ≤ r1 − ε
1

1−γ ( 1√
2π
e−

t2

2 − γ 1
2(r1−ε−r0)

), r1 − ε < t ≤ r1

1
1−γ

1√
2π
e−

t2

2 , otherwise

(4.88)

The choice of γ ensures that fT (t) ≥ 0 ∀t and is a valid density. This mixture of S (with
probability γ) and T (with probability 1 − γ) leads to Θ ∼ N (0, 1). This is shown in
Figures 4.5(a), 4.5(b), 4.6(a), 4.6(b).

K is a γ-biased coin which generates Θ using S, T .

Θ =

{
S if K is heads (prob. γ)

T if K is tails (prob. 1− γ)
(4.89)

Now consider the MMSE estimate of Θ, given observations Y n
0 . This error could only

decrease in the event that a genie were to reveal more information about Θ. In particular,
a genie observes the realization Θ = θ1 as well as S,R1, T,K.

If K is tails then the exact value of Θ is revealed, and Θ̂ = Θ. If K is heads, then the
realization of the underlying r.v. R1 = r is revealed. Let FR1 be the σ-algebra generated by

R1. Then, Θ̂ ∈ Hn, where Hn = Fn ∪ FR1 .
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r0 r1 � ✏ r1r0 + ✏

R1 R1 + ✏

(a) Density of R1

r0 r1 � ✏ r1r0 + ✏

S

(b) Density of S

Figure 4.5: Random variables used to construct the genie side information.

X[0]

(a) Caricature of the density of initial state

T

r0 r1 � ✏ r1r0 + ✏

(b) Caricature of the density of T

Figure 4.6: Random variables used to construct the genie side information.

We are interested in the error that would be made due to confusion between r and r + ε
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after this revelation. Then,

min
Θ̂∈Fn

E|Θ− Θ̂|2 (4.90)

≥ min
Θ̂∈Hn

E|Θ− Θ̂|2 (4.91)

= min
Θ̂∈Hn

γ · E[|Θ− Θ̂|2|H is heads]

+ (1− γ) · E[|Θ− Θ̂|2|H is tails] (4.92)

= min
Θ̂∈Hn

γ · E[|Θ− Θ̂|2|Θ = S] + (1− γ) · E[|Θ− Θ̂|2|Θ = T ] (4.93)

= min
Θ̂∈Hn

γ · E[|Θ− Θ̂|2|Θ = S] (4.94)

= min
Θ̂∈Hn

γ · E[|S − Θ̂|2|Θ = S,R1 = r] (4.95)

= min
Θ̂∈Hn

1

2
· γ ·

(
E[|S − Θ̂|2|S = r] + E[|S − Θ̂|2|S = r + ε]

)
(4.96)

(4.95) follows since when Θ = S the genie reveals R1 = r. For (4.96) note that S
∣∣R1 = r

with probability 1
2

and S
∣∣R1 = r + ε with probability 1

2
. So define R as:

R =

{
r with prob. 1

2

r + ε with prob 1
2

(4.97)

If we substitute R into (4.96), we get (4.98), which gives the desired result.

min
Θ̂∈Fn

E|Θ− Θ̂|2

= min
Θ̂∈Hn

γ · E[|R− Θ̂|2|Θ = R] (4.98)

= min
R̂∈Hn

γ · E[R− R̂|2] (4.99)

4.8.2 Proof of Lemma 4.4.3

Lemma 4.4.3. Let S be a discrete random variable, with distribution PS(·) that takes values
only on two points s1 < s2. PS(s1) > 0, PS(s2) > 0 and PS(s) = 0 ∀s 6= s1, s2. Let Hn be
the σ-algebra of the observations. Then,

min
Ŝ∈Hn

E[|S − Ŝ|2] ≥ 1

4
min

Ŝ∈Hn,Ŝ∈{s1,s2}
E[|S − Ŝ|2]. (4.16)
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Proof: Let the posterior probabilities on on s1 and s2 by the data be qn and 1− qn. Then,
the MMSE estimator Ŝn and associated mean squared error Err[n] = min

Ŝn∈Hn
E[|S − Ŝn|2] are

Ŝn = qns1 + (1− qn)s2 (4.100)

Err[n] = qn(s1 − Ŝn))2 + (1− qn)(s2 − Ŝn)2 (4.101)

Now consider a quantization estimator Squant,n ∈ {s1, s2}. Errquant[n] is the associated
mean-squared error.

Squant,n =

{
s1, if (s1 − Ŝn)2 ≤ (s2 − Ŝn)2 i.e. q ≥ 1

2

s2, if (s1 − Ŝn)2 > (s2 − Ŝn)2 i.e. q < 1
2

(4.102)

If Squant,n is in error, the magnitude of the error is always (s2 − s1)2. Let pe,quant be the
probability with which Squant,n is in error. So

Errquant[n] = pe,quant(s2 − s1)2 (4.103)

Clearly, Errquant[n] ≥ Err[n], by the definition of Ŝn.
Consider the expression, Errquant,genie[n], which reduces the error by a factor of 4.

Errquant,genie[n] =
1

4
Errquant[n] = pe,quant

(
s1 − s2

2

)2

. (4.104)

We will show that

Err[n] ≥ Errquant,genie[n]. (4.105)

To get (4.105), compare Err[n] and Errquant,genie[n] on a realization by realization basis.
Let qn >

1
2
. Then Squant,n = s1. Also, pe,quant = 1 − qn, since this is the probability with

which S = s2. Since qn >
1
2
, we have s1 ≤ Ŝn <

s1+s2
2

< s2. If S = s1, |Errquant,genie[n]|2 = 0,

and |S − Ŝn|2 = (s1 − Ŝn)2. So, |Errquant,genie[n]|2 ≤ |S − Sn|2 in this case. If S = s2,

|Errquant,genie[n]|2 =
(
s1−s2

2

)2
and |S−Ŝn|2 = (s1−s2)2. |Errquant,genie[n]|2 ≤ |S−Ŝn|2 in this

case as well. A similar argument holds if q ≤ 1
2
. Hence, we have Err[n] ≥ Errquant,genie[n].

Consider now the optimal estimator for S over those estimators that only take values on
{s1, s2}

Sopt,n = argmin
Ŝ∈Hn,Ŝ∈{s1,s2}

E[|S − Ŝ|2] (4.106)

Erropt[n] is the associated mean squared error, and Erropt,genie[n] is the associated error for
the optimal estimator with the help of the genie so that Erropt,genie[n] = 1

4
Erropt[n], since
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the genie reduces the error by a factor of 4. Sopt,n will have better performance than Squant,n
and hence the probability of error pe,opt ≤ pe,quant. Hence,

Errquant,genie[n] ≥ Erropt,genie[n] =
1

4
Erropt[n] (4.107)

Hence, (4.105), (4.107) imply that Err[n] ≥ 1
4
Erropt[n] i.e.

min
Ŝ∈Hn

E[|S − Ŝ|2] ≥ 1

4
min

Ŝ=Hn,Ŝ∈{s1,s2}
E[|S − Ŝ|2] (4.108)

4.8.3 Proof of Lemma 4.4.4

Lemma 4.4.4. Let S be a random variable taking values s1 and s2 6= 0 with equal probability,
PS(s1) = PS(s2) = 1

2
, and let Y [1], Y [2], · · ·Y [n] ∼ N (µS, σ2S2) = Q. σ 6= 0. Let P1 be

N (µs1, σ
2s2

1) and P2 be N (µs2, σ
2s2

2). Consider the hypothesis test between H1 : Q = P1 and
H2 : Q = P2. H1, H2 have priors P (H1) = P (H2) = 1

2
and g(Y n

0 ) is the decision rule used.
Then define the probabilities of error as αn = P (g(Y n

0 ) = s2|H1 true) and βn = P (g(Y n
0 ) =

s1|H2 true).
If s2 − s1 = 1

n
, s1 < s2, and 0 ≤ αn <

1
n1+ζ = δn, for some ζ > 0, then, limn→∞ βn ≥

e
− 1
s2 2

1
s2 = κ > 0, a constant that does not depend on n.

Proof: s2 − s1 = 1
n
, thus s1

s2
= 1− 1

ns2
and

(
s21
s22
− 1
)

= 1
n

(
1
ns22
− 2

s2

)
.

Consider any decision rule, g(Y n
0 ). Associated with the decision rule is an acceptance

region for H1 based on Y n
0 , i.e. the set of values of Y n

0 where g(Y n
0 ) = s1. Let Bn denote

this acceptance region. Then αn = P1(Bc
n) < δn, so P1(Bn) > 1− δn. Since D(P1||P2) <∞,

the Chernoff-Stein lemma (Lem 11.8.1, Thm 11.8.3, [67], pg. 383) implies P2(Bn) > (1 −
2δn)2−nD(P1||P2)+δn . Recall, δn = 1

n1+ζ .
When σ 6= 0,

lim
n→∞

P2(Bn) > lim
n→∞

(1− 2δn)2−n(D(P1||P2)+δn) (4.109)

= lim
n→∞

(1− 2

n1+ζ
)2−

n

n1+ζ lim
n→∞

2−nD(P1||P2) (4.110)

= 1 · 20 lim
n→∞

2−nD(P1||P2) (4.111)

D(P1||P2) = log
s2

s1

+
1

2

(
s2

1

s2
2

(
µ2 + σ2

σ2

)
− 1

)
+
µ2

σ2

(
−s1

s2

+
1

2

)
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lim
n→∞

2−nD(P1||P2)

= lim
n→∞

2

{
−n
(

log
s2
s1

+ 1
2

(
s21
s22

(
µ2+σ2

σ2

)
−1

)
+µ2

σ2

(
− s1
s2

+ 1
2

))}
(4.112)

= lim
n→∞

(
s1

s2

)n
· 2
{
−n

2
1

σ2s22
(s21(µ2+σ2)−σ2s22−2µ2s1s2+µ2s22)

}
(4.113)

= lim
n→∞

(
s1

s2

)n
· 2
{
−n

2
1

σ2s22
(µ2(s21+s22−2s1s2)+σ2(s21−s22))

}
(4.114)

= lim
n→∞

(
s1

s2

)n
· 2
{
−n

2
1

σ2s22
(µ2(s1−s2)2−σ2(s2−s1)(s1+s2))

}
(4.115)

= lim
n→∞

(
1− 1

ns2

)n
· 2
{
−n

2
1

σ2s22
(µ2 1

n2
−σ2 1

n
(s1+s2))

}
(4.116)

= e
− 1
s2 2

1
s2 (4.117)

Thus, limn→∞P2(Bn) >
(

2
e

) 1
s2 = κ.

4.8.4 Proof of Lemma 4.5.2

Lemma 4.5.2. Let η[1], η[2], · · · η[n] ∼ Exp( λ
S

) = Q, where S is a random variable taking
values s1 and s2 6= 0 with equal probability. Let P1 = Exp( λ

s1
) and P2 = Exp( λ

s2
). Consider

the hypothesis test between the hypothesis H1 : Q = P1 and hypothesis H2 : Q = P2. H1, H2

have priors P (H1) = P (H2) = 1
2

and g(ηn1 ) is the decision rule used. Then define the
probabilities of error as αn = P (g(ηn1 ) = s2|H1 true) and βn = P (g(ηn1 ) = s1|H2 true). If

(s2 − s1)2 = 1
n2 , s1 < s2, and 0 ≤ αn <

1
n1+ζ , ζ > 0, then, limn→∞ βn =≥ e

1
s2 2

1
s1s2 = κ > 0,

where κ is a constant that does not depend on n.

Proof:

D(P1||P2) =

∫ ∞

0

λ

s1

e
− λ
s1
s
log

λ
s1
e
− λ
s1
s

λ
s2
e
− λ
s2
s
ds (4.118)

=

∫ ∞

0

λ

s1

e
− λ
s1
s
log

s1

s2

ds+

∫ ∞

0

λ

s1

e
− λ
s1
s
(−λs)

(
1

s1

− 1

s2

)
ds (4.119)

= log
s1

s2

− 1

s2

+
1

s1

. (4.120)

Note we have s2 − s1 = 1
n

and s1
s2

= 1− 1
ns2

.
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lim
n→∞

2−nD(P1||P2) = lim
n→∞

2
−n log

s1
s2
− 1
s2

+ 1
s1 (4.121)

= lim
n→∞

(
1− 1

ns2

)−n
· 2−n

s2−s1
s1s2 (4.122)

= e
1
s2 2

1
s1s2 (4.123)

= κ (4.124)

4.8.5 Proof of Lemma 4.5.4

Lemma 4.5.4. Let Y [1], Y [2], · · ·Y [n] ∼ PΘ. Θ is the parameter for the distribution and
let Θ ∼ fΘ(θ). fΘ(θ) is such that ∃ [r0, r1], r1 > r0 and ∃ 0 ≤ γ ≤ 1 such that fΘ(θ) >
γ

r1−r0 ∀ θ ∈ [r0, r1]. Let Fn be the σ-algebra defined by Y [1], Y [2], · · ·Y [n].
For all l > 1, there exists α such that l > α > 1, a random variable R, and a constant

0 < γ < 1, such that

min
Θ̂∈Fn

E|Θ− Θ̂|2 ≥ min
R̂∈Fn

γ · E|R− R̂|2 (4.66)

and R is a discrete random variable that takes only two values r, α · r such that

PR(r) =
1

2
,PR(α · r) =

1

2
(4.67)

r0 r1↵r0 r1

↵

r2 ↵r2

f⇥(✓)

Figure 4.7: The density of S fitting inside the density of Θ.

Proof:
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Θ ∼ fΘ(θ). Choose α and r2 such that r0 < r2 < αr0 <
r1
α
< αr2 < r1. This is possible

when we choose an α such that αr0 <
r1
α

, which is always possible since α can be arbitrarily
close to 1. Let R ∼ Uniform[r0, r2]. Then, we flip a fair coin, K and generate the random
variable S using this coin flip and R. With probability 1

2
, S = R, and with probability 1

2
,

S = α ·R The pdf of S, fS(s), is given by:

fS(s) =





1
2(r2−r0)

, r0 ≤ s < r2

1
2α(r2−r0)

, αr0 ≤ s ≤ αr2

0, otherwise

(4.125)

Now we show how Θ can be generated as a mixture of S and another random variable
T . The density of T is essentially the density of X[0] minus the density of S. Θ = S with
probability γ and Θ = T with probability 1− γ, where 0 < γ < 1 and fΘ(θ)− γ 1

r1−r0 > 0 if
r0 ≤ θ ≤ r1. Note that this is possible since we have that fΘ(θ) > γ

r1−r0 when r0 ≤ θ ≤ r1.
To be precise the pdf of T is:

fT (t) =





1
1−γ (fΘ(t)− γ 1

2(r2−r0)
), r0 ≤ t ≤ r2

1
1−γ (fΘ(t)− γ 1

2α(r2−r0)
), αr0 ≤ t ≤ αr2

1
1−γfΘ(t), otherwise

(4.126)

This is a valid pdf due to the choice of γ. This mixture of S and T leads to Θ ∼ fΘ(θ). The
rest of the proof proceeds exactly as in Lemma 4.4.2.

4.8.6 Proof of Lemma 4.5.5

Lemma 4.5.5. Let µ1, µ2 > 0. Let η[1], η[2], · · · η[n] ∼ U [µ1S, µ2S] = Q, where S is a
random variable taking values s1 and s2 6= 0 with equal probability, such that µ1s2 < µ2s1.
Let P1 = U [µ1s1, µ2s1] and P2 = U [µ1s2, µ2s2]. Consider the hypothesis test between the
hypothesis H1 : Q = P1 and hypothesis H2 : Q = P2. H1, H2 have priors P (H1) =
P (H2) = 1

2
and g(ηn1 ) is the decision rule used. Then define the probabilities of error as

αn = P (g(ηn1 ) = s2|H1 true) and βn = P (g(ηn1 ) = s1|H2 true). Then, the probability of error

pe(n) = P (g(ηn1 ) = s1, S = s2) + P (g(ηn1 ) = s2, S = s1) ≥ 1
4
·
(
µ2s1−µ1s2
s1(µ2−µ1)

)n
.

Proof:

pe(n) = P (g(ηn1 ) = s1, S = s2) + P (g(ηn1 ) = s2, S = s1) (4.127)

= P (g(ηn1 ) = s1|S = s2)P (S = s2) + P (g(ηn1 ) = s2|S = s1)P (S = s1) (4.128)

=
1

2
(P (g(ηn1 ) = s1|S = s2) + P (g(ηn1 ) = s2|S = s1)) (4.129)

We expand the second term to write:
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P (g(ηn1 ) = s2

∣∣S = s1) (4.130)

= P (g(ηn1 ) = s2

∣∣S = s1, η
n
1 ∈ [µ1s2, µ2s1]n) · P (ηn1 ∈ [µ1s2, µ2s1]n

∣∣S = s1)+

P (g(ηn1 ) = s2

∣∣S = s1, η
n
1 6∈ [µ1s2, µ2s1]n) · P (ηn1 6∈ [µ1s2, µ2s1]n

∣∣S = s1) (4.131)

= P (g(ηn1 ) = s2

∣∣S = s1, η
n
1 ∈ [µ1s2, µ2s1]n) ·

(
µ2s1 − µ1s2

s1(µ2 − µ1)

)n
+

0 · P (ηn1 6∈ [µ1s2, µ2s1]n
∣∣S = s1) (4.132)

= P (g(ηn1 ) = s2

∣∣S = s1, η
n
1 ∈ [µ1s2, µ2s1]n) ·

(
µ2s1 − µ1s2

s1(µ2 − µ1)

)n
(4.133)

For eq. (4.132) note P (ηn1 ∈ [µ1s2, µ2s1]n
∣∣S = s1) =

(
µ2s1−µ1s2
s1(µ2−µ1)

)n
. Also, if ∃ η[i] 6∈

[µ1s2, µ2s1], then the probability of error is 0, since even one sample outside the interval of
overlap informs us about the underlying true distribution. g(ηn1 ) = s1 if ∃ η[i] ∈ [µ1s1, µ1s2],
and g(ηn1 ) = s2 if ∃ η[i] ∈ [µ2s1, µ2s2]. In a similar fashion we can also show:

P (g(ηn1 ) = s1

∣∣S = s2) = P (g(ηn1 ) = s1

∣∣S = s2, η
n
1 ∈ [µ1s1, µ2s1]n) ·

(
µ2s1 − µ1s2

s2(µ2 − µ1)

)n
(4.134)

We would now like to understand the probability of error if all observations ηn1 ∈
[µ1s2, µ2s1]n.

η[i] ∼ Q for 1 ≤ i ≤ n. We are interested in the distribution of η[i] conditioned on the
event A = {η[i] ∈ [µ1s2, µ2s1]}.

If Q = P1 = U [µ1s1, µ2s1], then η[i] ∼ P1

∣∣A ∼ U [µ1s2, µ2s1]. If Q = P2 = U [µ1s2, µ2s2],
then η[i] ∼ P2

∣∣A ∼ U [µ1s2, µ2s1]. Thus, P1A = P1

∣∣A and P2A = P2

∣∣A are the same
distribution, and are indistinguishable using the observations. By symmetry, at least one of
P (g(ηn1 ) = s1

∣∣S = s2, η
n
1 ∈ [µ1s1, µ2s1]n) and P (g(ηn1 ) = s2

∣∣S = s1, η
n
1 ∈ [µ1s1, µ2s1]n) must

be ≥ 1
2
. Thus,

pe(n) ≥ 1

2

(
µ2s1 − µ1s2

s1(µ2 − µ1)

)n (
P (g(ηn1 ) = s2

∣∣S = s1, η
n
1 ∈ [µ1s2, µ2s1]n)

)
+

1

2

(
µ2s1 − µ1s2

s2(µ2 − µ1)

)n (
P (g(ηn1 ) = s1

∣∣S = s1, η
n
1 ∈ [µ1s1, µ2s1]n)

)
(4.135)

≥ 1

2
·
(
µ2s1 − µ1s2

s1(µ2 − µ1)

)n
·
(
P (g(ηn1 ) = s2

∣∣S = s1, η
n
1 ∈ [µ1s2, µ2s1]n) +

P (g(ηn1 ) = s1

∣∣S = s2, η
n
1 ∈ [µ1s2, µ2s1]n)

)
(4.136)

≥ 1

2
·
(
µ2s1 − µ1s2

s1(µ2 − µ1)

)n
·
(

1

2

)
(4.137)

=
1

4
·
(
µ2s1 − µ1s2

s1(µ2 − µ1)

)n
(4.138)
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4.8.7 Proof of Lemma 4.5.6

Lemma 4.5.6. 1 < µ2
µ1

(
1− 1

a

)
+ 1

a
.

Proof:

µ2

µ1

(
1− 1

a2

)
+

1

a2
> 1 (4.139)

⇐⇒ µ2

(
1− 1

a2

)
+
µ1

a2
> µ1 (4.140)

⇐⇒ µ2

(
1− 1

a2

)
> µ1

(
1− 1

a2

)
(4.141)

⇐⇒ µ2 > µ1 (4.142)

which is trivially true for a2 > 1 and µ1, µ2 > 0.

4.8.8 Proof of Lemma 4.5.7

Lemma 4.5.7. a2 · µ2−µ1α
(µ2−µ1)

> 1

Proof: Note that a2 > 0. Then,

a2 · µ2 − µ1α

(µ2 − µ1)
> 1 (4.143)

⇐⇒ µ2

µ2 − µ1

− α µ1

µ2 − µ1

>
1

a2
(4.144)

⇐⇒ α <
1

a2

µ2 − µ1

−µ1

+
µ2

µ1

=
µ2

µ1

(
1− 1

a2

)
+

1

a2
(4.145)

4.8.9 Proof of Thm. 4.4.10

Theorem 4.4.10. I(X[n];Y [n]) ≤ 1
2

log(µ
2

σ2 + 2) + 0.48.

Proof: X[n] ∼ N (0, a
2(n+1)−1
a2−1

) = ξnN (0, 1). Let X[n] = ξnX̃[n], and X̃[n] ∼ N (0, 1).

Hence, Y [n] = C[n]ξnX̃[n] + V [n].
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I (X[n];Y [n]) = I
(
ξnX̃[n];Y [n]

)
(4.146)

= I
(
X̃[n];Y [n]

)
(4.147)

= I

(
X̃[n];

Y [n]

ξnσ

)
(4.148)

= h

(
Y [n]

ξnσ

)
− h

(
Y [n]

ξnσ
|X̃[n]

)
(4.149)

(4.147), (4.148) follow since scaling by a constant does not change mutual information.

var(Y [n]
ξnσ

) = var(C[n]
σ
X̃[n] + V [n]

ξnσ
) = var(C[n]

σ
X̃[n]) + var(V [n]

ξnσ
) = µ2·1+0·σ2+σ2·1

σ2 + 1
ξ2nσ

2 . Hence,

h

(
Y [n]

ξnσ

)
≤ 1

2
log 2πe

(
µ2

σ2
+ 1 +

1

ξ2
nσ

2

)
. (4.150)
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h

(
Y [n]

ξnσ

∣∣X̃[n]

)
(4.151)

= E
[
h

(
Y [n]

ξnσ

)∣∣∣∣X̃[n] = x̃0

]
(4.152)

= E
[
h

(
C[n]

σ
X̃0 +

V [n]

ξnσ

)
|X̃[n] = x̃0

]
(4.153)

= E
[
h(N (

µ

σ
· X̃0, X̃

2
0 +

1

ξ2
nσ

2
)|X̃[n] = x̃0

]
(4.154)

=
1

2
log 2πe+

1

2

∫ ∞

−∞

1√
2π
e
−x2
2

(
log(x2 +

1

ξ2
nσ

2
)

)
dx (4.155)

=
1

2
log 2πe+

∫ 1

0

1√
2π
e
−x2
2

(
log(x2 +

1

ξ2
nσ

2
)

)
dx+

∫ ∞

1

1√
2π
e
−x2
2

(
log(x2 +

1

ξ2
nσ

2
)

)
dx

(4.156)

>
1

2
log 2πe+ e−

1
2

1√
2π

∫ 1

0

log(x2 +
1

ξ2
nσ

2
)dx+ log(1 +

1

ξ2
nσ

2
)

∫ ∞

1

1√
2π
e
−x2
2 dx (4.157)

>
1

2
log 2πe+

e−
1
2√

2π

∫ 1

0

log(x2 +
1

ξ2
nσ

2
)dx+ 0.158 log(1 +

1

ξ2
nσ

2
) (4.158)

=
1

2
log 2πe+

e−
1
2√

2π

(
x

(
log(x2 +

1

ξ2
nσ

2
)− 2

)
+

2

σξn
tan−1 σξnx

)∣∣∣∣∣

1

0

+ 0.158 log(1 +
1

ξ2
nσ

2
)

(4.159)

=
1

2
log 2πe+

e−
1
2√

2π

(
1 ·
(

log(1 +
1

ξ2
nσ

2
)− 2

)
+

2

σξn
tan−1 σξn − 0

)
+ 0.158 log(1 +

1

ξ2
nσ

2
)

(4.160)

>
1

2
log 2πe+ +

e−
1
2√

2π

(
log(1)− 2 +

2

σξn
tan−1 σξn

)
+ 0.158 log(1) (4.161)

>
1

2
log 2πe+ 0.242 (0− 2 + 0) + 0 (4.162)

>
1

2
log 2πe− 0.48 (4.163)

(4.158) follows since we are substituting a monotonic function by it’s minimum value. (4.159)
follows from Mathematica :). (4.162) follows since the inverse tangent of a positive number
is positive. Hence,
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I(X[n];Y [n]) <
1

2
log

(
2πe(

µ2

σ2
+ 1 +

1

ξ2
nσ

2
)

)
− 1

2
log 2πe+ 0.48 (4.164)

=
1

2
log(

µ2

σ2
+ 1 + 1) + 0.48 (4.165)

=
1

2
log(

µ2

σ2
+ 2) + 0.48 (4.166)

This bound goes to infinity as µ→∞ and goes to 0 as with σ →∞ as the deterministic
model would suggest.
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Chapter 5

Control capacity

5.1 Introduction

This chapter uses an information-theoretic perspective to take a fresh look at stability in
control systems. Communication capacity is used as a standard metric in information trans-
mission systems. Previous results have shown that information flows and bottlenecks in
systems clearly affect our ability to stabilize a system [12], [13]. These works treated the
uncertainty in the plant as an information source. The data-rate theorems [9], [12], [14] are
a product of using information-theoretic techniques to understand the impact of unreliable
communication channels (connecting the sensor to the controller) on the ability to control a
system. Anytime results [13] also focused on unreliable communication channels, but focused
on reliability aspects of the sensing channel. This highlighted the differences between delay
in control and communication: when a bit is learned matters in control systems, and the
degree to which it matters depends on the sense of stability desired.

In addition to the source nature of information in control systems, we find there is also a
sink nature to systems1. Control systems can reduce uncertainty about the world by moving
the world to a known point: it is this dissipation of information/uncertainty that we refer to
as the sink nature of a control system. To understand this further, this chapter focuses on
the actuation channels in the system (Fig. 5.1), where the unreliability is about the control
action and not the observation.

Information theory understands the capacity of a communication channel as the max-
imum number of bits of information that can be transmitted across the channel in a unit
timestep. What is the maximum number of bits of the system state that can be dissipated
by a controller in a single timestep? Is it important which bits are dissipated? It turns out
the answer to the second question, in the context of control systems, is yes. To stabilize a
system, the controller must dissipate the uncertainty in the most-significant bits (MSBs) of
the state. We believe that the maximum number of these MSBs that can be dissipated is

1Work on Witsenhausen’s counterexample shows that there is also a channel aspect to decentralized
control systems [79], [80].
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the “control capacity” of the system.
The work in this chapter is also motivated by ideas in portfolio theory. There, the key

concept is the doubling rate of the system, i.e. the rate at which a gambler who chooses an
optimal portfolio doubles his principal. Kelly studied this through bets placed on horse races
in [81]. Control systems, like portfolios, have an underpinning of exponential growth. Just as
the investor can choose to buy and sell at each time step to maximize growth, the controller
has the choice of control strategy to minimize growth (or maximize decay). The control
capacity of a system is closely related to the “tolerable growth rate” for the system. A larger
control capacity means that the system can tolerate a higher intrinsic rate of uncertainty
growth2. This also parallels the classic sense in communication channels, where the rate is
how fast the set of potential messages grows with blocklength.

There are two big advantages to the information-theoretically motivated definitions of
control capacity here. First, they more easily allow us to measure the impact of side infor-
mation to improve performance in systems. This is discussed further in Chapter 6. Second,
they allow us to move beyond second-moment notions of state stability. We define a range
of notions of capacity corresponding to different moments of stability. The weakest notion
of stability is given by the logarithmic decay rate of the system, and we call the related
capacity notion “Shannon” control capacity. This is inspired by the results on the anytime
capacity of a channel, where it turns out that as the desired sense of stability for the system
goes to zero, the anytime capacity converges to the Shannon capacity of the corresponding
communication channel [13]. The strictest notion is of control capacity is zero-error control
capacity, which is similar to the worst-case perspective of robust control. The squared-error
notion of stability lies in between these two.

System
X[n]

X[n]
Controller

U [n]

Figure 5.1: This chapter focuses on the control limitations due to uncertainties on the
actuation channel in the system.

Unreliable actuation channels may arise in the context of high-reliability low-latency
wireless control systems, where dumb actuators receive control signals over packet-dropping
networks or fast-fading channels. Bio-medical technologies such as brain-machine interfaces
will have to rely on wirelessly connected low-power unreliable actuators and sensors, and

2Results in Chapter 6 motivated the definitions of control capacity here. Tolerable growth is discussed
in more detail there.
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moreover the biological actuation system its own eccentricities. These issues also emerge
in the development of “wearable” technologies, and more broadly speaking in the develop-
ment of the Internet of Things (IoT). This chapter takes a look at simplified models with
i.i.d. randomness to get a theoretical understanding of the basic issues.

5.2 Actuation channels

We start by exploring the second-moment stability in a simple example that motivates the
work.

5.2.1 Second-moment stability

First, we recall the definition of mean-square stability that is the most widely used notion
of stability in the control community today.

Definition 3.1.2. Let the evolution of system state X[n] be governed by a linear system

X[n+ 1] = A[n] ·X[n] +B[n] · U [n] +W [n]

Y [n] = C[n] ·X[n] + V [n] (3.1)

A[n], B[n], C[n], V [n],W [n] are random variables with known distributions. Let σ(Y n
0 ) be

the sigma-algebra generated by the random variables Y [0] to Y [n]. The system is said to
be mean-square stabilizable if there exists a causal control strategy Un

0 (·) ∈ σ(Y n
0 ) such

that X[n] is mean-square stable, i.e. there exists M ∈ R, M < ∞, s.t. E[|X[n]|2] < M for
all n.

Consider a simple scalar control system with perfect state observation, and no additive
driving disturbance, as below. This is a special case of the uncertainty threshold principle
setup [49] discussed in Chapter 3.

X[n+ 1] = aX[n] +B[n]U [n],

Y [n] = X[n]. (5.1)

Suppose B[n] are a sequence of i.i.d. random variables with mean µB and variance σ2
B, and

X[0] ∼ N (0, 1). The system state is scaled up by a scalar constant factor a at each time
step. The aim is to choose U [n], a function of Y [n], so as to stabilize the system.

Example 5.2.1. System (5.1) is mean-square stabilizable using linear strategies if a2 <(
1 +

µ2B
σ2
B

)
.

Let U [n] = k · Y [n] = k ·X[n], where k is a scalar constant. Then,

E[X[n+ 1]2] = E[(a+ kB[n])2X[n]2] (5.2)

= (a2 + 2akµB + k2(µ2
B + σ2

B))E[X[n]2] (5.3)
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The scale factor, (a2 + 2akµB + k2(µ2
B + σ2

B)), is minimized at k = − aµB
µ2B+σ2

B
. Thus, with

a linear strategy, the minimum growth rate is given by a2 σ2
B

µ2B+σ2
B

, which is smaller than 1 if

a2 <
(
µ2B+σ2

B

σ2
B

)
.

The uncertainty threshold principle gives the achievable strategy and converse for this
system for mean-squared error and shows that linear strategies are optimal in this case. The
threshold here shows that the randomness in the control parameter B[n] is the “bottleneck”
on the controller’s ability to stabilize the system. To tolerate a larger system growth a we
need to somehow reduce the randomness in B[n], or change what we mean by stability.

5.2.2 Logarithmic stability

We would also like to consider log-scale stability of systems, in order to capture a notion of
growth rate as in portfolio theory. Portfolio theory and information theory generally suggest
looking at the relevant expectations of logs, to find the natural growth rate of the system. We
consider the logarithm of the system magnitude and aim to maintain limn→∞ E log |X[n]| <
∞. Log-scale stability is implied by mean-squared stability, since the log of a positive real
number is strictly smaller than its square. Now we define a logarithmically stable system.

Definition 5.2.2. Let the evolution of system state X[n] be governed by a linear system

X[n+ 1] = A[n] ·X[n] +B[n] · U [n] +W [n]

Y [n] = C[n] ·X[n] + V [n] (5.4)

A[n], B[n], C[n], V [n],W [n] are random variables with known distributions at each time n.
Let σ(Y n

0 ) be the sigma-algebra generated by the random variables Y [0] to Y [n]. The
system is said to be logarithmically stabilizable if there exists a causal control strategy
Un

0 (·) ∈ σ(Y n
0 ) such that ∃M ∈ R, M <∞, s.t. E[log |X[n]|] < M for all n.

Remark 5.2.3. Note that all logarithms in this chapter are taken to the base 2.

Example 5.2.4. Consider the system (5.1) with B[n] ∼ Uniform[b1, b2], where a, b1, b2 > 0,
and use a memoryless linear control strategy U [n] = s ·X[n].

Choose a U [n] = s ·X[n]. To minimize the expected logarithmic growth rate, we want to

minimize E log
∣∣X[n+1]
X[n]

∣∣ = E log |a(1 + B[n]s)|. The choice B[n] ∼ Uniform[b1, b2] allows for
explicit evaluation of the integral that gives the expectation, i.e.

∫ b2

b1

log |a(1 + b · s)| 1

b2 − b1

db. (5.5)
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Consider,

∂

∂s

∫ b2

b1

log |a(1 + b · s)| 1

b2 − b1

db (5.6)

=

∫ b2

b1

∂

∂s
log |a(1 + b · s)| 1

b2 − b1

db (5.7)

=

∫ b2

b1

b

|1 + b · s|sgn(1 + b · s) 1

b2 − b1

db (5.8)

=

∫ b2

b1

b

(1 + b · s)
1

b2 − b1

db (5.9)

=
1

b2 − b1

b · s− log(1 + b · s)
s2

∣∣∣∣
b2

b1

(5.10)

=
1

s
+

1

s2(b2 − b1)
log

∣∣∣∣
1 + b2 · s
1 + b1 · s

∣∣∣∣ (5.11)

Setting this equal to zero would give the minimizing s, however the equations are non-
algebraic, so the minimizing control cannot be found analytically for general b1 and b2.
However, it can be easily computed. To gain some intuition we can choose the slightly
suboptimal strategy s = − 1

b1+b2
2

. This gives the expected logarithmic system growth as

log |a|+E log |1− 2B[n]
b1+b2
|, and this strategy is successful if the quantity is negative. Reducing

the variance of B[n] through side information would improve the performance of this strategy.
However, note that this U [n] is not the optimal control strategy.

Again, the stability threshold here is determined by the uncertainty in B[n]. But is
this a real bottleneck or just something artificial due to our restriction to linear memoryless
strategies? We need a converse that says we cannot do any better. For both of these examples
side information about continuous uncertainty on the control gain is useful, in both a mean-
squared and logarithmic sense. This leads into the developments in Chapter 6 where we can
explicitly incorporate side information.

Remark 5.2.5. We can also consider the example where the B[i]’s are i.i.d. Gaussian
random variables as in . That case is similar to the Uniform case in that we are limited to
numerically computing the optimal control there as well. We include the Uniform example
because we can evaluate the suboptimal strategy of “aiming for the mean” easily. We will see
that while this is a good strategy in the robust control or “zero-error” sense of stability, it is
not good in logarithmic sense. Plots at the end of this chapter will show how these different
senses of stability lead to different optimal strategies in both the Gaussian and Uniform case.

5.3 Carry-free systems

We would like to finally move to define the control capacity of a system.
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As always, we start with carry-free models to understand the problem. We focus on a
system with only actuation uncertainty.

Consider the carry-free system, S, with a random gain for the control input, with unit
system gain (Fig. 5.2).

x[n+ 1](z) = x[n](z) + b[n](z) · u[n](z) + w[n](z) (5.12)

y[n](z) = x[n](z). (5.13)

and

b[n](z) = 1 · zgdet + 0 · zgdet−1 + 0 · zgdet−2 + · · ·+ bgran [n] · zgran + bgran−1[n] · zgran−1 + · · ·
(5.14)

Basically, b is a 1, followed by 0’s, followed by random numbers. There are gdet − gran
deterministic bits in it. As before we have:

gdet =

{
max{i|bi = 1} if gran < degree of b[·](z)

gran, otherwise.
(5.15)

w[n](z) is similar to b[n](z) with all bits being random, and degree upperbounded by 0.
Let the degree of x[n] be denoted as dn. Our aim is to understand the stability of this

system, which is captured by the degree dn. First, we define the notion of “in-the-box” or
zero-error stability, where the degree of the state remains bounded with probability 1.

Definition 5.3.1. The system eq. (5.12) is stablizable in the zero-error sense if there exists
a control strategy u[·](z) such that ∃N,M <∞, s.t. ∀n > N, dn < M with probability 1.

What about the average case? For this we define the “Shannon” sense of stability. The
reason behind the terminology will become clear later.

Definition 5.3.2. The system eq. (5.12) is stablizable in the “Shannon” sense if there exists
a control strategy u[·](z) such that ∃M <∞ s.t. lim supn→∞ E[dn] < M .

With these definitions, the picture clearly illustrates the ideas that we want to capture with
control capacity. How many bits-levels can we reduce the degree by with probability 1? This
should be the zero-error capacity, which we define formally as follows.

Definition 5.3.3. The zero-error control capacity of the system S from eq. (5.12) is defined
as the largest constant Cze (S) such that there exists a control strategy u[0](z), . . . , u[n](z)
such that

P

(
1

n
(d0 − dn) ≥ Cze(S)

)
= 1. (5.16)

The time index n does not matter.
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x1[n]

x0[n]

x�1[n]

+

+

+

+

x2[n] = 1 +

+

+

+

?

?

?

?

?

?

u[n] b[n]u[n]x[n]

b1[n] = 1

Figure 5.2: A carry-free control model with varying control gain but system gain 1
(Eq. (5.12)).

Cze is essentially the largest decay exponent that is possible for the system state.
On the other hand, we might ask, what is the expected decrease in degree? This is the

“Shannon” control capacity.

Definition 5.3.4. The “Shannon” control capacity of the system S from eq. (5.12), Csh(S),
is defined as limn→∞

1
n
E[d0−dn] under the best choice of control strategy u[0](z), . . . , u[n](z).

Now that we understand this for a system with no system gain a(z), it is clear how to
extend to non-trivial gains. The two notions of capacity above clearly relate to two different
notions of stability. The “Shannon” notion of stability is weaker than the zero-error notion.
In both cases the degree-gain of the system needs to be smaller than the number of bits that
can be cancelled.

Theorem 5.3.5. Consider the system S̃a:

x̃[n+ 1](z) = a(z)(x̃[n](z) + b[n](z) · ũ[n](z) + w[n](z)), (5.17)

where a(z) is a constant known polynomial with gain ga, as defined in Chapter 3.
Also consider the affiliated system S defined above in eq. (5.12). Then,

• ∃N,M <∞, s.t. ∀n > N, dn < M with probability 1 if and only if Cze(S) ≥ ga.

• limn→∞ E[dn] <∞ if Csh(S) > ga. E[dn] grows unboundedly if Csh(S) < ga.

Proof: The proof follows naturally from the definitions.
This shows us that the control capacity only depends on system through the actuation

channel, i.e. the uncertainty in b[n]. We will see parallel results in the real case.
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5.3.1 Zero-error control capacity

Theorem 5.3.6. The zero-error control capacity for the system defined by eq. (5.12) is given
by

Cze (S) = gdet − gran. (5.18)

This theorem is essentially a restatement of Thm. 3.4.5, the carry-free uncertainty threshold
principle for unknown control gains from Chapter 3.

Before we prove this theorem, here is a key lemma that bounds the decay that can happen
in one step, regardless of the system state x[n].

Lemma 5.3.7. For the system defined by eq. (5.12), for any state x[n] the largest constant
Cze,n such that P (dn − dn+1 ≥ Cze,n) = 1 is Cze,n = gdet − gran,

Proof:
Achievability: The achievability follows naturally by solving the appropriate set of linear
equations to calculate controls to cancel the bits of the state.

Converse: To show the converse, we must show that for any x[n] and for u[n] that depends
on x[n] and its history we cannot beat gdet − grand,

P (dn − dn+1 < gdet − gran + 1) > 0. (5.19)

Consider any x[n] = xdnz
dn + xdn−1z

dn−1 + . . ., with degree dn. Then, xdn = 1.
Choose any u[n] = umnz

mn + umn−1z
mn−1 + . . ..

x[n+ 1] =(xdn [n]zdn + xdn−1[n]zdn−1 + . . .)+

(zgdet + bgran [n]zgran + bgran−1[n] · zgran−1 + . . .) · (umn [n]zmn + umn−1[n]zmn−1 + . . .)
(5.20)

Note gdet − gran ≥ 0 by definition of gdet and gran.

• Case 1) gdet +mn > dn

In this case, dn+1 = gdet +mn. So

dn − dn+1 = dn − (gdet +mn) ≤ 0 < gdet − gran + 1. (5.21)

• Case 2) gdet +mn < dn

In this case, dn+1 = dn. So

dn − dn+1 = 0 < gdet − gran + 1. (5.22)
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• Case 3)gdet +mn = dn

We know umn [n] = 1.

Now, consider the coefficient of zdn−gran+gdet in x[n+ 1]:

xdn−gran+gdet [n] + bgran [n] · umn [n] + bgdet [n] · ugran+dn−2gdet [n] (5.23)

To see where the second and third terms come from, remember that gdet + mn = dn,
and all coefficients of b between zgdet and zgran are zero.

Consider the term below. Recall bgset [n] = 1.

xdn−gran+gdet [n] + bgran [n] · 1 + 1 · ugran+dn−2gdet [n]

=xdn−gran+gdet [n] + bgran [n] + ugran+dn−2gdet [n] (5.24)

Since here bgran [n] is a Bernoulli−(1
2
), this term will be zero exactly with probability

1
2
.

Hence, with probability 1
2
, dn+1 ≥ dn−gran+gdet. Hence, with probability 1

2
, dn−dn+1 ≤

gran − gdet. Thus P (dn − dn+1 < 1 + gran − gdet) ≥ 1
2
, which gives the converse.

With Lemma 5.3.7 we can prove Thm. 5.3.6. This proof follows easily since the lemma,
in effect, decouples the controls at different time steps. We are thus freed from considering
time-varying or state-history dependent control strategies, which generally makes this style
of converse difficult.
Proof: (Thm. 5.3.6)
The lemma above bounds the decrease in degree of the state at any given time n, regardless
of the control u[n](z) or the state of the system x[n](z).

P

(
1

n
(d0 − dn) > Cze(S)

)
= 1. (5.25)

⇐⇒P
(

1

n

n−1∑

i=0

(di − di+1) > Cze(S)

)
= 1. (5.26)

We know from Lemma 5.3.7 that,

P

(
1

n

n−1∑

i=0

(di − di+1) >
n−1∑

i=0

(gdet − gran)

)
= 1. (5.27)

Hence, we must have

Cze(S) =
1

n

n−1∑

i=0

(gdet − gran) = gdet − gran. (5.28)
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5.3.2 “Shannon” control capacity

We can similarly calculate the Shannon control capacity. The proof follows the same pattern
as the proof for zero-error control capacity.

Theorem 5.3.8. The Shannon control capacity for the system S is given by

Csh (S) = gdet − gran + 1. (5.29)

Lemma 5.3.9. For the system defined by eq. (5.12), for any state x[n] history, max
u[n]

E[dn−
dn+1] = gdet − gran + 1.

Proof:
Achievability: Just as in the zero-error case, we can solve a system of linear equations to
get the right achievable strategy. Considering expectations gives the extra bit because the
initial run of zeros we can expect in the random part is basically a geometric random variable
with expectation 1. Consequently, we can apply a control pretending that the random part
of the B is all 0s and on average, get one bit of benefit from doing so.
Converse: For the converse, we need to show that maxu[n] E[dn − dn+1] ≤ gdet − gran + 1.
Let x[n] = xdnz

dn + udn−1z
dn−1 + · · · , and let xdn = 1. Consider any control with a fixed

non-random degree mn, u[n] = umnz
mn + umn−1z

mn−1 + · · · .

Then,

x[n+ 1] =(xdn [n]zdn + xdn−1[n]zdn−1 + · · · )+
(zgdet + bgran [n]zgran + · · · ) · (umn [n]zmn + umn−1[n]zmn−1 + · · · ) (5.30)

Note gdet − gran ≥ 0 by definition of gdet and gran.

• Case 1) gdet − gran > 0 and gdet +mn > dn
In this case, dn+1 = gdet +mn. So

E[dn − dn+1] = E[dn − gdet +mn] ≤ 0 ≤ gdet − gran + 1. (5.31)

since

• Case 2) gdet − gran > 0 and gdet +mn < dn In this case, dn+1 = dn. So

E[dn − dn+1] = 0 ≤ gdet − gran + 1. (5.32)

• Case 3) gdet − gran > 0 and gdet +mn = dn

So, umn [n] = 1.
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Now, consider the coefficient of zdn−gdet+gran in x[n+ 1]:

xdn−gdet+gran [n] + bgran [n] · umn [n] + bgdet [n] · udn−2gdet+gran [n] (5.33)

To see where the second and third terms come from remember that gdet + mn = dn,
and all coefficients of b between zgdet and zgran are zero.

Consider the term below. Recall bgdet [n] = 1.

xdn+gran−gdet [n] + bgran [n] · 1 + 1 · udn+gran−2gdet [n]

=xdn+gran−gdet [n] + bgran [n] + ugran+dn−2gdet [n] (5.34)

Since here bgran [n] is a Bernoulli−(1
2
), this term will be zero exactly with probability

1
2
.

Now, consider the coefficient of zdn−gran+gdet−k in x[n+1] for k > 0:

xdn+gran−gdet−k[n] + bgdet [n] · ugran+dn−2gdet−k[n] +
k∑

i=0

bgran−i[n] · umn−k+i[n] (5.35)

= xdn+gran−gdet−k[n] + ugran+dn−2gdet−k[n] +
k∑

i=0

bgran−i[n] · umn−k+i[n] (5.36)

= xdn+gran−gdet−k[n] + ugran+dn−2gdet−k[n] + bgran−k[n] · umn [n]
k−1∑

i=0

bgran−i[n] · umn−k+i[n]

(5.37)

The third term here is a Bernoulli−(1
2
) independent of other terms, since bgran−k’s are

independent for every k. So this coefficient is 0 with probability 1
2
.

Hence, P (dn+1 = dn + gran − gdet − k) = 1
2k+1 . So then

E[dn − dn+1] ≤
∞∑

k=0

(gdet − gran + k)
1

2k+1
(5.38)

= gdet − gran + 1 (5.39)

• Finally, Case 0) gdet − gran = 0
If mn + gran < dn, then dn+1 = dn and we are done.
mn + gran > dn is clearly suboptimal and by the argument in Case (1) we are done.

If mn+gran = dn, then by arguments similar to case 3, P (dn+1 = mn+gran−k) = 1
2

k+1

for every mn. This is true since the highest possible level for b[n]u[n] is gran + mn.
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Hence,

E[dn − dn+1] = dn −
∞∑

k=0

(mn + gran − k) (5.40)

≤ dn −
∞∑

k=0

(dn − k) (5.41)

= dn − (dn − 1) (5.42)

= 1 (5.43)

which proves the result.

Now we can prove 5.3.8.

Proof: (Thm. 5.3.8) The argument here is essentially identical to the one made in the
zero-error carry-free control capacity case. The fact that Lemma 5.3.9 holds for all states
x[n] again plays a key role.

With this, we move to consider real-valued systems, starting with the zero-error notions
of stability and control capacity.

5.4 Zero-error control capacity

Definition 5.4.1. Let the evolution of system state X[n] be governed by a linear system

X[n+ 1] = A[n] ·X[n] +B[n] · U [n] +W [n]

Y [n] = C[n] ·X[n] + V [n] (5.44)

A[n], B[n], C[n], V [n],W [n] are random variables with known distributions at each time n.
Let σ(Y n

0 ) be the sigma-algebra generated by the random variables Y [0] to Y [n]. The system
is said to be stabilizable in the zero-error sense if ∃N,M <∞ and a causal control strategy
U∞0 such that U [i](·) ∈ σ(Y i

0 ) ∀i, such that ∀n > N ,

P (|X[n]| < M) = 1. (5.45)

Consider the following system S(pB[0], pB[1], . . .), with no additive noise V , or additive
disturbance W , and with system dynamics A[n] = 1.

X[n+ 1] = X[n] +B[n]U [n]

Y [n] = X[n] (5.46)

The control signal U [n] can causally depend on Y [i], 0 ≤ i ≤ n. Let σ(Y n
0 ) be the sigma-

algebra generated by the observations. Then U [n] can be a function of these random vari-
ables, i.e. U [n] ∈ σ(Y n

0 ). The random variables B[i], 0 ≤ i ≤ n are independent, and
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B[i] ∼ pB[i]. The distribution of each B[i] is known to the controller beforehand. We will
consider different restrictions on the initial state X[0] later, but in general, we consider X[0]
to be a random variable with density pX[0](·) and no atom at 0.

Definition 5.4.2. The zero-error control capacity of the system S(pB[0], pB[1], · · · ) is defined
as

Cze (S) = max

{
C

∣∣∣∣∃N, s.t. ∀n > N, max
Un1 s.t. U [i](·)∈σ(Y i0 )

P

(
− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ > C

)
= 1

}
.

(5.47)

This is a well defined quantity since pX[0](·) has no atoms at 0. It could be infinite however.

Consider also the system S̃a(pB[0], pB[1], · · · ), with no additive disturbances and noise but
with non-trivial intrinsic growth a,

X̃[n+ 1] = a · (X̃[n] +B[n]Ũ [n])

Ỹ [n] = X̃[n] (5.48)

with initial condition X̃[0] identical to system S, and such that pX̃[0](·) has bounded support

and no atom at 0. Again, Ũ [n] ∈ σ(Ỹ n
0 ). The random variables B[i] in the system have the

same distributions as those of system S.

Theorem 5.4.3. If the zero-error control capacity of the system S(pB[0], pB[1], · · · ) (eq. (5.46)),

Cze (S) ≥ log |a|, (5.49)

then the associated system S̃a(pB[0], pB[1], · · · ), with the identical initial condition X̃[0] =
X[0], such that pX[0](·) has bounded support, and with the same distributions for the random
control gains B[i], is stabilizable in a zero-error sense.

Further, if the system S̃a(pB[0], pB[1], · · · ) is stabilizable in a zero-error sense, then the
zero-error control capacity of the system S(pB[0], pB[1], · · · ) satisfies

∀ε > 0, Cze (S) ≥ log |a| − ε, (5.50)

The fact that this theorem is true, namely the fact that the zero-error control capacities
for system S(pB[0], pB[1], · · · ) lets us answer a question about the system S̃a(pB[0], pB[1], · · · ),
justifies thinking of the control capacity as a property of the actuation channel.

Before we prove the theorem, here is a useful lemma, that shows that the two systems,
S(pB[0], pB[1], · · · ) and S̃a(pB[0], pB[1], · · · ), can be made to track each other.

Lemma 5.4.4. Let U∞0 be a set of controls applied to S(pB[0], pB[1], · · · ). Let Ũ [i] = aiU [i] be

the controls applied to S̃a(pB[0], pB[1], · · · ), with the same realizations of the random variables

B[i] and initial condition X[0]. Then, Ũ [i](·) ∈ σ(Ỹ i
0 ) and ∀ i, X̃[i] = aiX[i].
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Proof: The proof proceeds by induction. X[0] = X̃[0] serves as the base case. Further,

Ũ [0] ∈ σ(Ỹ [0]), since X̃[0] = X[0].

X̃[i+ 1] = a · (X̃[i] +B[i]Ũ [i]) (5.51)

= a · (aiX̃[i] + aiB[i]Ũ [i]) (5.52)

(since Ỹ [j] = ajY [j] ∀j ≤ i, Ũ [i](·) ∈ σ(Ỹ i
0 ))

= ai+1 · (X[i] +B[i]U [i]) (5.53)

= ai+1X[i+ 1] (5.54)

Proof: (Thm. 5.4.3) (=⇒) We start with the first part of the theorem, to show stabilizabil-
ity with high enough control capacity. We know ∃N, s.t. ∀n > N , ∃Un

1 s.t. U [i](·) ∈ σ(Y i
0 ),

and

1 =P

(
− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ ≥ log |a|
)

(5.55)

=P

(∣∣∣∣
X[n]

X[0]

∣∣∣∣ ≤ 2−n log |a|
)

(5.56)

=P
(
|X[n]| ≤ |a|−n · |X[0]|

)
(5.57)

=P (|a|n · |X[n]| ≤ |X[0]|) (5.58)

=P
(
|X̃[n]| ≤ |X[0]|

)
(apply the controls generated by Lemma 5.4.4.) (5.59)

Since |X[0]| is bounded, choose M = |X[0]| as the bound.

(⇐=) Next, we assume the stabilizability of S̃. Then, we know ∃N,M, s.t. ∀n > N ,

∃Ũn
1 s.t. Ũ [i] ∈ σ(Ỹ i

0 ), and

1 =P
(
|X̃[n]| < M

)
(5.60)

=P (|a|n · |X[n]| < M) (apply the controls generated by Lemma 5.4.4.) (5.61)

=P
(
|X[n]| < |a|−n ·M

)
(5.62)

=P

(∣∣∣∣
X[n]

X[0]

∣∣∣∣ < 2−n log |a| M

|X[0]|

)
(|X[0]| has no atom at 0) (5.63)

=P

(
− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ > log |a| − 1

n

M

|X[0]|

)
(5.64)

Now, for any ε > 0,∃N1 such that ∀n ≥ N1,
1
n

M
|X[0]| < ε. Hence, for n ≥ max{N,N1}, we

have

− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ ≥ log |a| − ε. (5.65)
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5.4.1 Calculating zero-error control capacity

The operational definitions for zero-error control capacity involve an optimization over an
infinite sequence of potential control laws. Here we show that in fact this quantity can be
easily computed in the case where the B[n]’s are i.i.d. over time. First, we show that if pB(·)
does not have bounded support, the zero-error control capacity is 0.

Theorem 5.4.5. The zero-error control capacity of the system eq. (5.46), S(pB) (with
i.i.d. B[n]’s and hence parameterized by the single distribution pB(·)), where pB(·) does not
have bounded support is zero.

Proof: Consider any strategy Un−1
0 (·). Then, for every value of X[n − 1] and chosen

U [n − 1] 6= 0 there exists a realization of B[n] that just pushes it over any boundary, i.e.,
∀ M < ∞, P (|X[n]| > M) > 0. If all U [i] = 0 for 0 ≤ i ≤ n − 1 then the capacity is zero
trivially, since X[0] = X[n].

Before we are able to calculate Cze for general distributions with bounded support, we
introduce a few lemmas.

Lemma 5.4.6.

min
k∈R

max
B∈[b1,b2]

∣∣1 +B · k
∣∣ =





∣∣∣∣ b2−b1b2+b1

∣∣∣∣ if 0 6∈ [b1, b2], i.e. 0 < b1 < b2 or b1 < b2 < 0.

1 if 0 ∈ [b1, b2] i.e. b1 ≤ 0 and b2 > 0, or b1 < 0 and b2 ≥ 0.

(5.66)

This implies that if B is a random variable with essential support [b1, b2], essential infimum
b1, essential supremum b2, then ∀ε > 0,

P

(
log

∣∣∣∣1 +B · k
∣∣∣∣ < log

∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣− ε
)
< 1 if 0 6∈ [b1, b2]. (5.67)

and

P

(
log
∣∣1 +B · k

∣∣∣∣ < −ε
)
< 1 if 0 ∈ [b1, b2]. (5.68)

The proof is in Appendix 5.8.

Lemma 5.4.7. Suppose the system state at time n is x[n] ∈ R, x[n] 6= 0. Then, for the
system (5.46) define

Cze,n(x[n]) = max

{
C

∣∣∣∣ max
U [n](x[n])

P

(
− log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ > C

)
= 1

}
. (5.69)

Here, the probability is taken over the random realization of B[n] ∼ pB(·) i.i.d. with essential
support [b1, b2], and b1 as the essential infimum and b2 as the essential supremum of the
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distribution of the random variables B[n]. Hence, X[n+ 1] is a random variable even though
X[n] = x[n] has been realized and fixed. Then, Cze,n(x[n]) does not depend on x[n], and is
given by

Cze,n(x[n]) =





log

∣∣∣∣ b2+b1
b2−b1

∣∣∣∣ if 0 6∈ [b1, b2], i.e. 0 < b1 < b2 or b1 < b2 < 0

0 if 0 ∈ [b1, b2] i.e. b1 ≤ 0 and b2 > 0, or b1 < 0 and b2 ≥ 0.
(5.70)

The achievability part of this lemma implies that there exists a linear control law U [n],

P

(
− log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ ≥ Cze,n

)
= 1. (5.71)

The converse implies that for any δ > 0, for all U [n],

P

(
− log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ > Cze,n + δ

)
< 1. (5.72)

Proof: Achievability:
The case where X[n + 1] = 0 is trivial, so we focus on the other case. Also, if 0 ∈ [b1, b2],
choose U [n] = 0, which gives the result.

For the case 0 6∈ [b1, b2], we would like to show that P

(
− log

∣∣∣∣
X[n+1]
x[n]

∣∣∣∣ ≥ log

∣∣∣∣ b1+b2
b2−b1

∣∣∣∣
)

= 1.

Consider the following strategy for any x[n] 6= 0, choose U [n] = −
(
b1+b2

2

)−1
x[n]. Then,

X[n+ 1] = x[n]−B[n]

(
b1 + b2

2

)−1

x[n] (5.73)

= x[n]

(
1− 2B[n]

b1 + b2

)
. (5.74)

Now, note that the following inequalities are equivalent.

− log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ ≥ log

∣∣∣∣
b1 + b2

b2 − b2

∣∣∣∣ (5.75)

⇐⇒ log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ ≤ log

∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣ (5.76)

⇐⇒
∣∣∣∣1−

2B[n]

b1 + b2

∣∣∣∣ ≤
∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣ (5.77)

Hence, the event E1 =

{
− log

∣∣∣∣
X[n+1]
x[n]

∣∣∣∣ ≥ log

∣∣∣∣ b1+b2
b2−b1

∣∣∣∣
}

, is identical to the event E2 =
{∣∣∣∣1−

2B[n]
b1+b2

∣∣∣∣ ≤
∣∣∣∣ b2−b1b1+b2

∣∣∣∣
}

.
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But we know from Lemma 5.4.6 that the maximum of

∣∣∣∣1−
2B[n]
b1+b2

∣∣∣∣ is

∣∣∣∣ b2−b1b1+b2

∣∣∣∣.
Hence, the event E2 occurs with probability 1, which implies E1 occurs with probability

1, which proves the achievability.

Converse: Here, we must show ∀x[n] 6= 0,∀ε > 0, for any U [n](x[n]),

P

(
− log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ > log

∣∣∣∣
b1 + b2

b2 − b1

∣∣∣∣+ ε

)
< 1. (5.78)

• Case 1) 0 < b1 < b2 or b1 < b2 < 0

P

(
− log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ > log

∣∣∣∣
b2 + b1

b2 − b1

∣∣∣∣+ ε

)
(5.79)

=P

(
log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ < log

∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣− ε
)

(5.80)

=P

(
log

∣∣∣∣
x[n] +B[n]U [n]

x[n]

∣∣∣∣ < log

∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣− ε
)

(5.81)

=P

(
log

∣∣∣∣1 +B[n] · k
∣∣∣∣ < log

∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣− ε
)

(Let
U [n]

x[n]
= k, for any strategy U [n])

(5.82)

< 1 (by Lemma 5.4.6) (5.83)

• Case 2) b1 ≤ 0 < b2 or b1 < 0 ≤ b2

P

(
− log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣ > ε

)
(5.84)

=P

(
log

∣∣∣∣
X[n+ 1]

X[n]

∣∣∣∣ < −ε
)

(5.85)

=P

(
log

∣∣∣∣
X[n] +B[n]U [n]

X[n]

∣∣∣∣ < −ε
)

(5.86)

=P

(
log
∣∣1 +B[n] · k

∣∣∣∣ < −ε
)

(Let
U [n]

x[n]
= k, for any strategy U [n]) (5.87)

< 1 (by Lemma 5.4.6) (5.88)

Remark 5.4.8. Lemma 5.4.7 can be extended to allow for randomized strategies U [n].

Theorem 5.4.9. Consider the system S(pB) (parameterized with a single distribution pB(·)
since the B[n]’s are i.i.d.) given by eq. (5.46), with i.i.d B[n] ∼ pB(·), and where pB(·)
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is defined with essential support [b1, b2]. b1 is the essential infimum and b2 is the essential
supremum of the distribution of the random variables B[n]. Then the zero-error control
capacity of the system is

Cze(S) =





log

∣∣∣∣ b2−b1b2+b1

∣∣∣∣ if 0 6∈ [b1, b2]

0 if 0 ∈ [b1, b2]
(5.89)

Proof:
Achievability: Lemma 5.4.7 provides a sequence of U [n] for every x[n]. If at any n we set

the system to 0, we are clearly done. Otherwise, for every n, P

(
− log

∣∣∣∣
X[n+1]
X[n]

∣∣∣∣ ≥ Cze

)
= 1.

We apply these U [n]. Of course, if any X[i] = 0 for 1 ≤ i ≤ n we are done, since X[i] = 0
means we can have X[i+ 1] = 0 and we can define 0

0
= 1 to give us

Then:

P

(
− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ ≥ Cze

)
(5.90)

=P

(
− 1

n

n−1∑

i=0

log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≥ Cze

)
(5.91)

=P

(
n−1∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≥ n · Cze
)

(5.92)

≥P
({
− log

∣∣∣∣
X[1]

X[0]

∣∣∣∣ ≥ Cze

}
, · · · ,

{
− log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣ > Cze

})
(5.93)

(The probability of the intersection of the events
n−1⋂

i=0

{
− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ > Cze

}

is a lower bound on the desired probability.)

=1 (with the appropriate choice of U [n] as above, apply Lemma 5.4.7.) (5.94)

Converse: To prove the converse, we would like to show ∀δ > 0:

P

(
− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ > Cze + δ

)
< 1. (5.95)

This is equivalent to showing that

P

(
− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ ≤ Cze + δ

)
> 0. (5.96)

We will use induction to show this. n = 1 is the base case. We know from Lemma 5.4.7 that

P

(
− log

∣∣∣∣
X[1]

X[0]

∣∣∣∣ ≤ Cze + δ

)
> 0. (5.97)
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Now, consider

P

(
− 1

n
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ ≤ Cze + δ

)
(5.98)

=P

(
− log

∣∣∣∣
X[n]

X[0]

∣∣∣∣ ≤ n(Cze + δ)

)
(5.99)

=P

(
n−1∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ n(Cze + δ)

)
(5.100)

Here, if X[i] = 0 for any i, the best control is U [i] = 0, and hence X[n + 1] = 0. We define
0
0

= 1 in this context, and we are allowed to divide by X[i] to get the expression above. We
explicitly account for the probability that X[i] might be zero later.

Now, the probability of this event is lower bounded by the joint probability of the two
events below.

≥P
({∑n−2

i=0 − log

∣∣∣∣
X[i+1]
X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

}
,

{
− log

∣∣∣∣
X[n]
X[n−1]

∣∣∣∣ ≤ (Cze + δ)

})
(5.101)

=

∫
P

∑n−2
i=0 − log

∣∣∣∣X[i+1]
X[i]

∣∣∣∣≤(n−1)(Cze+δ)

,
− log

∣∣∣∣ X[n]
X[n−1]

∣∣∣∣≤(Cze+δ)


∣∣∣∣X[n−1]=q

·pX[n−1](q) dq (5.102)

=

∫ [
P

(
n−2∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

∣∣∣∣X[n− 1] = q

)
·

P

(
− log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣ ≤ (Cze + δ)

∣∣∣∣X[n− 1] = q

)
· pX[n−1](q)

]
dq (5.103)

Conditioned on X[n− 1] the two events are independent.
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Now, we can pull out the case of X[n− 1] = 0.

=

∫

X[n−1]6=0

[
P

(
n−2∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

∣∣∣∣X[n− 1] = q

)
·

P

(
− log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣ ≤ (Cze + δ)

∣∣∣∣X[n− 1] = q

)
· pX[n−1](q)

]
dq

+P (X[n−1]=0)·

P
∑n−2

i=0 − log

∣∣∣∣X[i+1]
X[i]

∣∣∣∣≤(n−1)(Cze+δ)

∣∣∣∣X[n−1]=0

·P
− log

∣∣∣∣ X[n]
X[n−1]

∣∣∣∣≤(Cze+δ)

∣∣∣∣X[n−1]=0


(5.104)

=

∫

X[n−1]6=0

[
P

(
n−2∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

∣∣∣∣X[n− 1] = q

)
·

P

(
− log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣ ≤ (Cze + δ)

∣∣∣∣X[n− 1] = q

)
· pX[n−1](q)

]
dq (5.105)

(since P

(∑n−2
i=0 − log

∣∣∣∣X[i+1]
X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

∣∣∣∣X[n− 1] = 0

)
= P (∞ ≤ (n− 1)(Cze + δ)) = 0)

=

∫

X[n−1]6=0

[
P

(
n−2∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

∣∣∣∣X[n− 1] = q

)
·

P

(
− log

∣∣∣∣
X[n]

q

∣∣∣∣ ≤ (Cze + δ)

)
· pX[n−1](q)

]
dq

=

∫

X[n−1]6=0

[
P

(
n−2∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ), {X[n− 1] = q}
)
·

P

(
− log

∣∣∣∣
X[n]

q

∣∣∣∣ ≤ (Cze + δ)

) ]
dq

(5.106)

Now, Lemma 5.4.7 implies that P

(
− log

∣∣∣∣
X[n]
q

∣∣∣∣ ≤ (Cze + δ) =

)
> 0 for all q 6= 0. The

induction hypothesis implies that

∫

X[n−1]6=0

P

(
n−2∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

∣∣∣∣X[n− 1] = q

)
dq (5.107)

=P

(
n−2∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ (n− 1)(Cze + δ)

)
(5.108)

> 0. (5.109)
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Now, for non-negative functions f, g such that f(q) ≥ 0,
∫
f(q)dq > 0 and g(q) > 0 for all

q, we know that
∫
f(q)g(q)dq > 0. Applying this, we get,

P

(
n−1∑

i=0

− log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣ ≤ n(Cze + δ)

)
> 0, (5.110)

which proves the result.

Remark 5.4.10. This proof reveals that there is nothing lost by going to linear strategies
for the zero-error control capacity problem. The core reason is the key lemma which lets
us decouple the impact of the control at each time step. Furthermore, the fact that linear
strategies suffice tells us that the zero-error control capacity result immediately generalizes
to the case with bounded additive disturbances W and bounded additive noise V . The
converse clearly holds because the additive terms can be given by a genie. The achievability
also holds because the system in closed-loop becomes linear time-varying (where the time-
variation is random). Because the zero-error capacity is strictly greater than log(a), the
closed-loop dynamics will take all the initial conditions to zero exponentially fast. Where
there are additive disturbances and noises, the resulting system state is a superposition of
the responses to bounded inputs. The system is thus BIBO stable.

5.5 “Shannon” control capacity

Here we consider the stability of the logarithm of the state. Recall the definitions from
earlier:

Definition 5.2.2. Let the evolution of system state X[n] be governed by a linear system

X[n+ 1] = A[n] ·X[n] +B[n] · U [n] +W [n]

Y [n] = C[n] ·X[n] + V [n] (5.4)

A[n], B[n], C[n], V [n],W [n] are random variables with known distributions at each time n.
Let σ(Y n

0 ) be the sigma-algebra generated by the random variables Y [0] to Y [n]. The
system is said to be logarithmically stabilizable if there exists a causal control strategy
Un

0 (·) ∈ σ(Y n
0 ) such that ∃M ∈ R, M <∞, s.t. E[log |X[n]|] < M for all n.

Definition 5.5.1. The control capacity in the Shannon-sense of the system S(pB[0], pB[1], · · · )
in eq. (5.46) is defined as

Csh(S) = lim
n→∞

−min
Un−1
0 (·) s.t. U [i](·)∈σ(Y n0 )

1

n
E
[
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣
]
. (5.111)

We also call this the zeroth-moment control capacity of the system, since it essentially
captures the weakest notion of system stability.
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Theorem 5.5.2. Consider the system S̃a(pB) (eq. (5.48)) and the affiliated system S(pB)

(eq. (5.46)), with identical initial conditions X[0] = X̃[0] 6= 0, such that −∞ < E[log |X[0]|] <
∞, and identical B[i]’s.

Then ∃Ũ∞0 (·), such that Ũ [i](·) ∈ σ(Ỹ i
0 ) such that ∃M,N <∞, E[log |X̃[n]|] < M for all

n > N , i.e the system is logarithmically stabilizable if and only if Csh(S(pB)) ≥ log |a|.

Proof: Recall the Lemma 5.4.4, from the zero-error capacity section, which says that the
systems S̃a and S̃ can be made to track each other. This lemma will be used here as well.

(=⇒) If we know there exists Ũ∞0 (·) such that E
[
log |X̃[n]|

]
< M,∀ n > N .

E
[
log |X̃[n]|

]
< M,∀ n (5.112)

=⇒E

[
log
|X̃[n]|
|X[0]|

]
< M − E [log |X[0]|] ,∀ n > N (since E[log |X[0]|] <∞) (5.113)

=⇒E
[
log
|a|n|X[n]|
|X[0]|

]
< M − E [log |X[0]|] ,∀ n > N (5.114)

(Choose U [i] = a−iŨ [i] and apply Lemma 5.4.4)

=⇒n log |a|+ E
[
log
|X[n]|
|X[0]|

]
< M − E [log |X[0]|] , ∀ n > N (5.115)

=⇒ log |a|+ 1

n
E
[
log
|X[n]|
|X[0]|

]
<
M − E [log |X[0]|]

n
,∀ n > N (5.116)

=⇒− 1

n
E
[
log
|X[n]|
|X[0]|

]
> log |a| − M − E [log |X[0]|]

n
,∀ n > N (5.117)

=⇒ lim inf
n→∞

− 1

n
E
[
log
|X[n]|
|X[0]|

]
≥ log |a| (the term E [log |X[0]|] is bounded.) (5.118)

=⇒Csh
(
S̃(pB)

)
≥ log |a| (the optimal control must be at least as good as the applied control)

(5.119)

(⇐=)
Csh (S(pB)) ≥ log |a| and so ∃U∞0 (·) such that U [i](·) ∈ σ(Y i

0 ) and N ∈ R such that

∀ n > N , − 1
n
E
[
log |X[n]|

|X̃[0]|

]
≥ log |a|. Now, choose Ũ [i] = aiU [i].
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− 1

n
E
[
log
|X[n]|
|X[0]|

]
≥ log |a|,∀ n > N (5.120)

=⇒E
[
log
|X[n]|
|X[0]|

]
≤ −n log |a|,∀ n > N (5.121)

=⇒E
[
log
|a|n|X[n]|
|X[0]|

]
≤ 0,∀ n > N (5.122)

=⇒E

[
log
|X̃[n]|
|X̃[0]|

]
≤ 0,∀ n > N (5.123)

=⇒E
[
log |X̃[n]|

]
≤ E

[
log |X̃[0]|

]
<∞,∀ n > N (by assumption). (5.124)

5.5.1 Calculating Shannon control capacity

Theorem 5.5.3. The Shannon control capacity of the system S(pB) (eq. (5.46)), with
i.i.d. B[n]’s, is ∞ if pB(·) has an atom not at 0.

Proof: Let pB(·) have an atom at β 6= 0. Then consider the strategy U [i] = − 1
β
X[i]. In

this case, X[n]
X[0]

can be 0 with positive probability, and hence the negative log can be infinite.
So the control capacity is infinite. Essentially, this captures the idea that betting on the
atom will eventually pay off if we wait long enough.

Theorem 5.5.4. The Shannon control capacity of the system S(pB) (eq. (5.46)), where pB(·)
is a continuous distribution with no atoms is given by,

max
k∈R

E [− log |1 +B · k|] (5.125)

where B ∼ pB(·).

Lemma 5.5.5. Suppose the system state at time n is x[n] ∈ R, x[n] 6= 0. Then, for the
system S in eq. (5.46) define

Csh,n(x[n]) = −min
U [n](·)

E
[
log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣
]
. (5.126)

where U [n](·) is any function of x[n]. Here, the expectation is taken over the random real-
ization of B[n] ∼ pB(·) i.i.d.. Hence, X[n+ 1] is a random variable even though X[n] = x[n]
has been realized and fixed. Then, Csh,n(x[n]) does not depend on x[n] or n, and is given by

Csh,n(x[n]) = max
k∈R

E [− log |1 +B[0] · k|] , (5.127)
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where B[0] ∼ pB(·). Hence, there exists U [n](x[n]) such that

E
[
log

∣∣∣∣
x[n]

X[n+ 1]

∣∣∣∣
]

= max
k

E [− log |1 +B[0] · k|] . (5.128)

Proof:

Cn = −min
U [n](x[n])

E
[
log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣
]

(5.129)

= max
U [n](x[n])

− E
[
log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣
]

(5.130)

= max
U [n](x[n])

− E
[
log

∣∣∣∣1 +B[n] · U [n](x[n])

x[n]

∣∣∣∣
]

(5.131)

= max
k(x[n])

E
[
− log

∣∣∣∣1 +B[n] · k(x[n])

∣∣∣∣
]

(since x[n] 6= 0 and U [n] is a function of x[n].)

(5.132)

= max
k

E
[
− log

∣∣∣∣1 +B[n] · k
∣∣∣∣
]

(k is just a constant) (5.133)

We have one last small lemma before the proof.

Lemma 5.5.6. Given that pX[0](·) has no atom at 0 and pB(·) has no atoms, ∀n X[n] cannot
have an atom at 0.

Proof: We use induction. X[0] is the base case. Note, that in the event U [n] = 0 is applied,
X[n+ 1] = X[n] and so pX[n+1] cannot have an atom at 0 by the induction hypothesis.

If U [n] 6= 0 is applied:

P (X[n+ 1] = 0)

=P (X[n] +B[n] · U [n] = 0) (5.134)

=P (B[n] = −X[n]

U [n]
) (5.135)

(U [n] is a function of X[n] and hence the ratio can be thought of as a constant)

=0 (5.136)

since pB(·) has no atoms.
Finally, we can prove Thm. 5.5.4!

Proof: (Thm. 5.5.4)
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Achievability: We know from Lemma 5.5.5 that there exists U [n](x[n]) such that

−E
[
log

∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣
]

= max
k∈R

E [− log |1 +B[n] · k|] (5.137)

for every x[n]. Thus, we have a control law U [0](·) that gives the appropriate control for
each realization of the initial state. We can choose to apply this sequence of U [i](X[i]) for
0 ≤ i ≤ n based on the realization of X[0]. We are allowed to divide by X[i] below due to
the Lemma 5.5.6 above.
Hence,

lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣
]

(5.138)

= lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
E

[
n−1∑

i=0

log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣

]
(5.139)

= lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n

n−1∑

i=0

E
[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣
]

(Linearity of expectation) (5.140)

= lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n

n−1∑

i=0

EX[i]

[
EB[i]

[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣

∣∣∣∣∣X[i]

]]
(5.141)

(Since the B[i]’s are independent the ith term only has B[i] as the source of randomness)

≥ lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n

n−1∑

i=0

max
X[i] 6=0

EB[i]

[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣
]

(5.142)

(The worst case X[i] realization lowerbounds performance, regardless of the past actions.)

(Further, we restrict to X[i] 6= 0 since there is no atom at 0 in pX[0](·).)
(Since there are no atoms in pB(·), the actions cannot create an atom at 0 for any X[i].)

= lim
n→∞

1

n

n−1∑

i=0

−min
U [i](·)∈σ(Y i0 )

max
X[i] 6=0

EB[i]

[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣
]

(5.143)

(Assuming the worst case state at each time decouples the effect of the U [i]s.)

= lim
n→∞

1

n

n−1∑

i=0

−min
U [i](·)∈σ(Y [i])

max
X[i] 6=0

EB[i]

[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣
]

(5.144)

(The system is Markov, and Y [i] captures the information from the entire past)

= lim
n→∞

1

n

n−1∑

i=0

max
k

E
[
− log

∣∣∣∣1 +B[i] · k
∣∣∣∣
]

(by Lemma 5.5.5) (5.145)

= max
k∈R

E
[
− log

∣∣∣∣1 +B[0] · k
∣∣∣∣
]

(since the B[i] are i.i.d. ) (5.146)
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Converse: Recall that we are allowed to divide by X[i] below due to the Lemma 5.5.6
above.
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lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣
]

(5.147)

= lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣+ log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.148)

≤ lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
]

+ −min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.149)

= lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
]

+ −min
Un−2
0 s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.150)

(remove the irrelevant parameters in the minimization)

= lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
EX[n−1]

[
E

[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣

∣∣∣∣∣X[n− 1]

]]
+

−min
Un−2
0 s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.151)

≤ lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 )

1

n
min

X[n−1]6=0
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
]

+

−min
Un−2
0 s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.152)

(Since we consider the best case over X[n− 1], and B[i]’s are i.i.d., prior history is irrelevant.)

≤ lim
n→∞

−min
U [n−1](·)∈σ(Y n−1

0 )

1

n
min

X[n−1]6=0
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
]

+

−min
Un−2
0 s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.153)

= lim
n→∞

−min
U [n−1](·)∈σ(Y [n−1])

1

n
min

X[n−1] 6=0
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
]

+

−min
Un−2
0 s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.154)

(Since the system is Markov we can restrict U [n− 1](·) ∈ σ(Y [n− 1]).)

= lim
n→∞

1

n
max
k

E
[
− log

∣∣∣∣1 +B[n− 1] · k
∣∣∣∣
]

+ −min
Un−2
0 s.t. U [i](·)∈σ(Y i0 )

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(5.155)

(by Lemma 5.5.5)

= lim
n→∞

1

n

n∑

i=0

max
k

E
[
− log

∣∣∣∣1 +B[i] · k
∣∣∣∣
]

(by induction) (5.156)

=max
k∈R

E
[
− log

∣∣∣∣1 +B[0] · k
∣∣∣∣
]

(5.157)
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Remark 5.5.7. Once again, as a consequence of the proof we see that linear strategies
are optimal for calculating the Shannon control capacity. As in the zero-error case, this
immediately gives us what we want even for the case of additive disturbances. This is because
when the Shannon control-capacity is > log(a), the typical LTV sample paths realized by
the closed-loop system are decaying exponentially and are hence BIBO stable.

Remark 5.5.8. To compute the Shannon control capacity of distributions pB(·) with atoms
at zero, we can remove the atom at zero and renormalize the result as P (B 6= 0)·Csh (S(pB∗(·))),
where pB∗ is the renormalized distribution after removing the atom at 0.

5.6 η-th moment control capacity

Finally, we can define the η-th moment stability. As η ranges from 0 to ∞ it captures a
range of stabilities from the weakest “Shannon” sense as η → 0, to the zero-error notions of
stability as η →∞.

Definition 5.6.1. Let the evolution of system state X[n] be governed by a linear system

X[n+ 1] = A[n] ·X[n] +B[n] · U [n] +W [n]

Y [n] = C[n] ·X[n] + V [n] (5.158)

A[n], B[n], C[n], V [n],W [n] are random variables with known distributions. Let σ(Y n
0 ) be

the sigma-algebra generated by the random variables Y [0] to Y [n]. The system is said to
be η-th moment stabilizable if there exists a causal control strategy Un

0 (·) ∈ σ(Y n
0 ) such

that ∃M,N such that M,N <∞ and E[|X[n]|η] < M for all n > N .

Definition 5.6.2. The η-th moment control capacity of the system S(pB[0], pB[1], · · · ) as in
eq. (5.46) is

Cη(S) = lim inf
n→∞

−min
Un−1
0 (·)s.t.U [i](·)∈σ(Y i0 )

1

n

1

η
logE

[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]

(5.159)

Theorem 5.6.3. Consider the system S̃a(pB[0], pB[1], · · · ) from eq. (5.48), with initial condi-

tion X̃[0] such that pX̃[0](·) has bounded support, i.e. ∃γ <∞ such that |X[0]| < γ, and has
no atom at 0.

1. If the η-th moment control capacity of the associated system S(pB[0], pB[1], · · · ) as in

eq. (5.46) is high enough, i.e. Cη (S) ≥ log |a|, then S̃a(pB[0], pB[1], · · · ) is η-th moment
stabilizable.
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2. Further, if S̃a(pB[0], pB[1], · · · ) is η-th moment stabilizable for every initial condition

X[0] = x0, i.e. ∃M(x0) such that E[|X[n]|η|X[0] = x0] < M(x0), and E
[
M(x0)
|X[0]|η

]
< ∞

then Cη (S) ≥ log |a|.

This motivates the definition of η-th moment control capacity for the system S̃a(pB[0], pB[1], · · · )
to be the same as that of the system S(pB[0], pB[1], · · · ).

Before diving into the proof, we recall the lemma:

Lemma 5.4.4. Let U∞0 be a set of controls applied to S(pB[0], pB[1], · · · ). Let Ũ [i] = aiU [i] be

the controls applied to S̃a(pB[0], pB[1], · · · ), with the same realizations of the random variables

B[i] and initial condition X[0]. Then, Ũ [i](·) ∈ σ(Ỹ i
0 ) and ∀ i, X̃[i] = aiX[i].

Proof: (Thm. 5.6.3)

Proof of the first claim of Thm. 5.6.3: We know there exists a control strategy U∞0 (·) and
N <∞ such that for n > N

− 1

n

1

η
logE

[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]
≥ |a| (5.160)

⇐⇒E
[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]
≤ |a|−nη (5.161)

⇐⇒E

[∣∣∣∣
X̃[n]

X[0]

∣∣∣∣
η
]
≤ 1 (Using Lemma 5.4.4, and linearity of expectation). (5.162)

⇐⇒EX[0]

[
1

|X[0]|ηE
[∣∣X̃[n]

∣∣η
∣∣∣∣X[0]

]]
≤ 1 (5.163)

=⇒EX[0]

[
1

|γ|ηE
[∣∣X̃[n]

∣∣η
∣∣∣∣X[0]

]]
≤ 1 (since |X[0]| < γ) (5.164)

=⇒EX[0]

[
E
[∣∣X̃[n]

∣∣η
∣∣∣∣X[0]

]]
≤ γη (5.165)

=⇒E
[∣∣X̃[n]

∣∣
]
≤ γη (5.166)

which gives the required bound M .
Proof of the second claim of Thm. 5.6.3: We know there exists a control strategy Ũ∞0 (·)

and an M(x)) function for all x0, such that for ∀n > N
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E
[∣∣X̃[n]

∣∣
∣∣∣∣X[0] = x0

]
≤M(x0) (5.167)

=⇒E

[
|X̃[n]|η
|x0|η

∣∣∣∣X[0] = x0

]
≤ M(x0)

|x0|η
(5.168)

=⇒EX[0]

[
E

[
|X̃[n]|η
|X[0]|η

∣∣∣∣X[0]

]]
≤ EX[0]

[
M(X[0])

|X[0]|η
]

(5.169)

=⇒E

[
|X̃[n]|η
|X[0]|η

]
≤ E

[
M(X[0])

|X[0]|η
]

(5.170)

=⇒|a|nηE
[ |X[n]|η
|X[0]|η

]
≤ E

[
M(X[0])

|X[0]|η
]

(Using Lemma 5.4.4) (5.171)

=⇒E
[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]
≤ |a|−nηE

[
M(X[0])

|X[0]|η
]

(5.172)

=⇒ logE
[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]
≤ −nη log |a|+ logE

[
M(X[0])

|X[0]|η
]

(5.173)

=⇒− 1

n

1

η
logE

[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]
≥ log |a| − 1

n

1

η
logE

[
M(X[0])

|X[0]|η
]

(5.174)

=⇒ lim inf
n→∞

− 1

n

1

η
logE

[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]
≥ log |a| (5.175)

=⇒Cη (S) ≥ log |a| (5.176)

5.6.1 Calculating η-th moment control capacity

This calculation uses a key one-step lemma, just as in the Shannon and zero-error cases.

Lemma 5.6.4. Suppose the system state at time n is x[n] ∈ R, x[n] 6= 0. Then, for system
S(pB) in eq. (5.46) define

Cη,n(x[n]) = −min
U [n](·)

1

η
logE

[∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣
η]
. (5.177)

where U [n](·) is any function of x[n]. Here, the expectation is taken over the random real-
ization of B[n] ∼ pB(·) i.i.d.. Hence, X[n+ 1] is a random variable even though X[n] = x[n]
has been realized and fixed. Y [n] = y[n] is also fixed. Then, Cη,n(x[n]) does not depend on
x[n] or n, and is given by

Cη,n(x[n]) = −min
k∈R

1

η
logE [|1 +B[n] · k|η] , (5.178)
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where B[n] ∼ pB(·). Hence, there exists U [n](x[n]) such that

− logE
[∣∣∣∣
X[n+ 1]

x[n]

∣∣∣∣
]

= −min
k∈R

logE [|1 +B[n] · k|η] . (5.179)

Proof: This proof is essentially identical to the proof of Lemma 5.5.5 in the Shannon case.

Theorem 5.6.5. The η-th moment control capacity of the system S(pB), parameterized with
a single distribution pB(·) with B[n]s are i.i.d. , and with pB(·) a continuous distribution with
no atoms is given by

Cη = −min
k∈R

1

η
logE [|1 +B · k|η] (5.180)

where B ∼ pB(·).

Proof: The achievability is very similar to that of the Shannon case. We use the linear
law from Lemma 5.6.4 and take advantage of the independence of the B[i]’s to turn an
expectation of a product into a product of expectations.
Converse: Consider
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−min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 )

E
[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]

(5.181)

= −min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 )

E
[∣∣∣∣

X[n]

X[n− 1]

∣∣∣∣
η∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
η]

(5.182)

(Since pB(·) has no atoms, using Lemma 5.5.6, X[n− 1] cannot have an atom at 0)

= −min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 )

EX[0]EBn−2
0

EB[n−1]

[∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
η∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
η
∣∣∣∣∣X[0], Bn−2

0

]
(5.183)

= −min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 )

EX[0]EBn−2
0

[∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
η

EB[n−1]

[∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
η
∣∣∣∣∣X[0], Bn−2

0

]]
(5.184)

≤ −min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 )

EX[0]EBn−2
0


∣∣∣∣X[n−1]

X[0]

∣∣∣∣
η

EB[n−1]

 min
X[n−1] 6=0

∣∣∣∣ X[n]
X[n−1]

∣∣∣∣
η
∣∣∣∣∣X[0],Bn−2

0


 (5.185)

(The best possible X[n− 1] as a function of X[0] and history gives a lower bound.)

= −min
Un−2
0 (·) s.t. U [i](·)∈σ(Y i0 )

EX[0]EBn−2
0


∣∣∣∣X[n−1]

X[0]

∣∣∣∣
η

EB[n−1]

 min
U [n−1]∈σ(Y [n−1])

min
X[n−1] 6=0

∣∣∣∣ X[n]
X[n−1]

∣∣∣∣
η
∣∣∣∣∣X[0],Bn−2

0




= −min
Un−2
0 (·) s.t. U [i](·)∈σ(Y i0 )

min
k

E [|1 +B[n] · k|η] · EX[0]EBn−2
0

[∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
η]

(5.186)

=

(
−min
k∈R

E [|1 +B[0] · k|η]
)n

(5.187)

(by induction, and the fact that the B[i]’s are i.i.d.)

So we have:

lim
n→∞

−min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 )

1

n

1

η
logE

[∣∣∣∣
X[n]

X[0]

∣∣∣∣
η]

(5.188)

≤ lim
n→∞

−min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 )

1

η
log max

k
E [−|1 +B[0] · k|η] (5.189)

=− 1

η
log min

k∈R
E [|1 +B[0] · k|η] (5.190)

Again, as a side product of this result, we can see that there is no loss of optimality in
restricting to linear strategies for the purposes of calculating η-th moment control capacity.

Remark 5.6.6. The proof uses the fact that there are no atoms, to avoid division by zero.
However, a more careful treatment of the probability with which the system state becomes
zero can be used to extend these ideas to cover the case of atoms as well.
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Corollary 5.6.7. Consider the system S(pB) from (eq. (5.46)), with B[n] ∼ pB(·) i.i.d with
mean µB and variance σ2

B. Then

C2 =
1

2
log

(
1 +

µ2
B

σ2
B

)
. (5.191)

Proof: We know that

C2 = −min
k∈R

logE
[
|1 +B · k|2

]
(5.192)

Taking derivatives, the optimum k = − µB
µ2B+σ2

B
, just as in the first example 5.2.5. Substi-

tuting k back into the equation gives the desired result. In the first example, we restricted
our search space to linear strategies. Our converse tells us that linear strategies suffice.

Remark 5.6.8. This optimality of linear strategies for the second moment case was seen
in the classical uncertainty threshold principle, but we can now say they are optimal from a
control capacity perspective for all moments.

Remark 5.6.9. The similarity of this expression to the 1
2

log(1 + SNR) formula for com-
munication capacity in the AWGN case is surprising. This is the notion of capacity that
Elia hints at in [26]. Given the surprising coincidence in the value of second moment con-
trol capacity, the differences between communication capacity and control capacity were
not noticed in the community. We believe that proof techniques here can be extended to
understand stabilizability for a wider family of systems.

5.7 Examples

Here we calculate and plot the different notions of control capacity discussed in the chapter.
Fig. 5.3 plots the zero-error, Shannon and second-moment control capacities for a Gaussian
distribution, a Bernoulli-(p) (erasure channel) distribution and a Uniform distribution. These
distributions are normalized so that they all have the same ratio of the mean to standard
deviation. The x-axis is the log of this ratio. This captures the fact that the ratio of the
mean to the standard deviation is the only parameter that matters for the second-moment
control capacity. As per Corollary 5.6.7 the second moment capacities for all three line up
exactly. We see that the Shannon sense capacity for both the Gaussian and the uniform
are larger than the second-moment capacity as expected. The Shannon capacity for the
Bernoulli distribution is infinity since it contains an atom. The zero-error capacity for the
Gaussian channel is zero because it is unbounded. The zero-error Bernoulli channel has
zero-error capacity zero because it has an atom at 0. The Uniform distribution follows the
zero-error capacity line for bounded distributions, and has slope 1.

Notice that as the ratio of mean to standard deviation goes to infinity, all of the lines
approach slope 1. We conjecture that in this “high SNR” regime, this ratio is essentially
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Figure 5.3: Examples of control capacity

what dictates the scaling of control capacity. This is predicted by the carry-free models
since the capacity in both the zero-error and Shannon senses depends only on the number
of deterministic bits in the control channel gain gdet − gran.

Fig. 5.4 allows us to explore the behavior of η-th moment capacities for the same three
channels. The plot presents the η-th moment capacities for Gaussian, Erasure and Uniform
control channels. We chose the three distributions such that their second-moment capacity is
2, and all three curves intersect there. As η → 0, the curves approach the Shannon capacities
and as η → ∞ the curves asymptote at the zero-error control capacity. The results in this
Chapter help us characterize this entire space, while previously only the (2, 2) point was
really known.
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Figure 5.4: The relationship between the different moment-senses of control capacity. For
the Uniform, the zero-error control capacity is 1.2075 which is the asymptote as η →∞. As
η → 0 the η-th moment capacity converges to the Shannon sense. Here the Shannon control
capacity for the Uniform is 2.7635 and for the Gaussian is 2.9586, which are the two small
points seen on the extreme left (i.e. green and purple on the y-axis).

5.8 Appendix

Lemma 5.4.6.

min
k∈R

max
B∈[b1,b2]

∣∣1 +B · k
∣∣ =





∣∣∣∣ b2−b1b2+b1

∣∣∣∣ if 0 6∈ [b1, b2], i.e. 0 < b1 < b2 or b1 < b2 < 0.

1 if 0 ∈ [b1, b2] i.e. b1 ≤ 0 and b2 > 0, or b1 < 0 and b2 ≥ 0.

(5.66)

This implies that if B is a random variable with essential support [b1, b2], essential infimum
b1, essential supremum b2, then ∀ε > 0,

P

(
log

∣∣∣∣1 +B · k
∣∣∣∣ < log

∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣− ε
)
< 1 if 0 6∈ [b1, b2]. (5.67)

and

P

(
log
∣∣1 +B · k

∣∣∣∣ < −ε
)
< 1 if 0 ∈ [b1, b2]. (5.68)
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Proof:

• Case 1) 0 < b1 < b2 First, we show that the bound is achievable. Choose k =

−
(
b1+b2

2

)−1
. Then,

∣∣1 +B · k
∣∣ is maximized at B = b2.

∣∣1 + b2 ·
(
b1 + b2

2

)−1∣∣ =
b2 − b1

b1 + b2

(5.193)

Now, suppose ∃k ∈ R such that ∀B ∈ [b1, b2],

|1 +B · k| <
∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣ =
b2 − b1

b1 + b2

. (5.194)

This implies:

|1 + b1 · k| <
b2 − b1

b1 + b2

(5.195)

⇒b1 − b2

b1 + b2

< 1 + b1 · k <
b2 − b1

b1 + b2

(5.196)

⇒ −2b2

b1 + b2

< b1 · k <
−2b1

b1 + b2

(5.197)

⇒k < −2

b1 + b2

. (5.198)

Also we have,

|1 + b2 · k| <
b2 − b1

b1 + b2

(5.199)

⇒b1 − b2

b1 + b2

< 1 + b2 · k <
b2 − b1

b1 + b2

(5.200)

⇒ −2b2

b1 + b2

< b2 · k <
−2b1

b1 + b2

(5.201)

⇒k > −2

b1 + b2

, (5.202)

which gives us a contradiction. Hence, ∀k ∈ R, ∃B ∈ [b1, b2],

|1 +B · k| ≥
∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣. (5.203)
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Given the minmax of |1 + B · k| is

∣∣∣∣ b2−b1b1+b2

∣∣∣∣, then for any bounded random variable B

with essential support on [b1, b2] by the definition of the essential supremum b2 and the
essential infimum b1 we have:

P

(
log

∣∣∣∣1 +B · k
∣∣∣∣ < log

∣∣∣∣
b2 − b1

b1 + b2

∣∣∣∣− ε
)
< 1. (5.204)

• Case 2) b1 < b2 < 0 This follows similarly to Case 1.

• Case 3) b1 ≤ 0 < b2

To show the bound is achievable, choose k = 0. Then |1 +Bk| = 1 for all B.

Suppose there exists k ∈ R such that ∀B ∈ [b1, b2],

|1 +B · k| < 1 (5.205)

This implies:

|1 + b1 · k| < 1 (5.206)

⇒− 1 < 1 + b1 · k < 1 (5.207)

⇒− 2 < b1 · k < 0 (5.208)

– Case 3a) b1 = 0. Then we have a contradiction.

– Case 3b) b1 < 0
Since b1 · k < 0, we must have k > 0. Now, we also know that

|1 + b2 · k| < 1 (5.209)

⇒− 1 < 1 + b2 · k < 1 (5.210)

⇒− 2 < b2 · k < 0 (5.211)

b2 · k < 0 implies k < 0, which again gives us a contradiction.

Hence, ∀k ∈ R, ∃B ∈ [b1, b2],

|1 +B · k| ≥ 1. (5.212)

Similarly, for any bounded random variable B with essential support on [b1, b2] by the
definition of the essential supremum b2 and the essential infimum b1 we have:

P

(
log
∣∣1 +B[n] · k

∣∣∣∣ < −ε
)
< 1. (5.213)

• Case 4) b1 < 0 ≤ b2 This is similar to case 3.
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Chapter 6

The value of side information in
control

6.1 Introduction

The advent of networked control systems and stochastic uncertainty models has led to a
real need to have a theory capable of dealing with side information in control. As just one
example, control theorists are interested in knowing how networked control systems behave
with or without acknowledgements of dropped packets since this is relevant for choosing
among practical protocols like TCP vs. UDP [8]. Acknowledgements are a kind of side
information about control channel state, but as of now, there is no theoretical guidance for
how to think about them in a principled way.

Fortunately, side information has long been studied in information theory. There are two
sources of uncertainty in point-to-point communication. The first is uncertainty about the
system itself, i.e. uncertainty about the channel state, and the second is uncertainty about
the message bits in the system. Information theory has looked at both channel-state side
information in the channel coding setting and source side information in the source coding
setting. Wolfowitz was among the first to investigate channel capacity when the channel
state was time-varying [82]. Goldsmith and Varaiya [83] build on this to characterize how
channel-state side information at the transmitter can improve channel capacity. Waterfilling
(of power) in time is optimal. The time at which side information is received clearly also
matters. For instance, in the absence of a probability model for the channel, waterfilling is
only possible if all future channel realizations are known in advance1. Caire and Shamai [84]
provided a unified perspective to understand both causal and imperfect CSI. Lapidoth and
Shamai quantify the degradation in performance due to channel-state estimation errors by
the receiver [85]. Medard in [86] examines the effect of imperfect channel knowledge on
capacity for channels that are decorrelating in time and Goldsmith and Medard [87] further

1With a probability model on the channel, the encoder can simulate the future channel realizations, and
hence it has an idea of whether the current realization is good or bad.
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analyze causal side information for block memoryless channels. Their results recover Caire
and Shamai [84] as a special case.

The impact of side information has also been studied in multi-terminal settings. For
example, Kotagiri and Laneman [88] consider a helper with non-causal knowledge of the
state in a multiple access channel. Finally, there is the surprising result by Maddah-Ali and
Tse [89]. They showed that in multi-terminal settings stale channel state information at the
encoder can be useful even for a memoryless channel. It can enable a retroactive alignment
of the signals. Such stale information is completely useless in a point-to-point setting.

Then there are the classic Wyner-Ziv and Slepian-Wolf results for sourcing coding with
source side information that are found in standard textbooks [67]. Pradhan et al. [90] showed
that even with side information, the duality between source and channel coding continues
to hold: this is particularly interesting given the well-known parallel between source coding
and portfolio theory. Source coding with fixed-delay side information can be thought of as
the dual problem to channel coding with feedback [91].

Another related body of work looks at the uncertainty in the distortion function as
opposed to uncertainty of the source2. Rate-distortion theory serves as a primary connection
between information theory and control. The distortion function quantifies the importance
of the various bits in the message, and in a sense confers a meaning upon them. Uncertainty
regarding the distortion function is a way to model uncertainty of meaning. This relates to
the toy example we discuss in Section 6.6. Martinian et al. [93] quantified the value of side
information regarding the distortion function used to evaluate the decoder [93], [94].

Moving beyond communication, the MMSE dimension looks at the value of side informa-
tion in an estimation setting. In a system with only additive noise, Wu and Verdu show that
a finite number of bits of side information regarding the additive noise cannot generically
change the high-SNR scaling behavior of the MMSE [70]. Portfolio theory also gives us an
understanding of side information. In the context of horse races, if each race outcome is
distributed according a random variable X, then the mutual information between X and Y ,
I(X;Y ), measures the gain in the doubling rate that the side information Y provides the
gambler [81]. Directed mutual information captures exactly the causal information that is
shared between two random processes. This connection has been made explicit for portfolio
theory in [95], [96] by showing that the directed mutual information I(Xn → Y n) is the gain
in the doubling rate for a gambler due to causal side information Y n. Of course, directed
mutual information is central to control and information theory as the appropriate measure
of the capacity of a channel with feedback [97].

A series of works have examined the value of information in stochastic control problems
with additive disturbances. For a standard LQG problem, Davis [98] defines the value of
information as the control cost reduction due to using a clairvoyant controller that has
knowledge of the complete past and future of the noise. Rockafellar and Wets [99] first
considered this issue for discrete-time finite-horizon stochastic optimization problems, and

2A dual notion on the channel coding side is the channel cost function, i.e. the power that it takes per
input symbol [92]. What if the encoder does not know this perfectly?
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then Dempster [100] and Flam [101] extended the result for infinite horizon problems. Finally,
Back and Pliska [57] defined the shadow price of information for continuous time decision
problems as well.

This chapter extends control capacity as developed in Chapter 5 to models that include
side information. We explore the value of causal side information for control systems in
models that involve parameter uncertainty, where these parameters have an i.i.d. character
to them. This chapter also looks at the notion of the “tolerable growth” for a control system.
We can think of the tolerable growth of a system as a function of both the system and the
control strategy that is applied. The next chapter extends these ideas to non-causal side
information.

6.2 A carry-free example

As always, we start with a motivating carry-free example for the value of side information.
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Figure 6.1: This system has the highest deterministic link at level gdet = 1 and the highest
unknown link at gran = 0. Bits b−1[n], b−2[n], · · · are all random Bernoulli-(1

2
). As a result

the controller can only influence the top bits of the control going in, and can only cancel one
bit of the state. If one extra bit b0 were known to the controller, it could cancel a second bit
of the state.

In Figure 6.1, we consider a simple bit-level carry-free model that is the counterpart of
system (5.1). Say the control gain B[n] has one deterministic bit, so that gdet = 1, but all
lower bits are random Bernoulli-1

2
bits. Then the controller can only reliably cancel 1−0 = 1

bits of the state each time. The difference between the level of the deterministic bits and the
level of the random bits is what determines the number of reliably controllable bits. If the
value of the bit at level 0, i.e. b0, were also known, then we could tolerate a growth through
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Figure 6.2: Consider the following gain for the controller in (a): b1[n] = 1, b−1[n] = 1 are
deterministically known, but all other links are Bernoulli-(1

2
). Only a gain of log a = 1 can

be tolerated in this case. Now, say side information regarding the value of b0[n] is received
as in (b). This suddenly buys the controller not just one, but two bits of growth.

a of two bits at a time. We can think of this as the value of the side information b0 for this
problem.

6.3 A carry-free counterexample

In the portfolio theory literature, it is known that the maximum increase in doubling rate due
to side information Z for a set of stocks distributed as T is upper bounded by I(T ;Z). With
our observation about deterministic models it is tempting to conjecture that “a bit buys a
bit” and a similar bound holds for the value of information in control systems. However,
we see that the following counterexample rejects this conjecture. Consider the carry-free
model in Fig. 6.2. Here u[n] is the control action, and b[n]u[n] = z[n] is the control effect. In
Fig. 6.2(a) the uncertainty in b0[n] does not allow the controller to utilize the knowledge that
b−1[n] = 1 and arbitrarily set the bits of b[n]u[n]. However, one bit of information b0[n] in
Fig. 6.2(b), lets the controller buy two bits of gain in the tolerable growth rate as explained
in the caption.

This carry-free model represents a real system where B[n] is drawn from a mixture of
disjoint uniform distributions, as in Fig. 6.3. The first most significant bit and the third
most significant bit are known, but the second most significant bit is not known. The first
bit tells us whether B[n] comes from group A and B or group C and D. The third bit only
discriminates to the level that is shown in Fig. 6.4, and so the exact mode of the distribution
is still unknown to the controller. The second bit finally lowers the variance, as in Fig. 6.5.
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A B C D0 

Figure 6.3: The continuous distribution that represents the uncertainty in the B[n] for the
carry-free model.

A B C D0 

Figure 6.4: The first and the third bit together tell the controller that B[n] comes from one
of the orange parts of the distribution. Since there are two orange sections that are far away,
the effective variance of B[n] is not reduced.

A B C D0 

Figure 6.5: Once the second bit is also known, the fact that the controller already knew the
third bit becomes useful. Now B[n] comes from a very tight section of the distribution with
low variance, which helps to control the system.

A communication aside: If the problem was that of pure communication, we could still
decode two bits of information about u[n] from b[n]u[n] = z[n]. See Fig. 6.6. Let u2 and u0

be the information carrying bits, and set u1 = 0 to zero. Then z3 = u2 and z1 = u2 + u0.
With two equations and two unknowns, both u2[n] and u0[n] can be recovered at the decoder.
In the control problem, this is not possible because of the contamination that is introduced
at z2 =?. While communication systems can choose which bits contain relevant information,
control systems do not have that flexibility. A bit at a predetrmined position must be
cancelled or moved by the control action.

In the case of portfolio theory, it is possible to hedge across uncertainty in the system
and get “partial-credit” for uncertain quantities. This is not possible in communication and
control systems since it is not possible to hedge a control signal in the same way one can
hedge a bet.

Another communication aside: It seems that the “commitment” challenge that is faced
by control can also be seen in communication systems, where it is also not possible to hedge
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Figure 6.6: With two known bits on the gain, the decoder can decode two additional bits
about the message u[n] from the received signal z[n]. However, these bits are decoded at
specific positions. It is not possible to get information out of the received signal position z2.

across realizations. Consider a “compound” channel made of two R-bit channels A and B
but with distinct inputs, so only one can be used at a time. The message sent across one of
the channels is randomly erased with probability 0.5. In this case, one bit of side information
about which channel is to be erased can buy us more than a bit: we get R

2
bits of message

on average.

6.4 Control capacity with side information

Now, we define control capacity with side information. We focus on the Shannon case. The
definitions and theorems naturally follow from the definitions of control capacity.

Consider the following system S(pB[0], pB[1], · · · , pT [0], pT [1], · · · ),

X[n+ 1] = X[n] +B[n]U [n]

Y [n] = X[n] (6.1)

T [i] is the side information received by the controller at time i. Now, the control signal U [n]
can causally depend on Y [i], 0 ≤ i ≤ n as well as on the side information T [i], 0 ≤ i ≤ n.
Let σ(Y n

0 , T
n
0 ) be the sigma-algebra generated by the observations and the side information.

Then U [n] can be a function of these random variables, i.e. U [n] ∈ σ(Y n
0 , T0n). The pairs

(B[i], T [i]), 0 ≤ i ≤ n are generated i.i.d. pB,T (·, ·), such that the marginal of pB|T (·) does
not have any atoms. X[0] is a random variable with density pX[0](·) and no atom at 0.
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System
X[n]

X[n]
Controller

U [n]

Figure 6.7: The controller has access to side information about the actuation channel.

Definition 6.4.1. The Shannon control capacity with causal side information of the system
S(pB[0], pB[1], · · · , pT [0], pT [1], · · · ) is given by

Csh(S|T ) = lim
n→∞

−min
Un−1
0 (·) s.t. U [i](·)∈σ(Y i0 ,T

i
0)

1

n
E
[
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣
]
. (6.2)

Theorem 6.4.2. Consider the system S(pB, pT ), parameterized the distribution pB(·) for
the i.i.d. B[n]s, where pB(·) is continuous distribution with no atoms, and by the distribution
of the side information pT [i](·) of the i.i.d T [n]s. Let pB|T (·) be such that it also contains no
atoms, i.e. T [n] can only give a finite number of bits of side information. Then, the Shannon
control capacity of the system is given by:

Csh(S|T ) = ET
[
max
k

E
[
−
∣∣1 +B · k

∣∣
∣∣∣∣T
]]

(6.3)

where (B, T ) ∼ pB,T (·, ·).

Proof: The proof follows from the same argument as in Thm. 5.5.4). Note that Lemma 5.5.5
still applies in this case using the conditional distribution pB|T (·).
Achievability:

The first inequality below follows from the achievability argument in Thm. 5.5.4 following
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eq. (5.138) to eq. (5.144).

lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 ,T

i
0)

1

n
E
[
E
[
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣
]]

(6.4)

≥ lim
n→∞

1

n

n−1∑

i=0

−min
U [i](·)∈σ(Y i0 ,T

i
0)

max
X[i] 6=0

E
[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣
]

(6.5)

= lim
n→∞

1

n

n−1∑

i=0

−min
U [i](·)∈σ(Y i0 ,T

i
0)

max
X[i] 6=0

EB[i],T [i]

[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣
]

(6.6)

(since the (B[i], T [i]) pairs are independent over time we can drop the history in the expectation)

= lim
n→∞

1

n

n−1∑

i=0

−min
U [i](·)∈σ(Y i0 ,T

i
0)

max
X[i] 6=0

ET [i]

[
E

[
log

∣∣∣∣
X[i+ 1]

X[i]

∣∣∣∣

∣∣∣∣∣T [i]

]]
(6.7)

= lim
n→∞

1

n

n−1∑

i=0

ET [i]

[
max
k(T [i])

E
[
− log

∣∣1 +B[i] · k
∣∣
∣∣∣∣T [i]

]]
(6.8)

(Lemma 5.5.5, now applied with conditioning, k can be a function of T [i])

= ET [i]

[
max
k

E
[
− log

∣∣1 +B[0] · k
∣∣
∣∣∣∣T [i]

]]
(6.9)

Converse: The first inequality below follows from the converse argument in Thm. 5.5.4
following eq. (5.147) to eq. (5.153).



137

lim
n→∞

−min
Un−1
0 (·)s.t. U [i](·)∈σ(Y i0 ,T

i
0)

1

n
E
[
E
[
log

∣∣∣∣
X[n]

X[0]

∣∣∣∣
]]

(6.10)

≤ lim
n→∞

−min
U [n](·)∈σ(Y n0 ,T

n
0 )

1

n
min

X[n−1]6=0
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
]

+ −min
Un−2
0 s.t. U [i](·)∈σ(Y i0 ,T

i
0)

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(6.11)

≤ lim
n→∞

−min
U [n](·)∈σ(Y n0 ,T

n
0 )

1

n
min

X[n−1]6=0
ET [n−1]

[
E
[
log

∣∣∣∣
X[n]

X[n− 1]

∣∣∣∣
∣∣∣∣T [n− 1]

]]
+

−min
Un−2
0 s.t. U [i](·)∈σ(Y i0 ,T

i
0)

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(6.12)

= lim
n→∞

1

n
ET [n−1]

[
max
k

E
[
− log

∣∣1 +B[n− 1] · k
∣∣
∣∣∣∣T [n− 1]

]]
+

−min
Un−2
0 s.t. U [i](·)∈σ(Y i0 ,T

i
0)

1

n
E
[
log

∣∣∣∣
X[n− 1]

X[0]

∣∣∣∣
]

(6.13)

(Lemma 5.5.5, now applied with conditioning)

= lim
n→∞

1

n

n−1∑

i=0

ET [i]

[
max
k

E
[
− log

∣∣1 +B[i] · k
∣∣
∣∣∣∣T [i]

]]
(6.14)

(by induction, since the (B[i], T [i]) pairs are i.i.d.)

=ET [0]

[
max
k

E
[
− log

∣∣1 +B[0] · k
∣∣
∣∣∣∣T [0]

]]
(6.15)

Remark 6.4.3. For scalar systems like the one considered above, non-causal side information
about the actuation channel would actually not provide any capacity gains. Receiving T [2]
at timestep-1 over timestep-2 would not change the system performance.

Remark 6.4.4. These basic ideas on side information could be extended to both the zero-
error and η-th moment senses of capacity. For the zero-error case we can replace the expec-
tation with a min. For the second-moment case, we must deal with the added variability due
to the side information. Notice that the results parallel the Shannon communication channel
capacity with side information about the channel state available at both the transmitter and
the receiver.

As an example, we plot the change in Shannon control capacity with side information for a
set of actuation channels with a Uniform uncertainty distribution in Fig. 6.8. It turns out that
the critical parameter to calculate control capacity (as suggested by the carry-free models)
is the ratio of the mean to the standard deviation of the distribution. All distributions here
have mean 1. Consider B ∼ Uniform[b1, b2]. Then, one bit of side information divides this
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interval into two halves, and tells the controller whether the realization of B is in [b1,
b1+b2

2
]

or in ( b1+b2
2
, b2]. These intervals are further subdivided with more bits.

The figure looks at four different ratios of the mean to the standard deviation 100, 4, 1
4
, 1

100
.

First, let us look at the green curve for the distribution with mean to standard deviation ratio
100. As the number of bits of side information increases the slope of this curve approaches
1, but it is slightly below 1 close to 0. The same is true for the pink line with mean to
standard deviation ration 4. The cases with mean to standard deviation less than 1 behave
differently. The yellow line, for ratio 1

4
, has a slope slightly greater than 1 close to zero. This

distribution is a Uniform on [−5.92, 7.92]. Here, half the time, the first bit of information
reveals perfectly the sign of the distribution. So the capacity can increase by more than one
bit. The same holds when the ratio is 1

100
, with an even sharper slope close to 0. As the

number of bits increase, again the slope approaches 1. The carry-free model predicted this
behavior — the value of a bit can be more than a bit!
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Figure 6.8: This plot shows the increase in Shannon control capacity of channels with a
uniform distribution for distributions with mean 1 and mean/standard deviation ratio as in
the legend.
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6.5 Tolerable system growth

This section explores control capacity through the concept of the tolerable system growth,
i.e. the maximal system gain that can be tolerated while maintaining stabilizability. This
is directly related to the theorems in Chapter 5, (Thm. 5.4.3, Thm. 5.5.2, and Thm. 5.6.3),
that show the operational meaning of control capacity for non-unit system gains for different
senses of stability. The developments here could in principle be used to generalize the ideas
of control capacity to more general systems than the scalar LTI systems in Chapter 5.

6.5.1 Control

Consider a real-valued control system Sa, with state X[n], control U [n] and observation Y [n]
at time n as below

X[n+ 1] = a · f(X[n], U [n], T [n]),

Y [n] = g(X[n], T [n]). (6.16)

Let T [n] be the set of random variables associated with the system at time n. Let FT [n]

be the set of distributions associated with them, and we assume these are known to the
controller. f and g are fixed, known, deterministic functions of X[n] and U [n]. a is a scalar,
known constant. The control strategy is a function U [n] : σ(Y n

0 )→ R.
For instance, for the system (5.1), T [n] = {B[n]} and FT [n] is effectively {FB} at each n

since B[n] are i.i.d..

Logarithmic stability

Corresponding to Shannon control capacity, we define a one-step logarithmic decay rate.

Definition 6.5.1. For the system (6.16) with state X[n], control strategy U [n] and system
randomness FT [n] at time n as, the one-step logarithmic decay is defined as:

GSa(X[n], U [n], FT [n])
def
= E

[
− log

||X[n+ 1]||
||X[n]||

]
. (6.17)

The expectation is over the randomness FT [n].

For example, for the system from Chapter 5, in eq. (5.1), the function f(X[n], U [n], B[n]) =
X[n] + B[n]U [n] and g(X[n]) = X[n]. The random variables B[n] ∼ Uniform[b1, b2], and

U [n] = − 2
b1+b2

X[n], GSa(X[n], U [n], FB) = log |a|+ E log |1− 2B[n]
b1+b2
|.

Related to these rates we can define the average logarithmic decay rate of a system.
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Definition 6.5.2. The average logarithmic decay rate of the system (6.16) is

ḠSa(X[0], U∞0 , FT∞0 )
def
= lim

n→∞

1

n

n−1∑

i=0

E
[
GSa(X[i], U [i], FT [i])

]
(6.18)

= lim
n→∞

1

n
E
[
log
||X[n+ 1]||
||X[0]||

]
(telescoping sum). (6.19)

The expectation inside the sum in eq. (6.18) is over the random state X[i]. X[0] is also
a random variable.

The connections of this decay rate to different notions of stabilizability are discussed
further in the Appendix 6.7.1. In particular, these notions can help us extend the ideas of
control capacity to systems with both additive and multiplicative noise.

Remark 6.5.3. The maximal average decay rate, G∗Sa(FT∞0 ), defined as the decay rate of
the system when the optimal control is applied, is the same as the Shannon control capacity
of the system.

G∗Sa(FT∞0 ) = Csh(Sa). (6.20)

We hope to use this in future work to generalize the notions of control capacity beyond linear
systems.

Now, consider eq. (6.16) with a = 1. Call this system S1.

X[n+ 1] = 1 · f(X[n], U [n], T [n]),

Y [n] = g(X[n], T [n]). (6.21)

This system with no explicit growth through a, determines the bottleneck decay rate for the
functions f and g.

Definition 6.5.4. The tolerable growth for a system Sa is given by the maximal average
decay rate of the corresponding system S1:

a∗0 = 2
G∗
S1

(FT∞0
)
. (6.22)

for system (6.21), i.e. log a∗0 = G∗S1(FT∞0 ).

The a∗0 establishes the “region of convergence” for the system3.
We can also define the tolerable growth for a particular strategy U∞0 , again using S1 as

the base system.

a0(U∞0 ) = exp{E
[
ḠS1(X[0], U∞0 , FT∞0 )

]
}. (6.23)

3We are borrowing the notion of a region of convergence from the theory of Laplace transforms. The
Laplace transform of a signal f(t) is defined as F (s) =

∫∞
−∞ e−stf(t)dt. This integral converges for parameters

s that are in the region of convergence of the signal and it is meaningful to talk about other properties of
the signal in this domain only.
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η-th moment stability

This section defines the tolerable growth rates for the η-th moment of systems, and helps
us see why the definition of Shannon control capacity is right notion for the zeroth moment
control capacity as well.

Definition 6.5.5. For the system (6.16) with state X[n], control strategy U [n] and system
randomness FT [n] at time n as, define the one-step η-th moment decay as:

GSa,η(X[n], U [n], FT [n])
def
= −1

η
logE

[ ||X[n+ 1]||η
||X[n]||η

]
. (6.24)

The expectation is over the randomness FT [n].

Definition 6.5.6. The average η-th moment decay rate (η > 0) of the system (6.16) is

ḠSa,η(X[0], U∞0 , FT∞0 )
def
= lim

n→∞

1

n

n−1∑

i=0

E
[
GSa,η(X[i], U [i], FT [i])

]
. (6.25)

The expectation inside the sum is over the random state X[i].

Again, the optimal control strategy determines the maximal average η-th moment decay
rate, G∗Sa,η(FT∞0 ), with the expectation over X[0]. The max is over all causal control strate-
gies U [n] = h(Y n

0 ), where h(·) is some (possibly non-linear) function of the observations till
time n.

Definition 6.5.7. The maximal average η-th moment decay rate is given by

G∗Sa,η(FT∞0 )
def
= max

U∞0 , U [n]=h(Y n0 )
E
[
ḠSa(X[0], U∞0 , FT∞0 )

]
. (6.26)

The expectation is over X[0] which is a random variable.

We can also define a tolerable growth rate a∗η for the η-th moment.

Definition 6.5.8. For system (6.21), the maximum growth rate for η-th moment stability
is

a∗η = 2
G∗
S1,η

(FT∞0
)
. (6.27)

Finally, we define the η-th moment tolerable growth for a particular control strategy
similar to the definition for the logarithmic tolerable growth earlier.

aη(U
∞
0 ) = 2

ḠS1 (X[0],U∞0 ,FT∞0
)

(6.28)

As η → 0, the tolerable growth for the η-th moment converges to the logarithmic tolerable
growth. Hence, the logarithmic tolerable growth and the corresponding decay rate essentially
correspond to the “zeroth” moment of the system. The idea here is that the logarithmic
growth rate is similar to the geometric mean of the system decay rate over time.

Theorem 6.5.9. limη→0 aη(U
∞
0 ) = a0(U∞0 )

The proof is in the Appendix. 6.7.2.
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6.5.2 Estimation

We also define a corresponding decay rate for estimation. Consider the system Sa:

X[n+ 1] = a · f(X[n], T [n]),

Y [n] = g(X[n], T [n]). (6.29)

Definition 6.5.10. Define the one-step logarithmic error decay rate for an estimator X̂[n]
that is a function of Y [1], Y [2] · · ·Y [n]

GSa(X̂[n], FT [n])
def
= E

[
− log

||X[n+ 1]− X̂[n+ 1]||
||X[n]− X̂[n]||

]
. (6.30)

The average logarithmic decay rate can then be defined as in the control case.

Definition 6.5.11. The average logarithmic decay rate for a system Sa and estimator X̂[n]
is defined as

ḠSa(X[0], X̂∞0 , FT∞0 )
def
= lim

n→∞

1

n

n−1∑

i=0

E
[
GSa(X[i], U [i], FT [i])

]
(6.31)

The expectation inside the sum in eq. (6.18) is over the random state X[i]. X[0] is also a
random variable.

Finally, the value of side information Z[n] for estimator X̂[n] is the change in the average
decay rate.

Definition 6.5.12. Let Z[n] be the side information provided to the controller at time n.
Then the average value of side information Z[n] with the control strategy U∞0 is

E
[
ḠSa(X[0], X̂∞0 , FT∞0 |Z∞0 )− ḠSa(X[0], X̂∞0 , FT∞0 )

]
. (6.32)

The expectation is taken over the random side information vector Z∞0 .

The optimal estimator determines the maximal average decay rate, G∗Sa(FT∞0 ), with the

expectation over X[0]. The max is over all causal estimators X̂[n] = h(Y n
0 ), where h(·) is

some (possibly non-linear) function of the observations till time n.

G∗Sa(FT∞0 )
def
= max

X̂∞0 , X̂[n]=h(Y n0 )
E
[
ḠSa(X[0], X̂∞0 , FT∞0 )

]
. (6.33)

With this we can define the value of side information for estimation (without regard to
an estimator) as the change in the maximal growth rate
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Definition 6.5.13. Let Z[n] be the side information provided to the estimator at time n.
Then the average value of side information Z[n] is

E
[
G∗Sa(FT∞0 |Z∞0 )−G∗Sa(FT∞0 )

]
. (6.34)

From arguments in Chapter 4, we know that value of any finite number of bits of side
side information bits provided about an unknown continuous random gain C[n] on the ob-
servations is 0, even though we saw that information bits about B[n] are valuable for the
control problem.

6.6 A toy example

The examples in this dissertation so far have focused on scalar systems. Here we consider
a vector example where we can explicitly calculate how the decay rate and tolerable growth
change as a function of side information. This problem is actually motivated by the inter-
mittent Kalman filtering [18], [21] and dropped control [8], [26] problems examined in the
Chapter 7. We continue to build on this example in Chapter 7.

Here, we focus on uncertainty in the control channel first, and then on uncertainty in the
observation channel. The example shows how the dual problems of estimation and control
behave differently in the presence of multiplicative noise, even though they have similar
behavior when only additive noise is present (e.g. Tatikonda and Mitter [12]).

6.6.1 A spinning controller

Consider the noiseless 2D control system in (6.35)
[
X1[n+ 1]
X2[n+ 1]

]
= a

[
cos Φn sin Φn

− sin Φn cos Φn

]([
X1[n]
X2[n]

]
+ U [n]

[
cos Θn

sin Θn

])
,

Y [n] =

[
X1[n]
X2[n]

]
. (6.35)

The controller has perfect access to the system state, denoted as a vector using boldface

X[n] =
[
X1[n] X2[n]

]T
but is subject to the following limitation: at each time n, the

available actuation direction is determined by a random spin. Θn is uniformly distributed
from [0, 2π]. Some information about the realized control direction, Θn = θn is revealed to the
controller (we call this side information Z[n], and in the complete information case Z[n] = θn)

before it chooses U [n]. The controller may only act along the direction
[
cos θn sin θn

]T
. The

initial state
[
X1[0] X2[0]

]T
is drawn randomly according to a known distribution, and the

goal is to drive the state to the origin. Thus, if the time-horizon is N , the goal is to minimize:

JN(X[N + 1]) = E
[
||X[N + 1]||2

]
= E

[
X1[N ]2 +X2[N ]2

]
(6.36)
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Figure 6.9: The yellow Pikachu figure is the target that the controller must reach. (a) The
controller can only move along the direction θn. This is randomly chosen by the spinner.
(b) The controller choses the control U [n] and moves along the direction θn. (c) After this
move, the system axes are randomly spun and revealed to the controller. Thus, the distance
d between controller and target is maintained, but the angle is not. (d) A new direction θn+1

is chosen by the spinner and the game continues.

After the control acts, the system axes are spun again by the rotation matrix

[
cos Φn sin Φn

− sin Φn cos Φn

]
.

Φn is also randomly and uniformly drawn from [0, 2π] at each time and the realization
Φn = φn is revealed to the controller at time n + 1. So U [n] is a function of Y [n], the side
information Z[n] = θn and the axis-spin realization φn−1. This is depicted in Fig. 6.9.

The impact of this Φ is that only the distance of the target from the origin is preserved
across time. The angle of the state after U [n] is applied is irrelevant since it is subject to
the random axis spin. Finally, the scale a is applied.
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No information about θn

Consider the case where no information about the realization of control direction θn is known
to the controller. The controller has 0 bits of information about the system randomness.
Clearly, in this case the optimal control action is U [n] = 0, and no growth a can be tolerated.
The system is stable if and only if a ≤ 1. For the other extreme case, where the controller
knows the present control direction perfectly, the following theorem characterizes the optimal
strategy.

Complete side information Z[n] = θn, Mean-squared decay

Theorem 6.6.1. The optimal control to minimize the mean-square system state for the
system (6.35) is given by the greedy strategy, i.e. U∗[n] = −X1[n] cos θn−X2[n] sin θn for all
n. The mean-squared tolerable growth, a∗2 =

√
2.

Proof: The proof follows using dynamic programming. Let the time-horizon for the system
be N + 1. Then, the system objective is to minimize the terminal cost, JN(X[N + 1]).

JN(X[N + 1]) = E
[
X1[N ]2 +X2[N ]2

]
(6.37)

Let Jn(X[n], U [n], θn) be the cost incurred at time n in state X[n] when the realized control
angle is θn and U [n] is the control applied. Then

J∗n(X[n]) = E
[
min
U [n]

Jn(X[n], U [n], θn)

]
(6.38)

is the optimal cost-to-go at time n. The expectation is over the realization of the random
direction θn.
Further, since there is no control cost we have:

Jn(X[n], U [n], θn) = J∗n+1(X[n+ 1]), (6.39)

where the state X[n+ 1] is determined by the action in the previous step through

||X[n+ 1]||2 = (X1[n] + U [n] cos θn)2 + (X2[n] + U [n] sin θn)2. (6.40)

The angle of the state is determined through the random spin Φn, but this has no effect on
the control cost.
At time N

J∗N(X[N ]) = E
[
min
U [N ]

JN(X[N ], U [N ], θN)

]
(6.41)

= E
[
min
U [N ]

(X1[N ] + U [N ] cos θN)2 + (X2[N ] + U [N ] sin θN)2

]
(6.42)
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We know (or can calculate by differentiating with respect to U [N ]) that the minimizing
control is U∗[N ] = −X1[N ] cos θN −X2[N ] sin θN , i.e. the projection of the initial state onto
the control direction. The terminal cost-to-go is the magnitude of the error vector after the
projection:

J∗N(X[N ]) = E
[
(X1[N ] cos θN −X2[N ] sin θN)2

]
(6.43)

=
1

2
(X2

1 [N ] +X2
2 [N ]2). (6.44)

Hence E
[
X1[N+1]2+X2[N+1]2

X1[N ]2+X2[N ]2

]
= 1

2
. Since the optimal cost-to-go is a function only of the

state magnitude, the greedy strategy is optimal for all time horizons.
The expected decay at each time step is constant and independent of N so the maximum

tolerable growth is a∗2 =
√

2.

Complete side information Z[n] = θn, logarithmic decay

Theorem 6.6.2. Consider system (6.35) with perfect information about θn at each time
n, and apply the optimal control U [n] = −X1[n] cos θn − X2[n] sin θn (which minimizes the
mean-squared state). Then, the logarithmic decay rate is, GS(X[n], U [n],FΘ,FΦ) = log 2,
and the tolerable growth rate is thus a∗0 = 2.

Proof: We know from the proof of Thm. 6.6.1 that when U [N ] is applied at time step N ,
E [||X[N + 1]||2] = E [(X1[N ] cos θN −X2[N ] sin θN)2] = 1

2
(X2

1 [N ] +X2
2 [N ]2).

So the logarithmic decay rate of the system for is given by

E

[
− log

√
|X1[N + 1]|2 + |X2[N + 1]|2
|X1[N ]|2 + |X2[N ]|2

]
(6.45)

=
1

2π

∫ 2π

0

1

2
log
|X1[N ] cos θ −X2[N ] sin θ|2
|X1[N ]|2 + |X2[N ]|2 dθ (6.46)

We can use a computer (Mathematica) to show that this integral evaluates to 1. Hence,
a∗0 = 2.

6.6.2 Partial side information

The symmetric randomness in this example makes it easy to evaluate how the multiplicative
uncertainty in the problem affects our ability to control the system. How does the decay
rate of the system change with less than perfect information about the control direction θn?
At what rate can we control the system if Z[n] only has a few bits of information about θn
and how valuable is this information?

To understand this, we develop a series of finer and finer quantizations for the realization
of the system randomness Θn = θn, and use these to provide side information Z[n] to the
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controller at time n. For example, one quantization is H1 = [0, π] and H2 = [π, 2π]. Say a
genie observes the realization θn, and reveals only the half-space of the realization, Z[n] = H1

or Z[n] = H2 to the controller. This is effectively 1 bit of partial side information. Two
bits of side information Z[n] would correspond to dividing the space into four quadrants,
Q1 = [0, π

2
], Q2 = [π

2
, π], Q2 = [π, 3π

2
] and Q4 = [3π

2
, 2π] and revealing that to the controller.

The controller must plan its control action at time n, U [n], based only on these few bits
of information. The case considered in the previous section had perfect knowledge of θn at
time n, and so essentially had infinite bits of side information with Z[n] = θn.

The system is the same as that in (6.35)

[
X1[n+ 1]
X2[n+ 1]

]
= a

[
cos Φn sin Φn

− sin Φn cos Φn

]([
X1[n]
X2[n]

]
+ U [n]

[
cos Θn

sin Θn

])
,

Y [n] =

[
X1[n]
X2[n]

]
. (6.47)

except now the control action U [n] is a function of Y [n] and Z[n], as opposed to Y [n] and
θn in the earlier setup.

Theorem 6.6.3. The mean-squared and logarithmic decay rates for for system (6.35) with
k = 0, 1, 2, 3 bits of information about the control direction θn are as in Table. 6.1.

Table 6.1: System growth as a function of current state-information

2-nd moment Logarithmic tolerable
tolerable growth, a∗2 growth, a∗0, lower bound

0 bits 1.00 1.00
1 bit 1.12 1.22
2 bit 1.29 1.61
3 bits 1.37 1.86

∞ bits
√

2 = 1.41 2.00

Proof: We use a dynamic program to calculate the values above. We demonstrate the
idea for k = 2 bits of side information in Lemma 6.6.4 and Lemma 6.6.5 as representative
examples. Calculations for all other cases follow similarly.

Lemma 6.6.4. The mean-squared tolerable growth rate with two bits of side information,
Z[n] ∈ {Q1, Q2, Q3, Q4}, for the system (6.47) is a∗2 = 1.29.

Proof: Our aim is to minimize the terminal cost

JN(X[N + 1]) = E
[
X1[N ]2 +X2[N ]2

]
. (6.48)
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Then, for every n,

J∗n(X[n], Z[n]) =
1

4

[
min
U [n]

E[Jn(X[n], U [n], Z[n] = Q1)] + min
U [n]

E[Jn(X[n], U [n], Z[n] = Q2)]+

min
U [n]

E[Jn(X[n], U [n], Z[n] = Q3)] + min
U [n]

E[Jn(X[n], U [n], Z[n] = Q4)]

]
.

(6.49)

We can calculate the optimal control for each quadrant, as the one that minimizes the cost
given that θ belongs to the given quadrant.

argmin
U1[n]

E[Jn(X[n], U1[n], Z[n] = Q1)] (6.50)

=
2

π

∫ π/2

0

(X1[n] + U [1n] cos θ)2 + (X2[n] + U1[n] sin θ)2dθ (6.51)

= 2
X1[n] +X2[n]

π
(6.52)

Similarly, we can compute:

argmin
U2[n]

E[Jn(X[n], U2[n], Z[n] = Q2)] = −2
X1[n]−X2[n]

π
(6.53)

argmin
U3[n]

E[Jn(X[n], U3[n], Z[n] = Q3)] = −2
X1[n] +X2[n]

π
(6.54)

argmin
U4[n]

E[Jn(X[n], U4[n], Z[n] = Q4)] = 2
X1[n]−X2[n]

π
(6.55)

Unlike in the case with perfect side information Z[n], here the optimal control is not allowed
to depend on θn. Effectively the optimal control is chosen to minimize the cost averaged
over all possible directions in the given quadrant.
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J∗n(X[n], Z[n])

=
1

4

2

π

∫ π/2

0

[(
X1[n]− 2

X1[n] +X2[n]

π
cos θ

)2

+

(
X2[n]− 2

X1[n] +X2[n]

π
sin θ

)2
]
dθ

+
1

4

2

π

∫ π

π/2

[(
X1[n] + 2

X1[n]−X2[n]

π
cos θ

)2

+

(
X2[n] + 2

X1[n]−X2[n]

π
sin θ

)2
]
dθ

+
1

4

2

π

∫ 3π/2

π

[(
X1[n]− 2

X1[n] +X2[n]

π
cos θ

)2

+

(
X2[n]− 2

X1[n] +X2[n]

π
sin θ

)2
]
dθ

+
1

4

2

π

∫ 2π

3π/2

[(
X1[n] + 2

X1[n] +X2[n]

π
cos θ

)2

+

(
X2[n] + 2

X1[n] +X2[n]

π
sin θ

)2
]
dθ

(6.56)

= 0.59(X1[n]2 +X2[n]2) (6.57)

The integral above is evaluated numerically.
Thus, the state magnitude decreases by a factor of 1

0.59
= 1.69 in expectation with the

optimal control (for the given side information, i.e. quadrant for θn). This is independent of
the time n. Hence, the tolerable mean-squared growth rate is a∗2 =

√
1.69 = 1.29.

Lemma 6.6.5. The logarithmic decay rate with two bits of side information, Z[n] ∈ {Q1, Q2, Q3, Q4},
for the system (6.47) is at least .47, and the tolerable growth rate is thus at least a = 1.61.

Proof: Our aim is to minimize the terminal cost

JN(X[N + 1]) = E
[
log(X1[N ]2 +X2[N ]2)

]
. (6.58)

For every realization of the side information Z[n] we choose to apply U [n] that minimizes
the mean-squared state magnitude. This is not the optimal strategy, but it provides a bound
on the decay that is possible when an optimal strategy for the log-moment might be applied.
Then, we can numerically evaluate the cost integral as
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J∗n(X[n], Z[n])

=
1

4

2

π

∫ π/2

0

1

2
log

[(
X1[n]− 2

X1[n] +X2[n]

π
cos θ

)2

+

(
X2[n]− 2

X1[n] +X2[n]

π
sin θ

)2
]
dθ

+
1

4

2

π

∫ π

π/2

1

2
log

[(
X1[n] + 2

X1[n]−X2[n]

π
cos θ

)2

+

(
X2[n] + 2

X1[n]−X2[n]

π
sin θ

)2
]
dθ

+
1

4

2

π

∫ 3π/2

π

1

2
log

[(
X1[n]− 2

X1[n] +X2[n]

π
cos θ

)2

+

(
X2[n]− 2

X1[n] +X2[n]

π
sin θ

)2
]
dθ

+
1

4

2

π

∫ 2π

3π/2

1

2
log

[(
X1[n] + 2

X1[n] +X2[n]

π
cos θ

)2

+

(
X2[n] + 2

X1[n] +X2[n]

π
sin θ

)2
]
dθ

(6.59)

= (−.477) + log
(
X1[n]2 +X2[n]2

)
. (6.60)

Hence, for this system with two bits of side information the average logarithmic decay is
at least .477 and the tolerable growth a∗0 ≥ e.477 = 1.61.

6.6.3 A spinning observer

The behavior of the corresponding estimation problem presents a sharp contrast to the
control problem. Consider the system below, which seems to be a dual to the control
problem earlier. There is no randomness in the system evolution and the target location
scales at rate a. However, the objective is now to estimate the position of the target[
X1[n+ 1] X2[n+ 1]

]T
, using the observations Y [n]. Y [n] is obtained by projecting the

position of the target along the direction θn which is chosen uniformly at random as in the
control case. (See Fig. 6.10)

[
X1[n+ 1]
X2[n+ 1]

]
= a

[
X1[n]
X2[n]

]
,

Y [n] =
[
cos θn sin θn

] [X1[n]
X2[n]

]
. (6.61)

Complete information, θn is perfectly known at time n

Let us consider the case where θn is perfectly known to the observer.

Theorem 6.6.6. The average logarithmic decay rate for estimation error the system (6.61)
is ∞ if θn is perfectly known to the controller.
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Figure 6.10: The objective of the observation problem is to estimate the position of the yellow
Pikachu target at time n using the observation Y [n]. The magnitude of the projection in
a direction (i.e. the pink vector) is revealed to the observer at each time. Combining the
observations at time n and n+ 1 the observer can have a perfect estimate in two time steps.

Proof: At time n+ 1 the controller has access to:

[
Y [n]

Y [n+ 1]

]
=

[
cos θn sin θn

a cos θn+1 a sin θn+1

] [
X1[n]
X2[n]

]
. (6.62)

The observation from time n is retained by the observer in memory, and at time n + 1 the
observer gets a second set of equations regarding the position of the target.

Since θn and θn+1 are chosen uniformly at random, with probability 1 these equations will

be linearly independent.

[
cos θn sin θn

a cos θn+1 a sin θn+1

]
is invertible. Hence, the estimation error at

the end of two time steps will be zero. In sharp contrast to the control case, this gives an
estimation error decay rate of infinity!

In this sense, the control problem considered earlier is “harder” than the observation
problem. There, the maximal decay rate in both the mean-squared and logarithmic cases is
finite. It turns out this has to do with the fact that in the observation problem, the memory
of the past observation direction is useful to reduce estimation error at the current time.
Information about future control directions plays a similar role to help the control problem
as we will see in Sec. 7.4.1.

It turns out that partial information about θn plays very different roles in the observation
and in the control problem.
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Remark 6.6.7. Surprisingly, the two-step observability result is quite fragile. We know
from the arguments in Chapter 4 that even a slight continuous uncertainty regarding θn
renders the estimation problem impossible if |a| > 1.

6.7 Appendix

6.7.1 Logarithmic stabilizability

Theorem 6.7.1. A system is logarithmically stabilizable as defined in Def. 5.2.2 if
and only if there exists a strategy U∞0 , with U [i] < ∞ for all 0 ≤ i ≤ ∞ such that
lim infn→∞

∑n−1
i=0 E

[
GS(X[i], U [i], FT [i])

]
> −∞.

Proof: We assume E[log ||X[0]||] exists and is finite.
(⇐=)

n−1∑

i=0

E
[
GS(X[i], U [i], FT [i])

]
= E

[
− log

||X[n+ 1]||
||X[0]||

]
(6.63)

= E[log ||X[0]||]− E[log ||X[n+ 1]||] (6.64)

Hence, there exists N <∞, K > −∞ such that

E[log ||X[0]||]− E[log ||X[n+ 1]||] > K ∀ n > N (6.65)

=⇒ E[log ||X[n+ 1]||] < −K + E[log ||X[0]||] ∀ n > N (6.66)

This implies that E[log ||X[n]||] is bounded for all n > N+1. Now consider E[log ||X[n]||]
for 0 ≤ n ≤ N . Since N is finite, E[log ||X[0]||] exists and is finite, and U [i] < ∞,
max

0≤n≤N
E[log ||X[n]||] < ∞. Combining this with eq. (6.66), there exists M < ∞ such that

E[log ||X[n]||] < M for all n. Hence, the condition above implies Def. 5.2.2.
(=⇒)

If there exists M <∞ such that E[log ||X[n]||] < M for all n then

lim
n→∞

E[log ||X[0]||]− E[log ||X[n+ 1]||] > E[log ||X[0]||]−M > −∞ (6.67)

E[log ||X[n]||] < M also implies that U [i] <∞ for all 0 ≤ i ≤ ∞.
Hence, Def. 5.2.2 implies the condition above.
We also define strong logarithmic stabilizability below, in a stricter sense than logarithmic
stability in Def. 5.2.2.

Definition 6.7.2. A system is strongly logarithmically stabilizable if there exists a
strategy U∞0 such that limn→∞

∑n−1
i=0 E

[
GS(X[i], U [i], FT [i])

]
=∞.
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Strong logarithmic stabilizability essentially requires the state to asymptotically decay
to 0. This is similar to notions of stability defined in control before, such as asymptotic
stabilizability [102]. Thm. 6.7.3 establishes that strong logarithmic stability is a stronger
notion than logarithmic stability.

Theorem 6.7.3. Strong logarithmic stabilizability (Def. 6.7.2) implies logarithmic stabiliz-
ability (Def. 5.2.2).

Proof:

n−1∑

i=0

E
[
GS(X[i], U [i], FT [i])

]
= E

[
− log

||X[n+ 1]||
||X[0]||

]
(6.68)

= E[log ||X[0]||]− E[log ||X[n+ 1]||] (6.69)

Thus, strong logarithmic stabilizability implies that E[log ||X[n]||] → −∞ as n → ∞
(E[log ||X[0]||] is a finite constant). Hence, there exists M ∈ R, M < ∞ such that
E[log ||X[n]||] < M for all n.

Strong logarithmic stability is also related to logarithmic stability in the sense that if
a linear system without additive noise is strongly logarithmically stabilizable, i.e. the sys-
tem state X[n] is going to zero exponentially fast in n, then the same linear system with
appropriately bounded additive noise will be logarithmically stabilizable.
On the other hand, a system might be logarithmically stable, but might not be strongly
logarithmically stabilizable. Consider, for example, the system X[n] = 5 for all n. This
system is logarithmically stabilizable, but is not strongly logarithmically stabilizable.

Theorem 6.7.4. This theorem connects the average decay rate to strong logarithmic stabi-
lizability.

1. If the average logarithmic decay rate ḠS(X[0], U∞0 , FT∞0 ) > 0 for some U∞0 then the
system is strongly logarithmically stabilizable.

2. If the average logarithmic decay rate ḠS(X[0], U∞0 , FT∞0 ) < 0 for all U∞0 then the system
is not strongly logarithmically stabilizable.

Proof: (1) Suppose limn→∞
∑n−1

i=0 E
[
GS(X[i], U [i], FT [i])

]
= K <∞. Then,

lim
n→∞

1

n

n−1∑

i=0

E
[
GS(X[i], U [i], FT [i])

]
= 0, (6.70)

which is a contradiction. Hence, limn→∞
∑n−1

i=0 E
[
GS(X[i], U [i], FT [i])

]
=∞ and the system

is strongly logarithmically stabilizable.
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(2)

ḠS(X[0], U∞0 , FT∞0 ) < 0 (6.71)

=⇒ lim
n→∞

1

n
(E[log ||X[0]||]− E[log ||X[n+ 1]||]) < 0 (6.72)

=⇒ lim
n→∞

1

n
(−E[log ||X[n+ 1]||]) < 0 (since lim

n→∞

1

n
E[log ||X[0]||] = 0) (6.73)

=⇒ lim
n→∞

1

n
(E[log ||X[n+ 1]||]) > 0 (6.74)

=⇒ lim
n→∞

E[log ||X[n+ 1]||] =∞ (6.75)

Thus,

lim
n→∞

n−1∑

i=0

E
[
GS(X[i], U [i], FT [i])

]
(6.76)

= lim
n→∞

n−1∑

i=0

(E[log ||X[0]||]− E[log ||X[n+ 1]||]) (6.77)

= E[log ||X[0]||]−∞ (6.78)

= −∞ (6.79)

Since this is true for all U∞0 the system is not strongly logarithmically stabilizable.

In the example system (5.1) with B[n] ∼ Uniform[b1, b2], and U [n] = − 2
b1+b2

X[n] for each

n, ḠS(X[n], U∞0 , FB) = log | 1
a
| + E log | b1+b2

b1+b2−2B[n]
|. Hence if log | 1

a
| + E log | b1+b2

b1+b2−2B[n]
| > 0,

the system is strongly logarithmically stabilizable using U [n].

6.7.2 η-th moment stability

Theorem 6.5.9. limη→0 aη(U
∞
0 ) = a0(U∞0 )
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Proof: Consider

lim
η→0

n−1∑

i=0

−1

η
logE

[ ||X[i+ 1]||η
||X[i]||η

]
(6.80)

= lim
η→0

n−1∑

i=0

−E
[ ||X[i+ 1]||η
||X[i]||η log

( ||X[i+ 1]||
||X[i]||

)]
1

E
[
||X[i+1]||η
||X[i]||η

] (6.81)

(take derivatives w.r.t η and apply L’Höspital’s rule)

=
n−1∑

i=0

−E
[
1 · log

( ||X[i+ 1]||
||X[i]||

)]
1

1
(6.82)

(taking the limit)

=
n−1∑

i=0

−E
[
log

( ||X[i+ 1]||
||X[i]||

)]
(6.83)

=E
[
− log

( ||X[n]||
||X[0]||

)]
(6.84)

(6.85)

Now consider,

lim
η→0

aη(U
∞
0 ) (6.86)

= lim
η→0

exp

{
lim
n→∞

1

n

n−1∑

i=0

−1

η
logE

[ ||X[n+ 1]||η
||X[n]||η

]}
(6.87)

= lim
n→∞

exp

{
1

n
lim
η→0

n−1∑

i=0

−1

η
logE

[ ||X[n+ 1]||η
||X[n]||η

]}
(6.88)

= lim
n→∞

exp

{
1

n
E
[
− log

( ||X[n]||
||X[0]||

)]}
(6.89)

= a(U∞0 ) (6.90)
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Chapter 7

Future information in control

7.1 Introduction

This “forward-looking” chapter is about the value of information from the future. To be
precise, we consider two examples of vector control systems where information about the
future states of the actuation channel are available to the controller non-causally.

Before we discuss these examples, let us think about non-causal side information in com-
munication. The capacity of an erasure channel with drop probability pe is given by 1− pe.
This is because, on average, a 1−pe fraction of the transmitted bits will get through the chan-
nel. Knowing when the erasures will happen might help the encoder schedule transmissions
and save power. However, without any power limitations non-causal side information about
the future erasure channel states cannot increase performance from a capacity perspective.

What about a memoryless AWGN channel? Knowing the channel noise perfectly here is
certainly useful, however, receiving this perfect side information about the noise realization
at time t1 + 1 at time t1, is exactly as useful as receiving it at time t1 + 1 itself. For this
perfect side information case, advance knowledge does not provide any advantage. However,
in the case of imperfect side information, non-causal side information can be useful, as we
know from the dirty paper coding results [103], [104]. Of course, non-causal side information
can also be useful in the cases of channels with state and memory.

This chapter considers non-causal side information in vector control systems. In some
problems, non-causal side information about unreliable actuation channels can help get
around structural limitations in the system and significantly increase the control capac-
ity of the system. The value of information and the ideas of preview control have been
examined in control, as discussed in the introduction to Chapter 6. For example, Davis
observes in [56], that future side information about noise realizations can effectively reduce
a stochastic control problem to a set of deterministic ones: one for each realization of the
noise sequence. The area of non-anticipative control characterizes the price of not know-
ing the future realizations of the noise [99], [101]. There has been a series of works that
studies preview control. Preview information about disturbances can improve control per-
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formance [105]. Other related works and references for this also include [106]–[108]. Martins
et al. [109] studied the impact of a preview, or non-causal side information (regarding an
additive disturbance) on the frequency domain sensitivity function of the system.

The idea of lookahead in control is also reminiscent of the results in Gupta et al. [32],
where precomputed future control values and actuator memory allows the system to be
robust to more dropped control values. However, they rely on the key assumption that the
controller can use an encoder to stack up control actions and the actuator has the ability to
decode these, know what time it is, remember what it was sent in the past, and then apply
the right control. This reduces the actuation channel to being a communication channel,
which gives the result. The authors mention that real-world systems often have correlated
losses, and it is reasonable to think we might have some knowledge of the future channel
states that can help us plan controls even in the case where there is no memory in the
actuator itself.

Future information has also been considered in other related fields. For example, Asnani
and Weissman [110] consider the utility of finite lookahead for source coding through a
dynamic programming framework, and Spencer et al. [111] look at the gains from knowing
the future arrival sequence in queueing problems. The work here has a similar spirit.

The results and observations in this chapter are motivated by two problems discussed in
the introduction. The intermittent Kalman filtering problem [21], [24], and the dual problem
of control with dropped packets considered by Elia [8], [26], are examples of problems with
multiplicative sensing and actuation channels respectively. The critical drop probability for
mean-squared stable estimation of a system [24], with generic matrix A, is 1

λmax(A)2
. Thus

the tolerable growth for mean-squared observability is dictated by the maximal eigenvalue.
On the other hand, for the dual control problem, the critical erasure probability is 1

Πλ(A)2
,

and thus the tolerable growth for mean-squared stability is much lower. Why?
An obvious answer is that the control problem is structurally different, and that there

is something about the physical aspect of control that makes the problem more difficult.
However, in this chapter we show that the gap can also be thought of as an informational
one. Non-causal side information to the controller about the erasure actuation channel can
increase the tolerable growth rate of the control problem to match that of the corresponding
observation problem. However, the same non-causal lookahead would not help the observa-
tion problem do any better.

The last part of the chapter reconsiders the spinning example from Chapter 6, this time
in the context of non-causal side information. The continuous uncertainty on the actuation
channel allows us to modulate the side information on a finer scale than with a binary erasure
channel. The example more clearly illustrates why the discrepancy between the observation
and control counterparts disappears with information from the future.
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7.2 The gap between control and estimation

First, consider the vector system with a single scalar control input U [n] sent over a real-
erasure channel as below:

~X[n+ 1] = A · ~X[n] + β[n] ·B · U [n],

~Y [n] = ~X[n], (7.1)

where ~X[n] is the m×1 state vector, A is an m×m constant matrix, B is an m×1 constant
matrix, and β[n] are i.i.d. Bernoulli(1− pe) random variables.

Theorem 7.2.1. (Elia [26], Schenato et al. [8]) The system eq. (7.3) is mean-square stabi-
lizable if and only if pe <

1
Πλ(A)2

, where λ(A) are the unstable eigenvalues of the matrix A,

and (A,B) form a controllable pair.

Remark 7.2.2. This result follows from the combination of [26] and [8], and we only give a
high level picture here. Some of the general ideas here were also discussed in the Introduction,
Chapter 1.

Since the multiplicative noise on the actuation channel made the problem difficult, Elia
considered a simpler problem and restricted his exploration to stabilization using LTI con-
trollers. For LTI controllers, he showed that pe <

1
Πλ(A)2

, where λ(A) are the unstable
eigenvalues of the matrix A, is the critical threshold probability for stabilization.

The proof for the necessary condition used a novel idea. It decouples the problem into
two sub-problems: (1) the stability of a system with a multiplicative noise in the system
dynamics loop and no control action allowed, and (2) the stabilizability of a system with
an additive noise using a control action. The first problem is used to get a relationship
between the properties of the multiplicative noise and the system transfer function. The
second problem involves an implicit rate constraint induced by an additive noise channel.
Ideas from rate-limited control (e.g. [12]) are used to give the 1

Πλ(A)2
bound.

[8], [28] used dyanamic programming techniques to show that in the case where packet
losses over the actuation channel are acknowledged (i.e. the control transmission is over a
“TCP-like” protocol (Fig. 1.6 from the introduction), separation between estimation and
control holds. Further, these works provide LMI characterizations for the erasure probabil-
ities and show that LTI control strategies are in fact optimal in the infinite horizon. The
optimal control strategy is a linear function of the state-estimate, and the optimal controller
gain converges to a constant in the infinite horizon case [8]. Though the paper focuses on
time-varying cost functions, the technique used can show that linear strategies are optimal
even for a finite time horizon if the state and control costs are time-invariant. The proof
uses dynamic-programming-style backward induction on the state-covariance. Now, since
the assumption of perfect observations in [26] is equivalent to the assumption of actuation
channel acknowledgements, we can conclude that there is no loss of optimality in restricting
to LTI systems and the bound from [26] holds generally.
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For the special case where B is invertible, and U is a vector input, the maximum eigen-
value of the systems was identified as the bottleneck [28].

As we discussed in the introduction, the 1
Πλ(A)2

threshold is significantly more stringent

than the threshold for the dual intermittent Kalman filtering problem in eq. (7.2). We know
now from [24] that for the generic case with A matrices with no cyclic structure in their
eigenvalues, 1

λmax(A)2
is the mean-squared observability threshold on the erasure probability.

~X[n+ 1] = A · ~X[n]

~Y [n] = β[n] · ~X[n] (7.2)

However, [24] also showed that this threshold becomes more stringent in the case where
there is a periodicity to the eigenvalues. The observer can decode the state as soon as
it receives enough equations: at least n equations are required to decode an n dimensional
state. However, periodic eigenvalues could lead to redundant observations that are “aligned,”
i.e. they are scalar multiples of each other. These redundant observations do not help in
decoding the state, which leads to the tighter threshold.

7.3 Understanding the gap

Now, we try to understand the informational differences between the observation and the
control problems in the generic case. We consider a 2× 2 control system

[
X1[n+ 1]
X2[n+ 1]

]
=

[
λ1 0
0 λ2

] [
X1[n]
X2[n]

]
+ β[n]

[
1
1

]
U [n],

~Y [n] =

[
X1[n]
X2[n]

]
. (7.3)

and the corresponding observation problem:

[
X1[n+ 1]
X2[n+ 1]

]
=

[
λ1 0
0 λ2

] [
X1[n]
X2[n]

]

Y [n] =β[n]
[
1 1

] [X1[n]
X2[n]

]
. (7.4)

Let λmax = |λ1| > |λ2| ≥ 1 be the system eigenvalues. β[n] is a Bernoulli−(1 − pe)
random variable. For the control problem, the actuation channel transmission is successful
when β[n] = 1. For the observation problem, a sensor observation is received when β[n] = 1.

First we note that the observer can decode the state perfectly as soon as any two observa-
tions are received. Since the arrivals form a Geometric sequence with parameter (1−pe), and
the arrivals are independent of each other, effectively the success of the observation strategy
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is distributed as a Negative Bionomial random variable with parameters (2, 1−pe). However,
the tail behavior of this is the same as that of a Geometric−(1− pe). On the other hand, to
be able to set the state to zero, the controller needs to plan. Any two successful controls are
not enough. If a pair of controls at times t1 and t2 are to be successful, the controller must
know the value of t2 in advance at time t1. While for the observation problem, memory of
past observation arrival times suffices, it does not for the control problem. Instead, what
matters is the future.

Consider the behavior of a naive “planning” control strategy, which we call align-and-kill,
in the 2× 2 setting. At each time t1, align-and-kill assumes that both the control action at
time t1 and the action at time t1 +1 will be successful, i.e. β[t1] = β[t1 +1] = 1, and computes
the control U [t1] accordingly. If the state is already aligned to the control direction available
at time t1, U [t1] sets the state to zero. If not, U [t1] does the job of “aligning” the state to
the control direction at time t1 + 1, so that it can be set to zero at t1 + 1, if β[t1 + 1] does
indeed turn out to be 1. Since this strategy needs two successes in a row, the waiting time
for this strategy to be successful is behaves likes a Geometric−(1 − pe)2 (in the tail sense),
which is harsher than the observation problem. We will see later that align-and-kill seems
to be asymptotically optimal in the regime of large eigenvalues.

The controller could get around this bottleneck if it had access to a vector control, i.e.
two components U1[·] and U2[·] that were able to independently control both components X1

and X2. A controller could then set the state to zero with one successful action. Then, with
this structural change, the waiting time for a successful control would be a geometric with
parameter (1− pe).

7.3.1 Infinite future side information

This section tries to capture the essence of the informational bottleneck on the controller.
For this, consider a controller with infinite side information about the future. If the controller
knew the entire sequence of β[n], at each time t1 it would also know the time of the next
control success, t2. Then it could easily set up the system so as to kill the state at time t2.
This idea is captured in the Theorem. 7.3.1.

Theorem 7.3.1. The critical probability for the control problem eq. (7.3), with infinite looka-
head for the sequence β[n], is 1

λmax(A)2
.

Proof: The proof follows from a time-reversal argument: the control problem is essentially
the same as the observation problem if time is reversed and we are only waiting on the first
two arrivals. The result builds on the arguments in [80] and the proof techniques used there.
This depends on a few key facts. The first is that the observability Grammian and the
controllability Grammian for the two systems being considered are transposes of each other.
To avoid the complication of dealing with the full history, [80] focuses on using a suboptimal
linear estimator in the ML-style. Basically, it simply inverts the observability Grammian once
enough observations have been collected. This is suboptimal, but [80] shows that it is good
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enough to reach the 1
λmax(A)2

threshold. Because the proof in [80] just used properties of the
inverse of the observability Grammian, we can apply the same results to the controllability
side and compute a “zero-forcing” control by inverting the relevant controllability Grammian.
We just need to know the future actutation times so the appropriate Grammian can be
inverted.

Remark 7.3.2. What this shows is that knowledge of the future channel behavior can get
around the structural bottleneck posed by only having a scalar control to stabilize a vector
system.

7.3.2 Fully periodic eigenvalues

Conditions for estimation and control with multiplicative noise can match in certain corner
cases1. We look at the special case of periodic eigenvalues to get a better understanding of the
planning bottleneck that the controller faces. Essentially, the structure in the system below
removes the controllers ability to plan. This same structure causes redundant observations
in the Kalman filtering problem, making this the “hardest” case.

Consider an n dimensional system with cyclic eigenvalues for A that also have period n.
For this case, we can give a simple argument to show that the critical probability for the

observation problem and the control problem are exactly the same:

∣∣∣∣ 1
Πλ(A)2

∣∣∣∣. The relevant

uncertainty growth in the control case is given by the product of the eigenvalues regardless of
cycles in A. This “hardest” case in the estimation problem [24], seems to be the generic case
for the dual control problem. In this case, with fully-periodic eigenvalues, future information
would not be useful.

Consider eq. (7.3) with λ1 = 2 and λ2 = −2. These eigenvalues form a cycle of period
two. We can further separate out the angle and the magnitude of the eigenvalues and write

the gain matrix A = 2

[
1 0
0 −1

]
.

[
1 0
0 −1

]
is a matrix that reflects the second component,

and

[
1 0
0 −1

]2

=

[
1 0
0 1

]
is the identity matrix.

Theorem 7.3.3. A greedy control strategy that projects the state vector in the orthogonal

direction to B =

[
1
1

]
, namely U [n] = −

[
1 −1

] [X1[n]
X2[n]

]
, is the optimal strategy for the

system in eq. (7.3), with λ1 = 2 and λ2 = −2.

Proof: The basic idea of the proof is that controls applied at even and odd times cannot
substitute for each other. One of each is essential.

1Most of the results in this and in following sections of this chapter are joint work with my undergrad
student Govind Ramnarayan [112].
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Let the first arrival be at time n1. Choose u[n1] = −X1[n1] +X2[n1]. With this control,

the projection of the state onto the

[
1
1

]
direction is zeroed out.

Then, if the control is successful,

[
X1[n1 + 1]
X2[n1 + 1]

]
=

[
X1[n1 + 1] +X2[n1 + 1]
−X1[n1 + 1]−X2[n1 + 1]

]
, (7.5)

is orthogonal to

[
1
1

]
. This implies that

[
1 0
0 −1

]2r+1 [
X1[n1 + 1]
X2[n1 + 1]

]
is aligned to

[
1 1

]T
for

every r. Consequently, the state can be set to zero at any arrival at any “odd” timestep
n1 + 2r + 1 for any r.

All time steps of the form n1 + 2r, which we call “even” timesteps, would have the state

vector orthogonal to
[
1 1

]T
rendering the control useless. Thus, we need two arrivals that

are spaced an odd number of steps(i.e. 2r + 1 steps) apart to set the state to zero. Hence,
the strategy proposed must be optimal.

These arguments for the 2×2 case generalize to systems of dimension-k with an eigenvalue
cycle of period-k and the same results hold: the estimation critical probability and the control
critical probability are exactly the same. Furthermore, non-causal knowledge of the pattern
of arrivals would have no impact on the rate of the decay of the system state. Here, side
information has no value because there is essentially no flexibility to plan, since there are no
substitutes between timeslots (mod k).

7.3.3 Partial future side information

This section explores the behavior of a family of systems using different control strategies
and various amounts of future information. While full non-causal information about the
channel behavior might be unrealistic, it is often possible to have side information about
the immediate future of the channel. Here we implement a dynamic program to calculate
the value of knowing just the value of the actuation channel at the next time step. This
is measured through the critical drop probability of the system: which channels cause the
system to go unstable? This inverse of the critical drop probability can act as a proxy for the
tolerable growth of the system. The details of this computation are given in Appendix 7.5.1.

We considered a family of systems (eq. (7.3)) with the eigenvalues scaling together such
that λ1

λ2
= 1.18. The x-axis in Fig. 7.1 represents the maximal eigenvalue of the system on log

scale and the y-axis plots the critical drop probability for that system on log scale. For the
problem considered in [26], with no future information (lookahead), the critical probability
follows a line of slope −4, i.e. 1

λ21λ
2
2
. This is the green line. For the problem with full future

lookahead, the critical probability is given by 1
λ21

, which is the topmost yellow line (slope

−2).
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Figure 7.1: Critical erasure probability versus magnitude of the maximum eigenvalue λ1
λ2

=
1.18.

As expected optimal dynamic programming solution with no lookahead decays exactly
as the optimal strategy: the lines for 1

(λ1λ2)2
and the optimal dynamic programming strategy

(q = 0) are on top of each other [28].
Next we consider systems with finite amounts of future lookahead. The parameter q in

the figure represents the probability with which lookahead is received. Let us consider the
case q = 1. This means that at each time t1, the controller is told whether the control action
at time t1 +1 will be dropped or not. These bits of side information can be stored in memory,
effectively the controller knows the channel behavior at both time t1 and t1 + 1 at time t1.
While ideally the controller would like to know the time of the next successful action t2, can
information about t1 + 1 help? In the best case scenario of course, the controller learns that
the at time t1 + 1 is going to be successful, and computes the control for the current time
t1 accordingly. However, the information that t1 + 1 will be dropped reduces its uncertainty
about the next arrival t2. In particular, it knows that there is no point in planning for a
successful control at time t1 + 1. The improvement due to this, i.e. the increase in “control
capacity,” is seen with the blue line labelled q = 1, with slope slightly greater than −3.

We can also compute the value of unreliable one-step lookahead, where information about
t1+1 is received with probability q = 0.5. This calculation gives the second blue line, labelled
q = 0.5. This also gives a scaling improvement on the control capacity, though not as drastic.
We can also see that as the actuation channel gets more unreliable the value of the extra bit
of lookahead increases. From a practical perspective, a control designer might prefer a more



164

predictable channel, even though it might be more unreliable on average. That the slopes
are different suggests that the side information has a scaling effect on the mapping between
the eigenvalues and the critical erasure probability.

Finally, we also consider the behavior of the naive control strategy that we call align-
and-kill. At each time t1, align-and-kill assumes that both the control action at time t1 and
the action at time t1 + 1 will be successful and computes controls accordingly. Align-and-kill
with guaranteed lookahead (q = 1) about t1 + 1 behaves as usual if there will be a successful
action at t1 + 1 and if not plans for a “kill” at time t1 + 2. Align-and-kill with unreliable
lookahead (q = 0.5) hedges between the two cases. What is interesting is that the pink lines
represented by the align-and-kill strategies seem to converge to the blue optimal control
thresholds at high eigenvalues. This suggests that as the system growth gets more unstable,
planning for the next timestep using an align-and-kill approach might be the best thing a
controller can do, and this warrants further investigation.

The align-and-kill strategy is reminiscent of the zero-forcing equalization strategy in
communication. Parallel to how zero-forcing is asymptotically optimal at high SNR, it
seems the naive align-and-kill strategy is asymptotically optimal here. This supports the
observations from Park’s dissertation [80]: the magnitude of the eigenvalues of the control
system seem to correspond somehow to SNR in wireless communication.

7.4 A toy example

This section finally comes back to the toy spinning system considered in the previous chapter.
Here we can more clearly see how one step of lookahead about the future actuation channel
state can instantly bridge the gap between the observation and the control problem. Using
a continuous uncertainty on the actuation channel lets us have finer control on the side
information we can provide.

7.4.1 Future information

The last chapter showed that the control problem with perfect information about θn at time
n is “harder” than the observation problem with perfect information about θn. Here, we
show that if the controller is given access to the value of the control direction at the future
timestep as well as the control direction at the current time, the decay rate of the system is
infinity, matching that of the observation problem!

Consider the system (6.35), where at time n the controller is given side information
Z[n] = {θn, θn+1}. This allows the controller to compute, at time n, a pair of zero-forcing
controls U [n] and U [n+ 1], such that the state is 0 at time n+ 2. (See Fig. 7.2)

Theorem 7.4.1. The average logarithmic decay rate with of the system (6.35) if both Z[n] =
{θn, θn+1} are known to the controller at time n is infinite.
Proof: We consider the evolution of two time steps of the system. X[n + 2] in terms of
X[n] is:
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✓1
✓2

✓2

Figure 7.2: If the control direction at time 2 is known to the controller at time 1 it zero-force
the state in 2 time steps as shown.

[
X1[n+ 2]
X2[n+ 2]

]
= a2

[
X1[n]
X2[n]

]
+

[
a2 cos θn a cos θn+1

a2 sin θn a cos θn+1

] [
U [n]

U [n+ 1]

]
(7.6)

Thus, if both θn and θn+1 are known at time n the controller can solve for U [n], U [n+ 1]
such that X[n+ 2] = ~0.

[
0
0

]
= a2

[
X1[n]
X2[n]

]
+

[
a2 cos θn a cos θn+1

a2 sin θn a cos θn+1

] [
U [n]

U [n+ 1]

]
(7.7)

Since the state goes to zero in a finite number of steps the average logarithmic decay rate
is infinite!

In a sense, the value of the side information θn+1 at time n was infinite. This future
lookahead seems to bridge the gap between the control problem and the observation problem.
For the observation problem, knowledge of the current and past direction led to an infinite
decay rate. For the control problem, it seems that knowledge of the current and future
direction gives us this.

The natural question then is: are just a few bits about θn+1 valuable to the controller?
Does partial information improve the control performance? (In the observation problem, we
note that partial side information (about the current or past direction) was just as good as
no side information at all.)
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Partial future information

We explore the same system as (6.35)

[
X1[n+ 1]
X2[n+ 1]

]
= a

[
cos Φn sin Φn

− sin Φn cos Φn

]([
X1[n]
X2[n]

]
+ U [n]

[
cos Θn

sin Θn

])
,

Y [n] =

[
X1[n]
X2[n]

]
. (7.8)

except now the control action U [n] is a function of Y [n] and Z[n] = {θn, Z1[n]}, where now
Z1[n] contains some bits of information about θn+1. Z1[n] contains quantization information
about θn+1 just as in Sec. 6.6.2.

“Useful” partial side information about the future direction has a slightly different be-
havior than partial information about the present. What is one bit of side information in
this context? Let us consider the natural choice of dividing the space into two half-spaces,
H1 = [0, π) and H2 = [π, 2π), as we did in Chapter 6. Revealing Z1[n] ∈ H1 actually
constitutes 0 bits of side information at time n, since it does not actually reduce the space
of possible directions from the perspective of control. Since θn+1 will be perfectly revealed
at time n + 1, and the controller is allowed to choose a negative control, knowing that
θn+1 ∈ [0, π) at time n does not reduce any relevant uncertainty about the future control
action.

What about dividing the space as Q1 = [0, π
2
), Q2 = [π

2
, π), Q2 = [π, 3π

2
) and Q4 =

[3π
2
, 2π)? This finer division is the one that actually constitutes one-bit of side information.

For this, we reveal side information Z1[n] = ψn, which means that we know θn+1 ∈ [ψn, ψn +
π
2
].

Since φn is random, the reorientation of the axis can be captured by thinking of ψn as
uniformly distributed from [0, 2π]. This lets us maintain the target at the same position
across time, but at the same time allow for the spinning of the axis2.

We examine this problem using dynamic programming for a time-horizon of two. What
is the advantage of having lookahead about θ1 at time 0, when θ0 is perfectly known at time
0? We examine this for k = 0, 1, 2, 3 bits of lookahead about the control direction below.
Since we want to look at the advantage provided by lookahead, a natural comparison is a

two-step comparison, i.e. to look at −1
2

logE[ ||X[2]||2
||X[0]||2 ]. This is the decay in the 2nd moment

of the system in two time steps. To have the same “units” to compare this to the numbers

in the previous section, the table here uses −1
4

logE[ ||X[2]||2
||X[0]||2 ], to provide numbers to compare

to a “one-step” decay rate. We are essentially pretending that the decay at time 0 and at
time 1 is the same, which in reality in this setup is not the case3.

2This spinning of the axis is essential to preserve the symmetry of the problem. If we maintained the
same axis, but we only learned whether θn+1 was in [0, π) or [π, 2π) each time, then the optimal control
would never move the target along the Y-axis at all. The intermediate spin φn prevents this and essentially
gives us information about a new partition of the space at each time.

3Other preliminary calculations indicate that − 1
T logE[ ||X[T ]||2

||X[0]||2 ] converges as T grows and is the appro-
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Theorem 7.4.2. The one-step 2nd moment and logarithmic decay rate for k = 0, 1, 2, 3 with
bits of lookahead about the control direction θn+1 (and perfect information about θn at time
n), time horizon N = 2 for system (6.35) are as given in Table. 7.1.

Table 7.1: System growth as a function of non-causal side information

Future 2nd moment Logarithmic tolerable
side-info tolerable growth, a∗2 growth, a∗0 lower bound

0 bits
√

2 =1.41 2
1 bit 1.50 2.28
2 bits 1.74 2.92
3 bits 2.01 3.93
∞ bits ∞ ∞

Proof: We set up the dynamic program to give the mean-squared decay rate for one bit
of side information regarding θn+1 and perfect knowledge of θn at time4 n.

Let N denote the time horizon. Our aim is to minimize the terminal cost

JN(X[N + 1]) = E
[
X1[N ]2 +X2[N ]2

]
. (7.9)

At each time n < N , the controller receives the current direction θn, as well as one bit of
lookahead about the next direction θn+1. This lookahead comes in the form of ψn, such that
θn+1 ∈ [ψn, ψn + π

2
]. Thus, the controller knows the quadrant of the next direction. At each

time step, the system is spun around uniformly. ψn is uniformly distributed from [0, 2π].
Then the cost-to-go function at time n by Jn(X1[n], X2[n], θn, ψn, u[n]) with current po-

sition (X1[n], X2[n]), control direction θn, lookahead direction ψn and control amplitude Un
is

J∗n(X1[n], X2[n], θn, ψn) = min
u[n]

Jn(X1[n], X2[n], θn, ψn, Un]). (7.10)

Note that X[n + 1] =
[
X1[n]− U [n] cos θn X2[n]− U [n] sin θn

]T
. Then for 0 ≤ n < N ,

the evolution of the cost-to-go is determined as follows:

Jn(X1[n], X2[n], θn, ψn, U [n]) =

1

2π

∫ 2π

0

{
2

π

∫ ψn+π
2

ψn

J∗n+1(X1[n]− U [n] cos θn, X2[n]− U [n] sin θn, θ, ψ) dθ

}
dψ. (7.11)

priate quantity to look at the calculate the mean-squared decay rate in cases of not just one-step but even
larger lookahead.

4The calculations for k = 2, 3 bits of information and logarithmic decay are similar to the calculations
in Sec. 6.6.2 and are omitted.
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The inner integral over θ captures the lookahead: θn+1 is realized between ψn and ψn+ π
2
.

The outer integral captures the fact at time n there is no knowledge about the control
direction at time n + 2 and so the lookahead direction at time n + 1, ψn+1 is uniformly
distributed over 0 to 2π.

This program was implemented in Mathematica to calculate the numbers in Table 7.1.
The logarithmic growth uses the optimal strategy for the the 2-nd moment, but looks at
the 0-th moment (log) decay rate, to calculate a lower bound on the logarithmic tolerable
growth.

7.5 Appendix

7.5.1 Dynamic program

This appendix gives a sketch of the key steps in the dynamic program used to calculate
the value of unreliable partial side information in Sec. 7.3.3 and Fig. 7.1, for the system in

eq. (7.3). Let B =

[
1
1

]
. A is the system matrix. Let p be the probability of a packet being

dropped at any given time. Let q be the probability that at time n we get lookahead about
time n+ 1.

• Let Ja,n( ~Xn]) be the cost-to-go at time n if there is an actuator success at the current
time n.

• Let Jd,n( ~Xn]) be the cost-to-go at time n if there is an actuator drop at the current
time n.

• Let Jb,n( ~Xn]) be the cost-to-go at time n if the controller does not know if there is a
success or a drop at the current time n.

We will use dynamic programming to calculate the evolution of these three costs separately.

1. Case 1: Arrival at time n.

• At time n we also get lookahead probability q, and this indicates an arrival at n+1
with probability p. In this case, the cost-to-go Ja,n( ~X[n], u[n]) = J∗a,n+1(A ~X[n] +

Bu[n]). Here ~X[n+ 1] = A ~X[n] +Bu[n] since we know the control went through
at time n.

• With probability 1−p however, the lookahead (which comes with prob q) indicates

no arrival. Then, Ja,n( ~X[n]) = J∗d,n+1(A ~X[n] +Bu[n]).

• Finally, with probability (1 − q) we get no looakahead at all. In this case,

Ja,n( ~X[n]) = J∗b,n+1(A ~X[n] +Bu[n]).



169

So in total we have:

Ja,n( ~X[n], u[n]) = qpJ∗a,n+1(A ~X[n] +Bu[n]) + q(1− p)J∗d,n+1(A ~X[n] +Bu[n])+

(1− q)J∗b,n+1(A ~X[n] +Bu[n]) (7.12)

So,

J∗a,n( ~X[n]) = min
u[n]

qpJ∗a,n+1(A ~X[n] +Bu[n]) + q(1− p)J∗d,n+1(A ~X[n] +Bu[n])+

(1− q)J∗b,n+1(A ~X[n] +Bu[n]) (7.13)

2. Case 2: No arrival at time n. In this case u[n] doesn’t play a role, since we know it is
not going to get through. The structure of future information remains the same as in
the case above, except with state A ~X[n].

Jd,n( ~X[n], u[n]) = qpJ∗a,n+1(A ~X[n]) + q(1− p)J∗d,n+1(A ~X[n])+

(1− q)J∗b,n+1(A ~X[n]) (7.14)

Since there is no u[n] to optimize over

J∗d,n( ~X[n]) = qpJ∗a,n+1(A ~X[n]) + q(1− p)J∗d,n+1(A ~X[n]) + (1− q)J∗b,n+1(A ~X[n])

(7.15)

3. Case 3: No information about the arrival at time n. In this case we hedge our bets
over what would happen at time n.

Jb,n( ~X[n], u[n]) = pJa,n( ~X[n], u[n]) + (1− p)Jd,n( ~X[n], u[n]) (7.16)

Now, to calculate the optimal cost:

J∗b,n( ~X[n]) = min
u[n]

pJa,n( ~X[n], u[n]) + (1− p)Jd,n( ~X[n], u[n]) (7.17)

= min
u[n]

p
(
qpJ∗a,n+1(A ~X[n] +Bu[n]) + q(1− p)J∗d,n+1(A ~X[n] +Bu[n])+

(1− q)J∗b,n+1(A ~X[n] +Bu[n])
)

+ (1− p)
(
qpJ∗a,n+1(A ~X[n]) + q(1− p)J∗d,n+1(A ~X[n])+

(1− q)J∗b,n+1(A ~X[n])
)

(7.18)

= pJ∗a,n( ~X[n]) + (1− p)J∗d,n( ~X[n]) (7.19)

Standard dynamic programming techniques can be used from here.
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Chapter 8

Conclusion

This dissertation presents an information-theoretic framework to understand the stability of
active control systems, and takes one step forward towards bridging the fields of communi-
cation and control. The aesthetic provides an angle by which we can measure the impact
of uncertainty in control using information-theory tools. While much of the past work has
focused on understanding information bottlenecks due to unreliable sensing channels, this
dissertation provides tools that help understand uncertainties on the actuation channel. Tra-
ditionally, control systems have been seen as sources of uncertainty, and recent work [79],
[80] has highlighted the signaling and channel aspects of control systems. The results here
on control capacity show that there is a sink nature to the information in control systems.
Controllers can “communicate” (in the broad sense of reducing uncertainty about the world)
by removing unwanted bits from the system.

All of the results in this dissertation were discovered by explorations using simplified
or toy models. The carry-free models that extended from wireless network information
theory helped port the understanding of signal interactions in networks to understand the
interactions between a control action and the system state. These models influenced the
definitions of control capacity and provided strategy guidelines for proof techniques. They
also clearly illustrate how uncertainty in parameters and the resulting multiplicative noise
can have fundamentally different behavior than additive noise. A different toy model, the
spinning system, helped understand phenomena in vector systems that are new compared
to scalar systems. Previous work used diagonalization to view vector control systems as
collections of scalar non-interacting systems. In the case of unreliability introduced through
actuation channels, diagonalization does not quite work because the approach cannot capture
the need to coordinate and the related flexibility to plan across the interconnected scalar
parts of the systems.

What is the grand vision of this work? Ideally, we would want to provide a unified per-
spective on uncertainty and unreliability in information theory, robust control and machine
learning. As sensing data about our surroundings becomes ubiquitous and processing gets
cheaper, structural control and decision-making will be the cause of limitations in engineer-
ing systems. Data analysis has ceased to be the pressure point. However, we do not yet
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have a good paradigm to tell us which data we should collect and analyze in the first place.
A universal “information theory” that incorporates goals and semantics that can work in a
decision-making-framework is desired.

8.1 Future work

While the work in Chapter 5 lays the foundation to understand control capacity, many ideas
require a fuller development.

• It remains to be seen how these ideas will formally extend to more general non-linear
and vector systems. What about systems that include both additive and multiplicative
noise? The work in chapters 6 and 7 is only the beginning. Vector systems present a
particularly interesting challenge of dimension. We must carefully capture the inter-
actions between the system states, while accounting for the fact that stabilizing more
dimensions is inherently a harder problem.

• The definitions of control capacity focus on actuation channels to provide a partial
generalization for the uncertainty threshold principle. A full generalization must extend
to include unreliability in the system gain A itself. The results in Chapter 4 about non-
coherent estimation can be thought of as the observation counterpart to the uncertainty
threshold principle, and we hope to further generalize our understanding of control
capacity to include an unreliable sensing gain C.

• Calculations in Chapter 5 reveal that the scaling behavior of the control capacity of
purely multiplicative noise actuation channels seems to critically depends only on the
ratio of the mean to the standard deviation of the multiplicative uncertainty at “high
SNR”. Carry-free models provide an intuition for this, but the full story needs to be
explored.

• There are specific questions to be answered about side information. We have a series
of examples to show that unlike in portfolio theory, one bit of causal side information
can actually increase control capacity by more than one bit! While we have a basic
understanding of this in the context of carry-free models, there is more work to be done
to understand this in general real-valued systems. For example, can the gain from one
bit of side information in a scalar system be unbounded? What about vector systems?

• In traditional notions of information theory, the different senses of capacity are further
justified by very general source-channel separation theorems. It would be interesting
to see what the corresponding results are like for the information theory for robust
control. Such results would require a deeper understanding of control capacity for
more general systems than the linear, scalar systems considered here.
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More broadly, power constraints are a type of structural limitation that is easily studied
in the context of AWGN communication channels. Clearly, our frameworks must be extended
to accommodate a power constraint on the control action. This can be easily done in the
dynamic programming and optimization frameworks, but it will be very interesting to see
what happens in the context of side information. How does this change the control capacity?
Extending from these ideas, can we provide an information-theoretic view of robust control
more generally?

While the work in this thesis is theoretical, the interactions between communication,
control and learning are becoming increasingly relevant in practical systems. The Internet of
Things (IoT) envisions an ecosystems of interacting, evolving, smart distributed controllers.
Much work remains to be done to get to this vision. Research in 5G wireless networks for
control are focused on providing high-reliability communication with low-latency [113]. A
full understanding of the differences between control channels and communication channels
can influence future system development and protocol design. For this, we first need to
develop wireless communication frameworks that can capture these notions.

In addition to the obvious technical and practical questions, this dissertation opens the
door for to formalize a series of questions that were harder to ask before. The work here
was partly motivated by ideas in universality in both communication and compression in
the information theory and computer science communities [55], [114]–[116]. Control pro-
vides a natural model through which we can build an information-theoretic perspective on
goal-oriented communication [53]. How can we understand a notion of “universal” control,
i.e. control without regard to particular system parameters or models?

In the context of portfolio theory, Cover showed that universal portfolio strategies opti-
mization strategies exist [117]. Information theory tools can also be used to understand side
information in the context of universal portfolios [118]. The natural question is: if there ex-
ists a portfolio that can perform optimally while agnostic to the parameters of the systems,
under what circumstances can we design control strategies that work universally? There
has also been extensive work in universal source coding (e.g. Lempel-Ziv [114]) as well as
universal channel coding (e.g. the AVC approach [119], [120] or individual channels [116],
[121], [122]). Can we use this information-theoretic understanding from this dissertation to
develop parallel ideas for control?

Universality has also been studied in more general reinforcement learning frameworks [123]
using some information-theoretic tools. The many connections between these fields need to
be fleshed out so we can have a unified understanding. Reinforcement learning models con-
sider many different types of uncertainty in systems: adversarial, truly stochastic, determin-
istic but unknown. Regret-based metrics have been developed to compare the performance
of algorithms in the face of these uncertainties to algorithms which have access to more
information. The results on the value of side information provide a parallel perspective in
the linear stochastic control case. But can these notions extend and connect to understand
more general systems?

Markov decision processes (MDPs) and partially observable Markov decision processes
provide more general frameworks to understand decision making in systems, and it would
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be natural to see if we can learn to overcome structural limitations using side information
ideas. Are there parallel notions of decision capacity in these settings?

This dissertation explored a range of notions of system stability. Another widely used
metric for information is the log-loss metric, which looks at the log of the probability dis-
tribution of the state, and focuses on the predictability of the state. This has been recently
shown to be particularly compatible with the notions of side information [124]. Using these
ideas to capture the uncertainty in the system state is an interesting next step because it is
a natural way to extend control capacity ideas to the discrete state setting.

Further, the work on Witsenhausen’s counterexample [79], [80] immediately suggests that
we should ask questions about the control capacity of decentralized systems. Information
theory has a number of tools for dealing with power and information sharing across parallel
channels and also has extensively developed tools in network information theory. It remains
to be seen how these connect to control systems.

Finally, informational bottlenecks show up not just in communication and control, but in
pretty much every single system we might consider. Economics has extensively studied the
value of information and signaling in game-theoretic settings. There have historically been
many far reaching connections between ideas in control, dynamic programming, optimization
and game theory and economics. It would be truly elegant to have a unified understanding
of actions, information, and incentives.
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