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Abstract

Predicting the effects of warming temperatures on the abundance and distribution

of organisms under future climate scenarios often requires extrapolating

species–environment correlations to climatic conditions not currently experienced

by a species, which can result in unrealistic predictions. For poikilotherms, incor-

porating species’ thermal physiology to inform extrapolations under novel thermal

conditions can result in more realistic predictions. Furthermore, models that

incorporate species and spatial dependencies may improve predictions by captur-

ing correlations present in ecological data that are not accounted for by predictor

variables. Here, we present a joint species, spatially dependent physiologically

guided abundance (jsPGA) model for predicting multispecies responses to climate

warming. The jsPGA model uses a basis function approach to capture both

species and spatial dependencies. We apply the jsPGA model to predict the

response of eight fish species to projected climate warming in thousands of lakes

in Minnesota, USA. By the end of the century, the cold-adapted species was

predicted to have high probabilities of extirpation across its current range—with

10% of lakes currently inhabited by this species having an extirpation probability

>0.90. The remaining species had varying levels of predicted changes in abun-

dance, reflecting differences in their thermal physiology. Though the model did

not identify many strong species dependencies, the variation in estimated spatial

dependence across species suggested that accounting for both dependencies was

important for predicting the abundance of these fishes. The jsPGA model provides

a new tool for predicting changes in the abundance, distribution, and extirpation

probability of poikilotherms under novel thermal conditions.
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INTRODUCTION

Predicting changes in a species’ abundance, distribution,
and extinction risk is a critical component to under-
standing how organisms will respond to climate change
(Ehrlén & Morris, 2015). A major challenge in these
efforts is extrapolating relationships between species
abundance or distributions and present-day or historical
environmental conditions to future climate scenarios
with environmental conditions that have not been not
experienced by past or contemporary species assem-
blages. These predictions under novel climatic conditions
may be unreliable and unrealistic when derived from
traditional modeling approaches, such as species distribu-
tion models (SDMs), that rely on the relationship
between abundance and the current climate (Urban
et al., 2012; Zurell et al., 2016). Incorporating some
mechanisms into SDMs, including physiology, to create
“hybrid correlative-mechanistic”models has been suggested
as an important initial approach, particularly since detailed
information is not available for most species to create mech-
anistic models that describe responses to climate change
(Urban et al., 2016).

Poikilotherms, which rely on ambient temperature
for thermoregulation and metabolic function, are among
the most susceptible to climate change (Paaijmans
et al., 2013). Because of the strong influence of environ-
mental temperatures on the vital rates of poikilotherms
(Deutsch et al., 2008), incorporating information on
thermal physiology—such as thermal preference and
tolerance—into hybrid correlative-mechanistic SDMs
can lead to more realistic predictions under novel tem-
perature conditions (Wagner et al., 2023). A recently
developed statistical methodology, the physiologically
guided abundance (PGA) model (Wagner et al., 2023),
fuses a species’ thermal response curve (and associated
uncertainty) with a correlative niche model (CNM),
such that abundance estimates and distributions are
scaled based on species-specific thermal tolerances and
preferences (see The PGA model for details). In other
words, the thermal response curve incorporates a
species’ thermal physiology such that, with all other
parameters held constant, abundance estimates are
highest when ambient temperatures are at a species’
thermal optimum (Topt) and decrease as temperatures
approach the species’ critical thermal maximum (CTmax ).
Importantly, incorporating thermal response curves in
this way enables predictions under novel thermal condi-
tions that are informed by species physiology and allows
for predictions of the probability of local extirpation
events when thermal habitat exceeds the species’ CTmax

(under the assumption that the laboratory-derived CTmax

represents lethal conditions in the wild). Although the

existing PGA model is a significant advancement in
predicting the effects of climate change on poikilotherm
abundance and distributions under novel thermal condi-
tions, the model does not account for correlations among
multiple species or spatial dependencies that are present
in ecological data (Ovaskainen et al., 2016). A probabilistic
model that leverages the dependencies across space, among
species, and in relation to climate can lead to improved
prediction and uncertainty estimation under future
climates.

The importance of accounting for residual dependen-
cies among species, especially when predicting species
responses to environmental change, is reflected by the
recent development and application of multispecies
SDMs (e.g., Clark et al., 2014; Ovaskainen et al., 2010;
Pichler & Hartig, 2021; Pollock et al., 2014; Thorson
et al., 2016; Wilkinson et al., 2019). Such joint species
distribution models (JSDMs) are a family of statistical
methodologies that simultaneously model the distribu-
tions of multiple species by accounting for both abiotic
environmental covariates and residual dependencies
among species (Wilkinson et al., 2019). Species depen-
dencies capture potential biotic interactions and missing
environmental factors, thereby potentially improving
predictive performance through the use of conditional
predictions (Poggiato et al., 2021; Tikhonov et al., 2020).
Accounting for species dependencies has been shown to
improve predictive performance when modeling the
distribution of fish communities (Clark et al., 2014;
Warton et al., 2015). For freshwater fishes, Wagner
et al. (2020) showed that conditional predictions
(i.e., conditionally dependent on the occurrence of other
species) of species occurrence significantly outperformed
marginal predictions (i.e., independent of the occurrence of
other species) for most species across stream and lake fish
community data sets.

The prediction of species abundances and distribu-
tions across a landscape is inherently a spatial prediction
problem (Latimer et al., 2006). Scientists often use SDMs
to describe a species’ occurrence or abundance with
respect to some number of measured environmental
constraints (Planque et al., 2011), essentially modeling a
species’ niche (Sillero et al., 2021). However, these envi-
ronmental constraints do not always completely explain
the distribution of a species across space. Ecological
processes such as dispersal and reproduction often lead
to spatial dependencies in species abundance, whereby
sampled locations closer together tend to be more similar
compared to sampled locations that are farther apart
(Hefley et al., 2017; Latimer et al., 2006). Accounting for
spatial dependence within a SDM can improve predictions of
a species’ distribution and abundance across space (Guélat &
Kéry, 2018; Hefley et al., 2017; Record et al., 2013), as well
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as affect the precision of the estimated environmental
coefficients (Miller, 2012). Lake fish communities are
particularly spatially autocorrelated when compared
to other organisms and freshwater habitats (Shurin
et al., 2009), suggesting that lakes that are in close
proximity are more likely to have similar community
compositions than lakes that are farther apart.

Multiple methodologies exist for incorporating spatial
dependence into ecological models, and the optimal
approach depends on the type of spatial data and
the objective of the study. For example, conditional
autoregressive models are a common approach for
areal spatial data, whereas point spatial data are often
modeled using geostatistical models and Gaussian
processes (Paciorek, 2013). Much of the recent develop-
ment of JSDMs has included efforts to incorporate
spatial autocorrelation within their framework. This
allows for the model to simultaneously account
for both species and spatial dependencies alongside
the included environmental covariates assumed to be
driving species’ distribution and abundance. Common
approaches for modeling spatial dependencies within a
JSDM framework have included latent variable models
(LVMs) (e.g., Ovaskainen et al., 2016; Thorson
et al., 2016) and basis function approaches (e.g., Hefley
et al., 2017; Hui et al., 2023). While both approaches
provide flexibility, the basis function approach has been
shown to be more scalable and computationally efficient
as it uses predefined spatial basis vectors within the
model fitting process (Hui et al., 2023).

Here, we present a statistical method for incorporat-
ing physiological thermal tolerances, species dependen-
cies, and spatial dependencies into a statistical model of
the abundance of multiple species. This joint species,
spatially dependent physiologically guided abundance
(jsPGA) model provides a flexible approach to predicting
the abundance, distribution, and extirpation probabili-
ties of poikilotherm communities under future climate
scenarios. The jsPGA model accounts for aspects of a
species distribution not present within the modeled
environmental factors (e.g., potential species interac-
tions, random spatial processes, or important environ-
mental constraints not included in the model). We
begin with the construction of the jsPGA model, which
we formulate under a Bayesian hierarchical frame-
work. We then perform a simulation study for model
validation and comparison across differing numbers of
basis functions (DiRenzo et al., 2023). Finally, we apply
the jsPGA to a case study of Minnesota lake fish
communities to illustrate how our methodology can
be used to predict future abundances, ranges, and
probabilities of multiple species that vary in thermal
physiology.

MODEL SPECIFICATION

The PGA model

The PGA model developed by Wagner et al. (2023)
employs a Poisson modeling framework to model the
counts of a single species where the intensity is defined
as the product of relative abundance constrained by the
species’ thermal physiology and an effort offset term.
This effort offset term, or scaling, accounts for both the
varying catchability and sampling effort. Modeling
catchability and sampling effort allows the relative
abundance to be estimated separately from the effect of
sampling design to account for differences in sampling
efficiencies across different gear types. Physiological
information was incorporated into the relative abun-
dance model through a thermal performance curve
(see Appendix S1: Figure S1 for examples). Let Cijt be the
number of fish caught in lake i¼ 1,…,I, using sampling
gear j¼ 1,…,J in year t¼ 1,…,T. The catch data are
modeled as

Cijt �Pois ~Eijtλit
� �

, ð1Þ

where ~Eijt is the effort scaling associated with each sam-
ple, and λit captures the relative abundance in lake i for
year t. The effort scaling is factored as ~Eijt = Eijtθj, where
Eijt is the known effort and θ¼ θ1,…,θJ½ �0, θj >0 for all j is
the catchability vector capturing differences in sam-
pling efficiency across gear types. The catchability vec-
tor is constrained such that

PJ
j¼1θj ¼ J, whereby larger

(or smaller) values signify a gear is more (or less) effec-
tive at catching fish. Note that θj ¼ 1 for all j¼ 1,…,J
implies a constant catchability across all gears and is a
special case.

Relative abundance is modeled as

λit ¼P Titð Þexp X0
itβ

� �
, ð2Þ

where Xit is a vector of covariates hypothesized to explain
the variation in species distribution and abundance for
lake i and year t, and β is the coefficient vector. The ther-
mal performance scalar, P Titð Þ, is derived from the
species-specific thermal performance function evaluated
at temperature Tit . The values of the function P Titð Þ
range from 0 (thermally unsuitable if temperatures
exceed CTmax ) to 1 (optimal performance at Topt).

The model assumed an asymmetric thermal perfor-
mance curve that uses a Gaussian function to describe
the ascending limb of the thermal performance curve up
to Topt and a quadratic decline to 0 at CTmax for the
descending limb (Gannon et al., 2014; Payne et al., 2018),
although different thermal performance functions could
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be implemented as needed (Padfield et al., 2021).
The performance curve implemented was previously
used in studies on the effects of changing temp-
eratures on poikilotherms (Guo et al., 2020; Lear
et al., 2019). The thermal performance curve was
parameterized as

P Tð Þ¼
exp −

T −Topt

2σ

� �2
� �

T ≤Topt

1− T −Topt

Topt −CTmax

� �2
Topt <T ≤CTmax

0 T >CTmax ,

8>>>><
>>>>:

ð3Þ

where σ is the scale parameter for the Gaussian portion
of the curve and all other parameters are as described
earlier. Although all parameters (Topt, CTmax , and σ) can
theoretically be estimated using abundance data,
if sample locations do not span the entire temperature
range of a species’ current distribution, then estimated
parameters may be biologically inaccurate (e.g., an
underestimated CTmax ), highly uncertain, or both. This
is likely the case for many poikilotherms, where
abundance data are only available within a portion of
a species’ range. However, this issue is addressed by
explicitly accounting for uncertainty in the thermal
response curves (see Uncertainty in thermal response
curves).

The jsPGA model

We propose the jsPGA model as an extension to the PGA
model. We reformulate the relative abundance model
(Equation 2) to be applicable for multiple species by
adding a random effect to account for species and spatial
dependence. In addition, we model the catch data using a
negative binomial (NB) with an overdispersion parameter
in place of the Poisson model in Equation (1) since count
data have the potential to be overdispersed (Stoklosa
et al., 2022).

Let Cijtk denote the number of fish caught in lake
i¼ 1,…, I using gear j¼ 1,…,J of species k¼ 1,…,K in year
t¼ 1,…,T. We model the fish catch data as

Cijtk �NB ~Eijtkλitk,ϕ
� �

, ð4Þ

where ϕ is the NB overdispersion parameter,
~Eijtk ¼Eijtθjk, and θjk denotes the sampling efficiency of
gear j in catching species k. Define θ¼ θ1,…,θK½ � as the
J ×K catchability matrix for all gears and species
where θk ¼ θ1k,…,θJk½ �0.

To account for multiple species, we extend the model
for relative abundance, λitk , to

λitk ¼Pk Titð Þexp X0
itβk +ωik

� �
, ð5Þ

where now βk is the species-specific coefficient vector, ωik

is the random effect capturing the variation in abundance
for lake i and species k not captured by the covariates,
and Pk Titð Þ is the species-specific thermal performance
scalar derived from Equation (3). Let ω denote the I ×K
dimension matrix form of the random effects, where ωik

is the i, kth element. In modeling ω, we follow the basis
function approach to capture spatial dependence
(e.g., Hefley et al., 2017; Hui et al., 2023) and capture
species dependence through the specification of the basis
function coefficients. Thus, we define ω as

ω¼ΨA, ð6Þ

where Ψ is an I ×M matrix of spatial basis vectors, and A
is an M ×K matrix of spatial basis coefficients such that
M � 1,…, If g (see Spatial basis vectors for more details).
The basis coefficients A are then defined such that

A�MN 0,IM ,Πð Þ, ð7Þ

where MN is the matrix normal distribution and is
parameterized such that IM , denoting an M ×M identity
matrix, is the covariance among rows (i.e., spatial basis
coefficients are independent between sites) and Π¼TΣT
is the covariance among columns (i.e., spatial basis
coefficients are dependent within a site). We define
T¼ diag τ1,…,τKð Þ as the species-specific scalings and Σ
as the K ×K species dependence (i.e., correlation) matrix.
In other words, we capture spatial dependence through
the spatial basis vectors in Ψ and species dependence
through the covariance structure Π of the spatial basis
coefficients in A.

Spatial basis vectors

Let N represent all (sampled I and unsampled N − I) sites
of interest. The spatial basis vectors are defined using
the spectral decomposition of the Matérn kernel of the
pairwise distances between all N sites, denoted by
Rν,ρ s,s0ð Þ, where ν and ρ are parameters that describe the
differentiability and length scale of the implied stochastic
process, respectively, and s,s0 are two locations in the
spatial domain. Let Rν,ρ denote the N ×N Matérn covari-
ance matrix calculated from the pairwise distances s,s0 in
the spatial domain. Then the spectral decomposition is
such that Rν,ρ ¼QΛQ− 1, where Q is an N ×N matrix
where each column represents an eigenvector of Rν,ρ and
Λ is a diagonal matrix where each element of the
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diagonal represents the corresponding eigenvalue of Rν,ρ

(Hefley et al., 2017). We then define the full matrix of
basis vectors as ΨN ×N ¼QΛ1=2. Finally, to reduce the
dimension of the model, we retain only the first M col-
umns of this matrix corresponding to the desired number
of basis functions. Here, M� I, where I is the number of
observed sites. Let Ψ denote the I ×M basis function
matrix corresponding to the first I rows and M columns
of ΨN ×N . Higher values of M allow for the basis vectors
to potentially capture more spatial dependence and also
increases the number of parameters to be estimated by
the model. Recall that the basis coefficient matrix A is of
M ×K dimension, meaning every additional basis func-
tion requires K more basis coefficient parameters to be
estimated. Within our analyses, we set ρ¼ 100 km to be
approximately one-sixth of the maximum distance
between any two locations and ν¼ 2:5, so the process is
moderately smooth.

Uncertainty in thermal response curves

Thermal response curves are themselves uncertain, as the
true values of Topt kð Þ and CTmax kð Þ are unknown, and
there is considerable variability in their published values
(Appendix S1: Table S1). The thermal response parame-
ters were most commonly derived from growth rates (for
Topt) and loss of equilibrium for CTmin and CTmax . Using
the growth of individuals to quantify Topt is useful for
fishes because it is related to survival, reproductive poten-
tial, and other life history traits (Charnov, 2008; Charnov
et al., 2013; Lester et al., 2004), while loss of equilibrium
is commonly assumed to represent death under wild con-
ditions (Turko et al., 2020). Furthermore, thermal
response curve parameters are usually obtained through
controlled laboratory experiments and likely do not accu-
rately reflect the adaptive plasticity of organisms in the
wild (Morgan et al., 2019). Since we do not have observed
temperatures that span the full range of values for which
the thermal response curves are estimated, we lack the
information required to accurately estimate the thermal
performance parameters (Topt and CTmax ). Using the
joint posterior of all parameters would be too heavily
weighted by the likelihood given the data and overwhelm
the information regarding these parameters derived from
the literature. Therefore, we use numerical integration to
incorporate uncertainty in these parameters. Specifically,
we assign Topt kð Þ and CTmax kð Þ truncated normal distribu-
tions where the mean and variance are derived from liter-
ature values. We truncate these distributions based on
the maximum observed temperature of occurrence for
each species to ensure that a random realization of
CTmax is not lower than the observed maximum

temperature where the species is found in the wild (recall
Equation 3 forces estimates of relative abundance to zero
when ambient temperature exceeds CTmax ). Using the
truncated distributions of thermal performance parame-
ters, we randomly sampled 100 realizations of Topt kð Þ and
CTmax kð Þ (ensuring that Topt kð Þ <CTmax kð Þ) for each spe-
cies and fit our jsPGA model using each of these realiza-
tions (see Appendix S1: Figure S1 for how the thermal
performance curves vary across realizations). Therefore,
we fit 100 separate models, each with a different pair of
randomly sampled thermal response curve
parameters—parameters that are treated as fixed values
within each model fit. We then obtained the joint posterior
distribution of all other model parameters from each of the
100 model fits before aggregating these into a single poste-
rior distribution for each parameter (note we calculated a
single value of σk and treated it as fixed across all model
fits; see Wagner et al. [2023] for details).

Bayesian model inference

The jsPGA model was fitted in a Bayesian framework
using a Hamiltonian Monte Carlo sampling algorithm
implemented in Stan (Carpenter et al., 2017). The hierar-
chical Bayesian framework allows us to directly incor-
porate species’ physiological information (i.e., thermal
performance parameters) and uncertainty into the model
through the use of their literature-defined distributions
as described in Uncertainty in thermal response curves.
We then assigned prior distributions to all remaining
model parameters. For each catchability parameter vec-
tor, θk, we assigned a Dirichlet prior distribution and
scaling such that

PJ
j¼1θjk ¼ J for each k¼ 1,…,K . We

then assigned βlk �N 0,100ð Þ for l¼ 0,…,p, where p is the
total number of environmental covariates. For the spatial
basis coefficient covariance parameters, we assigned
τk �Cauchy 0,2:5ð Þ and Σ�LKJ 2ð Þ, where LKJ is the
Lewandowski–Kurowicka–Joe distribution (see provided
Stan code for full details of optimization techniques used
for estimation of A and Σ). All models were fitted using
the cmdstanr package (Gabry & Češnovar, 2022) in
R (R Core Team, 2022) on the Pennsylvania State
University’s high-performance research cloud (ROAR)
using parallel computing. Nodes within the system have
256GB of memory and 3.0GHz base processing speed
(turbo frequency 3.9 GHz).

Simulation study

We performed a simulation study to assess the impact
the choice of the number of basis functions M has on
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parameter accuracy and precision. While reducing the
number of basis functions can increase bias, it can also
decrease variance and lead to a more parsimonious
model. This simulation study helped to inform the choice
of M for our case study.

The simulated data were informed by our case
study of Minnesota lake fishes, though at a reduced
size to decrease computation time (see Fish and
environmental data for more detail). The simulated
data set had K ¼ 5 species, I¼ 500 lakes (we did not sim-
ulate unsampled lakes, so N ¼ I), and J ¼ 2 gears. The
I¼ 500 lakes were randomly sampled from the full
Minnesota lake fish data set, and their corresponding
information for effort, environmental factors, and spatial
location were used to ensure a realistic gradient of vari-
ables across the entire sample region of the simulation.
The full spatial basis vector matrix, ΨN ×N , was used in
simulating the catch data. The models were fitted based
on the truncated I ×M Ψ basis function matrix for values
of M = 16, 32, 64, and 128. This allowed us to measure
how reducing the rank (i.e., reducing the number of basis
functions) of our spatial random effect influenced param-
eter estimation. These four models were fitted 100 times,
once for each randomly sampled value of CTmax and
Topt. That is, a model with M = 16, 32, 64, and 128 basis
vectors was fitted for each realization of the pair CTmax

and Topt. Using Stan, 2000 samples from the posterior
were obtained for each pair CTmax and Topt. The first
thousand iterations were discarded as burn-in, and every
fifth sample was retained for posterior inference. Output
from Stan gave no indication to suggest a lack of conver-
gence, which was confirmed via graphical checks of
model parameters.

We evaluated model performance based on the root
mean square error (RMSE) and the continuous ranked
probability score (CRPS; Gneiting & Raftery, 2007) for
each model parameter. Each metric was then summa-
rized across species, lake, and set of parameters for each
of the M = 16, 32, 64, and 128 models. The evaluation
metrics suggested that our choices of M did not signifi-
cantly influence the parameter estimates (Table 1). That
is to say, increasing M showed very minor differences
within our parameter estimates as measured by
RMSE and CRPS. The biggest improvement as
measured by RMSE was seen in the estimates for Π
going from M = 16 to 32 with RMSE values of 0.5237 and
0.4871, respectively. The biggest improvement as mea-
sured by CRPS was seen in the estimates for ω going
from M = 16 to 32 with CRPS values of 0.3059 and
0.2880, respectively. Given these minor differences, we
opted for the most parsimonious model with M¼ 16 for
our case study analysis.

Case study: Minnesota lake fish

We illustrate the implementation of the jsPGA model
using inland lake fish community data from Minnesota,
USA. Lakes in this north-temperate region approximate
the current northern and southern boundaries of many
warm- and cold-water species, respectively, presenting an
interesting case study for predicting shifts in the abun-
dance and distribution of fish with differing thermal
tolerances in response to a warming climate. For example,
the case study of Minnesota lake fish using the single-species
PGA model predicted that warming lake temperatures
would lead to extirpation of cisco Coregonus artedii, a
cold-water (cold-adapted) fish, in many Minnesota
lakes, while bluegill Lepomis macrochirus, a warm-
water (warm-adapted) fish, would see increases in
abundance (Wagner et al., 2023). Here, we expand this
analysis using the jsPGA model to jointly model eight
species that represent a range of thermal tolerances
(Appendix S1: Table S1), including black crappie
Pomoxis nigromaculatus, bluegill, largemouth bass
Micropterus salmoides, northern pike Esox lucius,
smallmouth bass Micropterus dolomieu, walleye Sander
vitreus, yellow perch Perca flavascens, and the cold-water
species cisco.

TABL E 1 Summarized evaluation metrics for parameter

estimation from a simulation study across increasing number (M)

of basis functions included within the joint species spatially

dependent physiologically guided abundance model.

Parameter M¼ 16 M¼ 32 M¼ 64 M¼ 128

β

RMSEa 1.690 1.693 1.694 1.687

CRPSa 0.601 0.569 0.569 0.566

θ

RMSEb 7.694 7.649 7.655 7.655

CRPSb 3.474 3.452 3.436 3.425

ω

RMSEa 8.342 8.359 8.344 8.299

CRPSa 3.059 2.880 2.875 2.862

Π

RMSEa 5.740 5.324 5.124 5.112

CRPSa 1.905 2.010 2.007 1.991

Note: Metrics were individually calculated for the full dimension of each
parameter and then summarized into a single mean value for each model. A
lower value represents a better estimate for both metrics.

Abbreviations: CRPS, continuous ranked probability score; RMSE, root
mean square error.
a×10−1.
b×10−3.
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The jsPGA model provides a number of the afore-
mentioned advantages over a traditional CNM and PGA
model by accounting for a species thermal physiology
(CNM) and species and spatial dependencies (CNM and
PGA). The single-species PGA model showed that incor-
porating a species thermal physiology resulted in more
realistic predictions of abundance for freshwater fishes
(Wagner et al., 2023). For example, Wagner et al. (2023)
revealed that using the observed relationship between
environmental temperature and bluegill abundance led
to unrealistic predictions under a warming climate.
Specifically, making predictions using a model based
solely on the observed positive abundance—temperature
relationships led to unlimited bluegill population growth
as lake temperatures warmed, even if future water tem-
peratures exceeded the species CTmax . In contrast, the
PGA model effectively scaled abundance predictions
based on the bluegill’s thermal physiology. The jsPGA
model further improves predictions of abundance and
distributions under a warming climate by accounting for
species and spatial dependencies. In the case of bluegill,
which are a common prey species for piscivorous fish,
such as largemouth bass and walleye (Tomcko &
Pierce, 2005), incorporating species dependencies into
the modeling structure can potentially capture these
predator–prey dynamics, an important ecological process
regulating bluegill populations (Savino & Stein, 1982;
Tomcko & Pierce, 2005). Species and spatial dependencies
may also capture important habitat characteristics that
were not available for inclusion as predictor variables in
our model (see Fish and environmental data for details).
For example, aquatic vegetation mediates the predator–
prey dynamics between largemouth bass and bluegill
(Savino & Stein, 1982; Trebitz et al., 1997). While
there is a correlation between aquatic vegetation and
water clarity (an environmental factor included in our
analysis; Kosten et al., 2009), the observed relationship
between fish abundance and measured water clarity
may not fully capture the finer-scale effects of the vege-
tation biomass, distribution, and species composition
of each lake. The relationship between predator, prey,
and habitat may be more fully accounted for by
the jsPGA model through the estimated parameters
quantifying species dependencies. Furthermore, the
distribution of vegetation has been shown to be
spatially dependent, suggesting that incorporating
spatial dependencies may further enhance our model’s
ability to compensate for missing abiotic factors (Miller
et al., 2007). Vegetation and predator–prey dynamics
are just two examples of important ecological factors
for freshwater fishes that may be accounted for by
using a model, such as the jsPGA, that incorporates
both species and spatial dependencies.

Fish and environmental data

Environmental covariates included water clarity (Secchi
disk depth, in meters), lake area (in hectares), lake eleva-
tion (in meters), and proportion of agriculture and urban
land use in the lake watershed. Water clarity was derived
from annual median values of remotely sensed water
clarity calibrated to Secchi disk depth (Max Gilnes,
Rensselaer Polytechnic Institute, Troy, NY, USA, August
2023, written communication) and calculated as the
5-year rolling mean. Lake area, elevation, and proportion
of land cover within a lake’s watershed were obtained
from LAGOS-US GEO version 1.0 (Smith et al., 2022).
Proportions of land cover within the LAGOS-US data set
are from the National Land Cover Database (NLCD;
Homer et al., 2020) and include data from multiple years
(2001, 2004, 2006, 2008, 2011, 2013, and 2016). Therefore,
the nearest temporal land-use data were joined to each
sampling record. Lake area was log-transformed and land
use was logit-transfromed prior to standardizing all
covariates to a mean of zero and standard deviation
(SD) of one. Lake surface water temperature data were
obtained from process-based models of lake temperature
profiles for contemporary and future climate conditions
(Corson-Dosch et al., 2023). To fit the model, we used the
daily lake surface temperature data generated using
the General Lake Model (Hipsey et al., 2019) driven by
contemporary climate drivers from the North American
Land Data Assimilation System (NLDAS) and sum-
marized into a 5-year rolling mean of average July
surface temperatures with respect to the sampling year
(Corson-Dosch et al., 2023).

Fish catch data were collected by the Minnesota
Department of Natural Resources using standard sampling
methodologies between 1998 and 2019 (Minnesota
Department of Natural Resources (MNDNR), 2017).
We restricted our analysis to those samples collected
between 1 June and 30 September. All species were sam-
pled using standard gill nets and trap nets, commonly
used gear for assessing the relative abundance of fishes in
littoral (nearshore) and pelagic (offshore) zones of inland
lakes. One unit of sampling effort consisted of one net
(gill net or trap net) deployed for a 24-h sampling period.
A total of 1754 lakes were sampled. Unsampled lakes for
predicting species responses to increased temperature
included were lakes within Minnesota with a surface area
greater than 0.40 ha that contained all environmental
data described earlier, resulting in 3996 total lakes to be
used for future predictions (2242 unsampled lakes and
1754 sampled for fish communities). Species thermal tol-
erance values, CTmax , Topt, and CTmin were obtained
from the literature (Comte & Olden, 2017; Wismer &
Christie, 1987, and references therein) and summarized

ECOLOGY 7 of 16

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4362, W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



as means and SDs for each species (Appendix S1:
Table S1). Values of CTmin were used to estimate σ
(Equation 3) following σ¼Topt −CTmin=4 because esti-
mates for σ were not readily available in the literature
(Deutsch et al., 2008). Estimates for CTmin were also
scarce in the literature for some species and
supplemented with values of lower incipient lethal tem-
perature (LILT).

Future climate predictions

Future lake temperatures were simulated using the
General Lake Model driven by downscaled climate
drivers from six global climate models (GCMs) under a
high-emissions scenario (Corson-Dosch et al., 2023).
Projected lake temperature data were available for
historical (1981–2000), mid-century (2040–2059), and
late-century (2080–2099) surface temperature predic-
tions (Corson-Dosch et al., 2023). To minimize bias
introduced by the use of different source models for
the predicted lake surface temperatures, we calculated
lake-specific differences in predicted temperatures
between historical and late-century eras from all
six GCMs (Appendix S1: Figure S2) and added those
differences to the corresponding 20-year average
(1981–2000) NLDAS temperatures. This allowed us to
maintain a consistent baseline source (NLDAS) for
fitting the model and predicting in the future while
taking advantage of the projected changes in tempera-
tures provided by the GCMs. For this analysis, we focus
on predictions under current conditions (using the
most recent 20-year average, 2002–2021, of NLDAS
temperatures to match the temporal resolution) and
predictions under late-century conditions, as described
earlier. Environmental conditions, other than water
temperature, were held constant for climate predic-
tions, so any predicted changes across time are due to
predicted changes in surface water temperatures. In
order to incorporate variability among GCM water
temperature predictions, predictions for thermal per-
formance scalars (Pk Titð Þ in Equation (5)) and relative
abundance under future conditions were made using
predicted temperatures from each of the six GCMs and
then summarized into a single prediction by taking the
mean of those predicted values. Posterior mean estimates
of predicted relative abundance (λitk in Equation 5) across
Minnesota lakes at different time periods were used to
summarize the predicted response of each species to
warming water temperatures. The probability of extirpa-
tion was estimated from the posterior distribution of the
thermal performance scalars for each species at each
lake. Predictions of local extirpations occurred when the

future lake surface water temperature exceeded a model’s
realization of CTmax (which accounted for the uncer-
tainty in CTmax ), resulting in the thermal performance
scalar (Pk Titð Þ of Equation (5)) to equal zero. Here, we
focus on predictions at lakes where each species is cur-
rently found to emphasize the risk of extirpation where
we know a species currently occurs.

DISCUSSION

Parameter estimates

The jsPGA modeling framework enabled the prediction
of changes in habitat suitability and relative abundance
under future thermal conditions in north-temperate lakes
by accounting for species physiology, while simulta-
neously accommodating both species and spatial depen-
dencies. As expected, parameter estimates varied across
species (Appendix S1: Table S2). Across all β coefficient
parameters, (five environmental covariates across eight
species), 34 (85%) had 95% credible intervals (CI) that did
not contain zero, and each species had at least one envi-
ronmental coefficient that had a 95% CI that did not con-
tain zero, suggesting that the included environmental
covariates were important determinants of the distribu-
tions and abundance of the eight fish species (Figure 1).
Total agricultural and developed land cover were gener-
ally significantly positively related to the abundance of
all species except cisco, suggesting that human land-use
activities in a lake’s watershed were associated with
increased abundance of most species. While cisco were
the exception and negatively associated with watershed
development, they were more strongly negatively associ-
ated with elevation and positively associated with lake
area and Secchi depth (i.e., the largest absolute magni-
tude of the coefficient estimates), suggesting that among
the species included in our analysis, cisco had the most
restrictive habitat requirements. Specifically, our analysis
suggests that cisco prefer large, low-elevation lakes with
high water clarity. Cisco are known to require cold,
well-oxygenated waters and can be particularly susceptible
to lake eutrophication (Lyons et al., 2018). High water clar-
ity is associated with lower levels of productivity and, there-
fore, higher levels of dissolved oxygen. Furthermore,
research has suggested that cisco undergo seasonal migra-
tions between shallower nearshore habitat to deeper off-
shore habitat due to their oxythermal habitat requirements,
which is likely reflected within our model through the
strong, positive relationship between lake area and cisco
abundance (Kao et al., 2020).

Estimates for θ suggested that most of the species had
higher catchability with gill nets compared with trap nets.
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The exceptions were black crappie, which had nearly equal
estimates of catchability across gear types, and bluegill,
which had higher catchability using trap nets. This result
highlights the importance of accounting for differences
in sampling efficiency across gear types and species.
Allowing for catchability to vary across gear and species
prevents the model from over- or underestimating relative
abundance due to difference in gear types. Here, with the
exception of black crappie, we see that gill nets and trap
nets were very different in their sampling efficiency across
species, and therefore would likely have significant impacts
on relative abundance estimates if not accounted for within
our model.

The effect sizes associated with the spatial basis coef-
ficients, A, varied across species. For cisco, median esti-
mates for the spatial basis coefficients were as large as
37.3 and −88.9, yet the largest values for northern pike
were 1.1 and −1.6. The frequency at which 95%
CIs overlapped zero also varied by species, with the low-
est at 6.25% for cisco and highest at 68.8% for northern
pike. Though the direct inferences of these effect sizes
are of little interest, these results reflect the spatial varia-
tion in abundance across the region not accounted for by
the covariates, emphasizing the importance of the ran-
dom effect ω (Equation 5) in our model. This variation
across species was further reflected within the basis

coefficient’s covariance Π and its components, T and Σ.
The species included in this analysis exhibited both nega-
tive and positive associations (Appendix S1: Figure S3).
Bluegill and black crappie exhibited the strongest posi-
tive correlation (0.7; 95% CI 0.38, 0.87), while bluegill
and smallmouth bass exhibited the largest estimated
negative species correlation was −0.6 (−0.81, −0.25).
Of the 28 pairwise species correlations, 7 (25%) had
95% CIs that did not overlap zero indicating significant
residual dependence between these species pairs.
Smallmouth bass accounted for nearly half of these
significant species correlations and had negative asso-
ciations with black crappie, bluegill, and cisco. These
estimates may be capturing diverging habitat require-
ments not included within our environmental
covariates or ecologically important biotic interac-
tions. Smallmouth bass are known predators of cisco
and are associated with expanding distributions within
the north-temperate regions of North America in
response to warming temperatures (Van Zuiden
et al., 2016; Zanden et al., 2004) and expanding littoral
zones (Robillard & Fox, 2006; Stasko et al., 2015). The
estimated negative association between these two spe-
cies may reflect the simultaneous influence of negative
biotic interactions (predator–prey) and shifting habitat
suitability across the region.

F I GURE 1 Estimates for β for each environmental covariate for each Minnesota, USA, lake fish species. Points represent posterior

medians, and bars represent 95% credible intervals. Black circles and bars represent estimates with credible intervals that do not overlap

zero, and gray triangle and bar estimates represent intervals that do overlap zero. A horizontal dashed line is added at 0 to aid visualization.

Species are arranged (left to right, top to bottom; cold ! warm colors) in order of increasing Topt.
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Predictions of climate change responses

Yellow perch, black crappie, walleye, northern pike, and
cisco were, on average, all predicted to decline in abun-
dance by the late 21st century (Figure 2, Appendix S1:
Table S3). Each of these species was also predicted to
decrease in relative abundance across more than half of
the lakes in our study. Conversely, bluegill, largemouth
bass, and smallmouth bass were predicted to increase in
abundance on average across all lakes. Climate change
is likely to produce thermally unsuitable habitats in
Minnesota lakes and therefore reduce abundances of fish
species with lower thermal optima, whereas warming
may result in increased thermal habitat and, thus, higher
abundance of species with higher thermal optimums.
Cisco and northern pike are likely to experience signifi-
cant decreases in abundance across much of their current
distribution in Minnesota, as the relative abundance
of these species was predicted to decline in every lake
within our study (sampled and unsampled), with average
predicted percentage decreases of 87% and 38%, respec-
tively. Black crappie and walleye were also predicted to
decrease in abundance in nearly all lakes (95% and 98%,
respectively), though their average percentage decreases
(10.92% and 19.84%, respectively) were much smaller
than those of cisco and northern pike. Generally, spatial

patterns of changes in predicted relative abundance
followed a latitudinal gradient, as expected under climate
change, where southern lakes experienced the highest
probabilities of extirpation and the largest decreases in
relative abundance compared to northern lakes, although
considerable variability existed even within small spatial
areas (Figure 2). This fine-scale heterogeneity in response
to increasing temperatures illustrates how local lake
and landscape characteristics may mediate fish responses
to climate change. For example, the strong estimated
relationships between cisco abundance and lake area,
Secchi depth, and elevation suggested that large,
low-elevation lakes with high water clarity may lessen
the negative responses of cisco abundance to warming
lake temperatures.

The estimated probability of extirpation was highest
for the cold-adapted species, cisco. Across the 364 study
lakes in Minnesota where cisco were observed, the aver-
age probability of extirpation at the end of the century
was 0.53, and 35 (9.62%) lakes exceeded a probability
of extirpation of 0.9 (Figure 3). No other species was
predicted to have as high a probability of extirpation
(i.e., >0.9) in any lake within its current distribution. The
next highest predicted probability of extirpation for a
single lake was 0.69 for the northern pike, the species
with the second lowest thermal tolerance values in our

F I GURE 2 Map of percentage change in late-century against current (2021) relative abundance predictions for eight species of lake fish

across Minnesota, USA. Changes over time are the result of predicted changes in lake surface water temperature averaged across six global

climate models and represent predicted changes in thermal suitability. Negative values indicate a decrease in thermal habitat suitability

under future climate conditions. Species are arranged (left to right, top to bottom; cold ! warm colors) in order of increasing Topt.
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study. Conversely, bluegill, largemouth bass, smallmouth
bass, and walleye all had zero probability of extirpation
across their sampled distribution, and black crappie had
near-zero probability, with all lakes having an extirpation
probability <0.01 (Appendix S1: Figure S4). In other
words, none of the lakes where these species were
observed were predicted to reach surface temperatures
that exceeded their respective CTmax (accounting for the
uncertainty in CTmax ) values by the end of the century.

The variability in species and lake-level predictions
highlight how the jsPGA is able to predict changes in
abundance and local extirpation events when future
ambient temperatures become too warm based on the
species’ thermal physiology, particularly when these
future thermal conditions exceed those currently observed.
With predicted increases in surface temperatures as high as
5.5�C in some lakes by the end of the century, the jsPGA
predicted negative impacts on abundance for most species,
including black crappie, which had predicted decreases in
abundance across 95% of the lakes in Minnesota despite

having the second highest mean value for CTmax

(Appendix S1: Table S1). These predicted decreases were
driven by their relatively low mean Topt value. In fact,
black crappie had the largest difference between these
two thermal tolerance values, which resulted in a
descending limb of their thermal performance curve
that spanned a wide range of temperatures (Equation 3,
Appendix S1: Figure S1). Thus, by incorporating the ther-
mal physiology, the jsPGA was able to predict that lake
temperatures would warm to suboptimal thermal habitat
but not be warm enough to cause local extirpations for the
observed black crappie populations in Minnesota.

Caveats of model specification and model
fitting

The goal of our case study was to illustrate the utility of
the jsPGA model for making predictions about the effects
of climate change on the distributions, abundance, and

F I GURE 3 Map of predicted extirpation probabilities at end of century for cold-adapted fish species, cisco Coregonus artedii, across its

current distribution in Minnesota, USA. Extirpations are predicted when the lake temperature exceeds the cisco’s critical thermal

maximum (CTmax ).
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extinction of poikilothermic animals and to highlight
meaningful ecological inferences that could be made
using this method. However, we note some caveats when
interpreting the case study results.

First, we summarized the temperature experienced by
fishes using surface water temperatures, which represents
the warmest part of lakes and does not represent the
total available thermal habitat—which will vary based
on lake-specific characteristics (e.g., lake morphometry),
along with species-specific life histories. This is important
because an assumption of the jsPGA, as implemented in
our case study, is that the modeled environmental tem-
perature wholly represents the actual lake temperature
experienced by organisms and does not account for
thermal stratification common in north-temperate lakes.
For example, cisco seek thermal refuge in deeper offshore
waters to avoid the increased surface water temperatures
during summer months (Kao et al., 2020), an important
aspect of their life history not fully captured within the
jsPGA model. To accommodate this aspect of cisco life
history, new statistical methodology would be required to
incorporate vertical lake water temperature profile data
into the jsPGA modeling framework.

Second, our predictions incorporate predicted shifts
in thermal habitat only and do not attempt to incorporate
any changes in other environmental factors, such as land
use or water clarity. Freshwater systems are under threat
from a variety of global change issues, including land-use
change, contaminants, and invasive species, in addition
to a warming climate (Reid et al., 2019). Future modeling
efforts could also aim to include potential changes in
measured environmental covariates to develop a more
robust understanding of the effects of global change on
species abundance and persistence. However, given our
results, it is likely that changes in thermal habitat condi-
tions will play a dominant role in the future trajectories
of Minnesota lake fishes.

Third, these predictions require the assumption that
the estimated species–environmental relationships and
species and spatial dependencies will remain constant
over time (i.e., the assumption of temporal stationarity;
Bueno de Mesquita et al., 2021). For example, we assume
that the spatial basis coefficient estimates (which account
for both species and spatial dependencies) are robust to
changes in climate. This is an important assumption
because these dependencies represent unknown mecha-
nisms influencing the abundance and distribution of
our focal species, such as biotic interactions or missing
environmental covariates. That said, the assumption of
stationarity is not unique to our modeling approach but
rather represents a broader challenge for predicting the
effects of climate change on biodiversity (Dormann
et al., 2012).

Finally, it is important to account for the size of
the data and available computing resources when fitting
the jsPGA model. Numerical integration requires fitting a
unique model realization for each randomly sampled pair
of thermal response parameters. The average computing
time for the models fitted in the simulation study
was approximately 2 h—relatively quick when fitting
these models in parallel. When applied to the Minnesota
case study, computing time greatly increased due to the
increase in the size (N , I, and K) of our data. Each model
took an average of 23 h, making sequential model fitting
unreasonable. Furthermore, though the PGA models are less
data intensive than mechanistic models (i.e., mechanistic
models often need detailed information about how a species’
fitness relates to the environment, as well as estimations of
phenotypic parameters across a diverse range of climatic
conditions; Buckley et al., 2010; Wagner et al., 2023), they
still require access to (typically) experimentally derived
values of the thermal tolerances. The availability of this
information will vary across taxa, and not all thermal
tolerances are measured in the same way. If such data are
not available, they could be informed based on closely
related species or expert opinion.

CONCLUSION

Climate change will have significant impacts on poikilo-
therms, and predicting temperature-driven changes in their
distributions, abundance, and extinction probabilities is
essential for informing climate adaptation policy and
conservation and management efforts. Here, we devel-
oped a jsPGA model and showed its utility for predicting
under future climate change scenarios. The jsPGA,
and physiologically guided models in general, help to
address issues associated with extrapolation under novel
climate conditions and provide more realistic predictions of
abundance compared with traditional physiologically naive
SDM approaches that do not account for species-specific
thermal performance and preferences (Wagner et al., 2023).
Importantly, the jsPGA allows for the simultaneous estima-
tion of potentially important species and spatial dependen-
cies, which can improve the prediction performance of the
model. Though our analysis focused on lake fishes, the
jsPGA can be flexibly fit to model the abundance of poikilo-
therms across taxa and habitats. For example, efforts to
understand the impacts of climate change on insect abun-
dance, such as ecologically important pollinator species,
may benefit from using the jsPGA model. Many of these
species are already experiencing declines in populations
globally (Johnson et al., 2023), and understanding how a
warming climate may exacerbate these declines is likely of
high importance. The jsPGA model is a new tool that can
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be broadly applied to aquatic and terrestrial poikilotherms
in an effort to understand and predict the effects of a
warming climate on their abundance and distributions.
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