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Abstract.—Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models.
Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study,
while also lacking the freedom to explore models that have not been implemented by the developers of those programs.
We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on
probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-
graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language
called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn
for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and
complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate,
RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has
fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness
may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models
in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model
choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com. [Bayesian inference;
Graphical models; MCMC; statistical phylogenetics.]

INTRODUCTION

Phylogeny estimation is now widely pursued in a
Bayesian statistical framework (Rannala and Yang 1996;
Larget and Simon 1999; Li et al. 2000; Huelsenbeck
et al. 2001; 2002; Holder and Lewis 2003; Ronquist
and Deans 2010; Yang and Rannala 2012). The success
of the Bayesian approach derives largely from the
availability of efficient algorithms that make it practical
to compute the joint posterior probability distribution
of phylogenetic model parameters (e.g., Markov chain
Monte Carlo (MCMC); Metropolis et al. 1953; Hastings
1970), and by the development of computer programs
that implement those models and algorithms. Biologists
interested in Bayesian inference of phylogeny can
now choose among a large number of software
packages (Huelsenbeck and Ronquist 2001; Ronquist
and Huelsenbeck 2003; Suchard and Redelings 2006;
Drummond and Rambaut 2007; Yang 2007; Lartillot
et al. 2009; Drummond et al. 2012; Ronquist et al. 2012b;
Aberer et al. 2014; Bouckaert et al. 2014; Lewis et al.
2015). Yet, despite the sophistication and quality of the
available software, we believe that all of the current

Bayesian programs can be improved in several important
respects.

First, the number of phylogenetic models available
in any single computer program is limited. This
forces the user to learn the details of several
different computer programs—each with its own
idiosyncrasies—to perform the analyses necessary for
a study. The patchy implementation of models across
software packages is probably a result of the typical life
cycle of a phylogenetic model. A model is conceived
and described in a paper but may or may not actually
be implemented in computer software. A new model
typically spends its infancy implemented in special-
purpose and quirky software, and may only reach
maturity when (or if) it is eventually implemented
in a robust software package. As an example of this
model life cycle, consider the approach for averaging
over substitution models proposed by Huelsenbeck
et al. (2004). This model was initially implemented
in a computer program that was quite limited in its
capabilities; the user could not consider alternative
models of rate variation or priors on the branch lengths,
etc. The substitution-model averaging approach only
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gained traction when it was implemented almost a
decade later in the program MrBayes (Ronquist et al.
2012b).

Second, existing software, such as
MrBayes (Huelsenbeck and Ronquist 2001; Ronquist
and Huelsenbeck 2003; Ronquist et al. 2012b), can
be difficult to extend as new models are described.
Every computer program has a basic architecture that
is developed around the set of models that had been
described at the time the program was written. New
models, however, might not be compatible with the basic
architecture of the program. For example, MrBayeswas
developed under the assumption that the alignment of
DNA sequences is known without error, which makes
it difficult to implement models that treat the alignment
as a random variable (see e.g., Redelings and Suchard
2005). Similarly, in MrBayes the substitution process is
assumed to be homogeneous over branches and sites
(although it accommodates variation in substitution
rate across sites and allows different models to be
applied to subsets of the data). This homogeneity
assumption has been questioned under several different
circumstances (Galtier and Gouy 1995; Lartillot et al.
2007; Boussau et al. 2008; Groussin et al. 2013). It is
possible to modify the program to allow heterogeneity
in the substitution process across branches, but only
with extensive recoding.

Third, all current phylogeny programs use awkward
methods for specifying the assumptions of an analysis
(i.e.,the parameters of the phylogenetic model). In
general, the user is asked to specify whether a specific
parameter is, or is not, part of the model. Hence,
model specification in current software is much like
throwing the proper sequence of toggle switches in a
Lunar Module; the correct sequence of toggles must be
thrown to specify any particular model, and each model
is represented by a different configuration of toggle
positions. This method for specifying models is clumsy
even when the number of models implemented in the
software is small, but becomes unwieldy as the number
and complexity of models increases. More generally, the
current approach for phylogenetic model specification
limits the range of available models to those imagined
by the software developers rather than the collective
imagination of all users.

These considerations motivated the development of
our new software package, RevBayes, an open-
source program written in the C++ language.
RevBayes was initially conceived as a major rewrite of
the popular Bayesian phylogenetic-inference program
MrBayes (Huelsenbeck and Ronquist 2001; Ronquist
and Huelsenbeck 2003; Ronquist et al. 2012b). However,
RevBayes shares no code with MrBayes and uses
an entirely new way of specifying phylogenetic
models. Indeed, we devised a language for specifying
phylogenetic models that is similar to the R language (R
Core Team 2014). RevBayes is a stand-alone software
package, but relies heavily on the Nexus Class Library
for parsing data (Lewis 2003). The resulting program
had only superficial similarity to MrBayes, so we

rechristened the program RevBayes (The new name
also reconciles a criticism by Joe Felsenstein that Thomas
Bayes was a reverend and would have been addressed
as such.) to distinguish it from its predecessor.

Similar shortcomings have been identified by
other researchers, which led to different solutions
implemented in BEAST 2 (Bouckaert et al. 2014), a
re-implementation of the popular BEAST program
(Drummond and Rambaut 2007; Drummond et al.
2012). General similarities between RevBayes and
BEAST 2 include a modular and flexible software
design that enables model diversity, complexity, and
extensibility. The main differences include the user
interface (XML vs. Rev) and our strict adoption of the
graphical-model framework. For example, BEAST 2
focuses on method developers by providing a plugin
mechanism for adding new features written in Java,
whereas RevBayes focuses on high-end users writing
new models in Rev (similar to developments in R).

Our development of RevBayes was guided by a
few key principles: (i) the program should enable
flexible-model specification and implementation; (ii) the
program should be easy and intuitive to use, and; (iii) the
program should provide fast computation and efficient
inference. We describe our solutions to each of the
requirements in a separate section below.

THE GRAPHICAL-MODEL REPRESENTATION FOR MODELING

AND INFERENCE

RevBayes is designed around the central idea that a
phylogenetic model—in fact, any probabilistic model—
can be represented as a graph (Jordan 2004). The
graphical-model framework provides the flexibility to
specify and extend models, and also confers an efficient
mathematical foundation for parameter estimation
(Höhna et al. 2014). In RevBayes, a probabilistic model
is built up in computer memory by executing a series
of commands. The user has fine-scale control over
the details of the probabilistic model because single
commands introduce individual model parameters and
also specify their relationships to other parameters. In
this way, a probabilistic model is assembled in computer
memory as one would use LEGO® bricks. Any type of
model can be built as long as the elementary pieces that
make up a graphical model—the variables, distributions,
and functions—are available.

The graph representing a probabilistic model consists
of a set of vertices (often referred to as “nodes”
in the phylogenetic literature) corresponding to the
variables in the model, connected by edges that
depict the dependence relationships among them. In
RevBayes, a model graph consists of three types of
variables: constant variables, stochastic variables, and
deterministic variables. Constant variables represent
the fixed parameters of an analysis, such as the
parameter values of a prior distribution. Stochastic
variables in the graph represent parameters of the model
or observations, and are associated with probability
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distributions. Finally, deterministic parts in the graphical
model represent a transformation of variables. Details of
phylogenetic-graphical models are described in Höhna
et al. (2014).

Designing the program around the idea of a
graphical model has several advantages. First, the
explicitness of the graphical-modeling approach has
considerable pedagogical value. All of the parameters
of the phylogenetic model are exposed, including
the parameters associated with the prior probability
distributions on the parameters. Programs such as
MrBayes enable the user to ignore the prior assumptions
because the program assigns default priors to all
model parameters. By contrast, a graphical-model
representation exposes the anatomy of the model
(including prior assumptions) to the user.

A second advantage of the graphical-modeling
approach is the inherent flexibility. New models
can be constructed from existing ones by changing
the probability distributions assigned to stochastic
variables, or by changing the functions assigned
to deterministic variables, or by introducing new
relationships among the variables (i.e.,changing the
graph structure of the model). An existing model can also
be modified by swapping subgraphs, for example, by
replacing a pure-birth model with a birth–death model.
Finally, a model can be extended by adding another
layer to it, for example by introducing a hyperprior
distribution for the speciation rate instead of using
a fixed value. The only limitation on the types of
models that can be built by the user is the number
of available “bricks” (i.e.,functions and distributions);
RevBayes provides a ton of bricks and the ability to
easily create new bricks.

THE Rev LANGUAGE FOR USER INTERACTION

We have developed a new programming language,
Rev, for interacting with RevBayes. Rev is suitable for
both interactive use and batch processing. Through Rev,
users define graphical-model components in a succinct
and intuitive way. Rev is inspired by the R (R Core
Team 2014) language and the BUGS (Lunn et al. 2009)
model-specification language; their popularity should
reduce the Rev learning curve. However, Rev differs
from these other languages because of the primary
focus of RevBayes on Bayesian inference of phylogeny,
for which R or BUGS are not compatible. That is,
R and BUGS are designed for statistical inference and
visualization of numerical data (e.g., regression analysis
and ANOVA). By contrast, the specialized parameter
types used in phylogenetic inference—for example trees
and nucleotide characters—need entirely different data
structures and algorithms for parameter estimation.

We believe that the benefits of a specifically
designed Rev language for Bayesian phylogenetic
inference outweigh the cost of developing a brand new
programming language. Our focus while designing
Revhas been on providing an intuitive and easy-to-learn

a)

b)

c)

d)

e)

FIGURE 1. Assignment operations for graphical-model components.
a) Constant assignment (“p <- 0.5”): Assignment of constant
variables/parameters in the model. b) Stochastic assignment (“x ∼
dnBernoulli(p)”): assignment of stochastic variables that are either
estimated or observed. c) Observation (“x.clamp(1)”): assignment
of observation to a stochastic variable. d) Deterministic assignment
(“x := exp(p)”): assignment of deterministic variables that are
transformations of other variables. e) Plates/repetitions (“for (i in
1:N) { ... }”): identical assignment of N variables.

syntax that also provides methods for automatic
error checking (e.g., by using explicit types). Thus,
Rev prevents users from declaring nonsensical
relationships between model variables and
their corresponding functions and distributions
(e.g., specifying a normal distribution as a prior on tree
topologies). Importantly, Rev scripts are easily shared
with the community, providing a precise description of
the details of a phylogenetic analysis that will facilitate
replication of the results (Leebens-Mack et al. 2006),
while also minimizing the effort required to repeat
complex analyses on new data sets. These scripts should
be easier to read and understand, and can easily be
adapted to incorporate model variants. Moreover,
Rev itself can easily be extended over time by adding
new functions, distributions, data types, and inference
algorithms.

In the previous section, we introduced the three
components of a graphical model; constant, stochastic,
and deterministic variables. Figure 1 illustrates how
these model variables are represented in Rev code.
We will provide a more extensive treatment of the
Rev language in a forthcoming paper; here we present
examples for constructing models using Rev.

BENCHMARKS

The success of a program like RevBayes depends on
its ease of use, the diversity of models it implements,
and also its efficiency. One might expect the efficiency
of RevBayes to be hindered by the generality of
its model-specification framework. To address this
concern, we compared the efficiency of RevBayes to
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TABLE 1. Comparing the efficiency of tree-likelihood computation
in BEAST, MrBayes, and RevBayes.

Software HKY HYK+� GTR GTR+�

BEAST v1.8 65.3 188.4 75.8 213.4
BEAST v1.8—BEAGLE 41.2 105.2 47.5 107.4
MrBayes 3.2 78.2 177.7 76.9 169.9
MrBayes 3.2—BEAGLE 92.5 221.2 91.4 222.7
RevBayes 46.9 161.3 62.5 181.2

Notes: BEAST and MrBayes were run with and without the CPU
implementation of the BEAGLE library for fast computation (Ayres
et al. 2012). Exactly one substitution model parameter was updated
per iteration, ensuring recomputation of the entire tree likelihood. All
analyses used the same fixed tree topology and branch lengths under
one of four substitution models: HKY (Hasegawa et al. 1985), HKY+�
(Yang 1994), GTR (Tavaré 1986), or GTR+� (Yang 1994). Run times are
given in seconds on a MacBookPro with a 3 GHz Intel Core i7 processor
for 105 iterations on a molecular data set with 12 species and 898 sites.

the two most popular Bayesian phylogenetic software
packages: BEAST (Drummond and Rambaut 2007;
Drummond et al. 2012; Bouckaert et al. 2014) and
MrBayes (Huelsenbeck and Ronquist 2001; Ronquist
and Huelsenbeck 2003; Ronquist et al. 2012b). The
efficiency of a Bayesian phylogeny inference program
can be measured in three ways. First, we can evaluate
how fast the software computes the likelihood under
a given model. This speed is particularly important
because computing the likelihood of a phylogenetic
tree is time-consuming, and typically needs to be
performed millions of times over the course of a MCMC
simulation. Second, we can compare run times for a
MCMC simulation, which emphasizes shortcuts taken in
the MCMC algorithm to avoid unnecessary calculations.
This is particularly critical when few parameters of a
model change during an update in the MCMC run,
where only a small part of the entire model likelihood
needs to be recomputed. Third, we can evaluate the
MCMC algorithm itself according to how well and fast
it explores parameter space. Here, we focus on the first
two efficiency criteria, as the third aspect of efficiency is
a property of the algorithm rather than the software.
However, we note that RevBayes incorporates new
MCMC algorithms—such as slice-sampling (Besag and
Green 1993) and the guided-tree proposals described
by Höhna and Drummond (2012) to efficiently explore
tree space—and can easily incorporate new algorithmic
developments. Note that RevBayes currently does not
use any external library for fast likelihood computation,
for example BEAGLE (Ayres et al. 2012) or PLL (Flouri
et al. 2015), but these could be included in the
future.

The results demonstrate that RevBayes performs
equally well or better than the basic implementations
of MrBayes and BEAST in terms of the speed of
likelihood computations (Table 1). Only BEAST with
BEAGLE outperformed our implementation in
RevBayes. The likelihood implementation in
MrBayes is actually faster than the implementation of
MrBayes with BEAGLE, which is due to the overhead of
function calls to the BEAGLE library and the comparably

TABLE 2. Comparing the efficiency of MCMC shortcuts in BEAST,
MrBayes, and RevBayes.

Software NNI Node-Slide

BEAST v1.8 30.7 42.8
BEAST v1.8—BEAGLE 21.0 28.3
MrBayes 3.2 37.2 38.1
MrBayes 3.2—BEAGLE 42.6 31.9
RevBayes 17.8 23.5

Notes: The GTR substitution model (Tavaré 1986) was fixed but the tree
was updated using either the Nearest Neighbor Interchange (NNI) or
the Node-Slide move (Lakner et al. 2008; Höhna et al. 2008; Yang 2014).
Other test conditions were identical to those described in Table 1.

modest speed improvement of BEAGLE for nucleotide
substitution models. In terms of MCMC shortcuts,
RevBayes outperformed all competing software
(Table 2). These benchmarks show that the graphical-
model framework—which is generic and thus cannot use
shortcuts specifically designed for a particular model—
can compete in terms of computational efficiency with
the most popular dedicated software used today.

EXAMPLE ANALYSES

Here, we provide examples that are based on tutorials
using empirical data, which are available on our website
http://www.RevBayes.com. Our objective is to illustrate
some of the features implemented in RevBayes, and
to demonstrate the flexibility and explicitness of the
graphical-model framework. Accordingly, we focus on
the specification of the phylogenetic models, omitting
specification of the analysis to save space.

Molecular Phylogenetic Model
We begin with a simple phylogenetic analysis of an

unpartitioned molecular data set under the general
time-reversible (GTR) substitution model (Tavaré 1986),
with a constant-rate birth–death process as the prior
distribution on the tree, and a constant substitution rate
of 0.01 substitutions per million years per site (e.g., Ho
et al. 2007) (Figure 2). Note that the only two variables
that are not declared are the data and the taxa, which are
usually provided by the user. The inherent flexibility
of this specification is readily apparent: we could,
for example, estimate the speciation rate by defining
a prior distribution for this parameter, for example,
by using speciation ∼ dnExponential(10.0). Similarly,
we could easily substitute alternative substitution
models, such as the HKY substitution model (Hasegawa
et al. 1985) by replacing the fnGTR function with the
fnHKY function. Or we could adopt an unconstrained
(unrooted) tree by specifying a prior on unrooted
trees (e.g., dnUniformTopology) and independent,
exponentially distributed branch lengths instead of
the birth–death process prior. We present some such
extensions in the following model descriptions.

http://www.RevBayes.com
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FIGURE 2. A simple phylogenetic model depicted in graphical-model notation (left) and the corresponding specification in the Rev language
(right). In graphical-model notation, constant variables are enclosed in boxes, stochastic variables are enclosed in solid circles, deterministic
variables in stippled circles, and observations in shaded circles, with arrows indicating variable dependencies. For example, the root age (root)
is a random variable described by a uniform prior probability distribution with constant upper and lower bounds (in this case, 0 and 1000),
the instantaneous-rate matrix, Q, is a deterministic function of the base frequencies and exchangeability rates (pi and er, respectively), and the
observed sequences, S, are realizations of the phylogenetic model that are clamped for inference. This model is mirrored in Rev code, where
the first two lines create the birth–death process (with fixed speciation and extinction rates; lambda = 2.0 and mu = 1.0), and a uniform prior
distribution on the root age. The following five lines instantiate the instantaneous-rate matrix for the GTR model, where both the base frequencies
and exchangeability rates are drawn from flat Dirichlet distributions. Finally, we create the stochastic variable representing the character data
drawn from the Phylo-CTMC (continuous-time Markov chain) process and attach (clamp) observations to the variable seq.

FIGURE 3. A partitioned-data model depicted in graphical-model notation (left) and the corresponding specification in the Rev language
(right). Here, we extend the simple model depicted in Figure 2 by allowing base frequencies, pii, to vary across the N pre-specified data partitions
(identical model components are grayed out). Graphically, this repetition is represented by the enclosure of the replicated variables within a
dashed box, which is referred to as a “plate” (other aspects of the graphical-model notation follow the descriptions in Figures 1–2). In Rev, this
repetition is specified using loops.

Partitioned-Data Models
It is often important to partition a data set into

multiple subsets to capture variation in the substitution
process across the alignment (comprising multiple
gene/genomic regions, codon positions of protein-
coding genes, stem and loop regions of ribosomal genes,
etc. Brown and Lemmon 2007). For example, we can
extend the previous phylogenetic model by specifying
independent base frequencies for each of N data subsets
(Figure 3).

Again, this partitioned model can be modified in
numerous ways, for example, by using independent
exchangeability rates for all partitions. The user has
complete control over specifying how parameters
are shared across data subsets. Furthermore, any
combination of substitution models is possible; for
instance, we could specify a GTR substitution model
for the first partition and an F81 substitution model
(Felsenstein 1981) for the second partition, and
so on.
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FIGURE 4. A relaxed-clock model depicted in graphical-model notation (left) and the corresponding specification in the Rev language (right).
Here, we extend the simple model depicted in Figure 2 by allowing substitution rates to vary across branches (identical model components are
grayed out). Specifically, we invoke the UCLN branch-rate model (Drummond et al. 2006), which assumes that substitution rates on each of the
2N−2 branches are independent draws from a shared lognormal distribution, with constant hyperparameters specifying the mean (�=0) and
standard deviation (�=1). Graphical-model notation follows the descriptions in Figures 1–2.

Relaxed-Clock Models
We can specify relaxed-clock models to accommodate

variation in substitution rates across branches. In this
example, we allow each branch on the phylogenetic
tree to have its own substitution rate that is drawn
independently from a shared lognormal distribution;
this is the uncorrelated lognormal (UCLN) branch-rate
model (Drummond et al. 2006; Figure 4).
The prior distribution on branch rates could just as easily
be an exponential distribution or gamma distribution, or,
in fact, any probability distribution defined for positive
real numbers (Heath and Moore 2014). The graphical-
model framework offers considerable flexibility in
defining the relaxed-clock model, whether changes in
substitution rate occur on branches or at nodes. The
rates could be drawn from an autocorrelated process
(Thorne et al. 1998; Thorne and Kishino 2002), any
type of independent-rates model (Drummond et al.
2006; Lepage et al. 2007; Rannala and Yang 2007), a
compound Poisson process (Huelsenbeck et al. 2000),
a local-molecular clock model (Yang and Yoder 2003;
Drummond and Suchard 2010), a Dirichlet process prior
(Heath et al. 2012), or any other process. It is exceptionally
easy to specify different relaxed-clock models in
RevBayes because the Phylo-CTMC distribution can
accommodate any vector of rates and does not restrict
how those rates are defined. Accordingly, the user can
readily substitute a new relaxed-clock model simply by
changing the prior model describing how substitution
rates vary across branches, thereby gaining access to the
full flexibility of RevBayes.

Gene-Tree Species-Tree Models
RevBayes allows simultaneous inference of gene

trees and species trees. In this example, we use
a birth–death process prior on the species tree

and a multispecies-coalescent process with constant,
homogeneous population size as the prior for each gene
tree (Rannala and Yang 2003; Figure 5).
Each gene tree is, in turn, used as a parameter of the
Phylo-CTMC for the corresponding sequence data and
can have its own substitution process, as defined in the
partitioned-data example above. Current variations of
this model include branch-specific population sizes. The
choice of a prior distribution on the population size is
only restricted to positive real numbers but otherwise
can be any distribution. Additionally, RevBayes allows
you to create any relationship between the gene trees and
partition-specific substitution models; for example, data
partitions with distinct substitution models can share
the same gene trees, or data partitions with distinct gene
trees can share the same substitution model.

Discrete Morphological Models
RevBayes provides several models for the analysis

of discrete morphological data. Models of molecular
evolution and discrete-trait evolution have a similar
theoretical basis, with the main considerations being
that invariant characters are typically not sampled in
morphological data, and that the character states can
be flipped without changing the meaning of the trait
(i.e.,changing all of the 0s to 1s and 1s to 0s does not
alter the information in the discrete-trait data). In this
example, we use the Jukes–Cantor instantaneous-rate
matrix for binary traits, and accommodate among-trait
rate variation using four discrete gamma categories
(Yang 1996; Lewis 2001; Harrison and Larsson 2015;
Figure 6).

Many of the modeling choices for substitution
models also apply to discrete-trait models. For example,
morphological data can be partitioned, and rates
of morphological evolution across branches can be
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FIGURE 5. A species-tree model depicted in graphical-model notation (left) and the corresponding specification in the Rev language (right).
Here, we extend the simple model depicted in Figure 2 by allowing the topology to vary across N genes (identical model components are grayed
out). Specifically, we invoke the multispecies-coalescent process (Rannala and Yang 2003) with constant population size, Ne =100, where we
assume each gene has an independent substitution process, Qi, and gene-tree topology, gi. Graphical-model notation follows the descriptions in
Figures 1–2.

FIGURE 6. A discrete-trait model depicted in graphical-model notation (left) and the corresponding specification in the Rev language (right).
Here, we modify the simple model depicted in Figure 2 by accommodating discrete morphological traits (identical model components are
grayed out). Specifically, we invoke the Mk model (Lewis 2001)—as a special case of the Jukes–Cantor model (Jukes and Cantor 1969)—with a
discretized, mean-one gamma model, �, to accommodate variation in the rate of evolution among traits (Yang 1996), which is controlled by the
shape parameter, �. Graphical-model notation follows the descriptions in Figures 1–2.

described using various relaxed-clock models. Thus,
in RevBayes we automatically gain a larger variety
of models because each model only needs to be
implemented once in order for it to be applied in
combination with many other models.

Continuous-Trait Models
Continuous-trait evolution is conceptually different

from discrete morphological evolution because it
does not rely on an instantaneous-rate matrix. The
simplest model of continuous-trait evolution is the
Brownian-motion model (Felsenstein 1985). We can
instantiate the Brownian-motion model in a way
similar to the previous models (Figure 7). The
dnPhyloBrownianREML (phylogenetic Brownian motion
using residual maximum likelihood) is a joint process

on the continuous traits at the tips, which is equivalent
to a full model (or data-augmented model) using a
tree plate (Figure 8). Again, in Rev we use loops to
represent any type of plate. The relative superiority
of alternative representations of the same model
depends on the application. For example, the residual
maximum likelihood (REML) approach is faster to
compute and allows more efficient mixing if the
topology is unknown, whereas the data-augmented
model automatically provides estimates for the values
at the interior nodes of the tree and is more flexible.
There are several extensions to the Brownian-motion
model that have been implemented in RevBayes, such
as the Ornstein–Uhlenbeck processes (Hansen 1997),
Lévy jump processes (Landis et al. 2013b), and the
multivariate normal distributed traits (Harvey and Pagel
1991; Lartillot and Poujol 2011) model. Additionally, all



2016 HÖHNA ET AL.—REVBAYES 733

FIGURE 7. A continuous-trait model depicted in graphical-model notation (left) and the corresponding specification in the Rev language
(right). Here we use a fixed phylogeny, psi, which is read in from a file. The rate of Brownian motion, sigma, is drawn from an exponential
distribution with rate parameter 10. The observed traits, T, are distributed according to a dnPhyloBrownianREML, which is a Brownian-motion
process using the phylogenetic-independent contrasts method to integrate over the unobserved states at the internal nodes. Graphical-model
notation follows the descriptions in Figures 1–2.

FIGURE 8. An alternative continuous-trait model depicted in graphical-model notation (left) and the corresponding specification in the
Rev language (right). Again, the phylogeny, psi, is assumed to be known and the rate of the Brownian motion, sigma, is drawn from an exponential
distribution with rate parameter 10. The root state, T[2K−1], where K is the number of tips, is drawn from a uniform distribution between 0 and
10. The tree-plate notation explicitly specifies that traits evolve according to a normal distribution with mean T[psi.parent(i)] (the trait value of the
parent branch) and variance scaled by the branch length, sigma2 ∗psi.branchLength(i). Only the values of the tips are clamped. Graphical-model
notation follows the descriptions in Figures 1–2.

models and methods that can be applied to molecular
data, for example, relaxed-clock models, can be applied
to continuous-trait models.

Biogeographic Models
Our final example considers a simple dispersal,

extirpation, and cladogenetic (DEC) model for a
biogeographic inference (Ree et al. 2005). We assume
iid dispersal rates between all areas and iid extirpation
rates within all areas (Figure 9). By explicitly creating
each rate parameter, we gain full flexibility to model,
for example, distance-dependent dispersal rates. The
cladogenic Phylo-CTMC variant additionally integrates
over state transitions that coincide with speciation.
We have also implemented the data-augmented model
described in Landis et al. (2013a), which enables
biogeographic analyses for many areas. WithRevBayes,
one might instead model geographic position as an
island-endemic or single-area character as proposed
by Sanmartín et al. (2008) and Lemey et al. (2009) by
adapting the discrete-morphological models described
earlier.

Joint Inference of Combined Data
In the examples above, we described how to design

analyses for different types of data. These analyses
can be performed independently or jointly, as has
been advocated by Nylander et al. (2004) and Ronquist
et al. (2012a). Every analysis can be performed jointly
if at least one variable in the model is shared. A
shared variable will cause the resulting model graph
to be connected, which is the only requirement in
RevBayes. Note that we used the same variable
for the tree (psi) for all the examples. Thus, we
could jointly infer the phylogeny from molecular data,
discrete morphological data, continuous-trait data, and
biogeographic data. At the same time, we would
accommodate uncertainty in the phylogeny when
estimating parameters of the evolutionary process, such
as the ancestral morphological states or species ranges.

VALIDATION

The models used in the preceding examples have
previously been described and tested in their original
publications. Owing to its tremendous flexibility, it is
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FIGURE 9. A biogeographic model depicted in graphical-model notation (left) and the corresponding specification in the Rev language (right).
Provided rates of dispersal (d) and extirpation (e), Q encodes the instantaneous-rate matrix used to compute transition probabilities for range
evolution during anagenesis (along branches). P gives the transition probability of cladogenic events, where the probabilities of event types are
given by the distribution, c. Graphical-model notation follows the descriptions in Figures 1–2.

impossible to present a detailed validation of all possible
models that can be specified in RevBayes. Instead, we
outline our efforts to validate our implementation.

Our general strategy for validating our
implementation of models in RevBayes entails
several steps: (i) we directly compared the computed
probabilities and/or function-return values in the
C++ code (low-level comparison) to those of other
established software, such as R, MrBayes, Phycas, and
BEAST; (ii) we compared the computed probabilities
and/or function-return values in small Rev examples
(high-level comparison); (iii) we ran analyses on small
data sets and compared the results to either MrBayes or
BEAST, where applicable.

Most importantly, we implemented an automatic
procedure to validate our implementation as follows.
A developer or user specifies any model in Rev as
if performing an analysis. Next, RevBayes simulates
parameter values and data utilizing the imbedded
simulation routines. Finally,RevBayes infers parameter
estimates from the simulated data and checks how
often the true parameters fall into a 90% credible
interval. The frequentist expectation of the credible
intervals guarantees that 90% of the simulations should
recover the true parameters (Huelsenbeck and Rannala
2004). This procedure provides an unprecedented
automatic feature to test and validate existing and new
implementation in RevBayes.

LIMITATIONS

Understandably, only a subset of all possible models
are implemented in RevBayes. Nevertheless, the
diversity of models implemented in RevBayes exceeds
that of most other programs, such as MrBayes,
owing to the immense flexibility for combining models
using the Rev language. The addition of many other
phylogenetic models will, of course, require extensions
of the underlying C++ code. For example, it is

currently not possible to specify models for gene-
transfer or gene-duplication-and-loss that are available
in other more specialized software (Arvestad et al.
2003; Szöllősi et al. 2012; Boussau et al. 2013). As
the development of RevBayes continues, such models
will become available to users. The fact that not all
conceivable models are currenly available in RevBayes,
however, should not detract from its primary design
strength: the capacity of RevBayes to easily add and
extend existing models. We provide an overview of
most of the currently implemented models in the
RevBayes tutorials, which are available on our website
http://www.RevBayes.com.

We note that the availability of a model by itself
does not guarantee that it is possible to perform
efficient (or even feasible) inference under that model.
Instead, clever MCMC algorithms are often crucial for
efficient exploration of parameter space, particularly
for more complex models (e.g., Vaughan et al. 2014).
From this perspective, the design of RevBayes offers
several advantages. First, RevBayes provides a number
of Monte Carlo algorithms—such as the Metropolis-
Hastings (Metropolis et al. 1953; Hastings 1970),
and the Metropolis-coupled MCMC (Gilks et al.
1996; Altekar et al. 2004) algorithms—that can be
used interchangeably. Second, RevBayes provides a
diverse array of proposal mechanisms that can be
applied in various combinations to a given parameter
to achieve efficient mixing. Third, RevBayes uses
adaptive MCMC to automatically tune and optimize
the proposal mechanisms (cf., Haario et al. 1999). Slow
mixing is a common challenge of MCMC algorithms;
RevBayesmerely provides a new framework with many
features to alleviate these issues.

AVAILABILITY

RevBayes is open source and available from
https://github.com/revbayes. It is freely available
under GNU General Public License version 3.0. We

http://www.RevBayes.com
http://github.com/revbayes
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are maintaining a website for RevBayes found at
http://www.RevBayes.com and a mailing list called
revbayes-users.
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