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Abstract

Background—Early hospital readmission for patients with cirrhosis continues to challenge the 

healthcare system. Risk stratification may help tailor resources, but existing models were designed 

using small, single-institution cohorts or had modest performance.

Aims—We leveraged a large clinical database from the Department of Veterans Affairs (VA) to 

design a readmission risk model for patients hospitalized with cirrhosis. Additionally, we analyzed 

potentially modifiable or unexplored readmission risk factors.
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Methods—A national VA retrospective cohort of patients with a history of cirrhosis hospitalized 

for any reason from January 1, 2006 to November 30, 2013 was developed from 123 centers. 

Using 174 candidate variables within demographics, laboratory results, vital signs, medications, 

diagnoses and procedures, and healthcare utilization we built a 47 variable penalized logistic 

regression model with the outcome of all-cause 30-day readmission. We excluded patients who 

left against medical advice, transferred to a non-VA facility, or if the hospital length of stay was 

greater than thirty days. We evaluated calibration and discrimination across variable volume and 

compared the performance to recalibrated pre-existing risk models for readmission.

Results—We analyzed 67,749 patients and 179,298 index hospitalizations. The 30-day 

readmission rate was 23%. Ascites was the most common cirrhosis-related cause of index 

hospitalization and readmission. The AUC of the model was 0.670 compared to existing models 

(0.649, 0.566, 0.577). The Brier score of 0.165 showed good calibration.

Conclusions—Our model achieved better discrimination and calibration compared to existing 

models, even after local recalibration. Assessment of calibration by variable parsimony revealed 

performance improvements for increasing variable inclusion well beyond those detectable for 

discrimination.

Keywords

cirrhosis; hospital readmission; risk prediction; logistic regression; calibration

BACKGROUND

Cirrhosis carries significant morbidity and mortality due to decreased mental, physical, and 

biochemical function. The prevalence is estimated between 400,000 and 3,000,000 persons 

in the United States, and the disease causes 44,000 deaths annually.1–5 Liver disease costs 

the US over $2 billion annually in direct healthcare costs,1,6 and though the exact portion 

attributable to cirrhosis is challenging to calculate, a significant portion is likely due to the 

150,000 hospitalizations and nearly 600,000 annual outpatient visits.7–9 Given that 69% of 

hospitalized cirrhotic patients will have at least one non-elective readmission,10 reducing 

readmission can be a significant cost saver. Additionally, early hospital readmission is seen 

as a marker of poor healthcare quality11,12 and is associated with increased mortality,13 

increased psychosocial burden on the patient and their caregivers,14–16 and low patient 

satisfaction in other conditions.17

It has been estimated that 27.1% of readmissions may be avoidable.18 Though programs to 

reduce readmission have been met with mixed success, the more successful interventions are 

often a combination of multi-pronged approaches.19 In cirrhosis, interventions such as 

mandatory gastroenterology consultation,20 early outpatient follow-up,21 and specialized 

care delivery methods such as a “day hospital”22 may all improve readmission risk. These 

are resource intensive interventions and as such will require risk stratification to identify 

high-risk patients, an approach that has shown success for heart failure.23,24

Clinical decision support tools that risk stratify patients in support of targeted intervention 

require highly accurate, generalizable risk prediction models, lest misleading risk estimates 

Koola et al. Page 2

Dig Dis Sci. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lead to inappropriate treatment choices or wasting limited resources.25–28 Models trained on 

small samples often suffer from overfitting, resulting in reduced performance when applied 

to subsequent patients treated at the same institution or patients treated in other healthcare 

systems.29–31 The majority of studies in a recent systematic review assessing cirrhosis 

readmission risk were limited by either being smaller, single center cohorts or large 

administrative database analyses.32 The former lacks the power to analyze multiple risk 

factors and is limited by the possibility of uncounted readmissions to other centers, which 

may reduce generalizability. The latter studies lack the granular detail of institutional 

cohorts. Moreover, the majority of these papers primarily attempted to identify risk factors, 

as opposed to building a risk prediction model.32 Of the analyses that did create risk 

prediction models, they have been limited by modest performance, sample sizes, and number 

of candidate predictor variables (Refer to Table 1 for a summary).13,33–37

However, even models based on large datasets require continued validation and potential 

updating as model accuracy may decline over time in evolving clinical environments.38–40 

Changes in the mix of patient risk factors, outcome prevalence, treatment patterns, or 

documentation practices may harm model calibration and lead to misaligned predicted-to-

observed risk.38,41,42 Assessing, restoring, and maintaining model calibration are critical for 

risk prediction tools that provide clinical decision support.28,43,44 Only two of the studies in 

Table 1 attempted to assess calibration, and they used the Hosmer-Lemeshow test, which has 

faced criticism for being an incomplete assessment of calibration.45

Extensive clinical data warehouses generated by electronic health record systems provide 

new opportunities to develop risk prediction models based on larger datasets.25,46,47 The 

Department of Veterans Affairs (VA), with one of the largest clinical data warehouses 

encompassing over 20 million patients with granular data,48 faces an increasing burden of 

chronic liver disease due to substance use disorders, chronic viral hepatitis, and increasing 

numbers of patients with NAFLD.49 These dramatic increases in overall prevalence of 

cirrhosis at the VA necessitate targeted interventions and tailored care delivery pathways, for 

which risk stratification is essential. The aim of the current study was to leverage a large 

clinical database from the Department of Veterans Affairs to design a cirrhosis readmission 

risk prediction model.

METHODS

Study Cohort

We analyzed a retrospective cohort of cirrhotic patients hospitalized for any cause from 

among 123 medical centers in the Department of Veterans Affairs (VA) between January 1, 

2006 and November 30, 2013. We included historical data from January 1, 2005 to allow for 

variable ascertainment and the last month in 2013 to assess for readmission from index 

hospitalizations during November 2013. We defined a history of cirrhosis as patients who 

had a cirrhosis diagnosis (based on a history of two outpatient or one inpatient) ICD-9 code 

(571.2 or 571.5) or an ICD-9 code for a cirrhosis complication (varices, hepatic 

encephalopathy, hepatorenal syndrome, or portal hypertension).50 The use of 1 inpatient or 2 

outpatient codes for identification of disease is frequently used and has been validated for 

patients with cirrhosis.51

Koola et al. Page 3

Dig Dis Sci. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because we included all-cause hospitalizations, they did not need to have a cirrhosis or 

cirrhosis complication administrative code during the index hospitalization. We excluded 

hospitalizations after liver transplant (including the transplant hospitalization itself), if the 

patient was discharged against medical advice, if the patients were transferred to a non-VA 

facility, if the patient’s age was less than eighteen, or if the hospital length of stay (LOS) 

was greater than thirty days. Patients with LOS greater than thirty days were excluded 

because they frequently represented issues with disposition rather than severity of illness, 

particularly at the VA where there are fewer patient-related financial incentives for rapid 

hospital discharge. We further limited index hospitalizations to not having another 

hospitalization within the 30 days prior to admission. Refer to Figure 1 for the cohort flow 

diagram.

Though we allowed for all-cause hospitalization, we identified cirrhosis related index 

admissions and readmissions similarly to other studies,52,53 as hospitalizations with 

discharge diagnoses identifying cirrhosis or cirrhosis related complications. Specifically, we 

used administrative codes to identify hepatorenal syndrome, hepatic encephalopathy, ascites, 

spontaneous bacterial peritonitis, hepatocellular carcinoma, portal hypertension, and “Other 

serious complications of chronic liver disease.” If a hospitalization had none of these codes, 

the hospitalization was deemed not cirrhosis related. Code sets used to determine these 

conditions are available in the appendix. The institutional review board and research and 

development committees of the Tennessee Valley Health Care System VA Medical Center, 

Nashville, TN approved this study.

Outcome Ascertainment

We generally followed Centers for Medicare & Medicaid Services (CMS) criteria for 

readmission measures.54 Our outcome was all-cause rehospitalization within a 30-day period 

from the date of discharge from an index admission. Per CMS criteria, planned admissions 

were excluded and not counted as readmission; refer to the Appendix Figure 1 for our 

definition of planned admissions. If a patient had multiple unplanned admissions within 30 

days of the index hospitalization, only the first one was counted. However, if the first 

admission within 30 days of the index hospitalization was planned, then subsequent 

admissions within the 30-day timeframe of the index hospitalization were not treated as 

readmission for that index admission. We took this approach, consistent with CMS 

guidance, because the subsequent admissions could be a consequence of the intervening 

planned admission.

Data Collection

The VA is an integrated care network that includes acute inpatient hospitals, outpatient 

primary care and sub-specialist clinics, outpatient pharmacies, rehabilitation facilities, long-

term care facilities and domicilliaries. All VA personnel use the same EHR, Veterans 

Information Systems and Technology Architecture/Computerized Patient Record System 

(ViSTa/CPRS), for documentation and administration of clinical care,20 and data from all 

sites is stored in the Corporate Data Warehouse and provisioned by the VA Informatics and 

Computing Infrastructure.48
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Predictor Variables

We initially evaluated 208 variables and excluded 34 variables with > 60% missing or < 

0.2% prevalence, leaving 174 candidate risk variables from demographics, labs, diagnoses/

procedures, medications, vital signs, and healthcare utilization factors. We refer the reader to 

the appendix for a description of all candidate variables. Our final model contained 47 

variables, determined by the variable selection procedure detailed below. Except for 

cirrhosis-related medications (e.g., lactulose), which were coded as separate variables, all 

medications were represented by their corresponding VA drug class code (e.g., 

“cephalosporin 3rd generation”). The VA drug class codes are available publicly through the 

VA National Drug File and the Unified Medical Language System.56 Most variables were 

assessed at the time of discharge. Laboratory values and vital signs were assessed as the last 

available value prior to the discharge date and time. Medications were represented as 

medication classes, and both home medications and medications administered during the 

index hospitalization were included. Variables representing risk scores (e.g., FIB-4) were 

calculated from discharge lab values. Missing values for laboratory tests and vital signs were 

imputed using a matrix completion approach based on non-negative matrix factorization57 

using the R package NNLM.58

Model Development

In order to obtain a more parsimonious model, we used the 174 candidate risk variables 

noted above in a variable selection procedure. We performed a penalized logistic regression, 

using the L1 penalty (Least Absolute Shrinkage and Selection Operator — LASSO), to 

select a subset of the predictor variables.59 LASSO is a form of linear regression designed to 

both address overfitting and provide variable selection. The LASSO approach shrinks 

coefficients toward the null value of 0 based on a penalty parameter, lambda, which controls 

the sum of the model’s coefficients. This coefficient “shrinkage” reduces the risk of 

overfitting the model to the particulars of the training data. Variable selection is achieved 

when the coefficients of weakly predictive variables are reduced to 0 and the influence of 

these variables is eliminated from the model. Penalized regression with LASSO is frequently 

superior to other common variable selection methods such as forward/backward selection in 

many biomedical datasets.60 Refer to Figure 2 for a description of our overall model 

development workflow.

We considered two LASSO models, one generating the lowest error and a second more 

heavily regularized (i.e., fewer number of variables) model yielding deviance one standard 

error from the former model. Since the latter afforded a more parsimonious model (174 vs. 

47 variables, respectively) with similar predictive performance (AUC difference of 0.01), we 

selected the second model for risk prediction. This model contained 47 variables and 

included: healthcare utilization (6 variables), history of cirrhosis complications (4), 

comorbidities (4), laboratory tests (9), inpatient administered (13) and home (5) 

medications, and miscellaneous variables (6). A summary of the selected variables with their 

percent missingness is available in the Appendix Table 5. We subsequently used the 47 

variables identified by the LASSO procedure in an unpenalized logistic regression model 

with 30-day readmission as the outcome.
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Model Evaluation

We assessed overall discrimination using the Area Under the receiver operator characteristic 

Curve (AUC) 61 and assessed model accuracy using the Brier score, for which 0 implies 

perfect accuracy.61 We estimated optimism using 200 bootstrap samples and calculated 

confidence intervals for performance metrics.62 Additionally, we graphically analyzed 

calibration using smoothed calibration belts, which highlight the relationship between 

observed and predicted probabilities across the range of predictions.63,64

Variable selection requires a tradeoff between performance and parsimony. In order to assess 

this, we evaluated the discrimination and calibration performance of our model across a 

spectrum of regularization/shrinkage under varying values of the penalty parameter, lambda, 

within the LASSO. For models with each variable set, we assessed model performance as a 

function of model complexity (as measured by the number of model variables) based on the 

AUC and the proportion of observations falling within calibrated ranges of the calibration 

belts.

Model Comparison

We compared our model against VA-data updated versions of models published by Singal,34 

Berman,33 and Bajaj.35 Re-calibrating a risk prediction model tailors the model to a new 

cohort, attempting to resolve loss of model performance due to changes in event rates and 

case-mix.42 We tailored the three published models to VA data by constructing new, separate 

logistic regression models using the original model components. We report the AUC and 

Brier scores for these VA-tailored versions of the literature models using similar procedures 

as discussed above. As Bajaj offers a model for both the admission and discharge timeframe, 

we chose to evaluate the discharge timeframe model. We defined statistical significance as 

non-crossing of the 95% bootstrapped confidence intervals.

Additionally, we used the outcome-specific Net Reclassification Index (NRI) to analyze our 

model’s improvement over existing models for two use cases: (a) identifying patients at very 

low risk of readmission, < 10%; and (b) finding very high risk patients, > 40% risk of 

readmission.65,66 The NRI compares our primary model against each established model with 

values > 0 indicating improved prediction performance. The outcome specific NRI can be 

interpreted as the change in true positive rate for predicting readmission, or conversely the 

true negative rate for predicting no-readmission. All statistical analyses were performed 

using the R statistical programming suite, version 3.3.2.

RESULTS

Study Population

After applying inclusion and exclusion criteria, 67,749 patients were included in the study 

with a total of 179,298 all-cause index hospitalizations. There were 41,134 readmissions 

within 30 days for an unadjusted readmission rate of 23%. Males represented 97.6% of the 

total admissions, with an age of 60.6 ± 9.0 (mean ± SD). Caucasian patients accounted for 

the majority of hospital admissions (73.6%). The etiology of cirrhosis was mainly alcoholic 

(29.4%), viral hepatitis (11.8%), or alcoholic and viral (33.2%). In the remaining patients, 
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the causes of cirrhosis were NAFLD (24,066, 13.4%), primary biliary cirrhosis (649, 0.4%), 

autoimmune hepatitis (222, 0.1%), hemochromatosis (733, 0.4%) and other/cryptogenic 

(20,302, 11.3%). The average MELD score at index hospitalization was 13.3 ± 5.4 with 

30,907 hospitalizations (17.2%) having a MELD score ≥ 18. Refer to Table 2 for a 

description of the cohort.

Details of Index Admission and Readmissions

Approximately 62% and 60% of index hospitalizations and readmissions were cirrhosis 

related, respectively (Refer to Table 3). Ascites was the most common cause of cirrhosis 

related index hospitalization (32686, 18.23%) and readmission (9822, 23.88%). Hepatic 

Encephalopathy was associated with 10% of index hospitalizations and 15% of 

readmissions. Both hepatic encephalopathy and ascites had a significant increase as causes 

of readmission as opposed to index hospitalization. Relationships between index 

hospitalization diagnoses and readmission diagnoses are displayed in the flow model (Refer 

to Figure 3).

Model for 30-Day Readmission

The model’s discrimination produced an AUC of 0.670 (95% CI: 0.666 – 0.674). The 

calibration for our model as assessed by the Brier score was excellent 0.165 (95% CI: 0.163 

– 0.166). Table 4 lists the odds ratios from the logistic regression model. In general variables 

reflecting poor psychosocial status, increased healthcare utilization, higher disease severity, 

and decompensation all were associated with higher risk of readmission. Psychosocial risk 

factors identified included Medicaid insurance (OR: 1.21, 95% CI: 1.09 – 1.34), drug abuse 

(OR: 1.07, 95% CI: 1.04 – 1.10), and psychiatric disturbance (OR: 1.11, 95% CI: 1.08 – 

1.15). Among healthcare utilization predictors, number of inpatient visits, outpatient visits, 

and ER visits, primary care provider visits all were associated with increased risk of 

readmission. If the patient had surgical procedure during admission, the patient has 

significant lower chance of readmission (OR: 0.77, 95% CI: 0.73 – 0.80). Laboratory values 

suggesting worse liver disease were associated with higher risk of readmission, e.g. every 1 

g/dl increase in serum albumin decreased readmission risk by 9% (OR: 0.91, 95% CI: 0.89 – 

0.93).

Patients with hepatocellular carcinoma (HCC) or who had surgery within 24 hours of 

admission were associated with decreased risk of readmission. The HCC patients in our 

cohort had decreased prevalence of comorbid conditions including heart failure (12.6% vs. 

25.6% in HCC vs. non-HCC, p < 0.001) and chronic kidney disease (14.0% vs. 21.0%, p < 

0.001). Similarly, patients receiving surgery had fewer comorbidities and had experienced 

fewer complications of cirrhosis, including hepatic encephalopathy (12.0% vs. 24.4% in 

surgical vs. non-surgical patients, p < 0.001), ascites (25.4% vs. 36.8%, p < 0.001), and 

varices (18.2% vs. 22.6%, p < 0.001).

Effect of Variable Number

When analyzing model performance as a function of the number of variables, we identified a 

plateau effect for discrimination with the AUC asymptotically approaching 0.68. The 

calibration also showed a shoulder effect after ~ 40 variables (Figure 4). We note that for 
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underfit models with very few variables, calibration appears superior however the model is 

unable to discriminate between cases and controls due to a lack of variability in predicted 

values. Even after recalibrating the Bajaj, Berman, and Singal models to VA data, their 

calibration was particularly poor as measured by the percentage of observations that were 

calibrated (41.0%, 28.1%, and 35.3%, respectively).

Comparison to Existing Models

Our model’s AUC was statistically significantly better than the Singal, Berman, and Bajaj 

models: 0.649 (95% CI: 0.645 – 0.653), 0.565 (95% CI: 0.562 – 0.570), and 0.577 (95% CI: 

0.573 – 0.581), respectively (Refer to Table 5). The NRI demonstrated that our model, when 

compared to the three extant models, achieved 3 – 16 percent improvement in predicting 

readmission accurately for high risk patients (Figure 5). For low-risk patients, the Singal, 

Berman, and Singal models were poorly calibrated and did not predict that any of the 

patients had a low risk of readmission. Refer to the Appendix for details.

The Brier scores for the Singal, Berman, and Bajaj models were 0.167 (95% CI: 0.165 – 

0.168), 0.175 (95% CI: 0.174 – 0.177), and 0.175 (95% CI: 0.173 – 0.176), respectively. 

Though calibration appears similar when assessed numerically, the smoothed calibration 

belts (Figure 6) demonstrate differences in ranges and uncertainty in calibration. The Bajaj 

and Berman models appear well calibrated for admissions predicted to have a probability of 

readmission between 0.2 and 0.4; however, closer inspection reveals that this is primarily 

due to a very narrow range of predicted probabilities. Both our model and the Singal model 

exhibit better calibration across a wider range of predictions. Yet in comparison to the Singal 

model, our model’s calibration curve is either closer or similarly close to ideal calibration 

across the range of predictions and displays less uncertainty in this performance, particularly 

among higher risk observations.

DISCUSSION

Existing research has identified targeted interventions that help reduce readmissions 

amongst patients with cirrhosis. However, for these interventions to be cost effective and 

successful, healthcare systems must identify patients at high readmission risk. In this work, 

we constructed a model to predict 30-day readmission amongst patients with cirrhosis. To 

the best of our knowledge, this was the largest dataset with granular, clinical data used for 

this endeavor (67,749 patients with 179,298 admissions). Our model was significantly better 

at predicting readmission compared to three published models.33–35

There is an ongoing tension in risk prediction modeling used in clinical settings between 

model variable parsimony and performance. Perhaps this work’s most critical finding is that 

sustained, adequate levels of model calibration require retaining many more variables than 

would be required to show only discrimination. Furthermore, recalibrating external models 

with fewer variables does not provide the same level of performance in a local environment. 

This will be especially important for identifying high risk patients, for whom the most 

expensive interventions would be targeted. Misleading patient-level risk estimates may lead 

to overconfidence, inappropriately alter treatment choices, or misappropriate limited 
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resources.25,28,67 The re-calibrated Bajaj, Berman, and Singal models had less than 50% of 

observations well calibrated.

Overall, there were several risk factors identified that were significantly associated with 

readmission that may guide decision making, and in some cases, may be modifiable. 

Unsurprisingly, increased disease severity was associated with higher risk of readmission. 

These findings have been corroborated in other studies, including ascites68,69 and HE.70,71 

We also identified PPI use associated with increased risk of readmission, similar to Bajaj et 
al.35 Our finding that patients with HCC were associated with a lower risk of readmission 

was also identified by Brown et al.72 Higher mortality among these patients and discharge to 

hospice or palliative care status may account for these findings.

It is essential to include modifiable risk factors whenever possible, and we favored allowing 

more variables in our model over further parsimony. We identified electrolyte disturbance 

and diuretic use to be a strongly associated with readmission. Electrolyte disturbances 

including hyponatremia73 and hypokalemia70 have been associated with readmission in 

other studies. More investigation needs to be done in how to dial in the right diuretic dose 

for cirrhosis as outpatients, as this is a common problem after hospitalization as diuretics are 

often changed during hospitalization. For example, there is exciting work in passive sensor 

technologies such as wearable electrolyte sensors that can measure various serum electrolyte 

levels measured through sweat.74

Our study further highlights the importance of psychosocial risk factors mediating 

readmission risk. Drug abuse, severe psychiatric disorders, and Medicaid insurance (a 

surrogate for income and disability) were all strongly correlated with readmission. The VA’s 

patients face a higher burden of substance abuse, particularly among Iraq and Afghanistan 

veterans where the prevalence has been estimated at 11%.75 Patients with cirrhosis face a 

high burden of depression, unemployment (44%), and financial risk.76 Mental health 

comorbidities and substance abuse was a common predictor in other models of readmission 

risk in other diseases.77

Historically, risk models relied on relatively few predictor variables;33–35 however, the 

power of the EHR has allowed risk prediction models to be built using significantly larger 

cohorts with a larger candidate predictor variable pool. Routine revalidation and possible 

recalibration allows prediction models to be tailored to the local clinical setting.41,78–80 All 

three tested models declined in discrimination and calibration performance in this cohort, 

despite following best practices and updating the models for VA data. Our data suggest 

increased accuracy using a large national dataset; however, our analysis also suggests that 

there might be a ceiling effect for predictive accuracy using all relevant EHR variables 

within a system, at least for patients with cirrhosis.

The EHR allows automated risk calculation and integration of predictive analytics into the 

clinical workflow for decision support. Several studies have shown improved outcomes 

embedding more complicated prediction models, automatically calculated by the EHR, 

within routine care. 81–83 Numerous studies have described interventions to reduce hospital 

readmission, though effective interventions tend to be complex and involve patients in self-
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care.84 Medicare initiatives targeting multifactorial improvements in post-discharge 

transitions of care have been shown to be effective in community hospital settings.85 

Examples of post discharge interventions include more intensive medical monitoring or 

telemonitoring, early post-discharge visits and phone calls, and team-based approaches.86 

Tapper et al. have shown that using checklists and standard protocols for postdischarge 

treatment of patients with encephalopathy or subacute bacterial peritonitis effectively 

reduced readmission rates in decompensated cirrhotics.87 Careful consideration of patient 

risk and appropriate interventions to prevent readmissions continues to remain a challenge.

Our analysis has limitations. First, our cohort is largely comprised of male patients and may 

not generalize to a population with a greater proportion of female patients, particularly as 

female patients may face specific psychosocial risk factors that impact readmission risk. In 

terms of applicability, the current model can be applied within the VA EHR system at any 

facility. Regardless, none of the variables we used in our model are specific to the 

Department of Veterans Affairs. Validating model performance in other healthcare systems 

would be essential future work for testing the concept that this comprehensive group of 

variables would provide greater predictive accuracy.

Second, the transition to ICD-10 in the US (and its use in the rest of the world) will require 

revalidation for codes without a one-to-one mapping. Third, the VA clinical data warehouse 

captures information regarding all inpatient admissions to the VA and all admissions outside 

the VA system for which the VA pays. However, there will be a minority of patients who 

seek inpatient care outside the VA system, which would lead to underestimation of 

readmission. Fourth, the structured data only identified 123 hospitalizations where the 

patient was discharged to hospice care, which is likely heavily underestimated. As discussed 

previously, this ascertainment bias may have led to the association of reduced readmission 

for HCC patients. Finally, the utility of the model will require prospective validation at 

multiple sites within the VA system, first for corresponding accuracy and second to see if it 

can be used to target appropriate interventions to help reduce short term readmissions.

Conclusion

In summary, this study identified a high 30-day readmission rate in patients with advanced 

liver disease. To our knowledge, this is the largest study building a readmission risk model 

using granular clinical data for patients with cirrhosis. Our evaluation of published 

readmission risk models indicated all would require recalibration to be used in a new 

healthcare setting and some may require fully rebuilding the model. Predicting readmission 

for patients with cirrhosis is challenging. The current model is a step towards personalized 

medicine and advancing high performing predictive analytics deployed within routine care 

and describes the use of a robust modeling method that brings us closer to the promise of big 

data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Flow of patients from total number of patients before exclusion criteria to total number of 

patients included in study.
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Figure 2: Description of overall model development workflow.
Our variable selection pipeline considers 208 distinct variables in our EHR and eliminates 

variables with very low prevalence or excessive missingness (Step 1, highlighted in figure). 

Subsequently we used penalized logistic regression (via LASSO) to perform variable 

selection (Step 2). LASSO creates separate models with increasing numbers of variables 

starting with the most important to least important. We selected the LASSO model that 

sufficiently reduced classification error while still producing a parsimonious model (Step 4). 

The literature models (Bajaj, Singal, and Berman) were then tailored to the VA data via 

logistic re-calibration (Step 5) and we compared the VAtailored version of those models 

with ours (Step 6).
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Figure 3: Index hospitalization reason and readmission hospitalization reason.
For purposes of clarity, diagnoses of “Portal Hypertension” and “Other sequelae of chronic 

liver disease” were combined into “Other Complications.” “Possibly Cirrhosis Related” 

hospitalizations refer to hospitalizations using the ICD code for cirrhosis only, which may be 

non-specific. HE: Hepatic Encephalopathy; HCC: Hepatocellular Carcinoma; SBP: 

Spontaneous Bacterial Peritonitis; HRS: Hepatorenal Syndrome.
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Figure 4: Discrimination and calibration performance of 30-day readmission models as a 
function of the number of included variables.
The variables used at each stage depend on the “solution path” of the LASSO. Confidence 

intervals obtained through 5-fold cross-validation. Panel A: Change in discrimination (as 

measured by AUC); Panel B: Change in calibration. We measured calibration performance 

as the number of observations that were well calibrated. We defined well calibrated as the 

observed probability matching the predicted probability (within a 20% margin of error). The 

dotted line represents the performance of our final model (47 variables). The performance of 

the VA-data tailored literature models (Bajaj, Berman, and Singal) are also provided.
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Figure 5: Improvement in prediction accuracy for identifying low and high probability of 30-day 
readmission measured by the Net Reclassification Index.
The Net Reclassification Index compares our primary model against each established model 

with values > 0 indicating improved prediction performance. Performance is shown for two 

use cases: (a) identifying patients at low risk of readmission, < 10%; and (b) finding very 

high risk patients, > 40% risk of readmission. Our model shows improved overall 

performance and outcome specific performance (readmission versus no readmission). The 

outcome specific NRI can be interpreted as the change in true positive rate for predicting 

readmission (or conversely improvement in the true negative rate for predicting no 

readmission).
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Figure 6: Calibration curves for our model versus the three comparator, literature models.
Note: Perfect calibration is represented by the diagonal black line. Curves are limited to the 

range of predicted probabilities provided by each model. GLM: “General Linear Model,” i.e. 

our model.
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Table 1:

Summary of existing risk prediction models for hospital readmission among patients with cirrhosis.

Model Study Type & 
No. of 

Subjects

No. of 
Candidate 
Variables

Candidate Variable Domains Discrimination Calibration

D V D X M P I R C L Y U T S

Berman 
(2011)33

447
836

¥ ∼ 27
C=0.57

¥ n/a

Bajaj 
(2016)35

1343 ∼ 25 C=0.64 n/a

Morales 
(2017)13

112 ∼ 34 C=0.76 HL ns

Singal 
(2013)34

629
209

β ∼ 30 C=0.66 HL ns

Tapper 
(2015)37

489
245

β ∼ 22 AUC=0.69 n/a

Volk 
(2012)36

402 ∼ 22 C=0.65 n/a

Our 
Model

67,749 208

Note: Study Type = Validation (V) and Development (D). If a study assessed performance in a separate validation cohort, we have reported the 
performance in the validation cohort. The number of candidate variables had to be inferred based on the written methods and the cohort summary 
table as this number was not explicitly reported. Model discrimination reported as either C-statistic or area under the curve (AUC), which can be 
considered equivalent. Risk Variable Domains Coding: D: Demographics; X: Medical/Surgical Hx; M: Meds; P: Inpatient procedures; I: Physical 
impairment; R: Risk scores; C: Cirrhosis related complications; L: Labs; Y: Psychosocial; U: Healthcare Utilization; T: Transplant status; S: 
Discharge disposition.

¥
Validation performed in separate study (Singal)34

β
Validation cohorts were created by random train-test split of the original cohort

HL: Hosmer-Lemeshow test for goodness-of-fit.
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Table 2:

Demographic, clinical and laboratory variables of included patients at first admission.

Variables All index admissions (n=179,298 admission, 67,749 patients)

Age, mean (SD) 60.6 (9.0)

Gender (male), n (%) 175,068 (97.6)

Race, n (%)

 White 132,015 (73.6)

 Black 32,919 (18.4)

 Asian-Hawaiian-Pacific Islander 2,885 (1.6)

 American Indian-Alaskan Native 2,885 (1.6)

 Unknown 8,594 (4.8)

Cirrhosis Etiology, n (%)

 Alcoholic 52,736 (29.4)

 Viral (Hep B and C) 21,144 (11.8)

 Alcoholic and Viral 259,446 (33.2)

 NAFLD 24,066 (13.4)

 Hemochromatosis 733 (0.4)

 Autoimmune hepatitis 222 (0.1)

 Biliary Cirrhosis 649 (0.4)

 Other/Cryptogenic 20,302 (11.3)

Healthcare Utilization (past 1 year), median (IQR)

 ER Visits 2 (0, 4)

 Inpatient Hospitalizations 2 (1,4)

 Outpatient Visits 31 (16, 55)

 Non-face-to-face Communication 4 (1, 10)

Congestive Heart Failure, n (%) 43,382 (24)

Diabetes Mellitus, n (%) 76.8 (42.8)

h/o Cirrhosis Complications, n (%)

 Hepatic Encephalopathy 41,511 (23.1)

 Varices 39,653 (22.1)

 SBP 10,019 (5.6)

 Ascites 63,941 (35.7)

 Hepatocellular Carcinoma 18,940 (10.6)

 Hepatorenal Syndrome 3,897 (2.1)

 Other Sequelae of Chronic Liver Disease 17,599 (9.8)

Vitals, mean (SD)

 Systolic Blood Pressure 124.1 (19.5)

 Diastolic Blood Pressure 72.3 (12.2)

Labs, median (IQR)

 Creatinine 0.9 (0.8, 1.2)
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Variables All index admissions (n=179,298 admission, 67,749 patients)

 Blood Urea Nitrogen 15.0 (10.0, 21.6)

 Sodium 137.0 (134.0, 139.0)

 Potassium 4.0 (3.7, 4.3)

 Total Bilirubin 1.3 (0.7, 2.3)

 Albumin 2.9 (2.5, 3.4)

 INR 1.3 (1.1, 1.5)

 White Blood Cell 6.1 (4.4, 8.1)

 Platelets 125.0 (79.0, 190.0)

 Alanine aminotransferase (ALT) 33.0 (19.0, 60.0)

 Aspartate aminotransferase (AST) 45.0 (26.0, 83.0)

Risk Scores

 MELD, mean (SD) 13.3 (5.4)

 MELD < 12, n (%) 87,912 (49.0)

 MELD >= 12 and < 18, n (%) 60,479 (33.7)

 MELD >= 18, n (%) 30,907 (17.2)

Disposition, n (%)

 Home 164,646 (91.8)

 Hospice 123 (0.1)

 Hospital 1,839 (1.0)

 Nursing Home 11,778 (6.6)

 Other House 129 (0.1)

 Unknown 776 (0.4)

SBP: Spontaneous Bacterial Peritonitis
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Table 3:

Cirrhosis related index hospitalizations and readmissions.

Condition Index Hospitalization (N = 179,298) Readmission (N = 41,134)

Ascites, n (%) 32,686 (18.23) 9,822 (23.88)

HCC, n (%) 12,751 (7.11) 2,589 (6.29)

HE, n (%) 17,895 (9.98) 6,305 (15.33)

HRS, n (%) 1,466 (0.82) 917 (2.23)

Portal Hypertension, n (%) 18,462 (10.30) 3,959 (9.62)

SBP, n (%) 3,874 (2.16) 1,226 (2.98)

Varices, n (%) 12,194 (6.80) 2,838 (6.90)

Other sequelae of chronic liver disease, n(%) 5,479 (3.06) 2,037 (4.95)

Possibly Cirrhosis Related,
¥
 n (%)

42,327 (23.61) 6,904 (16.78)

 Total

Cirrhosis Related Including “Cirrhosis” ICD code, n (%) 111,053 (61.94) 24,850 (60.41)

Cirrhosis Related Excluding “Cirrhosis” ICD code, n (%) 68,726 (38.33) 17,946 (43.62)

Note: Conditions were identified using ICD codes (Refer to Appendix for relevant definitions). A single hospitalization could include multiple 
conditions among the discharge diagnoses.

¥
This refers to the ICD codes for Cirrhosis itself. Because the codes for cirrhosis itself, i.e. 571.2 and 571.5, may be less specific, we have 

identified possibly cirrhosis related admissions as hospitalizations that included “Cirrhosis” in the discharge diagnoses but no codes for the specific 
complications. Additionally, we calculated the total cirrhosis related admissions with and without these “Cirrhosis” codes.
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Table 4:

Odds ratios from the logistic regression model predicting 30-day readmission for patients hospitalized with 

cirrhosis.

Beta (SE) OR (95% CI) p value

Healthcare Utilization

Cumulative LOS 0.002 (0.000) 1.00 (1.00, 1.00) < 0.001

Total Inpatient Visits 0.132 (0.003) 1.14 (1.13, 1.15) < 0.001

Total Outpatient Visits 0.001 (0.000) 1.00 (1.00, 1.00) < 0.001

Total ER Visits 0.006 (0.001) 1.01 (1.00, 1.01) < 0.001

PCP Visits 0.000 (0.000) 1.00 (1.00, 1.00) 0.631

# of Types of PCP Visits 0.002 (0.001) 1.00 (1.00, 1.00) 0.024

h/o Cirrhosis Complications

Ascites 0.027 (0.017) 1.03 (0.99, 1.06) 0.104

Hepatic Encephalopathy 0.024 (0.016) 1.02 (0.99, 1.06) 0.146

HCC −0.161 (0.020) 0.85 (0.82, 0.89) < 0.001

Paracentesis 0.185 (0.019) 1.20 (1.16, 1.25) < 0.001

Comorbidities
¥

Hypothyroidism 0.057 (0.018) 1.06 (1.02, 1.10) 0.002

Fluid/Electrolyte Disorder 0.031 (0.013) 1.03 (1.01, 1.06) 0.017

Drug Abuse 0.069 (0.014) 1.07 (1.04, 1.10) < 0.001

Psychotic Disorders 0.106 (0.016) 1.11 (1.08, 1.15) < 0.001

Labs

Albumin −0.096 (0.011) 0.91 (0.89, 0.93) < 0.001

Alanine Aminotransferase 0.000 (0.000) 1.00 (1.00, 1.00) 0.125

Blood Urea Nitrogen 0.002 (0.000) 1.00 (1.00, 1.00) < 0.001

Calcium −0.082 (0.011) 0.92 (0.90, 0.94) < 0.001

Hematocrit −0.007 (0.001) 0.99 (0.99, 1.00) < 0.001

Mean Corpuscular Volume 0.003 (0.001) 1.00 (1.00, 1.00) < 0.001

Sodium −0.018 (0.002) 0.98 (0.98, 0.99) < 0.001

White Blood Cell Count 0.007 (0.002) 1.01 (1.00, 1.01) < 0.001

Potassium 0.053 (0.013) 1.05 (1.03, 1.08) < 0.001

Inpatient Medications

Proton Pump Inhibitor 0.046 (0.013) 1.05 (1.02, 1.07) < 0.001

Vancomycin −0.100 (0.022) 0.90 (0.87, 0.94) < 0.001

Lactulose 0.051 (0.017) 1.05 (1.02, 1.09) 0.002

Midodrine −0.244 (0.055) 0.78 (0.70, 0.87) < 0.001

Albumin 0.237 (0.022) 1.27 (1.21, 1.32) < 0.001

NSAIDs 0.095 (0.021) 1.10 (1.05, 1.15) < 0.001

Aminoglycosides 0.160 (0.044) 1.17 (1.08, 1.28) < 0.001
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Beta (SE) OR (95% CI) p value

1st Gen Cephalosporin −0.213 (0.030) 0.81 (0.76, 0.86) < 0.001

Glucocorticoids 0.068 (0.023) 1.07 (1.02, 1.12) 0.003

Lincomycin Antibiotics −0.156 (0.047) 0.86 (0.78, 0.94) < 0.001

Extended Spectrum Penicillins −0.082 (0.024) 0.92 (0.88, 0.97) < 0.001

Loop Diuretics 0.042 (0.014) 1.04 (1.01, 1.07) 0.003

Benzodiazepines 0.105 (0.014) 1.11 (1.08, 1.14) < 0.001

Home Medications

Lactulose 0.109 (0.020) 1.12 (1.07, 1.16) < 0.001

Glucocorticoids 0.132 (0.034) 1.14 (1.07, 1.22) < 0.001

Loop Diuretics 0.043 (0.016) 1.04 (1.01, 1.08) 0.008

K Sparing Diuretic 0.046 (0.017) 1.05 (1.01, 1.08) 0.006

Fluoroquinolones 0.093 (0.028) 1.10 (1.04, 1.16) < 0.001

Miscellaneous

Heart Rate 0.004 (0.000) 1.00 (1.00, 1.00) < 0.001

Medicaid Insurance 0.190 (0.053) 1.21 (1.09, 1.34) < 0.001

Surgery During Admission −0.268 (0.023) 0.77 (0.73, 0.80) < 0.001

Risk Scores

Fibrosis-4 score 0.000 (0.000) 1.00 (1.00, 1.00) 0.037

LACE Score 0.015 (0.002) 1.01 (1.01, 1.02) < 0.001

MELD 0.012 (0.001) 1.01 (1.01, 1.01) < 0.001

Note: LACE: Length-of-Stay, Admission acuity, Charlson co-morbidity index, Emergency Department visits in prior 6 months; MELD: Model for 
End-Stage Liver Disease

¥
Comorbidities were defined using the Elixhauser definitions.88
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Table 5:

Discrimination and calibration results for our model versus the three comparator, literature models.

Model AUC Brier score

Our Model 0.670 (0.666, 0.674) 0.165 (0.163, 0.166)

Bajaj35 0.577 (0.573, 0.581) 0.175 (0.173, 0.176)

Berman33 0.565 (0.562, 0.570) 0.175 (0.174, 0.177)

Singal34 0.649 (0.645, 0.653) 0.167 (0.165, 0.168)

Dig Dis Sci. Author manuscript; available in PMC 2021 April 01.


	Abstract
	BACKGROUND
	METHODS
	Study Cohort
	Outcome Ascertainment
	Data Collection
	Predictor Variables
	Model Development
	Model Evaluation
	Model Comparison

	RESULTS
	Study Population
	Details of Index Admission and Readmissions
	Model for 30-Day Readmission
	Effect of Variable Number
	Comparison to Existing Models

	DISCUSSION
	Conclusion

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:



