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Large-scale structure perturbation theory without losing stream crossing
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2Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306, USA

3Kavli Institute for Particle Astrophysics and Cosmology,
SLAC and Stanford University, Menlo Park, CA 94025, USA

(Dated: January 9, 2018)

We suggest an approach to perturbative calculations of large-scale clustering in the Universe that
includes from the start the stream crossing (multiple velocities for mass elements at a single position)
that is lost in traditional calculations. Starting from a functional integral over displacement, the
perturbative series expansion is in deviations from (truncated) Zel’dovich evolution, with terms that
can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas
for displacement and density power spectra numerically in 1D, finding dramatic improvement in
agreement with N-body simulations compared to the Zel’dovich power spectrum (which is exact in
1D up to stream crossing). Beyond 1D, our approach could represent an improvement over previous
expansions even aside from the inclusion of stream crossing, but we have not investigated this
numerically. In the process we show how to achieve effective-theory-like regulation of small-scale
fluctuations without free parameters.

I. INTRODUCTION

Perturbation theory for large-scale gravitational evolution and clustering in the Universe [1] should be increasingly
valuable as large-scale structure (LSS) surveys become increasingly large and precise [2, 3]. From the beginning [4],
this kind of perturbation theory has had a nagging deficiency that there was no first-principles way to include “stream
crossing” (often alternatively called “shell crossing”), i.e., multiple different velocities for mass at a single point in
space. This is a purely technical problem—it is easy to write down the exact evolution equations for mass elements
under effectively Newtonian gravity, and easy to see that stream crossing will happen, but we simply have not had any
clean mathematical method to include this phenomenon and still produce perturbative analytic results for clustering
statistics. In contrast, a wonderful thing about N-body simulations [5, 6] is they trivially include arbitrarily complex
velocity structure at a point (pedantically, one can say that you never have more than one particle at a mathematical
point, but we implicitly understand that the particles in simulations are really an approximation to some effectively
continuous cloud). The key weakness appears in Lagrangian perturbation theory (LPT) [7–12] because density is
approximated by the Taylor expansion of the determinant of the local deformation tensor, which is only correct before
stream crossing. Eulerian perturbation theory (EPT) is derived by truncating the evolution equations for moments
of the velocity distribution function after the first moment, i.e., velocity dispersion is set to zero [13–15].

One unavoidable criticism of various efforts to improve perturbation theory by effectively summing to higher orders
[16–18] has been that we were summing a theory that was not exactly correct anyway, because of missing stream
crossing [19]. [20] found only small effects from stream crossing in numerical simulations; however, this does not mean
that missing stream crossing necessarily has only a small effect on a given perturbation theory calculation. One of our
findings here will be that stream crossing self-regulates, in the following sense: If you ignore it in force calculations,
e.g., in the Zel’dovich approximation, the extrapolated amount of stream crossing and its effect on the density power
spectrum is large (the exact Zel’dovich power spectrum does include stream crossing for a given displacement field).
This makes the Zel’dovich power spectrum inaccurate, while including the effect of stream crossing on forces, feeding
back to suppress itself, greatly improves the results. Of course, it is also simply desirable to compute small effects to
match increasingly high precision observations.

There have been many efforts to include the effects of stream crossing in calculations. References [15, 21, 22]
included equations for moments of the velocity distribution, but this requires a truncation of the moment hierarchy
and convergence was never demonstrated. The adhesion approximation of [23–25] aimed to make crossing streams
stop and stick instead of crossing. Reference [26] derived evolution equations for explicitly smoothed fields in which
a coarse-grained velocity dispersion appears, with contributions to it beyond EPT to be computed by simulations.
[27–29] introduced general “effective field theory” counter-terms with free coefficients that allow fitting for the stream
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crossing effect in simulations or data. Reference [30] computed the velocity dispersion tensor implied by LPT. While
many of these approaches have had significant success, we would like to find a more direct calculation.

Many elements of this paper have appeared before. The basic math we exploit to compute forces including stream
crossing has been hiding in plain sight in the calculation of the exact Zel’dovich power spectrum (apparently computed
first, at least in correlation function form, in [31], which we could not find online—see [1]) which does include stream
crossing but only for a given displacement field. Reference [32] investigated the effect of stream crossing by comparing
this Zel’dovich calculation to one where relative streams are stopped “by hand” when they would otherwise cross.
Valageas and others have been using a similar functional integral formalism for many years [33–42]. The starting
formalism of [43] is similar to ours except for discussing literal particles instead of a continuum limit, while [44] is
even more similar, although without the functional integral formalism. Reference [45] has a somewhat similar idea of
integrating the force after stream crossing. It is generally understood that some form of damping of small-scale initial
conditions is a good idea [46–54]. The decisive new feature in this paper is the specific straightforward perturbative
expansion of the functional integral that we do, allowing concise calculation of statistical results. Stream crossing
appears essentially effortlessly—in fact, if this was the first calculation a person ever saw, they probably would not
realize stream crossing was a thing to worry about missing at all.

In the following sections we build up the calculation systematically, starting with nothing more than the basic
equations for Newtonian gravitational evolution. Most of this is basically notation, that we think makes the calcula-
tions easier but is not fundamentally connected to the inclusion of stream crossing. A reader who would like to try
to understand the key math trick that we use to avoid losing stream crossing without learning any of the formalism
may want to read Appendix A first, where we attempt to give a pedagogical taste of what is going on in the main
calculation.

II. EVOLUTION EQUATIONS

We start with the exact equations for the displacement field ψ(q) of mass elements labeled by their initial position
(Lagrangian coordinate) q, at physical position x(q) = q + ψ(q), and the velocity field υ ≡ ψ′, where we use prime
to indicate a derivative with respect to η ≡ ln a, which we will use as our primary time variable (a is the expansion
factor). We have, with dots for standard time derivative,

ψ̈(q) + 2Hψ̇(q) = F [x (q)] = −∂xV [x (q)] = −∂xV [q + ψ (q)] (1)

with potential due to density fluctuations

V (x) =
3

2
ΩmH

2∂−2x δ(x) (2)

(see [1] for a comprehensive introduction to LSS perturbation theory). Density at position x is

1 + δ(x) =

∫
ddq δD [x− q− ψ (q)] =

∫
ddq

∫
ddk

(2π)
d
e−ik·[x−q−ψ(q)] , (3)

or in (Eulerian) Fourier space

δ(k) =

∫
ddq eik·q

[
eik·ψ(q) − 1

]
. (4)

The density at particle q, i.e., at position x(q) = q + ψ (q), is

1 + δ [x (q)] =

∫
ddq′

∫
ddk

(2π)
d
e−ik·[q+ψ(q)−q′−ψ(q′)] . (5)

So finally the force on mass element q at x(q) is

F [x (q)] = −3

2
ΩmH

2

∫
ddq′

ddk

(2π)
d

ik

k2

[
e−ik·[q+ψ(q)−q′−ψ(q′)] − e−ik·[q+ψ(q)−q′]

]
, (6)

where we have included the second term, coming from the mean (background) part of the density, subtracted in the
definition of δ ≡ ρ/ρ̄−1, because it definitely does produce a force—the force that decelerates the Hubble flow—which
must be subtracted out of the first term here. To help clarify: ψ(q′) here represents the displacements of the mass
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doing the forcing, while ψ(q) is the displacement of the mass being forced, which could just as well be a negligible
test mass, which is why it makes sense for it to appear in the homogeneous part. If ψ(q′) = 0 the forcing field is
homogeneous so the peculiar acceleration is zero.

Note that when we write formulas with general dimensionality d here, we are not really implying a Universe with
fundamentally d dimensions. We are following [55] in modeling a 3D background Universe with reduced dimensionality
fluctuations, i.e., if ψ(q) does not depend on a component of q, it is easy to see that we can integrate this component
out of all these equations, leaving the reduced d accounting for only directions that fluctuate. If it is not obvious
that the qualification that the background Universe is still 3D matters, note that in a 1D background, with no
cosmological constant, in the Newtonian limit, the force between particles is constant, i.e., does not diminish with
expansion. This means that a truly 1D Universe will always turn around and collapse eventually, i.e., there is no
concept of an Einstein-de Sitter (EdS) Universe with power law expansion.

Specializing to EdS for simplicity, and substituting in υ to produce a 1st order equation, we can write Eq. (1) as

υ′ +
1

2
υ − 3

2
ψ = −3

2
∂x∂

−2
x δ − 3

2
ψ (7)

where note that we have subtracted 3
2ψ from both sides to make the left-hand side correspond to the linearized

Zel’dovich evolution, while the right-hand side is the force beyond this. We can combine ψ and υ into a single vector

φ ≡
(
ψ
υ

)
(8)

and, understanding φ = [φ]αi (η,q) as a vector in ∞ × ∞d × d × 2 dimensional space, labeled by time, d spatial
coordinates, their standard spatial vector direction, and ψ or υ, write the entire system compactly as

L0φ+ ∆0(φ) = ε , (9)

where L0 is a matrix acting in this ∞×∞d × d× 2 dimensional space, with elements

[L0]i2i1(q2, η2,q1, η1) =

(
∂
∂η2

−1

− 3
2

∂
∂η2

+ 1
2

)
δD(η2 − η1)δKi2i1δ

D(q2 − q1) (10)

[where the explicit matrix is over (ψ, υ) and Kronecker-δ over spatial directions—note that in Fourier space with

coordinate p this would have (2π)
d
δD(p2 − p1) in place of δD(q2 − q1)],

∆0(φ) =
3

2

(
0

∂x∂
−2
x δ + ψ

)
, (11)

and we have added a stochastic source ε = [ε]αi (η,q) with covariance matrix 〈εεt〉 ≡ N which can be used to set the
standard initial conditions in the form of an early time impulse. We write subscript 0 because later the split between
L0 and ∆0 will be modified. ε in this paper will only represent standard differential equation initial conditions, so one
could ask why bother allowing it to formally have arbitrary time dependence. We do this with an eventual Wilsonian
renormalization group (RG) [56] picture in mind, where small scales are “integrated out,” producing effectively
stochastic differential equations, with ε(η) including noise that is not simply initial conditions (in this case we would
have N0 and a renormalized N, as in, e.g., [41, 42]). Even for this paper where it is not strictly needed, we think
this formulation is slightly more elegant than introducing an explicit initial time, when, as we will see, that is never
necessary.

To repeat for clarity: vectors like φ, ∆, and ε are generally understood to live in ∞ ×∞d × d × 2 dimensional
space, labeled by time, d spatial coordinates, their standard spatial vector direction, and ψ or υ. Matrices like L are
matrices in this space, and Lφ means a matrix times vector product, which, if we want to, we can write out in explicit
coordinates like this:

[Lφ]α2
i2

(η2,q2) ≡
∫
dη1

∫
ddq1[L]α2α1

i2i1
(q2, η2,q1, η1)[φ]α1

i1
(η1,q1) (12)

where i labels vector direction and α labels ψ or υ... we generally just write Lφ because it is less tedious. Similarly,
something like jtφ is a dot product in this space, producing a scalar. Note that, when it matters (when using Fourier
space coordinates), the t superscript should be understood to indicate complex conjugation as well as transpose,

i.e., jtφ ≡
∫
ddq jt(q)φ(q) ≡

∫
ddp

(2π)d
jt(−p)φ(p) (writing out only the coordinate part, and assuming real fields in q
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space). Basically, all of the equations can be understood as standard vector/matrix equations like you could implement
numerically on a computer, if you mentally discretize time and space coordinates (integrals and derivatives are the
limits of sums and finite differences as the grid spacing goes to zero).

Note that

[L−10 ]i2i1(q2, η2,q1, η1) =
1

5

[(
3 2
3 2

)
eη2−η1 +

(
2 −2
−3 3

)
e−

3
2 (η2−η1)

]
Θ(η2 − η1)δKi2i1δ

D(q2 − q1) (13)

(if there is any doubt, multiply this from the left-hand side with L0 to check). The Heaviside function Θ(η2 − η1)
enforces causality of propagation from η1 to η2.

III. FUNCTIONAL INTEGRAL

The statistical starting point for our system is that ε(η,q) is a Gaussian random field with mean zero and correlation
N. We can compute statistics of interest using a generating function

Z(j) ≡
∫
dε e−

1
2 ε
tN−1ε+jtφ[ε] , (14)

i.e., we can pull down powers of φ by taking derivatives with respect to j to give averages that we want, e.g.,

〈φ〉 ≡
∫
dε φ[ε]e−

1
2 ε
tN−1ε∫

dε e−
1
2 ε
tN−1ε

= Z−1(0)
∂Z(j)

∂j

∣∣∣∣
j=0

. (15)

More generally, Nth order connected correlation functions can be derived by taking N derivatives of lnZ(j). Z(j)
is simply a mathematical tool encoding all the information necessary to compute statistical averages like this – by
manipulating it we can derive results for all possible averages at once, rather than computing them piecemeal. Note
that φ[ε] means φ(η,q) depending in principle on the full function ε(η,q), ε at all times and positions, although
causality will of course limit φ in practice to depending on ε at earlier times.

Now we change integration variables to φ using Eq. (9), to give

Z(j) ≡
∫
dφ e−S(φ)+jtφ (16)

with

S(φ) =
1

2
[L0φ+ ∆0(φ)]

t
N−1 [L0φ+ ∆0(φ)] . (17)

The Jacobian of the transformation is field-independent so we can drop it (see Appendix B). N is defined such that
L−10 NL−t0 = C0 is the standard linear theory power spectrum with its standard time evolution.

It turns out to simplify calculations to introduce another field which can be integrated over to produce S(φ) (up to
a field-independent normalization which is never relevant)∫

dφ e−S(φ) ≡
∫
dφ dχ e−S(φ,χ) (18)

where

S(φ, χ) =
1

2
χtNχ+ iχtL0φ+ iχt∆0(φ) . (19)

This just shuffles the nonlinearity into a simpler single term. (Recall
∫
dx exp

(
− 1

2xtAx + btx
)
∝ det A−1/2 exp

(
1
2btA−1b

)
.

We reached this point inspired by the idea of a Hubbard-Stratonovich transformation [57, 58]. It can also be inspired
by the Martin-Siggia-Rose formalism [35, 59, 60], and derived as shown in Appendix B. ) Note that, ignoring the ∆0

term, evaluating the Gaussian integrals gives 〈φφt〉g = C0, 〈φχt〉g = −iL−10 , and 〈χχt〉g = 0.
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IV. PERTURBATION THEORY

The standard perturbative approach to this kind of functional integral is to split S into a quadratic part that leads
to straightforward Gaussian integrals and a perturbation that we expand out of the exponential, i.e., with S = Sg+Sp,
we will do exp(−S) = exp(−Sg)(1 − Sp + S2

p/2 + ...). In addition to the obvious move of putting the ∆ term in
Sp, we know that small-scale displacements are not well-approximated by Zel’dovich at all times—generally they are
damped. Therefore, it makes no sense to include them in the leading order Gaussian part of the calculation, where
they can only cause trouble. We can self-consistently suppress them by moving them into the perturbation term Sp,
i.e., we define

Sg ≡
1

2
χtNχ+ iχt[W−1L0]φ ≡ 1

2
χtNχ+ iχtLφ (20)

and

Sp ≡ iχt∆0(φ) + iχt[(1−W−1)L0]φ ≡ iχt∆(φ) (21)

where W (k) is some simple damping function like W (k) = exp(−c2k2/2). The key is that now the effective linear
propagator L−1 ≡ L−10 W (k) appropriately suppresses small-scale structure, while the term in Sp guarantees that
this structure is not arbitrarily lost—its effects will enter as higher order corrections through ∆(φ) ≡ ∆0(φ) + (1 −
W−1)L0φ. We will set c to minimize total higher order correction, i.e., an optimal level of suppression should be
the one for which the leading order result is as close as possible to the final answer. It is not necessary to think too
deeply about this on first reading—we are just treating small-scale propagation as a perturbation, not fundamentally
different from how we routinely treat nonlinear interactions as a perturbation. (We discuss below how we could be
much more sophisticated than this simple Gaussian damping, including modifying N, but for now we just want to be
sure to capture the critical physical effect of generally suppressing high-k fluctuations.)

So we are set up to compute correlations using the generating function:

Z(j, l) =

∫
dφdχ e−Sg(φ,χ)+jtφ+ltχ(1− Sp + S2

p/2 + ...) (22)

Note that Z is now function of j and l which allows us to pull down the φ or the χ term.

A. Leading order statistics

We start at lowest order, keeping only the Gaussian part

Z0(j, l) ≡
∫
dφ dχ e−

1
2χ

tNχ−iχtLφ+jtφ+ltχ ∝
∫
dφ e−

1
2 (φtLt+ilt)N−1(Lφ+il)+jtφ (23)

=

∫
dφ e−

1
2φ

tC−1φ−iltN−1Lφ+ 1
2 ltN−1l+jtφ ∝ e

1
2 (jt−iltN−1L)C(j−iLtN−1l)+ 1

2 ltN−1l

= e
1
2 jtCj−ijtL−1l

where C ≡ L−1NL−t is the linearly evolved, damped, displacement power spectrum.
Now suppose we want to compute statistics of the density field. By construction, we can pull a factor ψ(q, η)

out of Z(j) using the derivative operator ∂jψ(q,η) and therefore we can pull out a factor of δ(k) using the operator∫
ddq eik·q

[
e
ik·∂jψ(q) − 1

]
. Generally exp(x · ∂j)f(j) = f(j + x), so our operator e

ik·∂jψ(q) adds ikδD(q−q′) to jψ(q′)

within Z(j) (time is also an index on all these vectors, but we suppress it because it is not doing anything interesting).
Finally we can compute the density power spectrum:

〈δ(k1)δ(k2)〉0 =

∫
ddq1 e

ik1·q1

[
e
ik1·∂jψ(q1) − 1

] ∫
ddq2 e

ik2·q2

[
e
ik2·∂jψ(q2) − 1

]
e

1
2 jtCj

∣∣∣∣
j=0

(24)

=

∫
ddq1 e

ik1·q1

∫
ddq2 e

ik2·q2e−
1
2 [k1·Cψ(0)·k1+2k1·Cψ(q1−q2)·k2+k2·Cψ(0)·k2] + k = 0 piece

= (2π)dδD(k1 + k2)

∫
ddq eik1·qe−k1·[Cψ(0)−Cψ(q)]·k1 + k = 0 piece

= (2π)dδD(k1 + k2)

∫
ddq cos (k1 · q) e−

1
2k1ik1jσ

2
ij(q) + k = 0 piece
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where σ2
ij(q) ≡ 〈[ψi(q′)− ψi(q′ + q)][ψj(q

′)− ψj(q′ + q)]〉g, i.e., the covariance of relative displacements for points

with separation q, with Gaussian weights. This is of course the standard exact Zel’dovich power spectrum [61],
truncated by W . To be clear, W enters because σ2

ij is a Gaussian expectation value, i.e., expectation value with
weight given by Sg, and W is part of Sg.

B. First correction

Now we consider the first correction.

Z1(j, l) = −
∫
dχ dφ e−Sg(χ,φ)+jtφ+ltχ Sp(χ, φ) = −i

∫
dχ dφ e−Sg(χ,φ)+jtφ+ltχ χt∆(φ) . (25)

We can do this calculation by manipulating Z0(j, l) that we have already calculated.

1. Nontrivial piece

The most interesting piece is

Z
(a)
1 (j, l) = −3

2
i

∫
dχdφe−Sg(χ,φ)+jtφ+ltχχtυ∂x∂

−2
x δ (26)

= −3

2
i

∫
ddqdη

∫
ddq′

ddk

(2π)
d

ik

k2

∫
dχdφe−Sg(χ,φ)+jtφ+ltχχυ(q, η)e−ik·[q+ψ(q,η)−q′−ψ(q′,η)] −mean part

=
3

2

∫
ddqdη

∫
ddq′

ddk

(2π)
d

k

k2
e−ik·(q−q′)∂lυ(q,η)e

−ik·
[
∂jψ(q,η)−∂jψ(q′,η)

]
Z0(j, l)−mean part

= −i3
2

∫
ddqdη

∫
ddq′

ddk

(2π)
d

k

k2
e−ik·(q−q′)e

−ik·
[
∂jψ(q,η)−∂jψ(q′,η)

]
jtL−1∗υ(q,η)Z0(j, l)−mean part

M∗υ means the right index of M is υ and left is summed over in a product with the adjacent object as usual. Note
that χ was projected to its υ element when it was dotted with ∆0 given by Eq. (11) (ultimately, because the force
acts to change velocity).

Note that to compute correlations of observables we do not need χ so we can set l to zero after the derivative with
respect to it. The Z2 calculation will just involve inserting another set of these derivatives, and so on.

Now, the action of the derivative operator e
−ik·

[
∂jψ(q,η)−∂jψ(q′,η)

]
on f [j] is to add−ik

[
δD(q− q̂)− δD(q′ − q̂)

]
δD(η−

η̂) to jψ(q̂, η̂). This leads to

Z
(a)
1 (j) = −i3

2

∫
ddqdη

∫
ddq′

ddk

(2π)
d

k

k2
e−ik·(q−q′) (27)

jtL−1∗υ(q,η)e
−ik·[Cψ(q,η)∗−Cψ(q′,η)∗]j− 1

2kiσ
2
ij(q−q′,η)kjZ0(j)

−mean part

where note that L−1ψυ(η, η) = 0 leads to significant simplification. The “mean part” is

−i 32
∫
ddqdη

∫
ddq′

ddk

(2π)
d

k

k2
e−ik·(q−q′)jtL−1∗υ(q,η)e

−ik·Cψ(q,η)∗j− 1
2kiC

ψ
ij(0,η)kjZ0(j) (28)

= −d−1 3

2
jtL−1∗υ Cψ∗j Z0(j) .

We will see that for d = 1 this precisely cancels the Zel’dovich force-compensating term below, so it will not enter the
numerical calculations in this paper, although it will need to be included in higher dimensional calculations.

Note that we generally need the normalized generating function Z(j)/Z(0). If we have perturbatively computed
Z(j) = Z0(j)+Z1(j)+... we have perturbatively Z(j)/Z(0) = Z0(j)+Z1(j)−Z1(0)Z0(j) where we have used Z0(0) = 1.

Of course, Z
(a)
1 (0) = 0 here.
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Let us first compute the displacement power spectrum, which will be the Fourier transform of the displacement
correlation function:

〈ψi1 (q1, η)ψi2 (q2, η)〉(a)1 = ∂jψi1 (q1,η)
∂jψi2 (q2,η)

Z
(a)
1 (j) (29)

= −3

2

∫
ddqdη′

∫
ddq′

ddk

(2π)
d

kjki
k2

e−ik·(q−q′) [L−1]i1j
ψυ

(q1 − q, η, η′)[
Cii2ψ (q− q2, η

′, η)− Cii2ψ (q′ − q2, η
′, η)

]
e−

1
2kmσ

2
mn(q−q′,η′)kn

+1↔ 2−mean part

= −3

2

∫
ddqdη′

∫
ddq′

ddk

(2π)
d

cos (k · q′)
[
L−1

]i1j
ψυ

(q, η, η′)
kjki
k2[

Cii2ψ (q12 + q, η′, η)− Cii2ψ (q12 + q + q′, η′, η)
]
e−

1
2kmσ

2
mn(q

′,η′)kn

+1↔ 2−mean part

where in the last step we have shifted some variable definitions around and defined q12 ≡ q1 − q2 (when we use one
index label when there should be two we mean to duplicate the index value, e.g., Cψ ≡ Cψψ). Note that symmetry

guarantees that the result, like Cijψ (q12), takes the form δKij f1(q12) + q̂i12q̂
j
12f2(q12), e.g., if we align the coordinates

along the direction of q12, the matrix is diagonal with value f1 +f2 along the direction of q12 and f1 in the transverse
directions.

We do not write out the mean part because in the 1D calculations in this paper it is exactly canceled by the
Zel’dovich-compensating piece below. Higher dimension calculations will need to include it.

We Fourier transform this with respect to q12 to compute the power spectrum:

P
(a)i1i2
ψ (k1, η) = (30)

−3

2

∫
dη′
[
L−1

]i1j
ψυ

(k1, η, η
′)P gii2ψ (k1, η

′, η)

∫
ddq′ [1− cos (k1 · q′)]

∫
ddk

(2π)
d

kjki
k2

cos (k · q′) e− 1
2kmσ

2
mn(q

′,η′)kn

+1↔ 2−mean part ,

where P g(k) is the Fourier transform of C(q12).
For simplicity of obtaining numerical results in this paper, we will specialize to 1D where it is easy to do the k

integral:

P
(a)1D
ψ (k, η) = −3

∫
dη′
[
L−1

]
ψυ

(k, η, η′)P gψ (k, η′, η)

∫
dq′ [1− cos (kq′)]

e
− 1

2
q′2

σ2(q′,η′)√
2πσ2(q′, η′)

−mean part . (31)

In the low-k limit this becomes

P
(a)1D
ψ (k → 0, η) = −3

2
k2P gψ(k, η)

∫
dη′
[
L−10

]
ψυ

(η, η′) eη
′−η
∫
dq′q′2

e
− 1

2
q′2

σ2(q′,η′)√
2πσ2(q′, η′)

−mean part (32)

i.e., for a given power spectrum the integrals over q′ and η′ give some damping scale. In addition to making calculations
more straightforward, 1D is an especially clean test case for the introduction of stream crossing effects because the
Zel’dovich approximation is exact in 1D up to stream crossing [55, 62]—any deviation at all from Zel’dovich must be
a stream crossing effect.

We will do calculations for power law initial conditions with π−1k P (k) = (k/kNL)
n+1

, with n =(2, 1, 0.5, 0), because
[55] ran 1D N-body simulations for these slopes. For n = 0, with no high-k suppression (W (k) = 1) this boils down to

P
(a)1D
ψ (k → 0, η = 0) = −

(
1.85 k

kNL

)2
P gψ(k, 0), while for n = 1/2 it is P

(a)1D
ψ (k → 0, η = 0) = −

(
1.26 k

kNL

)2
P gψ(k, 0),

i.e., intuitively reasonably, the damping scale roughly corresponds to the nonlinear scale. For n ≥ 1 σ2(q) diverges
with no small-scale suppression so we will discuss those below, after computing the small-scale restoring term.

To be clear: there is no correction like this in LPT, where the displacement power simply follows linear theory,
i.e., the Zel’dovich approximation. The effect here comes entirely from stream crossing. The equation makes intuitive

sense, with e
− 1

2
q′2

σ2(q′,η′) representing the probability that elements with Lagrangian separation q′ have crossed at time
η′.
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2. Canceling the Zel’dovich force

We now compute the Zel’dovich force term that we need to subtract because it is included in the Gaussian part:

Z
(b)
1 (j, l) = −3

2
i

∫
dχ dφ e−Sg(χ,φ)+jtφ+ltχ χtυψ = −3

2
i∂tlυ∂jψZ0(j, l) = −3

2
jtL−1∗υ Cψ∗j Z0(j) (33)

where at the end we have set l = 0. We see that for d = 1 this exactly cancels the “mean part” of Z
(a)
1 [Eq. (28),

which is subtracted from Z, so it appears with a positive sign]. If it exactly cancels in Z, it will exactly cancel in all
statistics.

For higher dimensions the cancellation against Eq. (28) is only partial, so the contribution of this term to statistics
must be computed. It is interesting to compute the time dependence of, e.g., the ψ(q1, η)–ψ(q2, η) correlation function
contribution, ∝

∫
ddqdη′L−1ψυ(q1, η,q, η

′)Cψψ(q, η′,q2, η) ∝ e2η (η − ηi − 2/5) where we have included an initial time

ηi in the term where it does not give zero in the ηi → −∞ (expansion factor ai → 0) limit. This is not a problem
because it cancels a similar term coming out of the other part of Eq. (27), to produce a final result that is insensitive
to the initial time. We just need to make sure to do numerical calculations in a way that preserves this cancellation.

3. Restoring the suppressed small-scale fluctuations

Finally we compute the term restoring the small-scale fluctuations that we suppressed in the Gaussian part:

Z
(c)
1 (j, l) = −i

∫
dχdφe−Sg(χ,φ)+jtφ+ltχχt(1−W−1)L0φ = −i∂tl (1−W−1)L0∂jZ0(j, l) (34)

=
[
constant + jt (1−W (k)) Cj

]
Z0(j) ,

where we again set l = 0 at the end because we do not need l to compute observable statistics. This is adding back
suppressed power, at lowest order. The constant is an irrelevant normalization factor.

The displacement correlation contribution is simply

〈ψi1 (q1, η)ψi2 (q2, η)〉(c)1 = 2 C
ψ(1−W )
i1i2

(q1 − q2, η) (35)

where Cψ(1−W ) is understood to mean Cψψ computed with a factor 1−W (k) multiplying the power spectrum, i.e.,
the corresponding power spectrum contribution is

P
(c)
ψ (k, η) = 2 [1−W (k)]P gψ(k, η) . (36)

For W (k) = exp
(
−k2c2/2

)
, the low-k limit is P

(c)
ψ (k → 0, η) = c2k2P gψ(k, η). This is a natural counterterm for the

coefficient computed by Eq. (32), i.e., we can set (P
(a)
1,ψ + P

(c)
1,ψ)(k → 0, η = 0) = 0 by choosing

c2 =
3

2

∫
dη′
[
L−10

]
ψυ

(0, η′) eη
′
∫
dq′q′2

e
− 1

2
q′2

σ2(q′,η′)√
2πσ2(q′, η′)

. (37)

This matching is self-regulating, i.e., it is an equation of the form c2 = f(c), because σ2(q′, η′) depends on c. The
formal divergence of the un-damped σ2(q) for n ≥ 1 is not a problem—it should be seen as an artifact of the
unphysical nature of pure Zel’dovich displacements. The solutions are c =(0.6, 0.62, 0.74, 1.35)k−1NL for n =(2, 1, 0.5,
0), respectively. (This matching is similar to but appears to differ somewhat from that in [63], in that they relied on
the fact that calculation of the term to match converges for a linear theory ΛCDM power spectrum, rather than using
the damping in their theory to cut it off.) Figures 1-4 show the final displacement power spectrum, relative to pure
linear. A key thing to notice in these figures is the dependence of the power suppression on c2. The larger value of
c2 results in less total suppression at 1-loop order, even though the direct leading order effect is more suppression. At
small c2, there is too much stream crossing at leading order, which leads to large 1-loop power suppression. The larger
c2 introduces an appropriate level of suppression at leading order, allowing 1-loop corrections to be small. Using an
even larger value of c2 than we plot here reverses the trend, giving leading order suppression too large so that the
1-loop correction must become large and positive to compensate.

This use of W (k) with c2 calibration is not the main point of the paper (in case it is not clear: it is not fundamentally
related to the inclusion of stream crossing) so we defer most discussion to Sec. V, but we address a couple questions
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FIG. 1. One loop suppression of displacement power, in 1D, for n = 2. Dotted lines show the suppression of the linear power
by W (k) ≡ exp

(
−k2c2/2

)
, for the value of c that sets the one loop correction to zero in the k → 0 limit (black) or a smaller

value for contrast (yellow), i.e., these are effectively truncated Zel’dovich, while the denominator is bare Zel’dovich. Solid adds
the 1-loop correction, i.e., dotted is the leading order result and the difference between solid and dotted is the correction. For
n = 2 the correction in the c→ 0 limit is rapidly divergent. Note that the preferred c is fixed entirely by the principle that the
correction goes to zero in the low-k limit—it is not a free parameter. In fact, we do not have simulations of the 1D displacement
power, so the black curve is literally a (lowest order) prediction.

here. First note that, at least in this 1D calculation, c2 is guaranteed to be positive, so we do not need to worry

about e−c
2k2 diverging. As discussed below, we expect any serious 3D application to use an at least slightly more

sophisticated replacement for the procedure used here, so there is no point in thinking about when the exact approach
here might pathologically break down. Second, it would be very natural for c2 to be time dependent, i.e., we would
evaluate Eq. (37) at all η instead of η = 0. For an arbitrary power spectrum this would introduce significant
complication as we would need to solve the matching for a continuous function, with values at a given time depending
on all values in the past, but for power law EdS models we would still only need to solve for one number because
we know exactly what the time dependence must be. The only scale in the problem is the nonlinear scale where
∆2(kNL) = 1 ∝ e2ηkn+d, so kNL(η) ∝ e−2η/(n+d) (assuming n + d > 0). c2(η) must be ∝ k−2NL(η) ∝ e4η/(n+d), with
only the coefficient to be determined by matching. We expect that using this would make calculations at a given
order more accurate by bringing the leading order closer to the truth, but it is important to understand that the
calculation is mathematically consistent either way, because in either case the part that is taken away is restored as a
perturbation. If we wanted to use a constant c2 to make predictions in a model with arbitrary power spectrum, there
would be nothing fundamentally wrong with simply computing a different value at each redshift we were interested
in—in each case the fixed c2 used in the calculation would represent a reasonable ∼time-averaged value for that
redshift. There is certainly ambiguity here, but that is true of all perturbation theory, where the definition of orders
is generally not unique—what we hope for is that the series we are computing converges to the same answer for any
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FIG. 2. One loop suppression of displacement power, in 1D, for n = 1, similar to Fig. 1.

reasonable choice.

4. Density power spectrum

The nontrivial density power spectrum contribution is

〈δ(k1, η)δ(k2, η)〉(a)1 =

∫
ddq1

∫
ddq2 e

ik1·q1+ik2·q2e
ik1·∂jψ(q1,η)

+ik2·∂jψ(q2,η)Z
(a)
1 (j) |j=0 (38)

=
3

2
(2π)dδD(k1 + k2)

∫
ddq12d

dqdη′
∫
ddq′

ddk

(2π)
d

k · L−1ψυ (q) · k1

k2
eik1·q12

[
eik·Q(q,q′,η′q12,η,k1) − e−ik·Q(q,q′,η′q12,η,k1)

]
e−

1
2kiσ

2
ij(q

′,η′)kje−
1
2k1iσ

2
ij(q12,η)k1j −mean part

where Q (q,q′, η′q12, η,k1) ≡ q′ − iΞ (q,q′, η′,q12, η) · k1 and

Ξ(q,q′, η′,q12, η) ≡ Cψ(q, η′, η)−Cψ(q + q12, η
′, η)−Cψ(q + q′, η′, η) + Cψ(q + q′ + q12, η

′, η) . (39)

In 1D we can again integrate over k:

〈δ(k1, η)δ(k2, η)〉(a),1D1 = −(2π)δD(k1 + k2)
3

2
Im

∫
dq12dqdη

′eik1q12L−1ψυ(q, η, η′) (40)

k1

∫
dq′erf

[
q′ − ik1Ξ(q, q′, η′, q12, η)√

2σ (q′, η′)

]
e−

1
2k

2
1σ

2(q12,η) −mean part
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FIG. 3. One loop suppression of displacement power, in 1D, for n = 0.5, similar to Fig. 1.

The suppressed-power-restoring contribution to the density power spectrum is

〈δ(k1, η)δ(k2, η)〉(c)1 =

∫
ddq1

∫
ddq2 e

ik1·q1+ik2·q2e
ik1∂jψ(q1,η)

+ik2∂jψ(q2,η)

[
Z

(c)
1 (j)− Z(c)

1 (0)Z0(j)
]
|j=0 (41)

=

∫
ddq1

∫
ddq2 e

ik1·q1+ik2·q2e
ik1∂jψ(q1,η)

+ik2∂jψ(q2,η)jt (1−W (k)) Cj Z0(j) |j=0

= −(2π)δD(k1 + k2)

∫
ddq cos (k1 · q) km1 σ

2mn
1−W (q, η)kn1 e−

1
2k
i
1σ

2
ij(q,η)k

j
1 .

So our final density power spectrum predictions are shown in Figs. 5-8. We see first that the numerical values
of c computed by setting the one loop correction to the low-k displacement power to zero do a great job producing
a perturbative expansion where the corrections are in fact small. This calibration is entirely internal to the theory.
Even if we only had the Zel’dovich vs. corrected curves for density power here, it would be obvious that the calibrated
values of c are a lot better than significantly different ones, just based on the principle that higher order terms in
a perturbative expansion should be small. Compared to the N-body results of [55], we see that the predictions for
n = 1 and n = 1/2 are excellent at low k, breaking down at the 10% level at slightly higher k than the free-parameter-
fitted “EFT” curves shown in [55], and breaking down much more gracefully (in all cases gradually under-predicting
the simulation power). The comparison for n = 2 is murky because [55] had trouble achieving convergence in the
simulations—in any case, considering that the naive Zel’dovich prediction is divergent for n = 2, our theory seems like
a very big step forward. Finally, n = 0 presents a somewhat greater challenge for the theory. While we successfully
predict that the power will only start deviating from linear at higher k than Zel’dovich, we do not predict these
deviations very well once they happen. It may be that this is because a Gaussian W (k) is less appropriate for this
spectrum with more low-k power. We see in Fig. 4 that our kernel matched in the asymptotic low-k limit is not
doing a good job matching the predicted damping at higher k. This can be fixed by finding a kernel that matches
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FIG. 4. One loop suppression of displacement power, in 1D, for n = 0.

the calculated suppression better. There are many other possible refinements of the leading order theory that might
improve the results, discussed in Sec. V, but of course we may simply need another loop.

V. DISCUSSION

There are many obvious next steps for this formalism, e.g., computing displacement, density, etc. power spectra in
3D and comparing to numerical simulations [64–71], computing other statistics like the bispectrum [72–78], or power
spectrum covariance matrix [79–82], etc. Efforts to speed up PT numerical evaluation [83–87] could be reconsidered in
this context. Here we discuss a few possibilities where we may have something useful to say about the path forward.

A. Non-Gaussianity, modified gravity, neutrinos, baryons, bias, redshift space distortions, etc.

It should not be too hard to fit primordial non-Gaussianity [88–93] into this formalism. By definition the mod-
ification of the starting point statistical distribution for ε, Eq. (14), will add an extra non-Gaussian part to the
perturbative piece Sp. Note that any kind of polynomial in φ ∝ k−2δ can be constructed by repeated applications of
the δ-generating operator.

Typical modifications of gravity [94, 95] should not present any new problem for this formalism. In standard
perturbation theory, calculations are usually simplified by the good approximation for density statistics [96] that the
growth at each order n is proportional to Dn(t), where D(t) is the linear growth factor. This means, as far as density
statistics is considered, we have not needed to do numerical time integrals as part of PT [other than to compute D(t)].
For momentum correlators this approximation starts to be less than percent accurate and corrections need to be taken
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FIG. 5. One loop density power, in 1D, for n = 2, relative to the initial power law. Solid black shows the final one loop
prediction, using the value of c fixed internally by the displacement power calculation as shown in Fig. 1. Black dotted shows
the Zel’dovich power for the same c, i.e., the difference is the happily small one loop correction. Red dashed are the N-body
results of [55], who say that their n = 2 simulations had not fully converged. E.g., the points at low k are almost surely a
couple percent lower where they would agree well with our prediction (see the smaller-n figures that follow where they did not
have this issue). For comparison, we show the same quantities for c = 0.1, where the one loop calculation makes a valiant
effort to correct the massive failure of Zel’dovich, but it is clear that c = 0.6 is a much better starting point for a perturbative
expansion.

into account [97]. In the calculations of this paper, however, we have abandoned this feature—time integration is an
unavoidable part of the calculation including stream crossing. We also integrate over k-dependence of the propagator,
which is not necessary in SPT. Having accepted these necessities, we can implement a modified gravity model that
forces them on us with no additional complication. Non-linear effects can be included as perturbations.

Perturbation theory for massive neutrinos [98–102] may be an ideal application for this formalism. The only practical
difference at late times between neutrinos and cold dark matter amounts to initial conditions—the initial conditions
for neutrinos include large velocities that are uncorrelated down to arbitrarily small scales. It should be possible
to represent the neutrinos with a displacement field just like we have discussed for CDM by imagining a snapshot
at some early time and defining N to give appropriate random velocities in addition to the usual initial correlated
perturbations. The first calculation to do will be the displacement power spectrum to determine the small-scale
suppression kernel W (k) for the neutrinos, which will be appropriately longer range. The key point is: because the
formalism already fully includes stream crossing, and deals gracefully with naively very large dispersion in the initial
conditions (e.g., infinite for n = 2 here), there should be no need for, e.g., special evolution equations for neutrinos.
To be clear: we would now have separate ψ and υ for the neutrinos, driven by the combined density field, with L
becoming a 4 × 4 matrix multiplying fields, etc.. To more faithfully represent all the relevant physics, this scenario
may provide extra motivation for more detailed renormalization of L and renormalization of N, as discussed below.

Unfortunately, what we have here is a theory for dark matter, which is not generally observable. Gravitational
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FIG. 6. One loop density power, in 1D, for n = 1, relative to the initial power law, similar to Fig. 5. Note that the values of
c used in all figures were computed literally “blind” to the simulation results—it was clear that W (k) was needed to keep blue
spectra from diverging (and from common-sense understanding of the physics), and the exact numerical values used here were
settled by the displacement power calculation before the density power was ever computed.

lensing [103–109] is typically cited as the most direct tracer, but even this is sensitive to baryon pressure effects
on small-scales [110], and ultimately is an observation of galaxies (or some other source of photons), not directly
mass, with corresponding biasing issues like intrinsic alignments [111–113]. Baryon displacement fields can easily be
introduced to at least model the effect of the difference in initial conditions on large scales [114–120]. We could easily
add explicit pressure terms for a given equation of state (this might be especially interesting for describing the Lyα
forest [121–128], where little effort has been made to use higher order perturbation theory, even though its generally
weak non-linearity would seem to make it a good candidate), but it is not clear that the perturbation theory as it
stands will represent the physics fully correctly, because baryon streams should really never cross (they should shock
instead), while the perturbation theory might effectively allow them to sometimes, at which point, e.g., the pressure
force might be effectively pointing in the wrong direction. W (k) the way we use it probably cannot entirely control
this problem. It might be necessary to introduce something that more completely stops the possibility of crossing
(e.g., [23–25, 32]), although we would want to be sure that this was a controlled modification of the perturbative
expansion like our W (k), not an arbitrary hack. Another possibility might be to use Eulerian-type fields for baryons
while still using displacements for dark matter, as in Eulerian hydrodynamic simulations [129, 130]. While some kind
of effective model with free or externally fixed parameters is inevitably needed for modeling temperatures any time
they are affected by star formation or other complex physics, it would be interesting to see if any progress could be
made including an explicit temperature field computed from a few simple principles to describe a relatively simple
system like the IGM [131].

One of the most hopeful uses for perturbation theory is to organize our understanding of biasing models describing
how galaxies and other observables trace dark matter [132–135]. The usual Eulerian bias prescriptions [132, 136–142]
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FIG. 7. One loop density power, in 1D, for n = 0.5, relative to the initial power law, similar to Fig. 5.

should be straightforward to implement in this formalism, with correlations involving powers of δ(x) and its derivatives
computed by repeated applications of the δ-generating operator. For Lagrangian bias [143–145] we can always write
some function of φ(q) as a weight next to the delta function in Eq. (3), and the tracers will stream-cross just like
dark matter.

Redshift space distortions [143, 144, 146–158] can be included for dark matter with no additional approximation.
We just add the appropriate apparent radial displacement ∝ υ‖ in the exponential when constructing density fields.
Redshift space distortions for tracers like galaxies are a little trickier because, while low-k modes of velocity should
be the same as dark matter, this is not generally true on smaller scales, so some kind of generalized biasing model is
needed to allow for the full range of possibilities.

B. Deriving effective theories

Suppose that instead of statistics we really want a theory for the Eulerian field δ(x). We can introduce it into Z
using a delta function like this:

Z =

∫
dδS dφ dχ δ

D[δS − δS(ψ)] e−S(φ,χ) =

∫
dδS dπ dφ dχ e

iπt[δS−δS(ψ)]−S(φ,χ) , (42)

where we have written δS to indicate that we probably want to construct a theory for a smoothed version of δ. We
can now substitute Eq. (4) for δ(ψ) and if we can perform the integrals over φ and χ we will have a theory for δS ,
with π playing the role that χ does for φ. We can perform these integrals perturbatively by pulling the standard
linear approximation out of δ(ψ) to write δ(k) = ik · ψ(k) + ... where the leading piece here will become part of the
Gaussian integral over ψ and the rest will be included in the perturbative part of the integration. I.e., we can achieve



16

10 1 100

k [kNL]
0.0

0.2

0.4

0.6

0.8

1.0
P

/P
0

pure linear
1-loop, c=1.35
Zel, c=1.35
1-loop, c=0.1
Zel, c=0.1
N-body

FIG. 8. One loop density power, in 1D, for n = 0, relative to the initial power law, similar to Fig. 5.

a generating function for δ statistics that can be made increasingly accurate by including higher order perturbative
integral contributions. The formula will be for δ(t), and so imply evolution equations (and initial conditions) which
could be used in different ways. If the calculation is done consistently for smoothed δS , the evolution equations will
correctly represent dynamics entirely in terms of the smoothed fields. A similar calculation could be used to construct
equations for other fields, e.g., moments of the velocity distribution function (momentum, energy, etc. [15]) can easily
be written as integrals like the one for δ(ψ). One might ask “how likely is it that this could be an accurate theory,
when it includes integration over small-scale φ?” That is not clear, but at least the size of perturbative terms will
allow an internal estimate, and the W (k)-type suppression of small scales at leading order should aid convergence.

Another possibility, especially relevant if calculations in the full stream-crossing theory turn out to be slower than
in traditional PT, would be to calibrate the free parameters of previous theories (e.g., [159]) by matching predictions
to the stream crossing theory in the low-k limit. It should be possible to make the matching step fast because formulas
simplify in the low-k limit.

C. More sophisticated renormalization

We intentionally tried to minimize the footprint of W (k) in this paper, to avoid distracting from the main point
about stream crossing, but clearly the issue it is addressing (of traditional linear theory being a terrible starting point
for perturbation theory) is very generally important. Our approach here evolved from a more standard field theory
starting point [160]. One of our original motivations was the observation that “EFT of LSS” proponents [27–29] did
not seem to be taking their effective theory seriously enough, in that their prescription introduced terms intended
to represent effective pressure/viscosity, but treated them as perturbations to the traditional fluid equations, rather
than taking them seriously as part of the leading order linear evolution as one naturally would have done if given



17

a system with these terms already in the linearized equations. This was presumably for ease of computation, but
means that the terms can only be used to cancel potentially divergent parts of the higher order corrections, rather
than prevent the divergence from ever happening as they probably physically should do. We originally thought to
improve their treatment by fully including k2δ-type terms in L where they would naturally damp the propagator
[41, 42, 63]. We thought to follow a standard Wilsonian RG procedure [56, 160] of integrating out fields in shells of k,
absorbing the corrections into the coefficients of the effective theory. E.g., computing 〈χφt〉 perturbatively will give
you corrections to L−1, which can then be disentangled from corrections to N in 〈φφt〉. Higher order interactions will
also be generated. Because of the self-regulating nature of the propagator damping, i.e., that increasing a coefficient
like c2 generally decreases the calculated small-scale contribution to it, we expected to find c2 values like we obtained
here as some sort of fixed points of the RG evolution. At some point we realized that this full procedure might not be
necessary—that we could capture the most relevant physics in the simpler way presented here. (We tell this historical
story because it is helpful to understand the relation between our approach and standard field theory approaches.) A
natural thought at this point would be “ok, what you have is a poor-person’s version of the full Wilsonian treatment,
so a next step must be to more fully implement that.” But it is not clear that this is correct—it may be that,
for our problem, standard field theory renormalization should be seen as the poor-person’s version of what we do
here. Renormalization in quantum field theory takes the form it does because of the infinities that are apparently
unavoidable in the calculations, i.e., where we had an equation like c2 = f(c) to solve, they have c2 = f(c) +∞.
Obviously solving this directly is no good, so they go on to observe that the derivative of c2 with respect to some
matching point (like our k → 0) or similarly the contribution from integrating out a small shell of k in the Wilsonian
picture, is finite. This allows them to calculate how c2 changes with scale (where note that here we are using c2

abstractly to represent any parameter, like a particle mass), but the initial condition for this running is still corrupted
by the infinity and must be treated as a free parameter. The possible exception to this problem is if the parameter
hits a fixed point of the RG evolution, so it acquires a value independent of the initial conditions, but this generally
does not happen for all parameters. If we do not have any true deep-UV sensitivity in our system, i.e., do not have
any divergence once enough correct physics is included for the system to self-regulate, we can hope to avoid free
parameters, solving for parameters of the Gaussian model as we have done here for c2 instead of only computing
relative values between different scales. From the conventional point of view this is probably equivalent to saying all
parameters flow to a fixed point. If this sounds like wishful thinking, note that we implicitly take for granted that it
is possible to construct an effective theory of dark matter clustering that has no free parameters, while being finite
and completely insensitive to small-scale degrees of freedom. We use this theory all the time: N-body simulations,
where we generally take for granted that larger scale structure converges as the numerical resolution increases.

There is another reason to prefer the approach we use to more literally pursuing the Wilsonian picture of integrating
out shells of modes: in those calculations, generally the integration results in a contribution that cannot be represented
by a convenient, small number of terms in the Lagrangian (equivalent to terms in our S), so one is forced to “truncate
the basis,” i.e., ignore some of the calculation that does not project onto the terms you want to track. This is a
potential source of error, not necessarily easy to control, which we avoid in our approach here where we do not throw
anything away. Maybe the two approaches can be combined somehow—if nothing else, the exercise of integrating out
small scale modes should help to identify and understand the useful modifications of the expansion.

Our modification of L−1 by a single overall suppression function W (k) with semiarbitrarily chosen Gaussian form
was intended to absolutely minimally capture what are of course really more complicated effects. While the details
should be filled in by higher order terms, this should be more efficient if the leading order model can be improved. The
first extension one might make is to allow for separate ψψ, ψυ, and υυ kernels. While there is always a temptation
to judge the value of this kind of detail based on whether it appears to improve agreement with simulations, this
is really not necessary—these differences are an inevitable consequence of computing all the elements of 〈φφt〉 and
〈φχt〉, and can be calibrated entirely internally, i.e., if we compute something other than the 〈ψψt〉 that we computed
here, using c2 from 〈ψψt〉, we would find a less perfect match. By making W (k) a matrix in (ψ, υ), we can match all
terms in 〈φφt〉 at once. More generally, we should also match 〈φχt〉, which is more directly identified with L−1, while
〈φφt〉 is also sensitive to, and therefore can be used to make corrections to, the noise N. The noise modifications
should presumably be additive instead of multiplicative and go like k4 at low k [13]. We could also attempt to
match computed corrections to higher k by modifying the form of W (k) [and similarly δN(k) if using it]. Similarly,
these modifications are generally matrices in time, which can be calibrated in more detail by evaluating unequal time
correlations. Also similarly, in higher dimensions W (k) could be generalized to be asymmetric depending on the
relation between its vector indices and q/k (like the dependence of Cψiψj (q) on whether the indices are along or

transverse to q). In other words: ultimately L−1 and N are general matrices in the full relevant space, and one could
imagine working to make all loop corrections to them zero. Note, however, that we should not think that each new
correction absorbed will make the final predictions more accurate by the full amount absorbed—once the corrections
are small enough to take the form of a rapidly converging series, it should not matter much if they are absorbed at
lowest order or computed perturbatively. To identify non-Gaussian terms, it will probably be useful to perform a
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large/small scale split of the fields, perturbatively integrate out the small scale part, and see how to interpret the
result as a modification of the large-scale equations (this would also tell us how to modify the Gaussian part, if we
could not guess).

We tried to keep our W (k) calibration simple by including the contribution to changing Pψ from all scales, but,
especially if we were isolating L−1 by computing 〈φχt〉, we might encounter an issue known in more standard per-
turbation theory, that very large scale bulk flows can make significant (even divergent) contributions to matching
calculations like we did here even though their effect on smaller, observation-scale fluctuations is not actually to damp
them. In fact, for an asymptotically large-scale flow there should be no effect at all, by Galilean invariance. Even very
large scale stream crossing will not necessarily have a simple damping effect on smaller scale fluctuations within the
flow (it seems there will be a change in background density, plus noise from the uncorrelated fluctuations in the other
stream, but not the direct damping you get from displacements streaming out of their own driving perturbations).
If this is found to be an issue, it will probably be useful in the future to do something like splitting the fields into a
small and large scale contribution, basically relative to the scale of observation, and only including the contribution
from the small-scale part when modifying L−1. Because we are not permanently throwing anything away in these
calculations, only shifting some of the naive Gaussian part of the functional integral into the perturbative part, the
results should not be very sensitive to, e.g., where exactly you put the large/small split.

Finally, note that some attempts to implement Wilsonian RG [37, 161–163] ideas have been criticized for only
integrating out small-scale fluctuations in the initial conditions, not in the evolving fields [164]. It is clear in the
formalism presented here how one could integrate these fluctuations out of all fields at all times.

We thank Matt McQuinn for the N-body results from [55], and Anže Slosar and Zack Slepian for helpful comments
on drafts.
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[121] P. McDonald, J. Miralda-Escudé, M. Rauch, W. L. W. Sargent, T. A. Barlow, R. Cen, and J. P. Ostriker, “The Observed
Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyα Forest,”
Astrophys. J. 543, 1–23 (2000).
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Appendix A: Pedagogical explanation of the key math trick

The very simple math trick that makes this paper work may not be easy to identify within the formalism of
our calculations, so we attempt to explain it more pedagogically here. Standard perturbation theory amounts to
repeatedly performing the following type of integral:∫

dx e−
1
2x

2+jx−λx3+... =

∫
dx e−

1
2x

2+jx
(
1− λx3 + ...

)
(A1)

i.e., it is based on the fact that one kind of integral we can do analytically is a Gaussian times a polynomial. If some
more general function of x appears in the exponential here, one’s first instinct is to Taylor expand it to obtain a
polynomial. However, we observe that we can also do∫

dx e−
1
2x

2+jx−λeαx+... =

∫
dx e−

1
2x

2+jx (1− λeαx + ...) =

∫
dx e−

1
2x

2+jx − λe− 1
2x

2+(j+α)x + ... (A2)

i.e., if the coefficients of the Gaussian include exponentials, we can simply absorb them back into the Gaussian and
again do the integral analytically. In the main calculation in this paper the formula for density as exponential in
displacement, Eq. (4), is analogous to eαx here. We avoid losing stream crossing by not Taylor expanding eik·ψ (which
is tempting because it gives us a polynomial in ψ), but instead expanding this whole exponential factor out of the
e−S exponential and doing the calculation in the way of Eq. (A2). The “action of the derivative operator” that leads
to Eq. (27) amounts to, underneath all the notation, an integration over force derived from density written in terms
of exponentiated displacement. This is the key to the new result.

Appendix B: Jacobian of ε→ φ variable change

Our evaluation of the Jacobian determinant factor in the change of variables from ε to φ follows similar calculations
done in [33, 36].

det

(
∂ε
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)
= det
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L0 +
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∂φ

)
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)
∝ eTr ln(I+L−1

0 M) (B1)
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where we have dropped the obviously field-independent det (L0), defined M ≡ ∂∆0

∂φ , and used the identity detA =

eTr lnA. Note that ∆0 has only an υ component, but only depends on ψ, which means that in M only Mυψ is

non-zero. Taylor expanding in L−10 M gives

Tr ln
(
I + L−10 M

)
= −

∞∑
n=1

1

n
Tr
[(
−L−10 M

)n]
. (B2)

All of these terms take the form Tr
[
L−10ψυMυψL−10ψυMυψ...

]
. With M a delta function and L−10 a Heaviside function

in the difference between their time indices, we see that the trace, which requires time to flow in a circle, i.e.,∫
dt1dt2...dtnA(t1, t2)...A(tn, t1), must give zero except possibly for the tricky limit where all times are the same so

all Θ functions are evaluated at zero (with one integral over time remaining). For a general evolution equation, we
would need a more subtle analysis of the equal time limit, but here it is simple because L−10ψυ(η, η) = 0 independent
of the Θ function, so every term is unambiguously zero.

1. Alternative derivation

We learned a different way to derive our basic functional integral starting point from [43]. Starting from the
likelihood function for ε, Eq. (14), we can enforce the evolution Eq. (9) using a delta function:

Z(j) =

∫
dφ dε δD [φ− φ (ε)] e−

1
2 ε
tN−1ε ∝

∫
dφ dε δD [ε− ε (φ)] e−

1
2 ε
tN−1ε =

∫
dφ dε dχ eiχ

t[ε−ε(φ)]− 1
2 ε
tN−1ε (B3)

where we have used the same fact that the Jacobian of the ε-φ transformation is field independent to change arguments
in the delta function. Note that this transformation is invertible, e.g., if we imagine discretizing the evolution equation,
it is easy to see that knowing ε uniquely determines φ and vice versa (this is easier than inverting a final field to
determine initial conditions—here we know the field at all times by definition). We can now insert Eq. (9) for ε(φ)
and perform the Gaussian integral over ε to obtain Eq. (18-19). χ plays a role enforcing the evolution equation
instead of appearing through an apparently arbitrary Gaussian integral trick.

Appendix C: Low-k expansion of density power formula

We can consider a small k expansion of the erf part of Eq. (41). For small y, erf(x + iy) = erf(x) +
2iy exp

(
−x2

)
/
√
π + .... The leading term gives zero in the q′ integral, so we have:

−3

2
Im

∫
dq12dqdη

′eik1q12L−1ψυ(q, η, η′)k1

∫
dq′erf

[
q′ − ik1Ξ(q, q′, η′, q12, η)√

2σ (q′, η′)

]
e−

1
2k

2
1σ

2(q12,η) (C1)

' 3k21

∫
dq12dqdη

′ cos (k1q12) L−1ψυ(q, η, η′)

∫
dq′Ξ(q, q′, η′, q12, η)G [q′, σ (q′, η′)] e−

1
2k

2
1σ

2(q12,η)

' 3k21

∫
dq12 cos (k1q12) e−

1
2k

2
1σ

2(q12,η)

∫
dη′[L−10 ]ψυ(η, η′)

∫
dq′ΞW (0, q′, η′, q12, η)G [q′, σ (q′, η′)]

where in the last line we note that the q integral is a convolution between W (q) in L−1 and Ξ and remove the q
integral by defining ΞW to be Ξ with the power spectrum used to compute it multiplied by an extra factor of W (k).

For the 1D cases we have tried, we find that, while the approximation is valid at low enough k, “low enough” is
always too low to be useful.
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