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Abstract
Sequence homologs are an important source of information about proteins. Amino acid profiles,
representing the position-specific mutation probabilities found in profiles, are a richer encoding of
biological sequences than the individual sequences themselves. However, profile comparisons are
an order of magnitude slower than sequence comparisons, making profiles impractical for large
datasets. Also, because they are such a rich representation, profiles are difficult to visualize. To
address these problems, we describe a method to map probabilistic profiles to a discrete alphabet
while preserving most of the information in the profiles. We find an informationally optimal
discretization using the Information Bottleneck approach (IB). We observe that an 80-character IB
alphabet captures nearly 90% of the amino acid occurrence information found in profiles, compared
to the consensus sequence's 78%. Distant homolog search with IB sequences is 88% as sensitive as
with profiles compared to 61% with consensus sequences (AUC scores 0.73, 0.83, and 0.51,
respectively), but like simple sequence comparison, is 30 times faster. Discrete IB encoding can
therefore expand the range of sequence problems to which profile information can be applied to
include batch queries over large databases like SwissProt, which were previously computationally
infeasible.

Introduction
One of the most powerful techniques in protein analysis
is the comparison of a target amino acid sequence with
phylogenetically related or homologous proteins. Such
comparisons can give insight into which portions of the
protein are important by revealing the parts that were con-
served through natural selection. While mutations in non-
functional regions may be harmless, mutations in func-
tional regions are often lethal. For this reason, functional
regions of a protein tend to be conserved between organ-
isms while non-functional regions diverge.

Many of the state-of-the-art protein analysis techniques
incorporate homologous sequences by representing a set
of homologous sequences as a probabilistic profile, a

sequence of the marginal distributions of amino acids at
each position in the sequence. For example, PSI-BLAST [1]
uses profiles to refine database searches. The PHD algo-
rithm [2] uses them purely for structure prediction. Yona
et al. [3] used profiles to align distant homologs from the
SCOP database [4]; the resulting alignments are similar to
results from structural alignments, and tend to reflect
both secondary and tertiary protein structure.

Although profiles provide a lot of information about the
sequence, their use comes at a steep price. While efficient
algorithms exist for aligning protein sequences and per-
forming database queries (e.g. BLAST [1]), these algo-
rithms operate on strings and are not applicable to profile
alignment or profile database queries. Profile-based com-
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parisons can be substantially more accurate than
sequence-based ones, but are about 30 times slower, since
substitution penalties must be calculated by computing
distances between probability distributions rather than
simply looked up in a table. This makes probabilistic pro-
files impractical for use with large bioinformatics data-
bases like SwissProt, which recently passed 160,000
sequences and 64 million amino acids [5].

We propose a new discrete representation of proteins that
incorporates information from homologs in a textual
form we call IB (Information Bottleneck) sequences. Once a
profile is represented using this discrete alphabet, align-
ment and database search can be performed using the effi-
cient string algorithms developed for sequences, making
profile information applicable to a greater range of prob-
lems. For example, the runtime for full pairwise Smith-
Waterman [6] alignment between a typical sequence and
all of SwissProt decreases from 250 hours to less than 8; a
query for high-scoring alignments to 100 sequences of
interest would take nearly three CPU-years with profiles,
but just over a month with IB sequences. Either the result-
ing IB sequence alignments can be used directly, or a small
set of high-scoring matches from this initial query can be
realigned using profiles for greater precision. Therefore

with IB sequences, profile information may be applied to
a greater range of sequence problems with no loss in pre-
cision and minimal loss in recall.

IB sequences have another incidental benefit: By repre-
senting each class as a letter, discretized profiles can be
presented in plain text, conveying more profile informa-
tion than the original sequences in the same amount of
space. These IB sequences are more accurate than consen-
sus sequences and denser than profile matrices or
sequence logos (see Figure 1). While sequence logos are
likely a better representation for examining individual
alignments, terse IB sequences are useful for presenting
many alignments at once, such as when interpreting data-
base query results. For example, Figure 1(c) shows that
while logos more accurately reflect the first profile col-
umn, information about lower-conservation regions is
completely lost at ordinary text size.

The main idea behind our approach is to compress pro-
files in a data-dependent manner by clustering the actual
profiles and representing them by a small alphabet of dis-
tributions. Since this discretization removes some of the
information carried by the full profiles, we cluster the dis-
tribution in a way that is directly targeted at minimizing

Five representations of a part of an alignment of Pepsin A precursor P00790Figure 1
Five representations of a part of an alignment of Pepsin A precursor P00790: (a) probabilistic profile; (b) sequence logo [12]; (c) 
four textual representations. The IB sequence is more compact than profiles or logos, but retains much of the conservation 
information lost by other textual formats. In the IB sequence, uppercase letter X represents strong conservation (~80%) of 
amino acid X, while lowercase x represents low conservation (~50%) of X.

A 0.0 0.0 0.0 0.09 0.34 0.23 0.12 0.0 0.0 0.0
C 0.0 0.0 0.0 0.04 0.01 0.01 0.03 0.0 0.0 0.0
D 0.0 0.0 1.0 0.01 0.05 0.14 0.09 0.0 1.0 0.0
E 0.0 0.0 0.0 0.38 0.04 0.00 0.04 0.0 0.0 0.0
F 0.0 0.0 0.0 0.06 0.00 0.08 0.04 0.0 0.0 1.0
G 0.0 0.0 0.0 0.00 0.06 0.01 0.03 1.0 0.0 0.0
H 0.0 0.0 0.0 0.02 0.00 0.04 0.00 0.0 0.0 0.0
I 0.0 0.0 0.0 0.00 0.00 0.03 0.00 0.0 0.0 0.0
K 0.0 0.0 0.0 0.04 0.01 0.01 0.00 0.0 0.0 0.0
L 0.0 0.0 0.0 0.01 0.01 0.00 0.09 0.0 0.0 0.0
M 0.0 0.0 0.0 0.00 0.00 0.03 0.00 0.0 0.0 0.0
N 0.5 1.0 0.0 0.05 0.05 0.01 0.01 0.0 0.0 0.0
P 0.0 0.0 0.0 0.02 0.00 0.23 0.00 0.0 0.0 0.0
Q 0.0 0.0 0.0 0.04 0.05 0.00 0.00 0.0 0.0 0.0
R 0.0 0.0 0.0 0.04 0.01 0.00 0.00 0.0 0.0 0.0
S 0.5 0.0 0.0 0.16 0.10 0.06 0.29 0.0 0.0 0.0
T 0.0 0.0 0.0 0.02 0.10 0.05 0.20 0.0 0.0 0.0
V 0.0 0.0 0.0 0.00 0.14 0.03 0.04 0.0 0.0 0.0
W 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.01 0.00 0.04 0.04 0.0 0.0 0.0

(a)

(b)

P00790 Seq.: ---EAPT---

Consensus Seq.: NNDEAASGDF

IB Seq.: NNDeaptGDF

Logo:
(c)
Page 2 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:S8
the information loss. This is achieved using a variant of
the Information Bottleneck (IB) method [7], a distribu-
tional clustering approach for informationally optimal
discretization. To preserve a clear textual representation,
we want this discretization to also reflect biologically
meaningful categories by forming a superset of the stand-
ard 20-character amino acid alphabet. For example, we
use "A" and "a" for strongly- and weakly-conserved
Alanine. This formulation demands two types of con-
straints: similarities of the clusters' conditional amino
acid distributions to predefined values, and specific struc-
tural similarities between strongly- and weakly-conserved
variants. We show below how the original IB formalism
can be extended to naturally account for such constraints.

We apply our algorithm to SCOP [4], a database of pro-
teins grouped hierarchically by structural similarity, and
analyze the results in terms of both information loss and
alignment quality. We show that IB discretization pre-
serves much of the information in the original profiles
using a small number of classes. We then show that like
profile alignments, high-scoring IB alignments reflect dis-
tant homology, but that IB alignments can be computed
30 times faster than profile ones. IB discretization is there-
fore an attractive way to gain some of the additional sen-
sitivity of profiles on tasks for which profile-profile
comparison is not computationally feasible.

Information Bottleneck
Information Bottleneck [7] is an information theoretic
approach for distributional clustering. Given a joint distri-
bution p(X, Y) of two random variables X and Y, the goal
is to obtain a compressed representation C of X, while pre-
serving the information about Y. The two goals of com-
pression and information preservation are quantified by
the same measure of mutual information,

where H(X) is the entropy of p(X), and H(X, Y) of p(X, Y).
I(X ; Y) is symmetric and non-negative, and is zero only
when X and Y are conditionally independent. The IB
problem is defined as the constrained optimization prob-
lem

where K is a constraint on the level of information pre-
served about Y. The solution must also obey the con-
straints p(y|c) = ∑x p(y|x) p(x|c) and p(y) = ∑x p(y|x) p(x).
This constrained optimization problem can be reformu-

lated using Lagrange multipliers, and turned into a trade-
off optimization function with Lagrange multiplier β:

As an unsupervised learning technique, IB aims to charac-
terize the set of solutions for the complete spectrum of
constraint values K. This set of solutions is identical to the
set of solutions of the tradeoff optimization problem
obtained for the spectrum of β values.

When X is discrete, its natural compression is soft cluster-
ing. In this case, the problem is not convex and cannot be
guaranteed to contain a single global minimum. Fortu-
nately, its solutions can be characterized analytically by
the following set of self consistent equations:

where

By first computing p(c|x) using Eq. (3), then recomputing
the other distributions via Eqs. (4), these equations yield
an iterative algorithm that is guaranteed to converge to a
local minimum [7]. While the optimal solutions of the IB
functional are in general soft clusters, hard clusters are
often more easily interpreted in practice. A series of algo-
rithms was developed for hard IB, including an algorithm
that can be viewed as a one-step look-ahead sequential
version of K-Means [8]. See the Methods section for a
description and comparison of the iterative and sequen-
tial IB algorithms.

Applying IB to our profile discretization problem, X
ranges over the set of single-position probabilistic profiles
obtained from a set of aligned sequences and Y ranges
over the set of 20 amino acids. In other words, p(y|x) is the
probability of observing amino acid y at profile position
x. Our goal is to construct clusters c of positions x sharing
similar amino acid distributions: for each position x
assigned to each cluster c, the profile at x, p(Y|X = x),
should be well-approximated by c's representative profile
p(Y|C = c).
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Constraints on cluster conditional distributions
The application studied in this paper differs from stand-
ard IB in that we are interested in obtaining a representa-
tion that is both efficient and biologically meaningful.
This requires that we add two kinds of constraints on clus-
ters' distributions.

First, some clusters' meanings are naturally determined by
limiting them to correspond to the common 20-letter
alphabet used to describe amino acids. From the point of
view of distributions over amino acids, each of these sym-
bols is used today as the delta function distribution which
is fully concentrated on a single amino acid. For the goal
of finding an efficient representation, we require the con-
ditional distributions p(Y|C = c) to be close to these delta
distributions. Specifically, for a specific cluster c , we
require p(Y|C = c) to be close to predefined value p(Y|C =

), thus adding constraints to the IB target function of the

form DKL[p(y| )||p(y|c)] <K(c) for each such constraint.

While solving the constrained optimization problem is
difficult, the corresponding tradeoff optimization prob-
lem can be made very similar to standard IB. With the
additional constraints, the IB trade-off optimization prob-
lem becomes

We now use the following identity

to rewrite the IB functional of Eq. (2) as

When ∑c�C β(c) ≤ 1, we can similarly rewrite Eq. (5) as

The optimization problem therefore becomes equivalent
to the original IB problem, but with a modified set of sam-
ples x � X', containing X plus additional pseudo-counts x'
with prior probability p(x') = β(c) (hence the requirement
that ∑c�C β(c) ≤ 1. This is similar to the inclusion of priors
in Bayesian estimation.

Formulated this way, the biases can be easily incorporated
in standard IB algorithms as additional pseudo-data.
From an initial dataset defined by p(y|x) and p(x) (typi-

cally  for profiles) and biases  = { } with values

pβ(y| ), we construct a new dataset X' = X ∪  defined by

and

Finally, Eq. (5) is augmented to assign each pseudo-

datapoint  to its cluster c, with p(c| ) = 1, thereby fixing
the biases to their clusters.

Constraints on relations between cluster distributions
We want our discretization to capture both strongly- and
weakly-conserved variants of the same symbol. While this
can be done with standard IB using separate classes for the
alternatives, the strong and weak variants' distributions
are likely to be correlated. It is therefore preferable to
define a single shared prior for both variants, and to learn
a model capturing their correlation.

Friedman et al. [9] describe multivariate information bottle-
neck (mIB), an extension of information bottleneck to
joint distributions over several correlated input and clus-
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ter variables. Instead of a single observed variable X and a
single cluster variable C, mIB incorporates sets of
observed variables  and compression variables  with

a specific conditional dependency structure. Intuitively,
mIB's goal is to find distributions p( |X) and p(Y| )

such that  approximates p(Y| ). For

further details, including a formulation of the problem for
arbitrary compression structures and a derivation of an
analogous loss function, see Friedman et al. [9].

For profile discretization, we define two compression var-
iables connected as in Friedman et al.'s "parallel IB": an
amino acid class C � {A, C, ...} with an associated prior,
and a conservation strength S � {0, 1}. Our goal is to
maximize the information about amino acid distribution
Y contained in C and S together, while independently
minimizing the information about position X contained
in C and S. The IB loss function therefore becomes

Figure 2 illustrates our two models' dependency structures
and parameterizations. Since the multivariate model cor-
relates strong and weak variants of each category, it
requires fewer priors than simple IB. It also has fewer

parameters: a multivariate model with ns strengths and nc
classes has as many categories as a univariate one with nc'
= nsnc classes, but has only ns + nc - 2 free parameters for
each x, instead of nsnc - 1.

Results
We evaluate IB alignment's ability to detect distant
homologs by comparing the orders of profile, IB, and con-
sensus alignment scores for a set of proteins with known
evolutionary and structural relations. We also compare
the pattern of gaps in individual profile alignments to
those in the equivalent IB and consensus alignments. IB
scores, like profile scores, capture a significant number of
relations missed by consensus scores, and individual IB
alignments more closely reflect the pattern of insertions in
the original profile alignments.

Our data come from SCOP [4], a manually-constructed
database of proteins grouped hierarchically by structural
similarity and evolutionary relatedness. We expect pro-
teins within the same SCOP family, which have clear evo-
lutionary relationships and ~30% sequence identity, to
have high-scoring profile and sequence alignments. We
also expect proteins from different families in the same
superfamily, which have probable evolutionary relation-
ships but low sequence identity, to have significant but
lower-scoring profile alignments but no significant
sequence alignments.

χ 

 
p Y p

c C
( ) ( )c c X∈∑ χ

m I C X I S X I Y S C= ( ) + ( ) − ( ) ( )
def

; ; ; ,β 7

Graphical model representations of multivariate and univariate information bottleneck showing input (dashed) and output (solid) conditional dependenciesFigure 2
Graphical model representations of multivariate and univariate information bottleneck showing input (dashed) and output 
(solid) conditional dependencies.
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For each protein, we first generate a profile from a CLUS-
TALW [10] multiple alignment with other proteins in its
family, yielding 425,150 individual sequence positions,
then compute probabilistic profiles ignoring gap charac-
ters. We then compute IB classes from these profiles using
iIB and the priors described below. Finally, we discretize
the profiles into the resulting classes, using the Jensen-
Shannon (JS) distance with mixing coefficient 0.5 rather
than the KL distance optimized in encoding profiles to be
consistent with Yona et al. [3].

In the following sections, we first examine how the
amount of information from the original profiles encoded
by IB categories varies with the number of clusters. We
then consider how model structure, i.e. priors and rela-
tions between clusters, affects this information. Next, we
compare individual IB, consensus, and profile align-
ments, and compare the order of alignment scores
between distantly-related and unrelated proteins. Finally,
we show how running time for profile and IB alignment
varies with sequence length.

Information loss from discretization
One measure of the quality of IB clusters is the amount of
information about Y (the amino acid distribution) lost
through discretization, I(Y ; X) - I(Y ; C). This represents
the total information distance between profiles and the
centers of their assigned clusters, and is a task-independ-
ent measure of the quality of a discretization. The change
in I(Y ; X) - I(Y ; C) between successive values of |C| rep-

resents the amount of information gained by adding more
categories, and thus the number of actual clusters of a par-
ticular scale in the data. Figure 4 shows the cluster infor-
mation I(Y ; C) and position information I(C ; X) for
consensus sequences, profiles, and (iterative) IB with no
priors for |C| = 40, ..., 500. With |C| ≥ 80 the IB alphabet
captures over 90% of the available information.

Figure 3 shows the sequence logos for discretizations with
|C| = 20, 40, 80 illustrating compression's effects. First,
when the number of labels equals the the number of
amino acids (|C| = 20), the frequently-occurring amino
acid A is allocated two labels, forcing D and R share a
label. Second, as the number of labels increases, the least
common amino acid C is allocated only a single label,
while the number of labels assigned to the more common
A and L consistently increases. This shows the data-
dependence of our discretization compared to the simpler
approach of allocating one or more clusters to each amino
acid with varying levels of sequence conservation.

Effect of category constraints
For univariate IB, we have used four types of priors reflect-
ing biases on stability, physical properties, and observed
substitution frequencies: (1) Strongly conserved classes, in
which a single symbol is seen with S% probability. These
are the only priors used for multivariate IB. (2) Weakly
conserved classes, in which a single symbol occurs with
W% probability; (S - W)% of the remaining probability
mass is distributed among symbols with non-negative

Sequence logos for |C| = 20, 40, 80, showing several features of IB discretizationFigure 3
Sequence logos for |C| = 20, 40, 80, showing several features of IB discretization. First, variable numbers of clusters are 
assigned to different amino acids according to their overall frequencies: A and L are more common, while C is least common. 
Second, clusters capture strongly- and weakly-conserved variants, as well as some chemical similarities: I, V, L, and M are all 
hydrophobic.
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log-odds of substitution. (3) Physical trait classes, in which
all symbols with the same hydrophobicity, charge, polar-
ity, or aromaticity occur uniformly S% of the time. (4) A
uniform class, in which all symbols occur with their back-
ground probabilities.

The choice of S and W depends upon both the data and
one's prior notions of "strong" and "weak" conservation.
Unbiased IB on a large subset of SCOP with several differ-
ent numbers of unbiased categories yielded a mean fre-
quency approaching 0.7 for the most common symbol in
the 20 most sharply-distributed classes (0.59 ± 0.13 for
|C| = 52; 0.66 ± 0.12 for |C| = 80; 0.70 ± 0.09 for |C| =
100). Similarly, the next 20 classes have a mean most-
likely-symbol frequency around 0.4. These numbers can
be seen as lower bounds on S and W. We therefore chose
S = 0.8 and W = 0.5, reflecting a bias toward stronger def-
initions of conservation than those inferred from the data.

Figure 4 shows the effect on information loss of varying
the prior weight ∑c β(c) with three sets of priors: 20
strongly conserved symbols and one background; these
plus 20 weakly conserved symbols; and these plus 10 cat-
egories for physical characteristics. As expected, increasing
the number or weight of priors increases information loss.
However, with a small additional pool of unbiased cate-
gories information loss is nearly independent of prior
strength. This suggests that our priors correspond to actual
regularities in the data. Finally, note that despite having
fewer free parameters than the univariate models, mIB's
achieves comparable performance, suggesting that our

decomposition into conserved class and degree of conser-
vation is reasonable.

Alignment similarity and distant homolog search
Since we are ultimately using the resulting IB classes in
alignments, the true cost of discretization is best measured
by the amount of change between profile and IB align-
ments, and the significance of this change. The latter is
important because the best path can be very sensitive to
small changes in the sequences or scoring matrix; if two
radically different alignments have similar scores, neither
is clearly "correct".

We can represent an alignment as a pair of index-insertion
sequences, one for each profile sequence to be aligned
(e.g. "1,2,_,_,3,..." versus "1,_,2,_,3,..."). The edit distance
between these sequences for two alignments then meas-
ures how much they differ. However, even when this dis-
tance is large, the difference between two alignments may
not be significant if both choices' scores are nearly the
same. That is, if the optimal profile alignment's score is
only slightly lower than the optimal IB class alignment's
score as computed with the original profiles, either might be
correct. We therefore report both the edit distance
between alignments and this change in profile alignment
score.

The score for aligning two IB symbols c and d is

1
2

1 1− ( ) ( )⎡
⎣

⎤
⎦( ) + ( ) ( )⎡⎣ ⎤⎦( ) −D p y c p y d D q y p y kJS JS

s

Left: Information versus sequence type for consensus sequence, profiles, and IB without priorsFigure 4
Left: Information versus sequence type for consensus sequence, profiles, and IB without priors. Right: I(Y ; X) - I(Y ; C) as a func-
tion of w for different groups of priors. The information loss for 52 categories without priors is 0.359, for 10, 0.474.

Seq. type I(Y ;C) I(C;X)
Consensus 2.8503
|C| = 40 3.0596 5.0793
|C| = 80 3.2083 5.7160
|C| = 160 3.3248 6.2442
|C| = 320 3.3986 6.6517
|C| = 500 3.4267 6.8297
Profiles 3.643

 0.38

 0.42

 0.46

 0.2  0.4  0.6  0.8

I(
Y

;X
) 

- 
I(

Y
;C

)

prior weight

multivariate
21/52 priors
41/52 priors
51/52 priors
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where q(y) =  (p(y|c) + p(y|d)),  (y) is the average prob-

ability of amino acid y across all profiles, and ks is a con-

stant chosen so that the average alignment score between
pairs of randomly-chosen symbols is negative. We use ks =

0.45 and gap open and extension penalties of ko = 2 and ke

= 0.2, where ks, ko, and ke have been chosen by Yona et al.

[3] so that local alignment scores between random
sequences follow the expected extreme value distribution.

Figure (6a) shows both the edit distance and score change
per length between profile alignments and those using IB
classes, mIB classes, and the original sequences with the
BLOSUM62 scoring matrix. Unless otherwise noted, IB
alignments use |C| = 52 clusters, a number chosen to be
conveniently represented by the 26 upper- and lower-case
letters. To compare the profile and sequence alignments,
profiles corresponding to gaps in the original sequences
are replaced by gaps, and resulting pairs of aligned gaps in
the profile-profile alignment are removed. We consider
both sequences from the same family and those from
other families in the same clan, the former being more
similar than the latter, and therefore having better align-
ments. Assuming the profile-profile alignment is closest
to the "true" alignment, IB alignment significantly outper-
forms sequence alignment in both cases, with mIB show-
ing a slight additional improvement.

Since alignment scores predict structural relatedness,
sequences with distant structural relationships, defined as
those in the same SCOP superfamily, should have posi-
tive-scoring alignments. Yona et al. [3] compare the rank-
ing of high-scoring profile-profile alignments to that of
PSI-BLAST e-values, and show that profiles consistently
assign high scores to more distant homologs. We perform
this same test to compare profile, IB, and consensus
sequence alignment scores. Figure (6b) shows the ROC
curve for detecting superfamily relationships between 117
families contained in 10 randomly-chosen SCOP super-
families with between 3 and 35 members. While IB fares
worse than profiles, consensus sequences perform essen-
tially at chance.

Alignment running time
Most of the cost of aligning two profile sequences comes
from computing JS distances between pairs of profiles.
Encoding unencoded profile sequences before alignment,
by significantly reducing the number of JS distance com-
putations, yields a 4- to 20-fold improvement in align-
ment running time. Furthermore, sequences can be pre-
encoded to perform repeated comparisons, yielding a 30-
fold improvement.

Encoding two sequences of lengths n and m for IB align-
ment requires computing the |C|(n + m) JS distances
between each profile and each category, a significant
improvement over the mn distance computations
required for profile-profile alignment when

. Once the sequences are encoded or

the pairwise distances computed, both methods take
essentially the same amount of time to perform Smith-
Waterman alignment. Figure 5 compares the running time
of profile and IB alignment for different sequence lengths,
showing best fit curves for both to f(x) = axb. The results
show that the number of JS distance computations domi-
nates running time for typical sequence lengths: despite
both methods' performing O(n2) work in Smith-Water-
man alignment, IB alignment time is essentially linear in
sequence length, while profile alignment is quadratic. Fig-
ure 5 also plots the time taken to encode both input pro-
files in a 40-character IB alphabet, showing that encoding
accounts for most of the cost of alignment. Since useful
values of |C| are much smaller than the average sequence
length, and since most database applications can use pre-
encoded sequences, the effect of |C| on real running times
is negligible. In particular, the time taken to align pre-
encoded sequences is independent of |C| for the values
presented here.

1
2

p

| C |<<
m,nmin( )

2

Running times for profile-profile and IB-profile alignment, and (twice) running time for IB discretizationFigure 5
Running times for profile-profile and IB-profile alignment, and 
(twice) running time for IB discretization. Alignments were 
performed using the Smith-Waterman algorithm and com-
puting the complete dynamic programming matrix. For IB, 
each sequence was first discretized using 50 categories. For 
profiles, distances were precomputed between every pair of 
sequence positions.
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On current hardware, each profile distance computation
takes about 16.5 μs. At this rate, just the distance compu-
tations for a full pairwise alignment of SwissProt's
160,000 sequences, comprising 60 million residues,
requires 3 × 1010 CPU-seconds or ~950 years. The distance
computations required to encode the database in a 40-
character alphabet take 11 hours. Similarly, the distance
computations for aligning a single 200-element sequence
with every element of SwissProt take about 260 hours, or
nearly the entire observed running time for performing
full profile alignments. To compare, our unoptimized
implementation of Smith-Waterman takes around 8
hours to align a typical sequence against SwissProt.

This agrees well with the figure obtained by assuming an
average sequence length of 365 residues and the observed
single alignment times shown in figure 5 (minus encod-
ing time). Even with IB encoding, full pairwise alignment
of SwissProt would take an impractical 60 years with our
simplistic Smith-Waterman code. However, discretizing
the data makes it possible to apply more efficient algo-
rithms and indexing schemes like BLAST [1], which were
developed for simple sequences.

Conclusion
We have described IB sequences, a discrete encoding of
amino acid profiles that allows profile information to be
used for alignment and search at essentially the same
computational cost as simple sequence alignment. The
encoding is based on minimizing information loss, and
its classes can be constrained to correspond to the stand-
ard amino acid representation, thus yielding an intuitive,

compact textual form for profile information. Alignments
of IB sequences encoded with a modest number of classes
correspond significantly better to the original profile
alignments than do alignments of the consensus
sequences (edit distance 0.15 versus 0.39). High-scoring
IB alignments reflect distant homology detected with pro-
files but not with consensus sequences (AUC score 0.73
versus 0.51).

Our model is potentially advantageous in three ways:
First, it models rich conditional distribution structures
and class constraints. It can, for example, be extended to
incorporate structural information in the input represen-
tation, and to assigning structural significance to the
resulting categories. Second, it allows us to apply existing
fast discrete algorithms to continuous profile sequences
when either profile comparison is computationally
impractical, or only discrete-sequence algorithms exist.

Third, discretization avoids undersampling problems
while going beyond single-position profiles. Ordinary
profile applications are limited by high dimensionality to
considering only single positions of a multiple alignment.
This ignores significant correlation both between adjacent
profile positions and between adjacent symbols in indi-
vidual aligned homologs. Single-position profiles thus
represent a drastic simplification of the underlying data.
For example, while the average entropy of a single profile
in our dataset is 0.99, the average entropy of an adjacent
pair is only 1.23, suggesting an information loss far
greater than the 10% lost by IB discretization. Therefore
profile pairs can be represented more compactly than the

Left: Alignment differences for IB models and sequence alignment, within and between superfamiliesFigure 6
Left: Alignment differences for IB models and sequence alignment, within and between superfamilies. Right: ROC curve for 
same/different superfamily classification by alignment score. 52 IB categories are used throughout.

Edit distance Score change

Same Superfamily

mIB 0.154 ± 0.182 0.086 ± 0.166

IB 0.170 ± 0.189 0.107 ± 0.198

BLOSUM 0.390 ± 0.065

Same Clan

mIB 0.124 ± 0.209 0.019 ± 0.029

IB 0.147 ± 0.232 0.022 ± 0.037

BLOSUM 0.360 ± 0.062
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cross-product of the single-position alphabet. Instead of
considering sequences of adjacent single-position pro-
files, our method can be extended to discretize distribu-
tions over pairs or k-tuples of symbols in a multiple
alignment. By applying IB to the 20k-dimensional space of
k-tuple profiles, we can avoid undersampling and obtain
a richer sequence representation incorporating previ-
ously-ignored local correlation. Extending this approach
to variable-length substrings yields an algorithm similar
to suffix trees, known to be some of today's most efficient
text compression methods [11].

Methods: Iterative vs. sequential IB
Slonim [8] compares the performance and runtime of sev-
eral IB algorithms. The first, iterative IB (iIB) (Figure 7),
alternately updates the cluster assignment p(c|x) and the
resulting cluster distributions p(y|c) and weights p(c) via
Eqs. (3,4). If hard clusters are desired, hard assignments
are made in the first step. Since this algorithm only guar-
antees convergence to a local extremum, we repeated our
experiments with five random initializations. In the cur-
rent implementation, iteration was stopped when the cur-
rent and previous distributions were sufficiently close
together, as measured by ∑y, s, c|pt+1(y|s, c) - pt (y|s, c)|.

The second IB algorithm, sequential IB (sIB) (Figure 8),
first assigns elements to a fixed number of clusters, then
individually moves them from cluster to cluster while cal-
culating a 1-step lookahead score, until the score con-
verges. Like iIB, sIB only guarantees convergence to a local
extremum, and was therefore initialized with the results of
five separate iIB runs.

Slonim [8] found that hard-clustering sIB outperformed
soft-clustering ilB on a document clustering task with
5,000 to 500,000 documents, finding fewer and better
solutions on 100 random restarts. However, while sIB is

more efficient than exhaustive bottom-up clustering
methods like agglomerative clustering, sIB is still more
expensive than iIB, since each reassignment of an instance
requires recomputing the class conditional distributions.
Therefore we used iIB with hard clustering, which only
recomputes the conditional distributions after performing
all updates. This reduces the convergence time from sev-
eral hours to around ten minutes.

Slonim argued that sIB outperforms soft iIB in part
because sIB's discrete steps allow it to escape local optima.
We expect hard iIB to have similar behavior. To test this,
we applied three complete sIB iterations to clusters
obtained by multivariate iIB. sIB decreased the loss  by
only about 3 percent (from 0.380 to 0.368), with most of
this gain occurring in the first iteration. Up to exchanging
labels, the 20 strongly-conserved categories were nearly
unchanged, while about half of the weakly-conserved cat-
egories changed only slightly. This suggests that hard iIB
and sIB find similar regularities in our data.
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Pseudocode for the sequential IB algorithmFigure 8
Pseudocode for the sequential IB algorithm.

C ← random partition of X into K clusters
while not done

done ← TRUE
for every x ∈ X :

Remove x from current cluster c(x)
c′(x) ← argminc∈C ΔL({x}, c)
if c′(x) �= c(x)

done ← FALSE .
Merge x into c′(x)

end for
end while

Pseudocode for the iterative IB algorithmFigure 7
Pseudocode for the iterative IB algorithm.

Randomly initialize p(c | x)
Find the corresponding p(c), p(y | c) through Eqs. (4)
repeat

pi+1(c|x) ← pi(c)
Zi+1(x,β) exp (−βDKL[pi(y|x)||pi(y|c)]) , ∀ c ∈ C, ∀ x ∈ X

if hard clustering,

pi+1(c|x) =
{

1 if c = argmaxc p(c|x)
0 otherwise

endif
pi+1(c) ←

∑
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