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Abstract: Inverse dynamics from motion capture is the most common technique for acquiring
biomechanical kinetic data. However, this method is time-intensive, limited to a gait laboratory
setting, and requires a large array of reflective markers to be attached to the body. A practical
alternative must be developed to provide biomechanical information to high-bandwidth prosthesis
control systems to enable predictive controllers. In this study, we applied deep learning to build
dynamical system models capable of accurately estimating and predicting prosthetic ankle torque
from inverse dynamics using only six input signals. We performed a hyperparameter optimization
protocol that automatically selected the model architectures and learning parameters that resulted
in the most accurate predictions. We show that the trained deep neural networks predict ankle
torques one sample into the future with an average RMSE of 0.04 ± 0.02 Nm/kg, corresponding
to 2.9 ± 1.6% of the ankle torque’s dynamic range. Comparatively, a manually derived analytical
regression model predicted ankle torques with a RMSE of 0.35 ± 0.53 Nm/kg, corresponding to
26.6 ± 40.9% of the ankle torque’s dynamic range. In addition, the deep neural networks predicted
ankle torque values half a gait cycle into the future with an average decrease in performance of
1.7% of the ankle torque’s dynamic range when compared to the one-sample-ahead prediction. This
application of deep learning provides an avenue towards the development of predictive control
systems for powered limbs aimed at optimizing prosthetic ankle torque.

Keywords: biomechanics; machine learning; deep neural networks; robotic ankle prosthesis

1. Introduction

Use of a practical model that maps from control commands and easily observed states
to a controllable future state of a system, such as the torque about a powered ankle–foot
prosthesis (PAFP), has the potential to improve the mobility of individuals with lower
limb loss [1]. By simulating PAFP dynamics over a period of time for different control
commands, a model can provide information to search for a sequence of control commands
that achieve a desired prosthesis behavior, such as time-varying impedance parameters
or terrain-specific angle-torque profiles. Real-time model predictive control (MPC) has
been proposed to control assistive robotic devices during physical interaction with humans,
allowing the robot to adapt its behavior [2,3]. Integrating MPC with real-time feedback
from sensors into PAFP control schemes may enable the prosthesis to better adapt to the
user’s movements, allowing for more natural and intuitive interactions between the user,
device, and environment. A key benefit of this approach is the optimization of robot
behavior over a finite time horizon by finding the optimal control inputs that minimize a
cost function. This allows a controller to achieve a desired task, such as tracking a desired
angle-torque profile while rejecting disturbances and minimizing energy consumption.
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Additionally, MPC can be designed to ensure the robot operates within the constraints of
the system, such as joint limits and actuator saturation. For prosthetic applications, such
constraints can be essential for safe and robust operation.

In terms of modeling PAFPs, control commands (e.g., motor current) can be mapped
to motor torque for some devices including series elastic actuators. For parallel elastic
actuators, the passive dynamics play a critical role in the total ankle torque (i.e., the total
prosthetic ankle torque is the summation of the active and passive components). In addition
to the passive elements of the prosthesis, there are other important factors, including
variations in limb loading, shoe/keel mechanics, the dynamics of the other limbs and joints,
and environmental conditions that can influence prosthetic ankle torque. Furthermore,
even under steady-state walking conditions, stride-to-stride variations are inevitable, and
it is important for prosthesis controllers to compensate for this variability [4].

Developing a method to predict prosthetic torques could better allow a PAFP controller
(e.g., model predictive controller) to adapt to these factors that are unaccounted for in
modern prosthetic control strategies [5]. This paper investigates different predictive model
architectures with the goal of accurately predicting ankle torque over both short (one sample
period or 33 ms) and long (twenty sample periods or approximately half a gait cycle) time
periods. The results demonstrate the capability of high-fidelity predictive models and how
they could be used in future prosthetic control systems.

1.1. The Role of System Models for Robotic Controllers and the Need for Better Modeling Approaches

A dynamical model of a robot prosthesis system would enable the use of model-based
control methods, which use forward predictions to adjust control commands that drive
the system toward a desired behavior (Figure 1). Model-based controllers that provide a
distribution of future states (e.g., prosthetic ankle torque profiles) and their costs (e.g., the
error between desired ankle torque profile and the predicted torque profile) based on
candidate control commands are, when presented with limited environmental interactions,
typically more sample-efficient and converge (i.e., minimize cost) more quickly than model-
free techniques [6,7]. This is because a model-based controller is able to leverage the system
model to focus the control command search space [8]. Model-free control strategies require
more time to minimize cost (e.g., require more walking trials to train the controller and
achieve a desired torque profile). In some cases, a model-based control law can be used
as an initialization for a model-free learner (e.g., [9]). The model-free learner can then
fine-tune the control law to overcome any model uncertainties. Despite their promise,
model-based control systems have not been implemented in robotic prosthesis control
because modeling human prosthesis dynamical behavior remains a challenge.

Deep neural networks (DNNs) provide a promising modeling strategy for model-
based control of prosthetic ankles and are state of the art in other challenging learning
tasks, such as natural language processing [10] and computer vision [11] that also involve
high-dimensional nonlinear relationships. Once a DNN is sufficiently trained to model
the human–robot system, it can be deployed to a real-time prosthesis control system and
map system state measurements to an output prediction (e.g., ankle torque response), all
without explicit knowledge of the system’s physics.

The capability of DNNs to output long-term predictions presents another key advan-
tage in the context of prosthetic control. In certain cases, modeling approaches based on
physics or first principles can provide insight toward system input–output relationships.
However, it is often challenging and time-consuming to characterize system behaviors
using first principles for systems with nonstationary dynamics that are highly nonlinear
and vary over time (e.g., a human-prosthesis system). When mathematical process models
are not known, DNN architectures have demonstrated an ability to accurately predict long-
term behaviors including robotic trajectory [12] and human behavior prediction [13]. If
high-fidelity DNN models that predict human-prosthetic dynamics can be developed, then
it would be possible to proactively adjust prosthesis control actions to achieve a desired
long-term trajectory or prepare for gait transitions.
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Figure 1. Block diagram of the architecture of a generic model-based prosthesis control system. A
trajectory generator outputs a desired ankle torque yd, which is then fed into an optimizer. The
optimizer samples different possible control commands uk and conducts forward simulations based
on system model predictions. The optimizer uses the results to determine which control command
would achieve the closest one-sample ahead ankle torque response yk+1 to the desired behavior. This
control command is then sent to the human–robot system and the measurements of the system xk
(e.g., loading and motion information from wearable sensors) are fed back to the optimizer for the
next control sample.

1.2. Current Data-Driven Approaches in Prosthetic Control

Most data-driven biomechatronics research up to this point has been used to build
models that relate environmental, system, and user data to intent recognition [14–16] or gait
phase estimation [17] rather than to build predictive regression models of human–robot
dynamical systems (e.g., estimating joint kinetics that cannot be observed instantaneously).
A predictive model that outputs these dynamics directly can inform controllers and improve
their performance (e.g., adapt the control inputs to achieve a desired ankle torque response).
In addition, a model-based prosthesis controller can utilize joint dynamics information
even outside the laboratory where motion capture (MoCap) is not available and inverse
dynamics computations are more challenging.

Some early studies used neural networks and electromyography signal inputs to
predict ankle dynamics; however, their predictions were noisy and less accurate when
compared to a muscle model [18,19]. One explanation is that their shallow neural network
architecture did not take the dynamic spatial–temporal relationships of human–robot sys-
tems into account. More recently, studies have successfully used more advanced neural
network classes such as recurrent neural networks (RNNs) [20] and attention-based long
short-term memory networks (LSTMs) [21,22] to generate reference trajectories for prosthe-
sis controllers based on able-bodied data. Others have used wearable sensors and machine
learning models to predict joint moments for exoskeleton control, also using able-bodied
data [23]. However, deep learning models have not been used to predict prosthesis joint
dynamics directly for individuals with transtibial amputation.

1.3. Deep Learning Modeling Approach

The field of wearable robotics is increasingly incorporating deep learning to improve
control systems and user adaptability [24]. Recent studies have applied deep learning for
intuitive control of powered knee–ankle prostheses [25], estimating joint moments and
ground reaction forces in various walking conditions [26], and predicting joint moments
in real time for exoskeleton controllers [27,28]. This signifies a growing trend towards
more responsive and adaptive assistive technologies, yet gaps remain in understanding the
potential and limitations of deep learning methods for PAFP control.

The development of models that can predict ankle mechanics is a key milestone in
implementing a model-based control strategy for prosthetic devices, and this paper investi-
gates different model architectures for predicting prosthetic ankle torques. The models are
trained and evaluated based on how well they can predict prosthetic ankle torque values
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from previously collected data. These methods use only a small number of model input
features and do not rely on a full-body MoCap suit or a large array of electromyography
sensors. Experimental data in the form of total prosthetic ankle torques from optical MoCap
(target outputs) and system state data (predictor inputs) from optical MoCap, force plate
measurements, and on-board sensors are used to train the predictive models.

The output of the models was chosen to be the forward predictions of the prosthetic
ankle torque. These output targets were computed using the full-body MoCap marker set
(Vicon) with inverse dynamics principles to derive the total torque value at the ankle based
on the movements of all anatomical structures that affect the joint. The reason for choosing
the prosthetic ankle torque as the time series of interest is because many robotic prosthesis
control methods aim to achieve a desired ankle torque or deploy a mathematical formula
based on ankle impedance (i.e., prescribing an assistive ankle torque based on changes in
ankle position).

Three DNN architectures were developed and trained: (i) a simple multilayer feedfor-
ward network (FFN), which passes information in one direction [28]; (ii) a gated recurrent
unit network (GRU), which includes feedback connections and gates used to keep track of
long-term dependencies in the input sequences [29]; and (iii) a dual-stage attention-based
gated recurrent unit network (DA-GRU), which shares the capabilities of the GRU and adds
attention mechanisms that assign weights to the different elements of the input sequence
based on their relevance to learning the given task [30]. Each DNN was trained to predict
ankle torques from inverse dynamics a short time period (one sample) into the future. The
one-sample-ahead prediction performances of the DNNs and an analytical model of the
PAFP system, which was derived based on first principles, are then directly compared to
PAFP torque computed from MoCap and inverse dynamics. Additionally, we assess the
long-term predictive capabilities of neural networks that could realistically be applied to
prosthetic control. Each DNN was trained to predict twenty samples, approximately half a
gait cycle, into the future to compare each DNN’s ability to predict prosthetic ankle torques.
Half a gait cycle was chosen, as it could enable a prosthesis controller to proactively respond
to stride-to-stride variations or gait transitions.

In summary, while most prosthetic applications have yet to incorporate predictive
models, advanced feedback control systems stand to benefit significantly from them, espe-
cially for managing the complex human–robot interactions in prosthetic ankle–foot devices.
One of the primary challenges in predicting prosthetic ankle torque stems from the fact
that it is influenced by both the control action of the device and the variable kinematic
pattern adopted by the user when using devices that incorporate parallel elastic elements.
Traditional physics-based models struggle to account for these complexities, making them
less effective for real-time control. The main contribution of this paper is the development
and comparison of deep learning models that are specifically designed to predict this
shared human–robot state, thus paving the way for more adaptive and intuitive prosthetic
control systems in the future.

2. Materials and Methods
2.1. Prototype Ankle–Foot Prosthesis and Experimental Setup

A prototype PAFP was used in this research [31]. Figure 2 shows the prototype and
all its subcomponents. A cam-based spring acts across the ankle joint and provides a
nonlinear elastic response which mimics the elastic response of a biological ankle [31].
The spring acts in parallel to the powered drivetrain which provides active torque and
consists of a motorized link acting across the shank and ankle links. A 12-bit capacitive
encoder is attached to the prototype PAFP and is used to sense the angular position of the
prosthetic ankle joint via a serial peripheral interface. Additionally, the motor current and
velocity are transmitted by the motor drive to the custom embedded system’s analog-to-
digital peripheral.
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Figure 2. Illustrative rendering of the prototype PAFP with major components labeled (note that
some components are transparent for ease in visualization).

A pilot (N = 1) study was conducted where a subject performed steady-state walking
at 1 m/s using the prototype PAFP. A safety harness was included in the experimental setup
as any data collected when the subject touched the treadmill handrails were discarded. A
novel human-in-the-loop symmetry learning strategy was used to control the PAFP, where
an adaptive gain iterative learning control algorithm adjusts the PAFP’s torque after each
walking trial to match the achieved intact ankle torque [32]. A total of 23 walking trials
were conducted, with each trial having a unique control command trajectory and prosthetic
ankle torque profile. The experimental setup consisted of a split-belt force-sensing treadmill
(Bertec), a 12-camera MoCap system (Vicon), and a human subject donning the PAFP with
custom embedded system and tethered power supply. Marker trajectories and ground
reaction force (GRF) data were recorded at 120 Hz and 1200 Hz, respectively. The raw
data were filtered using a digital, fourth-order, low-pass Butterworth filter with cutoff
frequencies of 25, 6, 50, and 50 Hz for kinetics, kinematics, GRF, and embedded system
signals (i.e., motor currents and velocities), respectively. A custom 15-segment whole
body model was created in Visual 3D and the markers on the prosthetic limb mirrored the
markers on the intact limb. For presentation purposes, GRF data were thresholded at 20 N
for swing and stance segmentation. Joint angles were calculated using inverse kinematics
and moments were calculated using standard inverse dynamics and normalized by the
subject’s body mass. The prototype PAFP was fitted to the left leg of the subject, using
their as-prescribed socket and suspension system, and aligned by a certified prosthetist.
The subject provided written informed consent to participate in the experimental protocol,
approved by the VA Institutional Review Board. The subject was a healthy, active, 85-kg,
unilateral transtibial amputee. The data collected during this preliminary investigation
were used to build the models in this study.
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2.2. Baseline: Analytical Regression Model

An analytical least squares regression model was developed to provide a baseline
comparison to the DNN models (see Appendix A). Similar to training a DNN, least squares
regression attempts to fit a set of parameters to data. However, one advantage to least
squares over deep learning is that there is always an analytical solution (i.e., a known set of
optimal parameters).

The analytical regression model was derived based on the known physics of the
prototype PAFP’s dynamics. For this system, the total prosthetic ankle torque τp is the
sum of the passive torque from the parallel elastic element during loading τl and the active
torque generated by the motor and ball screw τa. The analytical regression problem is
formulated as:

τp − τa = τl

τp − Rτ(θ)kτia = p3θ3 + p2θ2 + p1θ + p0
(1)

where Rτ(θ) is the effective transmission and is a function of the prosthetic ankle angle θ.
The rated motor torque constant provided by the motor manufacturer is denoted by kτ.
The total prosthetic torque τp is computed using the MoCap system and full-body inverse
dynamics. Additionally, the prosthetic ankle angle θ is the output of the PAFP-mounted en-
coder sensor. Similarly, the motor current command ia is sampled by the embedded system.
The passive PAFP elements (e.g., cam device and spring) were designed and characterized
in a previous study using a third-degree polynomial function whose parameters (i.e., p0,
p1, p2, and p3 in Equation (1)) were fit via least squares from axial bench test data [31].
Preliminary work using these parameters resulted in high model prediction bias. Refitting
these parameters using data from the human subject experiment sufficiently reduced this
bias, presumably by capturing the as-worn conditions of the PAFP and the variability
introduced by user behavior.

The prosthetic torque signal τp was time-shifted ahead by one sample relative to the
prosthetic ankle angle θ and motor current command ia signals. All data were then divided
using the train–test split method, where the last 15% of experimental walking trials were
reserved to evaluate the analytical model. Note that the test dataset was equivalent to the
dataset used to evaluate the DNN models discussed in Section 2.3. The remaining data were
shuffled, and then used for model training and cross-validation. Five-fold cross-validation
was implemented and the parameters of the best-performing model out of the five trained
models were used for testing and evaluation.

2.3. Neural Network Architectures

While DNN training is typically more challenging when compared to least squares
regression, the class of functions that can be learned effectively with a DNN is richer.
Certain DNN architectures have mechanisms that assist in learning temporal dependencies
within the data and others are capable of encoding the relative importance of each input
features with regards to predicting the output variable.

In this study, three DNN architectures were trained to predict prosthetic ankle torques
from inverse dynamics (see Figure 3). Each DNN model was implemented within the
PyTorch framework [33]. The following were used as the input features for the DNN
models: left and right vertical GRF, prosthesis ankle encoder angles, prosthesis-side hip
angles, motor current commands, and motor velocities.

2.3.1. FFN

An FFN consists of a series of fully connected layers that connect every neuron in one
layer to every neuron in the other layer [34]. This architecture was chosen because it is
easy to implement and common across many applications. However, FFNs tend to not
perform as well as more application-specific networks and cannot learn to modulate the
feature inputs directly for better prediction results. Additionally, this type of network has
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no temporal memory since the layers connect unidirectionally (i.e., there are no cycles or
feedback loops in the network).

Figure 3. Visual illustration of the deep neural network architectures. The time history of input
features are concatenated and fed into each network. Each DNN is trained to output a predicted
PAFP ankle torque one timestep ahead or twenty timesteps ahead of the current timestep. Note
that only one FFN and GRU are displayed in this diagram, but multiple layers were tested during
hyperparameter optimization.

2.3.2. GRU

A multi-layered GRU network consists of recurrent layers and a hidden state at each
timestep [29]. The GRU architecture was included in this study for its applications towards
tasks related to learning complex spatial–temporal dependencies in time series data. At
each timestep, the GRU layer adds information to or removes information from the hidden
state, which makes it particularly effective for learning temporal dependencies in time
series data. The GRU layer uses a reset gate which controls the level of state reset, update
gate, which controls the level of state update, and candidate reset state, which controls
the level of update added to hidden state. This network is similar to long short-term
memory (LSTM) networks but has less parameters to train due to the lack of an output
gate. However, the performance of GRUs have been shown to be similar to LSTMs for
certain tasks [35] and can even outperform them for training on smaller and less frequent
datasets [36].

2.3.3. DA-GRU

A DA-GRU network, inspired by the DA-RNN [30], was developed for this study.
This network uses a GRU architecture but also includes an attention mechanism that
adaptively extracts the most relevant features at each timestep using an encoder-based
hidden state [37]. An encoder is a type of network that maps input sequences into a
representation where more relevant information is weighed more (i.e., it enhances and
directs focus to the important parts of the input data). Similarly, a temporal attention
mechanism is also used to decode the relevant encoder hidden states across timesteps. The
DA-GRU was chosen because it not only has the ability to capture the long-term temporal
dependencies of the dataset similar to the GRU, but can also adaptively select the most
relevant input features across the dataset. In addition, the attention mechanisms help the
optimizer escape from local minima to reach a better minimum loss and help avoid the
vanishing gradient problem when dealing with sequential time series data.
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2.4. Data Processing

Data sampled and logged from experimental trials were used to create the datasets
for neural network training and evaluation. Once all data signals were filtered, the signals
were then downsampled from 120 Hz to 30 Hz to reduce training time with minimal loss in
performance since most human movement data information is contained within 15 Hz [38].
At this sampling rate and from the 23 30-s walking trials, a total of 20,700 data points per
variable (i.e., input features and output target) were used for model training. For all models,
the output target (i.e., ground truth) is the PAFP ankle torque computed from MoCap and
inverse dynamics. The analytical regression model and the DNNs were trained to predict
the PAFP ankle torque valued one sample (i.e., 33 ms) into the future. Additionally, DNN
models were also trained to predict ankle torque values twenty samples ahead, which was
approximately half a gait cycle into the future.

Each model input feature was scaled to the interval [0, 1] based on its maximum
and minimum values within the training dataset. This procedure was conducted in order
to transform each feature to a similar scale, which reduces the model’s sensitivity to
magnitude shifts during learning and also prevents the features with large ranges in values
from dominating predictions. A rolling lookback time window (i.e., sequence) was also
implemented and defined how many feature values of previous timesteps were used for
model predictions. The length of the lookback period was a tuneable hyperparameter
and was adjusted to assist the DNNs in learning the time dependencies within the data.
The data were then split into the three types of datasets commonly used in deep learning
applications: training, validation, and testing. The first 70% of the data from each time
series (i.e., walking trial) were used to create the training set, the following 15% were
used to create the validation set, and the remaining 15% were used to create the test
set. The training dataset was then split into batches and the batch size was a tuneable
hyperparameter that was optimized.

2.5. Loss Function and Network Parameter Optimization

The loss function used during DNN training was chosen as the mean squared error
(MSE) between the neural network output prediction and the measured target. The AdamW
optimization algorithm [39], an expansion of the Adam optimization strategy with decou-
pled weight decay functionality, was used to update the network weights. A learning rate
scheduler was also implemented, which allowed the dynamic learning rate to be reduced
based on when validation predictions stopped improving [40]. The number of epochs with
no improvement after which the learning rate reduced (i.e., patience) was set to 3. Thus,
the optimizer would ignore the first two epochs with no improvement and only decreased
the learning rate after the third epoch if the loss still had not improved. Furthermore, the
number of epochs to wait before resuming normal operation after the learning rate has
been reduced (i.e., cooldown) was set to 3. The factor by which the learning rate reduced γ

was a tuneable hyperparameter. The minimum learning rate was set to 1 × 10−5.

2.6. Network Hyperparameter Optimization Procedure and Outcomes

The Optuna framework [41] was used to optimize the network training hyperparame-
ters and a total of 500 combinations of hyperparameters were tested for each network (see
Table 1). The hyperparameters included the sequence length, number of hidden layers,
number of hidden units, dropout probability, batch size, initial learning rate, AdamW
weight decay coefficient, and learning rate reduction factor. The DA-GRU hyperparameter
optimization also included the number of hidden decoder units but excluded the dropout
probability. Additionally, the number of hidden layers was fixed for DA-GRU hyperparam-
eter optimization to match the dual-layer architecture of the DA-RNN network [30].
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Table 1. Hyperparameter values tested for optimal performance of the DNNs.

Hyperparameter Range/Values
Optimal Value

1-Sample 20-Sample
FFN GRU DA-GRU FFN GRU DA-GRU

Sequence Length [2, 3, 4, ... , 18, 19, 20] 16 15 18 20 18 20
Number of Layers [1, 2, 3] 3 2 - 3 2 -
Number of Hidden Units [16, 32, 64, 128, 256, 512] 512 512 - 512 64 -
Number of Encoder Hidden Units [16, 32, 64, 128, 256, 512] - - 128 - - 512
Number of Decoder Hidden Units [16, 32, 64, 128] - - 16 - - 64
Dropout Probability [0.1:0.5] 0.114 0.199 - 0.100 0.121 -
Batch Size [16, 32, 64, 128, 256] 16 16 16 16 16 16
Initial Learning Rate [10−5:10−1] 5.1 × 10−5 1.3 × 10−4 2.8 × 10−3 4.6 × 10−5 4.5 × 10−4 1.8 × 10−3

Weight Decay Coefficient [10−5:10−1] 0.062 0.019 3.1 × 10−3 0.073 0.013 0.070
Learning Rate Reduction Factor [0.1:0.9] 0.168 0.559 0.132 0.373 0.728 0.230

The performance of the model was evaluated on the validation set every epoch. To
reduce the chance of overfitting, an early stopping protocol was used to take the validation
loss and count the number of epochs since the loss improved. If the loss stopped decreasing
for 10 epochs in a row, the training stopped and the best-performing model was saved. The
maximum number of training epochs was set to 1000. Once all the hyperparameters were
optimized for the three networks over the 500 Optuna trials, predictions were generated
and evaluated on the test dataset.

2.7. Analysis

Root Mean Squared Error (RMSE) and the Pearson correlation coefficient (PCC) were
used as measures to report the performance of the different models. RMSE is one of the
most widely used measures for evaluating the quality of regression model predictions and
it shows how far predictions fall from measured true values. Since the errors are squared
before they are averaged, the RMSE gives a relatively high weight to large errors, which is
useful in this application, since large prediction errors are undesirable. PCC is an analysis
that measures the strength of association between two continuous signals and can indicate
if there are any time shifts (i.e., lags) between them. This metric was chosen since actuation
timing plays a key role in the context of PAFP controllers (e.g., personalization to each
user’s unique biomechanics and changing prosthesis behaviors or impedance parameters
at various phases of the gait cycle). In an absolute best-case scenario, the RMSE will be
equal to 0 and PCC would be equal to 1. Additionally, percent RMSE values were used to
compare the performance of the models. Percent RMSE was computed by dividing the
RMSE value by the ankle torque’s range of values within the walking trial.

3. Results

The prediction accuracy of the DNN models for the test dataset was much higher
when compared to the analytical model (see Figures 4 and 5). Note that the time series
data shown in this section were used only for model evaluation and were not part of
the training data. Furthermore, the desired torque setpoint was not included in Figure 4
because this signal only accounts for the active torque. The PAFP used in this experiment
is a parallel elastic actuator, and therefore, the setpoint command only accounts for the
drivetrain dynamics (i.e., active torque) but there are passive system components that also
influence the total prosthetic ankle torque.
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Figure 4. One-sample ahead model predictions of total PAFP torques across gait cycles. The periodic
time series are time-normalized across the gait cycle for better visualization. The black time series
data labeled as “MoCap” represents the PAFP ankle torque calculated using inverse dynamics. This
data serve as the ground truth for model validation. The thin solid lines represent the mean and the
corresponding shaded areas represent ±1 standard deviation.

Figure 5. RMSE (top row) and RMSE percent error (bottom row) for each model class for both
one-sample ahead (left column) and twenty-sample ahead (right column) predictions. RMSE percent
error was calculated by dividing the RMSE value by the range of ankle torque values within the
walking trial. Errors are shown for stance and swing phases individually as well as the full gait cycle.
The error bars represent the standard error.

For both one-sample ahead and twenty-sample ahead prediction tasks, the mean RMSE
of the results were generally within 5% of the total range of PAFP ankle torque values
(see Table 2). When considering approximately two-thirds of the error data (i.e., mean ±1
standard deviation), DNN errors were only within 8% of the PAFP ankle torque’s dynamic
range. The DNN errors were notably lower than the analytical model which had a mean
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RMSE of 26.6% of the PAFP ankle torque’s dynamic range. When including the ranges
within one standard deviation of the mean, the error went up to 58% of the range of ankle
torque values. In general, DNN prediction errors increased from one to twenty samples into
the future; however, this increase was small and all errors were within the same order of
magnitude. An analytical model was not derived for the twenty-sample ahead prediction
problem, however, the twenty-sample ahead predictions of the DNN models outperformed
the one-sample-ahead analytical model predictions by a substantial margin (see Figure 5
and Table 2).

DNN predictions showed a high PCC for both prediction tasks when compared to
the analytical model (see Table 2). All PCC values for the DNNs were above 0.99 for the
one-sample-ahead prediction task and only dropped by approximately 0.01 for the twenty-
sample ahead prediction task. Compared to the analytical model, which only showed
a mean PCC value of 0.82 with a standard deviation close to 25% of its mean, the DNN
results demonstrate a much higher correlation to the desired target predictions. Similar
to the RMSE results, the PCC of the twenty-sample ahead DNN predictions consistently
outperformed the PCC of the one-sample-ahead analytical model predictions, which further
demonstrates the long-term predictive capabilities of DNN models. Finally, the model
training times were as follows: 0.05 s for the analytical regression model, 43 s for the FFN,
2 min 15 s for the GRU, and 13 min 18 s for the DA-GRU. Note that these training times are
based on the DNNs with their optimized hyperparameters.

Table 2. Model prediction accuracy measures for full gait cycles.

RMSE 1 (Nm/kg) 3 % RMSE 1 PCC 2

1-Sample 20-Sample 1-Sample 20-Sample 1-Sample 20-Sample

Analytical 0.347 ± 0.534 - 26.6 ± 40.9 - 0.822 ± 0.202 -
FFN 0.036 ± 0.024 0.058 ± 0.041 2.7 ± 1.6 4.3 ± 2.8 0.996 ± 0.006 0.988 ± 0.019
GRU 0.042 ± 0.025 0.068 ± 0.042 3.2 ± 1.7 5.1 ± 3.0 0.995 ± 0.007 0.985 ± 0.024
DA-GRU 0.037 ± 0.024 0.058 ± 0.051 2.8 ± 1.5 4.3 ± 3.5 0.996 ± 0.006 0.985 ± 0.030

Mean values ± standard deviations. 1 RMSE = Root Mean Squared Error. 2 PCC = Pearson Correlation Coefficient.
3 Nm/kg = Newton-meter per kilogram bodyweight.

4. Discussion

This study developed predictive models to enable future predictive controller devel-
opment for prosthetic devices, which could become feasible outside the laboratory and
without relying on a full-body MoCap suit or a large array of wearable sensors. The
prosthetic torque predictions can inform prosthesis controllers, help anticipate changes in
dynamics, and proactively actuate the ankle to achieve a desired behavior. Across all the
analyzed metrics, the FFN, GRU, and DA-GRU models (i.e., DNN models) outperformed a
nominal analytical regression model. An interesting discovery was that all DNNs demon-
strated approximately the same performance (<0.01 Nm/kg difference in RMSE, <0.75%
difference in percent RMSE, and <0.01 difference in PCC). Additionally, the results show
that all DNNs can be retrained to predict approximately half a gait cycle into the future
without compromising overall performance. When compared to the one-sample-ahead
predictions, the twenty-sample ahead prediction performance for all DNNs only decreased
by an average of 0.023 Nm/kg and 1.7% of the PAFP ankle torque’s dynamic range. The
decrease in the PCC value across all DNNs was also small at approximately 0.01. Figure 5
displays the approximately equivalent results for all the DNNs and how the predictions
errors are within one standard deviation of each other. Due to the simpler architecture
and faster training time, it may be more beneficial to use the FFN for deployment onto
embedded systems.

Overall, the DNN model prediction results were more accurate than the nominal
analytical regression model. Additionally, the DNNs were able to generalize across the
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whole gait cycle, while the nominal analytical model produced very poor results during the
swing phase. This strategy, therefore, eliminates the need to design hybrid system models
and finite state machines, thus reducing the amount of control parameters that need to
be tuned by experts. Additionally, this method eliminates the time-intensive process of
characterizing the mechanics of prototype PAFPs via analytical methods (e.g., deriving
physics-based equations of motion, mechanical testing, mechanical rig construction, pa-
rameter fitting, etc.). Instead, PAFP researchers only need to collect preliminary walking
data and use that data to train the DNNs. The DNNs also demonstrated the ability to
predict future behavior with only a small loss in performance. This unique quality is not
shared by analytical or physics-based models and could enable model predictive controllers
for PAFPs.

Even though the analytical regression model was designed based on the most dom-
inant and identifiable features of the PAFP system’s dynamics, its accuracy was limited.
The low accuracy of the analytical regression model could be due to the many factors other
than ankle kinematics and drivetrain dynamics that can influence prosthetic ankle torque
(e.g., variations in limb loading and the dynamics of proximal joints). Even with a clear
understanding of the prosthetic drivetrain, cam profile, and passive spring, the analytical
regression model cannot account for unmeasured factors and thus, fails to properly charac-
terize prosthetic ankle torque. On the other hand, the DNNs learn to accurately predict
these dynamics from collected data. Linear and sparse regression methods that used the
same set of features as the DNNs were used during early model development phases, but
similar to the analytical regression model, the results from these models were not accurate.

The performance of the analytical regression model could be improved (e.g., adding
ankle angular velocity and acceleration-dependent terms); however, further system identi-
fication would be time-intensive compared to the proposed deep learning pipeline. Ad-
ditionally, it is difficult to derive analytical models based on a limited set of system states
and adding more sensors (e.g., wearables) could cause discomfort to the users or hinder
their mobility. The deep learning approach presented in this research provides accurate
predictions, eliminates the need to construct analytical models, and only requires a small
set of input features.

The results from this research suggest that high fidelity prediction models can be
constructed with minimal sensor inputs. If implemented with wearable sensors, these
prediction models would obviate the need for vision systems or electromyography sensors
to produce accurate predictions during steady-state walking. For future work, one way to
distinguish the capabilities of each DNN would be to analyze each for their dependence
on data. For instance, one architecture may perform better with fewer training data than
others. This has important implications for clinical applications since it would reduce the
amount of time to complete data collections, the number of clinical visits, and number of
walking trials.

The use of a single experimental condition (i.e., steady-state walking) is also a lim-
itation of this study. Additional training data collection and future tests should include
nonrhythmic movements and other tasks, such as stair or ramp walking. This could help
determine if some DNN architectures perform better than others across various activities
and situations (i.e., generalize to different torque profiles). In this study, the DNNs all per-
formed similarly for steady-state walking conditions. However, GRU and DA-GRU, which
include memory-based mechanisms in their model architectures, could better anticipate
gait variations in non-steady state situations. The PAFP controller could then pre-actuate
the prosthesis in anticipation of these events.

A limitation of this experiment was that model predictions were conducted offline.
Real-time tests on actual hardware should also be conducted as future work in order to
test the feasibility of evaluating these models in real time for predictive control of robotic
prostheses. These tests would also give insight into prediction latency and the effects of
sensor noise variations. The filtering techniques must also be addressed in future studies
that focus on the implementation of these models towards online applications. One option
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is to use wearable sensors that include on-board filtering algorithms. Furthermore, an
instrumented pyramid adapter (e.g., [42]) and thigh-mounted IMU could be integrated
into the PAFP system to provide real-time measurements of the prosthesis-side vertical
GRF and hip angles, respectively. An instrumented insole could be used on the intact limb
to output load rate measurements in real time and also inform the DNN models if the user
is in double- or single-leg support.

Only a single participant was included in the training data, which is an inherent
limitation of this study. The focus of this research was to create predictive models that are
personalized to the individual, but more subjects should be included when training future
models to see if this strategy translates across individuals or if there are any benefits to
utilizing inter-user models. Anthropometric and subject-specific data (e.g., weight, height,
gender, or limb lengths) could be used as additional features to possibly create models
that generalize across individuals. Even if the models need to be retrained for each device
and individual, the same set of features and neural network architectures would likely
achieve a similar performance for other devices and individuals. Finally, improvements
to the inverse dynamics model can be made (e.g., accounting for the elastic behavior of
the foot keel, using the PAFP mass as a model parameter, and setting a custom ankle joint
center for the PAFP).

5. Conclusions

This research aims to take strides toward model-based control methods for PAFPs by
developing predictive DNN models. Ambulation data from a single subject were used
to train the analytical regression model and three DNN architectures. The trained DNNs
demonstrate that sophisticated and high-fidelity models can be used to accurately predict
total ankle torque values that are normally only available after computing full-body inverse
dynamics offline. Performance was within 5% of the total range of PAFP torque values
for both one-sample- and twenty-sample-ahead (half a gait cycle) predictions. The results
suggest these models can be used to estimate dynamics that are typically unobservable in
real time. Thus, these human–robot predictive models could enable model-based powered
prosthesis control strategies, which have the potential to improve the functionality of
powered prosthetic devices.
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Appendix A. Derivation of the Analytical Regression Model

For the prototype PAFP system used in this study, the total prosthetic ankle torque τp
is the sum of the passive torque from the parallel elastic element during loading τl and the
active torque generated by the motor τa:

τp(t) = τa(t) + τl(t) (A1)

The motor is placed parallel to the shank, and as it rotates, the ball screw placed below
the motor moves linearly, which creates a translational force on pin B and a moment about
pin O (see Figure A1). This moment is the active torque τa generated by the motor and is
defined as:

τa = rFs (A2)

where Fs is resultant linear force of the ball screw acting at joint B and r is the moment arm.

Figure A1. The prototype PAFP represented as two linkages connecting the drivetrain to the ankle
joint. Pin joint A is where the ball screw connects to the shank link, pin joint B is where the ball screw
nut housing connects to the ankle link, and pin joint O is where the ankle joint is connected to the
drivetrain. Lowercase letters represent lengths and Greek letters represent angles. The variable ω

represents the direction of positive angular velocity about the ankle joint.

Figure A1 illustrates the geometry between the PAFP system linkages for various
orientations and shows that lengths b and d are fixed due to the constant moment arms
from pin joint B to pin joint O and the rigid shank link. Length a, angle β, angle α, and
angle φ are all functions of the ankle joint angle θ. Using the positioning of the components,
these variables can be defined as follows:

β = arccos
(

d
b

)
+ θ − θ0

a =
√

b2 + d2 − 2bd cos (β + θ − θ0)

α = arcsin
(

d sin (β)

a

)
φ =

π

2
− β − α

(A3)

where θ0 is an angular offset to ensure that at maximum torque, the ball screw a and ankle
link moment arm d are perpendicular. Using these definitions, the moment arm reduction
from pin joint B and pin joint O is:

τa

Fs
= d cos (φ) (A4)
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Using the law of conservation of energy and the principles of screw theory, the
mechanical advantage of using the ball screw is defined as:

τg

Fs
=

l
2πηs

(A5)

where τg is the torque outputted by the transmission, ηs is the ball screw efficiency, and l is
the screw lead (i.e., the linear distance the screw travels in one revolution). Additionally, at
the transmission output shaft τg and the motor torque τm are related by:

τg

τm
= Rgηg (A6)

where Rg is the planetary gearhead reduction and ηg is the gearhead efficiency. Using
Equations (A4)–(A6), the total mechanical advantage from the motor to the ankle joint is
defined as:

τm

τg

τg

Fs

Fs

τa
=

1
Rgηg

l
2πηs

1
d cos (φ)

(A7)

Equation (A7) is simplified and the results are inverted as follows:

Rτ =
τa

τm
=

d cos (φ)2πηsηgRg

l
(A8)

where Rτ is the drivetrain ratio (effective transmission) that relates the applied motor
torque to the resultant active ankle torque component. The gain from the motor current
command ia to the active torque can be expressed as:

τa = Rτkτia (A9)

where kτ is the rated motor torque constant provided by the motor manufacturer.
The passive PAFP elements (e.g., cam device and spring) were designed to be approxi-

mated using a third-degree polynomial function [31]. Note that the damping and inertial
effects of the motor are assumed to be minimal and are, therefore, not included in the
analytical model. The analytical regression problem is formulated as:

τp − τa = τl

τp − Rτ(θ)kτia = p3θ3 + p2θ2 + p1θ + p0
(A10)

where Rτ(θ) is a function of the prosthetic ankle angle θ. Additionally, the prosthetic ankle
angle θ is the output of the PAFP-mounted encoder sensor. Similarly, the motor current
command ia is sampled by the embedded system. Coefficients p0, p1, p2, and p3 represent
the parameters of the PAFP’s passive torque function to be solved in this nonlinear least
squares problem.
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