
UC San Diego
Technical Reports

Title
One Dimensional Knapsack

Permalink
https://escholarship.org/uc/item/11h2x8kh

Authors
Hu, T. C.
Shing, M. T.
Landa, Leo

Publication Date
2004-01-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11h2x8kh
https://escholarship.org
http://www.cdlib.org/

 - 1 -

From Knapsack to NP = P

T. C. Hu1, M.T. Shing2, Leo Landa3

Abstract

A Knapsack problem is to select among n types of items of various values and weights

to fill a knapsack of weight-carrying capacity b. The problem is NP-complete and has a

dynamic programming algorithm of time complexity O(n b). If the given b is large, the

optimum solution is periodic with its period equals to the weight of the best item. We

introduce a new O(n2 w1 log (n w1)) algorithm that solves all instances b of the problem

for a given set of items, where w1 is the weight of the best item and is usually much

smaller than b. We conjecture that there are many other NP-complete number problems

whose optimum solutions also become periodic for large instances and hence can be

solved by similar algorithms.

Keywords: Knapsack, dynamic programming, shortest-path, NP, pseudo-polynomial

1
 Department of Computer Science and Engineering, UC San Diego, 9500 Gilman Dr., La Jolla, CA

92093-0114. Email: hu@cs.ucsd.edu
2
 Department of Computer Science, Naval Postgraduate School, Code CS/Sh, 833 Dyer Road, Monterey,

CA 93943-5118. Email: shing@nps.navy.mil
3
 Department of Computer Science and Engineering, UC San Diego, 9500 Gilman Dr., La Jolla, CA

92093-0114. Email: leo@leolan.com

 - 2 -

1. Introduction and Review

A knapsack problem is to select a subset of items among n types so that the total value

of the selection is maximized while the total weight does not exceed the knapsack

capacity b. Mathematically,

Max x0 = v1 x1 + v2 x2 + … + vn xn (1.1)

Subject to w1 x1 + w2 x2 + … + wn xn ≤ b

 xj ≥ 0, integers

where the weights wj (j = 1, …, n) and the values vj are given positive integers, and the

capacity b could be any integral value 1, 2, …, M, for some integer M.

When vn = 0 and wn= 1, there is always an optimum solution for (1.1) of the form

w1 x1 + w2 x2 + … + wn xn = b. For the rest of the paper, we shall assume that vn = 0 and

wn= 1 and rewrite the problem as

Max x0 = v1 x1 + v2 x2 + … + vn xn (1.2)

Subject to w1 x1 + w2 x2 + … + wn xn = b

xj ≥ 0, wj > 0, integers

Denote the ratio vj / wj as ρj (called the density of type j) and adopt the convention that

ρ1 ≥ ρ2 ≥ ρ3 ≥ … ≥ ρn. (1.3)

In case of tie, i.e. vj / wj = vj+1 / wj+1, we let wj < wj+1. We call the first type, the best item.

An optimum solution to (1.2) for an arbitrary b will be denoted by an n-component vector

x0(b) = (x1, x2, …, xn). (1.4)

When there are two or more optimum solution vectors, we will choose the

lexicographically largest vector.

The knapsack problem (1.1) is normally solved by a pseudo-polynomial algorithm as

follows.

 - 3 -

(1) Define Fk(y) to be the maximum value when the capacity is y (y = 0, 1, 2, … b) and

only the first k items can be selected (k = 1, 2, …, n).

(2) From the boundary conditions

F1(y) = v1 y / w1 for 1 ≤ y ≤ b, (1.5)

Fk(0) = 0 for 1 ≤ k ≤ n,

and Fk(y) = -∞ for y < 0,

we can build a table of n rows and b+1 columns, using the recursive relations (1.6)

below.

F1(y) = v1 y / w1

Fk+1(y) = max { Fk(y), vk+1 + Fk+1(y – wk+1)} for 1 ≤ k < n (1.6)

When the problem (1.1) has no integer restriction on its variables, it is called a fractional

knapsack problem (a linear program with a single constraint). The optimum solution for

the fractional knapsack problem is given by

x1 = b / w1, (1.7)

xj = 0 for 2 ≤ j ≤ n,

and max xo = ρ1 b.

It is shown in [5-7] that the optimum knapsack solutions are periodic when the capacity

b exceeds a critical value (denoted by b**) and the period is w1, the weight of the best

item.

Define the difference function θ(b) where

θ(b) = ρ1 b – Fn(b) (1.8)

It was shown by Gilmore and Gomory [6] that the difference function θ(b) is periodic with

its period equal to w1 when b satisfies the sufficient condition (1.9).

b ≥ ρ1 w1 / (ρ1 − ρ2) (1.9)

The function θ(b) can be calculated recursively from the boundary condition θ(b) = 0 and

 - 4 -

θ(b) =
j

min {θ(b - wj) + (ρ1 − ρj) wj | 1 ≤ j ≤ n} (1.10)

When v1 = w1, we have ρ1 = 1 and the value of θ(b) = b – Fn(b) can be easily visualized

as the unfilled space in the knapsack. Hence, we shall call the value of θ(b) simply as

the gap. Conceptually, it is easier to deal with the case ρ1 = 1; and we can always

transform a given knapsack problem into an equivalent one with ρ1 = 1, by replacing the

values vj with vj’, where

vj’ = vj / (v1 / w1). (1.11)

For the rest of the paper, we shall assume that

v1 = w1 and ρ1 = 1 ≥ ρ2 ≥ ρ3 ≥ … ≥ ρn = 0. (1.12)

 - 5 -

2. Goals, Concepts and Definitions

Consider the following knapsack problem

Max x0 = 10 x1 + 11 x2 + 5 x3 + 0 x4 (2.1)

Subject to 10 x1 + 12 x2 + 7 x3 + 1 x4 = b

 xj ≥ 0, integers

The corresponding densities for the four types of items are

ρ1 = (10/10), ρ2 = (11/12), ρ3 = (5/7) and ρ4 = (0/1).

We shall first construct a table with 10 rows and 10 columns as shown in Table 2.1.

Track: 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

b

90 91 92 93 94 95 96 97 98 99

Table 2.1

Each column is called a track. The leftmost column is called the 0th track and the

rightmost column is called the 9th track. Thus, the numbers 2, 12, 22, …, 92 belong to

the 2nd track. There are 10 rows with the entries representing the various values of the

capacity b, for b = 0, 1, 2, …, 99.

For a given b, say b = 34, we could fill the knapsack with

2 w1 + 2 w3 = 20 + 14 = 34 with a total value of 20 + 10 = 30,

or w1 + 2 w2 = 10 + 24 = 34 with a total value of 10 + 22 = 32.

 - 6 -

We choose the latter solution since we want the optimum solution for every b.

For the sequence of b = 4, 14, 24, 34, 44, 54, … in the 4th track, we can fill the

knapsacks optimally with

4 w4 = 4 with a total value of 0,

w2 + 2 w4 = 14 with a total value of 11,

2 w2 = 24 with a total value of 22,

w1 + 2 w2 = 34 with a total value of 32,

2 w1 + 2 w2 = 44 with a total value of 42,

3 w1 + 2 w2 = 54 with a total value of 52,

etc.

We have two important observations:

(1) Once we find xo(24), the optimum solution for b = 24, we can fill any knapsack

with b > 24 in the 4th track optimally by adding ((b – 24) / w1) copies of w1 to

xo(24). In other words, the periodic solution starts at 24 for the sequence of b in

the 4th track.

(2) The gap, θ(b), remains constant (with a minimum value 2) for all b ≥ 24 in the 4th

track.

We shall use b*(r) to denote the capacity b where the optimum periodic solution starts

for the sequence of values satisfying b (mod w1) = r, for r = 1, 2, … , w1-1. We call b*(r)

the critical value of the rth track and define the global critical value, b**, as

b** =
r

max b*(r). (2.2)

We plan to accomplish the following 4 goals in this paper:

(1) Present a better way to find the critical values b*(r) for every track, without using

(1.10);

(2) Present a better way to find xo(b) for all b without using the pseudo polynomial

algorithm based on (1.5) and (1.6);

 - 7 -

(3) Show that the complexity of the algorithm is polynomial for large instances of b,

and exponential for small instances of b;

(4) Present a list of open problems that can further improve our understanding of the

knapsack problem, and discuss the implications of the results.

 - 8 -

3. Minimum Cost Multi-Track Spanning Tree

The non-negative integers 0, 1, 2, … form a semigroup under the binary operation

(addition mod w1). For the knapsack problem

Max x0 = 10 x1 + 11 x2 + 5 x3 + 0 x4 (3.1)

Subject to 10 x1 + 12 x2 + 7 x3 + 1 x4 = b

 xj ≥ 0, integers

 we can consider

the integer 12 as the group element g2 with a cost of (12−11) = 1,

the integer 7 as the group element g7 with a cost of (7−5) = 2,

and the integer 1 as the group element g1 with a cost of (1−0) = 1.

To find b*(r), for 1 ≤ r ≤ 9, we want to solve the congruence relation

Min gap = 1 x2 + 2 x3 + 1 x4 (3.2)

Subject to 12 x2 + 7 x3 + 1 x4 ≡ r (mod 10)

 xj ≥ 0, integers

When we only use the first type of items (w1 = 10), we can solve all capacities in the 0th

track optimally. We say that the 0th track is covered. When we only use the first and

second types of items (w1 = 10, w2 = 12), we can generate the group elements g2, g4, g6

and g8 from g2. We say that the tracks 0, 2, 4, 6 and 8 are covered. We want to find a

linear combination of g2, g7 and g1 to cover all tracks while minimizing the resultant

gaps.

Let us formulate this as a graph problem where every capacity b in Table 2.1 is

considered as a node of a network. Two nodes b and b’ are connected by a directed arc

of length wj (wj = 12, 7 and 1) from b to b’ if the difference b’ – b = wj. A directed arc of

length wj is associated with a cost = (wj – vj). Here, the arc of length 12 has a cost of 1,

the arc of length 7 has a cost of 2, and the arc of length of 1 has a cost of 1. For brevity,

we shall call “the arc with length wj” simply as “the arc wj”.

 - 9 -

Each time we use the arc w2, we will incur a gap cost of 1. Similarly, we will incur a gap

cost of 2 for each arc w3, and a gap cost of 1 for each arc w4.

Thus, the graph version of (3.1) becomes finding a spanning tree with its root at node 0

and directed paths to nine nodes, each node in a different track, such that the total gap

cost of the tree arcs is minimum. Figure 3.1 shows the resultant minimum cost spanning

tree for (3.1), with

b*(0) = 0, b*(1) = 1, b*(2) = 12, b*(3) = 13, b*(4) = 24,

b*(5) = 25, b*(6) = 36, b*(7) = 7, b*(8) = 8, b*(9) = 19.

19

 8

36

25 24

 7

13 12

 1 0

$1

$1

$1

$1

$1

Figure 3.1

$2

Track: 0 1 2 3 4 5 6 7 8 9

b

$2

$2

$1

 - 10 -

4. Numerical Examples

We give a sequence of numerical examples to show the intrinsic details of the knapsack

problem before formally introducing the general algorithm.

Example 4.1

Max x0 = 10 x1 + 13 x2 + 17 x3 + 0 x4 (4.1)

Subject to 10 x1 + 13 x2 + 17 x3 + 1 x4 = b

 xj ≥ 0, integers

To find b*(r), for 1 ≤ r ≤ 9, we want to solve the congruence relation

Min gap = 0 x2 + 0 x3 + 1 x4 (4.2)

Subject to 13 x2 + 17 x3 + 1 x4 ≡ r (mod 10)

 xj ≥ 0, integers

The resultant minimum cost spanning tree is shown in Figure 4.1.

Track: 0 1 2 3 4 5 6 7 8 9

b

 0
$0

39

68

26

34

17 13 $0

$0

$0
$0

$0
$0

Figure 4.1

65

52 51

$0

$0

 - 11 -

Since GCD(w1, w2), the greatest common divisor between w1 and w2, equals 1 and

GCD(w1, w3) = 1, we can generate the group elements g2, g3, …, g9 from g3 or g7 alone.

Moreover, since ρ1 = ρ2 = ρ3 = 1, the gap cost = 0 for all tree arcs corresponding to w2 or

w3. We have

b*(0) = 0, b*(1) = 51, b*(2) = 52, b*(3) = 13, b*(4) = 34,

b*(5) = 65, b*(6) = 26, b*(7) = 17, b*(8) = 68, b*(9) = 39.

Example 4.2

Max x0 = 10 x1 + 12 x2 + 15 x3 + 0 x4 (4.3)

Subject to 10 x1 + 12 x2 + 15 x3 + 1 x4 = b

 xj ≥ 0, integers

Here, the group of order 10 is decomposed into two subgroups, one group of order 2

and one group of order 5. To find b*(r), for 1 ≤ r ≤ 9, we want to solve the congruence

relation

Min gap = 0 x2 + 0 x3 + 1 x4 (4.4)

Subject to 12 x2 + 15 x3 + 1 x4 ≡ r (mod 10)

 xj ≥ 0, integers

Since GCD(w1, w2, w3) = 1, we can generate the group elements g2, g3, …, g9 with a

combination of g2 and g5. We have

b*(0) = 0, b*(1) = 51, b*(2) = 12, b*(3) = 63, b*(4) = 24,

b*(5) = 15, b*(6) = 36, b*(7) = 27, b*(8) = 48, b*(9) = 39.

The resultant minimum cost spanning tree is shown in Figure 4.2. Again, all tree arcs

corresponding to w2 or w3 have gap cost = 0 since ρ1 = ρ2 = ρ3 = 1.

 - 12 -

Example 4.3

Max x0 = 5 x1 + 49998 x2 + 0 x3 (4.5)

Subject to 5 x1 + 49999 x2 + 1 x3 = b

 xj ≥ 0, integers

Here, we want to solve the congruence relation

Min gap = 1 x2 + 1 x3 (4.6)

Subject to 49999 x2 + 1 x3 ≡ r (mod 5)

 xj ≥ 0, integers

for 1 ≤ r ≤ 4. Since GCD(w1, w2) = 1 and 49999 ≡ 4 (mod 5), we can use g4 to generate

the group elements g2, g3, …, g4. However, since the arc w2 has gap cost = 1, using w2

to cover tracks 1 and 2 will result in sub-optimum solution. Hence, we have

b*(0) = 0, b*(1) = 1, b*(2) = 2, b*(3) = 99998, b*(4) = 49999.

The resultant minimum cost spanning tree is shown in Figure 4.3.

Track: 0 1 2 3 4 5 6 7 8 9

b

 0

15 12

$0

$0
$0

48

24

36
$0

$0

63

27

39
$0

51

$0

$0

$0

Figure 4.2

 - 13 -

Example 4.4

Max x0 = 10 x1 + 15 x2 + 60000 x3 + 2 x4 + 0 x5 (4.7)

Subject to 10 x1 + 15 x2 + 69993 x3 + 3 x4 + 1 x5 = b

 xj ≥ 0, integers

We want to solve the congruence relation, for 1 ≤ r ≤ 9,

Min gap = 0 x2 + 9993 x3 + 1 x4 + 1 x5 (4.8)

Subject to 15 x2 + 69993 x3 + 3 x4 + 1 x5 ≡ r (mod 10)

 xj ≥ 0, integers

Since 69993 (mod 10) = 3 (mod 10) = 3 and (w3 – v3) > (w4 – v4), we will never use the

third item (w3) to cover any tracks. So, we can eliminate the third item from (4.8) even

though ρ3 > ρ4, resulting in the congruence relations

Min gap = 0 x2 + 1 x4 + 1 x5 (4.9)

Subject to 15 x2 + 3 x4 + 1 x5 ≡ r (mod 10)

 xj ≥ 0, integers

The resultant minimum cost spanning tree is shown in Figure 4.4, with

b*(0) = 0, b*(1) = 1, b*(2) = 2, b*(3) = 3, b*(4) = 4,

b*(5) = 15, b*(6) = 16, b*(7) = 17, b*(8) = 18, b*(9) = 19.

b

Figure 4.3

 0 2 1
$1$1

49999
$1

99998

$1

Track: 0 1 4 2 3

 - 14 -

Example 4.5

Max x0 = 10 x1 + 15 x2 + 69992 x3 + 1 x4 + 0 x5 (4.10)

Subject to 10 x1 + 15 x2 + 69993 x3 + 3 x4 + 1 x5 = b

 xj ≥ 0, integers

We want to solve the congruence relation, for 1 ≤ r ≤ 9,

Min gap = 0 x2 + 1 x3 + 2 x4 + 1 x5 (4.11)

Subject to 15 x2 + 69993 x3 + 3 x4 + 1 x5 ≡ r (mod 10)

 xj ≥ 0, integers

Since 69993 ≡ 3 (mod 10) and (w3 – v3) < (w4 – v4), we will never use the fourth item to

cover any tracks and hence can be eliminated from (4.11).

The resultant minimum cost spanning tree is shown in Figure 4.5, with

b*(0) = 0, b*(1) = 1, b*(2) = 2, b*(3) = 69993, b*(4) = 69994,

b*(5) = 15, b*(6) = 16, b*(7) = 17, b*(8) = 70008, b*(9) = 70009.

b

Figure 4.4

Track: 0 1 2 3 4 5 6 7 8 9

 3 0

15

 2
$1

$0

$1

18

 4

16

$1

$1

17 19

$1

$1 $1

$1

 1

 - 15 -

Example 4.6

Max x0 = 10 x1 + 15 x2 + 69992 x3 + 3 x4 + 0 x5 (4.12)

Subject to 10 x1 + 15 x2 + 69993 x3 + 4 x4 + 1 x5 = b

 xj ≥ 0, integers

We want to solve the congruence relation, for 1 ≤ r ≤ 9,

Min gap = 0 x2 + 1 x3 + 1 x4 + 1 x5 (4.13)

Subject to 15 x2 + 69993 x3 + 4 x4 + 1 x5 ≡ r (mod 10)

 xj ≥ 0, integers

Since the gap cost of the arcs w3, w4 and w5 are all equal to 1, the resultant minimum

cost spanning tree shown in Figure 4.6 involves all four kinds of arcs. We have

b*(0) = 0, b*(1) = 1, b*(2) = 2, b*(3) = 69993, b*(4) = 4,

b*(5) = 15, b*(6) = 16, b*(7) = 17, b*(8) = 70008, b*(9) = 19.

b

Figure 4.5

Track: 0 1 2 3 4 5 6 7 8 9

70008

$1

70009

 0 2
$1 $1

$1 $0

$1

 1

$1

$1

15 17 16

69993

$1

69994

 - 16 -

Example 4.7

Max x0 = 12 x1 + 15 x2 + 10004 x3 + 3 x4 + 1 x5 + 0 x6 (4.14)

Subject to 12 x1 + 15 x2 + 10007 x3 + 4 x4 + 2 x5 + 1 x6 = b

 xj ≥ 0, integers

To find b*(r), for 1 ≤ r ≤ 11, we want to solve the congruence relation

Min gap = 0 x2 + 3 x3 + 1 x4 + 1 x5 + 1 x6 (4.15)

Subject to 15 x2 + 10007 x3 + 4 x4 + 2 x5 + 1 x6 ≡ r (mod 12)

 xj ≥ 0, integers

Since GCD(12, 15) = 3 and ρ1 = ρ2 = 1, we can use the second kind of items to cover

the tracks 3, 6, 9 with zero gap cost. Moreover, since covering any remaining track with

only the second (w2) and the sixth (w6) kind of items will result in packings with a gap

cost of at most 2, we will never use the third item (w3) to cover any remaining track and

hence can be eliminated from (4.15), because 10007 mod 12 = 11 and we can cover

track 11 with a gap cost of 1 by a combination of the second (w2) and the fifth (w5) kind

of items.

b

Figure 4.6

Track: 0 1 2 3 4 5 6 7 8 9

70008

$1

 0 2
$1 $1

$1

$0 $1

 1

$1

$1

15 17 16

69993

$1

 4

19

 - 17 -

The resultant minimum cost spanning tree shown in Figure 4.7 with

b*(0) = 0, b*(1) = 1, b*(2) = 2, b*(3) = 15, b*(4) = 4, b*(5) = 17

b*(6) = 30, b*(7) = 19, b*(8) = 32, b*(8) = 45, b*(10) = 34, b*(11) = 47.

b

Figure 4.7

 0 2
$1

$1

$0

$0

 1

$1

$1
15 17

4

$0

$1

$1
30 32

19

$1

$1 45 47

34

Track: 0 1 2 3 4 5 6 7 8 9 10 11

 - 18 -

5. Algorithms and Complexity

By preprocessing, we can have the input data satisfying

1 = ρ1 ≥ ρ2 ≥ ρ3 ≥ … ≥ ρn = 0 (5.1)

where vn = 0 and wn = 1. We can further partition the data satisfying (5.1) into two

categories:

1 = ρ1 = ρ2 = … = ρk > ρk+1 ≥ … ≥ ρn = 0 (5.2)

and

1 = ρ1 > ρ2 ≥ ρ3 ≥ … ≥ ρn = 0. (5.3)

Let us first consider a special case of (5.2), namely

1 = ρ1 = ρ2 > ρ3 ≥ ρ4 ≥ … ≥ ρn = 0. (5.4)

Furthermore, let

GCD(w1, w2) = 1 and w2 (mod w1) = r. (5.5)

Here, we have a cyclic group and we can consider r as the group element gr. We have

w2 (mod w1) = r. Furthermore, the integers

 2 w2 (mod w1), 3 w2 (mod w1), … , (w1−1) w2 (mod w1)

will be in different tracks. Each one is the b* value for that particular track and the global

critical values b** is given by (5.6).

b** = (w1 – 1) w2. (5.6)

Note that (5.6) is obtained without using the rest of the items and we can compute the

(w1 − 1) critical values directly. This compares favorably with (1.9) and can be used

without normalizing ρ1 and ρ2 to 1. For example, if we are only given two kinds of items

of weights 10 and 13 in (4.1), i.e.

Max x0 = 10 x1 + 13 x2 + 0 x4 (5.7)

Subject to 10 x1 + 13 x2 + 1 x4 = b

 xj ≥ 0, integers,

then b** = (w1 – 1) w2 = (10 – 1) × 13 = 117.

 - 19 -

When we have three or more items of densities equal to one and their greatest common

divisor equals to 1, like {10, 13, 17} in (4.1) or {10, 12, 15} in (4.2), we only have to

consider the critical values formed by combinations of these items, resulting in a b** =

68 for (4.1) and 63 for (4.2).

If ρ1 = ρ2 > ρ3 ≥ ρ4 ≥ … ≥ ρn but GCD(w1, w2) = d >1, we will not be able to cover all

tracks with only w2. For example, if we are only given two kinds of items of weights 10

and 12 in (4.2), i.e.

Max x0 = 10 x1 + 12 x2 + 0 x4 (5.8)

Subject to 10 x1 + 12 x2 + 1 x4 = b

 xj ≥ 0, integers

then we can only cover the even number tracks with w2 items. The corresponding

formula to (5.6), which gives the largest b that can be covered with w2 items only, is

d
d

w

d

w
××











 − 11
1 (5.9)

For the odd number tracks r, we have

b*(r) = b*(r – 1) + w4 = b*(r – 1) + 1.

Once we find b*(r) for 0 ≤ r ≤ w1–1, we can show that the optimum solutions satisfy

x0(b*(r)) = (x1, x2, …, xn) ⇒ x0(m w1+ b*(r)) = (m + x1, x2, …, xn) (5.10)

for any positive integer m. So, all instances of b ≥ b** can be solved in polynomial time.

We define b*(r) as the smallest integer value of b in the track r such that x0(m w1+ b*(r)),

the optimum solution of the integer value m w1 + b*(r), m ≥ 0, is of the form

x0(b*(r)) + (m, 0, …, 0). (5.11)

Next, let us outline the algorithm for the case

1 = ρ1 ≥ ρ2 ≥ ρ3 ≥ … ≥ ρn = 0.

There is a gap cost wj – vj for item j (2 ≤ j ≤ n). (For readers of Mathematical

Programming background, the gap cost can be viewed as the modified cost

 - 20 -

jc associated with a non-basic column.) We will eliminate as many items as possible by

various simple tests shown in the numerical examples. Then we need to solve the

following congruence relations of the form

w2 x2 + w3 x3 + … + wn xn ≡ r (mod w1), for 0 ≤ r ≤ w1–1 (5.12)

while minimizing the total gap cost for each r.

We want to solve (5.12) with an algorithm that builds a minimum cost Multi-Track (M-T)

spanning tree very much like the Dijkstra’s single source Shortest-Path tree.

Mentally, we have infinite number of nodes in the underlying graph, but only a subset of

these nodes will be considered as candidates for the minimum cost M-T spanning tree.

Each node is associated with a b-value like those in Table 2.1 and there is an edge from

node b to node b’ of length wj and cost (wj – vj) if (b’ – b) = wj, 2 ≤ j ≤ n. We say b’ is a

neighbor of b.

We will start with the node 0 as the root of the spanning tree and grow the tree one

node at a time by examining the neighbors of the nodes already in the spanning tree.

Only one node in each track will be included in the tree.

Every node, examined by the algorithm, will receive a label with four attributes:

1. The b-value associated with the node.

2. The current total gap cost of all the arcs in the directed path from the root to the

node.

3. The track that the node belongs.

4. The parent of the node in the tree. The parent of node 0 is undefined.

Every node is always in one of the three states:

1. Unlabeled (U). Initially, every node, except node 0, is unlabeled.

2. Labeled and Unscanned (LU). Refers to any node that has a label and some of its

neighboring nodes have not been labeled. Node 0 is labeled and unscanned initially.

 - 21 -

3. Labeled and Scanned (LS). Refers to any node that has a label and all its neighbors

have been labeled.

In addition, every track is in one of the two states:

1. Uncovered. Initially, all tracks are uncovered.

2. Covered. A track becomes covered if it has a node that is in the state of labeled and

scanned.

For brevity, let p be a node with the same value p as its first attribute, State(p) to denote

the state of p, Track(p) to denote the track p belongs, Cost(p) and Parent(p) to denote

the total gap cost from node 0 to p and its parent along the path from node 0 to p.

A node p is cheaper than another node q if Cost(p) < Cost(q) or (Cost(p) = Cost(q) and

p < q). For brevity, we use the symbol “Cost(p) ≤ Cost(q)” to mean node p is cheaper

than another node q.

We now give a high-level English version of the algorithm. (Readers can refer to

Appendix 1 for detailed pseudo-code.)

M-T Spanning Tree Algorithm

Input: n pairs of non-negative numbers (vj, wj), where all wj are integers with wn = 1,

all vj are converted into integers with vn = 0, and satisfying

















<=> +
+

+

+

+
1

1

1

1

1

jj

j

j

j

j

j

j

j

j
ww

w

v

w

v

w

v

w

v
andor

[Comments: The pre-processing of converting vj into rational numbers such that

the density of the best item equals 1, checking to see if two or more densities

(expressed as rational numbers) are the same, testing to see if certain items

could be eliminated and sorting the densities into non-increasing order all can

be done in O(n log n) time.]

Output: A minimum gap cost M-T spanning tree with node 0 as root and w1−1 other

nodes, one node for every track, corresponding b*(r) for r = 1, … , w1−1.

 - 22 -

Procedure:

Initially all nodes are unlabeled (U) except the node 0, which is labeled and

unscanned (LU). We have two sets of nodes

T: all nodes that are labeled and scanned (LS)

Q: all nodes that are labeled and unscanned (LU).

Both sets are empty initially. Furthermore, there is at most one node from each

track in T ∪ Q.

Step 0. Associate node 0 with its label (0, 0, 0, undefined). State(0) = LU and add it to

Q.

Step 1. Let p be the cheapest node in Q. Update the labels of all n−1 neighboring

nodes q as follows:

 Let q = p + wj and q (mod w1) = r.

Set Cost(q) = Cost(p) + wj − vj, and Label(q) = (q, Cost(q), r, p).

 Add q in Q if there is no node belonging to Track r in T ∪ Q.

 Replace the existing node x belonging Track r in T ∪ Q with q if

q is cheaper than x.

 Do nothing if the existing node x in Track r is cheaper.

Step 2. After updating all neighboring nodes of p, node p becomes LS. It is removed

from Q and added to T. Change the state of Track(p) to covered.

[Comments: The labels of nodes in state LS are bolded in the numerical

examples below.]

Step 3. Terminate the algorithm if |T| = w1, otherwise return to Step 1.

We shall use an array to remember which track each node in Q belongs to as we grow

the tree. For example, consider the M-T spanning tree for Example 4.4:

1. In the beginning, only node 0 receives a label (0, 0, 0, undefined) and it is in the LU

state. Node 0 has 3 neighbors (nodes 1, 3 and 15) and they are in the U state.

 - 23 -

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

2. We assign them the labels (1, 1, 1, 0), (3, 1, 3, 0) and (15, 0, 5, 0) to nodes 1, 3 and

15 respectively. Node 0 changes its state to LS and its three neighbors are now in

the LU state. Track 0 is covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(3,1,
3,0)

(15,0,
5,0)

3. Among all nodes that are LU, we choose the one with the cheapest total gap cost

and break tie by choosing the one with smallest b. So, node 15 is chosen.

4. For each neighbor of newly chosen node that is on an uncovered track,

(i) assign a new label to the node if it is unlabeled or update its label if it represents

a new path with cheaper gap cost or same gap cost but of cheaper length,

(ii) add the new node to the track if this is the first time a node lands on that track or

replace the existing labeled but unscanned node in that track if the new node is

cheaper.

Now, node 15 has 3 neighbors (nodes 16, 18, and 30). We forget node 30 since it

belongs to track 0, which is covered. We assign the labels (16, 1, 6, 15) and (18, 1,

8, 15) to nodes 16 and 18 respectively. Node 15 changes its state to LS and its two

neighbors are now in the LU state. Track 5 is covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(3,1,
3,0)

(15,0,
5,0)

(16,1,
6,15)

(18,1,
8,15)

5. Now, the gap costs of all nodes that are labeled and unscanned are all equal to 1.

We choose node 1 because it has the smallest b.

6. Assign the labels (2, 2, 2, 1) and (4, 2, 4, 1) to nodes 2 and 4 respectively. We do

not update the label of node 16 since its cost and length remain the same. Node 1

 - 24 -

changes its state to LS and its two neighbors are now in the LU state. Track 1 is

covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(18,1,
8,15)

7. Next, we choose node 3. We do not update the labels of its neighbors (nodes 4, 6

and 18) because they do not improve the costs or lengths of the nodes in Q. Node 3

changes its state to LS. Track 3 is covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(18,1,
8,15)

8. Next, we choose node 16. Assign the labels (17, 2, 7, 16) and (19, 2, 9, 16) to nodes

17 and 19 respectively. Node 16 changes its state to LS and its two neighbors are

now in the LU state. Track 6 is covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(17,2,
7,16)

(18,1,
8,15)

(19,2,
9,16)

9. Next, we choose node 18. We do not update the label of its neighbor (node 19)

because it does not improve its cost or length. We forget nodes 21 and 23 because

they all belong to covered tracks. Node 18 changes its state to LS. Track 8 is

covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(17,2,
7,16)

(18,1,
8,15)

(19,2,
9,16)

10. Next, we choose node 2. We do not update the label of its neighbors (nodes 17)

because it does not improve its cost or length. We forget nodes 5 and 6 because

 - 25 -

they all belong to covered tracks. Node 2 changes its state to LS. Track 2 is

covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(17,2,
7,16)

(18,1,
8,15)

(19,2,
9,16)

11. Next, we choose node 4. We do not update the labels of its neighbors (nodes 7 and

19) because they do not improve the costs or lengths of the nodes in Q. We forget

node 5 because it belongs to a covered track. Node 4 changes its state to LS. Track

4 is covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(17,2,
7,16)

(18,1,
8,15)

(19,2,
9,16)

12. Next, we choose node 17. We do not update the labels of its neighbors (nodes 18,

20 and 32) because they all belong to covered tracks. Node 17 changes its state to

LS. Track 7 is covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(17,2,
7,16)

(18,1,
8,15)

(19,2,
9,16)

13. Next, we choose node 19. We do not update the labels of its neighbors (nodes 20,

22 and 44) because they all belong to covered tracks. Node 19 changes its state to

LS. Track 9 is covered.

Track: 0 1 2 3 4 5 6 7 8 9

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

(1,1,
1,0)

(2,2,
2,1)

(3,1,
3,0)

(4,2,
4,1)

(15,0,
5,0)

(16,1,
6,15)

(17,2,
7,16)

(18,1,
8,15)

(19,2,
9,16)

14. At the point, all tracks are covered and the algorithm terminates.

The algorithm for building the minimum cost M-T spanning tree is very much like the

Dijkstra’s algorithm for the shortest-path tree from the root to all other nodes. The

 - 26 -

labeled and unscanned nodes are neighbors of at least one nodes in the spanning tree.

We successively grow the tree by picking the “cheapest” node among those that are

labeled and unscanned, and update the members and their costs of the paths to the set

of labeled and unscanned nodes each time the spanning tree T has a new node. The

difference is that the neighbor expansion is restricted to uncovered tracks and the

terminating condition is when all tracks are covered.

Lemma 5.1 The costs of nodes being added to T are monotonically increasing.

Proof. (By Induction)

Initially, T contains node 0, which is cheaper than any other node in T based on the tie-

breaking rules. It follows from the choice of p that the cost of p is always cheaper than

all nodes in Q before Step 1. Since all gap costs are non-negative and wj > 0, p is

cheaper than all nodes in Q after Step 1. Hence, by induction, p must be cheaper than

all nodes that are added to T after p.

Q.E.D.

Lemma 5.2 There is exactly one node in every track in T at the termination of the M-T

spanning tree algorithm.

Proof.

It follows from the fact wn = 1 and Step 1 that at least one node from each track is

added to Q during the course of the algorithm and at most one node from each track is

present in Q at any time. Hence, there is exactly one node in every track in T at the

termination of the M-T spanning tree algorithm.

Q.E.D.

Theorem 5.3 The All node in T are b*(r) at termination.

Proof. (By Contradiction)

Let x be the first node being added to T such that x ≡ r (mod w1) but x ≠ b*(r). Then

there must exist some node y such that b*(r) = y and Cost(y) ≤ Cost(x). In other words,

there exists a path from node 0 to y that makes y cheaper than x. Let Parent(y) be the

immediate predecessor of y along this path.

 - 27 -

Since all gap costs are non-negative, Parent(y) is cheaper than y and it follows from

Lemma 5.1 that Parent(y) is added to T before x. We have the following three cases.

Case 1. Parent(x) = Parent(y) = p

This case can only happen if we have two items wi and wj such that

 y = p + wi ≡ r (mod w1) and x = p + wj ≡ r (mod w1) and Cost(y) ≤ Cost(x).

It follows from Step 1 that only node y remains in Q after the algorithm scans the

neighbors of p. Hence, x can never be added to T, a contradiction.

Case 2. Parent(x) is added to T before Parent(y)

It this case, x will be replaced by y when the algorithm scans the neighbors of Parent(y).

Again, x can never be added to T, a contradiction.

Case 3. Parent(y) is added to T before Parent(x)

It this case, x will not be able to replace y in Q when algorithm scans the neighbors of

Parent(x). Hence, x can never be added to T, a contradiction.

Q.E.D.

Note that the algorithm depends only on the weights and the relative gap costs of the

items. To avoid the extra complexity in handling real numbers and rational numbers, we

can eliminate the need to normalize a given knapsack problem by setting the gap cost

of wj to

(wj × v1 – vj × w1), 2 ≤ j ≤ n. (5.13)

For example, to find the b*(r) for the knapsack problem

Max x0 = 11 x1 + 11 x2 + 8 x3 + 0 x4 (5.14)

Subject to 10 x1 + 11 x2 + 9 x3 + 1 x4 = b

 xj ≥ 0, integers

we will construct a minimum cost M-T spanning tree with the following gap costs:

w2 = 11, gap-cost(w2) = (11×11 – 11×10) = 11,

 - 28 -

w3 = 9, gap-cost(w3) = (9×11 – 8×10) = 19,

and w4 = 1, gap-cost(w4) = (1×11 – 0×10) = 11

to solve the congruence relation, for 1 ≤ r ≤ 9,

Min gap = 11 x2 + 19 x3 + 11 x4 (5.15)

Subject to 11 x2 + 9 x3 + 1 x4 ≡ r (mod 10)

 xj ≥ 0, integers

Theorem 5.4

The M-T spanning tree algorithm computes a minimum cost M-T spanning tree in time

O(n w1 log w1).

Proof.

It takes O(n log n) time for the preprocessing to set up the gap costs and order the

items according to their relative density.

We shall use a priority queue to maintain the nodes in Q and an array to remember

which track each node in Q belongs to. Since at most one node from each track is

present in Q at any time, it takes O(log w1) to add or remove a node from Q. We use

another array to keep track of the status of each track (whether they are covered or

uncovered).

In Step 1, it takes O(1) time to find the cheapest node p in Q. Each node p has at most

n neighbors. It takes O(1) time to compute the new cost for each neighbor q and

compare it against the node belonging to the same track in Q, and O(log w1) time to

replace the node belonging to Track(q) in Q with q. Hence, it takes a total of

(n – 1) * O(log w1) = O(n log w1) time to scan the neighbors of p.

In Step 2, it take O(log w1) time to remove p from Q and O(1) time to add it to T and

update the status of Track(p).

Since there are w1 nodes in T, the algorithm takes a total of w1 * O(n log w1) =

O(n w1 log w1) time to compute the minimum cost M-T spanning tree.

 - 29 -

Q.E.D.

6. The Extended M-T Spanning Tree

In this section, we show how to modify the M-T Spanning Tree algorithm to solve a

knapsack problem where the capacity b is less than b*(r) for r = 1, 2, …, w1–1 . We call

the resultant spanning tree an Extended M-T Spanning Tree. Like the original M-T

Spanning Tree, an Extended M-T Spanning Tree also has node 0 as root and spans the

other w1–1 tracks. However, it may contain more than one node in each track, where

the nodes, say p1, p2, …, pk, in each track satisfy the properties:

(1) p1 ≡ p2 ≡ … ≡ pk ≡ r (mod w1) for some r (1 ≤ r ≤ w1−1),

(2) p1 < p2 < … < pk,

(3) Cost(p1) > Cost(p2) > … > Cost(pk),

(4) pk = b*(r),

(5) for any node q, (q ≡ r (mod w1) and pi ≤ q < pi+1 (1 ≤ i ≤ k−1)) implies Cost(q) =

Cost(pi).

We first give a numerical example to show the details of the Extended M-T Spanning

Tree algorithm. Consider the knapsack problem

Max x0 = 10 x1 + 11 x2 + 5 x3 + 0 x4 (6.1)

Subject to 10 x1 + 12 x2 + 7 x3 + 1 x4 = b

 xj ≥ 0, integers

To find b*(r), for 1 ≤ r ≤ 9, we want to solve the congruence relation

Min gap = 1 x2 + 2 x3 + 1 x4 (6.2)

Subject to 12 x2 + 7 x3 + 1 x4 ≡ r (mod 10)

 xj ≥ 0, integers

We will use a table to keep track of which track each node in Q and T belongs to as we

grow the tree. Furthermore, the best “Label and Unscanned” candidate in each track are

italicized in Q.

 - 30 -

1. In the beginning, only node zero receives a label (0, 0, 0, undefined) and it is in the

LU state. Node zero has 3 neighbors (nodes 1, 2 and 7) and they are in the U state.

2. We assign them the labels (1, 1, 1, 0), (12, 1, 2, 0) and (7, 2, 7, 0) to nodes 1, 12

and 7 respectively. Node zero changes its state to LS and its three neighbors are

now in the LU state.

Track: 0 1 2 3 4 5 6 7 8 9

Q

Label =
(b, cost,

track, parent)

(1,1,
1,0)

(12,1,
2,0)

(7,2,
7,0)

T

Label =
(b, cost,

track, parent)

(0,0,
0,undef)

3. Among all nodes that are LU, we choose the one with the cheapest total gap cost

and break tie by choosing the one with smallest b. So, node 1 is chosen.

4. Node 1 has 3 neighbors (nodes 2, 13 and 8). We assign them the labels (2, 2, 2, 1),

(13, 2, 3, 1) and (8, 3, 8, 1) to nodes 2, 13 and 8 respectively. We keep node 2 even

though 12 is cheaper than 2. Node 1 changes its state to LS and its three neighbors

are now in the LU state.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(2,2,
2,1)

Q

Best track
candidates

(12,1,
2,0)

(13,2,
3,1)

(7,2,
7,0)

(8,3,
8,1)

T b*(r)
(0,0,

0,undef)
(1,1,
1,0)

5. Next, node 12 is chosen. It has three neighbors (13, 24 and 19). We forgot 13

because it does not improve what is already in track 3, and assign the labels

(24, 2, 4, 12) and (19, 3, 9, 12) to nodes 24 and 19 respectively. Node 12 changes

its state to LS and its two neighbors are now in the LU state.

 - 31 -

Track: 0 1 2 3 4 5 6 7 8 9

Q
Best track
candidates

(2,2,
2,1)

(13,2,
3,1)

(24,2,
4,12)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

T b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

6. Node 2 is chosen (instead of node 7 because 2 is cheaper than 7). It has three

neighbors (3, 14 and 9). We assign the labels (3, 3, 3, 2), (14, 3, 4, 2), (9, 4, 9, 2) to

nodes 3, 14 and 9. Node 2 changes its state to LS and its neighbors are in the LU

state.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(3,3,
3,2)

(14,3
4,2)

(9,4,
9,2)

Q

Best track
candidates

(13,2,
3,1)

(24,2,
4,12)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

Other
critical
values

(2,2,
2,1)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

7. Node 7 is chosen. It has three neighbors (8, 19 and 14). We forgot all three

neighbors because they do not improve what are already in tracks 8, 9 and 4. Node

7 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(3,3,
3,2)

(14,4,
4,7)

(9,4,
9,2)

Q

Best track
candidates

(13,2,
3,1)

(24,2,
4,12)

(8,3,
8,1)

(19,3,
9,12)

Other
critical
values

(2,2,
2,1)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(7,2,
7,0)

 - 32 -

8. Node 13 is chosen. It has three neighbors (14, 25 and 20). We forgot 20 because it

does not improve what is already in track 0, update the label for node 14 to (14, 3, 4,

13) and assign the label (25, 3, 5, 13) to node 25. Node 13 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(14,3,
4,13)

(9,4,
9,2)

Q

Best track
candidates

(3,3,
3,2)

(24,2,
4,12)

(25,3,
5,13)

(8,3,
8,1)

(19,3,
9,12)

Other
critical
values

(2,2,
2,1)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(7,2,
7,0)

9. Node 24 is chosen. It has three neighbors (25, 36 and 31). We forgot 25 and 31

because they do not improve what are already in tracks 5 and 1, and assign the

label (36, 3, 6, 24) to node 36. Node 24 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(9,4,
9,2)

Q

Best track
candidates

(3,3,
3,2)

(14,3,
4,13)

(25,3,
5,13)

(36,3,

6,24)

(8,3,
8,1)

(19,3,
9,12)

Other
critical
values

(2,2,
2,1)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(7,2,
7,0)

10. Node 3 is chosen. It has three neighbors (4, 17 and 10). We forgot 17 and 10

because they do not improve what are already in tracks 7 and 0, and assign the

label (4, 4, 4, 3) to node 4. Node 3 changes its state to LS.

 - 33 -

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(4,4,
4,3)

(9,4,
9,2)

Q

Best track
candidates

(14,3,
4,13)

(25,3,
5,13)

(36,3,

6,24)

(8,3,
8,1)

(19,3,
9,12)

Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(7,2,
7,0)

11. Node 8 is chosen. It has three neighbors (9, 20 and 15). We forgot 9 and 20

because they do not improve what is already in tracks 9 and 0, and assign the label

(15, 5, 5, 8) to nodes 9 and 15. Node 8 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(4,4,
4,3)

(15,5,
5,8)

(9,4,
9,2)

Q

Best track
candidates

(14,3,
4,13)

(25,3,
5,13)

(36,3,

6,24)

(19,3,
9,12)

Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(7,2,
7,0)

(8,3,
8,1)

12. Node 14 is chosen. It has three neighbors (15, 26 and 21). We forgot 21 because it

does not improve what is already in track 1, update the label of 15 to (15, 4, 5, 14),

and assign (26, 4, 6, 14) to node 26. Node 14 changes its state to LS.

 - 34 -

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(15,4,
5,14)

(26,4,
6,14)

(9,4,
9,2)

Q

Best track
candidates

(4,4,
4,3)

(25,3,
5,13)

(36,3,

6,24)

(19,3,
9,12)

Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(7,2,
7,0)

(8,3,
8,1)

13. Node 19 is chosen. It has three neighbors (20, 31 and 26). We forgot all three

neighbors because they do not improve what are already in tracks 0, 1 and 6. Node

19 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(15,4,
5,14)

(26,4,
6,14)

Q

Best track
candidates

(4,4,
4,3)

(25,3,
5,13)

(36,3,

6,24)

(9,4,
9,2)

Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

14. Node 25 is chosen. It has three neighbors (26, 37 and 32). We forgot all three

neighbors because they do not improve what are already in tracks 6, 7 and 2. Node

25 changes its state to LS.

 - 35 -

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(26,4,
6,14)

Q

Best track
candidates

(4,4,
4,3)

(15,4,
5,14)

(36,3,

6,24)

(9,4,
9,2)

Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

15. Node 36 is chosen. It has three neighbors (37, 48 and 43). We forgot all three

neighbors because they do not improve what are already in tracks 7, 8 and 3. Node

36 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

Q

Best track
candidates

(4,4,
4,3)

(15,4,
5,14)

(26,4,
6,14)

(9,4,
9,2)

Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

16. Node 4 is chosen. It has three neighbors (5, 16 and 11). We forgot 11 because it

does not improve what is already in track 1, and assign the labels (5, 5, 5, 4) and

(16, 5, 6, 4) to nodes 5 and 16. Node 4 changes its state to LS.

 - 36 -

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(5,5,
5,4)

(16,5,
6,4)

Q

Best track
candidates

(15,4,
5,14)

(26,4,
6,14)

(9,4,
9,2)

(4,4,
4,3)

 Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

(25,3,
5,13)

(36,3,

6,24)
 T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

17. Node 9 is chosen. It has three neighbors (10, 21 and 16). We forgot all three

neighbors because they do not improve what are already in tracks 0, 1 and 6. Node

9 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(5,5,
5,4)

(16,5,
6,4)

Q

Best track
candidates

(15,4,
5,14)

(26,4,
6,14)

(4,4,
4,3)

 Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

(9,4,
9,2)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

18. Node 15 is chosen. It has three neighbors (16, 27 and 22). We forgot all three

neighbors because they do not improve what are already in tracks 6, 7 and 2. Node

15 changes its state to LS.

 - 37 -

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(16,5,
6,4)

Q

Best track
candidates

(5,5,
5,4)

(26,4,
6,14)

(4,4,
4,3)

 Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

(15,4,
5,14)

(9,4,
9,2)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

19. Node 26 is chosen. It has three neighbors (27, 38 and 33). We forgot all three

neighbors because they do not improve what are already in tracks 7, 8 and 3. Node

26 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

Q

Best track
candidates

(5,5,
5,4)

(16,5,
6,4)

(4,4,
4,3)

 Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

(15,4,
5,14)

(26,4,
6,14)

(9,4,
9,2)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

20. Node 5 is chosen. It has three neighbors (6, 17 and 12). We forgot node 17 and 12

neighbors because they do not improve what are already in tracks 7 and 2, and

assign the label (6,6,6,5) to node 6. Node 5 changes its state to LS.

 - 38 -

Track: 0 1 2 3 4 5 6 7 8 9

Other
track

candidates

(6,6,
6,5)

Q

Best track
candidates

(16,5,
6,4)

(4,4,
4,3)

(5,5,
5,4)

 Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

(15,4,
5,14)

(26,4,
6,14)

(9,4,
9,2)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

21. Node 16 is chosen. It has three neighbors (17, 28 and 23). We forgot all three

neighbors because they do not improve what are already in tracks 7, 8 and 3. Node

16 changes its state to LS.

Track: 0 1 2 3 4 5 6 7 8 9

Q
Best track
candidates

(6,6,
6,5)

(4,4,
4,3)

(5,5,
5,4)

(16,5,
6,4)

 Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

(15,4,
5,14)

(26,4,
6,14)

(9,4,

9,8)
T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

22. Node 6 is chosen. It has three neighbors (7, 18 and 13). We forgot all three

neighbors because they do not improve what are already in tracks 7, 8 and 3.

Node 6 changes its state to LS.

 - 39 -

Track: 0 1 2 3 4 5 6 7 8 9

(6,6,
6,5)

(4,4,
4,3)

(5,5,
5,4)

(16,5,
6,4)

Other
critical
values

(2,2,
2,1)

(3,3,
3,2)

(14,3,
4,13)

(15,4,
5,14)

(26,4,
6,14)

(9,4,

9,8)

T

b*(r)
(0,0,

0,undef)
(1,1,
1,0)

(12,1,
2,0)

(13,2,
3,1)

(24,2,
4,12)

(25,3,
5,13)

(36,3,

6,24)

(7,2,
7,0)

(8,3,
8,1)

(19,3,
9,12)

23. We stop at this point because there are no more nodes that are labeled and

unscanned.

Figure 6.1 shows the resultant Extended M-T Spanning Tree, where the arcs of the

original M-T Spanning Tree are shown as heavy lines.

b

Figure 6.1

Track: 0 1 2 3 4 5 6 7 8 9

$1
 0 2

$1 $1

$1

$1

$1

 1

$1
$1

15 16

$1
 4

19

 3 5 6 7 $1 $1 $1

12

 8 9

$2
$2

13

$1

24

14
$1

$1 $2

25 26

36

$1

 - 40 -

The optimum solutions of the nodes in Track 6 are:

b xo(b) Gap Cost Value of xo

6
(x1, x2, x3, x4) =

(0,0,0,6)
$6 0

16
(x1, x2, x3, x4) =

(0,1,0,4)
$5 11

26
(x1, x2, x3, x4) =

(0,2,0,2)
$4 22

36
(x1, x2, x3, x4) =

(0,3,0,6)
$3 33

m w1 + 36
(x1, x2, x3, x4) =

(m,0,0,0) + xo(36)
$3 33 + m × 10

In general, given an Extended M-T Spanning Tree T, we can obtain the optimum

solution for any given knapsack capacity b as follows:

Let b ≡ r (mod w1) for some r, 0 ≤ r ≤ w1−1, and p be the largest node in T such that

p ≡ r (mod w1) and p ≤ b. Then optimum solution xo(b) = (m,0,…,0) + xo(p) where b =

m w1 + p.

We now give a high-level description of the Extended M-T Spanning Tree algorithm.

Extended M-T Spanning Tree Algorithm

Goal: To solve the knapsack problem for all instances of b.

Input: n pairs of non-negative numbers (vj, wj), where all wj are integers with wn = 1,

all vj are converted into integers with vn = 0, and satisfying

















<=> +
+

+

+

+
1

1

1

1

1

jj

j

j

j

j

j

j

j

j
ww

w

v

w

v

w

v

w

v
andor

Output: A minimum gap cost multi-track spanning tree T with node 0 as root and at

least one node in each of the other w1−1 tracks. Let p and p’ be two nodes in T.

If p (mod w1) = p’ (mod w1) and Cost(p) < Cost(p’), then p > p’. In other words,

 - 41 -

the costs of the nodes belonging to the same track in T are decreasing as the

b-values of these nodes increase. The node with the largest b-value in a track r

is the b*(r) value for that track.

Procedure:

Initially all nodes are unlabeled (U) except the node 0, which is labeled and

unscanned (LU). We have two sets of nodes

T: all nodes that are labeled and scanned (LS), |T| < (n – 1) w1.

Q: all nodes that are labeled and unscanned (LU).

Both sets are empty initially.

Step 0. Associate node 0 with its label (0, 0, 0, undefined). State(0) = LU and add it to

Q.

Step 1. Let p be the cheapest node in Q. Update the labels of all n–1 neighboring

nodes q as follows:

 Let q = p + wj and q (mod w1) = r.

Set Cost(q) = Cost(p) + wj − vj, and Label(q) = (q, Cost(q), r, p).

 Add q in Q if q satisfies one of the following conditions:

(i) there is no node belonging to Track r in T ∪ Q, or

(ii) Cost(q) < Cost(q’) for all nodes q’ in T ∪ Q such that q ≥ q’ and

q’ (mod w1) = r.

 and remove any existing node x belonging Track r in T ∪ Q if

Cost(q) ≤ Cost(x) and q ≤ x.

 Do nothing if condition (i) and (ii) are not satisfied.

[Comments: Since wj ≠ w1, no node in a given track can use wj more than once.

Thus, a node q in a given track r with its b-value less than b*(r) can only stay in

the track due to (ii). If there are n types of items, there can be at most n-1

nodes in the same track with their costs greater than that of b*(r) and each of

these nodes uses a different wj to reach track r.

 - 42 -

Note that condition (ii) also includes the case when q = q’, which corresponds

to the case when the node q is already in Q but with a cost > Cost(p) + wj − vj.

When this happens, q’s label is replaced by (q, Cost(q), r, p).]

Step 2. After updating all neighboring nodes of p, node p becomes LS. It is removed

from Q and added to T.

Step 3. Terminate the algorithm if Q is empty, otherwise return to Step 1.

Lemma 6.1 The costs of nodes being added to T are monotonically increasing.

Proof.

Using arguments similar to those in the proof of Lemma 5.1, we can show, by induction,

that the node p chosen in Step 1 of the algorithm must be cheaper than all nodes that

are added to T after p.

Q.E.D.

Lemma 6.2 There is at least one node in every track in T at the termination of the

Extended M-T spanning tree algorithm, and for 1 ≤ r ≤ w1−1, all the nodes p1, p2, …, pk

belonging to the track r in T satisfy the property

r = p1 < p2 < … < pk ⇒ Cost(p1) > Cost(p2) > … > Cost(pk).

Proof.

It follows from the fact wn = 1 and Step 1 that the node r (1 ≤ r ≤ w1−1) will be

considered at least once as the node q during the course of the algorithm. Since r has

the smallest b-value among all nodes in track r, the operations in Step 1 can only

update r’s label and will not remove r from Q, until r is chosen as p in Step 1 and

transfer from Q to T.

It follows from condition (ii) in Step 1 that all the nodes p1, p2, …, pk belonging to the

track r in T ∪ Q must satisfy the property

p1 < p2 < … < pk ⇒ Cost(p1) > Cost(p2) > … > Cost(pk),

and the fact that Q is empty at the termination of the Extended M-T spanning tree

algorithm implies that all the nodes p1, p2, …, pk belonging to the track r in T must

satisfy the property

 - 43 -

p1 < p2 < … < pk ⇒ Cost(p1) > Cost(p2) > … > Cost(pk)

at the termination of the Extended M-T spanning tree algorithm.

Q.E.D.

Theorem 6.3 Let b ≡ r (mod w1) for some r, 0 ≤ r ≤ w1−1, and p be the largest node in T

such that p ≡ r (mod w1) and p ≤ b. Then the gap cost of the optimum solution xo(b) =

Cost(p).

Proof. (By Contradiction)

Let x be the first node being added to T that makes the theorem false and let y be the

smallest integer not in T such that y (mod w1) = x (mod w1) = r and x is the largest node

in T that is less than y but Cost(y) < Cost(x). Since y is the smallest integer that makes x

to violate theorem, Cost(y) < Cost(y – w1) = Cost(x) and the optimum solution for y

cannot contain any w1. Then there must exist a path from node 0 to y that makes y

cheaper than x. Let Parent(y) be the immediate predecessor of y along this path.

Since all gap costs are non-negative, Parent(y) is cheaper than y and it follows from

Lemma 6.1 that Parent(y) is added to T before x. Using arguments similar to those in

the proof of Theorem 5.3, we can show that x can never be added to T by the Extended

M-T Spanning Tree algorithm, a contradiction.

Q.E.D.

Theorem 6.4

The Extended M-T spanning tree algorithm computes a minimum cost Extended M-T

spanning tree in time O(n2 w1 log (n w1)).

Proof.

It takes O(n log n) time for the preprocessing to set up the gap costs and order the

items according to their relative density.

We shall use w1 – 1 dynamic search trees (such as the AVL-trees), one tree for each

track r (1 ≤ r ≤ w1−1), to keep track of all the nodes belonging to each track in Q, and

 - 44 -

use a priority queue to keep track for the cheapest node among the best candidates in

the w1 – 1 tracks.

Since wj ≠ w1 (2 ≤ j ≤ n), no node in a given track can use the j type of item more than

once. Hence, there can be at most n–1 nodes in each track in Q ∪ T all time, and at

most (w1−1) × (n−1) nodes can be chosen as p in Step 1 of the algorithm.

It takes O(1) time to find the cheapest node p, O(log w1) time to remove it from the

priority queue and O(log n) time to update the corresponding array.

Each node p can have at most n neighbors. It takes O(1) time to compute the new cost

for each neighbor q, O(log n) to see if q satisfies condition (ii), O(log n) time to insert it

into the right place in the array and O(log w1) time to replace the node belonging to the

same track in priority queue with q. Hence, it takes O(n log n + n log w1) time to check

and insert p’s n neighbors into the priority queue and the dynamic search trees.

Finally, each node can be removed exactly once from a dynamic search tree in Step 1

and it takes O(log n) to remove a node.

Hence, the algorithm takes a total of O(n2 w1 log w1 + n2 w1 log n) = O(n2 w1 log (n w1))

time to compute the minimum cost Extended M-T spanning tree.

Q.E.D.

 - 45 -

7. Discussions and Miscellaneous Comments

(1) The dynamic algorithm for solving a knapsack problem (1.1) based on (1.5) and

(1.6) requires θ(n b) time and θ(n b) space, while our algorithm requires

O(n2 w1 log (n w1)) time and θ(n w1) space, which are independent of b. The

Extended M-T Spanning Tree algorithm will result in big savings if one wants to

solve many different knapsack problems that involve the same set of items but

with different knapsack capacities.

(2) The Extended M-T Spanning Tree approach is an improvement upon previous

approaches that find the critical values for the periodic solutions using (1.9) and

(1.10). The inequality (1.9) is a sufficient condition and usually provides a high

estimate for b**. Moreover, it does not work when ρ1 = ρ2. It is hard to analyze the

time complexity of (1.10) accurately because it depends on checking successive

intervals of period w1.

The formula b** = (w1 – 1) × w2 when ρ1 = ρ2 and GCD(w1, w2) = 1 is a necessary

and sufficient condition. It can provide lower estimates for b** if ρ1 = ρ2 = … = ρk.

(3) In Section 4, we presented several numerical examples to show that certain

items can never be present in any optimum knapsack solution. We can further

reduce the computational time of the Extended M-T Spanning Tree algorithm by

first eliminate these items from the input.

For example, if b = m wj for some positive constant m, then the profit by using the

first items only =












1

j

w

mw
 × v1, and the profit by using the jth items only = m vj.

Hence, we can eliminate the jth items for b ≥ m wj if












1

j

w

mw
 × v1 ≥ m vj.

 - 46 -

Another way to eliminate the jth items is that if there exists an ith item such that wi

< wj and GapCost(wi) + (wj−wi) × GapCost(wn) < GapCost(wj). In other words, we

will not use the jth item at all if we can get more profit by simply using the ith item

and leaving an unfilled capacity of (wj−wi).

(4) Nature of the Greedy Algorithms. A greedy algorithm for solving a knapsack

problem with ρ1 ≥ ρ2 ≥ … > ρn = 0 would use the first item repeatedly until

w1 > b (mod wj) = b’. Then it would use the second item until w2 > b’ (mod wj) =

b”, and so on.

A very interesting case is the minimum stamp problem (or the coin-changing

problem) where there exists a one-point theorem [14] that defines the condition

whether the greedy algorithm can come up with an optimum solution that

minimizes the total area of stamps subject to the constraint that postage be met

exactly.

While we do not have a similar one-point theorem for the knapsack problem, we

can tell whether the greedy algorithms works based on the Extended M-T

Spanning Tree.

(5) The knapsack problem belongs to a subset of NP-Complete problems, called

the number problems [3]. The Extended M-T Spanning Tree algorithm is said to

be a pseudo-polynomial time algorithm because the time complexity

O(n2 w1 log (n w1)) becomes polynomial if w1 = O(log |I|) where I is a reasonable

encoding of the knapsack problem input. In particular, if w1 << b, then the

algorithm is polynomial, while the traditional O(n b) dynamic programming

algorithm is not.

If w1 > b, the first item is never used in the optimum solutions for b and the

second item becomes the best item. We can solve a reduced knapsack problem

with one item less.

 - 47 -

It will also be useful to find out if the optimum solutions to other NP-complete

number problems also become periodic for large instances. Such discovery may

result in similar algorithms for solving other NP-complete problems.

 - 48 -

8. Conjectures

In this knapsack problem, we can find the b*(r) for r = 0, 1, 2, … , w1–1, where the

optimum solutions begin to be periodic. The total time complexity is O(n w1 log w1). On

the other hand, to get the optimum solutions for b < b*(r), the total time complexity is

O(n2 w1 log (n w1)). In a nutshell, we spend more effort to solve a few small instances,

and we spend less effort to solve infinite number of large instances. This phenomenon

is not only true in this NP-Complete number problem but also true in many other

problems (see examples and discussions below). We would like to state this

phenomenon as the “Large instances are easy, small instances are hard” conjecture.

(1) Integer programs

We can solve an integer program (IP) by solving its associated linear program

(LP) first. If the basic variables of the (LP) are not integers, we can map the non-

basic columns and the right-hand side (b) of the LP into the elements of an

Abelian group of order D, where D equals to the value of the determinant of the

basic column. Gomory [7] showed that the integer program becomes a knapsack

problem with one single constraint – the minimum cost representation of the

group element corresponding to the column b in terms of the other group

elements, and the knapsack problem can be solved by an algorithm of time-

complexity O(D2) developed by Hu [8, 9]. Roughly speaking, the goal is to use

the non-basic columns as little as possible. However, the values of the non-basic

columns would force the basic variables to become negative if b is very small.

(2) The partition problem

Another interesting problem is to partition a set of positive integers {a1, a2, …, an}

into two subsets N1 and N2 so that the difference,
∑∑

∈∈

−
21 Ni

i

Ni

i aa of the two

sums is minimum. Karmarker and Karp presented a method to solve the problem

by a process that keeps replacing the largest two integers in the set, say ai and

aj, by a new integer of size |ai – aj|. The process is repeated on the new set of n –

 - 49 -

1 integers until only one item, say δ, remains. Then, through simple backtracking,

the method reconstructs the subsets N1 and N2 where the difference of the two

sums equals to δ [12]. This algorithm produces a near-optimum solution where

max












∑∑

∈∈ 21

,
Ni

i

Ni

i aa is at most 1/6 more than the larger sum of the two subsets in

the optimal partition [2], and the worst instance occurs for a small instance of 5

numbers 3, 3, 2, 2, 2.

(3) Matrix-chain multiplication

Given a matrix chain M = M1 × M2 × … × Mn where the total number of

multiplications needed depends on the associative order of multiplying the

matrices. A simple O(n) algorithm can be used to find an near-optimum order

with a worst case error bound of 15% [10, 11]. Again, the worst instance occurs

with 5 matrices and percentage of error becomes zero when n, the number of

matrices, becomes very large.

Hence, one way to measure the difficulty of a problem is NOT to consider the worst

instance of the problem but to consider all instances of the problem, as we have done

here with b taking on all positive integer values.

 - 50 -

References

1. S.A. Cook, “The Complexity of Theorem-proving Procedures”, Proc. 3rd Annual ACM

Symposium of Theory of Computer (1971), pp. 151-158.

2. M. Fischetti and S. Martello, “Worst-Case Analysis of the Differencing Method for the

Partition Problem”, Mathematical Programming, 37, (1987) 117-120.

3. M.R. Garey and D.S. Johnson, Computer and Intractability, Freeman Co., 1979.

4. P.C. Gilmore and R.E. Gomory, “A linear programming approach to the Cutting

Stock Problem, Part I”, J. ORSA (1961), pp. 849-859.

5. P.C. Gilmore and R.E. Gomory, “A linear programming approach to the Cutting

Stock Problem, Part II”, J. ORSA (1963), pp. 863-887.

6. P.C. Gilmore and R.E. Gomory, “The Theory of Computation of Knapsack

Functions”, J. ORSA (1966), pp. 1045-1074.

7. R.E. Gomory, “Some Polyhedra Related to Combinatorial Problems”, J. Linear

Algebra and its Applications (1969), pp. 451-558.

8. T.C. Hu, “On the asymptotic Integer Algorithm”, J. Linear Algebra and its

Applications (1970), Vol. 3, No. 3, pp. 279-294.

9. T.C. Hu, Integer Programming and Network Flows, Addison Wesley, 1982.

10. T.C. Hu and M.T. Shing, Combinatorial Algorithms (Enlarged Second Edition),

Dover, 2002.

11. T.C. Hu and M. Shing, “An O(n) Algorithm to Find a Near-optimum Partition”, Journal

of Algorithms (1981), Vol. 2, No. 2, pp. 122-138.

12. N. Karmarkar and R. Karp, “The differencing method of set partitioning”, Technical

Report UCB/CSD 82/113, University of California, Berkeley, 1982.

13. R.M. Karp, “Reducibility Among Combinatorial Problems”, in the book Complexity of

Computer Computations, R.E. Miller and J.W. Thatcher (ed.), Plenum Press, 1972.

14. M. Magazine, G.L. Nemhauser and L.E. Trotter, Jr., “When the Greedy Solution

Solves a Class of Knapsack Problems”, J. ORSA (19756), pp. 207-217.

15. V.N. Shevchenko, “On the Property of Periodicity in the Knapsack Problem”,

Modeling of Economic Processes, Izdat Gorkov University, Gorky, 1981, pp. 36-38

(in Russian).

 - 51 -

Appendix 1. Pseudo-code of the M-T Spanning Tree Algorithm

Input: n pairs of non-negative numbers (wj, vj), where all wj are integers, wn = 1,

1

1

w

v
= 1, and for 0 ≤ j ≤ n−1, either

j

j

w

v
 >

1

1

+

+

j

j

w

v
 or (

j

j

w

v
 =

1

1

+

+

j

j

w

v
 and wj < wj+1).

Output: A minimum cost M-T spanning tree

Begin

0. /* Data Structures:

1. Let T be the set of nodes that are “labeled and scanned” (LS) and Q

be the set of nodes that are “labeled and unscanned” (LU).

2. For 1 ≤ r ≤ n−1, let TempNode(r) return the node p in Q such that

such that p ≡ r (mod w1). TempNode(r) = undefined if not such node

exists in Q.

3. For 1 ≤ r ≤ n−1, let Cover(r) = true if there exists a node p in T such

that p is label and scanned and p ≡ r (mod w1).

4. */

5. /* Initialization */

6. T := empty;

7. Q := empty;

8. Add node 0 to Q with Label(0) = (0, 0, 0, undefined) and State(0) =

LU.

9. /* The main loop */

10. While Q is not empty loop

11. Remove p from Q such that p is cheaper than q for all node q ≠ p

in Q;

12. Cover(p mod w1) := true;

13. For j from 1 through n–1 loop /* update the neighbors of p */

14. q := p + wj;

15. Cost(q) := Cost(p) + GapCost(wj);

16. r := q mod w1;

17. Label(q) := (q, Cost(q), r, p);

18. State(q) := LU;

 - 52 -

19. if not Cover(r) and TempNode(r) = undefined then

20. Add q to Q;

21. else

22. if not Cover(r) and q is cheaper than TempNode(r) then

23. Replace TempNode(r) by q in Q.

24. end if;

25. end if;

26. end for;

27. State(p) := LS

28. Add p to T;

29. end while;

30. return(T);

End.

