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ABSTRACT OF THE DISSERTATION

An algorithmic toolbox for plant phenotyping with 3D point clouds

by

Illia Ziamtsov

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Saket Navlakha, Chair
Professor Hao Su, Co-Chair

Developing automated methods to efficiently process large volumes of point cloud data

remains a grand challenge for 3D plant phenotyping applications. Phenotyping is one of the

key pre-cursors towards developing more efficient breeding strategies and improvement of crop

yields. Using 3D point clouds for plant phenotyping helps to eliminate problems that are usually

encountered by performing phenotyping with images. However, point clouds come with their

own set of problems, which include registration errors, missing data, sensor noise, and scalability.

Point clouds of plants also typically have problems related to “natural” noise caused by small

features such as trichomes or natural shape irregularities; further, handling the diversity of organic

xii



structures observed across plant species is challenging. All these nuances need to be considered

to ensure quality extraction of phenotyping traits.

Here, we develop a collection of graph-theoretic and machine learning methods to tackle

three primary challenges in plant phenotyping: leaf/branch classification, leaf counting, and

branch skeletonization. For classification, we assess and validate the accuracy of our methods

on a dataset of 54 3D shoot architectures representing multiple species, growth conditions, and

developmental time-points. Using deep learning, we achieved 97.8% accuracy on classifying

leaves versus branches; critically, we also demonstrate the robustness of our method to growth

conditions and species that have not been trained on, which is important in practical applications

but is often untested. For leaf counting, we developed an enhanced region growing algorithm to

reduce over-segmentation; this method achieved 86.6% accuracy, outperforming prior methods

developed for this problem. Finally, for branch skeletonization, we developed an enhanced tip

detection technique that ran an order of magnitude faster and generated more precise skeleton

architectures compared to prior methods. In addition, we improved the quality of angles produced

by skeletonization. Overall, our improvements enable higher throughput and accurate extraction

of phenotypic properties from 3D point cloud data. Finally, all the algorithmic methods presented

in this thesis were packaged in a stand alone GUI application, called Plant3D (P3D).
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Chapter 1

Introduction

The world’s demand for food is rapidly increasing along with the population of our planet.

It is expected that the world population will reach 9 billion people by the year 2050 [GBC+10].

According to a 2015 report by the United Nations Food and Agriculture Organization [RCG+15],

our global demand for cereals is expected to double by 2050. In recent decades, there has been a

great deal of improvement in crop yields, mostly attributed to progress in breeding and genetics.

However, there is evidence that indicates that these improvements are insufficient to meet future

food demands [BRA+14]. If this is true, then the amount of agricultural land will have to be

expanded. The expansion of agricultural land has large negative consequences. In the past, it

has been shown that expansion of agricultural land has a significant effect on climate change,

pollution, and biodiversity loss. In addition, recent and abrupt changes in climate have had a

negative effect on crop yields. Thus, agricultural expansion is both affected by, and contributes to,

climate change [AC08]. The current situation is further complicated by the fact that there is a

limited amount of soil which can be used for agriculture and a limited amount of fresh water for

irrigation. Agriculture already consumes about 70% of fresh water withdrawals [CRT10].

To limit further expansion of agricultural land and mitigate the negative effects of global

warming, crops will not only need to produce greater yields, but also become more resistant to
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harsher environments. Recently, there has been a large investment in research to breed plants that

are more stress-tolerant [ZWR+15]. Genotyping is the process of determining an organism’s DNA

sequence, especially to assess variation with respect to a population. Phenotyping is the process

of identifying and quantifying an organism’s observable traits. In plants, common phenotyping

features of interest include the number, size, and shape of leaves [WZC+16, HWQ+18]; plant

height and growth rates [MBdS+17]; and branch lengths, diameters, and angles [BABA+17];

amongst others. Extracting plant features is a first step towards quantifying biomass and

yield [MBR16], assessing flowering time and drought tolerance [MFST16], mapping geno-

types to phenotypes [BBB+17, Set12], and studying morphological properties of plant architec-

tures [CPC+17, CPCN17, BABA+17, LFC+18a, PL96]. In theory, genotyping and phenotyping

work together and complement one another. For example, once stress-resistant phenotypes are

observed, researchers can then search for the regions of the plant’s genome responsible for those

particular traits. This process is known as forward genetics. However, there is a significant knowl-

edge gap between them, with phenotyping currently being a bottleneck [ZWR+15]. Emerging

technologies for high-throughput plant architecture capture have further increased the demand

for automated phenotyping methods [FT11, FS13]. Clearly, new and improved approaches for

rapidly identifying and propagating favorable plant traits are needed.

There are many techniques used for non-invasive plant phenotyping, ranging from camera-

based imaging [HHK+15, NSM+15] to 3D laser scanning [PDMK13, PBM+14], with advantages

and disadvantages to each in terms of cost, accuracy, and throughput. For example, 2D imaging

methods remain a cheap, high-throughput solution [PSNEC17, US17, GES+18, ZZR18] and

can be used in conjunction with structure from motion techniques [Sze10] to generate point

clouds [SKBR15, GDHB17, DMS12] or mesh [dMFK10, PSB+12] representations of plants,

the latter providing additional areal and volumetric information. This approach, however, faces

several issues including camera calibration, image registration, object occlusion, and incon-

sistencies in scaling and illumination. Images that contain an extra depth component (called

2



RGB-D) have also been used in the context of plant phenotyping that helps overcome some

of these challenges [CRL+12, XWCL15]. Further, some platform-specific solutions have been

proposed [NFL+16, GPF+18], though general purpose solutions remain elusive.

On the other hand, light detection and ranging (LiDAR) and 3D laser scanning devices are

considerably more expensive but generate point cloud representations of plant geometry with up

to micron-level precision. Compared to most 2D methods, 3D can provide a more comprehensive

and detailed view of the entire architecture. Prior works have used 3D scanning to study, for

example, growth and development [LFM+13] and light interception of leaves [GSA+12b], and

these technologies are now being deployed in the field [SLP17, ARAM+13]. However, these

techniques also face challenges such as non-uniform sampling of points, outliers and missing

data [LFM+13], scalability, and automation [CWT+18]. Thus, developing robust computational

methods to study plant shapes from 3D point cloud data has become increasingly important.

This thesis concentrates on developing efficient algorithms for capturing and evaluating

meaningful traits from 3D point clouds of plants. In particular, we study three basic computational

problems that are essential for downstream high-throughput phenotyping: classification of point

cloud data into sets of branch and leaf points, leaf counting, and branch skeletonization.

Classification: The ability to divide a point cloud of a plant according to the appropriate

plant’s organs is essential for further phenotyping efforts. Without this step, only general phe-

notyping measurements regarding the entire plant can be made such as overall size and volume.

Often times researches are interested in one particular part of a plant such as a head of a wheat

plant [GWC+21] or a branching network of a cotton plant [PSB+12]. Moreover, selection of

useful traits for optimization of food production is the key in plant breeding. Accurate selection

of traits depends on robust quantification of various plant organs. Thus, accurate plant organ

classification is crucial. To meet the demand of high-throughput phenotyping, fast and accurate

classification still remains challenging.
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Leaf counting: For many plant species, leaves comprise the majority of the surface morphology

and often are the biggest structural elements [LCS+19]. Monitoring of the shape and physical ap-

pearance of leaves allows farmers to check on a plant’s overall health and growth status [LCT+18].

Also the morphology of leaves along with texture and color can signal the type of stress a plant is

under so appropriate measures can be taken. In order to analyze morphology of single leaflets,

leaves need to be separated into individual leaves. Accurate segmentation of leaves still remains a

challenge mostly due to tendency of leaves to overlap in large canopies.

Skeletonization: Branching skeleton is a one dimensional line that ideally passes through the

center of all branches. The skeleton is a concise representation of the plant’s architecture. An

accurate skeleton of a plant can be used for automatic analysis of plant’s growth [CWT+18] as

well as robotic pruning of branches [CAE+16]. However, an accurate extraction of a skeleton

still remains a difficult problem due to noise, holes, and large diversity of plant data.

In an attempt to be robust to the abundance of natural variation found in biology, the

work presented in this thesis was tested on multiple species and across various development time

points and growth conditions. Namely, the dataset we used consists of 3D laser-scanned shoot

architectures from two dicot species (tomato, tobacco), each grown across three developmental

time-points, and five growth conditions (ambient, high-heat, shade, drought, high-light).
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Input

Lamina Stem

Classification

Segmentation Skeleton

# of lamina:       11
Average lamina size (pts): 10,528
Min size lamina (pts):            379
Max size lamina (pts):           34,032

# of tips:   4
Total length (mm):       121.35

Figure 1.1: Overview. A summary of the three problems tackled: classification of leaf versus
branch points, leaf counting/segmentation, and branch skeletonization.

1.1 Thesis outline

This section covers a brief overview of the content that follows in chapters below. The

remaining of chapter 1 describes the dataset used to test all the methods in this thesis and

establishes some common mathematical notations. Chapter 2 focuses on classification of points
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that belong to different plant organs. In particular, we classified points into two classes: leaf

(lamina) points and branch points. Classification is the first and essential step, the results of which

allow us to apply different algorithms to different classes of points. In chapter 3 we focus on leaf

counting. We extended a region growing algorithm to improve the robustness of leaf segmentation

to natural variation, including ripples, wrinkles, and hairs. Chapter 4 talks about extraction of a

skeleton graph from 3D points that were classified as branch points. In this chapter, we present

a method that improves tip and root detection to generate more precise skeletons. Chapter 5

continues with skeleton graph improvements paying special attention to the fork area of a plant.

The method described in this chapter builds on results from chapter 4 and helps to improve the

quality of estimated angles. Finally, chapter 6 presents the Plant3D (P3D) toolbox, which is a

stand-alone and self containing application that contains all the methods listed in this thesis and

more. The application comes with an intuitive graphical user interface and a few trained models

based on our dataset as a starting point. Our aim for P3D was to design a tool that would be

easy to install and use for non-CS communities, such as plant and agriculture biologists. The

precedence of methods in this thesis and their relationships are illustrated in Figure 1.1.

1.2 Dataset of 3D plant shoot architectures

We used 3D laser scanning to generate point cloud representations of 54 full shoot

architectures. We used the FaroArm EDGE Model 14000, which is a non-invasive laser scanner

and provides micron-level resolution. We scanned plants from two species: 36 tomato plants

(Solanum lycopersicum cv m82D) and 18 tobacco plants (Nicotiana benthamiana). Tomato plants

were grown in 5 conditions (control/ambient light, high-heat, high-light, shade, and drought),

and tobacco plants were grown in 3 conditions (control, high-heat, and shade). There were two

replicates per species-conditions pair. These conditions were selected because they represent a

range of realistic environments regularly faced by many plants, and for which there is phenotypic

6



plasticity that challenges accurate phenotyping. Each plant was scanned on developmental days

5, 12, and 20. Each of the 54 architectures was manually classified into sets of branch and leaf

points. Full experimental details was previously described [CPC+17, CPCN17].

This dataset encapsulates a diverse set of architectures, with variation in many phenotypic

features, including plant size (biomass), number and structure of leaves, and branch lengths and

angles. For example, the plant volume, measured by the convex hull of the plant’s cloud points,

of day 20 tomato plants varied across conditions by up to 50-fold: from 13.78 cm3 in high-heat to

668.68 cm3 in high-light [CPCN17]. The number of leaves for tobacco plants varied from 4 to

12 from the young to old plants [CPC+17]. Over all 36 tomato plants, the range in number of

cloud points was from 22,411 to 958,991, with an average of 233,917 cloud points per scanned

architecture. Similarly, over all 18 tobacco plants, the range was from 3,709 to 806,269 cloud

points. For tomato, on average 84.7% of the cloud points of an architecture belonged to leaves and

15.3% for branches. For tobacco, on average 90.1% of the cloud points belonged to leaves and

9.9% to branches. Thus, this dataset represents a diverse set of phenotypes to test the generality

of our methods.

1.3 Common notations

This section contains common mathematical symbols. These symbols are referenced

throughout this thesis. 3D space can be assumed for most of the concepts and methods listed in

the thesis unless specified otherwise.
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pi a point in 3D with {xi,yi,zi} coordinates

~ni a normal vector {nxi,nyi,nzi} that corresponds to point pi

P = {p1, p2, . . . , pn} a point cloud (set of 3D points) of size n

N = {~n1, ~n2, . . . , ~nm} a set of corresponding normal vectors of size m

r a radius of a sphere around a point

P r
i a set of points {p j|`2(p j, pi)5 r} of size k

p a centroid point of a point cloud Pk

p =
1
k

k

∑
i=1

pi

Ni an average normal vector of a pi computed from normals

of its neighbors P k

Ni =
∑ j N j

|∑ j N j|
,

~a⊗~b tensor product (outer product) between vectors~a and~b

κ radial basis kernel function (RBF)

κ(x,x′) = e−
||x−x′||2

2σ2
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Chapter 2

Classification of branch & lamina points

In this chapter we cover classification of points according to plant organs they represent in

a point cloud. Namely, we classify all the points in P into two classes: leaf (lamina) and branch

points. Classification is the first and an essential step for extracting traits. Before traits can be

measured and analyzed we need to know which points correspond to what organs of a plant. The

rest of the algorithms described in the chapters to follow use results obtained from classification.

Our classification is built on the idea of creating a feature vector fi for every point pi ∈ P .

The purpose of a feature vector fi is to capture local geometry around point pi. An ideal feature

vector for plant phenotyping is fast to compute, does not require a lot of memory, and has enough

descriptive power to distinguish different plant organs. After a feature vector has been computed

for every point, a classifier (supervised trained model) is used to assign a class (plant organ)

to every point. Some of the challenges that make such classification difficult include natural

biological variety of shapes for the same organs and imbalance in terms of number of points that

correspond to different organs, especially in older plants.

9



2.1 Classification framework and 3D shape descriptors

As input we are given a point cloud P of n points. Each point pi ∈ P represents a 3-

dimensional location on the surface of the shoot architecture. Each point is also associated with

a normal vector, ~ni, indicating the orientation of each point in 3D space. Normal vectors were

provided by the 3D scanner, and thus did not need to be determined computationally [RC11]. We

associate each point pi with a local neighborhood of points P r
i , defined by a sphere of radius r.

This neighborhood consists of all p j such that ‖pi− p j‖2 ≤ r.

Our first goal is to learn a classifier that maps each point pi to one of two labels: leaf

or branch (including stem, petioles, etc). Each point pi is represented by a feature vector fi

describing the local geometry around the point. In principle, a good descriptor should capture

general properties of the two classes (leaves or branches) and the variability within a class, without

over-specifying shapes to a particular species or environmental growth condition.

Several geometric feature descriptors have been proposed, both within the plant phe-

notyping community [PDMK13, WPKM15] and in the computer vision community [AFB+12,

GBS+16] more broadly. Below, we summarize the descriptors compared here (Table 2.1).

Table 2.1: List of 3D shape feature descriptors. The summary of features used with our
dataset. The size column represents the dimensionality of the feature vector per point in the
point cloud.

Descriptor Size Ref.

Point Feature Histogram (PFH) 125 [RMBB08]
Fast Point Feature Histogram (FPFH) 33 [RBB09]
Radius-Based Surface Descriptor (RSD) 289 [MPB+10]
Signatures of Histograms of Orientations (SHOT) 352 [TSDS10]
Spin Images (SI) 153 [JH99]
Principle Curvatures (PC) 2 [RC11]

Principal curvature (PC [RC11]). Intuitively, the principal curvature of a point pi is the speed

with which a surface around pi “moves away” from a tangent plane defined at pi [VMA86]. Thus,
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the speed of moving away on a flat surface (e.g., a leaf) should be relatively small, and the speed

of moving away on a surface of a cylinder (branch) should be relatively fast, at least along some

axis.

To estimate the principal curvature of a point pi, first, every normal vector ~n j of p j ∈ Pi is

projected to a tangent plane formed by ~ni and point pi:

~m j = (I−~ni⊗~ni) · ~n j, (2.1)

where I is the 3x3 identity matrix.

Next we calculate the 3x3 covariance matrix Ci of the ~m j projections:

Ci =
1
k

k

∑
j=1

(~m j− ~̄m)⊗ (~m j− ~̄m), (2.2)

where k is the number of points in the neighborhood of pi and ~̄m is the mean of all ~m j.

We then calculate principal curvatures from the non-zero eigenvalues of Ci. These eigen-

values represent how much variation there is along each direction. Assuming 0≤ λ1 ≤ λ2 ≤ λ3,

then for point pi, the feature fi = [λ3,λ2] corresponds to the maximum and minimum curvatures,

respectively.

Radius-based surface descriptor (RSD [MPB+10]). This method was originally developed to

estimate the radius of an object to determine if the object can be grasped by a robotic arm.

Given two points and their normal vectors, we can compute the radius of an assumed

circle the two points lie on. The radius between pi and p j is approximated by first computing the

angle αi j between the normals ~ni and ~n j, and second, computing the distance between pi and p j,

which is equal to
√

2r ·
√

1− cos(αi j). Solving for r gives us the radius between pi and p j.

The final RSD feature can come in two versions. In the first version, fi will contain two

values, the minimum and maximum radii computed between pi and each point p j ∈ Pi. In the
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second version, fi will contain histograms of counts of the angles and distances between pi and

each point in Pi. The second version performed best and we report these results below.

Point feature histograms (PFH [RMBB08]). Rusu et al. [RMBB08] derived a method that

generalizes the mean curvature around a point that is more robust to noise. For each point pi, the

method computes four features between all pairs of points ps, pt ∈ Pi. These features provide

higher descriptive power by capturing all possible normal interactions between the points in the

local surface.

For each pair of points ps, pt ∈ Pi, we first compute three vectors corresponding to the

Darboux frame [RMBB08]:

Darboux(ps, pt) =



~u = ~ns

~v =~u× (pt− ps)

||pt− ps||2

~w =~u×~v

We then use the Darboux frame to calculate four features for the pair: αst ,φst ,θst ,dst .

αst =~v ·~nt

φst =~u · (pt− ps)

||pt− ps||2

θst = arctan(~w ·~nt ,~u ·~nt)

dst = ||pt− ps||2

The final feature fi for point pi is based off the histograms of these four features.

Fast point feature histograms (FPFH [RBB09]). PFH features are computationally expensive

to compute because the four features are calculated between all pairs of points in Pi, which takes

12



time O(nk2), where k is the size of the neighborhood. FPFH reduces this complexity to O(nk)

by only considering pairs that include pi. FPFH also adds a distance-based weighing step that

reduces the contribution of a feature based on how far the corresponding point is from pi. The

two steps are:

1. Compute features αi j,φi j,θi j between pi and p j, where p j ∈ Pi.

2. Scale each feature via a distance-based weighting. For example, for α:

αi j = αi j +
1
k

k

∑
j=1

1
di j
·αi j,

and similarly for the other two features. Here, di j equals the Euclidean distance between pi and

p j. The result is a feature vector fi that is based off the histograms for each feature.

Signature of histogram of orientations (SHOT [TSDS10]). This descriptor captures local

topology around a point by computing a histogram of the orientations of points in Pi. The first

stage of the descriptor is to establish a local reference frame, Mi, around point pi. The goal of

this frame is to make the feature locally invariant to geometric transformations. The frame is

computed using the eigenvalue decomposition of the weighted covariance matrix:

Mi =
1

∑p j∈Pi(r−di j)
∑

p j∈Pi

(r−di j)(p j− pi)(p j− pi)
T , (2.3)

where di j = ||p j− pi||2. The directions of the reference frame are aligned to the directions where

the majority of the points in the local neighborhood lie.

Next, we divide the neighborhood into multiple sub-volumes of a sphere. The sub-volumes

are divided along its three spherical axes and a local histogram is constructed for every sub-

volume. Each histogram contains bins of normalized point counts of points that lie within the

angle between ~ni and every normal vector for each point in the sub-volume. The final feature fi is
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a concatenation of all sub-volume histograms, with a quadrilinear interpolation applied to remove

abrupt changes in histogram boundaries.

Spin image (SI [JH99]). Unlike SHOT, where the neighborhood is aligned with a local reference

frame, the neighborhood in the spin image descriptor is aligned with a local reference axis. The

local reference axis is established by using the normal vector of pi.

Intuitively, imagine a cylinder with a cylindrical axis defined by ~ni. The cylinder is

sub-divided into bins along its height and radius. Dividing along the height produces sub-volumes

of smaller cylinders. Dividing along the radius poduces sub-volumes of rings. The final feature fi

consists of counts of points in each sub-volume (after interpolation and distance-based weighting

are applied, as above).

2.2 Testing and validation framework

The ground-truth classification was created by manually labeling each point in each

architecture as either a leaf or branch point using the PolyWorks software tool. Because our

data does not have a color component, there was some ambiguity in this labeling; for example,

at locations near a branch where a leaf emerges, it was difficult, even for humans, to precisely

delineate where the leaf begins and where the branch ends. We discuss this further in Classification

results.

We tested performance using 6-fold cross-validation. We chose 6-fold because our labeled

tomato dataset consists of 36 plants, thus each fold contains exactly 6 plants. We report the

mean accuracy and standard deviation over all folds. No pre-processing steps were applied to the

point cloud data prior to computation of features and classification. This was by design to test

robustness to noisy and imperfect data that may be expected in real-time scanning applications.
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There are many classifiers and performing cross-validation using all feature × classifier

combinations is laborious. Thus, we first used cross-validation with a deep learning classi-

fier [LBH15] to determine the best performing feature (FPFH; Classification results, Figure 2.1),

and we then tried many different classifiers using this feature. Specifically, we compared four

classifiers: deep learning, linear SVM, K-nearest neighbors (KNN), and random forest. Prior

work has used FPFH features for plant classification in conjunction with SVMs [PDMK13] and

k-means [WPKM15].

For each classifier, we performed a grid search to find the best model parameters, eval-

uated using 6-fold cross-validation. This search included different values of the neighborhood

radius, r ∈ [1.0,2.0, . . . ,12.0]. For linear SVM, we tested values for C, where C = log2(i), i ∈

[−8,−7,−6, . . . ,7]. For deep learning, we varied the number of training steps and the architecture

of the neural network. The steps tested were 2000, 20000, and 200000. We tried six different

architectures with as few as one hidden layer, as well as deeper networks with up to 10 hidden

layers with various number of nodes in each layer [GBC16]. The best architecture contained an

input layer, three hidden layers with 33, 66, and 33 nodes, respectively, followed by the output

layer. For KNN, we tested K values of 7, 77, 277, and 777. Finally, for the random forest classifier,

we used 5, 25, 50, or 100 trees.

2.3 Classification results

Here we ask two questions: What combination of features and classifiers leads to robust

classification results? How do these models perform when tested on plants grown in never-before-

seen conditions or on plants from a different species?
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Figure 2.1: Impact of different classifiers and descriptor features on leaf versus branch
classification accuracy. A) Results of 6-fold cross-validation for each descriptor using an
underlying deep learning classifier. Error bars indicate standard deviation across folds. PFH and
FPFH features perform best. B) Results of 6-fold cross-validation for different classifiers using
FPFH descriptors. The three bars for each descriptor/classifier show accuracy by class (branch,
leaf, and overall for both classes).

2.3.1 Features

Using 6-fold cross-validation on the 36 tomato plants, we found that point feature his-

tograms (PFH, and their faster version, FPFH) achieved the highest accuracy in classifying

between leaf and branch points: 98.12% ± 0.39% and 97.77% ± 0.50%, respectively (Fig-

ure 2.1A). While PFH was slightly more accurate than FPFH (by 0.35%), PFH’s complexity is

O(nk2) [Rus09] as opposed O(nk) for FPFH. This difference corresponds to days to perform

cross-validation versus a few hours for FPFH, and thus FPFH achieves a better trade-off between

scalability and accuracy.

Because our dataset is not balanced between classes — ≈ 85% of points are leaves,

≈ 15% are branches — we computed the accuracy for each feature by class (Figure 2.1A).

Here again, PFH and FPFH perform similarly and dominate the other features. For leaf points,

the accuracies per class was 98.94% and 98.85%, respectively for PFH and FPFH; for branch
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points, the accuracies were 92.86% and 93.60%, respectively. The next best feature, SHOT,

performs comparable for leaves, but significantly worse (85.69%) for branch points. We see the

largest variation in performance for branch point classification, ranging from 93.60% (FPFH) to

54.1% (spin image features). We note that an improvement in even 1% accuracy corresponds to

potentially thousands of cloud points, and thus can be significant.

It might be reasonable to say that the structure of a shoot architecture is roughly composed

of two types of primitive shapes: planes (leaves) and cylinders (branches). Thus, simple and

fast geometric descriptors, such as normal vectors and curvature values, should in principle

be sufficient to accurately segment leaves and branches. However, our empirical results above

show that these features do not in practice achieve high segmentation accuracy, likely due to

irregularities in these basic shapes and noise. For example, principal curvatures achieved an

overall accuracy of only 88.1% ± 5.2. Different stressors, such as temperature and drought, can

also affect leaf shape, which makes these primitives somewhat simplistic. Thus, in the results

described below, we only consider FPFH.

2.3.2 Classifiers

The classification results above were achieved using a deep learning classifier. Prior work

has used a variety of classifiers for segmentation. For example, Paulus et al. [PDMK13] used

FPFH in conjunction with SVMs, and Wahabzada et al. [WPKM15] used FPFH with k-means.

Here, we study the effect of using different classifiers in conjunction with FPFH features for

classification accuracy. We tested the following classifiers: K-nearest neighbors (KNN), random

forest (RF), support vector machines (SVM), and deep learning (DL).

Several of these classifiers performed comparably (Figure 2.1B); however, when com-

paring the nature of the errors of each method, we found that DL made the most “reasonable”

mistakes. Specifically, we visualized the errors made by each method and noticed qualitatively

that most of the errors made by DL were in ambiguous regions of the plant where leaves emerge
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Figure 2.2: Point classification results. A–D) Classification of lamina (green) versus branch
(brown) points on four plants.

from a branch. In these regions, it is difficult, even for humans, to agree on the precise boundary

between a branch and a leaf. The other methods (RF, KNN) made more mistakes in less am-

biguous locations (e.g., the middle of a leaf or branch). Thus, for the remaining experiments, we

used the DL classifier. Figure 2.2 shows results of the point classification on four plants using a

combination of FPFH feature vectors with the DL classifier.

2.3.3 Generalization across different environments

Plants architectures are highly plastic and often modify their structure — including leaf

shape, stem thickness, and branch angles — in response to the environment. In practice, training

data may not be available for all possible conditions, and thus in practical applications, it is

important that classifiers can accurately classify leaves and branches when applied to architectures
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grown in never-seen-before conditions.

Train Test

Control

High-heat

DroughtShade

High-light

A B

C D

E

Day 6 Day 12 Day 20

Tobacco

Control High-heat ShadeAll Tomato

All Tobacco

Figure 2.3: Generalization of classification accuracy across different environments and
species. A–D) Results of training a classifier on tomato control plants, and testing on tomato
plants for four other conditions — shade, drought, high-heat, and high-light. Over all descriptors,
FPHF generalizes the best across conditions. E) Results of training a classifier on tomato data
from all conditions and testing it on tobacco data, using FPFH descriptors. Performance on the
tobacco data is shown separately per condition and time-point.

To test this, we trained a DL model using a set of 12 control tomato plants (ranging

from developmental days 5–20), and tested the model on plants grown in four other conditions:

shade, drought, high-heat, and high-light [CPCN17]. These conditions produced many variations

in architectural features (Figure 2.3, left). For example, in high-light, we observed significant

thickening of the leaves and stem compared to all other conditions, and many more irregularities
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in leaf shape. In drought, we observed a weaker plant with fewer and thinner leaves and branches.

Compared to training a DL classifier with other features, we found that FPFH features

again performed best, achieving over 95% accuracy on all new conditions (Figure 2.3A–D). For

example, in high-light, FPFH achieved an overall accuracy of 95.88%, compared to 93.55% for

SHOT and 72.91% for PC. In high-heat, FPFH achieved 97.48% accuracy, compared to 94.64%

for SHOT and 90.35% for PC. In drought, FPFH achieved 98.2% accuracy compared to 96.01%

for SHOT and 91.96% for PC. Principal curvatures has the largest variance across conditions,

perhaps because this feature only consists of two values. On the other hand, SHOT has over

10-times as many feature values as FPFH (352 versus 33), but it still performed worse than FPFH.

While prior results have also proposed using FPFH features for leaf/branch classifica-

tion [WPKM15, PDMK13], this to our knowledge is the first quantitative demonstration of its

accuracy, coupled with deep learning, across new conditions.

2.3.4 Generalization across different species

A related challenge is to build classifiers that can accurately classify leaves and branches

on species that have not been trained on. Indeed, there are thousands of plant species, some with

very different branching and leaf patterns, and it is unreasonable to assume that training data

will be available for all of them. Here, we tested how well a DL classifier trained with FPFH

features from tomato plants generalized to another dicot plant: tobacco. The tobacco plants were

also collected under three growth environments (control, shade, and high heat) and across three

developmental time-points (days 6, 12, and 20) [CPCN17].

Overall, we find > 95.89% accuracy, averaged over all tobacco plants (Figure 2.3E).

Older plants are classified more accurately regardless of the environment (e.g., 98.6% control

day 20 versus 94.1% control day 6), whereas plants grown in shade had a slightly lower accuracy.

Nonetheless, these results suggest that some cross-species generalization is possible within our
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framework, and sets a benchmark for future studies to improve upon.
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Chapter 3

Leaf counting

The result of the classification yields two sets of points: leaf points and branch points. The

leaf points by themselves are “free flowing” islands of points in space. Leaf points can consist

of a single leaf or many different leaves. The next challenge is to segment or cluster these leaf

points into subsets, where each subset represents an individual leaf. Segmented leaves allow one

to calculate traits, such as flowering time and drought tolerance [MFST16]; different stresses can

also affect leaf size [JMD74], which can determine photosynthetic response [VQM16].

In this section, we present a region growing algorithm for separation of individual leaves

from all the points that were classified as leaf points. In particular, we use four metrics to decide

whether a point belongs to a current cluster (leaf). One primary challenge for leaf segmentation is

leaf touching or overlapping of other leaves, which becomes worse when the volume of foliage

grows. Our algorithm is developed to mitigate errors of these particular cases.

3.1 Leaf segmentation algorithms

Leaf segmentation is a difficult problem because leaves can have many different shapes,

poses, and orientations, including variation in wrinkles and ripples [XWCL15, MTM16]. Further,

the data itself can be noisy due to occlusion of certain parts of the leaf during scanning, issues
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in registration multiple scans, identification of small newly emerging leaves [LFM+13], and

close proximity and perhaps touching of two different leaves [MTM16]. While some methods

have been proposed that solve these problems for specific types of leaf structure (e.g., sunflower

leaves [GDHB17] or heuristics to deal with some types of touching leaves [MTM16]), here we

seek a more general solution that is agnostic to any such prior.

Below, we describe two prior methods for segmentation, followed by our new proposed

method. All methods use an iterative, region-growing approach to cluster leaf points into subsets,

but each method uses a different criteria to determine whether to admit a candidate point into a

cluster.

3.1.1 Euclidean clustering

The first method clusters leaf points into subsets based on Euclidean distances [Rus09]. A

point is picked randomly to start a cluster, and then that cluster is grown by admitting points that

are less than a threshold distance away from at least one point from the cluster. This procedure is

repeated until all leaf points have a cluster assignment. Ideally, the distance threshold should be

larger than the average distance between two points on the same leaf, yet smaller than the distance

between points on two distinct leaves. It is difficult to set this parameter exactly due to variation

in leaf structure; however, in our case, we performed a grid search to optimize performance and

set it to 0.3. In addition, we filtered out clusters with less than 300 cloud points, as these were

typically noise.
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3.1.2 Segmentation using smoothness curvature

The second method clusters leaf points into subsets using normal vectors and estimated

curvature values (called smoothness) [RvV06]. The objective is to cluster sets of points that have

a smooth surface. The method starts by computing and sorting the estimated curvature for all

points. A cluster is initialized with the point pi with the smallest curvature (i.e., the surrounding

region around pi has a flat surface). This cluster is grown by considering pi’s neighbors; for each

neighbor p j, if the angle between normal vectors of the pi and p j is less than a threshold, p j is

admitted to the cluster. To generate new seed points to grow the cluster, the curvature of p j is

checked to see if it is less than another threshold; if so, p j is also added to a queue of seed points.

If not, p j remains in the cluster with pi, but its neighbors are no longer candidates to further

expand the cluster. Once all points from the seed queue are exhausted, a new cluster is started

with the next smallest curvature value (that has not already been assigned to a cluster) and the

process repeats. The parameters for the normal calculation and curvature threshold values were

selected using a grid search on the entire dataset.

3.2 Improved leaf segmentation

The third method, which we developed, clusters leaf points into subsets using distances,

normal vectors, curvature, and FPFH features (Algorithm 1). The curvature around point pi is

typically calculated as: (λ3)/(λ1 +λ2 +λ3), where λ3 ≤ λ2 ≤ λ1, and where the eigenvalues

are calculated using PCA on the neighborhood of pi. The drawback of this approach is that this

measure sometimes produces sharp changes at the edges and in areas that are flat but have lower

density. This can lead to over-segmentation.

Instead, we propose an anisotropic measure of smoothness: (λ1−λ3)/λ1. This measure

provides better clustering of points located on edges and in poorly scanned areas (lower point
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density or holes). Because this method does not consider the second eigenvalue, it produces a

smoother curvature in flat areas, and the abrupt changes are more likely to happen where two

leaves are in contact.

Our method also uses an additional check to determine whether a point should be admitted

into a cluster based on the similarity of FPFH features. This approach is inspired by a similar

method used for creating supervoxels for point clouds [PASW13]. Intuitively, using FPFH

features will help capture the essence of the surface, despite possible hairs, wrinkles, or tears on

the leaf. The complexity of FPFH allows this technique to scale to plants with even a million

points.

Algorithm 1: Our leaf segmentation method based on region growing
Data: Set of leaf points L
Result: Set of leaf clusters CL

1 Function conditioned RG(∆d ,∆n, ∆c, ∆ f ):
2 CL ←{} // Empty list of leaf clusters
3 Q←{} // Queue of points to be checked
4 T ← createKD Tree(L) // Used to find candidate nearest-neighbors.
5
6 for pi ∈ L : do
7 append(Q, pi)
8 for pi ∈ Q : do

// Get point closest to pi not yet assigned to a cluster.
9 py← getClosestNonProcessed(pi,T,CL )

10
// Difference in Euclidean distance

11 if distance(pi, py)> ∆d then
12 continue;

// Difference in normal orientation (angle)
13 if degrees(~ni, ~ny)< ∆n then
14 append(Q, py);

// Difference in curvature (smoothness anisotropy)
15 if distance(Anisotropy(pi),Anisotropy(py))< ∆c then
16 append(Q, py);

// Difference in FPFH distance
17 if distance(FPFH(pi),FPFH(py))< ∆ f then
18 append(Q, py);

19 append(CL , Q)
20 Q← {}

21 return CL

In summary, our clustering method starts from a random seed point and the cluster is

grown if any of three conditions are satisfied (Algorithm 1). Once the cluster is grown to exhaus-

tion, a next random seed point is drawn from the points that have not been clustered yet, and this
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process is repeated until all points belong to some cluster.

3.3 Testing and validation framework

To test the accuracy of each leaf segmentation method, we only count a leaf as correctly

segmented if all its points are correctly placed into the same subset. If a leaf’s points are

split into two subsets, we call this over-segmentation; if two leaves are merged, we call this

under-segmentation. Each ground-truth leaf is counted independently and is not weighted by its

size.

A B

Figure 3.1: Leaf segmentation results. A) Results of segmentation with smoothness curvature
constraint. B) Results of our improved leaf segmentation. The leaves in the red box are
overlapping, however our segmentation was able to detect them as separate leaves.

3.4 Leaf counting results

The leaf points identified after classification will be “free flowing” islands of points in 3D

space. The next task is to cluster these points, where each cluster corresponds to an individual

leaf.

When analyzed on 291 total ground-truth leaves from the tomato plants, our enhanced
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Table 3.1: Leaf segmentation and counting results. Comparison of three methods: Euclidean
Clustering, Segmentation with Smoothed Curvature, and Our method. ‘Under’ and ‘Over’
indicates the number of under- and over- segmented leaves, respectively. Summary on the
bottom row shows overall performance over all plants.

Euclidean Clustering Segmentation using SC Our method
Plant Day Under Correct Over Under Correct Over Under Correct Over

Control-A 5 0 4/4 0 0 4/4 0 0 4/4 0
Control-A 12 1 10/12 0 0 11/12 1 0 11/12 2
Control-A 20 6 11/21 0 0 20/21 1 1 18/21 2
Control-B 5 0 4/4 0 0 4/4 0 0 4/4 0
Control-B 12 2 5/10 1 1 6/10 2 0 9/10 1
Control-B 20 5 12/18 1 1 14/18 4 1 12/18 13
Control-C 5 0 4/4 0 1 3/4 0 0 4/4 0
Control-C 12 1 8/11 0 1 9/11 0 0 8/11 3
Control-C 20 6 10/18 0 1 15/18 3 1 16/18 5
Control-D 5 0 3/3 0 0 3/3 0 0 3/3 0
Control-D 12 2 7/10 0 0 10/10 0 0 10/10 0
Control-D 20 6 12/18 0 1 16/18 1 0 16/18 7

Heat-A 5 1 1/3 0 1 2/3 0 0 3/3 0
Heat-A 12 1 3/6 0 1 4/6 0 1 4/6 0
Heat-A 20 0 6/6 0 0 6/6 0 0 6/6 0
Heat-B 5 0 2/2 0 0 2/2 0 0 2/2 0
Heat-B 12 0 3/3 0 0 3/3 0 0 3/3 0
Heat-B 20 1 2/4 0 1 2/4 1 0 4/4 0

Shade-A 5 0 4/4 0 0 4/4 0 0 4/4 0
Shade-A 12 0 6/8 0 1 7/8 0 1 7/8 0
Shade-A 20 0 9/12 0 2 10/12 0 2 10/12 0
Shade-B 5 0 4/4 0 0 4/4 0 0 4/4 0
Shade-B 12 1 6/8 0 1 7/8 0 0 7/8 1
Shade-B 20 2 12/16 0 2 13/16 0 3 11/16 0

Drought-A 5 0 4/4 0 1 3/4 0 0 4/4 0
Drought-A 12 1 7/9 0 2 6/9 0 1 8/9 0
Drought-A 20 2 12/15 0 0 15/15 0 1 14/15 0
Drought-B 5 2 1/4 0 1 3/4 0 0 4/4 0
Drought-B 12 1 5/7 0 1 4/7 1 0 7/7 0
Drought-B 20 2 8/12 0 1 9/12 1 1 9/12 1

Hightlight-A 5 1 2/4 0 1 2/4 0 0 4/4 0
Hightlight-A 12 7 3/11 0 1 8/11 2 0 10/11 2
Hightlight-B 5 0 4/4 0 0 4/4 0 0 4/4 0
Hightlight-B 12 4 8/13 0 0 9/13 6 0 8/13 8

Summary 55 202/291 2 23 242/291 23 13 252/291 45
69.42% 83.16% 86.60%

leaf counting method achieved an overall accuracy of 86.60%, with 13 under-segmented and

45 over-segmented leaves (Table 3.1). In contrast, the Euclidean clustering method achieved

69.42% accuracy, with 55 under-segmentations and 2 over-segmentations. The performance of

Euclidean clustering declined significantly as plants grew and more leaves started to become

in contact with each other. Finally, segmentation with the smoothness constraint performed

better than Euclidean clustering, achieving 83.16% accuracy, with 23 under-segmentations and

23 over-segmentations, though still slightly worse than our method. Thus, adding FPFH features

to the growing criteria helped the algorithm deal better with natural variations in leaf structure,

including hair, ripples, wrinkles, and veination. Although not reported here, we also tested other
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eigenvalue-based curvature metrics, such as planarity and surface variation [HWS16], which did

not perform competitively.

Across all methods, the bulk of over-segmentation errors occurred for leaves with scanning

holes or with poor registration from multiple scans. All of these methods include parameters that

can be tuned to optimize under- and over- segmentation, and future work may try to introduce a

learning procedure to set these parameters automatically given data. Figure 3.1 shows an example

of a plant, where our segmentation separates an overlapping pair of leaves into two separate

leaves.
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Chapter 4

Skeletonization: small branches & root

The next challenge is to transform the branch points into an underlying skeleton (a graph-

theoretic tree) that captures the essential shape of the plant. The skeleton of a 3D object is a

thinned 1D representation (often in the form of a graph) that captures the basic geometry and shape

of the object. Skeletons have broad applications in computer vision, such as for object matching,

surface reconstruction, feature tracking, and computer animation [CSM07]. Accordingly, there

are a variety of approaches for extracting skeleton graphs from structures represented as 3D

meshes or point clouds [TZC09, CTO+10, ATC+08, DJR14, VL00, HWC+13, SLSK07].

More recently, skeletonization has become critical to modern plant phenotyping [CPCN17,

BABA+17, PL12]. The advent of high-throughput 3D imaging platforms, such as light detection

and ranging (LiDAR), has generated large datasets of point clouds of plant shoot architectures

[PNE17, PS19]. While advancements in data acquisition have made it possible to rapidly scan

plants, methods for analyzing them in real-time remain a bottleneck. In addition to plant science,

skeletonization is also important in forestry [HSC+15], ecology [MMK+04], urban planning

[ZLD+14], and engineering [QZN14]. All of these applications require methods for accurately

skeletonizing shapes from 3D data.

In this thesis, we focus on skeletonization of organic shapes. Compared to man-made
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structures, skeletonizing natural, organic structures has many challenges, including dealing with

the curvature of branches (i.e., no straight lines), the tapering of branches (i.e., unequal radii

over the length of the branch), the non-uniformity of branch lengths, and other nuisances, such

as trichomes (the fine hairs on plant stems), which disrupt fitting with simple primitives. These

issues lie alongside the usual difficulties associated with processing point clouds, such as missing

data, non-uniform density of points, and registration errors [HJW+17, PMG04].

4.1 Families of skeletonization methods

Several methods for extracting skeleton graphs from 3D data are designed to function on

closed polygonal meshes. However, LiDAR scanners do not reliably produce watertight shapes

due to challenges posed by self-occlusion and light reflection by the target surface [TZC09].

Surface reconstruction is often unreliable, since errors introduced can lead to inaccurate skeletons

[CTO+10]. Therefore, we focused on approaches that can be applied directly to unorganized 3D

point clouds.

Algorithms for skeleton extraction from unorganized 3D point clouds broadly fall into

four categories: topological thinning, distance field-based, general field-based, or geometric

[CSM07]. Some approaches, such as topological thinning and distance fields, typically work on

voxelized data. However, these methods are sensitive to the discretization resolution used, and

they can have poor results when the point cloud is noisy, non-uniform, or incomplete. In practice,

some methods combine elements from multiple categories, so the distinctions between categories

are not strict.

Topological thinning or contraction algorithms start at the surface of an object and shrink

it to a 1D skeletal representation [CSM07]. This is done by iteratively removing voxels from

the shape’s boundary while preserving its basic topology. Because each voxel can be evaluated

locally, thinning algorithms are generally computationally efficient. However, they are susceptible
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to the excessive removal of branch endpoints, which can lead to truncated skeletons [CSM07].

Au et al. [ATC+08] developed a mesh contraction algorithm for non-volumetrized data that uses

the Laplacian operator to smoothly collapse an object into a skeletal shape. Subsequently, Cao

et al. [CTO+10] adapted this Laplacian thinning approach to work directly on raw point clouds.

However, this method requires careful tuning of contraction parameters to remain faithful to the

object’s topology and is sensitive to sampling density. Because the Laplacian operator requires the

calculation of higher-order derivatives, it is also computationally expensive and not guaranteed to

be numerically stable.

Distance field-based methods apply the distance transform, which identifies the shortest

distance from each computed interior point to the boundary of the object [HF05]. Any locally-

centered voxels are putative members of the shape’s skeleton, which are subsequently pruned by

thinning or clustering. The remaining voxels are re-connected to produce a final skeleton graph.

Although these methods are efficient, they are sensitive to boundary noise and suffer from poor

centeredness due to errors at the re-connecting step [CSM07]. Huang et al. [HWC+13] apply

a spatially-localized version of the L1-median to local neighborhoods of points, and then apply

contraction and re-centering to generate a final skeleton. However, this method is sensitive to

sampling density and uniformity.

General field-based approaches apply functions other than the distance transform to

point sets, such as potential fields or Newtonian repulsion [CSM07]. For example, Sharf et

al. [SLSK07] perform surface reconstruction by growing a deformable blob that captures the

point cloud’s shape, and then extract a skeleton by finding its centerline. In general, these methods

tend to be robust to noise at object boundaries. However, if the data is incomplete (e.g., if there are

holes or sparsely sampled areas), the blob can leak outside of the underlying shape. In addition,

some of these methods require calculating higher-order derivatives, and thus may be inefficient

for large point clouds.

Geometric methods encompass approaches that work directly on raw point cloud data.
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For example, Voronoi tesselation can produce an approximation of a shape’s medial surface

[OI92, DS06], which can then be pruned into a skeleton. However, this process is highly sensitive

to noise [CSM07]. Alternatively, Reeb graphs are more robust to outliers, but can be sensitive to

the object’s orientation [CSM07]. PypeTree [DJR14], which builds off the method by Verroust

and Lazarus [VL00], is designed specifically for point clouds of plant architectures. It calculates

geodesic distances from the plant’s root to the rest of the point cloud. Skeleton points are then

extracted from the centroids of the points in each level set. However, if a level set spans a

fork, points that belong to multiple branches will not be differentiated. Therefore, PypeTree

can produce geometric errors and poor angle measurements at forks. ROSA [TZC09] is another

method that uses normal information and rotational symmetry to extract skeletons from point

clouds that have an underlying cylindrical shape. ROSA performs well on incomplete point

clouds; however, it is generally less robust to noise and outliers, requiring preprocessing and

denoising before it can be applied to raw data [TZC09].

4.2 PypeTree algorithm

To extract a skeleton graph, we extended upon the PypeTree method [DJR14], which

improves upon the Verroust and Lazarus method [VL00] and other prior work [Buc14]. The

Verroust and Lazarus method assumed that cloud points are sampled uniformly or near uniformly;

PypeTree removed this assumption to better deal with point clouds with inconsistent density and

outliers. Prior work has also studied skeletonization of botanical trees [DJR14, BLM09, BLM10];

one challenge with our dataset, however, are the numerous small branches, where a more scale-

invariant method would be desired.

Our proposed method builds upon PypeTree and is designed to better capture skeleton

curvature by adding two new features: 1) More accurate tip detection; and 2) Enhanced root

selection.
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First, we briefly outline the five main steps of the PypeTree algorithm.

1. A point cloud is turned into a neighborhood graph G = (V,E) by connecting each point

with its neighbors. Specifically, each cloud point pi corresponds to a node vi ∈V , and there

exists an edge between vi and v j if v j is within radius r from vi.

2. The neighborhood graph G is converted into a geodesic graph, F = (V,E ′ ⊂ E) with respect

to some root point, vroot ∈V . The edges E ′ of the geodesic graph are found by computing

the shortest path from vroot to every vertex vi ∈ V using Dijkstra’s algorithm, and then

taking the union of all the edges in these paths.

3. The nodes of the geodesic graph are divided into “levels” based on the geodesic distance

from the root. In other words, all nodes within distance 1 from the root are placed into the

first level; all nodes with distance between 1 and 2 are placed into the second level; etc.

Figure 4.1 illustrates nodes assigned to different levels with different colors. Each level

will ultimately represent one or more nodes in the final skeleton graph (see Step 5 below).

4. A subgraph Hi is created for each level i. The nodes of Hi are all the points in level i. Each

node in Hi is connected to its two nearest-neighbors in Hi.

5. A subgraph Hi may contain multiple connected components; for example, after a branch

point (Y-junction) in the preceding level, there may be two connected components in the

same level, representing the left and right sides of the branch. Thus, we create one node in

the final skeleton graph per connected component, and this node is created at the centroid

of the connected component. The final step is to create edges between centroid nodes in

level i and level i+ 1. A centroid in level i+ 1 is connected to a centroid in level i if a

(random) point in the former’s connected component goes through some point in the latter’s

connected component along the way to the root in the geodesic graph. Intuitively, this will

avoid branches from “crossing over” across levels.
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Figure 4.1: Improvements in branch skeletonization. A) Visualization of the levels (colored
bands) outputted by the PypeTree method. The default root point shown in Level 1 can be
off-center when selected as the point with the lowest y-value. This can cause tilting of the
architecture and other deformities in the resulting skeletonization (black line), especially when
holes are present in the point cloud data. B) Visualization of the levels and root point output by
our method. The balanced levels and centered root point improves the quality of the skeleton
graph. C) Visualization of 1st (most dominant) eigenvalues for each point. Points with low
eigenvalues, as indicated by the scale bar, are predominantly located at tips (the root and regions
where leaves emerge).
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PypeTree includes additional filtering steps to reduce noise and other implementation optimiza-

tions to reduce running time, which we do not describe here and instead refer the reader to the

original publication [DJR14].

We next describe two additional features we added to improve skeletonization.

4.3 Improved detection of tips.

A critical component of skeletonization is finding tips, which are degree-one nodes of the

skeleton where leaves emerge. Accurately identifying tips is challenging due to impartial capture,

holes, and small features, such as hairs on the stem. The tips that PypeTree identifies are highly

sensitive to the size of the levels: if the level size is set very large, then tips connected to small

branches and petioles will be missed. On the other hand, if the level size is set too small, then

false tips may emerge and the resulting skeleton may be too sensitive to variation.

Our approach to finding tips is independent of connected components or level size, thus

making it independent of the resolution of the skeleton graph. Tips are located at the boundary

(edges) of a point cloud, which have a natural discontinuity compared to other points. Thus, we

can detect edge points by using principal components analysis. Specifically, for every point in the

point cloud, we compute its first eigenvalue based on its neighboring points within some radius r.

The first eigenvalue of points close to the boundary will be smaller than that of points far from

a boundary because the neighbors of boundary points will not be spread around the point but

rather will be biased to some side (Figure 4.1C). We then perform Euclidean clustering on all

points whose first eigenvalue is among the smallest 15% of all points, such that points that belong

to the same tip should reside in the same cluster. Clusters that contain less than 50 points are

filtered out as noise. The centroids of each cluster become the tip nodes of the skeleton graph.

Finally, a tip is attached to the skeleton graph by picking a random point from its cluster, finding

which connected component it falls in (Step 5 above), and adding an edge from the centroid of
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this cluster to the tip. Finding tips in this manner allows for the detection of even small branches

and petioles emerging during development.

4.4 Improved detection of the root.

The stem base (hereafter simply called the “root”) is a special case of a tip and is critical

for grounding the skeleton in the correct location. The goal is to find a root point that lies at the

base and center of the stem. This location of the plant, however, is often difficult to scan because

of its proximity to the soil and because of holes caused by scanning errors. The default root point

of PypeTree is the point with the lowest y-value. This point can be highly skewed to one side of

the stem (Figure 4.1A) which can cause artificial curvature in the skeleton.

Our solution starts by noticing that the level closest to the default root — i.e., all the points

within distance 1 to the root — often contains points that do not wrap evenly around the base

of the stem (Level 1, Figure 4.1A). This is because the distance needed to wrap the base of the

stem is greater than distance that demarcates a single layer. In addition, these distances are highly

sensitive to noise, holes, or other small variations around the root. However, as the level number

increases, the points appear more evenly balanced around the stem, forming even rings (Level 11,

Figure 4.1A).

To form even rings around the root, then, our idea is to build the geodesic graph starting

from the tip that is furthest away from the root and trace backwards (Level 1, Figure 4.1B). In

this way, the level closest to the root now will be less sensitive to the choice of a root point.

Specifically, let r1 be PypeTree’s default root, and let r2 be the point that is furthest away from r1.

Then we find all points pi such that:

d(r1,r2) = d(r2, pi)±β,

where β is a parameter that adjusts amount of points to be sampled in the vicinity of the
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root. Then, for each pi we compute:

z(pi) = d(r1,r2)− (d(r1, pi)+d(r2, pi)).

Intuitively, all points with zp ≈ 0 will represent an evenly balanced ring around the true

root (Level 1, Figure 4.1B). We reset the root vroot to be the centroid of these points, and then add

edges from vroot to all such points (with equal weight) to the neighborhood graph G. We then

proceed with Step 2 of the PypeTree algorithm above.

4.5 Testing and validation framework

We tested the accuracy of our method to detect tips on the 12 oldest tomato plants, which

had the most branching. We manually identified and counted the tips for each plant and compared

these counts with those predicted by each method based on precision and recall.

4.6 Improving small branches & root results

Using only the branch points as input, we next compared the quality of our algorithm

versus PypeTree in forming a skeleton graph of the branch points.

First, we find that our algorithm generated skeletons that are visually better aligned with

the underlying cloud points (Figure 4.2). PypeTree consistently struggled identifying small

branches (Figure 4.2A), corresponding to where new leaves are emerging. PypeTree also often

off-centered the root point, which caused the underlying skeleton to incorrectly lean. While

PypeTree does include parameters to adjust the level size that can improve these errors in some

cases, it was difficult to set this parameter in such a way that it generalized across species,

plant size, and branching patterns. In contrast, our method, which is independent of level size
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parameters, defined a root point that was much more centered along the main axis of the stem and

better dealt with more ambiguous regions of the point cloud (Figure 4.2B).

A

B

Figure 4.2: Branch skeletonization comparison for three plants. The branch skeletonization
produced by (A) PypeTree and (B) our method, on three tomato plants. The red points are the
branch cloud points, and the black line is the resulting skeleton graph. Dotted circles highlight
areas of improved tip detection for our method. Dotted rectangles highlight instances where the
root tip was off-center according to PypeTree and better centered by our method.

Second, we quantified how accurately each method identified tips on a set of 12 tomato

plants from day 20 across the five environmental conditions (Table 4.1). Day 20 plants were

selected because these plants have the largest size and most branching. Our method achieved

higher or equivalent precision on 11 of the 12 plants, and higher or equivalent recall on all 12

plants, compared to PypeTree. Averaged over all 12 plants, our method achieved a precision

of 95.0% ± 7.0% compared to 89.0% ± 12.0% for PypeTree. The reduction in false positive

and false negative tips is important, as such errors can alter the underlying shape of the skeleton,
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which can affect downstream morphological analyses.

Third, we evaluated the run-time of each method and found 1–2 orders of magnitude

improvement in our algorithm versus the provided PypeTree implementation (Table 4.1). For

example, on the Highlight-B plant, PypeTree took 919 seconds, whereas our method only took

17.51 seconds. This improvement is significant, especially when dealing with large collections of

plants scanned in real-time applications.

Table 4.1: Improvement in skeleton tips identification. Precision vs. recall of PypeTree versus
our tip identification method on 12 tomato plants. Overall, our method achieves higher precision
and recall and is over an order of magnitude faster.

PypeTree Our method
Plant Day Precision Recall Time (s) Precision Recall Time (s)

Control-A 20 0.87 0.93 677 0.88 1.00 23.56
Control-B 20 0.83 0.83 764 0.80 1.00 25.92
Control-C 20 0.67 0.80 427 0.83 1.00 16.89
Control-D 20 0.64 0.82 596 1.00 1.00 14.94
Drought-A 20 0.86 0.75 163 0.89 0.89 7.66
Drought-B 20 1.00 0.57 570 1.00 0.86 8.03
Heat-A 20 1.00 1.00 25 1.00 1.00 4.14
Heat-B 20 1.00 1.00 12 1.00 1.00 2.27
Highlight-A 20 0.86 0.75 1132 1.00 1.00 2.29
Highlight-B 20 0.93 0.72 919 1.00 0.94 17.51
Shade-A 20 1.00 1.00 137 1.00 1.00 10.40
Shade-B 20 1.00 0.75 217 1.00 1.00 14.85

Average 0.89 0.83 469.92 0.95 0.97 12.37
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Chapter 5

Skeletonization: angle extraction

In this chapter, we continue on the topic of skeletonization of plant architectures from

3D point clouds which is critical for many downstream tasks including analyses of plant shape,

morphology, and branching angles. Specifically, we aimed to improve skeletonization at branch

points (forks) by leveraging geometric properties of cylinders around branch points. In other

words, our goal was to improve the quality of angles in the skeleton graph.

Fast and accurate determination of branch angles is important for many downstream tasks,

including the study of plant growth and development [LFC+18b], measuring light interception

by leaves [GSA+12a], and for inferring genotype-to-phenotype relationships [XB20], both in

the lab and in the field [SLP+18, ARAM+13]. In addition, assessing and quantifying changes

in plant morphology is often used for measuring agricultural yields [MBR16], analyzing stress

responses and plant-environment interactions [GMGB17], and facilitating functional genomics

studies [YDC+13].

In this chapter, we describe a fast skeletonization method that can, in seconds, generate

accurate branch angles of noisy and heterogeneous 3D point clouds. The method builds upon our

prior work from the previous chapter [ZN19] by analyzing the geometry of normal vectors around

branch points, projecting these vectors onto a Gaussian sphere, and then robustly clustering them
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Input to part 1

Point cloud Part 1 Part 2

Input to part 2

Fl = {Pl, Nl}

Figure 5.1: Overview. As input, we are provided a 3D point cloud of a plant architecture. A
partial point cloud of the region around a branch point (fork) is shown. In Part 1, we compute its
skeleton. Each color represents points and normal vectors that belong to a node in the graph. In
Part 2, the geometry and branch angles around a fork are refined to better match the underlying
plant shape.

into unique individual branches.

5.1 Method overview

As input, we are given a point cloud P of n points, where each three-dimensional point

pi ∈ P describes a location on the surface of the plant. Each pi has an associated normal vector

−→ni representing its 3D orientation; these vectors form a set of normals N. In our dataset, normal

information was provided by the 3D scanner.

Our method can be divided into two parts (Figure 5.1): computation of the initial skeleton,

and refinement of the skeleton at branch points (forks). The first part is done using the approach

described in previous chapter [ZN19], which builds off of PypeTree [DJR14]. We refer to the

improved version as PypeTree* to distinguish it from the original method [DJR14].

Briefly, PypeTree* divides the points P into level sets, where each level l consists of points

Pl ⊂ P that lie within a similar geodesic distance from the root of the tree. For each level, a node

of the skeleton graph is created at the centroid Cl of that level’s points. For example, Figure 5.1
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(Part 1) shows nodes (i.e., levels) in different colors, with their associated points. Forks are

detected by running a connected components algorithm on Pl; if Pl consists of two disconnected

components — points on the left and right of the fork, each with a similar geodesic distance to

the root — then the level is split into two, and two nodes are created, one at the centroid of each

component. The output is a skeleton graph G = {V,E}, where the nodes V = {Cl} over all l; each

level has an associated set of points Pl and normal vectors Nl; and the edges E connect nodes

across successive levels.

This approach is fairly fast on large point clouds; however, it often suffers from geometric

errors at forks. Even if there is a fork at level l, in practice, Pl often consists of only one component,

and it isn’t until level l+1 where the two branches of the fork are sufficiently separated from each

other that their corresponding points no longer belong to the same component. In terms of the

skeleton, this means that Pl generates a single node in the graph, and Pl+1 generates two nodes,

each connected to the centroid of Pl . This severely compromises the angle estimation at the fork

since the branch point is detected late. Furthermore, the location of the centroid Cl can be biased

(due to averaging of points that belong to different branches), leading to inaccurately-placed

nodes within forks, and again, incorrect angles.

Thus, the second part of our method refines the skeleton geometry around each fork, using

as input the points Pl and normal vectors Nl associated with each fork (Figure 1 (Part 2)). If

normals are unavailable, methods exist for normal estimation [MN03, ZCL+13], which can be

applied before using our method.

5.2 Gaussian sphere mapping

The points Pl (Figure 5.2A) and normal vectors Nl for each fork node l are processed as

follows. For simplicity, we drop the subscript l from the notation below, since the same logic is

applied to each fork node/level l. We do not require that forks consist of exactly two children
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(branches).

First, for each normal vector Ni = (nx
i ,n

y
i ,n

z
i ) associated with a point pi in the level, we

compute its local neighborhood of points j where `2(pi, p j)< r, where r defines the radius of

the neighborhood. We then compute a smoothed version of the normal vector by averaging the

normal vectors around its local neighborhood:

Ni =
∑ j N j

|∑ j N j|
.

This reduces normal vector noise around the fork.

Second, we map each Ni to a Gaussian sphere. Every normal is a unit vector, so if we

imagine it as a position, it will lay on the surface of a unit sphere. Mapping all normals onto a unit

sphere will produce a Gaussian sphere. Comparing Figure 5.2B (unsmoothened) to Figure 5.2C

(smoothened) shows how smoothening tightens the spread of normal vectors and generates a clear

pattern of rings. All normal vectors that map onto the same ring belong to the same cylinder,

which represents a branch of the fork. Assuming all branches have an approximately cylindrical

shape, the goal is to identify the normal vectors that belong to different cylinders/branches. The

number of rings to identify is set to the number of children of the fork node in the skeleton graph

from Part 1.

A B C D

Figure 5.2: Gaussian spheres. (A) Points that correspond to an example fork node. (B)
Mapping of normal vectors to a Gaussian sphere. (C) Mapping of smoothed normals to a
Gaussian sphere. (D) Correspondence between colored rings and original branches in panel A.
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For example, the fork in Figure 5.2A has three cylinders (a mother branch and two

daughter branches), which matches the three rings we observe in Figure 5.2C; these rings are

color-coded in Figure 5.2D to match their original branches.

Finding rings in a Gaussian sphere can be challenging when there is missing data, such

as for the mother branch (green) in Figure 5.2A. As a result, the ring of green points is in-

complete in Figure 5.2C–D. Next, we discuss how to extract rings that correspond to different

cylinders/branches from a Gaussian sphere.

5.3 Sampling of cylinder axes

We extract rings from a Gaussian sphere (Figure 5.3A) by investigating the cross product

between normal vectors:

Si = Ni×N j.

If the cross product is taken between two normal vectors that belong to the same ring, then Si is

a perpendicular vector that points along the axis of the cylinder/branch. If we continue taking

cross products between normal vectors that belong to the same ring and mapping them onto the

Gaussian sphere, clear clusters will form on the Gaussian sphere. However, the problem is we do

not know a priori which normal vectors belong to the same ring.

Previously, a method called Pipe-run [QZN14] was proposed to extract pipes from noisy

point clouds using Gaussian spheres. Pipe-run draws random pairs of normal vectors and

computes their cross products, but this method has several shortcomings. First, it assumes that

most of the randomly drawn normal vectors come from the same ring, which works well when

the input contains a single cylinder. However, in our case, there are multiple rings, each with

a different orientation. Second, each cylinder may not have the same number of points, since

branches could vary in thickness and size. Thus, sampling an equal number of points per cylinder

could produce spurious axes. Third, cylinders with missing data would be poorly represented by
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random sampling. Indeed, Figure 5.3B shows that Pipe-run sampling does not effectively cluster

the three cylinders. Other methods, such as RANSAC [FB81], are also highly susceptible to noise

and missing data.

A B C

Figure 5.3: Sampling of cylinder axes. (A) Mapping of smoothed normals to a Gaussian
sphere for an example fork. (B) Cylinder axes identified using Pipe-run (random sampling).
(C) Cylinder axes identified using our sampling approach. All rings are represented by well-
separated clusters, including the ring with missing data.

Our sampling approach is based on two key observations. First, pairs of normal vectors

that belong to the same ring likely have corresponding points that lie close to each other in space.

So, we sample pairs of points that lie within a local neighborhood, defined by a radius r. Second,

pairs of normal vectors that belong to the same ring will lie on a circle with approximately

the same radius. To compute the approximate radius between a point and every point in its

neighborhood, we used a method called the radius-based surface descriptor (RSD) [MPB+10]:

`2(pi, p j) =
√

2r′ ·
√

1− cos(∠(Ni,N j)).

The RSD takes two points pi and p j and their normal vectors as input and computes the approxi-

mate radius r′ of an assumed circle, if the points were lying on the circle. For example, if the

points represented a perfect cylinder, r′ would be constant. In reality, the data is noisy and the

approximated radii tend to vary.
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Given these observations, our sampling method is as follows. Given a point pi, we

compute its approximate radius with all points p j that lie within a distance r from pi. We then

sort all the approximate radii and choose the point p j∗ associated with the median radius. Finally,

we compute the cross product between the smoothened normal vectors of points pi and p j∗. This

results in a single sample per point, and a robust cylinder axis Si supported by pi’s neighborhood.

Figure 5.3C shows the results of our sampling method, which reduces noise. There are

six clusters corresponding to the three rings because the sign of the cross product depends on the

order of operation; thus, we generally expect two opposite vectors for each ring.

5.4 Clustering cylinder axes

The previous step generates a set S consisting of an Si for each point i. Our next goal

is to cluster the values in S such that each cluster corresponds to a different cylinder axis. We

performed unsupervised clustering using the mean-shift algorithm [CM02] because it deals well

with outliers [QZN14]. The algorithm identifies clusters as locations in space with high sampling

density. Formally, the algorithm iterates as follows:

anext =
∑Si∈S κ(

∥∥aprev−Si
∥∥

2) ·Si

∑Si∈S κ(
∥∥aprev−Si

∥∥
2)

,

where anext is the current point of highest density, aprev is the previous point, and κ is the radial

basis kernel function (RBF). Initially, aprev is selected randomly from S . After every iteration,

anext is re-projected back to the surface of the sphere. The process stops when the distance

between the current and previous point is very small (e.g., < 10−8). The number of clusters is

known from the skeleton graph (i.e., the number of branches at the fork).

Once the process converges, we obtain a vector ai, which represents the cylinder axis

of one branch i. Before searching for the next axis, we perform two steps to find additional

points that belong to the same axis. First, we find all normal vectors that are within 10 de-
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grees of being perpendicular to ai. The resulting normal vectors and their corresponding points

p′i constitute a ring/cylinder. Second, we remove from set S all Si that are within 10 degrees

of ai. We then repeat the clustering procedure on a new random point to find the next cylinder axis.

5.4.1 A modified clustering algorithm

We modified this algorithm in two ways for better performance for our application.

First, the RBF computes ||aprev− Si||2, but as mentioned above, the sign of the cross-

product can be inverted based on the order of the points. Thus, vectors that lie on opposite sides

belong to the same axis. To account for this, we make the following adjustment:

anext =
∑Si∈S κ(min(

∥∥aprev−Si
∥∥

2 ,
∥∥aprev− (−Si)

∥∥
2)) ·Si

∑Si∈S κ(min(
∥∥aprev−Si

∥∥
2 ,
∥∥aprev− (−Si)

∥∥
2))

.

This allows for more precise computation of the direction of higher density.

Second, we reduce σ (a kernel parameter) as the number of iterations increases. A large σ

prevents the algorithm from getting stuck at a local high density location initially; then, as the

algorithm settles, we reduce σ to hone in on the highest density location more precisely. This is

akin to reducing the learning rate over time during gradient descent optimization. Specifically,

when the distance between the current and previous step falls below a threshold, we reduce σ

by an order of magnitude. If the distance becomes larger than the threshold, then we continue

iterating with the new σ. Otherwise (if the distance remains below the threshold), we say that the

algorithm has converged and return. This dynamic adjustment of σ becomes more important in

forks with higher numbers of branches.
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5.4.2 Dealing with ambiguous points

One final issue remains: each ring (cylinder) of the Gaussian sphere intersects with at

least one other ring in two places, and it is unclear to which ring the points at these intersections

should be assigned. We call such points ambiguous. In other words, when we extract normal

vectors that are with 10 degrees of being perpendicular to cylinder axis ai, there are multiple axes

that satisfy this rule. The more branches a fork has, the more intersections there are and the more

ambiguity there will be. Figure 5.4A shows another example fork, and Figure 5.4B highlights its

ambiguous points in red.

A B C D

Figure 5.4: Clustering of ambiguous points. (A) Initial fork points. (B) Results after initial
clustering. Cyan, yellow, purple: non-ambiguous points (i.e., points assigned to a single cylinder
axis). Red: ambiguous points. Green: noise (i.e., points not assigned to any ring). (C) Non-
ambiguous points only. (D) Final clustering after resolving the assignment of ambiguous points
to a single axis/branch. Cylinder accuracy is improved.

To resolve ambiguous points into their correct branches, we perform the following steps.

First, we compute the centroid c′i over all non-ambiguous points p′i in ring i. Non-ambiguous

points are those that were clustered to only one cylinder axis. These points are shown in

Figure 5.4B (cyan, yellow, and purple points). Points that were not within 10 degrees of being

perpendicular to any ai are marked as noise and shown in green. Second, viewing each i as a

plane with corresponding axis ai and point c′i, we project each ambiguous point onto each plane i.

We then compute the Manhattan distance between each projected point and each c′i. Ambiguous

points are assigned to the ring (axis) with the shortest Manhattan distance.
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Figure 5.4D shows the final custering after resolving ambiguous points. Resolution of

ambiguous points not only improves cylinder accuracy, but could also be useful for estimating

branch volumes.

5.5 Final skeleton graph

The clustering step above produces an axis for each cylinder ring found in the Gaussian

sphere. Each of these axes represents a direction of a splitting branch. To generate the final

skeleton graph, we need to identify the new position of the branch point, and then connect the

new branches to this branch point.

The identified axes (ai) are 3D vectors that will generally not intersect. We find points of

intersection between all pairs of axis vectors by using the skew lines intersection algorithm. The

idea is to find the shortest line segments that connect each pair of initial axes. For each pair, the

point of intersection is defined as the midpoint of the line segment.

For example, for axes i and i+1, we turned the cylinder axes ai,ai+1 and centroids c′i,c
′
i+1

into 3D line equations:

`i := c′i +λai

`i+1 := c′i+1 +µai+1

and solved the linear system of equations Au = v for u where

A =

 a2
i −ai+1 ·ai

−ai+1 ·ai a2
i+1

 u =

λ

µ

 v =

 (c′i+1− c′i) ·ai

−(c′i+1− c′i) ·ai+1


Inserting λ and µ back into the linear equations yields the two closest points on those

lines, which form a line segment. The center of this line segment is the intersection point of `i

and `i+1. The average of the intersection points, across all pairs of lines, is the new position of
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the fork node. Lastly, we create a new node for each branch axis vector i at its centroid c′i, and

insert these nodes in the old skeleton graph. We then add an edge between the intersection point

and the new nodes for each branch.

For example, in Figure 5.1 (Part 2), we show how a single fork node is divided into three

nodes, corresponding to the mother branch and two daughter branches. The graph structure

outside the fork node remains the same.

This procedure enhances the geometry of the skeleton graph at fork areas, thus making

angle measurements more accurate, as we evaluate next.

5.6 Testing and validation framework

We tested our method on point clouds generated from 3D scans of tomato (Solanum

lycopersicum cv m82D) and tobacco (Nicotiana benthamiana) plants [CPCN17, CPC+17, ZN19].

To capture a wide range of shoot architectures and branch angles, plants were grown under several

conditions: an ambient light control, shade, high-temperature, high-light, and drought. These

conditions promote diverse phenotypes and are representative of realistic growth environments.

We analyzed 31 forks (18 tomato, 13 tobacco) from 12 plants (8 tomato, 4 tobacco),

comprising a total of 76 angles; many forks split two ways, but some split > 2 ways. Lamina were

removed from the point clouds via deep learning classification from chapter 2. The remaining

points (representing the branching structure of the plant) were then analyzed.

5.7 Angle extraction results

We compared the accuracy and run-time of our method to several popular approaches for

skeleton extraction from 3D point clouds: PypeTree* [DJR14, ZN19], L1-medial skeletonization

[HWC+13], and Laplacian-based contraction [CTO+10]. Briefly, PypeTree* [DJR14, ZN19] is
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a geometric method specifically tailored for plant biology applications. The L1-medial skeleton

[HWC+13] is a distance field-based algorithm designed to operate on general point clouds.

Laplacian-based contraction [CTO+10] is a thinning-based algorithm, and the successor to the

well-known ROSA method [TZC09]. Each of these methods represents a different family of

skeleton extraction algorithms (see chapter 4 work for details). For each method, we used a grid

search to identify the best set of parameters yielding the most visually accurate skeletons. We

used the publicly-available code and implementation for each method.

We measured the angles produced at each fork and compared them to ground-truth angles,

which were measured manually via cylindrical fitting in third party point cloud visualization

software. To test our method’s robustness, we selected a range of plants with varying sizes,

amounts of missing data, and levels of registration noise. Figure 5.5 shows a subset of 7 of the 12

plants evaluated, consisting of tomato plants spanning four growth conditions.

5.7.1 Accuracy of branch angles

Our method consistently generated accurate skeletons at forks, and remained more robust

to noise and missing data compared to other methods. Figure 5.5 shows example forks from

tomato plants (columns) and the ground-truth angle calculation for each fork (top row), followed

by the skeletons and estimated angles for each of the four methods (subsequent rows). For

example, on the Highlight (A20) plant, the ground-truth angle was 120◦. The skeleton extracted

by our method estimated the angle to be 118◦, whereas the estimates of the other methods were

much worse: 111◦(PypeTree*), 98◦(L1-medial), and 92◦(Laplacian).

These seven examples are illustrated because they represent a range of challenges faced

by skeletonization algorithms. For example, Highlight (A20), Control (B5), and Shade (A20’) all

show noisy forks with hairs (trichomes) on the stem and with registration errors; Highlight (A20)

and Highlight (A20’) show examples of missing data at a fork; and Shade (A20) and Heat (A20)

show “webbed” forks.
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Each method struggled with overcoming these challenges. For example, L1-medial often

missed small branches due to stochastic sampling (Heat A20, missed two branches). PypeTree*

mainly struggled with averaging points from different branches at forks, which tended to pull the

branch point away from the main axis, in turn reducing the quality of angles (e.g., Shade (A20’)

and Heat (A20)). Laplacian was the least resilient to noise (e.g., Shade (A20’), Control (B5)), and

closely packed branches often produced loops, spurious branches, and erroneous skeleton shapes

(Shade (A20’), Control (B5)). While our method did better at almost every fork, it sometimes

struggled with missing data (e.g., Control (B5)).

Over all 18 tomato forks analyzed (from 8 plants in 5 conditions), in terms of absolute

errors, our method was on average 1.96 times more accurate than PypeTree*; 2.25 times more

accurate than L1-medial; and 3.15 times more accurate than Laplacian. In terms of percent errors,

our method was on average 1.90 times more accurate than PypeTree*; 2.21 times more accurate

than L1-medial; and 2.92 times more accurate than Laplacian.

Importantly, our method demonstrated similar gains when tested on forks from tobacco

plants. Over 13 forks from 4 tobacco plants across 2 conditions, in terms of absolute errors, our

method was on average 1.39 times more accurate than PypeTree*; 2.13 times more accurate than

L1; and 2.16 times more accurate than Laplacian. In terms of percent errors, our method was on

average 1.26 times more accurate than PypeTree*; 1.99 times more accurate than L1-medial; and

1.99 times more accurate than Laplacian. Thus, our method was able to generalize well across

two distinct species.

Results from all 31 forks are quantified in Figure 5.6, demonstrating our method’s im-

proved estimation of branch angles in terms of absolute errors (Figure 5.6A) and percent errors

(Figure 5.6B).
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Table 5.1: Time comparison for all methods. All measurements shown are in seconds.

Species Point cloud Our method PypeTree Laplacian L1-medial

Tomato Control (B5) 1.40 1.26 41.77 3.76
Tomato Control (B20) 6.13 5.25 494.49 5.69
Tomato Heat (A20) 2.51 2.06 53.91 4.05
Tomato Highlight (A20) 1.68 1.34 47.44 3.06
Tomato Highlight (A20’) 1.89 1.62 77.95 5.22
Tomato Shade (A20) 2.68 2.19 68.12 3.05
Tomato Shade (A20’) 2.27 2.03 91.01 2.98
Tomato Drought (A12) 1.27 1.01 73.22 4.49
Tomato Highlight (B4) 0.75 0.67 20.56 3.64
Tomato Shade (B20) 9.73 7.98 491.51 9.99
Tobacco Control (B6) 0.27 0.23 13.77 4.34
Tobacco Control (B12) 0.82 0.64 21.66 4.20
Tobacco Heat (B6) 0.25 0.19 14.98 2.42
Tobacco Heat (B20) 7.37 5.49 360.03 5.77

5.7.2 Comparison of run-time

For each fork, we compared the amount of time each method took to run. Measurements

were made on a Windows 10 Pro 64-bit machine with an Intel i7-2600 CPU @ 3.4 GHz, and

16GB RAM. Because the L1-medial method is stochastic (i.e., it requires selection of random

seeds during initialization), we averaged its run-time over four runs.

Table 5.1 shows that PypeTree* and our method are the two fastest algorithms in our

comparison. On average, our method is only 0.17 times slower than PypeTree*, suggesting that

the error correction process we applied on top of the original PypeTree algorithm only leads to a

small loss in timing efficiency. The other two methods (L1-medial and Laplacian) are significantly

slower. Specifically, our method is 2.81 times faster than L1-medial and 41 times faster than

Laplacian. L1-medial was fairly competitive on larger plants with more cloud points, but showed

significantly slower times on smaller plants compared to PypeTree* and our method.

In summary, our method can compute branch angles for large plants in seconds, and

generally produces more accurate branch angles than existing methods.
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Figure 5.5: Branch angle prediction for four methods. Seven forks are shown (columns),
each from a tomato plant across different conditions. The name “Highlight (A20)” means the
fork comes from a plant grown in highlight conditions scanned on developmental day 20. Plants
are given names “A” or “B” for replicates. The apostrophe symbol denotes a different fork that
belongs to the same plant. Each row shows the skeletons and estimated angles for each of the
four methods; the top row shows the ground-truth angle, computed manually. Only one angle is
highlighted in each fork.
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Figure 5.6: Accuracy of predicted angles for all methods. (A) Average absolute errors for
each method, defined as the absolute value of the ground-truth angle minus the predicted angle.
Error bars represent the standard error of the mean. (B) Average percent errors for each method,
defined as the ratio of the absolute error to the ground-truth angle. Error bars represent the
standard error of the mean.
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Chapter 6

P3D: Phenotyping toolbox

Developing methods to efficiently analyze 3D point cloud data of plant architectures

remains challenging for many phenotyping applications. New technological advances in plant

phenotyping are now being used to generate large volumes of data detailing the 3D architectures

of various plant species, grown in different environments and conditions, in both the lab and

in the field. This has raised the challenge of automatically extracting phenotyping features

of interest, such as leaf size, shape, and quantity [WZC+16, HWQ+18], branch lengths and

angles [BABA+17], and growth rates [MBdS+17], amongst others. These features are important

for numerous tasks, including quantifying plant biomass and yield [MBR16], understanding plant

responses to stressful conditions [MFST16], mapping genotypes to phenotypes, and building

predictive structural-functional models of plant growth [BBB+17, VEBS+10, SGDN14, GS05].

In this chapter, we present a toolbox that integrates the algorithmic methods developed

in this thesis. The four core phenotyping tasks it addresses are: classification of cloud points

into stem and lamina points; graph skeletonization of the stem points; segmentation of individual

lamina; and whole leaf labeling. The Plant3D (P3D) tool provides an intuitive graphical user

interface, a fast 3D rendering engine for visualizing plants with millions of cloud points, and

several graph-theoretic and machine learning algorithms for 3D architecture analyses. The P3D
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tool is an aggregation of the methods described in this thesis into one application. As 3D point

clouds become a standard data type for digitizing plant architectures in the lab and in the field,

we hope the P3D tool can help accelerate next-generation plant phenotyping.

6.1 Motivation

While many tools currently exist for plant phenotyping, these tools have mostly been

developed to analyze images of plant architectures [HHK+15, NSM+15, US17]. While camera-

based imaging offers a cheap and high-throughput data capture solution, subsequent analysis

faces numerous challenges, including camera calibration, image registration, object occlusion,

and inconsistencies in illumination — especially as these factors vary across labs and experi-

mental setups [PSNEC17]. More recently, light detection and ranging (LiDAR) and 3D laser

scanning have become attractive alternatives to imaging. These technologies generate point cloud

representations of plants with micron-level precision that can capture minute details, including

trichomes and leaf venation patterns [Pau19, LFM+13, GSA+12b, CWT+18], and do not require

background subtraction nor extensive calibration across setups.

Our goal was to publish an application that is capable to perform four basic phenotyping

tasks using 3D point clouds. In the effort to make P3D more accessible for plant community, we

equipped it with an easy to navigate graphical user interface, the ability to import different file

types for seamless usage, and an installation via Windows installer executable file. The latter

allows to avoid compiling and building from source code, which could be a major hurdle for

people unfamiliar with nuances of C++.
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Figure 6.1: Overview of the P3D tool. Center panel shows the overall GUI and an example scan
of a tomato plant on growth day 20. Examples of the four phenotyping tasks are shown in panels
A–D. A) Classification of the point cloud into lamina points (red) and stem points (yellow) using
a deep learning classifier. B) Segmentation of the lamina points into individual lamina (shown
in different colors). C) Skeletonization of the stem points into a 3D graph-theoretic tree. White
lines show the tree, and green dots signify the 3D locations of lamina found in the previous step.
D) Clustering of individual lamina into whole leaves. Three leaves are shown (red, green, and
blue), as well as two cotyledons (purple). Orange points signify stem points.
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6.2 The Plant 3D (P3D) software package

We developed a tool called Plant 3D (P3D) to automatically perform common phenotyping

tasks using high-resolution 3D scans of plant architectures. P3D is open-source and is bundled

with a stand-alone Windows application (Figure 6.1). P3D is written in C++ using OpenGL,

QT, TensorFlow, and the point cloud library (PCL) [RC11]. P3D can visualize and process data

imported as a 3D point cloud (pcd or txt formats) or a mesh (obj format).

The tool focuses on four phenotyping tasks described below. The algorithms developed

for these tasks are novel and were recently shown to improve accuracy and/or run-time com-

pared to existing methods on a large dataset of 3D plant architectures, including two species

(tomato, tobacco), each grown in multiple environments, and through roughly 20 days of develop-

ment [ZN19].

6.2.1 Lamina vs. stem classification

The first task is to classify each point in the point cloud as belonging to either a lamina

structure (e.g., leaf, cotyledon) or a stem structure (e.g., petiole, branch) (Figure 6.1A). A point

cloud consists of a list of (x,y,z) coordinates of the object of interest (a plant architecture). P3D

computes fast point feature histogram features [RBB09] for every point in the cloud, and then

feeds these features into a deep neural network for binary classification. This classification is the

first step towards computing leaf-related features (using lamina points) and morphology/shape-

related features (using stem points).

Because plants show remarkable plasticity in their form, P3D provides a comprehensive

classification model pre-trained on diverse architectures grown in different environments (ambient,

high-light, high-heat, drought, shade) and at different developmental time-points (from day 5 to

day 20). In addition, P3D allows users to provide a path to their own pre-trained network.

P3D’s rendering engine allows the classification results to be visualized quickly, with
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Figure 6.2: P3D: Classification of branch and leaf points. Classification of points within
P3D.

zooming and panning capabilities for intuitive evaluation of performance.

6.2.2 Lamina counting and segmentation

The second task is to segment or cluster all of the lamina points into subsets, where each

subset represents an individual lamina (Figure 6.1B). P3D uses a conditional region growing

method that clusters lamina points based on similarity of their curvature (anisotropy), normal

vectors, and fast point feature histogram features. These features together improve the identifica-

tion of transition points between lamina blades, where the continuity of the architecture shifts.
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Figure 6.3: P3D: Leaf segmentation. Leaf segmentation within P3D.

This step produces a set of lamina — which are individually colored — and can then be used for

analyses of lamina size, shape [WZC+16], arrangement [RK02, Kuh17], and quantity [GDT18].

6.2.3 Stem skeletonization

The third task is to generate a skeleton of the stem points (Figure 6.1C). P3D provides

a skeletonization algorithm, which outputs a graph-theoretic tree, with nodes corresponding

to the root, lamina points, or branch points, and with edges corresponding to the underlying

stem structure connecting the nodes. Morphological analyses of plant architectures provides
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Figure 6.4: P3D: Skeletanization. Skeletanization within P3D.

numerous informative traits for understanding plant geometry [BABA+17], nutrient transport ef-

ficiency [CPCN17], spatial distribution of branches [Con], and branching morphogenesis [PL96],

amongst others.

6.2.4 Whole leaf labeling

The fourth task builds upon the first three tasks and identifies whole leaves (Figure 6.1D).

Biologically, a single “leaf” of a tomato plant consists of all the stem tissue (petioles and petioules)

and all the individual lamina that are downstream of a single branch-point from the primary
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Figure 6.5: P3D: Leaf labeling. An example of leaf labeling within P3D.

stem. These components are grouped together based on the outputs of tasks two and three. This

definition of a “leaf” is more commonly used in some communities, and similar analyses of leaf

size, shape, and counting can be then performed.

6.2.5 Additional features

P3D includes additional features useful in practice, including methods to downsample

very large point clouds, methods to remove outliers and smoothen the data, and a shading editor

to model light capture by plants. There is, of course, significant diversity in plant structures
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Figure 6.6: P3D: GLSL live shader editor. Bottom half of the screen shows a color coded
syntax of GLSL editor. User can edit any of the shader files and compile them to see the result
without quitting the application.

across the entire plant kingdom, and our methods currently have only been tested on Solanaceous

species. However, P3D has a modular structure, which can be extended to handle other leaf and

branching structures in the future.
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Chapter 7

Conclusion

In this work, we presented a number of algorithmic solutions aimed at four basic phe-

notyping tasks for 3D point clouds of plant shoot architectures. These four tasks are critical

for numerous downstream phenotyping goals, such as quantifying plant biomass, performing

morphological analyses of plant shapes, and uncovering genotype to phenotype relationships. We

tested our algorithms on high-resolution 3D point cloud data from two species of plants (tomato

and tobacco) and showed an improvement in the accuracy and timing compared to competing

approaches. Compared to prior approaches that only addressed these problems on a small number

of plants or plants from only a single species [GDHB17, PDMK13, WPKM15, MTM16], our

dataset encompassed 3 time-points, 3–5 growth environments, and 2 species, which allowed us

to test some generalization ability of our algorithms. Our algorithms have the potential to be

deployed in large-scale phenotyping applications with noisy point clouds, and is designed to be

used with minimal pre-processing.

There are several lessons we learned from applying these methods to noisy plant archi-

tectures. For classification, carefully chosen feature vectors along with standard deep learning

classifier yielded good results. New approaches exist that can omit the necessity for hand-curated

feature vectors. While our approach was satisfactory for the phenotyping problems faced here,
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other problems may benefit from more automated methods for feature extraction. We showed

how a deep learning classifier using fast point feature histogram features can achieve over 95%

accuracy in classifying leaf versus branch points, outperforming many other features and classifier

types. We also tested how well this approach generalized to instances where training data is not

available for a test condition of interest; e.g., testing on a new species or new growth condition.

This is an important yet at times understudied component of validating phenotyping algorithms,

especially since many different architectures can be formed within the same genotype. Overall

we achieved good results in terms of quality of classification. The speed of classification was

contingent on the initial model and feature computation. While the model had to be computed

only once, the feature vectors for every point had to be computed not only for the model com-

putation but also for every inference. This suggests that the feature approach is better suited

for small to mid size datasets. For leaf segmentation, we extended a classic region growing

algorithm to improve segmentation and counting of individual leaves. We were able to improve

leaf segmentation in the areas where leaves overlap at the later stages of a plant’s maturity. The

larger the number of accurately segmented leaves the more accurate the morphological analysis

of their surfaces and plant’s growth status will be. In order to push the leaf segmentation accuracy

further, a more globally aware approach will probably be needed. For example, we could augment

the segmentation algorithm with the locations of petioles derived from the skeleton graph. For

skeletonization, we developed an enhanced branch skeletonization algorithm with more visually

aligned skeletons, improved tip identification, faster run-time, and more accurate fork angles. An

accurate angle estimation benefits from considering normal vector directions at forks. Spawning

branches have small angles and can be very close to each other, which causes points to cluster

together; using normal vectors to distinguish each branch thus becomes critical. Taking advantage

of some plant-specific geometric characteristics — such as the assumption that branches are

cylindrical, the absence of loops in the skeleton, and the tapering of branch radii — can lead to

improvements in overall skeleton quality and performance. This improvement in accuracy of

67



overall quality of skeletons will benefit down the line analysis of branching structure and help

with tasks such as robotic branch pruning.

There are several avenues for future work. First, advances in point cloud analysis using

deep learning without feature extraction have been recently proposed [CSKG17, QYSG17];

however, there remain challenges in using this technique when plant size varies. Second, we

tested our branch skeletonization algorithm on shoot architectures, but it is possible that a very

similar method can also be applied to skeletonizing root system architectures to study foraging

behavior [MGG+17, APBW19, SA17, DKVH+09, FGRY17, ZIBE11]. Third, extracting leaf

veins from individually identified leaves may provide another useful leaf characteristic to aid

segmentation, and may enable study of vasculature [DK01, ND97]. Fourth, the identification of

forks requires that each level set (colored points in Figure 5.1) is sampled with enough points from

each branch. PypeTree* generates each level based on distances from the root, but sometimes this

approach places a border between two adjacent levels that lies right in the middle of a fork. While

uncommon, this can compromise the quality of predicted angles. Thus, designing automated

methods that improve the identification of levels such that the borders of adjacent levels do not

cut through a fork remains an open challenge. Fifth, skeleton quality can be improved by better

calculating the positions of nodes within levels. Currently, our method defines a node in the

skeleton graph to be the centroid of the points in the level. Developing a method that considers

normals when calculating the centroid could improve not only angle node predictions, but also the

quality of other nodes in the skeleton graph. Sixth, when we insert new nodes into the skeleton

after clustering, we assume that all branches emit from the same node; while this is certainly true

in many cases, there are times when branches can be offset relative to each other. Adding a more

clever node-merging mechanism would further improve the quality of skeletons. Finally, while

we designed our method to be species-agnostic, we only tested it on two Solanaceous species:

tomato (Solanum lycopersicum cv m82D) and tobacco (Nicotiana benthamiana). Evaluating it on

broader datasets with more diverse phenotypes could identify additional challenges.
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Large-Scale Phenotyping of Root Traits in the Model Legume Lotus japonicus. In
Plant Genomics, volume 1610, pages 155–167. Springer New York, New York,
NY, 2017.

[GPF+18] Jonathon Ashley Gibbs, Michael P Pound, Andrew P French, Darren M Wells,
Erik H. Murchie, and Tony P Pridmore. Plant phenotyping: An active vision cell
for three-dimensional plant shoot reconstruction. Plant Physiology, 2018.

72



[GS05] C. Godin and H. Sinoquet. Functional-structural plant modelling. New Phytol.,
166(3):705–708, Jun 2005.

[GSA+12a] Louarn Gaetan, Carre Serge, Eprinchard Annie, Combes Didier, and Boudon
Frederic. Characterization of whole plant leaf area properties using laser scanner
point clouds. In 2012 IEEE 4th International Symposium on Plant Growth Model-
ing, Simulation, Visualization and Applications, pages 250–253, Shanghai, China,
October 2012. IEEE.
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