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When one reflects on the computations that must have to be carried out before one can recognize even 
such an everyday scene as another person crossing the street, one is left with a. feeling of ama.zement 
that such a.n extra.ordinary series of detailed operations can be accomplished so effortlessly in such a. 
short spa.ce of time. (Crick 19i9) 

1. Introduction 

Vision is clearly one of the most important senses in animals. Over half the cortical surface 

of macaque monkeys is devoted to vision (Barlow 1986), and although this proportion is 

much smaller in humans, their visual area is still quite large in absolute terms. Even though 

all visual systems, just like the other senses, provide information about the animal's envi­

ronment, we cannot expect to arrive at a general theory of vision that would apply to all 

animals. We might find that flies and monkeys both have looming detectors, but that is 

where the similarity probably would stop. In this survey, I will focus on how vertebrates, 

particularly mammals such as cats and monkeys, identify objects in their environment using 

shape information obtained from visual images. 

I start with a review of behavioral data, which will give an idea of what the visual system 

is capable of doing, what it finds problematic, etc. This could be viewed as a description at 

the system's level. I conclude with an overview of the biological substrate of vision, that is, 

visual neurons and their organization. 

It is clear that there is a large gap between the description of behavior-recognizing 

objects from a variety of positions, lighting conditions, etc.-and the physiology of neurons 

and neuronal circuits, the components of the behaving animal's brain. How can we connect 

these two aspects of visual recognition? How do visual neurons respond to their environment 

so as to make possible the visual recognition of objects? What aspects of shape are important 

for recognition? A number of interesting descriptions of shape have been formulated mainly 

by computer scientists and engineers in an effort to make machines that can recognize objects. 

I will review the results of this research in the section on computational aspects of object 

recognition. Understanding shape at the computational or theoretical level will hopefully 

help us forge a link between brain and behavior. 

Interestingly, two thousand years ago the Greeks approached vision in much the same 

way (Lindberg 1976). As psy,-h,)logists and philosophers, they were investigating how the 

shape and color of an object is r;tedi~1.ted to the soul of the observer, the all important question 

being whether the observer .sert1:'.s out rays to the object or whether the object sends rays 

directly to the observer. As physi(ians trying to understand and cure eye diseases, they were 

concerned with the anatomy and physiology of the eye. And as mathematicians they studied 

perspective or what we todZty \\·ouLl call optics. 1 

1 Similarly, it appears that tl1e "'-'-\O c1:lt :1r,..s' 1 existed two millennia. before C. P. Snow coined the term: 



Although the representation of shape is the subject of the present survey paper, I will not 

go into much detail about how shape can be inferred from visual images. For this I refer the 

reader to Marr (1982) and the following papers. For shape from motion see Ullman ( 1979, 

1984b ), Longuet-Higgins and Prazdny ( 1980), Hoffman and Bennett (1985), Koenderink 

and van Doom (1975, 1986a), and Koenderink (1986); for shape from shading see Ikeuchi 

and Hom (1981), Pentland (1984), and Koenderink and van Doom (1980); for shape from 

occluding contours and line drawings see Waltz (1975), Kanizsa (1976), Koenderink (1984d), 

Hoffman and Richards (1982), Stevens (198la), Lowe and Binford (1985), Richards et al. 

(1985), and Malik (1987; in press); for shape from stereo see Julesz (1964), Koenderink 

and van Doom (1976a), Marr (1982), i\fayhew (1982), Mayhew and Longuet-Higgins (1982), 

Barnard and Fischler (1982), and Poggio and Poggio (1984); and for shape from texture see 

Stevens (198lb), vVitkin (1981), Julesz (1981) and Aloimonos and Bandyopadhyay (1985). 

In addition to these visual sources of information, laser range finders are now available that 

can give a so-called depth map of an object, specifying the distance between observer and 

object as a function of the direction of the laser beam. For the purpose of this survey I 

simply assume that shape information has been obtained somehow. 

The following works provide surveys of the separate topics discussed in the present paper. 

For the psychology of visual perception I can recommend Uhr (1966), Zusne (1970), Julesz 

(1971), Davies et al. (1981), Marr (1982), Howard (1982), Rock (1983), Shepard (1984), 

Pinker (1984), and Bruce and Green (1985). 

Computer vision and pattern recognition is treated comprehensively in Duda and Hart 

(1973), Requicha (1980), Ballard and Brown (1982), Marr (1982), Binford (1982), Pinker 

(1984), Besl and Jain (1985), Levine (1985), Kanal and Rosenfeld (1985), Horn (1986), and 

Chin and Dyer (1986). Each year Rosenfeld publishes a compendium of recent articles on 

picture processing in Computer Vision, Graphics, and Image Processing. 

For the neurobiology of the visual system see Rodieck (1979), Van Essen (1979, 1985 ), 

Lennie (1980), Mishkin et al. (1983), Rose and Dobson (1985), Levine (1985), and Boothe 

et al. (1985). Of course, Kandel and Schwartz (1985) contains a wealth of information on 

the whole field of neuroscience. 

"I had intended to omit [it] ... since it necess<lrily involves the theory of geometry and most people pretending 
to some education not only are ignor<lnt of this but also avoid those who do understand it and are annoyed 
with them ... But afterward I drea1ned tltci.t I was being censured because I was unjust to the most godlike of 
the instruments and was behJ.ving impiously toward the Creator in leaving unexplained a great work of his 

providence" (Galen, second century, quotn1 in Lindberg, 1976, ppll-12). 



2. Behavioral aspects 

This paper is about recognizing objects by looking at them, that is, aoout mapping images 

of objects onto categories. For humans, perceiving an object's shape is an important inter­

mediary step; everyday experience tells us that we can perceive shape without being able 

to recognize, but that we cannot recognize without perceiving something. More strikinsly, 

persons whose brain has been damaged in certain locations fail to recognize family members 

by their faces even though they can perceive the shape of their faces and recognize them by 

their voice (see sections 2.4 and 2.5). This suggests that the perception of shape provides the 

substrate for recognition, 1 a substrate commonly referred to as the internal representation 

of the object's shape. Recognition is the process that associates past experiences with this 

representation. 

Thus, when looking at a face you constru<;:t a representation that successfully activates 

memory and you remember the person's name,. past history, etc. After inverting a face you 

typically have a hard time determining its identity and expression (Fig.2.6c). Since peopl~'s 

names and the meaning of facial expressions are still available to you, we conclude that they 

are not being accessed, i.e., your internal representation of the inverted face fails to elicit the 

appropriate memories. \Ve say that the perception of the face stimulus changes as a function 

of orientation (actually, we cannot talk about "face" if by that we mean the perception that 

results from looking at an upright face). Translating a face has no such effect: moving it 

to the left or right does not change its appearance and we have no problem determining its 

identity and expression. We say that the internal representation of the face, and of objects 

in general, is translation invariant. 

The perception of multistable images such as the Necker cube shown in Fig.2.1 can also 

be accounted for very elegantly by internal representations. Interpreted as a drawing of a 

three-dimensional object, this figure yields two three-dimensional interpretations: one in­

terpretation is that of a cube as seen from above, the other of a cube as seen from below. 

One's perception usually alternates between these two possibilities. \Ve say that each percept 

corresponds to a particular internal representation or description, and that different descri p­

t ions (of the same sensory input) give rise to differ"ent percepts. Thus each three-dimensional 

interpretation of the Necker cube corresponds to a different description. What we "perceive" 

or "see" is determined by the description of our sensory experience (Sutherland 1968; R=·ck 

1974; Humphreys 1983). 

The same is true for other modalities. If you are unfamiliar with a language, you ·.1:'.'. 

"hear" an almost continuous ~trea.m of sounds whereas you will "hear" pauses bet\\·een \\'•: ~· '., 

if you are familiar with the bn.:1tG.ge (Sutherland 1968). 

1 The flow of information ts 11 ~·l , :1r:r.·ly \lnidirectional. Memory or verbal descriptions c:i.n ;): .. 

information that influences tlte ["~' rr: :t uf ambiguous pictures such as Fig.3-1 in ~!arr (1932). 
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Figure l.1 Necker cube and its two 3-D interpretation•. 

In this model of perception, commonly referred to a.s the representational model of 

mind (see Marr 1982), to perceive is to construct an internal representation. Unfortunately, 

the term "internal representation" is misleading, at lea.st to my mind. It suggests that an 

observer re-presents something external that is there independent of its observation, and 

that this "re-presentation" is to be '.ooked at by ... But to say that I re-present the shape, 

say the roundness or squareness or a. rock, is to suggest that it is round or square all by 

itself. It would be more accurate to talk a.bout our "appreciation" of shape, in this case the 

roundness or squareness of the rock. It restores the proper subjectivity and it eliminates the 

need for a homunculus looking at our "re-presentation." Shepard (1984) expressed this in a 

beautiful metaphor: perceptual systems are stringed like a.eolian ha.rps. There is no need for 

an "intentional hammer", i.e., homunculus, to strike a.ny strings to produce "music," gusts 

of wind will do, provided the strings are properly tuned. 

Koenderink (1980) raised related issues when he noted that the term information is 

often used ambiguously, sometimes referring to structure in the outside world, sometimes to 

meaning in the context of an observer. "If you can perceive the solid shape of moving bodies, 

then it follows that you are recepti\·e to the relevant structures. 'Solid shape' is not present 

in nature but is a. mutual property of perceiver and environment .... you [the perceiver] do not 

"extract" what is already there: whett is there depends on me'' (emphasis in original). Thus 



to speak of neurons as feature detectors is misleading: they do not detect features that exist 

out there. Instead, they define what is to be considered a feature. To paraphrase \Vinograd 

and Flores (1986), the nervous system is a generator not a filter. 2 

Since the term internal representation is so well established, I will continue to use it 

but with the above reservations in mind. The present paper thus concerns the internal 

representation of shape for the purpose of visual recognition. Throughout I will briefly 

describe the experiments on which conclusions are based because "what an animal can do 
may differ from what it does do on any occasion ... An animal that fails to perform in a 

particular way may indeed lack the necessary capacity for it or it may just be that the 

particular test has failed to activate it" (Herrnstein 1985). And if an animal does solve 

some perceptual task, it is still a long way from proving that it actually used this or that 

representation and strategy. And many apparent contradictions In the behavioral literature 

can be resolved by differences in experimental procedures. 

2.1 Parts and wholes 

The Associationists asserted that the experience of complex wholes is built by combining more el~­
mentary sensations, while the Gestalt psychologists claimed that the whole precedes its parts, that we 
initially register unitary objects and relationships, and only later, if necessary, analyze these objects 
into their component parts or properties (Treisman and Gelade 1980). 

As adults we typically perceive objects unitarily: we see telephones, chairs, squares, triangles, 

etc. We do not see squares as consisting of four line segments at right angles, or as four 

right angles in a particular configuration. The question is whether this impression is real or 

not: do our adult visual systems recognize four equally long lines at right angles directly as 

a square or do they first recognize the lines as such and then their particular arrangement 

as that of a square. 3 Hebb (1949) argued that our impression of immediacy is illusory. He 

based his conclusion partly on the way in which adults who had grown up with congenital 

cataracts learned to identify objects after their vision was restored. Apparently it is not 

easy to distinguish triangles and squares: After worki.ng on it for thirteen days, one person 

still had to rely on counting the number of corners. Of course, this could merely mean that 

the perception of identity only becomes immediate after a learning period. It remains to be 

2 Not everybody sees it this way. Rolls ( 1987) defines the fundamental problem of the senses as the 
"(reduction of) the redundancy present in the input signals and [the extraction of] a functionally useful 

information representation." 
3 The right hemisphere seems to be better at perceiving the more global patterns or relationships between 

components, whereas the left hemisphere seems to see the components only and not their relationships 
(Bradshaw and Sherlock 1982; Delis et al. 1986). The spatial relationships expressing syntax in sign 
language, however, are controlled by the language center in the left hemisphere (Bellugi et al. 1983; Poizner 
and Lane 1979; Poizner et al. 19i9, 19S·!ab; Damasio et al. 1986). Similarly, there is evidence of a ldt 

hemispheric superiority in generating rnent.:i.l illh\ges (Farah 1985; Kosslyn 1987). 
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shown tha.t, after identity has been established during learning, perceptual processing s· 

passes through a stage in which parts are represented as such. 

A large number of experiments, in particular those of Treisman and co-workers, provide 

converging evidence that this is indeed the case. Treisman's feature integration theory of 

attention holds that the visual image is analyzed and coded in parallel a.long a number of 

dimensions or features such as color and movement (Treisrnan and Gelade 1980). The visual 

system simultaneously constructs a number of feature maps of the visual image--a color 

map, a. motion map, etc. To combine the features of an object, attention is focused on the 

corresponding location in the image, thereby linking the featl,ue maps. 4 The evidence for 

this model mainly consists of reaction time studies in which subjects have to find a target 

in a. display with variable numbers of distractors. For example, the time to decide whether 

there is a red target in the image does not depend on the n~mber of yellow and green 

distractors. The red target is said to "pop out." T same holds for simple shapes: an 

"A" will pop out among "Ts." But conjoining shape a. .. d color to form say a."red A" causes 

decision time to increase linearly with the number of distracting "red Ts", "green As" and 

"green Ts". In terms of the feature-integration theory, we conclude that there are different 

feature maps for color and shape. For each feature map, a target "pops out" immediately, 

whereas conjunctions of two features can only be verified by inspecting each location in the 

visual field in turn, causing reaction time to increase linearly with the number of distractors. 

Similarly, the time to verify the presence of an "R" increases with the number of "Ps" and 

"Qs" as distractors, suggesting that even familiar shapes are composed of separable features. 

Nakayama and Silverman (1986) showed that just as conjoining color and shape requires 

serial search so does conjoining motion and color. However, conjunctions of stereoscopic 

depth and either color or motion did not require serial search: Each depth plane is searched 

in parallel for the targeL 5 Dick et al. (1987) confirmed that motion could be detected in 

parallel for small displacements (short-range motion), and added that long-range motion 

requires serial processing. 

The feature-integration model is further supported by illusory conjunctions, errors in 

conjoining features, causing subjects to report a "red A" in a field of only "red Bs" and 

"green As." The interpretation is that if features from different locations can be combined 

to produce an illusion, these features must have existed as such. Thus at approximately 

the location of the "green A" the visual system registers "green" and "A" separately, and 

at a "red B" it registers "red" and "B." If the display is shown for say less than 200ms, 

4 However, Prinzmetal et al. (1936) reported a slight influence of attention on feature encoding. 
5 Authors note that single neurons in Mea :.IT of visual cortex are tuned to both direction of motion and 

disparity. Moreover, processing of color a.nd motion is separated within area V2, and results are relayed to 
different areas: V4 for color and ~IT for i:wtion. However, in V4 no cells have been found sensitive to both 

color and disparity (see section 4.'.2.3). 
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Figure 2.2 Displays to elicit illusory conjunctions between line segments in different contexts and an "S" 

to produce a"$" (Treisman and Paterson 1984). 

nearby features "red" and "A"' are occasionally wrongly combined to produce an illusory 

conjunction. If the theory is correct, conjunction errors can be used to determine what 

counts as a separate feature and what does not. As Treisman and Paterson (1984) put it: "It 
conjoins; therefore it is." Using the displays of Fig.2.2, they showed that the sides of triangles 

can form illusory conjunctions with appropriately oriented "Ss" to produce "$s" (Fig.2.2d) 

at about the same rate as do isolated lines (Fig.2.2b) and arrows (Fig.2.2c). This means 

that a. "triangle" is not a holistic, unitary percept in the sense of being a fundamental form 

whose perception precedes that of its components; on the contrary, a triangle is comprised 

of three lines that can be pried away from it. 

Perceptual features need not be as "concrete" as line segments or color. Treisman and 

Paterson (1984) obtained evidence that the apparently more abstract notion of closure, i.e., 

space enclosed by a. connected line of any shape, might itself be a feature. In a display 

of angles and lines, conjunction errors led subjects to see triangles. The number of such 

illusions increased for about half the subjects after adding a circle, presumably having the 

feature closure, to the display. And if closure were a primitive feature it would result in 

pop out, as Treisman and Paterson ( 1984) indeed report. However, Julesz has constructed 

textures that cannot be segreg:lted in parallel even though their components differ in the 

closure property (Fig. 2. 3). 

.., 
' 
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Figure l.9 (a) Preattentively discriminable textons differing in the number of terminators resulting in texture 

segregation. (b) Preattentively indistinguishable texture pairs: number of terminators is equal (Julesz 1984). 

In Julesz' texton theory, closure is not a. primitive property, but termina.tors are (Julesz 

1981, 1984); in addition, elongated blobs, crossings of line segments, binocular disparity, 

motion parallax and flicker also constitute textons. What counts as a. texton and what not is 

an empirical question: If two different textures, shown side by side or one inside the other as 

in Fig.2.3, a.re segregated in less than 200ms they are said to consist of different textons. This 

phase is called preattentive vision; focal attention is needed to distinguish two objects whose 

textons are the same but differ otherwise (e.g., the precise location of line elements making up 

a crossing). The obvious suggestion is that these stages correspond to the parallel and serial 

stages in the feature-integration theory of Treisman. Interestingly, Julesz and Treisman both 

found that serial search takes about 50ms per item (Julesz (1984) reported 50ms; Treisman 

and Gelade (1980) reported considerable variation, but their av;erage is about 60ms). 

An important aspect of the preJ.ttentive stage in both the feature-integration and the 

texton theories is that features.'tt.:xt »ns are not glued to a particular location in the visuJ.! 

8 



field but can float around and cause illusions. 6 A number of theories have been developed 

to account for this indeterminacy. Wolford (1975; Wolford and Shum 1980) claimed that 

the positional information associated with a feature degrades or is perturbed over time. 

Prinzmetal (1981) proposed that the perceptual group (defined roughly by the Gestalt laws 

of organization) in which a feature is embedded influences the metric of visual space and 
hence feature perturbations, such that features from the same perceptual group a.re more 
likely to be integrated or falsely conjoined than features from different perceptual groups. 

Following up on this perceptual grouping principle of feature integration, Prinzmeta.l and 
Millis-Wright (1984) showed that conjunction errors involving shape and color occur more 
frequently within words than nonwords. 

Assuming that perception indeed goes through a. prea.ttentive and attentive stage, which 

locations a.re selected for attention and how is attention directed to these locations? Julesz 
(1984) merely suggested that attention is directed to texton boundaries. Similarly, Koch 
and Ullman (1984; Ullman 1984) suggested that attention is directed to locations that differ 
sufficiently from their neighbors. For this purpose, they proposed a retinotopic saliency 
map which combines information from all feature maps to specify which locations are the 

most interesting. Focus of attention is not shifted to just any conspicuous location, but is 

posited to show preference for nearby locations that are similar to the currently attended 

location. Furthermore, they conjectured that the saliency map may be located within the 

LGN or area Vl (Koch and Ullman 1984; Sherman and Koch 1985). The LGN is a. good 

candidate because it not only relays information from the retina. to the cortex, but also 

receives extensive feedback from cortical area.s. 7 Crick (1984) proposed that the reticular 

complex of the thalamus, of wich the LGN is a pa.rt, implements an internal search light 

aligning different feature maps. 

In the feature-integration theory, perceptual processing proceeds in one direction, from 

simple features to more complex wholes. However, a number of experiments have shown 

that local processing can be influenced by context. Letters are recognized faster within a 

word, and line segments are detected faster within a. line drawing having a unitary 3-D 

interpretation than in an arbitrary context (Weisstein and Harris 1974; Pomerantz et al. 

1977; Willia.ms and "\Veisstein 1978; McClelland and Rumelhart 1981 ). Fig.2.4a illustrates 

one such experiment in which the different stimuli were presented in a brief flash, and subjects 

had to indicate whether a diagonal line segment was present or not. As shown in Fig.2.4b for 

a variety of experimental conditions, diagonals are detected most accurately in a meaningful 

6 Strangely enough, Sagi and J ulesz ( 1985) argue that, on the contrary, the location of feature gradients 
is known very accurately already at the preattentive level, and that attention is needed to identify features. 
However, their experimental procedure differs so much from 'Ileisman's that a direct comparison is hardly 

possible. 
7 See section 4.2.2 for more details. 

9 



([] [{]co co 
kej~~~ 

" . /. 

- - /' -" 
~lfl 7 1/fl -,lfl -,lfl 

( -.) 

-2.4% 

-11 2% 

-16.0% 

-4 7% -77% -5 8% 

-15.3% -11 6% -14 5•. 

-20.0% -10.2% -9.3% 

(b) 

Figure 2.~ (a) The four different contexts in which a diagonal line appeared. (b) Mean difference in accuracy 

between object context and the three contexts; the four columns correspond to slightly different experimental 

conditions (Williams and Weisstein 1978). 

context. 

This effect, known as object superiority, does not necessarily mean that the perception 

of the whole precedes that of the parts. It might be the result of mutual reinforcement as 

the. following network simulation illustrates. 

Rumelhart and McClelland (1981) obtained letter superiority effects with a so-called 
inter:: :ive activation model shown in Fig.2.Sa. The model consists of three layers. The 

lower layer consists of feature detectors that are connected to form letter detectors at the 

middle level, while the top level combines letter detectors into meaningful word detectors. 

Higher levels project back to lower ones through excitatory feedback links that reinforce 

lower level activity. In addition, detectors at the letter and word levels inhibit nodes at the 

same level, and feature detectors inhibit all letters except for one. Upon presentation of a 

visual stimulus, some feature detectors increase their activity, at some point activating letter 

detectors. If the latter have become sufficiently active, they will activate word detectors. 

Convergent evidence at a high level (i.e., word or letter) is fed back to lower levels reinforcing 

their activity, which in turn increases activity at the higher levels, etc. Hence the name 

interactive activation or spreading activation model. It is now clear how context exerts its 

influence: If a "T" occurs in the context of "TRIP" or "TIME" in the network shown in 

Fig.2.5a, it will be reinforced more than within "TOVG"; in other words, it will have a lo 

detection threshold. Similarly, mutual reinforcement serves to resolve ambiguities or fiL 

gaps in the input (Fig.2.Sb and c ). 

As a model of visual letter rec.:.:.::niti,)n, .\IcClelland and Rumelhart's model is of cour;;e 
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links with circle are inhibitory. (b) Degraded input. (c) Activation level of several word nodes; note the . 
initial competition between "work" and "word" (McClelland and Rumelhart 1981). 
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quite crude; their particular feature detectors are not very plausible. It does, however, 

demonstrate that context superiority effects can result from interactions of local feature 

detectors, without having to posit holistic processing or that the whole is more than its 

parts. On the other hand, this demonstration does not exclude the possibility that images 

can be processed at different scales, and that the results of processing at the larger scales 

can direct that at smaller scales. In fact, much research is currently directed towards multi­

scale representations of images and 3-D objects themselves (Marr 1982; Koenderink 1984a; 

Koenderink and van Doorn 1978, 1982, 1986b; Witkin 1983; De Graaf et al. 1984; Richards 

et al. 1986; Mokhtarian and Mackworth 1986; Burton et al. 1986; Pizer et al. 1986, 1987; 

Kroese 1987). 

One of the problems in doing experiments on local and global ·processing is determining 

what is local and what is global, and then controlling for it. For this purpose, N avon ( 1977) 

introduced so-called compound letters, that is, large letters consisting of smaller ones; for 

example, a number of small "As" arranged in the form of a "T." These visual stimuli were 

flashed before subjects who at the same time heard the name of a letter; their task was I 

to report what they had heard as fast as possible. Compared with subjects who receive 

consistent information, subjects receiving inconsistent information-looking at an "A" and 

hearing a "T"-take longer to react. Navon turned this around, and used reaction time as a 

measure of consistency and as a clue to the contents of, in this case, the visual percept. He 

found that reaction times increased only when the global level of the visual stimulus conflicted 

with the auditory information, and not when the local level conflicted. This suggests that 
global processing precedes local processing. However, there are a number of problems. First, 

do these stimuli really control the local and global levels? It might be that the small letters 

simply function as place markers, lining up to form two bars say, one horizontal and one 

vertical together making a "T." Thus, the subjects report a "T" because they saw the local 

features of a "T", i.e., a horizontal and a vertical bar. Second, what subjects report verbally 

or otherwise is not necessarily indicative of the sequence of processing, since "reaction times 

to wholes or to parts may ... reflect most directly the speed of access to the :final output of 

perceptual analysis" (Treisman and Paterson 1984, p13). 

This last comment about the use of reaction times underlines, appropriately so in my 

mind, the tentative nature of many of the conclusions reached by the experiments discussed 

in this section. Treisman and Paterson (1984, p31) readily admit that "[they) use the conclu­

sions from one set of data as the premises for predicting another set of data, and conversely 

the conclusions from the second set as validating the interpretation of the :first," but argue 

that "the consistency of a fairly large set of results ... can strengthen [the theoretical story]." 

It remains to be seen whether more direct behavioral tests can be designed. 
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2.2 Form and orientation 

In the introduction, I described the task of vision as having to find out what is where. These 

two aspects of vision are largely independent: the identity of an object does not depend on its 

position, nor does the identity of an object determine its position. 8 Everyday experience tells 

us that we can recognize a cat whether it is sitting in a chair or on top of a cabinet, or hanging 

in the curtains (of course one seldom finds dogs in the latter position), although children 

might initially link identity and location (Vernon 1966). In our representational model this 

means that the internal representation of shape is invariant under (certain) movements in 

the environment. 

A good illustration of this principle of shape constancy is provided by size constancy: 

We do not perceive persons as becoming progre.ssively smaller as they walk away from us, 

even though their retinal projection decreases in size. Conversely, as illustrated in Fig.2.6a, 

the same retinal object appears to be larger i!'other cues such a perspective show it to be 

farther way. Thus we scale objects by their distance. 

The effect of rotation on shape perception is more complicated. Mach's (1902) cele­

brated example of the diamond and square (Fig.2.6b) illustrates that rotation can drastically 

change an object's appearance. An even more dramatic illustration is "Thatcher's illusion!' 

(Fig.2.6c). It is very hard to see that the eyes and mouth in the right-hand side face have 

been inverted, something which is immediately obvious when you turn the page around 
and look at the faces right side up. In this section, I will discuss the effects of rotation on 

recognition, effects that might throw some light on the internal representation of shape. 

Rock (1973, 1974) was one of the first to systematically analyze the effect of orientation on 
form. His theory of shape perception takes into account not only the internal configuration 

of a figure but also its orientation in the environment and with respect to the observer. 

According to this theory, perceived shape is determined by the viewer's assignment of top, 

bottom, and side directions, just like perceived size is influenced by perceived distance from 

the viewer. Information about these directions can be obtained from a number of sources 

including gravity (through the vestibular system) ~nd the visual environment (Brecher et al. 

1972; Schoene 1984). 

As we already indicated, there are two obvious coordinate systems in which orientation 

could be important; one is a viewer-centered retinal coordinate system, and the other is 

environment-centered. One would expect retinal orientation to be unimportant; and indeed 

it is easy to demonstrate that tilting one's head does not affect one's perception of figures. 

A square remains a square, a diamond remains a diamond. Rotating the figure, on the other 

hand, changes its phenomenal shape because the assignment of top, bottom and sides has 

8 For a review of behavioral evideace, see Leibowitz and Post (1982); for neurobiological evidence, see 

section 4.1. 

13 



( o.) ( b) 
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Figu.re 2.6 (a) size constancy; (b) square and diamond (Mach 1902); (c) Thatcher's illusion illustrates 

that facial expression is hard to recognize in upside-down faces-the eyes and mouth are inverted in the 

right-hand side face (Thompson 1980). 

changed and with it the internal representation of the figure's shape. Factors influencing this 

assignment of directions-such as knowledge that the figure has been rotated, pronounced 

elongation of the figure itself, familiarity-may undo this perceptual change. Corballis and 

Cullen (1986) showed that for simple 2-D symbols such as capital letters the assignment of 

top and bottom is largely independent of orientation. In contrast, time to indicate the left or 

right side increased linearly with rotation from the upright suggesting something like mental 

rotation (in general, they found that any decision involving mirror image discrimination 

showed this dependence; we will turn to mental rotation in the next section). 

There are circumstances in which retinal orientation does affect perception. Reading 

print or longhand while one's head is tilted is quite difficult (Koler0s and Perkins 1969), 

it is similarly hard to recognize photographs of faces with one's head upside down. Howe\··:r 
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in both cases we can correctly assign directions. Rock (1973, 1974) accounted for these 

difficulties by postulating that the correction mechanism that allows you to recognize an 

inverted "E" cannot handle a complete sentence or a face. Correction does not work if there 

are too many parts all of which have to be corrected simultaneously. 

Extending these experiments to 3-D shapes, Rock et al. (lg81) found that rotating 

wireframe figures goo about the vertical causes the recognition rate to drop from 823 to 

433, whereas rotations of 180° do not affect recognition. The authors explained this by the 

qualitative change in retinal projection, resulting in an egocentric description very different 

from the original one, and one which cannot be corrected for. A similar pattern emerged 

for rotation about the horizontal (of the image plane): A goo rotation resulted in 213 

recognition, while a 180° rotation decreases recognition to 613. For comparison with the 

latter, inversion (rotation in the image plane) decreased recognition to 57%. As a result of 

these and related experiments, Rock and DiVita (lg87) concluded that shape description 

is mainly determined by the image from a particular vantage point, in other words, it is 

viewer-centered as opposed to object-centered. However interesting these results, I wonder 

how much they depend on the use of wireframe figures; in particular it is not clear how 

strong 3-D perception is. It would be important to extend the stimulus set to include solid 

objects. 

Wiser (lg81) studied the influence of rotation on figures with an intrinsic, clearly visible, 

axis of elongation. She used a learning and recognition paradigm in which subjects first 

learned to recognize 2-D nonsense shapes whose axis of elongation was oriented either ver­

tically, obliquely or horizontally (in a retinal coordinate system, which in this case was the 

same as the environmental one; Fig.2. 7a). That is, the same figure was always presented in 

the same orientation. In the recognition phase, figures were shown in all three orientations. 

Interestingly, subjects reacted fastest when figures were oriented vertically, regardless of the 

orientation in which they had been learned (Fig.2.7b). In fact, with one exception, reaction 

time increased linearly with the angular departure from the vertical in a manner reminiscent 

of mental rotation. 

Wiser proposed that initially the image is described in the retinal reference frame, next 

an intrinsic axis is computed (top and bottom directions assigned) after which the so-called 

perceptual frame of reference is rotated to align with the intrinsic axis. Finally, the shape 

of the figure is described with reference to the new frame, and this intrinsic description is 

stored in memory and used for subsequent recognition. Thus she argues for a canonical 

object-centered description as opposed to a viewer-centered one, at least for figures with 

salient intrinsic axes. However, this does not explain why inverted faces are so hard to 

recognize (in the sense of individuation, it is easy to recognize that a picture is of a "face"), 

even though there is a clear intrinsic axis. Presumably it is hard to keep track of a large 

number of parts in the perceptual frame defined by the intrinsic axis. This often invoked 
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Figure !.1 (a) Stimuli had clear axes of elongation; (b) Reaction times for "yes responses." Since there 

were thr.ee po11ible orientations during the learning and three during the recognition phase, there are nine 

experimental conditions plotted on the abscissa {VV through HH). The first letter indicates orientation 

during learning, the second during recognition; V=Vertica.l, 0=0blique, H=Horizontal (Wiser 1981). 

hypothesis could be tested by using a stimulus set whose elements can be rank-ordered by 

complexity. As a measure of complexity one could use the number of parts (object-centered 

measure) or the number of different projections for 3-D objects (the latter viewer-centered 

measure is further discussed in section 3.2; see also Fig.3.8). 

Pointing out that there are often several intrinsic (object-centered) frames of reference, 

Hinton (1981ab) suggested that the final choice for the reference frame depends on whether 

it results in a familiar description. Rather than a strictly serial progression from retinal de­

scription to intrinsic axes to intrinsic description to memory we now have a parallel model in 

which memory actively influences perception. Descriptions in different perceptual frames all 

vie for attention from memory as it were. Hinton designed a parallel network that simulta­

neously converges on a particular frame of reference and a shape description in that context. 

Thus, recognizing an object means recognizing the object and seeing it in a particular ori­

entation. An interesting problem is how several objects or parts of an object that all have 

different orientations are treated. Presumably, each would give rise to a different canonical 

frame, and the question is how these different coordinate systems compete. It might be the 

case that attention can only be focused at one orientation and that this problem simply 

does not arise in biological systems. Indeed, according to Julesz (1984) relative positions d 

local features are not computed during preattentive vision. 9 Only with focal vision can we 

discern these spatial relations and then only, by definition, locally. Shifting focal attention 

to different locations obliterates all previous information (perceptually speaking). 

9 But see Sagi and J ulesz ( 1:JS5) for a different opinion. 
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To further probe whether people use viewer- or object-centered coordinate systems, Joli­

couer and Kosslyn (1983) constructed 3-D stick figures whose descriptions would be more 

or less similar depending on the coordinate system used. The stick figures consisted of a 

main axis to which a small number of limbs were attached. To create two objects having 

similar object-centered but different viewer-centered descriptions, all one has to do is ro­

tate the object. The converse is more complicated and was presumably accomplished by 

changing the main axis of an object but not its components. Inspection of Fig.2.8 leaves 

some doubt about this. In any event, pairwise similarity judgments of subjects could indeed 

be factored along the viewer- and object-centered dimensions regardless of whether the two 

objects were shown simultaneously or in sequence. Thus, subjects use viewer- and object­

centered information to judge similarity. By instructing subjects to encode the shape of an 

object such that they could recognize or draw it from their particular point of view, or such 

that they could recognize or draw it after an arbitrary 3-D orientation, subjects were biased 

to store a viewer- or object-centered description in memory, respectively. After this learning 

phase, subjects had to judge 2-D and 3-D similarity. Subjects with a viewer-centered bias 

judged rotated objects to be less similar than subjects with an object-centered bias, while the 

similarity judgments for objects with similar viewer-centered descriptions show the opposite 

trend. The time to judge 2-D similarity was not affected by learning bias (approximately 

10.Ss in both cases), whereas 3-D similarity was determined faster with an object-centered 

than with a viewer-centered bias (7.6s as opposed to 9.9s). 

These results indicate that subjects can store descriptions with respect to both viewer­

and object-centered coordinate systems. However, there does seem to be a slight asymmetry: 

with an object-centered bias both descriptions are readily available, while this is not the case 

for a viewer-centered bias. If the situation had been symmetric, 2-D judgements with an 

object-centered bias would have taken longer, just as 3-D similarity judgments with an 

viewer-centered bias took longer. This suggests that the object-centered description is built 

on top of the viewer-centered one. As far as recognition is concerned, the authors conclude 

that they have not shown that viewer-centered descriptions are actually used for recognition, 

and that the debate over which coordinate system is used has not been resolved. 

2.3 Mental rotation 

(T]o draw inferences as to the future ... we form for ourselves images or symbols of external objects; 
and the form which we give them is such that the necessary consequents of the images in thought are 
always the images of the necessary consequents in nature of the things pictured. In order that this 
requirement may be satisfied, there must be a certain conformity between nature and our thought ... The 
images which we here speak of are our conceptions of things. With the things themselves they are 
in conformity in one important respect, namely, in satisfying the above-mentioned requirement. As a 
matter of fact, we do not know, nor have we any means of knowing, whether our conception of things 
are in conformity with them in any other than this one fundamental respect. (Hertz 1894, ppl-2) 
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Figure R.8 Stick figures with similar viewer-centered or.object-centered descriptions. (a) and (b) are rotated 

versions of the same figure, as are (c) and (d). (c) is obtained from (a) by shifting the main axis; similarly 

for (b) and (d) (Jolicoeur and Kosslyn 1983). 

Perception is about invariances: even though the retinal image changes continuously, 10 we. 

may perceive constancy, for example, solid shape. One could say that our visual system 

somehow "decides" whether two images are in fact of the same object. This suggests that 

one way to study the internal representation of shape is by measuring how long it takes to 

make this decision. 

Shepard and co-workers {Shepard and Metzler 1971) were the first to introduce such 

experiments. They had their subjects look a.t two drawings of the same or different 3-D 

objects a.nd decide as fast as possible whether or not the two drawings derive from the 

same object. Of interest is how reaction time depends on the difference in viewing angle 

between the two drawings. However, there is a. problem with the difference condition, the 

condition in which the views are of different objects. If the objects a.re very different we 

would expect reaction time to be almost constant because the subject could simply use one 

feature to distinguish the two objects {for example, one object has a hole and the other 

does not). This problem was circumvented by using mirror reversed objects in the difference 

condition (Fig.2.9a). Under these experimental conditions, response time increases linearly 

with the angular disparity between the two objects shown, irrespective of the plane of rotation 

(Fig.2.9b ). 

lO To be more precise, retinal excitation patterns: to talk about an image is already to interpret, to give 
meaning, to these patterns. Similarly, Koenderink (1984bc) points out that we have to keep in mind the 
distinction between the machine-retina, cortex, etc.-and the kind of information it can access, and an 
observer of the machine. An observer can talk about retinal image or somatotopic maps in the cortex, 
whereas the machine knows nothing about these things; neurons simply respond to photons, other neurons, 
etc. 
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Figure 2.9 (a) Pairs of perspective drawings: A, "same pair" rotated in picture plane about 80°; B, "same 

pair" rotated in depth; C, "minor image pair." (b) Mean reaction times of subjects to indicate that two 

drawings are indeed of the same object and not of mirror reversed ones: A, for rotation in the picture plane; 

B, for rotation in depth (Shepard and Metzler 1971). 

In a related experiment, subjects looked at a sequence of views of a 3-D object, much 

like watching a motion picture. The question is under what conditions subjects experience 

apparent rigid motion of the 3-D object. Interestingly, the minimum time between successive 

views increased linearly with their angular difference, again irrespective of the plane of 

rotation (Shepard and Judd 19i6). 

These results suggest and subjects indeed report that they "mentally rotate" one object 

until it maps onto the other (of course, it is the representations of the two objects that are 

mapped onto each other). And there is evidence that subjects actually image intervening 

views of the object (Cooper and Shepard 1984). Shepard concluded that "the representation 

of the possible [spatial] tra.nsfr,rmations of an object is basic to the representation of the 

object itself" (Shepard 1982, p.'j l) and that "the representation is not ... of the inherent 

three-dimensional shape of the .. hjed considered purely in itself; it is always of that object 
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as viewed in a particular orientation" (Shepard 1982, p55). 

Referring to Hertz's quote at the beginning of this section, there is a "certain conformity 

between nature and our thought." When looking at different view's of an object in sequence, 

we connect them and perceive apparent motion, that is, we perceive views of the object 

that would have been visible had the object actually followed that trajectory. 11 To discuss 

the nature of the conformity between objects and their representations, Shepard (Shepard 

and Chipman 1970; Shepard 1982, 1984) introduced the notions of first- and second-order 

isomorphism. A first-order isomorphism exists between an object and its representation if 

a property of an object is physically present within its representation. For example, a first­

order isomorphic representation of something square is itself square, or the representation of 

something red is itself red. A second-order isomorphism is said to exist if relations between 

representations mirror relations between corresponding ob.jects. In that sense, we can call 
these representations analogous: "To say that· an internal process is a mental analog of an 

external process is, in part, to say that the internal process is similar in important respects 
to the perceptual process that would take place if a subject were actually to watch the 

corresponding physical rotation" (Shepard and Judd 1976); in other words, "the intermediate 

internal states have a natural one-to-one correspondence to appropriate intermediate states 
in the external world" (Shepard 1978). 

Isomorphism goes back to the Gestaltists (Zusne 1970, p109): form is represented in 
the brain not symbolically but "directly in terms of corresponding points of excitation. The 

correspondence is not topographical and cannot be topographical. It is topological, that is, 

order and relationships are preserved, even though distances, angles and curvature are not," 

And "things look as they do because of the field organization to which the proximal stimulus 
gives rise" (Ko:ffka 1935 quoted in Zusne 1970, plll). It has been said that because mental 

rotation mimics real rotation, propositional or symbolic models of mental rotation have to 

be rejected since they cannot capture this incremental aspect. However, it is straightforward 

to come up with a propositional theory whose descriptions are related functionally, i.e., 

analogically. For example, spatial relations among parts of an object are specified with 

respect to an external coordinate system and two angles can be compared only by repeatedly 

adjusting one by some constant amount until it equals the other (Minsky 1975; Morgan 1983; 

Mel 1986). 

It is important to note that the phenomenon qf mental rotation crucially depends on 

the use of mirror reverse objects. As mentioned, this was intended to suppress the use of 

11 Shepard (1984) argues that out of the infinitely many possible trajectories we choose the one that is 
prescribed by Chasles' theorem. This theorem states that two copies of an object at different locations in 
3-D space can be mapped onto each other by rotation about a unique axis plus a translation along that 
axis. Thus, the trajectory is helical or screw-like. For 2-D objects lying in a plane we can dispense with the 

translation. 
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distinctive features in discriminating the two objects, and force subjects to mentally rotate 

images. In fact there is considerable confusion as to what conditions and stimuli produce 

mental rotation. Hochberg and Gellman (1977) showed that, fat 2-D objects rotated in 

the picture plane, mental rotation rate increases with saliency of landmarks, and that ob­

jects having distinctive features are not rotated at all. Cooper and Podgorny (1976), in 

a related study, failed to find an influence of stimulus complexity on rotation rate when 

2-D polygons had to be discriminated from distractors, whose vertices had slightly changed 

positions. Pylyshyn (1979) attributed this to the fact that distractors were rated equally 

similar to their respective targets; in other words, the task did not become more complex 

with increasing number of vertices in the polygones. Shinar and Owen (1973) showed that 

unfamiliar 2-D objects are mentally rotated, but that this disappears after enough practice; 

Jolicoeur (1985) demonstrated the same effect for line drawings of 3-D objects. Eley (1982) 

showed that identification of letter-like 2-D symbols is independent of rotation, but that 

verification of whether two symbols are mirror images is proportional to angular difference. 

Jolicoeur and Landau (1984), on the other hand, did find an effect even for the identifica­

tion of alphanumeric characters. They argued that reaction time is not a good measure of 

performance because identification itself is already very fast, causing small increases to b~ 

statistically insignificant. Instead, they used the number of errors in brief exposures. 

Carpenter and Eisenberg (1978) found that reaction time also depends linearly on angular 

difference for blind persons who had to rely on touch instead of vision. This raises the 

possibility that mental rotation acts upon a representation that is more spatial than visual 

in character. 

To test whether other species besides humans use mental rotation for the discrimination 

of mirror images, Hollard and Delius (1982) trained pigeons to discriminate between identical 

and mirror images of 2-D forms rotated in the picture plane. Two measures of performance 

were used: reaction time and percentage error as a function of angular difference. Reaction 

time for pigeons did not depend on angular difference and was considerably less (between 

.5 and l.Os) than that of humans who showed the familiar dependence (1.5s for 0°, 2. 7s 

for 180°). This would suggest that pigeons do not perform anything like mental rotation, 

a result also reported by Herrnstein (1985). However, the error rates throw doubt upon 

this conclusion. For pigeons, the error rate profile is symmetric about 90° where, depending 

on the session, there is a peak of between 10 and 22% errors; for 0 and 180°, the error 

rate is between 2 and 9%. The results for humans again indicate mental rotation: error 

rate increases linearly from 23 for 0° to 103 for 180°. Combining Jolicoeur and Landau's 

reason for choosing error rates over reaction time as a measure of performance when using 

overlearned stimuli with the fact that the pigeons went throµgh an extensive learning phase, 

leads me to question Hollard and Delius' interpretation that the absence of any reaction time 

effect for the pigeons means that their recognition is rotationally invariant. 
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Mental rotation is clearly an interesting phenomenon; but it would be even more in­

teresting and valuable if we knew more about the conditions in which it occurs. Thus I 

believe it to be crucial to extend Jolicoeur and Landau's (1984) analysis to patterns other 

than alphanumeric characters, and to 3-D solids. And if mental rotation is to elucidate the 

representation of shape, experiments should be designed with particular models in mind, for 

example, the visual potential (section 3.2). 

2.4 Categories 

Recognition is the mental process that links current percepts with memory, the repository 
of past experiences related to the observed objects. But how is memory organized? Does it 

consist of an unstructured collection of detailt1d descriptions of objects, or are these descrip­
tions somehow organized, for example, in L, ~form of a taxonomic tree whose nodes describe 
classes of objects, a.nd whose levels reflect different degrees of abstraction. The structure. of 
memory is clearly a subject of interest in and of itself, but it might also tell us something 
about the representation of shape. 

One way to probe the structure of memory is to measure how fast observers can decide 

whether a label corresponds to an object. It might be that it takes progressively longer 

to decide whether a german shepherd is a "german shepherd," a "dog" or an "animal"; in 

other words, the more abstract a label, the longer it takes to verify the correspondence. 

Alternatively, verification could be faster with the more abstract names, which could be 

justified by arguing that it is easier to decide whether something is an animal than a german 

shepherd (e.g., fewer features are needed). It turns out that human observers are fastest 

at an intermediate level of abstraction; in the above example, "dog" would have been the 

first label to be associated with a german shepherd. Rosch et al. (1976) termed this level of 

abstraction the basic level. 

Assuming that objects can be named at different levels of abstraction, are these levels 

related, and if so how are they related? Jolicoeur et al. (1984) showed that naming an object 

at a level more abstract than the basic level (the superordinate level) is a two-step process. 

First the basic-level name is determined on the basis of information derived from the percept, 

and, second, the basic level provides access to semantic memory and the superordinate 

name. 12 Fig. 2.10 illustrates that naming is fastest at the basic level, and that naming at 

the superordinate level does not require extra perceptual processing since reaction time did 

12 Based on the positive correlation of the time it takes to give the superordinate category of a word 
and a picture; e.g., the word "apple" and the picture of an "apple". When reading the word "apple" one 
presumably activates the concept "apple" and then the concept "fruit", i.e., one cannot reach the word fruit 
without passing through apple. If the time it takes to produce the superordinate level of a word correlates 
positively with the time to name a picture at that level, one has evidence that the superordinate level is 

accessed through a simiiar stage, the basic-level category. 
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Figure 1.10 Mean reaction time and percent error (in parentheses) for verifying whether a word is consistent 

with a picture. Long exposure is lOOOms, short exposure is 75ms. Basic high means that the basic level is . 

at the category level; robin and bird, where bird is the basic level. Basic low means that the basic level is at 

the exemplar level; apple and fruit, where apple is the basic level (Jolicoeur et al. 1984). 

not depend on exposure time. However, exposure time did affect naming at the subordinate 

level (a level more concrete than the basic level): if a picture is shown for only 75ms as 

opposed to lOOOms, reaction time and percent error increase significantly. Thus, decisions 

at the subordinate level require additional perceptual processing of the image. 

However, objects do not always contact memory at the basic level. Jolicoeur et al. (1984) 

and Murphy and Brownell (1985) found that typicality influences the level at which memory 

is first contacted: Atypical exemplars such as a penguin for the basic-level category bird are 

named more often and faster at the subordinate than at the basic level. 

Granted there are different levels of categorization, what exactly are the attributes that 

distinguish the different levels of categorization? Tversky and Hemenway (1984) obtained 

evidence that the parts of an object play the most important role in its categorization. When 

asked to describe objects at the subordinate, basic and superordinate levels, subjects used 

part names most often at the basic level. Categories at the basic level can be accounted for 

by their part structure: parts are the features shared by members of the same basic level 

category, and they are the features that distinguish different categories from each other. 13 In 

contrast, subordinate categories share the same parts and differ in other dimensions, whereas 

superordinate categories differ in their part structure. For example, "hammer" is a basic­

level category, easily described in terms of its gross p~rts, something which is clearly not the 

case for its superordinate category "tools." And different kinds of hammers, i.e., different 

13 The tension between similarity c'llt,J contrast within and between categories lies at the basis of beauty: 

It is variation on a theme (Humphrey lJ-;'1 ). 
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subordinate categories, are distinguished by more or less subtle differences in the shape or 

size of certain parts. 
These observations suggest that perception and categorization occur in stages: first, a 

coarse description in terms of parts and with it categorization at the basic level is obtained; 

second, more details of the shape of parts, their spatial relationships, and other factors beside 
shape a.re taken into account to produce a subordinate categoriza.tion. 14 

This two-stage model seems to be corroborated by very selective behavioral impairments 

due to brain damage (Damasio 1985a.). The most dramatic of these impairments is no doubt 
prosopagnosia, the inability to visually recognize faces_: 

I was sitting at the table with my father, my brother and his wife. Lunch had been served. Suddenly .... 
something funny happened: I found myself unable to recognize anyone around me. They looked 
unfamiliar. I was aware that they were two men and a woman; I could see the dift'er~nt parts of their 
faces but I could not associate those faces with known persons ... Faces had normal features but I could 
not identify them. They seemed like strangers, people I had never seen before. (Agnetti et al. 1978) 

Note that this person could still recognize a face as a "face," in other words, was able 

to complete the first stage and determine the basic-level category of the visual stimulus. 

Accordingly, prosopagnosics are able to indicate and name the parts o{ a face; they can point 

out the ears, mouth, nose, and eyes (Damasio 1985ab ). However, as the above quotation 

vividly describes, they are not able to individuate faces visually. This is not due to some 

memory deficit because persons are recognized as soon as they start talking or they can be 

recognized by individual peculiarities such as moles or clothes (Meadows 1974). The inability 

to individuate is not limited to the category of faces; prosopagnosia. is often accompanied 

by agnosias for other objects such as cows (Bornstein et al. 1969), chairs, cars, foods, and 

clothing (Benton 1980; Dama.sic et al. 1982; Damasio 1985b; Humphreys and Riddoch 1987). 

Since individuation requires processing of detailed visual information, one might sur­

mise that prosopagnosia. is caused by deficits in perceptual processing, for example, in the 

processing of high spatial frequencies. This appears not to be the case. Prosopagnosics are 

not impaired in face discrimination and can perform demanding perceptual tasks (Benton 

and van Allen 1968; Benton 1980; Gazza.niga. and Smylie 1982). In particular, Rizzo et al. 

(1986) found that spatial contrast.sensitivity for vertical sinusoidal gratings ranging from .39 

to 6.27 cycles per degree was normal in one and only slightly impaired in a second patient. 

Conversely, severe deficits in perceptual processing do not ca.use prosopagnosias or other 

agnosia.s (Da.masio 1985a.; Rizzo et al. 1986). 
Thus prosopagnosics, and agnosics in general, appear to have normal perception and 

memory. What then is the nature of thei~ deficit? In our discussion of the two-stage model 

of recognition we only paid attention to the stages themselves. If the neural substrates 

14 This account is only meant to serve as a rough heuristic to understanding categorization. Among other 
things it ignores the fact that different people can see objects quite differently depending on their famili<irity 
with them (Mervis and Greco 1984). 
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underlying the two stages are localized in different regions of the brain, a deficit will obtain 

if their connection is broken (Geschwind 1974, 1979; Kean 1985). 

Damasio et al. (1982; Damasio 1985b) suggested that the connection between percept 

and memory takes the form of a template, "a learned record of fundamental measurements 

of facial features performed with a given method during previous instances of perception." 

They liken a template to a lock for the multimodal memory store, the key being a visual 

stimulus. Now, prosopagnosia results if (1) templates have been destroyed, (2) templates 

are inaccessible, perhaps because the appropriate key cannot be constructed, or (3) acti­

vation produced by templates is blocked. Based on the location of brain damage causing 

prosopagnosia, templates might be stored in the inferomesial visual association cortices of 

both hemispheres, their limbic structures effecting the consolidation of these templates. 15 

Interestingly, there is evidence that prosopagnosics do react· differentially to familiar 

faces, albeit at an unconscious level. Familiar faces elicit a significantly larger skin conduc­

tance response than unfamiliar faces in normal controls (Tranel et al. 1985) and prosopag­

nosics (Bauer 1984; Tranel and Damasio 1985). In the context of the proposed template 

system, it seems that the templates are intact, effecting the increased skin conductance re­

sponse. Thus, we can conclude that, at least in the two patients tested, activation of memory 

is somehow blocked. 

Summarizing, from both normal and impaired visual perception and recognition we have 

evidence that we categorize visual stimuli, that these categories are organized hierarchically, 

and that these processes might be performed by neural structures in specific locations· in 

the brain. Although these data, the neurological ones in particular, are quite suggestive we 

should be equally cautious in their interpretation and allow for alternative interpretations 

that do not rely on localization of function (Humphreys and Riddoch 1987). The clinical 

observations are typically anecdotal, and although clinical test data can be quite extensive 

they have rarely been designed to test specific hypotheses pertaining to cognitive functioning. 

Given that we categorize objects, why do we use the categories we do? Categories can 

be viewed as entities giving (intended to give) useful information about the world. In this 

view, basic-level categories are those categories that maximize this information and hence 

are accessed first. Several measures have been proposed for measuring the usefulness of 

categories; for instance, by combining the probabilities that a feature will be present given 

the category and that an object will belong to a particular category given a particular feature 

(Tversky 1977; Jones 1983; Gluck and Corter 1985). Note that these studies assume that we 

15 As will be discussed in more detail in section 4, the visual system consists of a number of subsystems 
more or less organized hierarchically. Visual association areas (e.g., areas 18, 19) receive their input from 
primary visual or striate cortex and project themselves to the pole of the temporal cortices which outputs 
to the hippocampus. The hippoca.mpus projects to other limbic structures and to the visual (and othn) 
association cortices. In other words, the limbic system seems to perform a. pivotal role between perception 

a.nd multimodal memory. 
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know what constitutes a feature or a part. This, however, is not the case, even for artificial 

visual stimuli consisting of simple line segments. The experimenter might unconsciously 

arrange these line segments so as to produce significant emergent features (Pomerantz et al. 

1977), T-junctions or symmetries, for example. In addition, as Herrnstein (1984) pointed 

out in his review of categorization in non-human animals, features might not be simply 

necessary or sufficient conditions for category membership but contribute incrementally (see 

also Hampson and Kibler (1983) and Hampson and Volper (1986)), and instead of being 

:fixed, features might be shaped by the categorization process itself. We clearly need a much 
better understanding of visual perception and shape representation before we can predict 

how humans categorize their visual environment. 

2.5 Face recognition 

Within the field of object recognition, the human face has received special attention for a 

number of reasons (see Ellis (1975); Davies et al. (1981); Ellis et al. {1986) for reviews). 

It is a task people perform extremely well even though it means discriminating between 

objects having the same general shape, and it is an ability indispensable for normal social 

interactions. Recognition of faces seems to differ from recognition of other objects: inverting 
the image of a face affects its recognition more than inverting the image of a house. There is 

evidence that the right hemisphere recognizes faces faster than the left hemisphere, and that 

the inversion effect is specific to the right hemisphere, long thought to be specialized in the 

processing of visuo-spatial patterns. These observations led some researchers to suggest that 
there a.re special face recognition units in the human brain. In this section, we discuss these 

findings and illustrate some of the issues raised in previous sections, such as the influence of 

reference frames on perception and recognition, and whether processing is piecemeal through 
features or more holistic. 

Let us first turn to the question of whether faces are recognized in a manner qualitatively 

different from other objects. Consider the effect of inverting the image of an object: When 

asked to decide which face from a pair of faces had been seen in the preceding training 

session, subjects made 1.25 mistakes on average for upright faces and 4.58 for inverted faces 

(6 would have been chance performance). Houses, however, elicited a much smaller effect; 

2.67 and 3.83 mistakes, respectively (Yin 1970). In addition to recognition, perception of 

facial expression also deteriorates markedly after inversion, as illustrated by "Thatcher's 

illusion" (Thompson 1982). In this case, an observer is not fully aware of the strangeness of 

Thatcher's face brought about by inverting all of its features except the eyes and the mouth 

(Fig.2.6c). Rock (1973, 1974) suggested that inverted faces are difficult to recognize because 

the mechanism to correct for disoriented stimuli and thereby obtain a canonical description 

which can be matched against memory, is overtaxed. It is unlikely that this correcti1Jn 
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mechanism resembles mental rotation (Shepard and Metzler 1971), since recognition scores 

for inverted faces and the ability to perform mental rotation are not correlated (Phillips and 

Rawles 1979). 

The inversion effect depends on age (Carey and Diamond 1977; Diamond and Carey 

1977; Carey 1981). Before age 10, children recognize upright and inverted faces equally 

well; thereafter, they are better at recognizing upright faces, just as adults are. Carey and 

Diamond (1977) interpreted this developmental change in terms of a switch in the encoding 

of faces. Before age 10, children recognize faces on the basis of distinguishing features, such 

as hair or glasses. At this age, they are easily confused if {unfamiliar) faces share the same 

distinguishing features. After age 10, the child develops the ability to use con:figurational 

information which is obtained best from upright faces. 

Neuropsychological observations provided further evidence for the special status of faces 

in recognition and for right hemispheric specialization for faces. Compared with normal 

subjects and subjects with left cerebral lesions, subjects with right posterior lesions perform 

worse on upright faces, but slightly better on inverted ones (Yin 1970). No such dissociation 

between right and left cerebral groups was found for houses. The same right hemisphere 

advantage was found when normal subjects briefly saw two faces (120 and 150 ms for uprig~t 

and inverted faces, respectively), one in their left and one in their right visual field (LVF 

and RVF), and had to indicate which two they had just seen from an array of 12 (Leehey et 

al. 1978). Upright faces were recognized better when shown in the LVF {processed initially 

in the right hemisphere) as opposed to the RVF. No difference was found for inverted faces. 

St. John (1981) also found a significant LVF advantage in reaction time (60 ms) for a task 

requiring subjects to indicate whether two upright faces, both displayed in the LVF or the 

RVF, were the same; he found no effect for shoes. Summarizing, there is evidence that 

the right (posterior) hemisphere plays a special role in the recognition of upright faces; in 

other words, there is a face recognition system in the right hemisphere that is orientation 

dependent in addition to an orientation-independent system present in both hemispheres 

(Kean 1985). 

However, a number of problems make these conclusions less than compelling. Sergent and 

Bindra {1981), for example, argued that the experimental conditions used in tachistoscopic 

studies are biased in favor of right hemispheric processing: short exposure times to prevent 

eye movements, peripheral exposure, and highly discriminable images to obtain acceptable 

error rates. Ellis (1981) noted that the use of artificial stimuli (Bradshaw and Wallace 

1971; Davies et al. 1977; Naveh-Benjamin 1982) in which a small number of features is 

systematically varied, encourages subjects to perform a feature by feature comparison. And. 

faces are not the only stimuli that exhibit an inversion effect. Letters and words are also 

hard to recognize upside down ( Kolers and Perkins 1969; Rock 1973). In the following, we 

discuss these problems in some detail. 
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Ellis et al. (1979) showed that familiar and unfamiliar faces are recognized on the basis 

of different parts of a face. For famous people, an advantage for internal features was found, 

while internal and external features proved equally useful for unfamiliar people. Young and 

Bion (1981) found an inversion effect for familiar people (classmates and colleagues) at ages 

7, 11 and beyond. When adults did not know which face to expect there was no effect; but 

when they were given a list of faces to be used there was a strong effect. In other words, the 

stimulus material and the task can influence the outcome of these experiments significantly. 

Since we are very familiar with upright faces, it is not too surprising that we have diffi­

culty with inverted faces (Ellis 1975). Similarly, whites grown up in a predominantly white 

environment have difficulty in recognizing faces of orientals, but improve their performance 

with practice (Elliot et al. 1973). In addition, practice improved discrimination between in­

verted faces more than discrimination between upright faces (Bradshaw and Wallace 1971). 

A similar effect was found for photographic negatives which are initia.lly hard to discriminate 

(Galper 1970). Diamond and Carey {1986) showed that faces are not the only stimuli sen­

sitive to inversion: dog experts showed a comparable decrease in recognition with inverted 

faces and inverted dogs, whereas novices only showed the inversion effect for faces. They 

concluded that experts represent visual stimuli differently from novices, namely in terms of 

"second-order relational" properties rather than distinguishing features. Second-order rela­

tional properties, e.g., narrow chin, are used by experts to individuate members of the same 

class, that is, objects that share the same first-order configuration (e.g., eyes above nose). 

Young and Bion (1980) tested children at ages 7, 10 and 13, for their ability to recognize 

upright and inverted faces. At these three stages in development a. right hemisphere advan­

tage was found for upright but not for inverted faces if only four faces were used. With 40 

faces, only 13 year old boys showed the effect. In addition to replicating earlier :findings of 

a right hemisphere·superiority in processing upright faces, these results show no evidence of 

a developmental change and once again point to the influence of task difficulty. Flin (1985) 

further investigated the possibility of a floor effect in which low performance due to the diffi­

culty of the task would mask any potential effect of inversion. Using 10 faces during learning 

and 10 more as distractors during testing, she found an inversion effect from age 7 to 16. 

Recognition of upright faces improved markedly with age, whereas recognition of inverted 

faces remained the same from age 7 to 12, and improved at 16 years. Flin also suspected 

that a floor effect caused the paraphernalia findings: Children had to discriminate between 

very similar faces and were thus easily fooled by hats and other paraphernalia. In addition, 

it is known that high similarity between targets and distractors disrupts adult recognition 

(Shepherd et al. 1981) To test for this, Flin used similar and dissimilar faces. Four-year olds 

discriminate dissimilar faces significantly better ( 40% and 70% errors) than six-year olds 

(20% and 70%) and 8 year olds (103 and 40%). Thus children rely on paraphernalia when 

faces are similar and are easily confused by them, but they can use facial information when 
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the task is made easier, i.e., when dissimilar faces are used. 

Summarizing, there is at present no conclusive evidence that faces hold a unique position 

among the objects that people can recognize. Recognizing inverted words is just as difficult 

as recognizing inverted faces. In fact, Bruce (1983) proposed a model of face recognition that 

is adapted from models of word recognition (see next section). However, there is evidence 

that the right hemisphere has an advantage for encoding visual stimuli, including faces (Levy 
et al. 1972; Marzi and Berlucchi 1977; Young et al. 1985; Delis et al. 1986). 

2.6 A model of object recognition 

Our understanding of visual perception and recognition is still very rudimentary and largely 

confined to functionality. We know something about what is done, but very little about how 
this accomplished. This is true for almost every level: we can demonstrate that the assign­
ment of figure and ground is important and has to be accomplished, we can demonstrate 

that inverting faces and words deteriorates their perception and recognition, we know that 

we can recognize persons from their faces, and that recognition does not necessarily mean 

knowing a person's name. In other words, we are in the midst of exploring what the visual 

system can do and how these capabilities are linked. I thus think it appropriate to conclud~ 
this section with a brief description of a functional model of human visual recognition, a 

model about which most researchers seem to agree. 

Probably the most important clues about the organization of the human brain come 

from persons who suffered localized brain damage (Geschwind 1974; Damasio 1985a). \Var­

rington and Taylor (1973) observed that patients with right posterior lesions have difficulty 

in deciding whether two different views belong to the same object or not, especially with 

so-called unconventional views of objects. These patients also have problems in naming or 

identifying objects from unconventional angles: 753 versus 923 correct for right posterior 

and left anterior groups (Warrington 1982). Similar difficulties arise when objects in a scene 

are shaded (Benton and Van Allen 1968; Warrington 1982). Conversely, patients with left 

hemisphere lesions find it difficult to recognize objects even though they can decide whether 

or not different views are from the same object (Warrington 1975). 

On the basis of these data, \Yarrington and Taylor (1978; Warrington 1982) proposed 

that visual object recognition consists of two postsensory stages in series (Fig.2.11). In 

the first stage, percepts are categorized on perceptual grounds, possibly through general­

ization across viewing position, lighting, etc. Perceptual categorization thus leads to object 

constancy. 16 After percepts have been assigned an object category, semantic knowledge 

16 The question remaining is: How? Although unconventional views typically show the object in question 
significantly foreshortened, \Yarrington and James (1986) found no systematic relationship between the 
degree of foreshortening and recognition in people with right hemisphere lesions or controls, nor did they 
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Figure 2.11 Model for the stages of object recognition (Warrington and Taylor 1978). 

becomes accessible, perhaps by using perceptual categories as indices into semantic memory. 

The data also support the idea that perceptual and semantic categorization occur in 

different regions of the brain or at least have some degree of lateralization. Perceptu~ 

categorization is lateralized in the right posterior cortex, semantic categorization in the left 

posterior cortex (Fig.2.11). Hay and Young (1982) cite studies suggesting that early visual 

processing does not have any hemispheric preference, but that subsequent processing such 

as that involved in matching photographs from different angles shows a right hemisphere 

reaction time advantage (see also Poizner et al. 1984ab). 

A number of researchers in face processing have proposed very detailed functional models 

of face recognition (Ratcliff and Newcombe 1982; Hay and Young 1982; Bruce 1983; Br11ce 

and Young 1986). Evidence for the different stages in these models derives from neurolo01cal 

data, priming effects, and behavioral data from everyday recognition (Warren and Morton 

1982; Young et al. 1986abc; Bruce and Valentine 1986). In Fig.2.12, a functional model for 

face recognition is illustrated; it consists of eight modules, most of which also apply to the 

recognition of objects besides faces. The second stage in the structural encoding module, 

producing an "expression-independent description," corresponds to Warrington's perceptual 

categorization. Subsequent stages effect semantic categorization. Thus the face recogni­

tion units, patterned after the logogen model for word recognition (Morton 1969), somehow 

recognize a particular face providing access to the associated person-specific semantic in­

formation. Note that these face recognition units resemble the face templates posited by 

Damasio et al. (1982, 1985ab) in that they merely provide access to information associated 

with a particular person and do not themselves contain al:iy of.that information. Thus thcv 

find qualitative differences between norm:i.l controls and these patients. 
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Figure 2.12 A functional model for face recognition (Bruce and Young 1986). 

function strictly as indices into memory. In addition to possibly triggering recognition units, 

the structural code of a. face also triggers visual processes that analyze facial expression, sex, 

age, etc. 
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3. Computational aspects 

In this section, we examine formal theories of visual recognition, i.e., theories that state 

explicitly what information is used and how that information is represented in order to 

recognize an object from its visual image(s). Since we restrict ourselves to shape information, 

these theories specify how shape is represented, and how descriptions of shape can be derived 

from visual images. Even if they are specified formally as computer programs, these solutions 

to the problem of object recognition do not necessarily qualify as computational theories in 

the sense of Marr (1982). This would require, in addition, a. grounding in the physical world, 

which would afford an understanding of why the programs work. For example, in their work 

on stereopsis, Marr and Poggio (1976) start by making assumptions about the world-that 

any given point on an object's surface has a. unique position in space and time, and that 

matter is cohesive and surfaces sr: )th almost everywhere; this theory then al.lowed them to 

derive a cooperative algorithm to match the images from the two eyes and hence compute 

disparity. 

We will start with theories restricted to 2-D objects such as letters, where the 2-D pattern 

in the image is the object to be recognized. Obviously, the ability to recognize 2-D objects. 

does not suffice for the recognition of 3-D objects whose images can change dramatically 

under changes in viewing position. Two approaches to the problem of recognizing 3-D 

objects immediately come to mind. One is to simply collect a number of views and to let 

this collection be the description of the object's shape. The other is to reconstruct the 3-D 

shape of the object, say by means of 3-D primitives such as cylinders or spheres. 

3.1 Two-dimensional objects 

2-D object recognition is commonly formulated as the ability to recognize 2-D objects or 

patterns consisting of a number of curves and possibly a figure-ground assignment. Usually, 

objects are to be recognized in all possible positions (translation and rotation invariance) 

and from all reasonable distances (size invariance). Note that theories striving for rotation 

invariance cannot, by definition, account for the difficulty humans have in recognizing in­

verted letters and faces (section 2.2). In the following we assume that the objects have 

already been separated from the background, i.e., that we know what constitutes the object. 

I found it useful to divide the techniques for representing 2-D objects into two classes, 

one employing shape tern~ ,tes and the other shape features. The distinguishing property ,~,f 

shape templates is that they treat each part of an object equally: no distinction is made \ e­

tween significant and insigniflcant parts; indeed, the very notion of part is meaningless. T\.,, 

idea is to find a description or cq•prnximation that will afford a categorization into di~cr.·~,· 

classes. The alternative is t') "~-t'.;:e such distinctions and to view an object as con:;is'::.: 
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of features or parts which are distinguishable locally. In so doing, one explicitly assigns 

structure to an object. Often shape templates derive global descriptors of shape; Fourier 

descriptors, for instance, indicate to what extent a sinusoidal wave with some frequency is 

present in the curve as a whole. 1 In general, however, we cannot equate templates with 

global measures of shape. 

As so often, the strength of an approach is at once its weakness. Shape templates avoid 

the difficulty of defining the features or parts of an object, but, consequently, cannot use 

"significant" features in situations where objects are partly occluded, miss certain parts, 

or are deformed. Shape features promise to be more flexible in these situations, a promise 

that can only be fulfilled, however, if the right set of features can be found. In practice, 

recognition systems are often somewhere in between these two extremes; for example, by 

using subtemplates to represent those parts of ·an object that distinguish it from all others 

in the data base (this could be called the pragmatic approach to feature definition). 

3.1.1 Shape templates 

One straightforward way to represent the shape of a curve is to approximate it by a list 

of line segments that are locally tangent to the curve (Freeman 1974; Ballard and Brown 

1982; Scholten and Wilson 1983). Since this list is ordered it is called the chain code of 

the curve (Fig.3.la). 2 Usually, the line segments are restricted to four or eight different 

directions, so that each segment can be encoded by a 2- or 3-bit number, and the curve 

by a string of 2- or 3-bit numbers. A problem with chain codes, especially when used for 

closed curves, is their dependence on starting position: A different starting position results 

in a different chain code. We can circumvent this problem by defining a canonical starting 

position, for example, by choosing the starting position that results in a chain code whose 

integer value is minimal (interpreting the string of bits as the representation of an integer). 

This value is referred to as the shape number. Clearly, the shape number does not change if 

we translate the curve. Although the shape number changes under rotation, we can easily 

obtain rotational invariance by taking the derivative of the chain code, obtaining a sequence 

of numbers indicating how much the directions of successive line segments differ, in other 

words, indicating local curvature. Of course, curvature uniquely specifies the shape of the 

original curve (Lipschutz 1969). 

To compare two curves and determine their similarity, we can compare their chain codes. 3 

1 One could interpret Fourier descriptors as features, indicating the presence or absence of a particular 
wave length. I chose not to, instead reserving the term feature for a spatially distinct part of an object, as 

in the "features of a face." 
2 Sometimes referred to as Freeman code. 
3 Tsai and Yu (1985) developed a string matching technique where each symbol in the string represents 
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Figure 3.1 (a) Chain code and its derivative; (b) six contours and their similarity tree indicating the degree 

of similarity (Ballard and Brown 1982). 

This allows us to decide whether two curves are exactly the same, but not to measure their 
similarity quantitatively. The latter can be accomplished by digitizing curves at different 

resolutions and storing their chain codes as a function of resolution. Comparing two curves 

then involves comparing their hierarchies of chain codes. The higher the resolution at which 

their chain codes are the same, the higher the degree of similarity of the curves.4 As an 

example, consider the six closed curves shown in Fig.3.lb. The degree of similarity between 

object C and Fis 12, and between C and Bit is 8. Human observers would probably judge 

B and C to be the most similar, not B and E, partly because E is oriented differently from 

a line segment having a particular length and direction; Interestingly, their procedure is flexible enough to 

match distorted shapes. 
4 After observing that detection of sinusoidal gratings is largely independent of size but instead depends 

on the number of periods in the grating, Koenderink and van Doorn (1978, 1982) developed an interesting 
model for the size distribution of retinal ganglion cells. They assumed that the receptive fields of the ganglion 
cells differ in sizes only, and that the density of ganglion cells varies as 1/ s 3. It then follows that the number 
of ganglion cells that fire in response to a figure depends on the number of cycles or periods displayed, th.:>t 
is, neural activity level is independent of the size of the display. Burton et al. (1986) implemented th.s 
model, and proposed that the elongated receptive fields of cortical neurons are not for detecting oriented 

line segments but for affording distortion invariance. 
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B and C. If it were rotated counterclockwise by 120° it would appear more similar to both 

B and C (see section 2.2 for the influence of orientation on shape perception). 

So far we have only defined chain codes for closed curves, an obvious limitation. By 

combining chain codes with so-called plex grammars (Feder 1971), which specify spatial re­

lationships among shape primitives such as lines, complex patterns can be described. The 

use of shape grammars is known as the syntactic or structural approach to shape represen­

tation (Miller and Shaw 1968; Fu 1982; Lin and Fu 1984, 1986; Shapiro 1985; Bunke and 

Sanfeliu 1986). We will discuss shape grammars in more detail in section 3.3.1. 

A representation reminiscent of the hierarchy of chain codes is the strip tree which 

approximates a curve by so-called strips, rectangles of varying shape and size (Ballard 1981a; 

Ballard and Brown 1982). At the coarsest level of description, we have one strip simply 

covering the entire curve; while at the finest level, we have something resembling a chain 
code (thinking of a line segment as a strip with, zero width). A strip tree effectively combines 
these different levels of resolution: As we go from the root of the tree to its leaves, the 
representation of the curve becomes progressively more accurate. Using strip trees, we can 

design efficient algorithms5 to determine whether two curves intersect, or whether a point lies 

within a closed curve. Strip trees are related to quad trees (Ballard and Brown 1982), whicp. 

also represent spatial occupancy hierarchically, but do so by approximating the interior of a 

curve instead of the curve itself. Using prisms instead of strips, Faugeras and Ponce (1983) 
generalized this approach to three dimensions. 

Instead of approximating a curve with increasing accuracy, one could start with an exact 
description of a curve, for example by specifying curvature as a function of arc length, then 
expand this function into a series and retain only the low order coefficients. A well-known 

example is the Fourier series which describes an arbitrary bounded function f(t) of period 

271" as an infinite sum of cosine and sine waves of varying frequency and amplitude: 

1 00 00 • 

f(t) = zao + L(ancosnt + bnsinnt) = L Cnemt, 
n=l n=-oo 

(1) 

where 

1 17r Cn = 271" . f(t)e-intdt. 
-7r 

(2) 

The set of Fourier coefficients or Fourier descriptors (FD) {en} make up the so-called 

Fourier spectrum. This technique can be extended to functions of two variables, in particular, 

I( x, y ), the image intensity as a function of spatial coordinates x and y. 

5 Time complexity is O(log n), where n is the number of points describing the curve; this means that the 

number of computations has an upper bound proportional to log n. 
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Figure 3.1 Fourier approximations of the boundary orientation function of some numerals. (a) original; (b) 

five FDs; (c) 10 FDs; and (d) 15 FDs (Duda and Hart 1973). 

Fourier descriptors can be used in number of ways to describe 2-D objects. One possibility 

is to compute the two-dimensional Fourier series directly from the image of the object. This 

is unattractive since the object of interest is usually surrounded or even partially covered by 

other objects, which of course influences the FDs obtained. One could isolate the object of 

interest from its surroundings and approximate it by a 2-D Fourier series (Gardenier et al., 

1986). Alternatively, one can parametrize the shape of the contour and compute the FDs 

of the parametrization. This can : ; done in several ways. One way is to trace the contour 

and retain the ( x, y )"coordinates of equidistant points. This generates a complex function 

1(l) = x(l) + iy(l), with l being arc length. The period of/ is L, the length of the contour 

(Richard and Hemami 1974; Persoon and Fu 1977; Wallace and Wintz 1980). Wang et al. 

(1984) used the distance from points on the contour to the center of mass of the figure. 

Another way is to measure the orientation of the tangent at equidistant points, and generate 

a so-called boundary orientation function (Persoon and Fu 1977).6 Fig.3.2 illustrates that 

lower order Fourier descriptors suffice to reasonably specify the shape of a curve. Note that 

the lower order FDs capture the global aspects of shape, and the higher order ones the more 

local variations. A function related to the orientation function is the slope density function, 

which specifies the reciprocal of the contour's curvature as a function of arc length (N ahin 

6 As discussed in detail in section 4.2.3, Schwartz et al. (1983) found that some neurons of inferior 
temporal cortex-an area of the cortex involved in object recognition-are selectively tuned to stimuli w ho,;e 

boundary orientation function is composed entirely of the first, second, etc., Fourier coefficients. 
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1974). The FDs of these different functions can be normalized for position, orientation, scale, 

and for closed curves, starting position. 7 

FDs have been used to recognize letters, airplane silhouettes, machine parts, etc. To 

take one specific example, Persoon and Fu (1977) experimented with the so-called Munson 

numerals "O" to "9," a collection of numbers written by 49 people. To obtain closed curves 

from the numerals, their outer boundaries were traced and used to compute 1(l). After 
training the system on one third of the available numerals and retaining 8 FDs for each 

numeral, identification of the remaining two thirds was from 85 to 903 correct, depending 
on the distance measure used to classify shapes. Surprisingly, the numeral '8' is recognized 

only in about 55% of the cases, it being taken for a "1" in 20% of the cases. This happens, 
according to the authors, because the outer boundary of an "8" is similar to that of a 
"1." Apparently the converse is not true, since a "1" is never classified as an "8" (in fact, 
"l"s are correctly classified all the time). Thus, although overall performance is reasonable, 

the system fails to discriminate what seem to be very different shapes.· The use of outer 
boundaries again points to the problem of having to use closed curves, or, at least, curves 
that do not intersect. 

A method originally designed to find lines in noisy images has now been generalized to 

recognize arbitrary shapes. In the early 1960s, Hough devised a method, now known as 

the Hough transform, to find particle tracks in noisy bubble chamber photographs. His 

idea was to collect evidence for straight lines in a so-called feature space, which in this case 

represents all possible lines in the image, for example by their distance from the origin and 

their slope (Fig.3.3a). Each line segment in the image "votes'' for the one point in feature 

space that represents its slope and location.8 If, after processing all line segments in the 

image, some point in feature space has collected more evidence than some threshold value, 

we conclude that the corresponding line is present in the image. 9 Kushnir et al. (1985) used 

the Hough transform to represent Hebrew characters printed by hand; that is, the Hough 

transform was treated as a feature vector, each value in feature space indicating the degree to 

7 Sheng and Arsenault (1986; Sheng and Duvernoy 1986) used circular-Fourier-radial-Mellin descriptors to 
obtain descriptors of a pattern that are invariant under translation, orientation and scale, that is, descriptors 
that do not need normalization. Circular Fourier descriptors are based on polar instead of cartesian coordi­
nates, automatically affording rotation invariance. Thus the image is considered to be composed of radial 
waves. Size invariance result$ from taking the radial Mellin transform of the circular Fourier descriptors. 

For a related optical implementation see Casasent and Psaltis (1976). 
8 Note that these line segments might come from different "parts" of an object. Strictly speaking, then, 

points in Hough transform space do not represent features. 
9 Barlow (1986) noted that the brain is faced with a similar problem, namely to bring together related 

information from widely spaced locations in the retinal image, for example the color of a large object. 
Since cortical connections are quite local, extending at most 4 mm in either direction (Gilbert 1985), direct 
communication between neurons representing faraway locations in the cortex is ruled out. This led Barlow to 
suggest "cortical feature maps" analogous to Hough transforms as a way of associating related information. 
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Figure 3.3 (a) Hough transform for lines (Ballard 1984); and (b) R-table for arbitrary planar shapes (Ballard 

1981b). 

which that feature (line of certain orientation and location) is present in the character. This 

resulted in an efficient description of the characters, circumventing the problem of defining 

explicitly what the difference between characters is in terms of features like "a vertical line 

with a horizontal one at its base pointing to the right." On average, the system recognized 

86.93 of the characters, slightly below the human level of 92.43 (characters are shown 

separately, without the benefit of context). 

Ballard generalized the Hough transform to detect arbitrary 2-D objects in an image 

(1981b; Ballard et al. 1983). The shape of an object is represented by a so-called R-table 

specifying the location of line segments as a function of their orientation. An R-table is 

constructed a.;; follows. First, select a reference point, a, in the image (Fig.3.3b ). Then, 

trace the boundary of the '2-D object, and store the difference vector between each bounchry 

point and a as a function oft he local gradient direction¢> (a direction orthogonal to the loc,cl 
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tangent). Note that there might be multiple entries under the same direction </J. The feature 
space is now a set of R-tables representing the objects to be recognized. To find a shape 

S represented by a.n R-ta.ble Rs we proceed as follows. Let A(a:z:, a 11 ) be a two-dimensional 

accumulator array initialized to 0. For each edge element x = ( x, y) in the image, compute 

its gradient direction </>i and use it as an index into Rs. Increment all points x + Rs(</>i) in 
A. As before, maxima in A indicate the locations of objects with shape S. To account for 

scale and orientation, two more dimensions can be added to the accumulator array, explicitly 

representing the object at all scales and orientations.10 The R-tables of shapes Si can be 

combined very easily to describe the resulting composite shape. Letting Yi. be the reference 
points of S;., a the reference point for the new shape S, and r;, =a - a;,, then 

Rs(</>)= LJ(Rs;(</>) + r;.). 
i. 

(3) 

Instead of using the orientation of line segments to index the R-table, Turney et al. 

(1985) used distinguishing features of a curve. Distinguishing features are simply those 

segments of the curve that distinguish it from the other curves in the data base. The 

saliency or degree to which a feature determines the identity of a figure can be used to weigh 
features differentially. The importance of the ability to weigh features was demonstrated 

by comparing the performance of a system using R-tables based on line segments with that 

of one based on weighed features. Only the latter was able to correctly locate a partially 

occluded object. 

Neveu et al. (1986) also used R-tables to represent the shape of 2-D objects. In addition, 

they described certain parts of the object at higher levels of resolution (upto four levels). 

They did not, howev~r, clearly define what constitutes a part and what does not. That was 

left to the user who could interactively select regions of the figure for representation at a 

higher resolution. This hints at a problem of FDs, R-tables and the like, namely the lack of 

correspondence between components of these representations and identifiable components of 

the object. Removing part of an object possibly affects all FDs or all entries in the R-table, 

in a. manner that is not obvious (Wang et al. 1984; Pinker 1984; Hoffman and Richards 

1984). And although one can easily combine the R-tables of objects to obtain a composite 

object, the reverse is not true: Given the R-table of the composite object one would be hard 

put to find its components. A related problem is the insensitivity to small variations, an 

insensitivity which is not surprising since each Fourier descriptor or point in feature space of 

the Hough transform indicates the degree to which a particular frequency or line is present 

in the entire image of the object. Small but significant variations will be lost in the noise. 

lO This can be extended to 3-D objects by assigning one dimension to every degree of freedom (Ballard 

and Sabbah 1983; Silberberg et al. 1984, 1986). 
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Thus we a.re led to explore representations that explicitly assign "structure" to an object, 

for example, by decomposing it into convex parts and specifying the spatial relationships 

among these parts. 

3.1.2 Shape features 

To recapitulate, Selfridge and Neisser (1960) noted "that letter patterns cannot be described 

merely as shapes. It appears that they can be specified only in terms of a preponderance of 

certain features. Thus A tends to be thinner at the top than at the bottom; it is roughly 

concave at the bottom; it usually has two main strokes more vertical than horizontal, one 

more horizontal than vertical and so on" (emphasis in original]. 

But what constitutes a feature? In their letter-recognition program PANDEMONIUM, 

Selfridge and Neisser (1960) used an ad hoc procedure in which the programmer adds as 

many features as possible, since "there is probably safety in numbers. The designer will do 

well to include all the features he can think of that might plausibly be useful." Recognizing 

the shortcomings of their approach and the fundamental nature of the problem they were 

trying to solve, they concluded that 

No current program can generate test features of its own. The effectiveness of all of them is forever 
restricted by the ingenuity or arbitrariness of their programmers. We can barely guess how this 
restriction might be overcome. Until it is, "artificial intelligence" will remain tainted with artifice. 

And indeed, much work in cognitive psychology, artificial intelligence, taxonomy, and pattern 

recognition has been directed towards this goal. Here we will briefly discuss what computer 
vision researchers have learned (see Pavlidis (1980) .nd Shapiro (1985) for reviews). 

It is clear that certain segments of a silhouette carry more information than others. 

Attneave (1954) demonstrated this by approximating the outline of a sleeping cat with as 

few as 40 line segments connecting the points of maximum curvature. When asked to segment 

a silhouette, humans do so at points with highest curvature, a not entirely surprising result 

(Attneave 1954; Hoffman 1983; Fischler and Bolles 1986). And when considering say a 

maple leaf, humans divide it into regions, the lobes of the leaf. These intuitions about the 

way humans appreciate shape led computer vision researchers to explore algorithms that 

decompose shapes. This work on decomposition can roughly be divided in two classes: in 

the first, an object is divided into regions that satisfy some property, e.g., convexity; in the 

second, the outline of an object is partitioned on the basis of extrema or zeros of curvature, 

a partitioning which could induce a partitioning of the object itself. 

Shapiro and Haralick (1979) sought to partition a figure into clusters, where a cluster is . 
a highly connected part of a figure (points on the perimeter of the figure are connected if 

they can be connected by a straight line lying completely within the interior of the figure), 
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Figv.~ 3 . .j Decomposition of handwritten characters into convex parts (Shapiro and Haralick 1979). 

i.e., maximally convex parts or protrusions. 11 The complement of protrusions, intrusions 

or concavities, can be found by using lines lying completely outside the shape. We can 

now ·decompose the shape into its (almost) convex parts. Note that this decomposition 

is invariant under translation, rotation, scaling, and skewing. Also note that upon figure­

ground reversal, the decomposition of an object changes drastically since concave regions 

become convex, a.nd vice versa. This decomposition algorithm was tested on the handwritten 

characters "H," "K," and "X". As can be seen in Fig.3.4, decomposition was quite variable 

among instances of the same letter. An interesting property of this clustering method is that 

the resulting clusters or parts are not necessarily disjoint: the horizontal bar in Hl overlaps 

with the right vertical. A slightly different clustering algorithm developed by Guerra and 

Pieroni (1982) produced disjoint parts. 

To specify the topological relations between parts of the shape, Shapiro (1980) defined 

two spatial relations, the protrusion and intrusion relation. The protrusion relation (i1, s, i 2 ) 

indicates that the two concavities ii and i2 bound the protrusion or "simple" part s. The 

intrusion relation does the same, mutatis mutandis. If a shape memory consisting of rela­

tional descriptions is to be employed, one is naturally interested in quantifying the similarity 

between two relational descriptions. For this purpose, Shapiro and Haralick (1985) defined a 

metric on the space of relational descriptions. Given a relational description representati \'e 

11 Maximally convex parts illlow Sc)t\le points of a. cluster not to be connected. 
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of some class of objects (prototype), a metric makes it possible to compute the probability 

that a particular deviation from this prototype would occur. These conditional probabilities 

can then be used in Bayesian classification schemes (Duda and Hart 1973). 

Van der Heydt et al. (1981) developed a related method for decomposing an object into 

greatest nearly convex regions and used it to separate overlapping chromosomes in metaphase 

pictures (succeeded in 77 of 88 cases). Bjorklund and Pavlidis (1981) derived a graph from 

a 2-D object by approximating its constituent curves by line segments. These line segments 

form the vertices of a graph whose edges specify the appropriate spatial relationships. These 

relationships might indicate that the two line segments form a. convex or a concave corner. 

The graph is used to decompose the original shape, for example, by searching for cycles 

a.rising from nearly convex components. One could also augment the vertices of the graph 

by associating with each a. probability vector indicating the probability of that segment 

belonging to certain parts of the object. A globally consistent partitioning is then obtained 
by relaxation (Rutkowski et al. 1981).12 

In the symmetric or medial axis transform (Blum 1974; Blum and Nagel 1978), 2-D 
objects are approximated by a collection of maximal discs, i.e., discs inside the object and 

tangent to its boundary that are not contained in any other discs (Fig.3.5). The 2-D shape 

is the union of all such discs, and the symmetric axis is the union of the discs' centers. 13 The 

symmetric axis can be thought of as the "skeleton" of a shape with "joints" and "branch 

points," features that can be used to partition the shape. The resulting parts can be further 

decomposed or simply classified on the basis of their shape, for example, by noting how 
their boundary curvature with respect to the symmetric axis. The result is a structural 

description of a 2-D shape. Fairfield (1983) used a. different algorithm to decompose the 
shape. His algorithm does not differentiate between branch points and boundary curvature 

but only considers boundary curvature. And instead of local curvature, it uses a cumulative 

measure of orientation change. This measure, called internal concavity, is the net change in 

spread angle along some part of the symmetric axis; spread angle being the angle formed 

by the two half lines emanating from a point o~ the axis and going to the points on the 

boundary closest to it. Thus the internal concavity of a cylinder is zero since the spread 

angle is everywhere 180°. Because it is based on angles, internal concavity is scale invariant. 

12 Relaxation labeling or cooperative processing arc widely used in computer vision (Ballard et al. 1983). 
It is a technique for satisfying a global constraint by purely local computations. A well-known example is 
Waltz's (1975) algorithm for interpreting line drawings: In general, each line junction can be interpreted in 
a number of ways; that is, there is local ambiguity. However, by requiring that neighboring interpretations 
be consistent, one can arrive at a globally consistent interpretation of the line drawing (see also Rosenfeld et 
al. 1976; Zucker et al. 1978; Davis and Rosenfeld 1981; Hummel and Zucker 1983). Marr and Poggio (1976) 

designed a cooperative algorithm to compute disparity from two stereo images. 
13 Lee (1982) developed an efficient, O(log n), algorithm to compute the medial axis of a polygon with n 

edges. 
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Figure 3.5 Symmetric axis transform. (A) 2-D bone-like shape; (B,C) its symmetric axis; (D) object 

partitioning at branch points (Blum and Nagel 1978). 

This makes the decomposition less sensitive to boundary noise, an oft noted problem of the 

medial axis transform. Another approach to handling noise is to compute the symmetric 
axis a.t different scales (Pizer et al. 1987). 

Nackman (1983; Nackman and Pizer 1985) extended the symmetric axis transform to 

include 3-D objects by replacing discs with spheres and symmetric axes with symmetric 

surfaces. In related work, Mohr and Bajcsy (1983) used tangential instead of overlapping 

spheres to approximate 3-D objects. 

Just as the various clustering methods, the symmetric axis transform first describes a 

shape, and then uses the description to decompose the shape. Alternatively, one could first 

try to decompose the (outline of the) object and then describe the shape of the resulting parts. 

But what shape properties should one use to decompose an object? Hoffman and Richards 

(1982; Hoffman 1983; Richards and Hoffman 1985) chose concavities as part boundaries, a 

choice motivated by the fact that whenever one conjoins two 3-D objects one produces a 

concavity all along the contour of intersection (except for the riongeneric case in which the 

objects are partially tangential). This is illustrated in Fig.3.6a. The projection of the contour 

of intersection yields a concavity in the image. Thus the choice of concave regions, or more 

generally minima of curvature, as part boundaries ·is founded on a property or regularity 

of the physical world (see Brown (1984) for an overview of the various regularities or real 

world constraints used in computer vision). Dividing the contour at (negative and positive) 

minima of curvature results in segments that fall into six categories depending on the number 

of inflection points they contain. 14 Fig.3.6b shows the six contour "codon" types (Richards 

and Hoffman 1985; Richards et al. 1985; Leyton 1986). Thus, codon 2 indicates the presence 

of two inflection points in between two part boundaries. Note that a codon description is 

invariant under translation, rotation and scaling, but changes drastically upon figure-ground 

14 An inflection point has zero curvature, and is thus the transition point between concave and convex 

parts of the contour. 

43 



(a.) 

(b) 

iv~ 
•• 

(,) 

•• 

codon string: 
01-1·0~2 

,_ 
I 

Figure. 3.6 (a) Joining of objects gives rise to concavities in the silhouette. (b) The six codon types: oo, 

straight line segment; o+, no intlection1; concave; o-, no inflectiona, convex; 1 +, maximum followed by 

intlection; 1-, intlection followed by maximum; and 2, maximum tlanked by two inflections. (c) Changing 

the figure-ground assignment changes the appearance of a curve and its codon string (Hoffman and Richards 

1982; Richards and Hoffman 1985). 

reversal (Fig.3.6c). 

Summarizing, we reviewed a number of representations for 2-D objects, in particular 

curves and silhouettes. We distinguished between representations that merely describe shape 
and representations that in addition assign structure to objects. Examples of the former are 

Fourier descriptors whether they are used to describe the image of the object or the curvature 

of its outline. Assigning structure to a shape involves decomposing the shape into parts and 

describing their spatial relationships. Most algorithms decompose an object into (nearly i 

convex parts, a decomposition which seems to agree with the way human observers appreciate 

shape. 
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3.2 Three-dimensional objects represented by multipie views 

Recognizing 3-D objects from visual images poses a fundamentally different problem from 

recognizing 2-D objects. In the latter, all shape information is available from one image, 

and the only problem is to represent the object's shape appropriately, e.g., with rotational 

invariance. An image of a 3-D object, on the other hand, is but one of infinitely many 

views of that object and does, therefore, not contain all shape information. Since we want 

to recognize objects from all possible vantage points, the question becomes how information 

derived from a large number of images is to be organized. Researchers have approached this 
problem in two different ways. In one approach, shape information derived from different 

vantage points is used to construct a 3-D model. In the other, which we will review in this 

section, the 3-D shape of an object is represented by a (structured) collection of views from 

different vantage points. 15 

In the "brute force" method, views from· many vantage points a.re collected without 

distinguishing between vantage points. Thus, in their airplane recognition system Richard 

and Hema.mi (1974) stored the silhouette of a plane at 5° increments in roll (rotation a.bout 

longitudinal axis) and pitch (rotation about vertical axis) angles, resulting in 666 silhou­

ettes, the so-called reference set. 16 Each silhouette was described by 39 Fourier descriptors, 

although experiments using 21 FDs gave satisfactory results. Tests were performed with a 

library of 2664 silhouettes derived from four airplanes: an F-4, Mirage, MIG, a.nd an F-105. 

The test silhouette was ta.ken from some random vantage point and was therefore gener­

ally not explicitly stored in the reference set. Without any noise in the test silhouette, no 

identification errors were made, while the number of errors increased slightly (to 8 percent) 

with 203 noise. 17 Orientation was estimated quite accurately: within 2.5° without noise, 

and within 11° with 203 noise. Doubling the separation of the vantage points, i.e., taking 

silhouettes at 10° instead of 5° increments in roll and pitch angles, roughly doubled the 

errors in identification and estimates of orientation. 

Wallace and Wintz (1980) used 143 silhouettes to represent the 3-D shape of an airplane. 

Each silhouette is described by 30 Fourier descriptors. The number of silhouettes per plane 

15 Madaras11 and Thompson (1985) developed a variant in which moving objects are recognized by their 
so-called feature signature, a time sequence of feature measurements of a moving object-e.g., as it rolls 
down a slope. Experiments were performed on bars having slightly different cross sections, the difference 
not being visible from most vantage points. By measuring the cross section as a bar rolls down a plane a 
signature is obtained. Of course, whether this or any other signature uniquely specifies an object depends 

on the set of objects to be recognized. 

16 Due to the bilateral symmetry of airplanes and ambiguities in projection, only one eighth the total 

number of silhouettes taken at 5° intervals, i.e., 72 times 72, need to be stored. 
17 Points comprising the airplane's silhouette were perturbed to simulate Gaussian noise; standard devia­

tion of the noise was expressed as percentage of the distance between the centroid of the silhouette and the 

point on the silhouette farthest from the centroid. 
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is relatively small because of an efficient intrapolation procedure between feature vectors. 

Depending on the resolution of the image, aircraft identification accuracy ranged from 70 to 

933 (accuracy is lower than in Richard and Hemami's experiments because of poorer image 

resolution). In a. related experiment, Wallace et al. (1981) described silhouettes by a. feature 

vector consisting of alternating angles and distances, respectively indicating the angular 

change at curvature extrema in the contour and the distance along the silhouette between 

preceding and succeeding curvature extrema. As compared with the system using FDs to 

describe silhouettes, accuracy was slightly lower for low resolution images (which makes 

sense because loca.l information, i.e., exact location of curvature extrema in the silhouette, 

becomes less accurate), and slightly higher for the highest resolution. 

Noting that this approach to 3-D object recognition invariably results in a large reference 

set, in turn leading to complex and/or tfr-:e consuming searches to match test shapes with 

reference shapes, Wu and Stark (1986) proposed to reduce the entire collection of 2-D views 

to one 2-D "signature image." The idea is to collapse each 2-D image indexed by the viewing 

angle</>, Iq,(z,y), into a 1-D function, Pq,(z), by integrating along one dimension of the 2-

D image: Pq,(z) = J Iq,(z,y)dy. The signature image F combines all collapsed views for 

instance by setting F(p, </>) = PrJi(p). Ordinary pattern recognition techniques can then be 

applied to the signature image to extract rotation, sea.le and brightness invariants suitable 

for recognition. Wu and Stark demonstrated their approach for a highly restrictive situation 

in which rotation about the vertical is the only degree of freedom. The question therefore 

remains how this approach can be extended to the general, unrestricted case. And since the 

mapping from 3-D object to 2-D signature image is not unique one would have to investigate 

which objects share the same signature images. 

Although a valuable, and in some cases the only source of information, silhouettes pro­

vide only part of the shape information one can derive from images. One could also use 

information about surface orientation or surface type. Using a laser range finder to obtain 

a depth map,18 Oshima and Shirai (1983) segmented a scene into regions, each of which 

could be described by a single surface primitive (plana.F, ellipsoidal, hyperboloidal, cylindri­

cal, etc.). They described the spatial relationships between regions in terms of connections 

and angles between r~gions (fitting a plane to the points of curved regions to compute an 
angle). The result is a. partial model of an object, and "If one view is not enough to describe 
an object, several typical views are shown and multiple models are made." Unfortunately, 

the authors did not mention their criteria for including more models in the description of 

an object, nor did they quantify the results of their experiments. The context of their pa­

per does, however, suggest an interesting learning paradigm in which the system only adds 

18 A depth map indicates the distance to the nearest surface for each direction. It is much like a short-range 

radar. 
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Figure S.1 Six viewt of a cube with a hole. (a) through (d) are topologically equivalent (Chakravarty and 

Freeman 1982). 

models if the recognition procedure fails to come up with an answer, i.e., whenever input 
does not warrant a conclusive categorization. 

The above methods have one important shortcoming, and that is the absence of structure 

in the collection of views. Different views of the same object are e11entially treated as different· 
objects which happen to have the same name. But, obviously, different views are related by 

means of their difference in vantage point. In general, views from slightly different vantage 

points will have only a few differences if any, a fact which could be exploited to reduce the 

storage requirements of the reference set. These and related ideai have been addressed by 

Minsky (1975), Koenderink and van Doom (1979), Chakravarty and Freeman (1982), and 

Plantinga and Dyer (1987ab ). 

In his article on frames as a means to structure knowledge, Minsky (1975) proposed that 

different views (i.e., views that are qualitatively different) of say a cube be represented by 

different frames, where each frame describes a view of the cube in terms of its faces and their 

spatial relationships. Different frames are connected by arcs specifying the spatial transfor­

mation that brought this change in appearance about. Being not particularly interested in 

vision, Minsky did not clarify what he meant by qualitatively different views of an object. 

Chakravarty and Freeman (1982) expanded Minsky's ideas and implemented a system 
to recognize polyhedra from different viewing positions. They divided the space of viewing 
positions into equivalence classes, where two viewing positions are equivalent if their asso­
ciated images are topologically equivalent. Two images are topologically equivalent if the 

line segments and line junctions of one can be mapped one-to-one and continuously onto 

those of the other image. Fig.3. 7 shows six views of a cube with a hole in the middle; views 

(a) through ( d) a.re equivalent, ( e) and (f) are different. For the purpose of recognition, 

each view is described by a 5-tuple specifying the number of junctions of a particular type 
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(Chakravarty 1979). The junctions are ranked according to the number of visible faces along 

the lines making up a junction. Junction Yin Fig.3. 7b is an example of the highest ranking 

junction, a junction consisting of three lines each of which has two visible faces. This rank 

ordering a.llows the set· of views to be organized hierarchically, and therefore to be searched 

more quickly for the presence of a particular view. An important question, and one that 

remains to be investigated, is whether the mapping from view to the 5-tuple junction de­

scription is one-to-one, in other words, whether a description in terms of number of junctions 

is unique or not. 

Starting with the assertion that an observer's representation of an object is not some 

passive repository of information relating to ~he object's shape but is essential to the ob­

server's interaction with that object and the environment in general, Koenderink and van 
Doorn (1976b, 1979) concluded that it is the purpose of the internal representation of an 
object to predict how movements of the observer affect the appearance of that object. 19 

That is, an object's internal description has to predict how it changes appearance as a result 

of movements of the observer. This allows the observer to distinguish between changes in 

the image due to its movements and those of the object itself, something which is essential 

for veridical perception of the object (Koenderink and van Doorn 1976c). The appearance 

of an object is simply taken to be the orientation of its visible surfaces, specified by, say, the 
slant field, a vector field indicating the direction and magnitude of the maximal change in 
distance between surface and observer at each point in the image. 

At the global level, the aspect of an object specifies the topological structure of the slant 

field, i.e., the singularities of the slant field and their spatial ordering. The aspect specifies 
occluding contours (images of curves on the object that separate visible from invisible parts 

of he surface), cusps, T-junctions, specular points (Fig.3.8a). For most vantage points, small 
movements of the observer do not alter the qualitative appearance of the object, that is, leave 
the aspect of the object invariant. For those vantage points that are unstable in the sense 

that small changes in viewpoint change the aspect, Koenderink and van Doorn (1976c, 1979) 

provided an inventory of possible changes in aspect. These changes include the appearance 

or disappearance of pairs of cusps or T-junctions whenever a convex protrusion appears or 
disappears. The visual potential of an object is a graph whose vertices represent all possible 

aspects and whose edges specify the spatial relationships between aspects. Thus, the visual 

potential of a sphere consists of but one aspect as its appearance never changes. Fig.3.8b 

shows the visual potential of a slightly more complex object, a pyramid; it consists of 14 

19 Held and Hein (1963) showed that development of visually-guided behavior in kittens-examples of 
which include visually-guided paw placement and discrimination of the high and low side of a visual cliff­
depends on visual feedback resulting from self-produced motion. Holst and Mittelstaedt (1950) and Gyr 
et al. (1979) discuss the role of feedback in the way animals interact with their environment and visual 

perception. 
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Figure 9.8 (a) Asped of a torus. C, cusp; T, T-junction; S, saddle point; M, minimum of distance function. 

(b) Visual potential of a. pyramid (Koenderink a.nd va.n Doorn 1979). 

aspects which fall into three classes, namely aspects with one, two, or three visible faces. 

The visual potential allowed Koenderink and van Doorn to quantify the notion of com­

plexity of shape. The distance between two aspects, A and B, is simply the smallest number 

of edges one has to traverse in going from A to B. This measure of distance, call it d, is a true 

metric since d(A, B) = O iff A = B, d(A, B) = d(B, A) and d(A, B) + d(B, C) ;::: d(A, C). 
The complexity of a shape is just the largest distance between any two aspects in its vi­

sual potential. The intuitively simplest shape, the sphere or more generally the ovoid, has 

complexity zero, because its visual potential has only one aspect. 

So far the visual potential or characteristic views of an object have only been analyzed 

for rigid objects. It will be necessary to expand the analysis to include nonrigid objects. 

For example, what is the visual potential of the human hand? It might be profitable to 

decompose the visual potential into regions that can change independently. 

Koenderink and van Doom's choice of the visual potential as the internal representation 

of an object was primarily motivated by its ability to predict changes in the object's appear­

ance quite easily. This does not mean that other representations cannot do the same; see, 

for example, section 3.3.2 on Gaussian images. 

Planting& a.nd Dyer (1987ab) generalized the visual potential by representing aspects 

from all viewing directions. In particular, they propose that objects be represented in a 

four-dimensional space which is the 2-D image cross the 2-D space of all viewpoints. Korn 

and Dyer (1987) describe algorithms to efficiently manipulate and search through a collection 

of 2-D views. 
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3.3 Three-dimensional objects represented by 3-D models 

In the previous section, we discussed the representation of 3-D objects by means of col­

lections of viewer-centered aspects. We now explore object-centered descriptions, that is, 

descriptions that do not depend on viewing position. I have divided these descriptions into 

four categories. In the first, 3-D objects are described as combinations of surface patches, for 

example quadratic surface patches. The spatial relations between these patches are specified 

by a shape grammar, which is not unlike a grammar for languages. This is known as the 

syntactic or structural approach. The second method, the extended Gaussian image, also 

represents the surface of a solid, but does so without dividing the surface into patches. The 
Gaussian image of an object specifies the distribution of surface normals on the object's sur­
face. Of course, the Gaussian image could be used to divide an object'·· c;urface into patches 
yielding a structural description; that is, these two approaches do r .1ecessarily exclude 

each other, but might form different stages in some vision system. 

The two remaining categories explicitly represent the volume taken up by the object 

under consideration. In the bounding volume approximation we specify as well as possible 

the volume an object occupies; the resulting representation is not unlike a "volume occupancy 

array" (Ballard and Brown 1982). In the fourth and last approach we will discuss, a solid is 
decomposed and described in terms of volumetric primitives. 

3.3.1 Shape grammars of surface patches 

Not surprisingly, surface-based descriptions of solids are used extensively in computer graph­
ics. We will not review all the possible ways in which surface patches can be described (see 

Requicha (1980), Ballard and Brown (1982), Foley and van Dam (1982) for comprehensive 
overviews), but focus on methods for combining surface patches to form a 3-D object. In 
particular, we will look at the syntactic approach of Fu (1982) and Lin and Fu (1984). 

We assume that surface patches are described somehow, for example by bicubic splines. 
To connect these patches we introduce the idea of a surface patch to which other surface 

patches can be attached a.long "attaching curves." A primitive which can be connected with 

n others is called an n attaching curve entity or NACE, a generalization of Feder's (1971) 

n attaching point entity for specifying 2-D interconnections. A 3-D-plex-grammar specifies 

how NACEs can be combined: 

Gp= (N, :E, P, S, I, i 0 ), (4) 

where N (respectively :E) is a finite, nonempty set of NACEs called the nonterminals (respec 

tively terminals), S is the start NACE, I is a finite set of symbols identifying the attaching 

curves on each NACE, i 0 is the null identifier, and, finally, Pis a set of production or rewrite 
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Figure 3.9 Syntactic description of a cup. The "middle" surface of the cup consists of part of a cylindrical. 

surface (a) and a. handle (b) (Lin and Fu 1984). 

rules. Interconnections of NA CEs are specified by mapping the appropriate identifiers onto 

each other. 

For a. context-free grammar, productions are of the form 

A~A--+- xrx~x' (5) 

specifying how the NACE A is replaced by the plex structure xr x, where x a nonempty list 

of NACEs a.nd rx specifies how the NACEs in x are interconnected. Furthermore, ~A and 

~x specify how the new plex structure xr x is embedded in the already existing structure of 

which A was a. part. 
As an example, consider the cup shown in Fig.3.9. Its plex grammar is 

Gp= (N, L:, P, S, I, i0 ), 

N ={(cup), (top), (middle), (handle), (bottom)}, 

I:= {(a), (b), (c), (d), (e), (f)}, 

S =(cup), 

I= {O, 1,2,3,4}, 

io = 0 ' 
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and P, the set of production rules, is 

(i) (cup){}-+ (top)(middle)(bottom){210; 021}{} 

(ii) (top){!}-+ (a){}{2} 

(iii) (middle){2}-+ (b)(handle){34; 43}{11; 22} 

(iv) (handle){ 4} -+ (c)(e){ll; 22}{11; 22; 30; 40} 

(v) (bottom){!}-+ (d)(f){21}{10}. 

The terminals (a) through (f) refer to the surface patches in which the surface is divided. 

Fig.3.9a. shows (b), a segment of a cylinder derived via rule (iii), in the process producing 

a (handle), which according to (iv) consists of a segment (c) and a curved surface (e), 

the actual handle (Fig.3.9b ). It is clear, as Lin and Fu (1984) themselves point out, that 

th~~ decomposition of a complex object can be nonintuitive, and the associated structural 

description rather complex. Lin and Fu (1986) developed an algorithm to determine whether 

a scene contains an object included in the class of objects defined by some plex grammar 

Gp. In case of recognition, the algorithm outputs a sentence describing the exact structure 
of the object. The scope of their system was limited to objects whose surface contains at 

least some polygons. 

3.3.2 Extended Gaussian images 

Instead of describing the surface of a solid by a priori surface patches, we could use the 

normals to the solid's surface. The idea is to specify how much of the surface is oriented in 

each direction. For example, all surface elements of a plane have the same orientation, i.e., 

their normals all point iri the same direction. For a sphere the opposite holds: all normals 

point in different directions. Intuitively, then, there is a potentially interesting relationship 

between an object's shape and the distribution of its normals. 

To investigate this relationship, Gauss (see Hilbert and Cohn-Vossen 1952) introduced 

a mapping, now named after him, in which each unit surface normal N is translated to the 

origin of a unit or Gaussian sphere Sas shown in Fig.3.!0a. This is also called a mapping by 

parallel normals. After translation, each normal touches the Gaussian sphere at some point 

P; hence Pis called the Gaussian image of the point(s) on the solid whose surface normal 

is N. The normals of some small area SO on the object will be mapped onto a patch SS 

of the Gaussian sphere (Fig.3.!0b). The area of SS depends on the curvature of SO: if its 

curvature is small, say approximately zero in an almost planar area, then all normals will 

map to approximately the same point on S; in other words, 5S will be small. Conversely, 

if 80 is curved considerably, its normals point in quite different directions and will map to 

widely spaced points on S; in other words, SS will be large. It seems then that we could 
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Figure 3.10 (a) Mapping by parallel normals. (b) Gaussian curvature is the ratio of 80 and 8S (Horn and 

Ikeuchi 1984). 

use the relationship between the a.rea of 80 and 8S to specify the shape of 80. In fact, the 

Gaussian curvature Kofa surface is defined as the limit of 8S/80, as 80 approaches zero 

(Hilbert and Cohn-Vossen 1952; Horn 1984). 

By specifying, for each point on the Gaussian sphere, the Gaussian curvature of its pre­

image we obtain an extended Gaussian image (EGI) of the solid. Another way to extend 

the Gaussian image is to specify the inverse of Gaussian curvature, 1/ K. Integrating over 

the Gaussian sphere we get 

r }:_dS = r dO dS = r dO = 0' 
ls K ls dS lo (6) 

that is, the surface area of the object (Horn 1984). Van Hove and Yerly (1985) defined yet 

another extension of the Gaussian sphere. They retained the second fundamental coefficients 

which completely specify curvature (in a Monge patch representation), making it possible 

to invert the EGI, i.e., to recover the surface shape from corresponding points on the EC!. 

53 



A Gaussian sphere thus extended also allows one to recover the occluding contour of the 
object as seen from any direction. The occluding contour is the image of those points on the 

object's surface whose surface normal is perpendicular to the viewing direction. It follows 

that the Gaussian image of these points forms a great circle20 perpendicular to the viewing 
direction. Thus to compute the silhouette or occluding contour of the object as seen from 
any direction, one simply takes the great circle on the EGI perpendicular to that direction 
and computes local curvature of the contour from the fundamental coefficients. This shows 
that one does not have to retain something like a visual potential in order to be able to 
predict how ~hanges in viewing position will change the object's appearance. 

Now we have defined a representation of an object, namely an extended Gaussian image, 
the usual questions come to mind. Are EGls invariant under translation, rotation, and 
scaling? Is the mapping between EGI and object one-to-one? It is clear that EGis are 
invariant under translation because translation does not affect the orientation of surface 

normals. Although EGis are not invariant under rotation, the relationship between the 

EGI of an object in its standard orientation and its EGI after rotation is straightforward. 

Rotating an object about a certain axis causes its EGI to be rotated about the same axis to 

the same extent. Thus, the EGI can be used to recover the orientation of a (convex) object 

(Ikeuchi 1983; Horn and Ikeuchi 1984; Brou 1984; Little 1985b ). Similarly, EGis depend on I 
scale, but can easily be made scale invariant by dividing the values on the EGI e.g, K or ! 

1/ K) by the surface area of the object, which is easily obtained through equation 6. In other 

words, we normalize the EGI with respect to surface area. 

The mapping between EGI and object is one-to-one only for convex objects whose Gaus­

sian curvature is everywhere greater than zero. For this class of objects, Minkowski showed 

that there is a unique object for any given EGI (Pogorelov 1973).21 On the basis of this 

proof, Little {1983, 1985a) developed an iterative procedure to reconstruct a convex polyhe­

dron from its EGI. Thus EGis can be used to recognize convex objects (Smith 1979; lkeuchi 

1981). To recognize non-convex objects we could, as Smith (1979) suggests, first decompose 

an object into convex parts and then represent each part by means of an EGI. This will only 

work if one can formulate an algorithm that decomposes similar objects in roughly the same 

way. We already discussed decompositions into convex parts for 2-D objects, and will turn 

to the 3-D case in section 3.3.4. 

20 A great circle on a sphere is a circle whose center is the origin of the sphere. The equator is a great 
circle of the earth and so are the meridians, but the tropics of Cancer and Capricorn are not. 

21 Minkowski showed that there is a unique convex object for any positive, continuous function K ( n) 
defined on the Gaussian sphere. This result can be generalized to any twice' differentiable strictly increasing 
function f of the two principal curvatures Ri and R2. Minkowski's problem is the special case f ( Ri, R2) = 

RiR2; Christoffel's problem is /(R1, R2) = Ri + R2. 
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3.3.3 Boundary volume approximation 

Wang et al. (1984; Martin and Aggarwal 1983) used a two-stage method to recognize 3-

D objects from their silhouettes. First, they reconstruct as well as possible an object's 3-D 

shape or bounding volume from a series of silhouettes. Note that the different vantage points 

of the observer have to be known quite accurately in order to reconstruct the 3-D shape of 

an object in this manner, and that this method can only be applied to rigid objects. In 

the second stage, they derive object invariants from the bounding volume approximation. 

These invariants include the so-called principal silhouettes, that is, the three silhouettes one 

obtains by projecting the bounding volume along each of its three principal axes. 22 The 

shape of the three silhouettes can be described by Fourier descriptors (FDs) as discussed in 

section 3.2. If an object has any holes, each will be described by a separate set of FDs and 

its position and orientation with respect to the silhouette. The principal silhouettes and the 
principal moments23 serve as indices into shape memory. 

Two experiments were performed with a shape memory consisting of 10 different kinds 

of trucks and cars. In one case, three silhouettes sufficed to recognize the object correctly, 

and in the other case, five were sufficient. In addition to the drawbacks mentioned above, 

Wang et al. (1984) noted that their method will fail whenever parts of an object are missing 

since the correct principal axes (which form the basis for the object invariants) cannot be 

recovered. This points towards the need for a more structured representation, one which can 

take such deviations from the prototype into account. 

3.3.4 Decomposition into volumetric primitives 

As has become clear in the previous discussions, the ability to decompose a complex object 

is almost a prerequisite for any successful representation of shape. If one refrains from 

decomposing an object, as in the principal silhouettes method of the previous section, the 

resulting representation is sensitive to noise and missing parts. Of course any representation 

has to deal with imperfect samples or deviating members of a category; the important point 

is that with principal silhouettes local deviations from the prototype affect the representation 

globally. Imagine, for example, that one of the wheels of a car is missing. Since this influences 

the computation of the principal axes, this local change has a global influence-it changes the 

description of all other parts of the car. \Ve will know look at some methods for decomposing 

22 Principal axes of an object are the eigenvectors of its inertia matrix. These directions describe the 
distribution of the object in space: In one direction, the object is spread out most, roughly its axis of 
elongation; and in another, orthogonal direction, it is spread out least. The third principal direction is 

simply orthogonal to the first and second directions. 
23 The moments of inertia with respect to the principal axes; see Sadjadi and Hall (1980) and Bamieh and 

DeFigueiredo (1984) for other examples of the use of moment invariants in recognition. 
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Figure 3.11 (a) Approximation of a hand by tangential spheres. (b) Graph. of spherical approximation, 

1howing elongated and fl.at parts (Mohr and Bajcsy 1983). 

solids. 

O'Rourke and Badler (1979; extended by Mohr 1982) developed an algorithm to approx­

imate 3-D objects by a collection of overlapping spheres, analogous to the way in which 2-D 

objects are approximated by overlapping disks in the symmetric axis transform. Mohr and 

Bajcsy's (1983) approach differed slightly in that they used tangential instead of overlapping 

spheres. In both cases, the decomposition of an object into spheres is considered to be but 

an intermediate step in shape representation, one that would allow properties such as elon­

gation or flatness to be easily computed. For example, in Fig.3.lla we see how a ha.nd can 

be approximated by 54 tangential spheres. This approximation naturally leads to a graph 

whose vertices represent the spheres and whose edges specify the spatial relationships be­

tween the spheres (Fig.3. llb ). This graph allows higher-level descriptors such as "elongated 

thin part" or "flat part" to be extracted. Thus the hand is described as consisting of five 

elongated parts (fingers), a. flat part (palm), and their interconnections. 

A high-level primitive which captures local properties directly and can be derived di­

rectly from an image, is the generalized cylinder (Agin and Binford 1976; Agin 1981) or 

generalized cone (Nevatia. and Binford 1977; Brooks 1981, 1983). A generalized cylinder 

is defined by its axis, which can be any curve in 3-D (hence the generalized), and planar 

cross-section. The cross-section "sweeps out" some 3-D volume as it follows the axis. The 

generalized cone is more general since the cross-section is allowed to change as it moves 

along the axis. The idea is to approximate the shape of an object by these primitives, and 

to assign each the role of "part of the object." Now, in general, one can describe a solid in 

a number of ways using generalized cones, and, consequently, decompose it in a number of 

ways. This number can be limited by applying heuristics that require parts to be generalized 

cones having a smooth axis and smoothly changing cross-section, and by preferring elongated 
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and cylindrical cones. Of course, this problem can also be minimized by choosing the right 

domain, e.g., airplanes in the vision system ACRONYM (Brooks 1981, 1983). 

Marr and Nishihara (1978; for discussion see Sutherland 1979; Nishihara 1981; Marr 

1982) formulated three criteria by which to judge shape representations designed for recog­

nition. First, descriptions in terms of the proposed representation should be reliably com­

putable, in other words, they should be accessible from an image and degrade gracefully 

with increasing noise levels. Second, all objects of interest should have a unique description. 

Third, descriptions should be stable under small. changes in shape, yet sensitive enough 

to capture small differences in shape. These considerations led them to choose an object­

centered representation using volumetric primitives over a viewer-centered one like the visual 

potential. The decisive property in favor of the object-centered representation was the ease 

with which it allows objects to be described at different scales. This is illustrated in Fig.3.12: 

Depending upon the scale, an arm consists of one or two cones. 

While Marr and Nishihara's criteria are hard to argue with, it is not clear whether their 

object-centered representation meets them in practice; nor is it clear that a representation like 

the visual potential fails to meet them. As we saw already, it is hard to recover generalized 

cones from an image and, so far, ad hoc heuristics have proved indispensable. Given this 

difficulty, it is not hard to imagine that descriptions might not always be unique, in particular 

for objects that are not obviously built from generalized cones. A representation like the 

visual potential simply circumvents these problems-assuming that the topological structure 

of the slant :field, the basis for the visual potential, can be recovered reliably. And to 

describe an object at different scales we can simply retain the visual potential at a number 

of different resolutions. 24 One major difficulty with the visual potential, and one that remains 

to be investigated, is how it changes under bendings of the object, that is, changes in the 

spatial relationships a1Ilong parts of the object. The object-centered representation naturally 

accommodates these changes because spatial relations are represented explicitly as predicates 

connecting the volumetric primitives. 

Instead of having the approximation of an object dictate its decomposition, one could 

decouple the two by :first partitioning an object and then describing the resulting parts. 

Hoffman (1983; Hoffman and Richards 1984) proposed that objects be partitioned along 

curves having a local minimum of curvature. This choice of part boundaries was motivated by 

the observation that whenever one combines two solids one creates a contour of intersection 

along which curvature has a local minimum (Bennett and Hoffman 1985; see Fig.3.6a and 

section 3.1.2). Beusmans et al. (1987) extended this analysis and derived rules to decompose 

objects without holes into parts that are usually convex. This partitioning reveals the object's 

24 For related work on the representation of the retinal image at different scales or resolutions, see \Vilsoa 
and Bergen (1979), Koenderink and van Doorn (1978; 1982), Witkin (1983) and Koenderink (1984a), Pizer 

et al. (1986, 1987). 
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Figure 3.1S A 3-D model description of a human befog. Note that a part ca.n be described at different 

levels, and tha.t spatial relationships are specified in distributed coordinate systems. The fingers a.re described 

with respect to a. coordinate system at the hand level instead of some global coordinate system (Marr and 

Nishihara. 1978). 

"deep structure," i.e., its parts and their spatial relationships. Spatial relations could be 

described by the relational model for 3-D objects developed by Shapiro et al. (1984). This_ 

model assumes that 3-D objects consist of sticks, plates and blobs, having one, two, and 

three significant dimensions, respectively. The spatial predicates are qualitative, specifying, 

for example, that two sticks are connected, but not exactly how. 

Koenderink and van Doorn ( 1986b) noted that in academic art theory shape is viewed 

as a "hierarchically ordered structure>• suggesting that "the perceptual approach is dynamic, 

not in a. temporal sense but in the sense that a partial order is apparent that relies on a 

hypothetical evolution or morphogenesis that is an integral part of the shape description: 

the shape is thought of as has been formed from a primeval, shapeless, ovoid blob that was 

articulated in first rough then finer steps, finally leading to the present object [emphasis 

in original]." One way of retracing this morphogenesis is by a blurring process described 

in terms of the diffusion equation (Koenderink 1984a). Interestingly, the blurring of two 

sufficiently close blobs until they form one object results in a contour along which there is 

a minimum of curvature, i.e., the part boundary proposed by Hoffman and Richards (1982, 

1984). This relationship between object decomposition and blurring is quite intriguing and 

deserves further study. 
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3.4 Discussion 

We have discussed representations of shape proposed by computer. vision researchers. Al­

though programs have been written to recognize characters, airplane silhouettes, etc., more 

or less successfully, it is not clear how these methods generalize. And one wonders whether 

Brousil and Smith (1967) would still maintain that "although much effort has been invested 

in pattern recognition in recent years, the problem of classifying character classes having 

substantial variation lies essentially unsolved." Their diagnosis, "a lack of an underlying 

theory," has been taken to heart by a number of researchers, most notably in my view, 
Marr, Koenderink and van Doorn. 

Marr (1982) championed what he called the computational approach, which emphasizes 

the functional aspect of vision; that is, it considers the question "What is the purpose of 
this visual information processing task?" to be of paramount interest. The answer to this 

question constitutes the underlying theory. Chomsky (1965) had already made a similar 

distinction between the what and how aspects of language understanding. His theory was 

one of competence, indicating what the syntax of English should be like, while disr~garding 
how an English sentence should be parsed to produce the correct interpretation. While 

one can argue about the specifics of proposed theories, the important fact is that there 

is something substantial to argue about. That is, I agree wholly with Sutherland (1979) 

when he concludes his review of Marr and Nishihara's 3-D model by observing that "the 

decisions ... taken in theory construction are always motivated: There is none of the 'I put 

that in because it seems to work, goodness knows why' attitude that characterizes the ad 

hocery of some practitioners of artificial intelligence. Marr and Nishihara's paper provides a 

starting point, not a finished theory." 

Another good starting point is available in the work of Koenderink and van Doorn, who 

also analyze what the visual system is for, and proceed with exploring what information the 

visual image can possibly provide to satisfy this goal. 

Before closing this section, I would like to briefly discuss an approach to shape represen­

tation that goes back to the forties, when Pitts and McCulloch (1947) and Wiener (1961) 

came to realize that "Gestalten" or figures are in fact equivalence classes of certain group 

actions. 25 Thus the "square" is an equivalence class under the group of planar translations, 

that is, we perceive a "square" no matter where it is located in the visual field. Similarly, 

under the group of dilations a "square" remains a "square;" this group captures what we 

call size constancy. However, the same is not true for the group of rotations: Rotating a 

"square" by 45° results in a "diamond." Hoffman (1966) expressed the usual perceptual 

constancies in terms of a Lie group of transformations, i.e., the group of "infinitesimal trans-

25 A group is a set G with a binary, associative operation ·, such that G is closed under ·, G contains an 

identity element and its own inverses. 
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formations." More recently, this work has been reiterated (Marko 1973; Foster 1977; Dodwell 

1983). Related work concerns auto-correlation in which a figure is represented in terms of 

transformations that map it onto itself (Uttal 1975; Gluender 1986; Kroese 1987). Thus a 

circle is mapped onto itself by the group of rotations; the square by the subgroup of rotations 

about 90°. 
An important contribution of the work on transformations is that it shows that a repre­

sentation does not have to copy, to re-present. In that sense, many of the representations we 

reviewed probably do not escape Pitts and McCulloch's (194 7) denunciation of "Gestalt psy­

chologists who will not conceive a figure being known save by depicting it topographically 

on neuronal mosaics, and [of] the neurologists ... who must have it fed to some specialized 

neuron whose business is, say, the reading of squares." 

This emphasis on the transformations an object can be subjected to in the real world 

is reminiscent of Shepard's insistence on the analogical character of representations. He be­

lieves that the essence of a representation is to reflect certain important, in this case spatial, 

relations among real world objects: "For the system of constraints that governs the projec­

tions and transformation of such bodies in space must long ago have become internalized as 

a powerful, though largely unconscious, part of our innate perceptual machinery" (Shepard 

1978). 
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4. Neurobiological aspects 

Sensations are set by the encoding functions of the sensory nerve endings and by the integrated 
neural mechanisms of the central nervous system. Afferent fibers are not hi~h fidelity recorders, for 
they accentuate certain stimulus features, neglect others. The central neuron is a story-teller with 
regard to the nerve fibers, and it is never completely trustworthy, allowing distortions of quality and 
meuure ... SenJation iJ an abJtraction, not a replication of the real world .... Each of us lives within 
the universe-the prison-of his own brain. Projecting from it are millions of fragile sensory nerve 
fibers, in groups uniquely adapted to sample the energetic states of the world around us: heat, light, 
force, and chemical composition. That i.f all we ever know of it directly; all el.fe i" logical inference. 
(Mountcastle 1975) 

In this section, we will briefly review what is known a.bout the visual system of certain 

animals, ma.inly ca.ts a.nd monkeys. Of course it is impossible to do justice to the complexity 

of this system in only a. few pages, but I do hope I will leave you with a.n idea of its overall 

organization a.nd functioning. We start with a.n overview of the visual system and identify its 

main components. Then we continue with a. more detailed discussion of the pathway devoteq 

to object recognition, giving special attention to the retina., lateral genicula.te nucleus, and 

the various cortical visual areas. 

4.1 Overview of the mammalian visual system 

In mammals, an image of (part of) the outside world is projected onto the retina. of each eye. 

The neurons in the retina somehow respond to the pattern of illumination that is the image 

and send the result to a number of other brain structures via the optic nerve. It appears 

that with few exceptions, the optic nerve in vertebrates projects to the following six regions 

in the brain (Rodieck 1979): 

(1) Suprachiasma.tic nuclei of the hypothalamus (above the optic chia.sm, the crossroads of 

the optic nerves from the left and right eye). The supra.chia.smatic nuclei are essential for 

the maintenance of a number of circadian rhythms, but do not depend on visual input for 

their rhythmic activity. It is thought that visual input keeps the rhythm synchronized. 

(2) Accessory optic nuclei in the rnidbrain. Project to the cerebellum and prefrontal cortex, 

possibly to help regulate the coordination of head and compensating eye movements 

(Cooper and Magnin 1986). 

(3) Pretectum (rostral of superior colliculus) which mediates pupillary light reflexes. The 

pretectal area also receives input from the superior colliculus, visual cortex, vent~~ct 

lateral geniculate nuclei, J.nd the frontal eye fields. 

(4) Ventral lateral genicubtc nllcleus, vLGN (part of thalamus; the pregeniculate nuc;c··:, 

in primates). vLG0." also r:•,:ci\·es input from the visual cortex, superior colliculus. ;· ~ ·­

tectum and cerebellum. : r: I ; 0 r·:•jects to the superior colliculus, pretectum, a.cc es, ~ .. 
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optic nuclei, and the su ·achiasmatic nuclei. Its function is not clear, but it seems to be 

involved in the pupillary reflex in rats, and eye movements in monkeys and cats. 

(5) Dorsal lateral geniculate nucleus, dLGN (part of the thalamus). Main target of the optic 

tract in mammals with well developed vision. In monkeys, dLGN contains six regis­

tered retinotopic maps which project to the visual cortex, and it also receives extensive 

feedback from these cortical areas. 

(6) Superior colliculus (part of brainstem; analogous to optic tectum in lower animals). It 

also receives projections from cortical areas 17, 18, 19 and the lateral suprasylvian area, 
projections which are in topographical register with the projections from the retina. Ad­

ditionally, there are topographic maps derived from the auditory, somatosensory, elec­

trosensory (in electric fish), or infrared visual systems (Sparks and Nels~n 1987). In 
rattle snakes, for instance, the infrared-derived map is in register :with the retinotopic 

map (Newman and Hartline 1982). This alignment of different maps is obviously im­
portant for combining information about the location of objects, but it can also serve 
to calibrate one map by another map. In owls, the auditory map is calibrated by the 

visual map, but not vice versa (Knudsen and Knudsen 1985; Harris 1986). The superior 

colliculus itself projects to the pulvinar and lateral posterior nucleus of the thalamus, 

both of which project mainly to extrastriate areas in visual cortex (Bender 1981). In 
monkeys, the superior colliculus helps control the direction of gaze, and in frogs it pre­

sumably controls capturing of flies. In cats, two types of collicular neurons have been 

identified, one of which is sensitive to the relative motion between a small spot and a 

moving background grating, whereas the other type is tuned to absolute motion of a 

spot (Mandl 1985). 

It is important to keep in mind that even among mammals, these patterns of interconnections 

vary considerably. For example, in primates the dLGN projects mainly to striate cortex and 

not to extrastriate cortex, whereas in cats both pathways exist (unlike a monkey, a cat 

without striate cortex is not blind). 

At the cortical level, a large number of visual areas has been identified on the basis of 

function, cytoarchitecture, interconnections, and topographic organization (Zeki 1978; Van 

Essen 1979, 1985; Mishkin et al. 1983; Kaas 1987). The primary visual or striate cortex 

(Fig.4.1), for example, has a very distinct cytoarchitecture which clearly sets it apart from 

bordering cortex; in fact, its name derives from the stripes visible in cross sections (Fig.4. 7). 

In addition, the striate cortex has a complete map of the visual field (Fig.4.2). Thus far 

a.. __ nost twenty visual areas have been identified in the macaque monkey (Van Essen 1985); 

and, indeed, a major portion of its cortex is devoted to vision. Fig.4.2 illustrates the layout 

of the currently known visual areas of the macaque monkey, an Old World primate. These 

cortical areas have extensive interconnections, but also project to a number of subcortical 
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Figure 4 .1 Visual system of the macaque monkey has two main pathways, one devoted to objects themselves, 

the other to the relation of objects with their environment, i.e., their spatial location and movement. After 

reaching the striate cortex, each pathway follows a different course: the object-oriented pathway passes 

through a number of stations until it reaches the pole of the temporal lobe, and the spatial pathway continues 

to the posterior parietal cortex (Mishkin and Appenzeller 1987). 

structures (Graham et al. 1979; Mishkin and Appenzeller 1987). 

An important question is whether there is some order in this multitude of visual areas 

and interconnections. Van Essen and Maunsell (1983) formulated principles that allow these 

areas to be organized in a hierarchy. They noted that, in general, connections between areas 

are reciprocal in the sense that if neurons of area A synapse with neurons in area B then the 

reverse is also true, i.e., neurons of area B synapse with· neurons in area A. However, the two 

interconnections usually are between different cortical layers: The "forward" connections 

arise in superficial layers of the cortex and terminate mainly in layer IV, whereas "feedback'' 

connections originate in both superficial and deep layers and terminate mainly outside layer 

IV. The first type is called ''forward" because the dLGN projects mainly to layer IV of the 

striate cortex. \Ve now use the "forward" connections to assign the visual areas to different 

levels of a hierarchy. Each area is assigned to the level immediately above that of all the 

areas having a "forward" connection to it, and areas having no "forward" connections are 

assigned to the first level. Connections that are not clearly "forward" or "feedback" ar,• 

assumed to be between areas ill the silrne level. Applying these rules to the visual are:i.,; . : 
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Figure .4.2 (a.) Side view ofthe macaque left hemisphere indicating the layout of visual areas and the projec­

tions of the vertical and horizontal meridian of the right visual hemifield. Note that the fovea is represented 

in adjacent areas in Vl, V2, V3, and V4. TI, inferior temporal cortex; STS, superior temporal sulcus; +, 
upper visual hemifield; -, lower visuci.l hemifield (Desimone et al. 1985). (b) Flattened representation of 

the visual areas of the macaque left hemisphere (Gattass et al. 1985). 

the macaque monkey results in ::t ~ix-le\·el hierarchy (Fig.4.3). 

If this hierarchy is indeed me:tni :1 .;ful one would expect higher levels to correspond to 
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Figure 4.3 Hierarchy of the visual areas in the macaque cortex. The pathways that have been tested were 

found to be reciprocal. Vl, primary visual or striate cortex; VP, ventral posterior {considered to be part of 

V3 by some authors); MT (VS), middle temporal; PIT, posterior inferotemporal; LIP, lateral intraparietal; 

MST, medial superior temporal; VIP, ventral intrapa.rietal; AIT, anterior inferotemporal (Van Essen 1985). 

higher levels of visual processing. And indeed, one measure of complexity of visual processing, 

the size of receptive fields, increases in going from bottom to top in the hierarchy. One 

would also expect that visual areas at the same level would process different kinds of visual 

information. And again there is evidence that there are at least two functional streams; 

one devoted to spatial vision, the other to object recognition and color (Schneider 1969; 

Macko et al. 1982; Van Essen and Maunsell 1983; Mishkin et al. 1983; Shipp and Zeki 1985; 

Desimone et al. 1985). Note that different authors emphasize different aspects of spatial 

vision. Van Essen and Maunsell (1983) and Sakata et al. (1985) refer primarily to motion 

analysis, whereas Macko et al. (1982), Mishkin et al. (1983), and Andersen et al. (1985) 

emphasize spatial localization. Of course these two aspects are closely related, since motion 

often leads to the localization of an object. 

The pathway specialized in motion analysis proceeds from Vl to MT (middle temporal), 

and from there to areas l\IST (medial superior temporal) and VIP (ventral intraparietal) (Van 

Essen and Maunsell 1983). The majority of cells in MT, MST and VIP are sensitive to moti,)n 

direction, motion speed and binocular disparity, ignoring stimulus shape and color. Although 

neurons of area Vl show similar properties, their receptive fields are about two orders ,,f 
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magnitude smaller, in di ca ti ve of a less advanced. stage of information processing. That 

processing becomes more sophisticated as one goes up in the hierarchy is further illustrated 

by cells in MST and area 7a which distinguish between optic flow produced by movement in 

the scene and optic flow resulting from eye movements, a distinction not made at the Vl or 

MT level (Sakata et al. 1985). 

The pathway subserving object recognition includes areas Vl, V2, VP, V4, and IT. Of 

those, V2, VP, and V4 have many cells involved in color analysis, while remaining selective 

for orientation and disparity. As for object recognition, cells have been found in temporal 

areas that respond to specific stimuli such as hands and faces (Rolls 1984; Perrett et al. 

1982, 1984, 1985; Desimone et al. 1984, 1985; Baylis et al. 1985; Kendrick and Baldwin 

1987). And as in the spatial pathway, these cells have very large receptive fields, suggesting 

convergence of information. However, it is not at a.11 clear what their triggering properties 

are and what (if any) are the intermediate stages 'Of image analysis, stages between edge 

detection and recognition. 

Thus, in solving the "what is where" problem, it seems that the visual system devotes one 

subsystem to the "what" and another to the "where" question. To solve the original problem, 

the "what" and "where" have to be combined. This can be done by having the subsystems 

project to the same location in the brain, i.e., by combining their results explicitly. A 

candidate location would be the hippocampus (Mishkin et al. 1983), a subcortical structure 

of the temporal lobe. The hippocampus has so-called place-field cells which fire only if the 

animal is at a particular location relative to some set of landmarks (O'Keefe 1979; Zipser 

1985). Assuming that landmarks are recognized visually, one could say that place-field cells 

combine the what and where. Alternatively, the place-field cells fire only if some object 

is seen from a particular vantage point. In this case, spatial information is represented 

implicitly by means of the view or aspect of a known object. 

Vision is only one of the senses that informs an organism about its environment. Other 

important sensory systems include touch and hearing. Since these systems refer to different 

aspects of the same object-stroking a cat, one can hear it purr and see it roll on the floor­

one might expect them to converge on certain regions ·of the brain. This is indeed the case. 

All three sensory systems, vision, touch, and hearing, have overlapping projections to the 

premotor and prefrontal regions of the frontal lobe, and the parahippocampal gyrus of the 

temporal lobe (Pandya and Seltzer 1982). The premotor cortex projects to the motor cortex, 

suggesting that it translates sensory "input" into "motor" output. Lesions in premotor 

cortex confirm this interpretation: the animal is unable to respond to contralateral sensory 

stimulation and cannot learn motor tasks involving crossmodal integration (Pandya and 

Seltzer 1982). The amygdala, another structure that receives extensive input from all sen~ -,ry 

systems, is thought to mediate crossmodal associations. Removal of the amygdala leads to 

the Kluver-Bucy syndrome in which monkeys repeatedly and indiscriminately investigate 
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inedible objects, seemingly unable to remember the results of tasting the object when looking 

at it or touching it. And together with the hippocampus, the amygdala seems to be involved 

in memory formation by way of the basal forebrain's cholinergic system which innervates 

the final stages of the visual systems, that is, areas where "perceptions" are though to be 

consolidated (Murray and Mishkin 1985; Bachevalier et al. 1985; Mishkin and Appenzeller 

1987). 

4.2 Visual pathways 

As we saw in the previous section, the visual pathway subserving object recognition passes 

through three main structures: the retina, the dorsal lateral geniculate nucleus in the thala­

mus, and the cortex. We will now discuss each in some detail, look at its structure and the 

properties of its cells, and from that try to understand its function. 

4.2.1 Retina 

The eye functions much like a camera, projecting an image of the world onto a photo-sensitive 

surface, in this case a more or less hemispherical surface called the retina (Fig.4.4a). In 

functional terms, the input to the retina is a pattern of light and its output is a pattern of 

activity in the retinal ganglion cells, whose fibers converge on the blind spot and continue 

as the optic nerve. However, the activity in the optic nerve does not merely reproduce the 

input pattern of light and dark; that is, the output of a ganglion cell at position (x, y) is not 

proportional to the light intensity at (x, y) as sensed by the photoreceptors cells. Instead, 

as we will see, ganglion cells signal differences in light intensity, not absolute values (we will 

also see that this is not true for low light levels: in starlight, ganglion cells do signal absolute 

light intensity). Thus the analogy between eye and camera breaks down immediately after 

the photoreceptor layer, at least for daylight conditions. 

The retina consists of a number of different cells, commonly divided into five classes. In 

addition to the photoreceptors and ganglion cells, there are bipolar cells, horizontal 

cells, and amacrine cells, which together form a complex network connecting photore­

ceptors and ganglion cells. Bipolar cells directly connect photoreceptors and ganglion cells; 

horizontal cells interconnect photoreceptors and also connect phqtoreceptors and bipolars; 

and amacrine cells receive input from bipolars and direct output to other amacrine cells, 

bipolars and ganglion cells (Fig.4.4b ). These five basic cell types can be further subdivided 

on the basis of morphology, physiology, and neurotransmitters, reaching a total of 60 for the 

cat retina. 1 I will not discuss all retinal cell types, but restrict the discussion to photorecep-

1 For reviews see Barlow and ~Iollon (1982), Sperling (1983), Kandel and Schwartz (1985), and Masland 
(1986). The May 1986 issue of Trcn,/s in Neurosciences is devoted to information processing in the 
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tors and ganglion cells, and some of their interconnections. 

Retinal photoreceptors come in two types: rods and cones. Rods in the cat retina 

are extremely sensitive, especially in the blue-green part of the spectrum (500 nm) where 

absorption of one quantum results in observable reactions at the ganglion level (Stryer 1987; 

Schnapf and Baylor 1987). Cones are less sensitive, having a threshold which is about 

three log units higher than that of rods, and come in three varieties, each tuned to a slightly 

different range of wavelengths, having peak sensitivities at 450, 500, and 550 nm. As shown in 

Fig.4.4b, both rods and cones respond to light absorption by membrane hyperpolarization. 2 

There are on the order of 108 rods and 5 x 106 cones, arranged in a regular mosaic 

(Fig.4.4c), whose composition depends on position in the retina: there are more cones in 

the fovea. than in the periphery, and more rods in the periphery than in the fovea. (Sterling 

1983; Curcio et al. 1987; Lia et al. 1987). The fact that the optic nerve has only 106 axons3 

suggests a high degree of convergence in the p~otoreceptor-ganglion pathway. And Sterling 
et al. (1986) do indeed report that approximately 1500 rods converge on a single ganglion 

cell. They also report a diverging pathway which starts with 1 rod, passes through 2 rod 

bipolars, 5 amacrine cells, and 8 cone bipolars before it reconverges oil 2 ganglion cells. 

Given their different sensitivities, one might have expected the two photoreceptors, the 

rods and cones, to be the first stages of two parallel pathways. It turned out, however, that 

the rod and cone system already interact at the receptor level: cones receive input from 

rods via gap junctions, but not vice versa.. (Sterling 1983; D 'Zmura and Lennie 1986). And 

although rods and cones synapse to separate populations of bipolar cells, the rod and cone · 

bipolars, their pathways converge again since rod bipolars synapse to amacrine cells which 

in their turn are connected to cone bipolars. Finally, cone bipolars are connected to ganglion 

cells. Thus there seem to be two pathways, one rod-cone-cone bipolar-ganglion cell, and 

the other rod-rod bipolar-amacrine cell-cone bipolar-ganglion cell. Sterling (1983) sugget 

that during dark adaptation the visual system switches from the first to the second pathwa_., 

a switch possibly regulated by certain types of horizontal and amacrine cells. 

As mentioned before, the output of ganglion cells is not simply proportional to local 

light intensity, at least beyond certain light levels. Instead, they typically respond to a 

small spot of light in a dark field but not to a uniform field, even though the local light 

intensity is similar. Kuffier (1953) was the first to characterize the receptive fields of cat 

ganglion cells and distinguish between ON- and orF-center cells. The receptive field of an 

retina. 
2 That is, the membrane potential increases from -25m V to about -60m V. Note that photoreceptors are 

exceptional in this respect: most sensory receptors depolarize in response to a stimulus. 
3 Perry and Cowey (1985) estimated that there are between 1.4 and 1.8 X 106 ganglion cells, and 

3.2 X 106 cones in a monkey retina; l\fosland ( 1986) reports that there are 3.5 X 105 ganglion cells in a 

rabbit retina. 
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Figure 4.4 (a) Cross section of eye and retina (Kandel and Schwartz 1985). (b) Response of each of the 

five main retinal cell types to a small and large stimulus. OPL, outer plexiform layer; IPL, inner plexiform 

layer; NF, nerve fibers forming optic nerve. (Barlow and Mallon 1982). (c) Rod and cone mosaics at level of 

inner segments in cat retina. Central area; density for cones, 32XI0 3 /1~11n 2 ; for rods, 338X 103/mm2. (d) 

About 1 mm from central area; density for cones, 11 X 103 /mm2 ; for rods, 537X 103 /mm2 (Sterling 1983). 
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ON-center ganglion cell consists of a central region and an annulus surrounding the center; 

illumination of the center increases output, whereas illumination of the surround decreases 

output. Off-center cells show the opposite behavior: Illumination of the center decreases 

output, illumination of the surround increases it. 4 The ON-center ganglion cells are slightly 

less numerous (Sterling 1983). 

In the mid-sixties, a further distinction was drawn between cells having linear spatial 

summation-X-cells-and cells having nonlinear summation-Y-cells (Enroth-Cugell and 

Robson 1966). This distinction became less clear-cut when it was shown that X-cells re­

sponded linearly only to low contrast stimuli (Enroth-Cugell et al. 1983), and that Y-cell 

have linear as well as nonlinear components (Shapley and Lennie 1985). A few years later, X­

and Y-cells were also shown to differ in time course of their response, the response of X-cells 

being "sustained" and that of Y-cells "transient." Lennie (1980) criticized this characteri­

zation because time course of response depends critically on such factors as light adaptation 

(the more light-adapted, the more transient the response) and stimulus contrast (transient 

response is only elicited by high contrast). Fleet et al. (1984) also questioned the distinction 

between transient and sustained responses, and noted that both X- and Y-cells respond to 

some extent "transiently." 

The functional differences between X- and Y-cells are correlated with morphological 

differences. X-cells (called beta cells by anatomists) have a medium sized cell body and 

axon, and a narrow (20-300µm diameter), densely branched, dendritic tree. Y- or alpha 

cells, on the other hand, have a large cell body and axon, and a wide (180-lOOOµm diameter), 

sparsely branched, dendritic tree (Sterling 1983). 

The X- and Y-type ganglion cells occur in very different proportions: In the cat, 553 .of 

all ganglion cells are of the X-type, 43 of the Y-type, and the remaining 413 of the W-type. 

This last type does not seem to have the distinct center-surround organization and appears 

to be specialized for detecting moving stimuli (Kandel and Schwartz 1985). As always, note 

that these proportions are species dependent. In the monkey, there are only a few W-like 

cells, whereas rodents do not have any X-like ganglion cells (Stone and Dreher 1982). The 

targets of the three types also differ: X-cells project to the LGN, W-cells to the superior 

colliculus, and Y-cells to both. In other words, already at the level of the retina, there is a 

large degree of parallelism in the processing of the visual image. 

To pursue the similarities and differences between species a little further, what are called 

X (Y)-cells in cats are called P(l\1)-cells in monkeys. because of their differing projections to 

the LGN: P-cells project to the parvocellular layers cid M-cells to the magnocellular layers 

of the dLGN (see next section for more details). Table I summarizes the properties of these 

4 However, according to Allman et al. (1985), a moving spot as far away as 90°, that is, outside the 

surround, can still decrease a cell's response. 
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Table I. Propertie1 o{ Ganglion Cells in the Cat. and Monkey (Shapley and Perry 1986). 

Cat X Cat Y ,\1onkey P \1unkn \1 

Relative 
Relative receptive field center 

size smaller larger smaller larger 

Relative axonal conductton 

velocity slower faster slower faster 

Dendritic field diameter smaller larger smaller larger 

Absolute 
Non-linear subunit input '.'Jo Yes No NoMx 

Yes Mv 

Axonal conduction velocity 18 m s- 1 50ms- 1 13 m s- 1 21 ms-' 

Colour opponency No No Yes No 

Central receptive field size 0. l 0 () 30 0.01° 0.06° 

Projection pattern to brain Cnbranched Branched Unbranched Unbranched . 
Peak cell density mm-' 4500 200 29600 3700 

Contrast gain High High Low High 

classes of ganglion cells. Although there are obvious similarities between X and P-cells, and 

Y and M-cells, the differences between these classes are just as obvious. On the basis of 

this and related evidence, Shapley and Perry (1986) suggest that M-cells can be divided into 

Mx and My classes. In addition to the data. shown in Table I, Kaplan and Shapley (1986) 

showed that M-cells are more sensitive to contrast tha.n P-cells. They conjecture that the 

M-cell pathway operates at low contrast and low to intermediate spatial frequencies (large 

dendritic and receptive field), and that the P-cell pathway takes over when M-cells become 

saturated. 

As a. summary of the above discussion, let us consider the results of a detailed elec­

tronmicroscopic study of the circuitry of the beta (or X-type) ganglion cell (Sterling 1983; 

Sterling et al. 1986). As illustrated in Fig.4.5, both the ON- and OFF-center beta cells 

receive input from two bipolars, which presumably already have a center-surround organi­

zation. Ea.ch pair of bipolars seems to function in a "push-pull" manner, one of the bipolars 

exciting the beta. cell and the other inhibiting it. This might account for the wide range of 

spike frequencies observed in beta cells (from 0 to 700 spikes/s). Also shown in Fig.4.5 is 

the alternative pathway used after dark adaptation, in which beta-cells are excited via the 

rod-rod bipolar-a.macrine-cone bipolar-beta pathway. This switch in pathways causes the 

receptive fields of the beta-cells to lose their antagonistic center-surround organization since 

the cone bipola.rs are now indirectly excited or inhibited at the axonal level instead of at the 

dendritic level, the supposed origin of the antagonism between center and surround. 

Given the many different types of ganglion cells, one wonders about their role in visu;:i.l 

processing. Some suggest that neigl Soring, parallel rows of ON- and OFF-center cells form 
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Figure ,/.5 (a) Schema of m.icrocircuitry of retinal beta cells. (b) Receptive fields of beta cell under light 

(phototopic-mesotopic) and dark (scotopic) conditions. (c) Receptive field of beta cells is generated by the 

"pushing" and "pulling" of an excitatory and an inhibitory bipolar. OPL, outer plexiform layer; INL, inner 

nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; CP, cone pedicle; RS, rod spherule; CB, 

cone bipolar; RB, rod bipolar; AII, AII amacrine; DA, dopamine amacrine (Sterling 1983). 

the basis for orientation detection (Marr 1982; Heggelund and Moors 1983). And indeed 

ON- and OFF-center cells converge at the cortical level (Swindale 1986). If both cell types 

are thus combined, one would expect that blockage of say the ON-center pathway would 

impair vision dramatically. This appears not to be the case. Of all the visual functions 

tested, only contrast sensitivity and the detection of light increment are significantly affected 

after chemically5 blocking the ON-center pathway (Schiller 1982; Schiller et al. 1986). The 

ability to discriminate between gratings with different orientations is not impaired. This 

suggests that orientation can be computed within the OFF system itself, without input 

from the ON system. Poggio (see Cllman 1986) proposed just such a structure: two parallel, 

nonoverlapping rows of OFF-cells converging on a cortical cell. If an edge falls just in between 

these two rows, one will be active ( cbrk side of the edge), the other inactive (light side of the 

edge). And the cortical cell combining the first row with an "AND" and the second with a 

5 by means of the glutamic acid anJ.logue 2-J.mino-4-phosphonobutyric acid. 
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"NOT-AND," will thus signal the presence of an edge whose orientation coincides with that 

of the two rows. Of course, a complementary edge detector can be built with ON-center cells. 

Note that the displacement between the two rows could be used to encode spatial frequency: 

the larger the displacement the larger the spatial frequency it is designed to detect. But, 

of course, the results of blocking the ON-center pathway do not exclude the possibility that 

orientation is detected by converging rows of ON- and OFF-cells, they merely show that 

there are other means. 
Sherman (1979) suggested that Y-cells are primary involved in basic shape analysis while 

X-cells serve to add more details. This suggestion was motivated by three observations. First, 

blurring or defocusing, which eliminates high spatial frequencies from the image, does not 

affect recognition whereas the opposite, elimination of low spatial frequencies, does. Second, 

at spatial frequencies below .5 cycles/degree, X-cells are more sensitive to contrast than Y­

cells; their contrast sensitivity for higher frequencies being similar. And third, lesions in the 

striate cortex of cats (which block the X pathway but not the Y pathway since the latter 

proceeds through extrastriate and striate areas) do not impair shape recognition. 

Noting that cortical cells are very quiet until presented with appropriate stimuli, Lennie 

(1980) proposed that Y-like cells regulate the sensitivity of cortical cells. Without any 

stimulus, Y-like cells inhibit cortical cells, but when a. stimulus is present the inhibition is 

removed. Lennie calculated that, in the cat, there are approximately 950 hypercolumns 6 

for each eye, and that each column is served by no more than 4 Y-like cells. Interestingly, 

the axons of Y-cells conduct spikes faster than those of X-cells, 30-40 m/s versus 18-25 m/s 

(Stone and Dreher 1982). Since the same is true for the X-like and Y-like cells of the dLGN, 

signals traveling along fast-conducting axons take about 6ms to go from retina to cortex 

as opposed to lOms for slow-conducting axons (Lennie 1980). In other words, Y-like cells 

could disinhibit cortical cells before the X-like signals arrive. In fact, Maffei (1985) suggests 

that cortical complex cells which receive Y-like input control the activity and function of 

the simple cells. This functional role of the complex cells also explains the observation 

that complex cells have spontaneous activity whereas simple cells do not: The spontaneous 

spiking of complex cells inhibits simple cells. 

4.2.2 Dorsal lateral geniculate nucleus 

The dorsal lateral geniculate nucleus ( dLGN) forms part of the thalamus, a collection of 

nuclei in the middle of the brain. In Old World monkeys, apes, and man, dLGN consists 

of layers (laminae) of cell bodies, each layer containing a retinotopic representation of the 

contra.lateral visual hemifield. The central 15-20° of the visual field are mapped onto six 

6 Small patches in striate cortex thought to encode all possible orientations at particular retinal positions; 

see section 4.2.3 and Fig.4.10. 
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Figure 4.6 (a) Projection of the retinas onto the LGN. Layers 1 and 2 are magnocellular, the remaining 

parvocellular (Kandel and Schwartz 1985). (b) Section of the right LGN of an adult macaque, stained for 

cell bodies. Each of the six layers contains a map of the left visual hemifield. The six maps are in register 

such that the neurons along the arrow all respond to the same point in the visual field (Hubel and Wiesel 

1979). 

layers, the remaining part onto four layers. As shown in Fig.4.6, half the laminae receive 

their input from the ipsilateral eye, the other half from the contralateral one. Interestingly, 

this lamination is only prevalent in animals having substantial binocular visual fields, other 

animals (e.g., rat, squirrel) have fewer and less clearly separated laminae (Lennie 1980). 

The six layers found in certain primates are divided into four dorsal (or parvocellular 

for small cells) and two ventral (or magnocellular for large cells) layers. The magno­

cellular and parvocellular layers also differ functionally, the differences resulting from their 

being targets of different populations of retinal ganglion cells, X- (Y-) cells projecting to the 

parvocellular ( magnocell ular) la ye rs. Th us cells in parvocell ular layers are color-sensitive 
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and have low contrast sensitivity, whereas cells in magnocellular layers are broadly tuned 

and have a contrast gain approximately ten times higher than that of cells in parvocellular 

layers. Kaplan and Shapley (1986) suggest that these two classes are adapted to function 

at different light intensities: cells with high contrast gain operate at low light levels, and 

as they become saturated with increasing light intensity, cells with low contrast sensitivity 

take over. This is reminiscent of the switching between the pathways subserving scotopic 

(low light levels) and phototopic (high light levels) vision in the retina; it suggests that these 

pathways remain parallel at least until the dLGN. 

Besides the differences between parvo- and magnocellular layers, there are differences 

within the four parvocellular layers. Schiller and Malpeli (1978) found that the two dorsal 

layers (5 and 6) have predominantly ON-center cells (93.7% with red, green, and white 

test spots), while the two ventral layers (3 and 4) have mainly OFF-center cells (81.6%). 

Curiously, when using blue spots as test stimuli, ON-center cells are found in layers 3 and 

4, but rarely in 5 and 6, where the other ON-center cells are found (OFF-center blue cells 

are already absent in the retina). The presence of OFF-center cells in layer 3 is further 

corroborated by the fact that blocking layer 3 has the same effect on cortical cells as blocking 

the OFF-center pathway at the retinal level (Schiller 1982). In both cases, the dark edge 

response of cells in the striate cortex is reduced or even eliminated. 

As mentioned before, cortical projections of the dLGN are species dependent. For in­

stance, in cats dLGN projects to both striate (17) and extrastriate (18,19) cortex, whereas 

its projection is limited to striate cortex in macaque monkeys (Rodieck 1979; Lennie 1980). 

Within these pathways exist subpathways, going from particular geniculate layers (and there­

fore presumably particular cell types) to particular cortical layers. Consider the simplest ex­

ample, that of the monkey. Parvocellular layers (X-like) terminate mainly in layer IV c/3 but 

also in IVa and VI. l\lagnocellular layers (Y-like) project to !Vea, IVc/3, and VI (Fig.4.13). 

The situation in the cat is more complex, but if we consider only the projections to striate 

cortex, we find a similar pattern: X-like cells terminate in layers IV c and VI, Y-like cells in 

IVab and VI. 

Receptive fields of geniculate cells do not differ substantially from those of retinal gan­

glion cells, i.e., they are of the 0 N / 0 FF antagonistic center-surround type (Hubel and Wiesel 

1977; Lennie 1980; Kandel and Schwartz 1985; Shapley and Lennie 1985). This does not 

mean that the dLGN merely relays signals from retina to cortex. If this v :e the case one 

would expect the majority of the synapses in the dLGN to have originated from retinal 

ganglion cells, which, it turns out, is not the case (Sherman and Koch 1985). Only between 

10 and 20% of the synapses belong to retinal ganglion cells, and, in fact, around 503 of all 

synapses come from layer VI in the visual cortex. The remaining are thought to have a local 

origin and to be inhibitory. In addition, biophysical studies have shown that the behavior 

of geniculate neurons can be changed such that it does not relate to incoming retinal sign_als 
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Figure 4. 7 (a) Occipital lobe of macaque seen from behind and above, demarcated in front by the lunate 

sulcus (L ). It consists mainly of striate cortex (shaded). If followed medially, the striate cortex curves around 

and continues underneath the convexity ( C) of the occipital lobe. (b) Cross section of· .. ie striate cortex along 

vertical line in (a). Note the convexity and the fold underneath it. Arrows indicate the striate-extrastriate 

border. ( c) Outer 2mm of striate cortex, magnification of rectangle in b (Hubel and Wiesel 1979). 

but assumes a more autonomous character. This led Sherman and Koch (1985) to propose 

that dLGN modulates signals from retina to cortex as a function of the behavioral state of 

the animal. 

4.2.3 Visual areas in the cortex 

The primary visual cortex, also known as striate cortex, area 17, or Vl, occupies most 

of the occipital lobes in primates (Fig.4. 7a). Fig.4. 7b illustrates the structure of the cortex 

which is about 2mm thick and consists of alternating layers of cells and processes. It also 

indicates that there is a histological difference between striate and extrastriate cortex, the 
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Figure ,/.8 (a) Visual stimulus consisting of flickering squares. (b) Pattern o.f activity in striate cortex while 

watc:hing 1timulu1 of (a). Activity is measured by radioactive deoxyglucose uptake (Tootell et al. 1982). (c) 

Visual stimulus of (a.) transformed by log(z+ 0.3). Except for the periphery, this map corresponds well with 

the experimental data (Schwartz 1984). 

former being more clearly striped when staining cell bodies using the Nissl method. The 

most common numbering of the layers is shown in Fig.4.7c. 

The striate cortex of each hemisphere contains a retinotopic map of the complete con­

tralateral hemifield plus about 2° of the ipsilateral hemifield along the vertical meridian. The 

mapping between visual field and striate cortex in a macaque monkey is shown in Fig.4.8 

(Tootell et al. 1982). At the top we see the visual stimulus: three concentric rings and 

eight rays emanating from the locus to be foveated by the monkey. The rings and rays are 

composed of small squares that flicker at 3 Hz. At the bottom we see the resulting pattern of 

activation in the striate cortex at the level of laye~ IVb,c. 7 One way to describe this mapping 

is by its "magnification factor": the ratio of the distance between two nearby points on the 

cortex and the distance between the two corresponding points on the retina. In other words, 

the magnification factor is the derivative of the function that maps the retina. onto the cortex. 

The value of this derivative has been found to be inversely proportional to eccentricity, i.e., 

it decreases as one moves away from the fovea, suggesting that the map itself is logarith­

mic. Schwartz (1977ab, 1980, 1984; see also Mallot 1985) proposed the complex logarithm 

log(z+ a), where points z on the retina are given by their polar coordinates z = (r, </>),and a 
is a small number, typically less than five. For small z, log( z +a) ;:::: ln a+ z/ a, a linear map. 

For large z, log( z + a) behaves like log z1 which maps polar coordinates ( r, </>) into cartesian 

coordinates (log r, </>). Th us, concentric rings (constant r) are mapped onto vertical lines, 

and rays (constant 1>) are metrped onto horizontal lines. Fig.4.8 juxtaposes the function 

log(z + .3) and the cortirnl etcti\·ity map obtained by Tootell et al.; the two patterns match 

7 Measured by glucose utiliz~tt·:Jn t!t tlte '.2-[ 14 C]deoxy-D-glucose method. 
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reasonably well except for the peripheral visual field. 

Cells in striate cortex differ fundamentally from retinal ganglion and geniculate cells. 

They often respond to stimulation from both eyes instead of from one eye only, and they 

are most responsive to line segments as opposed to circular spots. Even though many 

cells in striate cortex respond to visual stimuli from both eyes and are tuned to horizontal 

disparity (Poggio and Poggio 1984; Poggio et al. 1985), they still respond to monocular 

stimulation. Interestingly, this response is not symmetric: in many cases, one eye will elicit 

a much stronger response than the other (Hubel and Wiesel 1968, 1970, 1977). Accordingly, 

cells have been characterized by their ocular dominance, some being dominated by the 

left eye, others by the right eye. In some species, cells with the same ocular dominance 

are grouped in parallel bands, between 350 and 500µm wide, running perpendicular to the 

striate-extrastriate border (Fig.4.9). 8 This pattern is clearly visible in Old Word monkeys, 

apes and humans, but conspicuously absent in New World monkeys (Hendrickson 1985). 

The ocular dominance columns are found in layers IVa,c, while layers II and III show rows 

of blobs, the spacing between blobs suggesting that they are the continuation of the layer IV 

bands. A cytochrome oxydase stain, another measure of cellular activity, reveals the same 

rows of blobs in layers II and III, but also in layers IVa and IVc (Hendrickson 1985). Since 

this is the case for both Old and New World monkeys, it seems that the rows of blobs and 

the ocular dominance columns are not related. 9 

In addition to combining inputs from both eyes, cells in striate cortex analyze orientation 

in the visual field, at least that is suggested by their response to lines and edges at different · 

orientations.10 In their studies of receptive field properties, Hubel and Wiesel (1968, 1977) 

distinguished between simple, complex, and hypercomplex cells. Simple cells respond 

quite selectively to the position and orientation of an edge. Deviations as small as 10° from 

the preferred orientation can silence a simple cell. Compared. with simple cells, complex 

cells have a larger receptive field, are insensitive to the position of the stimulus within that 

field, and are slightly less selective for orientation. Hypercomplex cells differ from complex 

cells in that they are sensitive to the length of the edge: extending the edge in one or both 

directions can completely inhibit a hypercomplex cell (Although in widespread use, Wiesel 

and Gilbert (1986) suggest that the term "hypercomplex" be abandoned since simple cells 

also show end inhibition). This "end-inhibition" in hypercomplex cells can be selectively 

8 In prefrontal cortex, ipsilateral projections from the parietal lobe alternate with callosal projections 

from the contralateral frontal lobe ( Goldman-Rakic and Schwartz 1982). 
9 Interestingly, antiserum to calbindin, an calcium-binding protein, stains cortex except at the cytochrome 

oxydase rich blobs (Celio et al. 1986), and intracellular calcium decreases the affinity of receptors for GABA 
(Inoue et al. 1986), an inhibitory neurotransmitter thought to be involved in generating orientation selectivity 

(Wolf et al. 1986). 

lO However, cells in areas 17 and 18 also respond to auditory stimuli (Fishman and Michael 1973), and 

proprioceptive signals from extraocular muscles ( Buisseret and Maffei 1977; Buisseret and Singer 1983). 

78 



Fu vt"-

., .. b . ·· ....... 
... . ·~ . ,,. 

' . ' : 

Figure 4.9 (a) Ocular dominance columns at layer IVC in striate codex of macaque monkey. Dashed line 

indicates the striate-extra.striate border. (b) Fingerprint of human index finger at same scale (Hubel and 

Wiesel 1977). 

suppressed by inactivating layer \'I with the inhibitory transmitter 1-aminobutyric acid or 

GABA (Bolz and Gilbert l 9Sf3). 
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Although it is satisfying to neatly order cortical cells and put them in discrete categories, 

it is not clear to what extent these categories are discrete as opposed to being the two ex­

tremes along a continuum of receptive field properties (Shapley and Lennie 1985). Consider, 

for example, the response to a drifting sine grating. The response of simple cells typically 

is modulated: its mean spike rate increases and decreases as the light and dark bars of the 

grating pass over its receptive field. Complex cells respond with an increased spike rate, a 

response which becomes modulated only for very low spatial frequencies. If we map cortical 

cells as a. function of the modulation of their response to drifting sine gratings, we obtain 

a continuous distribution with simple and complex cells overlapping. While this is true for 

the cat, the distribution in the monkey is bimodal, one peak corresponding to simple cells, 

the other to complex cells. "Whether this difference between species is real remains to be 

investigated. The question of the discreteness of the simple and complex categories therefore 

remains troubling, and requires further investigation with quantitative techniques" (Shapley 

and Lennie 1985). 

As their response to moving gratings indicates, some cortical cells are sensitive to tempo­

ral frequency as well as spatial frequency (Tolhurst and Movshon 1975), and their receptive 

fields should thus be characterized in space-time instead of in space only. On the basis of 

psychophysical experiments, Burr and Ross (1986) constructed the spatio-temporal recep­

tive field of human motion detectors. They found that the temporal component of receptive 

fields is very similar, having a summation period of lOOms and an optimal response at a 

temporal frequency of 10 Hz. Emerson et al. (1985) reported similar receptive fields for 

motion detectors in the cat's striate cortex. 

Given that cells in the striate cortex are quite sensitive and selective for orientation and 

that the striate cortex contains a retinotopic map of the visual field, the question arises how 

the two are fitted together, that is, how are the orientation-selective cells ordered on the 

cortical surface? One could, for example, surmise that different cortical layers are selective 

for different orientations, and that moving along the cortical surface, one encounters cells 

tuned to slightly different locations in the visual field. This simple arrangement turns out 

not to be true. Instead, one finds that cells underneath a certain cortical position share 

the same orientation preference (Hubel and Wiesel 1968, 1977; Mountcastle 1978). In other 

words, if one records from an electrode as it proceeds through the cortex in a direction 

perpendicular to the cortical surface, then one will find that all cells respond maximally 

to the same orientation (except for cells in layers IVE and IVC which are broadly tuned). 

However, recently Bauer and coworkers (Bauer 1982; Bauer et al. 1983) found an abrupt 

shift in orientation preference at the IV-V border. On average, this shift was 55°, with 703 

of the electrode tracks showing a shift between 45 and 90°. If one inserts the electrode at a 

small angle, almost parallel to the surface, one finds that optimal orientation changes slowly, 

on average about 10° for every 25-50pm; less often it does not change or it changes abruptly. 
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Hubel and Wiesel (1977) proposed that the ocular dominance and the orientation sys­

tems are independent and locally orthogonal: ocular dominance alternates in one direction, 

orientation preference alternates in the perpendicular direction. Combining this with the 

retinotopic organization of Vl leads to the concept of a hypercolumn (Fig.4. lOa): Vl is 

divided into hypercolumns, with each hypercolumn representing all orientations and ocular 

dominance values at a certain location in the visual field. A hypercolumn is about 2mm 

deep, i.e., it spans the cortex, and has a square cross-section with sides of lmm. In one 

direction, orientation changes continuously over 180°, and in the other direction, ocular 
dominance changes from dominance by one eye to dominance by the other. Braitenberg 

and Braitenberg (1979; modified by Dow and Bauer (1984) and Goetz (1987)) proposed an 

alternative organization for the orientation columns (Fig.4.lOb ). Unlike the hypercolumns, 
their centric organization can account for sudden shifts in orientation selectivity (halfway 
along the oblique line in Fig.4. lOb there is a sud.den shift). 

Several attempts have been made to test whether striate cortex is divided into somethirrg 
resembling hypercolumns. In one experiment, activity was assessed by radioactive deoxyglu­
cose uptake while the animal was watching a vertical grating. As is clear from Fig.4.lOb, the 

pattern of cortical activity is very intricate and not as regular as one would expect on the 
basis of a hypercolumn organization. Unfortunately it is not quite clear what distinguishes 

areas labeled by the radioactive deoxyglucose from the unlabeled ones. Noting the discrep­

ancy between their electrophysiological results which show a 55° shift in orientation tuning 

as the electrode crosses the IV-V border, and the deoxyglucose uptake experiments which 

show no signs of such a shift since cortical columns are labeled in all six layers (Fig.4.lOc), 
Bauer and coworkers (1983) point out that deoxyglucose experiments do not discriminate 

between inhibitory and excitatory activity, and that one should therefore be cautious when 

inferring orientation preference from deoxyglucose patterns (Shapley and Lennie 1985). And 

in fact there is increasing evidence that orientation selectivity in simple cells results from 

cortical inhibitory activity (Maffei 1985; Wiesel and Gilbert 1986). 

Using voltage-sensitive dyes, Blasdel and Sal~ma (1986) extended the results obtained 

with deoxygluco_se labeling. In this technique, the cortex is stained with a dye which emits 

fluorescence signals as a function of membrane potentials, including action potentials. One 

can literally see (after some computer processing of the cortical image) which parts of the 

cortex are excited. This makes it possible to study the same piece of cortex while the animal 

watches a vertical grating, and then repeat the procedure with a horizontal grating. Blas­

del and Salama (1986) found that the cortical surface consists of small modules (0.5-lmm 

wide) separated by so-called fractures. 11 ·within a module, orientation selectivity changes 

smoothly in one direction but hardly in )the others (Fig.4.lla). Fractures, in contrast, are 

11 But see Grinvald et al. (1936) for a critique. 
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(a.) 

(c) 

(d) 
Figure 4 .10 (a) Hypercolumn, a proposed building block of striate cortex. In one direction, ocular dominance 

changes, in the other direction, orientJ.tion selectivity changes. (b) Centric organization of orientation 

selectivity (Braitenberg and Braitenberg 1979). (c) Cross section of striate cortex showing dark areas with 

high radioactive deoxyglucose uptJ.ke J.S J. result of the monkey's watching of a vertical grating. Layer IV 

is stained throughout. ( d) Top view of the same piece of cortex. Dark band represents continuously labeled 

layer IV (Hubel and Wiesel 1979). 
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Figure .f .11 (a) Top view of striate cortex indicating orientation preferences. Each shade of gray corresponds 

to selectivity for a particular orientation. (b) Gradient of orientation preference. In this photocopy of the 

original color-coded image, darker areas indicate steeper gradients. (c) Ocular dominance columns overlayed 

with fractures (shifts in orientation preference of more than 45°). Note that the fractures tend to run along 

the ocular dominance columns. Horizontal width of each image corresponds to 8mm on the cortical surface 

(Blasdel and Salama 1986). 

characterized by sudden shifts (more than 45° in 40µm) in orientation selectivity (Fig.4. llb ). 

And as can be seen in Fig.4. llc, fractures tend to run along ocular dominance columns or 

cross them at right angles. Thus, the fractures lie in the same location as the cytochrome 

oxydase rich blobs whose cells show no preference for orientation (Hendrickson 1985), but. 

are sensitive to color. An attractive interpretation would be that each module represents a 

particular point in visual space, analyzing it in terms of depth and orientation of edges. In 

other words, a module corresponds to a hypercolumn. In general, however, modules do not 

represent all possible orientations or ocular dominance stripes. But it is not clear, a priori, 

that this would be necessary, as it is quite easy to envision a system that encodes orientation 

by means of the relative response of populations of cells broadly tuned for horizontal and 

vertical direction (or some other subset of all possible directions). And indeed, in the fovea, 

the horizontal and vertical orientations are represented disproportionately (Mansfield 1974). 

A more fundamental question is whether the striate cortex is really designed to encode orien­

tations of line segments. Perhaps orientation selectivity is an epiphenomenon, a consequence 

of the encoding of shape by measuring the deformation component of optic flow (Koenderink 

1986). 

Area V2 (part of area 18) forms a ring around striate cortex (Vl) and is organized 

retinotopically. In monkeys, V2 receives its input from Vl, whereas, in cats, it also recei\·e::; 

input from dLGN. Receptive fields of cells in V2 are similar to the ones in Vl, although there 

seem to be fewer simple cells (Hubel and Wiesel 1970; Van Essen 1979, 1985). In addition. 

there are "binocular depth cells'' tuned to binocular disparity (Hubel and Wiesel 1970), :u: l 
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Figure ~.12 Response to edges, bars, and stimuli producing illusory contours, of area. 18 neurons of rhesus 

monkey. The stimuli were moved back and forth across the receptive fields (neuron 1, 1° at 1 Hz; neurons 

2 and 3, 2° at 1 Hz). Each was presented 8 (I), 16 (J), or 24 (A through H) times. Ellipses indicate the 

receptive fields obtained with a simple edge or bar; the cross in A and F indicates the fixation point; numbers 

on the right a.re mean number of spikes per stimulus cycle. Neuron 1 responds to a. light edge (A) and to 

a subjective edge (B), but not to either half (C and D). Neuron 2 responds to a. bar of light (F) and to 

a subjective continuation of two half bars ( G), but not when the half bars are slightly changed such as to 

preclude their subjective continuation (H). Neuron 3 responds to a bar but also, and even better, to a line 

defined by abutting gratings (I); and its response is a function of the number of abutting lines (J) (Von der 

Heydt et al. 1984). 

cells tuned to different directions of motion in three-dimensional space ( Cynader and Regan 

1978). Von der Heydt et al. (1984) found cells responsive to so-called illusory or subjective 

contours (Kanizsa 1976). The responses of some of these c~lls (Fig.4.12, neurons 1 and 

2) could be explained by local excitutory connections between cells with the same optimal 

orientation (Gilbert 1983, 1985), filling in the gaps as it were. But for other illusions, such 
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as virtual lines defined by endpoints of lines (Fig.4.12, neuron 3), this explanation obviously 

does not apply, and although local connections between cells whose preferred directions are 

orthogonal have been found (Matsubara et al. 1985), these connections are thought to be 

inhibitory (Gilbert 1985). 

To learn more about the functional organization of V2, Tootell et al. (1983) stained 

that region for cytochrome oxydase, a mitochondrial enzyme indicative of high metabolic 

activity. The resulting pattern is shown in Fig.4.13b. As mentioned before, Vl contains 
• blobs with high metabolic activity; V2 contains alternating wide and narrow stripes, most 

clearly visible in layers IV and V, and less so in the other layers, suggesting a columnar 

organization. In squirrel monkeys, the stripes are about 400-700µm wide and approximately 

one millimeter apart. Part of the stripes have a high degree of myelination, perhaps due to 

an afferent input. Shipp and Zeki (1985) reported that the narrow stripes project to area 

V4, and the wide stripes to V5 (also known as MT). In accordance with the known functions 

of these two areas, orientation selective cells are found exclusively in the wide stripes and 

the interstripes, whereas color selective cells are encountered in the narrow stripes (Hubel 

and Livingstone 1985). Fig.4.13 summarizes the interconnections of cortical areas Vl, V2, 

V4 and V5. 

Area V3 is located around V2, and split into two regions. The dorsal region receives 

input from V2 and Vl, although the latter is restricted to the lower visual :field. The more 

ventrally located region receives input from V2 and is restricted to the upper hemi:field; this 

region is also referred to as VP, and considered by some to be a separate area (Desimone et 

al. 1985; Gattass et al. 1985). Cells in VP are selective for color, orientation, and disparity 

(Van Essen and Maunsell 1983). V3 projects to V4. 

Area V 4 receives input from V2 and V3 and projects to IT, the inferior temporal 

cortex. Its topographical organization is not clear: While some authors report multiple 

representations of the visual field (Zeki 1978), others show evidence of a single but crude 

representation (Desimone et al. 1985; Gattass et al. 1985). Depending on eccentricity, 

receptive fields in V 4 are between 4 (at 1°) and 6 (at 3°) times larger than in Vl. V 4 cells 

are selective for orientation and spatial frequency; having a sensitivity comparable to that of 

Vl cells. And just as in Vl, cells in V 4 can be characterized as being more like simple or like 

complex cells. The majority of cells in V4 are sensitive to color, having spectral bandwiths 

similar to color-opponent cells in retina and dLGN. Interestingly, V 4 cells also respond to 

white light; the average response to white light being 603 of the maximal response, quite 

unlike the color-sensitive cells in striate cortex. It may be that the computations in V4 

result in color constancy, the ability to perceive the same color regardless of illumination 

(Desimone et al. 1985; Wiesel and Gilbert 1986). 

Area IT, for inferior temporal cortex (coincides with architectonic area TE; Desimone 

and Gross 1919), is involved in object recognition as is clear from lesion experiments (Den.n 
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Figure 4.13 (a) Schema. of interconnections between dLGN, pulvinar, Vl (striate), and V2 (prestriate). 

Blobs in VI are cytochrome oxydase rich. Parvocellular layers of dLGN project to IVCa (and branch to 

III) and IVC{3 (synapse to spiny stellate cells which project to III). The relationship between the pulvinar 

projections to striate layers I and II and the cytochrome oxydase rich blobs is not known. Prestriate cortex 

has alternating narrow and wide stripes of high cytochrome oxydase content. The striate blobs connect 

reciprocally with the narrow stripes; while. the striate interblob system is connected reciprocally to the 

bands with low cytochrome oxydase content. (Hendrickson 1985). (b) Flat-mounted section of layer III from 

the lateral surface of squirrel monkey cortex stained for cytochrome oxydase. Anterior in the brain is toward 

the top, dorsal is toward the right. The dotted region is central Vl; the adjoining ring marked by stripes is 

central V2 (Tootell et al. 1983). 
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1982).12 If IT is removed after an animal has learned some discrimination task, its perfor­

mance deteriorates considerably on the same task and it takes much longer to learn a new 

task (Gross 1978). This deficit is not due to a loss of acuity or related visual functions, 

and is restricted to tasks requiring visual discrimination. IT seems to be the last stage in 

the object recognition pathway that is purely visual; the areas it projects to-e.g., premo­

tor, prefrontal, and parahippocampal cortex, and amygdala-integrate vision with the other 

senses, for example, with hearing or touch. 

Receptive field properties of IT cells differ qualitatively from those of cells from areas Vl, 

V2, V3 and V 4. First, receptive fields are much larger having a median size of 26° x 26°, 13 

and almost always include the center of gaze and extend into both visual hemifields (Gross et 

al. 1969; Desimone and Gross 1979; Richmond et al. 1983; Desimone et al. 1984; Moran and 

Desimone 1985). The distribution of receptive field size is not completely random: the most 

anterior part and the dorsal part (in particular the floor of the superior temporal sulcus) 

of IT have larger fields, upto 60° x 60°. And nearby cells tend to have similar receptive 

field sizes (Desimone and Gross 1979). Having large receptive fields is at once advantageous 

and problematic. It is advantageous since the shape of an object is now separated from its 

location, thus laying the foundation for position invariance. It is problematic because now 

a. large number of objects can be present within a single receptive field. Fuster and Jervey 

(1981) and Moran and Desimone (1985) showed that this problem is solved through selective 

attention: If the monkey attended to one stimulus and ignored another one (both inside the 

receptive field), the response to the ignored stimulus decreased. They also found this effect 

in area V4, but not in Vl (striate cortex). 

The second difference between receptive fields of IT neurons and neurons from areas 

preceding IT, concerns the stimuli that trigger maximal response. Instead of being tuned 

to simple stimuli such as bars and edges at particular orientations and lengths, IT neurons 

require complex stimuli and even real 3-D objects (Desimone and Gross 1979; Desimone et 

al., 1984, 1985). IT neurons are also less selective: A large fraction (413, or 44 out of 110) 

responded well to all stimuli tested (Desimone et al., 1984), and 613 of the more selective 

neurons still responded weakly to every stimulus tested. Only very few neurons (5 out of 

151) were selective for particular objects; 2 were apparently tuned to hands, 3 to faces. A 

large proportion (373) of face selective cells were found in the STS, and most cells were 

either tuned to the full face or to a profile. 

The face selective cells in the STS have been the focus of much recent work (Perrett et 

al. 1982, 1984, 1985; Rolls 1984, 1987; Baylis et al. 1985; Kendrick and Baldwin 1981). 

12 See Bachevalier et al. (1985) and ?vlishkin and Appenzeller (1987) for the effects of lesions in subcortical 

systems of the temporal lobe. 
13 Compare with 1° X 1° for excitatory receptive fields including the center of gaze in V4 (Desimone et 

al. 1985). 
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Perrett et al. (1985) found that 8-9% of neurons in the fundus of the anterior STS of the 

macaque monkey increased their firing rate in response to faces but not to other visual 

stimuli. 63% of neurons (115 out of 182) were sensitive to head· orientation. Of these, 48 

were most responsive to full faces and 39 to faces in profile. Note first, that these neurons 

were broadly tuned to orientation, and, second, that no neurons were found that responded 

most to faces seen at a 45° angle. The remaining 37% responded equally well to frontal 

and side views of faces. Although no significant differences in response latency were found, 

the orientation-insensitive cells might receive input from several orientation-sensitive cells, 
thereby progressing from a. description that depends on viewpoint to one that does not. The 

large majority of cells responds to faces per se, i.e., does not distinguish between different 

individuals. This led Rolls (1985) to suggest that it is the different patterns of activity within 
a set of face specific neurons that individuate faces. Interestingly, inversion of the faces did 
not affect the firing rate, but did increase response latency 10-60 ms in 15 out of 26 cells, 

the remainder not being affected, perhaps explaining why monkeys trained on upright faces 

take longer to recognize inverted faces. 

Having found that some IT neurons respond to certain stimuli and not to others, the 

question remains as to exactly what stimulus properties trigger these neurons. Rolls et al. 
(1985) band-pass filtered faces, and found that the majority of IT neurons respond well 

to high-pass and low-pass filtered faces, a. finding in agreement with psychophysical data 

(Harmon 1973; Harmon and Julesz 1973; Fiorentini et al. 1983). Given that neurons in 

areas projecting to IT are sensitive to orientations of line segments, IT neurons might collect 

the response of a number of such cells and thus be tuned to particular silhouettes. Schwartz 

et al. (1983; see also Schwartz 1984) described the boundary orientation of a silhouette by 

means of Fourier descriptors (FD; see section 2.1) and tested neurons for their sensitivity 

to silhouettes with different frequencies and amplitudes (Fig.4.14a). 54% (out of 234) of 

visually responsive neurons in IT cortex respond selectively to frequency, their response being 

largely independent of the size, location and contrast reversal of the stimulus (Fig.4.14b ). 

And, generally, response was proportional to the amplitude of the stimulus. Of course, FDs 

cannot describe complex 2-D shapes such as faces let alone the shape of 3-D objects, and can, 

therefore, not be used exclusively by IT neurons (a. point readily acknowledged by Schwartz 

et al.). 

We saw that most IT neurons increase their activity when stimulated by a complex visual 

stimulus, regardless of its shape. Using evoked potentials, Srebro (1985) reported that recog­

nition of faces and triangles is correlated with activity in large areas of the temporal cortex. 

Face-related activity covered a larger area. than triangle-related activity, suggesting that dif­

ferent regions of temporal cortex serve different memories . .John et al. (1986) estimated that 

on the order of 107 neurons increased their activity (at the P< 0.05 significance level) during 

simultaneous discrimination of t\vo concentric circles and a. star (excluding "normal" visual 
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Figure 4.14 (a) Examples of FD stimuli varying in frequency (2-64 cycles/perimeter, cp) and amplitude 

(0.8 and 1.6). (b) Responses of IT neurons to FD stimuli. Responses are plotted as percent change in firing 

rate over the mean spontaneous rate (mean of 10 presentations). Different neurons are tuned to different 

frequencies; in A, they are tuned to 16-32 cp, and in C to 4 cp. Note that the tuning curve remains similar 

over changes in stimulus size and amplitude. Response is proportional to amplitude (B) (Schwartz et al. 

1983). 

processing). In view of this large number, these authors question the validity of current fea­

ture extraction models that rely on discrete pathways and convergence on specific percept or 

memory detectors. They conclude that "[i]n view of the large number of neurons in vol vecl., 

the question of how the information represented in these neurons can be evaluated and zq_)­

preciated by the brain becomes of critical theoretical interest. No conceivable neuron or set 

of neurons, no matter how diffuse its synaptic inputs, can evaluate the enormous amount . 

neural activity here shown to be inrnlved in retrieval of eve'n a simple form discrimina.t1 :1 

Memory and awareness in complex neural systems may depend upon presently unrecog:::.: 
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properties of the system as a whole, and not upon any of the elements that constitute the 

system." 

4.3 Summary and discussion 

We have traced the pathway subserving visual object recognition as it starts in the retina, 

continues to the dLGN and ends in a hierarchy of visual areas in the cortex. Summarizing, 

the retina converts a pattern of light and dark into a pattern of pulses along the optic nerve, 

where each pulse signals (something like) local contrast. In the optic chiasm the axons of 

the two optic nerves are partitioned into those serving the right and those serving the left 

visual :field. The first continue to the left dLGN, the second to the right dLGN. In the 

monkey, the central visual :field is mapped on~o six layers in the dLGN, each layer receiving 

input from a particular class of ganglion celli. The mapping from retina to each layer is 

retinotopic, and the layers are in register with respect to each other. The dLGN appe?-rs 

to function as a modulator of retinal input to the cortex; in terms of responses to visual 

stimuli, its cells resemble retinal ganglion cells in their center-surround organization. The 

dLGN projects retinotopically to the striate cortex (and depending on the species, also to 

extra.striate areas). Here neurons are selective for stimuli such as bars and edges at particular 

orientations and having a particular size. Moreover, input from the two eyes is combined to 

obtain stereopsis. The striate area is only the first in a complex hierarchy of almost twenty 

cortical areas. Since many of these areas have only been identified recently, much remains 

to be learned about their contributions to perception and recognition. 

Thus although much has been learned over the past two decades, this knowledge is quite 

fragmentary and, one can only agree with Wiesel and Gilbert (1986) that it is still a major 

mystery how the activities of different cells are integrated to produce a si,-,gle percept. Ever 

worse, it is often not clear what the function of a cell is; it is one thing tc iind cells tuned to 

spatial frequency, and another to conclude that the corresponding tissue computes a Fourier 

transform; see same holds, mutatis mutandis, for bar detectors (Graham 1979; De Valois 

and De Valois 1980; Albrecht et al. 1980; MacKay 1981; Braddick 1981; Shapley and Lennie 

1985; Bossomaier and Snyder 1986). 14 Or consider neurons selective for disparity. We noted 

that there are cortical neurons tuned for binocular disparity, that is, they respond maximally 

to a particular (horizontal) difference in the position of a bar projected on the left retina, and 

another bar projected onto the right retina. This :finding does not tell us much about what 

this neuron computes in a more complex image. Granted it signals a particular horizontal 

disparity, several questions remain unanswered: Disparity between what and what? How 

do the different disparity tuned neurons interact and cooperate? Contrast, for example, the 

14 Thus one could describe traffic noise by t.uba detectors, each detector tuned to a different frequency and 

intensity range. 
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following answers to the first question. Gillam et al. ( 1984) and Mitchison and McKee ( 1985) 

suggest that matching occurs between the edges in an image and that areas in between are 

assigned depth by a process of interpolation. Marr and Poggio (1979) propose an algorithm 

that first performs a feature-by-feature match on a coarse copy of the image, and continues 

with copies that are progressively more detailed. 

Although we might not know the exact function of neurons, we are able to say something 

about how they encode information. Assuming that spiking rate is a valid measure of 

a. neuron's functional output, one can say that neurons are broadly tuned, meaning that 

they do have a. preference for say a particular wave length, orientation or disparity but also 

respond to nearby wave lengths, orientations and disparities (Hubel and Wiesel 1977; Kandel 

and Schwartz 1985). This does not necessarily imply inaccuracy in the representation of a 

stimulus property since the activities of a number of broadly tuned neurons can be combined 

(Erickson 1982; Ballard et al. 1983; Hinton et al. 1986). Georgopoulos et al. (1986), for 

example, studied the relationship between arm movement and the activity of motor neurons 

in the arm area of the motor cortex in rhesus monkeys. They found that motor neurons are 

broadly tuned, maintaining a considerable spiking rate with movement in any direction. In 

other words, individual neurons are inaccurate predictors of the direction in which the arm 

is going to be moved or is being moved. This suggests that the direction of movement is 

encoded by the combined activity of large numbers of neurons. Indeed, by viewing neurons 

as vectors-each vector pointing in the preferred direction of the neuron it represents and 

having a length proportional to the increase in the neuron's spiking rate--and combining 

the contributions of 224 neurons by means of a vector sum, the resulting vector pointed in 

the direction of the arm movement with a high degree of accuracy. 

Accordingly, a very interesting topic of research is the behavior of large collections of 

neurons or neural nets (Amari 1977; Grossberg 1976, 1980; von der Malsburg and Willshaw 

1981; Hopfi.eld 1982; Cooper et al. 1985; Hopfi.eld and Tank 1986; Ballard 1986; von der 

Malsburg and Schneider 1986; Bear et al. 1987). Especially intriguing is work by Linsker 

(1986abc), showing that antagonistic center-surround organization and orientation selectivity 

develop naturally in a hierarchical network of neuronal layers. 

This discussion about encoding raises the question of how the shape of objects is rep­

resented such that they can be recognized by their shape as inferred from visual images. 

The failure to find any cells in area IT that are tuned to objects other than hands and faces 

(Desimone et al. 1984), together with the finding that between 5 and 100 million neurons 

in a cat's brain increased their response as a result of watching a simple, familiar stimu­

lus (John et al. 1986), point towards a distributed representation. And even though some 

neurons are selective for hands or faces, they are still broadly tuned, for example, for head 

orientation (Perrett et al. 193.S ). Additionally, most neurons respond to any face, perhaps 

implying that facial identity is somehow encoded by the combined activity of all face-selecti \'e 
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neurons. Contrary to the face-selective neurons, the hand-selective neurons have not been 

tested with real hands, stimuli that do not necessarily show the characteristic five pronged 

figure. It might thus be the case that the so-called hand-selective neurons are not selective 

for hands, but are selective for the shape of silhouettes, some of which look like hands. 

Whether the identity of objects is encoded by single neurons or the combined activity 

of a large number of neurons, it is fair to say that it is still a mystery on the basis of what 

characteristics objects are recognized. And it is not clear that studies that rely on image 

filtering, 2-D silhouettes, etc., can lead to the answer. They basically ignore what I believe 

to be the central problem in object recognition, namely, how to find identity in a multitude 

of differing appearances. 
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5. Discussion and conclusions 

During the :fifties, it was demonstrated for the first time that the .behavior of animals could 

be directly traced to the activity of certain neurons. It was found that moving a small, dark 

object in front of a frog caused some of its retinal ganglion cells to respond vigorously and 

it ca.used the frog to snap at the object as if it were a fly. This suggested that the retinal 

ganglion cells signal the presence of a fly-like object at a particular location in space, and 

that their firing elicits the snapping response (Lettvin et al. 1959). It also became clear that 

the optic nerve does more than simply route image intensities to the brain; already at the 

retinal level, neurons perform complex computations "rejecting unwanted information and 

passing useful information" (Barlow 1953). 

This clearly successful line of research was continued in the· sixties and seventies, and 

in fact still continues. It was discovered that neurons in the postretinal stages of visual 

processing also respond best to particular visual stimuli and not to others, and that the 

response of these cells could be explained by assuming that they are connected in some 

appropriate manner to certain other neurons. Thus, the orientation selectivity of a cell in 

the primary visual area could arise from its connections to rows of center-surround LGN 

cells, themselves not selective for orientation. The picture that began to emerge was that 

of a hierarchically organized visual system. At the bottom of the hierarchy neurons signal 

local changes in contrast; at the next level, neurons respond to oriented edges, motion in 

certain directions, etc.; and at the top, cells indicate the presence of very specific patterns, 

for example that of a hand or a face. 

Sutherland (1968) outlined a theory of visual recognition which clearly reflects this view: 

"The visual input is analysed by a processor that extracts local features (mainly bars, edges 

and ends) simultaneously at all points on the input picture. When a picture is memorized, 

a rule is written into a store describing the output from the processor in a highly abstract 

language ... The language used for the descriptive rules contains hierarchical elements and 

this allows for pictures to be segmented in different ways. When a picture is 'recognized' the 

output from the processor is matched to a stored description. \Vhat we see depends upon 

the rule to which the picture is matched." Besides incorporating the physiological know-how 

of that time, this processor was also designed to take into account a number of behavioral 

observations, including the well-known constancies (size, translational, and brightness), the 

transfer of learned discriminations, the problems with rotated :figures, and perceptual learn­

ing. And at the same time, computer programs had been written to analyze and interpret 

line drawings in terms of three-dimensional objects. The programs showed that it is possible 

to combine local information from an image, integrate it, and arrive at conclusions about the . 
outside world. An excellent review of these three aspects of visual recognition-behavior, 

neurophysiology, and computer vision-is given by Barlow et al. (1972). 
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These findings had of course profound implications for the relationship between behavior 

and the nervous system, implications that were perhaps most clearly expressed by Barlow 

(1972): "The central proposition is that our perceptions are caused by the activity of a 

rather small number of neurons selected from a very large population of predominantly 

silent cells." The fourth dogma. of his neuron doctrine for perceptual psychology states that 

perception and neurons are related quite simply: for every element of perception there is 

one cortical neuron. The converse is not true; not every cortical neuron signals a perceptual 

event. However, Barlow is not exactly clear on what he considers a. perceptual element, but 

it seems to be reserved to something one can be conscious of. 

Since that time our knowledge has increased considerably in all three aspects of visual 

recognition. As far as behavior is concerned, we have learned about mental rotation, categor­

ical perception, and preattentive vision. Neuroscientists have found many new cortical and 

subcortical maps of the visual field, and discovered that the visual environment profoundly 

influences the developing visual system. They also found that, even for such a simple percept 

as a square, large numbers of neurons are selectively involved. In computer vision, many 

ways of representing three-dimensional shapes, especially in the context of computer-aided­

design, have been invented. However, the problem of describing real objects in terms of these 

representations and deriving the description from images of natural scenes remains. 

The most important advance, I believe, has been in the way we think a.bout the visual 

system. Instead of viewing it as a filter of the "real world," it is more appropriately consid­

ered the creator of its own world. 1 The visual observer is not a passive entity, but interacts 

and measures the environment. Thus, paraphrasing Koenderink's remarks at a recent con­

ference, 2 what we call the shape of an object is the visual system's means of predicting the 

results of possible interactions with that object. There is no such thing as shape an sich 

only shape in the context of interactions between observers and their environment. 3 

1 Or as Ramon y Cajal put it ca. 1898: "As long as our brain is a mystery, the universe-the reflection 

of the structure of the brain-will also be a mystery. 
2 Mathematical Problems of Computational Vision, Univ. of California Summer School in Nonlinear 

Science, Berkeley, California, June 22-29, 1987. 
3 It is rather amusing that this resembles the ancient extramission theory of vision, at least superficially. 
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