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EPIGRAPH

These circles will always touch in more than one point
Repelled and pulled towards each other: repelled again
Unconditional projection alternates with short,
Fervid intervals of perfection...
Differing sizes of intersections:
Territories abandoned, lost and reclaimed
Everything’s in constant motion

- The Ocean, Hadopelagic II: Let Them Believe
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ABSTRACT OF THE DISSERTATION

Deformation of Marine Chemical Gradients by Sinking Particles and Swimming Zooplankton

by

Bryce Gareth Inman

Doctor of Philosophy in Oceanography

University of California San Diego, 2018

Peter J. S. Franks, Chair

Microscale chemical gradients facilitate nutrient uptake by phytoplankton, recycling of or-

ganic matter by bacteria, and prey and mate finding by zooplankton. By mediating planktonic inter-

actions, chemical microstructure is an important factor in the productivity of the largest ecosystem

on the planet. Two main sources of chemical microstructure have been identified up to this point:

planktonic excretions and turbulent stirring of large-scale gradients. The gradient deformation

mechanism quantified in this work represents a third, previously unrecognized source of chemical

microstructure. Gradient deformation occurs when sinking particles and swimming plankton drag

xv



fluid with them, leaving trails of gradient enhancement that extend for hundreds of body lengths

and last for minutes.

Numerical simulations of a sphere falling through a linear tracer gradient demonstrate that

the gradient deformation primarily depends on the Péclet number. When the diffusivity of the

tracer is small compared to the size and speed of the object, Pe > 100, contours of tracer wrap

around the sinking sphere, stretching vertically and accumulating horizontally downstream. The

maximum tracer contour displacement scales as LDef � Pe1=3, the maximum gradient enhancement

is GMax � Pe4=5, and the amount of tracer flux across a given contour is M � Pe2=3.

A novel dyegraph apparatus was developed to measure the tracer disturbance left by sinking

spheres and swimming copepods. Dropping spheres through linear gradients of dye and salinity

in dyegraph experiments confirms the predictions from numerical simulations. Cruising copepods

displace seawater both anteriorly and posteriorly and enhance the background gradient up to a

factor of 190 < GMax < 450. The deformation trail left by a 3 mm copepod is estimated to be at

least 1 m long and increases the flux of chemical by a factor of � 40 through a surface roughly

the size of the organism. While the bulk flux of tracer induced by this mechanism in the ocean is

minimal, the combined gradient enhancement of all migrating zooplankton and sinking particles

may have a significant impact on phytoplankton productivity, particularly in the vast oligotrophic

regions of the world’s oceans.
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Chapter 1

Introduction

Primary production in the world’s oceans contributes half of the carbon fixation and oxygen

production on this planet (Field et al., 1998). This productivity is the result of a complex network

of planktonic interactions at scales of 1 micron to 1 cm that are facilitated by microscale chemical

gradients (figure 1.1). Phytoplankton take up nutrients from the surrounding environment, con-

vert carbon dioxide into sugars through photosynthesis, and exude polysaccharides (Arrigo, 2005;

Passow, 2002). Protists and larger zooplankton follow chemical signals to locate food sources and

potential mates (Montagnes et al., 2008; Kjellerup & Kiørboe, 2012; Weissburg et al., 1998). Bac-

teria feed on phytoplankton exudates and zooplankton fecal matter, recycling nutrients and organic

matter back into the system (Azam & Malfatti, 2007). Viruses lyse the cells of bacteria, protists,

and plankton and release dissolved organic matter (Hagström et al., 1988). Because microscale

chemical gradients and molecular diffusion determine the rates of nutrient uptake, grazing, and

remineralization, sources of chemical microstructure are important for maintaining the productiv-

ity of the largest ecosystem on the planet (Stocker, 2012).

The upper ocean is characterized by large scale vertical gradients of density, light, and nu-

trients. Nutrient concentrations tend to be low near the surface and higher beneath the pycnocline,

a region where the vertical density gradient is particularly strong. In some regions the pycnocline

can shoal or be mixed by intense wind-generated turbulence, however most of the surface ocean is

1



Figure 1.1: A network of planktonic interactions. Nutrients are taken up by phytoplankton and dis-
solved organic matter (DOM) is consumed by bacteria. Picophytoplankton and bacteria are eaten
by protozoans. Larger zooplankton graze on larger phytoplankton and prey on smaller zooplankton
such as protozoans. Bacteria, phytoplankton, and zooplankton release organic matter that returns
to the pool of DOM. The arrows indicate both a food web as well as interactions that are facilitated
by microscale chemical gradients.

2



oligotrophic and the nutrients required for primary production are scarce (McClain et al., 2004).

As phytoplankton in oligotrophic waters take up nutrients from their immediate surroundings, a

layer depleted in nutrients develops around the cell, weakening the spatial gradient of nutrients

thereby reducing their uptake rate (Pasciak & Gavis, 1974). Diminished phytoplankton concen-

trations result in zooplankton expending more energy to search larger volumes of water to graze,

leaving less energy for reproduction (Landry & Hassett, 1982). Bacteria can become dormant as

the supply of organic matter decreases (Stevenson, 1978). Any mechanism that alters the chem-

ical microstructure experienced by plankton may significantly impact planktonic ecology in the

oligotrophic ocean.

Up to this point, two main sources of chemical microstructure have been described: com-

pounds released by plankton themselves and turbulent stirring. Hotspots of organic material and

bacterial activity occur in the phycosphere of phytoplankton, in leakage from sinking marine snow,

and in zooplankton excretions (Bell & Mitchell, 1972; Blackburn et al., 1998). "Sloppy feeding"

by zooplankton and viral lysis also release organic compounds into the microscale environment

(Gobler et al., 1997; Fuhrman, 1999; Moller et al., 2003). Bacterial remineralization of nitro-

gen, phosphorus, sulfur, and iron compounds enhances local gradients of these chemicals to the

benefit of phytoplankton. Oceanic turbulence stirs large-scale chemical gradients into small-scale

filaments of chemical heterogeneity that can be utilized by plankton (Stocker, 2012). The degree

of turbulence in the ocean depends on the source of kinetic energy and varies in space and time

(Whalen et al., 2015).

The average turbulent eddy diffusivity of the upper ocean, 10�5 m2s�1, is primarily forced

by winds, tides, and internal waves (Waterhouse et al., 2014). Eddy diffusivity is based on a log-

normal distribution of turbulent dissipation rates (Gurvich & Yaglom, 1967; Toole et al., 1994).

Figure 1.2 displays the probability of observing a given dissipation rate binned by depth calcu-

lated using a compilation of 1.6 million measurements from 5200 microstructure profiles collected

over the last 30 years (data courtesy of J. MacKinnon and M. Alford). The median dissipation

rate is � 10�10 W kg�1 below 200 m, rising to about 10�9 W kg�1 between 50-200 m, and up to
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� 10�7 W kg�1 in strongly convectively mixed layers in the upper 50 m. The mean is close to the

90th percentile of dissipation measurements (integrated from the lowest values), highlighting the

intermittent nature of oceanic turbulence. Operationally, the turbulent dissipation rate � is estimated

from measured shear spectra E(k) by fitting a universal shear spectral form to the data, and then

integrating the one-dimensional shear spectrum E(k) over the appropriate wavenumber ranges, k0

to kN . Plankton do not experience temporally and spatially averaged dissipation rates, but rather

the microscale shears that are integrated in the calculation of �. The probability of encountering a

given shear rate based on the magnitude of kinetic energy dissipation in the local environment is

a more useful metric for turbulence at the planktonic scale. The frequency distribution of shears

measured at 1.7 mm separation distance for a range of dissipation rates is shown in figure 1.3. The

probability distribution of shear is highly skewed towards small values, reflecting the intermittency

of oceanic turbulence. The median shear is 2:6�m s�1 below 200 m, 8:1�m s�1 from 50 to 200

m, and 81�m s�1 in the upper 50 m. These values are quite small compared to the swimming and

sinking velocities of most plankton.

This thesis is concerned with a third, previously undescribed mechanism that generates

chemical microstructure in the oceans. Objects moving at low Reynolds numbers drag fluid in the

direction of motion. In the presence of an ambient chemical gradient, the moving object drags

contours of chemical concentration and deforms the gradient. This process can be illustrated (fig-

ure 1.4) by tracking a plane of tracer that moves around a sphere in simple Stokes flow (Eames

& Hunt, 1997). As explained by Lighthill (1956), the lines are "the shapes into which planes of

fluid initially at right angles to the stream would be distorted as they passed over the sphere." If

we consider these planes to be contours of concentration defining a linear tracer gradient through

which the sphere sinks, we can see that the contours wrap around the sphere, rotate toward vertical,

and accumulate horizontally downstream. The changing spatial separation between contours cor-

responds to changes in the spatial gradient of tracer; these gradients can be significantly enhanced

by the motion of the sinking sphere. Sinking particles and swimming plankton may deform weak

chemical gradients in the ocean in a similar manner, generating microstructure. We designate this
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Figure 1.2: A synthesis of the probability distributions of >1.6 million dissipation measure-
ments. The median (0.5 white line) is a better descriptor of the dissipation rate most com-
monly experienced by plankton than the mean (magenta line). Below 200 m dissipation is mostly
< 10�9 W kg�1, and below the mixed layer it is < 10�8 W kg�1. Color: probability distribution
functions of dissipation measurements from the compilation of (Waterhouse et al., 2014). Mea-
surements are binned into 50 m depth bins below 200 m, and 20 m bins above. The white lines
indicate the 50th, 90th, and 99th percentiles of data (0.5, 0.9, 0.99, respectively), and the magenta
line is the mean dissipation rate. Data courtesy of J. MacKinnon and M. Alford.
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