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by 
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Professor Mark W. Bondi, Chair 

 

Rationale: Research in conventional mild cognitive impairment (MCI), a prodromal stage between normal 

aging and Alzheimer’s dementia (AD), has demonstrated neuropsychological heterogeneity using 

clustering techniques. The current dissertation aimed to 1) empirically establish baseline 

neuropsychological MCI subtypes; 2) explore longitudinal characterization of empirical subtypes using 

rigorous norms; and 3) examine the probability of transition between subtypes over time.   

Design: Study 1 included 806 MCI participants from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). Unique neuropsychological MCI subtypes and their associations with AD markers were 



 xiv 

investigated using latent profile analysis (LPA). Study 2 included 825 ADNI participants with baseline MCI 

that had follow-up at 12-months (n=751) and 24-months (n=639). Demographically-corrected T-scores 

were derived from the performance of 284 “robust” normal control participants assessed at baseline, 12-, 

and 24-months. Serial LPAs established neuropsychological subtypes for the MCI participants at each 

time point. Study 3 employed latent transition analysis to evaluate the likelihood of subtype change over 

time, as well as the influence of AD-risk factor covariates on transition probabilities. 

Results:  Study 1 produced 3-classes: mixed impairment, amnestic impairment, and cognitively normal 

neuropsychological subtypes. Amnestic and mixed classes had higher positivities on markers of AD than 

the cognitively normal class. In Study 2, 4-neuropsychological classes were separately established at 

baseline, 12-, and 24-months: multi-domain impairment ([MLT]), amnestic impairment (AMN), 

dysexecutive/below average cognition (DYS/BA), and average cognition (AVG) classes. The MLT and 

AMN subtypes declined over time on the majority of measures, while the AVG subtype had stable 

neurpsychological performance. The DYS/BA subtype demonstrated stable memory performance and 

improvement on language and attention/executive measures. Study 3 indicated a high probability (>86%) 

for participants of all subtypes to remain in their class over time. Covariates that modestly increased the 

likelihood of transition between classes included worse functional ability and AD-biomarker positivity.  

Conclusions: This dissertation research used latent mixture models to establish analogous longitudinal 

neuropsychological profiles in conventionally diagnosed MCI. Results suggest that individuals are most 

likely to remain within their subtype across two years, including cognitively normal “false-positives.” Future 

studies should examine empirical MCI subtypes with the use of actuarial methods that may improve 

diagnostic accuracy.  
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I. Introduction 

Importance and Background of Mild Cognitive Impairment  

 Alzheimer’s disease (AD) is a form of neurodegenerative dementia characterized by progressive 

impairment in cognitive and functional abilities (McKhann et al., 2011). Currently, estimates suggest there 

are 5.3 million older adults with AD dementia in the United States, and – due to an aging baby boomer 

population – that number is projected to increase to 13.8 million by 2050 (Alzheimer’s Association, 2017). 

In addition to the devastating personal impact AD has on individuals and families, AD also imposes a 

significant societal burden through high healthcare costs and caregiving needs. However, the vast 

majority of pharmaceutical trials over the past 30 years have failed to produce any meaningful treatment 

that significantly impacts the progression of AD (Cummings, Morstorf & Zhong, 2014). Moreover, 

scientists increasingly recognize that the best chance of treating AD may ultimately lie in prevention, such 

that neurodegenerative processes are targeted well before the presence of frank dementia (Sperling et 

al., 2014).   

 Mild cognitive impairment (MCI) is conceptualized as an intermediate stage between normal 

aging and AD, such that individuals are at increased risk to develop dementia (Petersen et al., 2001). The 

term mild cognitive impairment entered the literature in the 1980’s, as researchers began to identify 

features of an AD prodrome (Reisberg et al., 2008). However, the conventional definition of MCI 

originates with the criteria proposed by Petersen et al. (2001). Initially, Petersen’s operationalization of 

MCI focused solely on the presence of memory deficits and complaints within the context of intact 

activities of daily living (Petersen et al., 1999; Petersen, et al., 2001). However, subsequent revisions 

expanded the definition to include distinctions with respect to “amnesic” versus “non-amnesic” and 

“single” versus “multi-domain” cognitive dysfunction (Petersen, 2004; Winblad et al., 2004). Currently, The 

National Institute on Aging-Alzheimer’s Association (NIA-AA) core clinical criteria for MCI due to AD 

include 1) Concern in changes over cognition; 2) Impairment in one or more cognitive domains; 3) 

Preservation of independence in functional abilities; and 4) Not demented (Albert et al., 2011).   
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Neuropsychological Heterogeneity in Conventional MCI 

 Despite recent improvements to the definition of MCI, lingering concerns remain over how to 

operationalize specific criteria. Conventionally, the evaluation of cognitive impairment in MCI relies on 

subjective rating scales, brief cognitive screens, and/or a single impaired test score (often a delayed trial 

of story recall) rather than comprehensive neuropsychological assessment (Bondi et al., 2014). This 

diagnostic approach is evident among clinical trials targeting MCI (Petersen & Morris, 2005) as well as 

large-scale studies such as the Alzheimer’s Disease Neuroimaging Initiative ([ADNI]; Weiner et al., 2013), 

despite research demonstrating the shortcomings of these methods (Bondi et al., 2014; Jak et al., 2009). 

In an effort to address this issue, recent research has attempted to empirically classify distinct 

neuropsychological subtypes among individuals with conventional MCI. Early work employed cluster 

analytic methods to reveal heterogeneous cognitive profiles (Bondi et al., 2014; Delano-Wood et al., 

2009; Clark, Delano-Wood, et al., 2013; Edmonds et al., 2015; Edmonds et al., 2016; Libon el al., 2010), 

challenging the empirical validity of the conventional diagnostic approach. These studies have 

consistently demonstrated evidence of three to four MCI subtypes depending on the cognitive domains 

examined, tests included, and diagnostic criteria. More recently, researchers have applied latent mixture 

models, such as Latent Profile Analysis (LPA) and Latent Class Analysis (LCA), to classify cognitive 

subtypes in MCI (Hanfelt et al., 2011; Köhler et al., 2013; McGuinness et al., 2015), which offer a model-

drive approach and several statistical advantages over cluster analysis (Berlin, Williams, & Parra, 2014; 

Magidson & Vermunt, 2002; Muthén, 2004; Roesch, Villodas, & Villodas, 2010). These studies have 

identified three to seven neuropsychological classes, although some studies also included non-cognitive 

measures as latent indicators or normal older adults with subjective cognitive complaints as participants 

(Hanfelt et al., 2011; Köhler et al., 2013). A summary of the results of cluster analytic and latent mixture 

models approaches to empirical MCI classification are provided in Table 1. 
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Note: Köhler et al. (2013) includes non-demented participants with “subjective or objective cognitive 
impairment on neuropsychological assessment.” Hanfelt et al. (2011) used neuropsychological measures 
as well as questionnaires of functional abilities, neuropsychiatric symptoms, and depression as latent 
model indicators.  

 
 Within the ADNI corpus, Edmonds et al. (2015) was the first study to empirically classify 

conventionally diagnosed MCI subjects (n=825) using cluster analysis. Results produced four unique 

cognitive phenotypes: an amnestic MCI group (34.9%), a dysnomic MCI group (18.5%), a dysexecutive 

MCI group (12.5%) and a large fourth cluster (34.2%) characterized by intact neuropsychological 

performance despite their MCI diagnosis based on ADNI criteria.  The “cluster-derived normal” group 

performed within normal limits on all neuropsychological cluster measures despite subjective complaints 

and impaired scores on the Wechsler Memory Scale-Revised (WMS-R) Logical Memory-II Story A and 

the Clinical Dementia Rating (CDR) scale that led to their ADNI MCI diagnosis.  The notion that 

Table 1: Results of cluster analytic and mixture model approaches in identifying empirical subtypes in 
conventional mild cognitive impairment. 

Study Statistical 
Model Neuropsychological Domains Sample 

Size 
Number of 
Subgroups 

MCI Subtypes 
(% of Sample) 

Clark et al. 

(2013) 

Ward’s 
Cluster 

Analysis 

Attention; Episodic Memory; Executive 

Functions; Language; Visuospatial Ability 
n= 134 4 

Cognitively Normal (47.8%) 
Memory/ Language (29.1%) 

Mixed/ Intact Attention (23.1%) 

Delano-Wood 

et al. (2009) 

Ward’s 

Cluster 

Analysis 

Constructional Praxis; Episodic Memory; 

Executive Functions; Language; 

Processing Speed 

n= 70 3 

Amnestic (48.6%) 

Memory/ Language (25.7%) 

Executive/ Processing Speed (25.7%) 

Edmonds et 

al. (2015) 

Ward’s 

Cluster 
Analysis 

Attention & Executive Functions; 

Episodic Memory; Language 
n= 825 4 

Amnestic (34.9%) 

Cognitively Normal (34.2%) 

Memory/ Language (18.5%) 

Executive/ Mixed (12.4%) 

Hanfelt et al. 
(2011) 

Latent 

Profile 

Analysis 

Attention; Depression; Episodic Memory; 

Executive Functions; Functional Ability; 
Global Cognition; Processing Speed; 

Psychiatric Symptoms 

n= 1,655 7 

Executive/ Language (18%) 
Amnestic (16%) 

Amnestic + Functional/ Psych (16%) 

Functional + Psych (15%) 

Mixed (12%) 

Mixed + Functional/ Psych (12%) 
Cognitively Normal (12%) 

Köhler et al., 

(2013) 

Latent 

Profile 

Analysis 

Executive Functions; Episodic Memory; 

Language; Processing Speed 
n= 635 5 

Cognitively Normal – Average (38%) 

Memory Retrieval (36%) 

Cognitively Normal – Above Average (15%) 

Executive/Processing Speed (5%) 
Amnestic (4%) 

Libon et al. 
(2010) 

K-means 

Cluster 

Analysis 

Episodic Memory; Executive Functions; 
Language 

n= 77 3 

Amnestic (48.6%) 

Executive/ Language (27.3%) 

Mixed (25.7%) 

McGuinness 

et al. (2015) 

Latent 
Profile 

Analysis 

Attention & Executive Functions;  
Episodic Memory; Language; 

Visuospatial Ability 

n= 139 3 
Mixed (40.3%) 

Amnestic (36.7%) 

Cognitively Normal (23.0%) 
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individuals in this group were assigned a diagnosis of MCI in error was further supported by normal 

cerebrospinal fluid (CSF) Alzheimer’s disease (AD) biomarker profiles and low rates of progression to AD 

and high rates of reversion to “cognitively normal” diagnoses (Bondi et al., 2014; Edmonds et al., 2015). 

Inclusion of Visuoconstructional Ability 

Despite the significant findings from Edmonds et al. (2015), there remain several unexplored 

clinical and statistical considerations that demonstrate the need for further study of the ADNI MCI cohort. 

First, the authors only examined the neuropsychological domains of attention/executive functions, 

language, and episodic memory, omitting any form of visuospatial skills such as visuoconstructional 

ability (which integrates visuospatial, organizational, and motor skills). In research studies, 

standardization and scoring of visuoconstructional measures can be time-consuming and prone to low 

inter-rater reliability, which may contribute to variable psychometric properties. However, in clinical 

practice, visuoconstructional ability is routinely assessed in the neuropsychological evaluation of older 

adults (Grossi & Trojano, 2001; Lezak, 2012). Additionally, significant visuospatial/constructional deficits 

are quite common among neurodegenerative disorders and dementia syndromes (Freedman & Dexter, 

1991; Geldmacher, 2003) and represent an important component in neuropsychological protocols.  

For example, Nielson, Cummings & Cotman (1996) demonstrated in autopsy-confirmed AD 

subjects a significant correlation between impaired visuoconstructional ability and hyperphosphorylated 

tau in occipital cortex. Moreover, visuoconstructional ability was not correlated with hyperphosphorylated 

tau in other brain regions, and language and memory functions were unrelated to hyperphosphorylated 

tau in occipital cortex. Prominent, differential visuospatial impairment is also a core diagnostic criterion of 

posterior cortical atrophy, a syndrome often attributable to AD pathology (Crutch et al., 2012; Crutch et 

al., 2013), and represents a key neuropsychological feature of Lewy body dementia (Ferman et al., 2006; 

Hamilton et al., 2008; Johnson, Morris & Galvin, 2005; Kao, et al., 2009; McKeith et al., 1996).  

Furthermore, individuals with non-amnestic MCI who progress to pathologically-confirmed Lewy body 

dementia have been shown to initially present with visuospatial/constructional as well as attentional 

impairments (Ferman et al., 2013; Molano et al., 2010). Visuospatial dysfunction has also been reported 

in multi-domain amnestic MCI (Mapstone, Steffenella & Duffy, 2003).   
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Importantly, a cluster analysis of amnestic and non-amnestic MCI subjects by Clark et al. (2013) 

revealed four unique subtypes, with three demonstrating visuoconstructional impairment: a single-domain 

visuoconstructional MCI subgroup (23.8%); an MCI subgroup with predominant executive and 

visuoconstructional dysfunction (16.3%); and a multi-domain MCI subgroup with mixed episodic memory, 

executive function, language and visuoconstructional impairment (17.5%). The fourth MCI subgroup was 

characterized by single-domain amnestic impairment only (42.5%), a consistent finding among all 

previous MCI neuropsychological classification studies (Delano-Wood et al., 2009; Edmonds et al., 2015; 

Libon et al., 2010). However, results in the visuospatial domain lack replication due to the exclusion of 

any representative assessment in the MCI classification literature. Thus, the contribution of 

visuoconstructional measures available in ADNI has potentially been overlooked by past studies 

identifying neuropsychological MCI subtypes (Bondi et al., 2014; Edmonds et al., 2015) and warrants 

additional study. 

Benefits of Latent Mixture Models Over Cluster Analysis 

A limitation of Edmonds et al. (2015) involves the use of traditional cluster analysis to identify 

subgroups. Newer latent mixture models, such as latent profile analysis (LPA), offer several statistical 

advantages over traditional cluster analysis given its model-driven classification approach. For example, 

while cluster analysis assigns each individual to subgroups in binary fashion, LPA utilizes maximum 

likelihood estimation to generate posterior probabilities and model the classification uncertainty of each 

individual in each latent class (Berlin, Williams, & Parra, 2014; Magidson & Vermunt, 2002; Muthén, 

2004). These posterior probabilities are used to account for measurement error, consequently decreasing 

estimation bias and improving the accuracy of standard errors in analyses (Asparouhov & Muthén, 2015; 

Bray, Lanza, & Tan, 2015; Clark & Muthén, 2009; Magidson & Vermunt, 2002). LPA also produces 

information criterion and likelihood fit indices to guide determination of the number of optimal classes 

(Berlin, Williams & Parra, 2014; Muthén, 2004). This statistical comparison of nested models inherently 

increases objectivity and minimizes the arbitrary nature of subgroup selection in cluster analysis 

(Magidson & Vermunt, 2002). Other benefits of LPA include the ability to handle missing data points in 

analyses (Roesch, Villodas, & Villodas, 2010), accommodation of multiple data types such as categorical 
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and continuous variables (Magidson & Vermunt, 2002), incorporation of predictor variables and distal 

outcomes in the model (Magidson & Vermunt, 2002; Muthén, 2004), and model verification with 

independent samples (Shao, Liang, Yuan, & Bian, 2014). 

Longitudinal Exploration of Empirical MCI Subtypes 

 Although a few studies have effectively used LPA to underscore the considerable heterogeneity 

in conventional MCI, almost all research has focused on classifying MCI at a single, initial evaluation 

(Hanfelt et al., 2011; Köhler et al., 2013; McGuinness et al., 2015). Thus, the longitudinal consistency and 

stability of MCI classes established at baseline remains unclear, as is the possibility of changes in 

subgroup size or interpretation. Currently, only one study has attempted to longitudinally categorize MCI 

subtypes. Peraita et al. (2015) performed serial LCAs across three years in a Spanish sample of 

community dwelling, healthy older adults without a prior diagnosis of dementia or MCI. Participants were 

administered a comprehensive neuropsychological battery at three time points and diagnosed via 

conventional criteria as amnestic MCI, non-amnestic MCI, or multi-domain MCI based on performance. 

Scores on 17 neuropsychological variables were then dichotomized as “adequate” or “low/poor” and used 

as latent class indicators in three separate, serial LCAs. The authors demonstrated a stable 4-class 

solution at each time point, with a healthy non-impairment class, amnesic class, non-amnesic class, and 

multi-domain impairment class present at all three years. However, the proportion of individuals in the 

healthy class decreased with time (baseline: 46.6%, year 1: 36.5%, year 2: 33.3%) while the amnesic 

(12.8%, 23.9%, 22.7%, respectively) and non-amnesic (21.7%, 21.2%, 24.5%, respectively) classes grew 

in size. The multi-domain impairment class remained largely consistent across all years (18.9%, 18.4%, 

19.6%, respectively).  

 Despite these important contributions exploring neuropsychological class stability in elderly adults 

over time, there are also several limitations in the Peraita et al. (2015) study. Specifically, the authors 

categorized neuropsychological performance as “adequate” or “low/poor” rather than using standardized 

scores, arbitrarily setting the cut-off at the 40th percentile of uncorrected raw score performance. Two 

immediate problems are apparent with this methodology: 1) the lack of demographic adjustment, and 2) 

the use of a 40th percentile cut-score, which likely increases sensitivity at the considerable cost of 
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unsatisfactory specificity. Additionally, these issues are compounded by the fact that the authors did not 

utilize a separate normative control group, instead classifying neuropsychological performance based on 

the same sample subsequently used in the LCA.  

 In addition to a dearth of research characterizing neuropsychological performance of empirical 

MCI subtypes over time, no studies have attempted to investigate how empirical MCI classes relate to 

each other over time. Latent transition analysis (LTA), an extension of LPA, is a type of mixture model 

ideally suited to statistically address this issue. LTA models longitudinal change in class membership by 

auto-regressing one categorical latent variable onto another (Graham, Collins, Wugalter, Chung, & 

Hansen, 1991; Nylund, 2007), and can therefore examine transitions between MCI classes over time. For 

instance, Gu (2016) applied LTA to a mixed subsample of normal, MCI, and AD participants from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), using two AD-associated neuroimaging markers 

(i.e., hippocampal volume and fluorodeoxyglucose-positron emission tomography [FDG-PET]) as 

indicators at baseline and year 2. The authors reported six classes at both time points and described 

several pathological possibilities of transition involving a reduction in either hippocampal volume or FDG-

PET. However, research has yet to methodically investigate the longitudinal stability of empirical 

neuropsychological profiles in MCI and subsequently examine change in subtype classification over time. 

 Study 1, in part, is a reprint of the material as it appears in the Journal of the International 

Neuropsychological Society, (2017), 23(7), 564-576. Eppig, Joel S.; Edmonds, Emily C.; Campbell, 

Laura; Sanderson-Cimino, Mark; Delano-Wood, Lisa; and Bondi, Mark W. for the Alzheimer’s Disease 

Neuroimaging Initiative, Cambridge University Press. The dissertation author was the primary investigator 

and author of this paper. 
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II. Purpose and Specific Aims 

Goals of the Dissertation Research 

 The over-arching objective of this dissertation is to empirically identify and longitudinally 

characterize MCI subtypes in ADNI using latent mixture modeling. Multiple steps are required to achieve 

this objective, and this dissertation research is accordingly divided into three primary goals, each 

corresponding to one of three studies. As major steps in a larger project, these goals are interrelated such 

that each builds on and improves upon the foundation established by the preceding study. The goals of 

this dissertation research are as follows: 

 Study 1. Investigation of baseline neuropsychological subtypes in mild cognitive impairment and 

 their associations with markers of Alzheimer’s disease using latent profile analysis. 

 Study 2. Empirical characterization of longitudinal neuropsychological subtypes in mild cognitive 

 impairment using serial latent profile analysis and multi-year, demographically-corrected norms 

 with embedded practice effects. 

 Study 3. A latent transition model examining the likelihood of class change in neuropsychological 

 subtypes of mild cognitive impairment. 

Study 1: Investigation of baseline neuropsychological subtypes in mild cognitive impairment and their 

associations with markers of Alzheimer’s disease using latent profile analysis 

Study 1 will capture neuropsychological heterogeneity among ADNI participants diagnosed with 

conventional MCI using latent profile analysis to determine baseline empirical subtypes. Inclusion of 

visuoconstructional measures will allow for the identification of potentially unique cognitive phenotypes.  

Specific Aim 1. Investigate unique MCI subtypes at baseline across four neurocognitive domains 

(visuoconstructional ability, language, attention/executive function, and episodic memory) using LPA. 

Aim 1, Hypothesis 1. The optimal LPA solution will generate five classes: four subgroups similar 

in size and neuropsychological profile to the Edmonds et al. (2015) study and a small, fifth subtype 

predominantly characterized by visuoconstructional impairment.  
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Aim 1, Hypothesis 2: Visuoconstructional deficits will be present in a class analogous to the 

dysexecutive MCI subgroup from Edmonds et al. (2015), thus representing a subtype with “mixed” 

neuropsychological impairment. 

Exploratory Aim: Evaluate LPA class differences on exploratory outcomes of cerebrospinal fluid 

and genetic AD biomarkers, longitudinal outcome, and other ADNI measures.   

Study 2: Empirical characterization of longitudinal neuropsychological subtypes in mild cognitive 

impairment using serial latent profile analysis and multi-year, demographically-corrected norms with 

embedded practice effects 

 Study 2 will examine the stability and consistency of MCI subtypes across 24-months. Separate 

LPAs will be conducted on baseline, 12-, and 24-months neuropsychological performance to establish a 

measurement model at each time point. Additionally, study 2 will advance the methods of study 1 by 

improving upon the normative procedures used to obtain standardized neuropsychological scores. First, 

the visuoconstructional measures will be excluded in Study 2 due to non-normally distributions, a small 

range of possible scores, ceiling effects, and poor discrimination normal older adults and individuals with 

MCI (Eppig et al., 2017). An adaptation of the Heaton, Miller, Taylor & Grant (2004) standardization 

methodology will be used to produce multi-year, demographically-corrected T-scores based on the 

normative data of robust normal controls, which should minimize the impact of skewed distributions and 

outliers. Practice effects will also be accounted for within the standardized scores as the robust normal 

controls will have also completed all neuropsychological tests at each time point. Reliable change 

classifications will also be developed based on robust normal control normative data to facilitate 

comparison of performance over time between the LPA classes. 

 Specific Aim 1. Develop multi-year neuropsychological norms with demographic correction and 

embedded practice effects by adapting a previously established, systematic method of standardization 

(Heaton, Miller, Taylor & Grant, 2004).  

 Aim 1, Hypothesis 1. Consistent with Heaton, Miller, Taylor & Grant (2004), T-scores in the 

robust normal control sample will demonstrate several desirable psychometric properties: a mean of 50 

and standard deviation of 10, a frequency distribution that does not differ from the Gaussian curve, 
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minimal outliers, no difference in “impaired” scores (i.e., less than 1 standard deviation below the mean) 

scores than the expected percentage across tests and time points, and no significant interactions in the 

final scores between age and education.  

 Specific Aim 2. Examine exploratory LPA measurement models with the standardized T-scores 

to longitudinally characterize the stability and consistency of neuropsychological MCI subtypes at 

baseline, 12-, and 24-months follow-up.  

 Aim 2, Hypothesis 1: Consistent with study 1, it is hypothesized that 3 classes will consistently 

emerge as the optimal solution at each time point, with analogous amnestic impairment, multi-domain 

impairment, and cognitively normal neuropsychological subtypes.  

 Aim 2, Hypothesis 2: The cognitively normal class will maintain a similar proportional size at all 

three time points. The amnestic impairment class will shrink in proportional size and the multi-domain 

impairment class will increase in proportional size over the 24-months. 

 Specific Aim 3: Investigate change in neuropsychological performance over time between 

analogous classes from baseline to 12-months, 12-months to 24-months, and baseline to 24-months. 

 Aim 3, Hypothesis 1: The cognitively normal class will maintain statistically equivalent mean 

neuropsychological performance over the 24-months, while the amnestic and multi-domain impairment 

classes will demonstrate mean neuropsychological decline over each time period. 

 Aim 3, Hypothesis 2: The cognitively normal class will have the smallest proportion of 

individuals that demonstrate a reliable decrease across all neuropsychological measures over time and 

the largest percentage with reliable increase. The multi-domain impairment class will have the largest 

proportion of individuals that demonstrate a reliable decrease over time and the smallest percentage with 

a reliable increase. The proportion of individuals in the amnestic impairment class with reliable changes 

will fall between the other two classes.  

Study 3: A latent transition model examining the likelihood of class change in neuropsychological 

subtypes of mild cognitive impairment 

 Although LTA has been used to model neuroimaging changes in older adults (Gu, 2016), no 

research has employed LTA to examine transitions between empirical MCI subtypes over time. Therefore, 
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study 3 will use latent transition analysis (LTA) to investigate changes in class membership of MCI 

subtypes over 24-months. Study 3 will directly build on study 2, employing the same participants and 

normative methods, and the LPAs from study 2 will be tested for measurement invariance to facilitate LTA 

computation. LTA will determine transition probabilities from baseline to 12-months, and 12-months to 24-

months. A second-order effect (i.e., direct effect of baseline classification on 24-month classification) and 

the influence of AD-risk factor covariates (i.e., AD cerebrospinal fluid and genetic biomarkers, functional 

ability) will be added to the LTA to determine their effects on the likelihood of transition.  

 Specific Aim 1. Establish measurement invariance between the LPAs from study 2 at baseline, 

12-months, and 24-months. 

 Aim 1, Hypothesis 1. The cognitively normal class will demonstrate fully invariant 

neuropsychological means for all measures across the three time points.  

 Aim 1, Hypothesis 2.  The amnestic and multi-domain classes will demonstrate partial 

measurement invariance such that scores in some cognitive domains will decline over the 24-months 

while others remain stable. Nonetheless, the overall neuropsychological interpretation of their profile will 

remain equivalent between time points. 

 Specific Aim 2. Model the probability of changes in class membership from baseline to 12-

months and 12-months to 24-months using LTA. 

 Aim 2, Hypothesis 1: Participants in the cognitively normal and multi-domain classes will be very 

likely to remain within their respective classes over the 24-months with minimal class change. 

 Aim 2, Hypothesis 2: Participants in the amnestic impairment class will demonstrate a greater 

probability of transition to the multi-domain impairment class from baseline to 12-months, and 12- to 24-

months than the cognitively normal class. 

 Specific Aim 3: Determine the influence of AD-risk factor covariates on transition probabilities.  

 Aim 3, Hypothesis 1: Covariates will increase the probability of transition from the amnestic to 

the multi-domain impairment class, and the cognitively normal to the amnestic impairment class among 

individuals with AD-positive risk factors (i.e., functional impairment, apolipoprotein e4+, AD-cerebrospinal 

fluid biomarker positivity, greater A/T/N positivity). 
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Practical Considerations and Clinical Relevance 

 A significant consideration of this dissertation research involves the practical and clinical 

relevance of the research. Specifically, the goals, methods, and analyses outlined in this dissertation 

were selected in part for their potential clinical application to practicing neuropsychologists. For instance, 

the neuropsychological measures are used as individual indicators in the LPAs and LTA, rather than 

constructing latent cognitive factors and subsequently performing factor mixture modeling (Clark, Muthén, 

et al., 2013). Although the latter may be a more statistically sophisticated analysis, neuropsychologists 

rarely interpret factor scores in clinical practice (cf. WAIS-4 factor indices). However, they do synthesize a 

variety of test scores (usually representing several cognitive domains) into a meaningful 

neuropsychological profile. Additionally, a single factor score may obscure interesting patterns among test 

variables, such as a retrieval or encoding deficit determined by delayed recall and recognition on memory 

assessment.  

 Clinical considerations also influenced the selection of LTA to model change over time. Other 

analyses, such as growth mixture models, evaluate change through the use of latent intercept and slope 

variables (Ram & Grimm, 2009). This allows researchers to model classes of longitudinal trajectories, 

which is a potentially interesting and useful analysis. However, clinical neuropsychologists do not typically 

establish trajectories of patient performance; only in the last decade or so have some begun to employ 

reliable change indices on repeat assessments. In practice, changes are assessed by clinically 

comparing an individual’s baseline pattern of performance to a repeat evaluation alongside 

considerations of possible practice effects, and judgments about the possibility of future decline are often 

based on these profiles. Therefore, LTA was chosen for its ability to model changes in class membership 

over time, as these likelihoods are potentially valuable information for a clinician attempting to predict 

future patterns of performance based on an individual’s current cognitive profile. In sum, this dissertation 

uses LPA and LTA over other latent mixture models to facilitate clinical interpretation and increase the 

applicability to practicing neuropsychologists. 

 Study 1, in part, is a reprint of the material as it appears in the Journal of the International 

Neuropsychological Society, (2017), 23(7), 564-576. Eppig, Joel S.; Edmonds, Emily C.; Campbell, 
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Laura; Sanderson-Cimino, Mark; Delano-Wood, Lisa; and Bondi, Mark W. for the Alzheimer’s Disease 

Neuroimaging Initiative, Cambridge University Press. The dissertation author was the primary investigator 

and author of this paper. 
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III. Methods 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has 

been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 

information, see www.adni-info.org. Research was conducted in accordance with the Declaration of 

Helsinki and the current study approved by the University of California San Diego IRB.  

Study 1: Investigation of baseline neuropsychological subtypes in mild cognitive impairment and 

their associations with markers of Alzheimer’s disease using latent profile analysis. 

Participants 

 Participants included 825 individuals diagnosed with MCI and 260 healthy elderly participants.  

MCI was diagnosed at a screening evaluation using conventional diagnostic criteria, as operationalized 

by ADNI (Petersen et al., 2010): 1) Subjective memory complaint; 2) Mini-Mental State Examination 

(MMSE) score greater than or equal to 24; 3) Global Clinical Dementia Rating Scale (CDR) score of 0.5; 

4) Impairment on WMS-R Logical Memory-II Story A Recall (WMS-R LM II) after education adjustment; 

and 5) Intact global cognition and preserved activities of daily living/ instrumental activities of daily living. 

MCI participants were required to fall within the demographic boundaries of the elderly normative control 

group, resulting in the exclusion of 19 individuals due to age (i.e., >90 or <60). The final sample consisted 

of 806 MCI participants. Healthy elderly control subjects (n=260) were required to have complete data on 

the neuropsychological variables examined and remain cognitively intact upon longitudinal re-evaluation 

(follow-up range: 1–7 years).  Table 2 provides demographic information on these “robust” normal control 

participants and the entire MCI sample for descriptive purposes. 
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Table 2: Demographic characteristics of the mild cognitive impairment sample and robust normal 
controls in study 1. 

 Age (years) Education (years) Gender GDS MMSE at Screening 

MCI  
(n=806) 

73.90 (6.94) 15.95 (2.81) 40.0% F 1.65 (1.42) 27.58 (1.81) 

rNC 
(n=260) 

75.25 (5.62) 16.20 (2.68) 48.8% F 0.62 (0.06) 29.05 (1.17) 

Note: Data summarized as mean (standard deviation), unless otherwise noted. GDS = Geriatric 
Depression Scale; MMSE = Mini-Mental State Examination; MCI = Mild Cognitive Impairment; rNC = 
robust normal controls; F = Female. 
 
Neuropsychological Measures 

 Eight neuropsychological variables were selected from seven cognitive tests in ADNI’s 

neuropsychological battery.  These variables were balanced across the domains of visuoconstructional 

ability (Mini-Mental State Examination [MMSE] Pentagons & Clock Drawing Test [CDT]); language 

(Animal Fluency & 30-item Boston Naming Test [BNT]); attention/executive function (Trail Making Test 

[TMT], Part A & TMT, Part B); and episodic memory (Rey Auditory Verbal Learning Test [AVLT] Delay 

Free Recall & AVLT Recognition). These specific neuropsychological test variables were selected from 

available ADNI measures as they were administered across all three ADNI phases and represent well-

researched assessments in older adults that are commonly employed and easily interpreted in clinical 

practice (Lezak, 2012). WMS-R Logical Memory was not selected for the test corpus due its primary use 

in MCI diagnosis, thereby circumventing criterion contamination.  

MMSE Pentagons 

 Raw MMSE baseline data were obtained via the ADNI website and participant copies of the 

interlocking pentagons were re-coded using an 8-point error scoring system previously published by 

Jefferson et al. (2002).  This scoring system was chosen to increase the possible range (i.e., 0 to 8 points 

vs. the standard 0 or 1 scoring system) and minimize potential ceiling effects.  Additionally, past research 

by Jefferson et al. (2002) has shown differential performance in patients with cortical vs. subcortical 

neurodegenerative disorders using this 8-point scoring system.  Errors include 1) size distortion, 2) 

number of figures, 3) improper pentagon intersection, 4) tremor/segmentation, 5) absence of five angles, 
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6) significant rotation, 7) interminable motor perseveration, and 8) pull-to-stimulus.  For further information 

and operational definitions of the scoring system, please refer to Jefferson et al. (2002).   

 Two raters were trained on the 8-point scoring system and established reliability on a randomly 

selected subset (n=54) of MMSE pentagons from the ADNI sample.  After establishing satisfactory 

reliability (single measure intra-class correlation: 0.906, 95% CI: 0.838 – 0.945; range of kappa values for 

individual error types: 0.673 – 1.000) each rater was randomly assigned half of the remaining MMSE 

pentagons for recoding with the 8-point error scoring system.   

 MMSE pentagon drawings could not be retrospectively obtained via archives for 17.7% of our 

MCI sample. According to ADNI representatives, data were missing due to technical problems with raw 

file upload rather than lack of administration or inability to complete the test. Missing values analysis 

indicated that MMSE pentagons were not missing completely at random (Little’s MCAR test: 

χ2(7)=22.156, p=0.002) when evaluated with the other 7 neuropsychological variables. However, original 

MMSE pentagon scores (0 or 1) were available in ADNI for all MCI participants. These original scores and 

the 8-point error scoring system were significantly correlated with a medium effect (r= –0 .387, p<0.001), 

supporting their use as a reasonable proxy to examine the missing data. The proportion of individuals 

with correct versus incorrect original scores did not differ (χ2(1)= 2.519, p=0.112) by presence (n=663; 

Correct: 87.6%, Incorrect: 12.4%) or absence (n=143; Correct: 92.3%, Incorrect: 7.7%) of raw files. 

Therefore, raw files were not absent because of poor performance secondary to underlying disease 

etiology and were assumed missing at random (MAR).  

Clock Drawing Test 

 Clock drawing to command and copy was administered and scored according to ADNI 

procedures (Alzheimer’s Disease Neuroimaging Initiative, 2008; Goodglass & Kaplan, 1983). Briefly, 

participants were instructed on command to “draw the face of a clock showing the numbers and two 

hands set to ten after eleven” on blank paper. The participant was then presented a response form with 

the model clock at the top and requested to “copy this clock (point to the model) in the space provided 

below”. 
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 Clock drawings to command and copy were each scored using the same 0 to 5-point scale. Clock 

scoring criteria as outlined in the ADNI-2 Procedures Manual (ADNI, 2008) include 1) approximately 

circular, 2) symmetry of number placement, 3) correctness of numbers, 4) presence of two hands, and 5) 

presence of two hands set to ten after eleven. Individual command and copy scores were combined to 

produce an overall Clock Drawing Test total score (0 – 10). This total score was selected for the current 

analysis rather than separate command and copy scores to maximize the range of possible performance 

while minimizing any potential ceiling effects. For further information on clock drawing administration and 

scoring criteria please refer to the ADNI-2 Procedures Manual: http://adni.loni.usc.edu/wp-

content/uploads/2008/07/adni2-procedures-manual.pdf 

Transformations and Normative Standardization 

The distribution of each neuropsychological variable was examined for non-normality within the 

sample of robust normal control participants.  Each variable was investigated using the ladder function in 

Stata version 12, which utilizes a chi-square test to determine if and what type of transformation is most 

appropriate (Tukey, 1977). Animal fluency; TMT, Part A; and TMT, Part B were identified with skew and 

kurtosis that would significantly benefit from application of the square-root, logarithm-10, and inverse 

square-root functions, respectively, to improve normality.  The remaining five neuropsychological 

variables (i.e., CDT, MMSE pentagons, BNT, AVLT Recall, and AVLT Recognition) did not significantly 

benefit from any transformation and therefore retained their identity distributions.   

Following application of transformations, standardized regression-based (SRB) formulas were 

used to generate normative data for each neuropsychological variable based on robust normal control 

performance.  Age, education, and gender were included to account for potential demographic effects, 

and regression formulas based on these beta coefficients were used to calculate the predicted 

performance of each MCI participant on all eight neuropsychological variables. This predicted score was 

then used to obtain a z-score reflecting an MCI subject’s degree of impairment on each variable:  

Formula 1: z-score= !"#$%&$'	)*+%$,-%$'.*/$'	)*+%$
)/01'0%'	2%%+%	+3	/4$	2#/.50/$

 

The corresponding z-score formulas and the adjusted R2 for each regression are displayed in Table 3. 
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Table 3: Standardized regression formulas based on robust normal control performance in study 1. 

Variable z-score standardized regression formula Adj. R2 
MMSE Pentagons [Raw Score – (0.149 + (0.021 x Age) + (-0.021 x Education) + (0.135 x Gender)]/1.004  0.011 

Clock Drawing Test [Raw Score – (11.330 + (-0.043 x Age) + (0.087 x Education) + (-0.012 x Gender)]/0.860 0.125 

√ (Animal Fluency) [Raw Score – (4.690 + (-0.019 x Age) + (0.074 x Education) + (0.093 x Gender)]/0.576  0.119 

BNT [Raw Score – (29.084 + (-0.041 x Age) + (0.153 x Education) + (-0.572 x Gender)]/2.016 0.072 

Lg10(TMT, Part A) [Raw Score – (1.137 + (0.006 x Age) + (-0.006 x Education) + (-0.001 x Gender)]/0.130 0.071 

1/√(TMT, Part B) [Raw Score – (0.187 + (-0.001 x Age) + (0.002 x Education) + 0.004 x Gender)]/0.020 0.138 

AVLT Recall [Raw Score – (12.511 + (-0.106 x Age) + (0.164 x Education) + (1.809 x Gender)]/3.625 0.043 

AVLT Recognition [Raw Score – (13.676 + (-0.019 x Age) + (0.029 x Education) + (0.553 x Gender)]/2.287 0.004 

Note: Adj. R2 = adjusted R2; SEE = standard error of the estimate; MMSE = mini-mental state 
examination; BNT= 30-item boston naming test; Lg10 = logarithm 10; TMT = trail making test; AVLT = rey 
auditory verbal learning test. 
 
Distal Outcome Variables 

 Distal outcome variables of interest included demographics, ADNI diagnostic measures, 

biological and genetic markers, longitudinal clinical outcome, and ADNI phase at time of enrollment 

(ADNI-1, ADNI-GO, ADNI-2). Diagnostic measures used by ADNI to originally identify MCI included 

WMS-R LM-II score, CDR sum of boxes, MMSE, and the Functional Activities Questionnaire (FAQ).  

Biological markers were available on 52.4% of MCI (n=422) and 55.0% (n=143) of robust normal control 

participants; markers included AlzBio3 cerebrospinal fluid (CSF) immunoassay concentrations of total tau 

(tau), tau phosphorylated at amino acid-181 (pTau181), Amyloid-beta1-42 (Ab1-42), and the ratio of pTau181 to 

Ab1-42. Subjects were classified according to CSF concentration thresholds (tau: >93 pg/mL; pTau181: >23 

pg/mL; Ab1-42: <192 pg/mL; pTau181p/Ab1-42 ratio: >0.10) previously established for the Alzbio3 assay to 

maximize sensitivity and specificity of autopsy confirmed AD (Shaw et al., 2009). Apolipoprotein E 

(APOE) e4 allele frequency was accessible for 98.8% of MCI participants (n=796) and 100% of the robust 

normal control participants, and was included in the current study as a genetic susceptibility marker of 

AD. Longitudinal clinical outcome was available on 93.8% of MCI participants (n=756), with average 

follow-up of 28.7 months. Variables included type of clinical conversion (progression to dementia, remain 

stable MCI, or reversion to normal) and the associated number of months to conversion. 
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Latent Profile Analysis 

Data preparation (descriptive statistics, regression, and formatting for import into MPlus) were 

conducted in SPSS version 22.  The ladder command in Stata version 12 was utilized to determine the 

benefit of transformations on the normality of neuropsychological variables in robust normal controls.  All 

multivariate analyses were performed in MPlus version 7.3.   

Latent profile analysis (LPA) was conducted using SRB z-scores of the eight neuropsychological 

variables as indicators of class membership. Models with two to eight latent classes were evaluated and 

maximum likelihood estimation with robust standard errors was used in LPA model estimation. 

Unavailable MMSE pentagons (82% covariance coverage) were assumed missing at random (MAR) in 

the model. All LPA’s were initially performed with the default number of random starts, which were 

subsequently increased twice (100, 25; and 500, 100) to ensure reproduction of global maxima and 

protect against misidentification of an erroneous local maxima (Hipp & Bauer, 2006). All LPA results were 

unchanged after increasing random starts.  

Determination of the best-fitting LPA is an iterative process, comparing a model with k latent 

classes to k-1 classes until obtaining an optimal solution. Multiple indicators of model fit are useful to 

determine the best number of latent classes; however, LPA lacks a gold standard and requires 

consideration of these indices in conjunction with model parsimony and meaningful theoretical 

interpretation (Berlin, Williams & Parra, 2014; Roesch et al., 2010). Study 1 considered three comparative 

fit indices: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and sample-size 

adjusted Bayesian Information Criterion (sBIC), with the smallest values indicating the best-fitting model. 

In addition, the Vuong-Lo-Mendell-Rubin adjusted Likelihood Ratio Test (VLMR-LRT) and the Bootstrap 

Likelihood Ratio Test (BLRT) were used to compare the model with k latent classes to the k-1 class 

solution; statistical significance (p<0.05) suggests the k class model is a better fit than k-1 classes. 

Additional statistics used to identify suitable model fit include entropy, an aggregate index of posterior 

probabilities that reflects the overall precision with which subjects were correctly classified (Berlin, 

Williams & Parra, 2014; Roesch et al., 2010) and the number of classes containing <5% of the overall 

sample size, an indicator of potential data over-extraction (Berlin, Williams & Parra, 2014; Roesch, et al., 
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2010). Monte Carlo simulation studies using a variety of sample sizes suggest the sBIC, BLRT, and 

entropy are the most robust fit indices (Berlin, Williams & Parra, 2014; Nylund et al., 2007; Roesch et al., 

2010; Tein, Coxe & Cham, 2013). Finally, LPA solutions were evaluated for model parsimony, data over-

extraction, and meaningful theoretical interpretation based on previous research.   

After selection of the optimal LPA, distal outcome variables were examined between latent 

classes within the structural equation modeling (SEM) framework. This method is preferential over subject 

assignment to most likely latent class membership and subsequent ANOVA comparisons; analyzing distal 

outcomes within SEM models classification uncertainty in statistical comparisons, generating accurate 

standard errors and reducing biased inferences (Asparouhov & Muthén, 2015; Bray et al., 2015). In the 

current study the 3-step BCH method (Bakk & Vermunt, 2015; Bolck, Croon, & Hagenaars, 2004; 

Vermunt, 2010) was employed for continuous distal outcome variables, while the DCAT command was 

utilized with categorical distal outcome variables (Lanza et al., 2013). The former uses a weighting 

procedure to account for classification error, while the latter treats distal outcomes as a form of covariate.  

Asparouhov & Muthén (2015) have demonstrated that these methods are the preferable approaches for 

continuous and categorical distal outcomes, respectively, due to their satisfactory estimation of standard 

error, resistance to class shifts, and minimal bias. MPlus performs parameter comparisons on all 

measures using the Wald chi-square test (Asparouhouv & Muthén, 2007) and statistical significance was 

set at a=0.005 in study 1 to control for Type-I errors. 

Study 2: Empirical characterization of longitudinal neuropsychological subtypes in mild cognitive 

impairment using serial latent profile analysis and multi-year, demographically-corrected norms 

with embedded practice effects. 

Participants 

 1,625 individuals enrolled in ADNI through December 2016 were selected for inclusion in studies 

2 and 3 due to a baseline diagnosis of MCI (n= 982) or classification as a normal elderly control (n= 643). 

MCI was diagnosed at a screening evaluation using conventional diagnostic criteria, as operationalized 

by ADNI (ADNI, 2008; Petersen et al., 2010): 1) Subjective memory complaint beyond what one would 

expect for age, verified by a study partner; 2) Mini-Mental State Examination (MMSE) score greater than 
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or equal to 24; 3) Global Clinical Dementia Rating Scale (CDR) score of 0.5, with a score of 0.5 in the 

Memory Box; 4) Abnormal memory function, operationalized by performing below an education-adjusted 

cut-score on WMS-R Logical Memory-II Story A Recall (WMS-R LM II); and 5) Preservation of global 

cognition and functional performance such that Alzheimer’s disease (AD) could not be diagnosed. Normal 

elderly control participants (NC) were defined by ADNI (ADNI, 2008) as 1) Free of memory complaints, 

beyond what one would expect for age; 2) Normal memory function, operationalized by scoring above an 

education adjusted cut-off on WMS-R LM II; 3) MMSE greater than or equal to 24; 4) CDR score of 0, with 

a score of 0 in the Memory Box; 5) Cognitively normal, defined as the absence of significant impairment 

in cognition or activities of daily living. Additionally, ADNI requires the following of all participants: 1) 

Hachinski score less than or equal to 4; 2) Geriatric Depression Scale less than 6; 3) Between the ages of 

55 and 90 at the time of study enrollment; 4) Completion of 6 years of education or a sufficient work 

history to rule out intellectual disability; 5) Visual and auditory acuity adequate for neuropsychological 

testing; 6) Fluency in English or Spanish; 7) Good general health, with no neurological, psychiatric, or 

other major medical/ systemic illnesses expected to interfere with the study; 8) Women whom are 2 years 

post-menopausal or surgically sterile; 9) Not using exclusionary medications as specified by ADNI (ADNI, 

2008); and 10) Not currently enrolled in another trial or study.   

 In studies 2 and 3, the robust normal control (rNC) sample was utilized to develop standardized 

T-scores for normative reference at baseline, 12-months, and 24-months, as well as z-scores indicating 

reliable change between the three time points. Robust normal control samples, defined as individuals that 

remain normal over time, have been shown to improve the accuracy of normative data in older adults 

compared to the inclusion of normal individuals with incipient MCI and/or dementia (Harrington et al., 

2017; Holtzer et al., 2008; De Santi et al., 2008). rNC participants in studies 2 and 3 were required to 

retain an ADNI classification of normal (follow-up range: 1-10 years) throughout their entire ADNI 

enrollment, as updated through December 2016. Of the initial 643 normal control participants identified by 

ADNI, 385 met this “robust” normal criteria. Additionally, inclusion criteria for studies 2 and 3 required 

rNCs to have at least 2 years of follow-up (n= 291) and complete data on all neuropsychological 

measures examined at baseline, 12-months, and 24-months. Thus, the final sample of rNCs consisted of 
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284 individuals with complete scores on all neuropsychological variables of interest, across all three time 

points. Figure 1 provides a visual representation of the inclusion criteria, associated sample size, and 

selection of robust normal controls for studies 2 and 3.   

 

Figure 1: Derivation of robust normal control sample for studies 2 and 3. ADNI = Alzheimer’s Disease 
Neuroimaging Initiative; MCI = mild cognitive impairment; rNC = robust normal control. 
 
 MCI participants in studies 2 and 3 were required to fall within the demographic boundaries of the 

robust normative control group. Thus, of the initial 982 MCI participants, 144 were excluded due to age at 

baseline (i.e., >89 or <60 years) and 1 due to low education (i.e., <6 years). MCI participants were also 

required to have at least one neuropsychological score available in each cognitive domain investigated 

(language, attention/ executive functions, episodic memory), resulting in the exclusion of an additional 12 

individuals. These inclusion criteria led to a final sample of 825 MCI participants at baseline. Individuals 

with a baseline MCI diagnosis, available follow-up, and at least one neuropsychological score in each 

cognitive domain of interest at the respective time point were included for analysis at 12-months (n= 751) 

and 24-months (n= 639). Figure 2 provides a visual representation of the inclusion criteria, associated 

sample size, and selection of MCI participants in studies 2 and 3.   
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Figure 2: Derivation of the mild cognitive impairment sample for studies 2 and 3. ADNI = Alzheimer’s 
Disease Neuroimaging Initiative; MCI = mild cognitive impairment; rNC = robust normal control. 
 
 Although MCI participants were allowed to have one missing score in each of the three cognitive 

domains of interest to maximize sample size across time points, the vast majority had all 

neuropsychological measures available at baseline (n= 813, 98.5%), 12-months (n= 743, 98.9%), and 24-

months (n= 621, 97.2%). Table 4 provides demographic information on the final sample of rNC and MCI 

participants at baseline, 12-months, and 24-months in studies 2 and 3 for descriptive purposes. 

Table 4: Demographic characteristics of the mild cognitive impairment and robust normal control 
samples at baseline, 12-months, and 24-months in studies 2 and 3. 

Time 
Point Group Age  

(years) 
Education  

(years) Gender GDS MMSE at Screening 

Ba
se

lin
e rNCs 

(n=284) 
74.49 
(5.60) 

16.43 
(2.73) 47.5% F 0.72 

(1.08) 
29.09 
(1.16) 

MCI 
(n=825) 

73.84 
(6.92) 

15.91 
(2.83) 40.4% F 1.66 

(1.42) 
27.59 
(1.80) 

12
-M

on
th

s rNCs 
(n=284) 

75.49 
(5.60) 

16.43 
(2.73) 47.5% F 0.91 

(1.40) 
28.96 
(1.36) 

MCI 
(n=751) 

74.82 
(6.93) 

15.98 
(2.82) 40.2% F 1.88 

(1.93) 
27.07 
(2.60) 

24
-M

on
th

s rNCs 
(n=284) 

76.49 
(5.60) 

16.43 
(2.73) 47.5% F 1.01 

(1.35) 
29.05 
(1.17) 

MCI 
(n=639) 

75.56 
(6.88) 

16.03 
(2.75) 40.2% F 1.90 

(2.02) 
26.40 
(3.44) 

Note: Data summarized as mean (standard deviation), unless otherwise noted. GDS = geriatric 
depression scale; MMSE = mini-mental state examination; rNCs= robust normal controls; MCI = mild 
cognitive impairment; F = female. 
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Neuropsychological Measures 

 Six neuropsychological variables were selected from five cognitive tests in ADNI’s 

neuropsychological battery for studies 2 and 3. These variables were balanced across three cognitive 

domains: language (Animal Fluency & 30-item BNT), attention/executive function (TMT, Part A & TMT, 

Part B), and episodic memory (AVLT Delay Free Recall & AVLT Recognition). These specific 

neuropsychological test variables were selected from available ADNI measures as they were 

administered across all three ADNI phases, represent well-researched assessments in older adults, are 

commonly employed in clinical practice (Lezak, 2012), and have been used extensively in past MCI 

classification research (Bondi et al., 2014; Edmonds et al., 2015; Edmonds et al., 2016; Eppig et al., 

2017). Additionally, these variables provide a reasonable range of possible scores with desirable 

psychometric characteristics in a normative sample; visuoconstructional measures from study 1 failed to 

meet this criterion, and were therefore excluded from studies 2 and 3. WMS-R Logical Memory was also 

excluded due to its primary use in ADNI’s MCI diagnosis, thereby circumventing criterion contamination. 

Heaton et al. (2004) qualitative classifications (above average, average, below average, mild impairment, 

mild-to-moderate impairment, moderate impairment, moderate-to-severe impairment, severe impairment) 

were used as descriptors of neuropsychological performance based on the corresponding T-score range 

(55+, 50-54, 45-49, 40-44, 35-39, 30-34, 25-29, 20-24, 0-19). 

Multi-Year Normative Standardization 

Standardization procedures for baseline, 12-months, and 24-months neuropsychological 

performance were adapted from the methodology established by Heaton et al. (1991), and later replicated 

and advanced in other normative studies (Cysique et al., 2011; Gladsjo et al., 1999; Heaton et al., 2004; 

Norman et al., 2011). The first step in normative standardization involved conversion of 

neuropsychological raw scores into scaled scores with a mean of 10 and standard deviation of 3, based 

on quantiles from the rNC frequency distribution. This conversion helps non-normal and skewed raw 

scores conform to a Gaussian distribution, attenuates the effect of outliers, places all test scores on the 

same metric, and ensures that lower scores always indicate worse performance across tests (Cysique et 
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al., 2011; Gladsjo et al., 1999; Heaton et al., 1991; Heaton et al., 2004; Norman et al., 2011). This 

procedure was performed separately for baseline, 12-months, and 24-months using the respective rNC 

test distribution at each time point. As all rNCs had complete neuropsychological data across all years 

and tests were administered in a standardized fashion with identical test-retest intervals, this conversion 

also automatically embedded practice effects within the scaled score distributions. This novel design 

supports instantaneous comparison of performance across time and circumvents the need for clinical 

judgement or post-hoc statistical methods to correct for practice effects (Cysique et al., 2011; Heaton et 

al., 2001).   

Following conversion of raw to scaled scores, multiple fractional polynomial regression based on 

rNC performance was employed to generate demographically-corrected normative data using the 

methodology of Heaton et al. (2004) for each neuropsychological variable at each time point. The 

Royston and Altman fractional polynomial method was used to compare all combinations of demographic 

predictors with a set of exponents (–2, –1, –0.5, 0, 0.5, 1, 2, 3) to determine the optimal model fit 

(Cysique et al., 2011; Heaton et al., 2004; Norman et al., 2011). Demographic predictors included age in 

years, sex (dummy coded: 0 = male, 1 = female), and education as a semi-continuous variable in the 

multiple fractional polynomial regressions. Due to the very small sample of rNC participants at each level 

of education below 12 years (6 years: n= 1, 7 years: n= 1, 9 years: n= 1, 10 years: n=3), individuals with 

11 or fewer years of education were re-coded into a single category (<11 years). However, the original, 

continuous ADNI classification was maintained for participants with 12 through 20 years of education. 

Stratified age by education cell counts are presented in Table 5.  

Table 5: Robust normative sample cell counts by age & education in study 2. 
  Education (years) 
  <=11 12 13–15 16 17–18 19+ 

Ag
e 

(y
ea

rs
) 60–64 0 1 0 2 4 1 

65–69 1 3 8 11 6 14 
70–74 3 9 25 30 25 17 
75–79 1 6 19 17 13 20 
80–84 0 1 3 10 10 14 
85–89 1 1 4 0 1 3 

 

Upon generation of the multiple fractional polynomial regressions, the predicted scaled score of 

each participant on all six neuropsychological variables at baseline, 12-months, and 24-months was 
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calculated from these models for a total of 18 predicted scaled scores per individual. The predicted scaled 

score was then inserted in the following formula to obtain a T-score reflecting a subject’s degree of 

impairment on each neuropsychological variable, at each time point:  

𝐅𝐨𝐫𝐦𝐮𝐥𝐚	𝟐: T-score =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑆𝑐𝑎𝑙𝑒𝑑	𝑆𝑐𝑜𝑟𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑆𝑐𝑎𝑙𝑒𝑑	𝑆𝑐𝑜𝑟𝑒
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐸𝑟𝑟𝑜𝑟	𝑜𝑓	𝑡ℎ𝑒	𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

×10 + 50 

 These normative procedures were chosen to generate T-scores with several desirable 

psychometric properties in elderly normal individuals: 1) a mean of 50 and standard deviation of 10; 2) 

generally normalized distributions with minimal outliers; 3) no associations with age, education, or sex; 4) 

and equivalent interpretation of performance across both tests and time (Heaton et al., 2004). These 

psychometric properties were evaluated for all 18 T-scores in the rNC sample to determine the efficacy of 

the normative methods. In addition to reporting means and standard deviations, the chi-square test was 

used to evaluate differences in the proportion of rNCs with an “impaired” score (i.e., less than 1 standard 

deviation below the mean) versus the expected 15.9% based on a normal distribution, and the 

Kolmogorov-Smirnov test was used to determine if each rNC T-score distribution differed from normality. 

Linear regressions with age, education, and sex predicting each T-score were used to check for any 

residual association between T-scores and demographics, and the age x education interaction term was 

subsequently included to ensure that associations did not differ across levels of age and education. 

Statistical significance was set at a=0.01 to control for Type-I errors given the replication of each above 

analysis across the 18 T-scores (Heaton et al., 2004). Multiple fractional polynomial regression was 

calculated in Stata version 12; subsequent T-score analyses were conducted in SPSS version 24.  

Reliable Change Classification 

 In addition to the multi-year normative standardization, reliable change z-scores were calculated 

based on rNC performance to provide a metric of individual change across time. Past research has 

demonstrated that reliable change indices are useful for determining if a person’s change in performance 

is beyond the level expected in a normal population (Attix et al., 2009; Cysique et al., 2011; Duff, 2012; 

Heaton et al., 2001). Several different reliable change formulas have been created to account for various 

test-retest issues (Duff, 2012; Stein, Luppa, Brähler, König, & Riedel-Heller, 2010). Study 2 utilized a 
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regression-based method that accounts for test-retest reliability and regression to the mean, and has 

proven effective at detecting reliable change in prior neuropsychological research (Attix et al., 2009; 

Cysique et al., 2011; Duff, 2012).  

 Three separate linear regressions were performed for each neuropsychological variable: baseline 

T-score predicting 12-months T-score, baseline T-score predicting 24-month T-score, and 12-month T-

score predicting 24-month T-score. Demographics were already accounted for in the T-scores and 

therefore not included in reliable change regressions. The predicted T-scores for 12- and 24-months 

among the three regressions was used to obtain a z-score with the following formula:  

𝐅𝐨𝐫𝐦𝐮𝐥𝐚	𝟑:	z-score =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑇-𝑆𝑐𝑜𝑟𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑇-𝑆𝑐𝑜𝑟𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐸𝑟𝑟𝑜𝑟	𝑜𝑓	𝑡ℎ𝑒	𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
 

 The resultant z-score indicated the amount of change a participant demonstrated at 12- and 24-

months, relative to the typical change in rNCs with similar performance at baseline or 12-months. These 

z-scores were used to categorize an individual with an increase, decrease, or stable performance based 

on the clinical standard of a 90% confidence interval (Cysique et al., 2011; Duff, 2012; Heaton et al., 

2001). Thus, a z-score above 1.645 (corresponding to the top 5% of the rNC distribution) would indicate a 

“significant increase”, a z-score below -1.645 (corresponding to the bottom 5% of the rNC distribution) a 

“significant decrease”, and “stable” being equivalent to a z-score equal to or in-between 1.645/ -1.645. 

Chi-square tests were used to determine if the proportion of rNC participants in each category 

significantly differed from the expected outcomes of 5%, 90%, and 5% across each measure. Statistical 

significance was again set at a=0.01 to control for Type-I errors. Reliable change analyses were 

conducted in SPSS version 24. 

Serial Latent Profile Analyses 

Three exploratory latent profile analyses (LPA) were conducted separately at baseline, 12-

months, and 24-months to investigate measurement models of the neuropsychological performance 

among participants diagnosed with MCI at baseline. The six neuropsychological T-scores were used as 

indicators of class membership for the serial LPAs, with baseline scores indicating the baseline LPA, 12-

month scores indicating the 12-month LPA, and 24-month scores indicating the 24-month LPA. Models 
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with two to eight latent classes were evaluated and full information maximum likelihood estimation with 

robust standard errors was used in LPA model estimation. All LPA’s were initially performed with 100 

random sets of starting values for the initial stage and 20 optimizations for the final stage (STARTS= 100, 

20; Muthén & Muthén, 2012). Analyses were re-run with increased starts (200, 40; 500, 100; etc.) until the 

best log-likelihood was reproduced at least twice to ensure reproduction of global maxima and protect 

against misidentification of an erroneous local maxima (Hipp & Bauer, 2006; Muthén & Muthén, 2012). 

Figure 3 provides a visual representation of the three proposed latent models.   

 

Figure 3: A graphical model of the latent profile analyses. Observed indicator variables of the categorical 
latent class variable at the ith time point (i= baseline, 12-months, or 24-months). Animals = animal fluency 
T-score; BNT = 30-item boston naming test T-score; TrailsA = trail making test, part A T-score; TrailsB = 
trail making test, part B T-score; Recall = rey auditory verbal learning test recall T-score; Recog = rey 
auditory verbal learning test recognition T-score; C = categorical latent class variable. 
 

Determination of the best-fitting LPA is an iterative process, comparing a model with k latent 

classes to k-1 classes until obtaining an optimal solution. Multiple indicators of model fit are useful to 

determine the best number of latent classes; however, LPA lacks a gold standard and requires 

consideration of these indices in conjunction with model parsimony and meaningful theoretical 

interpretation (Berlin, Williams & Parra, 2014; Roesch, Villodas & Villodas, 2010). Study 2 considered 

three comparative fit indices: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and 

sample-size adjusted Bayesian Information Criterion (sBIC), with the smallest values indicating the best-

fitting model. In addition, the Vuong-Lo-Mendell-Rubin adjusted Likelihood Ratio Test (VLMR-LRT) and 

the Bootstrap Likelihood Ratio Test (BLRT) were used to compare the model with k latent classes to the 
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k-1 class solution; statistical significance (p<0.05) suggests the k class model is a better fit than k-1 

classes. Additional statistics used to identify suitable model fit include entropy, an aggregate index of 

posterior probabilities that reflects the overall precision with which subjects were correctly classified 

(Berlin et al., 2014; Roesch et al., 2010) and the number of classes containing <5% of the overall sample 

size, an indicator of potential data over-extraction (Berlin et al., 2014; Roesch, et al., 2010). Monte Carlo 

simulation studies using a variety of sample sizes suggest the sBIC, BLRT, and entropy are the most 

robust fit indices (Berlin et al., 2014; Nylund et al., 2007; Roesch et al., 2010; Tein, Coxe & Cham, 2013). 

Additionally, past neuropsychological LPA research has shown that the VLMR-LRT may also be 

particularly useful in identification of optimal model fit when using cognitive test indicators (Eppig et al., 

2017; Dajani, Llabre, Nebel, Mostofsky & Uddin, 2016; Köhler et al., 2013; Morin & Axelrod, 2017). 

Finally, LPA solutions were evaluated for model parsimony, data over-extraction, and meaningful 

theoretical interpretation based on previous research models. Data preparation (descriptive statistics, 

linear regressions, and formatting for import into MPlus), was conducted in SPSS version 24. All 

multivariate analyses were performed in MPlus version 7.4.   

Parameter and Outcome Comparisons 

After selection of the optimal LPA at each time point, additional analyses involving parameter 

comparisons (i.e., class means) and distal outcomes were examined within the mixture modeling 

framework. This method is preferential over subject assignment to most likely latent class membership 

and subsequent ANOVA comparisons; analyzing parameters and distal outcomes within the mixture 

model includes classification uncertainty in statistical comparisons, generating accurate standard errors 

and reducing biased inferences (Asparouhov & Muthén, 2015; Bray et al., 2015). With respect to 

parameter comparisons, mean neuropsychological performance was compared within each analogous 

cognitive class across time points and between cognitive classes within the same time point using the 

Wald chi-square test (Asparouhouv & Muthén, 2007). The Wald chi-square test was also used to evaluate 

differences in distal outcomes via mixture regression analysis. Age and education were compared 

between classes at each respective time point using the 3-step BCH method (Bakk & Vermunt, 2015; 

Bolck, Croon, & Hagenaars, 2004; Vermunt, 2010) and sex was examined between classes using the 
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DCAT command (Lanza et al., 2013). Two additional categorical distal outcomes were evaluated at 12- 

and 24-months using the DCAT command: concurrent ADNI diagnosis (i.e., normal, MCI, or dementia) 

and reliable change classification (i.e., decline, no change, improvement). Asparouhov & Muthén (2015) 

have demonstrated that these respective methods are the preferable approaches for continuous and 

categorical distal outcomes due to their satisfactory estimation of standard error, resistance to class 

shifts, and minimal bias. Statistical significance for omnibus-level comparisons was set at a=0.05, and 

Bonferroni correction was used to control for Type-I errors among multiple post-hoc comparisons. 

Study 3: A latent transition model examining the likelihood of class change in neuropsychological 

subtypes of mild cognitive impairment. 

Participants 

 Participants included all 825 individuals from study 2 that were diagnosed with baseline MCI 

using ADNI criteria (ADNI, 2008; Petersen et al., 2010). Follow-up data was available on 91.0% of the 

baseline sample at 12-months (n=751) and 77.5% of baseline subjects at 24-months (n=639). MCI 

participants were enrolled between the ages of 60 and 89 at their baseline visit, had 6 or more years of 

education, and had at least one neuropsychological score available in each cognitive domain at all time 

points. The vast majority of MCI participants possessed a complete set of scores across all 

neuropsychological measures of interest at baseline (n=813, 98.5%), 12-months (n=743, 98.9%), and 24-

months (n=621, 97.2%). 

Neuropsychological Measures 

 Neuropsychological measures were identical to the six ADNI variables used in study 2 (Animal 

Fluency; 30-item Boston Naming Test [BNT]; Trail Making Test [TMT], Part A; TMT, Part B; Rey Auditory 

Verbal Learning Test [AVLT] Delay Free Recall; and AVLT Recognition). Raw neuropsychological scores 

were converted to demographically-adjusted T-scores with embedded practice effects using an adaption 

of the Heaton et al. (2004) methodology. A detailed review of these standardization procedures as well as 

characteristics of the robust normal control sample used to establish the normative data is described 

under the methods of study 2.  

 



 31 

Covariate Variables 

 Covariate variables of interest included baseline functional ability, Apolipoprotein E (APOE) 

genotype, and baseline AD cerebrospinal fluid biological markers. All variables were dummy coded 

(unless otherwise specified) based on previously established relationships in the literature with AD 

dementia (Saunders et al., 1993; Schindler et al., 2018; Teng et al., 2010). Baseline functional ability was 

measured with the Functional Activities Questionnaire (FAQ) and classified as intact (total FAQ<6) or 

impaired (total FAQ>6) using a cut-score previously shown to maximize the sensitivity and specificity for 

discriminating between MCI and very mild AD dementia (Teng et al., 2010). Baseline FAQ score was 

available in 99.5 – 99.6% of individuals at baseline (n=822), 12-months (n=748), and 24-months (n=636). 

In the overall baseline MCI sample, 78.7% an FAQ<6 and 21.2% had a score >6. APOE e4 allele 

frequency was included as a genetic marker of AD (Saunders et al., 1993) and classified as e4-positive 

(e4+) or negative (e4-). APOE genotype was available in 99.5% of individuals at baseline (n=821), and 

100% at 12- (n=751) and 24-months (n=639). In the overall baseline MCI sample, 49.1% were e4-

negative and 50.9% were e4-positive. 

 Baseline AD biological markers were available in a large subsample of the 825 MCI participants, 

with the three markers of interest available for 71.6% of individuals at baseline (n=591), 73.6% at 12-

months (n=553), and 74.0% at 24-months (n=473). Baseline cerebrospinal (CSF) concentrations of total 

tau (tTau), tau phosphorylated at amino acid-181 (pTau181), and amyloid-beta1-42 (Ab1-42) were measured 

with the automated Elecsys immunoassays, which have been recently shown to decrease variability and 

improve consistency of CSF results compared to prior methods (Bittner et al., 2016; Schindler et al., 

2018). Subjects were identified as AD positive (AD+) or negative (AD-) for each biomarker according to 

CSF concentration thresholds (AD+ tTau >242 pg/mL; AD+ pTau181 >19.2 pg/mL; AD+ Ab1-42 <1098 

pg/mL) to maximize the sensitivity and specificity of Elecsys immunoassays with amyloid-positive PET 

scans (Schindler et al., 2018). These variables were subsequently examined as covariates in the LTA 

analysis. In the overall baseline MCI sample, 69.0% were classified as pTau181 positive, 57.0% as tTau 

positive, and 68.0% as Ab1-42 positive. 
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 In addition to AD-positivity/negativity on the three separate CSF biomarkers, each individual was 

classified according to the Amyloid/Tau/Neurodegeneration (A/T/N) scheme proposed by Jack et al. 

(2016), using Ab1-42 for Amyloid, pTau181 for Tau, and tTau for Neurodegeneration. Thus, each participant 

was classified into one of eight possible A/T/N combinations, which was represented as one categorical 

A/T/N variable. A/T/N classification of the total baseline MCI sample with available AD-CSF biomarkers 

(n=591) is presented in Table X. Of the eight possibilities, three categories (A–/T+/N–, A–/T–/N+, A+/T–

/N+) contained cell counts so small (<5% of the total sample) that these individuals were excluded from 

subsequent analyses. The final sample consisted of 566 participants with baseline A/T/N classification 

that was used as an LTA covariate. 

Table 6: A/T/N classification across the total baseline MCI sample with AD-CSF biomarkers (n=591). 
Classification A–/T–/N– A+/T–/N– A–/T+/N– A–/T–/N+ A+/T+/N– A+/T–/N+ A–/T+/N+ A+/T+/N+ 

Sample Size n=91 n=89 n=22 n=3 n=52 n=0 n=73 n=261 

Percentage 15.4% 15.1% 3.7% 0.5% 8.8% 0.0% 12.4% 44.2% 

Note: A/T/N = amyloid/tau/neurodegeneration scheme; MCI = mild cognitive impairment; AD = 
Alzheimer’s disease; CSF = cerebrospinal fluid. 
 
Latent Transition Analysis 

Data preparation (descriptive statistics, dummy coding, and formatting for import into MPlus) was 

conducted in SPSS version 24. All multivariate analyses were performed in MPlus version 7.4.  Latent 

transition analysis is a multi-step process that involves 1) Examining descriptive statistics and data 

patterns of selected indicators, 2) Investigating separate LPAs at each time point and exploring 

alternative measurement models, 3) Determining measurement invariance across the longitudinal LPAs 

(i.e., same number of classes, equivalent class means or conditional item probabilities within an 

analogous class), 4) Specifying the latent transition model without higher-order effects or covariates, and 

5) Including higher-order effects and/or covariates in the LTA model (Nylund, 2007). LTA steps 1 and 2 

were conducted in study 2, and the parameter means from these results were used as starting values in 

the current LTA model.  

 In step 3, measurement invariance between the three LPAs was examined by constraining model 

parameters (i.e. means) and comparing the statistical fit of the constrained versus unrestricted models 
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(Finch, 2015). Three possibilities may occur in the model: full measurement invariance (i.e., the number of 

classes and analogous class means are all invariant over time), partial measurement invariance (i.e., the 

number of classes but only some means within a class are equal over time, while others are freely 

estimated), and full non-invariance (i.e., no constraints are placed on parameters over time). Although 

measurement invariance is not required to perform LTA modeling, there are several benefits to a fully (or 

even partially) invariant model. In addition to establishing equivalent interpretation of longitudinal classes, 

measurement invariance significantly reduces the computational burden and decreases the likelihood of 

model non-identification as fewer parameters need to be estimated in the LTA (Collins & Lanza, 2013; 

Nylund, 2007). Nested LPAs were compared using a likelihood ratio test (LRT) with scaling correction on 

the model log-likelihoods (Bryant & Satorra, 2012; Muthén & Muthén, 2006; Satorra & Bentler, 2010), 

such that a significant chi-square (p<0.05) indicated worse model fit of the constrained (i.e., non-invariant) 

LPA. Full measurement invariance was evaluated first and tested within analogous cognitive classes by 

constraining the LPA means for each respective neuropsychological indicator to be equal across the 

three time points (e.g., mean Animal Fluency at 12-months in class 1 equal to mean Animal Fluency at 

baseline in class 1). If full invariance was rejected, partial measurement invariance was then evaluated by 

constraining only neuropsychological means within a class that were not found to statistically differ 

(p>0.05) across all three time points in study 2.  

 After constraining the necessary means across classes to reflect the appropriate level of 

measurement invariance, autoregressive relationships between categorical latent variables were 

specified to determine their relationships over time (step 4). First, the categorical latent variable at 12-

months was regressed on the categorical latent variable at baseline; then the categorical latent variable at 

24-months was regressed on the categorical latent variable at 12-months. Transition probabilities 

between these time points were expressed as probabilities in a latent transition matrix to better 

understand the likely change in class membership for an individual given their initial class membership. 

LPA class means from study 2 were specified as starting values, with 500 sets of starting values for the 

initial stage and 100 optimizations for the final stage (STARTS= 500, 100; Muthén & Muthén, 2012). 

Analyses were re-run with increased starts until the best log-likelihood was reproduced at least twice to 
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ensure reproduction of global maxima and protect against misidentification of an erroneous local maxima 

(Hipp & Bauer, 2006; Muthén & Muthén, 2012). All latent transition analyses were performed with full 

information maximum likelihood estimation with robust standard errors and Bayesian analysis to perform 

multiple imputation of missing data under the missing at random assumption (Muthén & Muthén, 2012). 

Figure 4 provides an example visual representation of possible transition probabilities that reflect change 

in class membership over time. 

 

Figure 4: Graphical depiction of transition probabilities between hypothesized latent classes over three 
time points. Increasing arrow thickness/darkness indicates a greater probability of transition between the 
two classes at associated time points. FP = false-positive class; AMN = amnesic class; MIX = mixed 
class; C(0) = class at baseline; C(1) = class at 12-months; C(2) = class at 24-months. 
 

Next, a second-order effect (i.e., categorical latent variable at 24-months regressed on the 

categorical latent variable at baseline) was added to the prior LTA model that only contained first-order 

effects (step 5). Class means from the LTA in step 4 were specified as starting values, and the 

appropriate means were constrained across time to reflect the previously determined level of 

measurement invariance. Latent transition probabilities resulting from the second-order effect were 

compared to the transition probabilities from the prior LTA model (i.e., only first-order effects) to examine 

the lasting direct effect that class membership at baseline has on class membership at 24-months. As an 

example, a model of an LTA with a second-order effect is presented in Figure 5 below. 
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Finally, covariates were added to the LTA model to investigate effects on latent transition 

probabilities across time points (step 5). Baseline FAQ, APOE genotype, each baseline AD-CSF 

biomarker (i.e., tTau, pTau181, Ab1-42), and the A/T/N categorical variable (Jack et al., 2016) were 

separately modeled on the LTA first-order effects (i.e., 12-months regressed on Baseline, 24-months 

regressed on 12-months) using the known-class command and Tech 15 output (Muthén & Muthén, 2012). 

Latent transition probabilities were examined between AD+ and AD- groups for baseline FAQ, APOE 

genotype, and baseline AD-CSF biomarkers to investigate differences in likelihood of class change in the 

presence of AD-risk factors. Additionally, the five levels of A/T/N classification (i.e., A–/T–/N–, A+/T–/N–, 

A+/T+/N–, A–/T+/N+, A+/T+/N+) were evaluated for differential probabilities of class transition. A 

representation of an example LTA model with a covariate is presented in Figure 6 below. 
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 Study 1, in part, is a reprint of the material as it appears in the Journal of the International 

Neuropsychological Society, (2017), 23(7), 564-576. Eppig, Joel S.; Edmonds, Emily C.; Campbell, 

Laura; Sanderson-Cimino, Mark; Delano-Wood, Lisa; and Bondi, Mark W. for the Alzheimer’s Disease 

Neuroimaging Initiative, Cambridge University Press. The dissertation author was the primary investigator 

and author of this paper. 
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IV. Results 

Study 1: Investigation of baseline neuropsychological subtypes in mild cognitive impairment and 

their associations with markers of Alzheimer’s disease using latent profile analysis. 

Latent Profile Analysis 

Two to eight latent class models were tested in study 1. Fit indices and descriptive characteristics 

for each model are provided in Table 7. AIC, BIC, and sBIC comparative fit indices successively 

decreased with increasing latent classes; the BLRT showed a similar pattern, with k classes always a 

statistically significant fit compared to k-1 classes. These indices failed to clearly converge on an optimal 

solution, as this trend would presumably continue past eight latent classes and likely result in data over-

fitting based on other indicators (Nylund et al., 2007). The VLMR-LRT suggested the 3-class solution as a 

significantly better fit than 2-classes. However, the 4-class solution (vs. 3-classes) did not result in 

statistically significant improvement in model fit via the VLMR-LRT. The VLMR-LRT remained non-

significant for all subsequent class comparisons (e.g., 5- vs. 4-classes, etc.). Entropy was highest for the 

4-class model, though satisfactory (Asparouhov & Muthén, 2014; Tein et al., 2013) and relatively 

equivalent for the 3-class solutions. The smallest class size for the 3-class solution was 13.2% of all MCI 

participants; LPA models with 5 or greater classes contained at least one class that was <5% of the 

overall sample. The 3-class LPA was selected as the optimal solution on the basis of fit indices (e.g., 

VLMR-LRT), satisfactory entropy, model parsimony, signs of possible data over-fitting with increasing 

latent classes, and meaningful neuropsychological interpretation of classes. 

Table 7: Latent profile analysis comparative fit indices & likelihood ratio tests in study 1. 
Number of 
Classes AIC BIC sBIC VLMR-LRT BLRT Final Log-

Likelihood Entropy Number of 
Classes <5% 

Smallest 
Class Size 

2 20291.57 20408.87 20329.48 p=0.0265 p<0.0001 -10120.782 0.671 0 39.95% 

3* 19982.63 20142.16 20034.19 p=0.0152 p<0.0001 -9957.315 0.773 0 13.15% 

4 19820.68 20022.44 19885.90 p=0.2045 p<0.0001 -9867.341 0.823 0 5.83% 

5 19710.91 19954.90 19789.77 p=0.0622 p<0.0001 -9803.455 0.764 1 3.60% 

6 19560.23 19846.45 19652.74 p=0.1000 p<0.0001 -9719.116 0.771 1 3.85% 

7 19502.07 19830.52 19608.23 p=0.4687 p<0.0001 -9681.037 0.789 2 2.85% 

8 19435.09 19805.77 19554.89 p=0.3352 p<0.0001 -9638.548 0.781 2 2.48% 

Note: *Chosen as best class solution. AIC = akaike information criterion; BIC = bayesian information 
criterion; sBIC = sample-size adjusted bayesian information criterion; VLMR-LRT = Vuong-Lo-Mendell-
Rubin adjusted likelihood ratio test; BLRT = bootstrapped likelihood ratio test. 
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The final 3-class LPA grouped MCI participants into a “mixed” MCI class (n=106, 13.2%), an 

“amnestic” MCI class (n=455, 56.5%), and an “LPA-derived normal” class (n=245, 30.4%) based upon 

neuropsychological performance. Final class counts based on most likely class membership is presented 

in Table 8. Posterior probabilities for correct classification ranged from 0.40 to 1.00 for the mixed MCI 

class, 0.47 to 1.00 for the amnestic MCI class, and 0.50 to 1.00 for the LPA-derived normal class.  

Table 8: Final class counts and proportions for most likely class membership of 3-class LPA in study 1. 

 n Proportion of Total MCI Sample 

Mixed MCI Class 106 13.15% 

Amnestic MCI Class 455 56.45% 

LPA-Derived Normal Class 245 30.40% 

Note: LPA = latent profile analysis; MCI = mild cognitive impairment. 
 
Neuropsychological Measures 

 The mixed MCI class yielded a profile of neuropsychological impairment across all four cognitive 

domains, ranging from mild-to-moderate to severe deficits.  However, performance on the MMSE 

pentagon test was only low average for the mixed MCI class.  The amnestic MCI class demonstrated 

mild-to-moderate impairment on both measures of episodic memory and average to low average 

performance across all other cognitive domains.  The LPA-derived normal class demonstrated average 

performance across all neuropsychological tests, despite their original MCI diagnosis. Neuropsychological 

performance of each class is presented in Figure 2. 
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Figure 7: Neuropsychological performance of the latent profile classes in study 1. Error bars denote 
99.5% confidence intervals. MCI = mild cognitive impairment; LPA = latent profile analysis; MMSE = mini-
mental state examination; TMT = trail making test; AVLT = rey auditory verbal learning test. 
 
 Omnibus Wald tests suggested significant differences between classes on every 

neuropsychological variable (all p’s<0.001). Post-hoc comparisons indicated the mixed MCI class 

performed significantly worse (all p’s<0.001) than both the amnestic MCI and LPA-derived normal classes 

on all measures of visuoconstructional ability, language, and attention/executive functioning. However, on 

AVLT Recall and Recognition the mixed MCI class was only significantly worse compared to the LPA-

derived normal class (p< 0.001). The amnestic MCI class produced significantly lower scores than the 

LPA-derived normal class on all tests of episodic memory and language, as well as TMT, Part B (p< 

0.001). There was no statistical difference in performance between the two groups on measures of 

visuoconstructional ability or TMT, Part A. Differences in neuropsychological performance between 

classes are presented in Table 9.   
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Table 9: Neuropsychological performance of the three latent profile classes in study 1. 

Variable 
Mixed  

MCI Class 
Amnestic MCI 

Class 
LPA-Derived 
Normal Class 

Omnibus Wald χ2 

Test (df) p-value 

Visuoconstructional Ability 

MMSE Pentagons -2.2262,3 
(0.403) 

-0.4781 
(0.079) 

-0.1691  
(0.080) 

χ2(2)=17.829 p<0.001 

Clock Drawing Test -0.9272,3 
(0.198) 

-0.2171 
(0.064) 

-0.0351  
(0.080) 

χ2(2)=27.685 p<0.001 

Language 

Animal Fluency -1.9532,3 
(0.166) 

-0.7371,3 
(0.065) 

-0.1301,2  
(0.078) 

χ2(2)=100.948 p<0.001 

BNT -3.2382,3 
(0.562) 

-0.8741,3 
(0.139) 

-0.3021,2  
(0.086) 

χ2(2)=49.202 p<0.001 

Attention/Executive Function 

TMT, Part A -1.9872,3 
(0.245) 

-0.4131 
(0.082) 

-0.0361  
(0.097) 

χ2(2)=51.823 p<0.001 

TMT, Part B -2.0132,3 
(0.168) 

-0.7021,3 
(0.084) 

-0.2561,2  
(0.087) 

χ2(2)=82.083 p<0.001 

Episodic Memory 

AVLT Recall -1.5243 
(0.126) 

-1.5963 
(0.059) 

0.0611,2  
(0.034) 

χ2(2)=395.429 p<0.001 

AVLT Recognition -1.7193 
(0.306) 

-1.5723 
(0.125) 

0.2051,2  
(0.060) 

χ2(2)=529.387 p<0.001 

Note: Data summarized as mean (standard error) in standardized regression-based z-scores. Numbered 
superscripts denote significant Wald χ2 test post-hoc differences at p<0.005 between each class and the 
class number indicated (1= mixed MCI class, 2= amnestic MCI class, 3= LPA-derived normal class). MCI 
= mild cognitive impairment; LPA = latent profile analysis; χ2 = chi-square; df= degrees of freedom; MMSE 
= mini-mental state examination; BNT = 30-item boston naming test; TMT = trail making test; AVLT = rey 
auditory verbal learning test. 
 
Distal Outcomes Variables 

 Certain variables (e.g., CSF biomarkers, APOE allele, longitudinal outcomes) only included a 

subset of the total MCI sample; the distribution of these subsamples across the three latent classes is in 

Table 10. 

  



 43 

  

Note: MMSE = mini-mental state examination; CSF = cerebrospinal fluid; APOE = Apolipoprotein E; MCI= 
mild cognitive impairment; LPA = latent profile analysis. 
 
 Latent class differences on all distal outcome variables are presented in Table 11. Omnibus Wald 

tests indicated no significant differences between classes on the demographic variables of age, 

education, gender, or Geriatric Depression Scale (GDS). Significant omnibus differences (all p’s<0.001) 

were noted between classes on all ADNI diagnostic measures (i.e., WMS-R LM-II, CDR Sum of Boxes, 

MMSE, and FAQ). The LPA-Derived normal class performed significantly better on all ADNI diagnostic 

measures than both the mixed and amnestic MCI class. The amnestic MCI class produced a significantly 

higher MMSE score and lower CDR Sum of Boxes tally than the mixed MCI class, though no differences 

between the two classes were noted on WMS-R LM-II or the FAQ.   

 

  

Table 10: Distribution of subsample variables across the latent classes in study 1. 

 MMSE Pentagons CSF Biomarkers APOE Alleles Longitudinal Data 

n Proportion of 
Class n Proportion of 

Class n Proportion of 
Class n Proportion of 

Class 

Mixed MCI 
Class 95 89.62% 52 49.06% 104 98.11% 103 97.27% 

Amnestic MCI 
Class 374 82.20% 237 52.09% 450 98.90% 429 94.29% 

LPA-Derived 
Normal Class 194 79.18% 133 54.29% 242 98.78% 224 91.43% 
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Table 11: Demographic, diagnostic, genetic, cerebrospinal fluid biomarker, longitudinal, and ADNI phase 
differences between latent profile classes in study 1. 

Category    Variable 
Mixed  

MCI Class 
Amnestic 
MCI Class 

LPA-Derived  
Normal Class 

Omnibus Wald 
χ2 Test (df) 

p-value 

D
em

og
ra

ph
ic

s 

Age 73.72  
(0.72) 

74.01  
(0.35) 

73.79  
(0.55) 

χ2(2)=0.165 p=0.921 

Education 15.77  
(0.37) 

15.82  
(0.15) 

16.25  
(0.19) 

χ2(2)=3.158 p=0.206 

Gender (%) 42.1% F  
(5.6) 

36.6% F  
(2.5) 

45.4% F  
(4.0) 

χ2(2)=3.015 p=0.222 

GDS 1.85  
(0.16) 

1.54  
(0.07) 

1.75  
(0.11) 

χ2(2)=3.690 p=0.158 

D
ia

gn
os

tic
 M

ea
su

re
s WMS-R LM II 4.123  

(0.359) 
4.733  
(0.18) 

8.031,2  
(0.19) 

χ2(2)=178.914 p<0.001 

CDR Sum of Boxes 2.02,3  
(0.11) 

1.581,3   
(0.05) 

1.171,2  
(0.05) 

χ2(2)=63.624 p<0.001 

Baseline MMSE 26.342,3 
(0.19) 

27.411,3  
(.10) 

28.431,2 
(0.11) 

χ2(2)=105.151 p<0.001 

FAQ 4.873  
(0.54) 

3.693  
(0.23) 

1.381,2  
(0.20) 

χ2(2)=75.677 p<0.001 

G
en

et
ic

 &
 C

SF
 B

io
m

ar
ke

rs
 

% APOE e4-positive 
61.3%3  

(6.3) 
57.8%3  

(3.4) 
34.5%1,2  

(3.4) 
χ2(2)=30.014 p<0.001 

% high total tau 53.1%3  
(9.2) 

42.5%3  
(3.9) 

22.6%1,2  
(3.6) 

χ2(2)=17.159 p<0.001 

% high pTau181 
84.2%3  

(6.4) 
64.0%3  

(4.4) 
33.4%1,2  

(4.3) 
χ2(2)=51.233 p<0.001 

% low Aβ1-42 
81.6%3  

(6.9) 
73.0%3  

(3.6) 
29.3%1,2  

(4.3) 
χ2(2)=72.773 p<0.001 

% high pTau181/Aβ1-42 ratio 80.3%3  
(6.9) 

76.2%3  
(3.8) 

34.6%1,2  
(4.3) 

χ2(2)=64.444 p<0.001 

Lo
ng

itu
di

na
l O

ut
co

m
e 

% progression to dementia 60.0%2,3  
(6.7) 

38.3%1,3  
(2.9) 

5.8%1,2  
(1.8) 

χ2(2)=133.050 p<0.001 

Months until progression 
15.852,3  
(1.58) 

23.421  
(1.46) 

51.151  
(11.25) 

χ2(2)=20.338 p<0.001 

% reversion to normal 
1.2%3  
(1.2) 

0.6%3  
(0.6) 

11.2%1,2  
(2.1) 

χ2(2)=21.037 p<0.001 

Months until reversion 
10.32  
(1.71) 

18.11  
(4.29) 

21.45  
(3.69) 

χ2(2)=8.619 p=0.013 

% stable MCI 
38.8%2,3  

(6.7) 
61.1%1,3  

(2.8) 
83.0%1,2  

(2.6) 
χ2(2)=65.159 p<0.001 

Amount of total follow-up (in 
months) 

27.74  
(2.37) 

29.23  
(1.23) 

28.02  
(1.79) 

χ2(2)=0.403 p=0.818 

Ph
as

e 

% from ADNI1  64.3%3  
(5.2) 

53.7%3  
(2.8) 

27.4%1,2  
(3.2) 

χ2(2)=51.420 p<0.001 

% from ADNIGO 0.0%2,3  
(0.0) 

9.9%1,3  
(1.8) 

28.5%1,2  
(3.1) 

χ2(2)=125.303 p<0.001 

% from ADNI2  
35.7%  
(5.2) 

36.4%  
(2.5) 

44.1%  
(3.4) 

χ2(2)=3.915 p=0.141 

Note: Data summarized as mean or percent of class and (standard error) unless otherwise noted.  Numbered superscripts 
denote significant Wald χ2 test post-hoc differences at p<0.005 between each class and the class number indicated 
(1=mixed MCI class, 2=amnestic MCI class, 3=LPA-derived normal class). MCI = mild cognitive impairment; LPA = latent 
profile analysis; χ2 = chi-square; df= degrees of freedom;  GDS = geriatric depression scale; WMS-R LM II = Weschler 
memory scale-revised logical memory II subtest; CDR = clinical demetia rating scale; MMSE = mini-mental state 
examination; FAQ = functional activities questionnaire; CSF = cerebrospinal fluid; APOE = Apolipoprotein E; ADNI1 = 
Alzheimer’s Disease Neuroimaging Initiative phase 1; ADNIGO = Alzheimer’s Disease Neuroimaging Initiative phase GO; 
ADNI2 = Alzheimer’s Disease Neuroimaging Initiative phase 2. 
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 Significant omnibus differences were also present for all genetic and AD-CSF biomarkers (all 

p’s<0.001) available on a subset of the overall sample.  A significantly lower proportion of the LPA-

derived normal class had the APOE e4 allele than both other classes (all p’s<0.001); the mixed MCI and 

amnestic MCI classes did not differ. A similar pattern emerged for CSF biomarkers: both MCI classes 

contained a significantly higher percentage of subjects with AD-positive CSF biomarkers (i.e., high total 

tau, high pTau181, low Ab1-42, and high pTau181/Ab1-42 ratio) than the LPA-derived normal class (all 

p’s<0.003), while the amnestic and mixed MCI classes did not differ. Identical results were obtained upon 

examination of mean CSF biomarker concentrations, with the exception that post-hoc total tau levels 

were only a nonsignificant trend between the LPA-derived normal and the mixed MCI class (p=0.007). 

This trend is due to the use of a=0.005 significance level to adjust for multiple comparisons and increased 

variability of total tau in the mixed class, which produced a larger standard error than the other classes. 

Additionally, the LPA-derived normal class did not differ from robust normal controls on any of the CSF 

biomarker concentrations (all p’s>0.101). Mean CSF biomarker concentrations between all latent classes 

as well as robust normal controls are presented in Figure 8. 
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Figure 8: Mean cerebrospinal fluid Alzheimer’s disease biomarker concentrations of latent profile classes 
and robust normal control participants in study 1.  
Upper Left Panel: Total tau concentration. Upper Right Panel: pTau181 concentration.  
Lower Left Panel: Ab1-42 concentration. Lower Right Panel: Ratio of pTau181 to Ab1-42. Error bars denote 
99.5% confidence intervals. MCI = mild cognitive impairment; LPA = latent profile analysis; Ab1-42  = 
amyloid-beta1-42; pTau181 = tau phosphorylated at amino acid-181. 
 
 With respect to longitudinal outcomes, there was no significant difference between latent classes 

in amount of available follow-up. However, omnibus differences were noted among the proportion of 

individuals who progressed to AD diagnoses, reverted to normal, and remained as stable MCI. In 

particular, a significantly smaller percentage of the LPA-derived normal class progressed to AD than the 

other classes (all p’s<0.001). A larger proportion of the LPA-derived normal class also reverted to normal 

or remained as stable MCI than both other classes (all p’s<0.001). Compared to the mixed MCI class, the 

amnestic MCI class had a significantly smaller proportion of individuals who progressed to AD but larger 
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percentage who remained stable (all p’s<0.003); no difference was noted in reversion to normal. The 

mixed MCI class progressed to AD more quickly than both other classes (all p’s<0.002); no difference 

was observed in progression time between the amnestic MCI and LPA-derived normal classes. Clinical 

progression rates for LPA classes are presented in Figure 9.   

 

Figure 9: Progression and reversion rates of latent profile classes in study 1. Error bars denote 99.5% 
confidence intervals. NL = normal; MCI = mild cognitive impairment; LPA = latent profile analysis. 
 

Upon investigation of ADNI enrollment phase, there was no difference in the proportion of 

individuals recruited during Phase 2. However, significant omnibus differences were noted between the 

classes for both Phase 1 and ADNI GO. A significantly smaller percentage of the LPA-derived normal 

class was enrolled during Phase 1 than both other classes (all p’s< 0.001); no difference was observed 

between the mixed and amnestic MCI classes. The opposite trend emerged for ADNI GO, such that a 

significantly larger percentage of the LPA-derived normal class was enrolled during this phase than both 

other classes (all p’s< 0.001). The amnestic MCI class also had a significantly larger proportion of 

participants recruited during ADNI GO than the mixed MCI class (p< 0.001), as the latter enrolled no 

individuals in this phase.   
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Study 2: Empirical characterization of longitudinal neuropsychological subtypes in mild cognitive 

impairment using serial latent profile analysis and multi-year, demographically-corrected norms 

with embedded practice effects. 

Multi-Year Demographically-Corrected T-scores  

 The first step to generate the demographically-corrected T-scores involved the conversion of raw 

scores to scaled scores based on the rNC quantiles at each time point. Conversion tables for the six 

neuropsychological variables of interest at baseline, 12-months, and 24-months are presented in Tables 

12, 13, and 14, respectively.  

Table 12: Raw score to scaled score conversions for measures at baseline. 

Scaled 
Score 

Animal 
Fluency BNT TMT, 

Part A 
TMT, 

Part B 
AVLT 

Recall 
AVLT 

Recognition Percentile 

18 38+  0 - 15 0 - 35   >99th 
17 34 - 37  16 - 17 36 - 38   99th 
16 31 - 33  18 39 - 40 15  98th 
15 29 - 30  19 - 20 41 - 44 14  95th 
14 27 - 28 30 21 - 23 45 - 51 12 - 13 30 91st 
13 25 - 26  24 - 25 52 - 55 11  84th 
12 24  26 - 28 56 - 62 10 29 75th 
11 22 - 23 29 29 - 30 63 - 71 9 28 63rd 
10 20 - 21  31 - 34 72 - 80 7 - 8  50th 

9 18 - 19 28 35 - 38 81 - 92 6 27 37th 
8 16 - 17 27 39 - 43 93 - 103 5 26 25th 
7 15 26 44 - 48 104 - 119 3 - 4 24 - 25 16th 
6 13 - 14 25 49 - 51 120 - 164 2 22 - 23 9th 
5 12 24 52 - 60 165 - 197 1 20 - 21 5th 
4 11 22 - 23 61 - 68 198 - 229 0 19 2nd 
3 9 - 10 21 69 - 73 230 - 299  16 - 18 1st 
2 0 - 8 0 - 20 74 - 150 300  0 - 15 <1st 

Note: BNT = 30-item boston naming test; TMT = trail making test; AVLT = rey auditory 
verbal learning test. 
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Table 13: Raw score to scaled score conversions for measures at 12-months. 
Scaled 
Score 

Animal 
Fluency BNT TMT, 

Part A 
TMT,  

Part B 
AVLT 

Recall 
AVLT 

Recognition Percentile 

18 38+  0 -16 0 - 31   >99th 
17 35 - 37  17 32 - 34   99th 
16 32 - 34  18 35 - 40 15  98th 
15 30 - 31  19 - 20 41 - 44 14  95th 
14 28 - 29  21 45 - 48 13 30 91st 
13 26 - 27 30 22 - 25 49 - 54 12  84th 
12 24 - 25  26 - 27 55 - 60 11 29 75th 
11 22 - 23  28 - 29 61 - 67 9 - 10 28 63rd 
10 20 - 21 29 30 - 32 68 - 74 8 27 50th 

9 19  33 - 36 75 - 89 6 - 7 26 37th 
8 17 - 18 28 37 - 41 90 - 100 5 25 25th 
7 16 27 42 - 45 101 - 127 3 - 4  16th 
6 14 - 15 25 - 26 46 - 48 128 - 162 1 - 2 23 - 24 9th 
5 13 24 49 - 61 163 - 199 0 21 - 22 5th 
4 12  62 - 68 200 - 236  18 - 20 2nd 
3 11 23 69 - 75 237 - 299  16 - 17 1st 
2 0 - 10 0 - 22 76 - 150 300  0 - 15 <1st 

Note: BNT = 30-item boston naming test; TMT = trail making test; AVLT = rey auditory 
verbal learning test. 
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Table 14: Raw score to scaled score conversions for measures at 24-months. 
Scaled 
Score 

Animal 
Fluency BNT TMT, 

Part A 
TMT,  

Part B 
AVLT 

Recall 
AVLT 

Recognition Percentile 

18 38+  0 - 15 0 - 33   >99th 
17 36 - 37  16 34 - 36   99th 
16 32 - 35  17 37 - 39 15  98th 
15 30 - 31  18 - 19 40 - 44 14  95th 
14 27 - 29  20 - 22 45 - 48 13 30 91st 
13 26 30 23 - 24 49 - 54 12  84th 
12 24 - 25  25 - 26 55 - 62 11 29 75th 
11 22 - 23 29 27 - 28 63 - 68 10 28 63rd 
10 20 - 21  29 - 31 69 - 76 8 - 9  50th 

9 18 - 19  32 - 35 77 - 90 6 - 7 27 37th 
8 16 - 17 28 36 - 39 91 - 109 5 26 25th 
7 15 27 40 - 43 110 - 128 3 - 4 25 16th 
6 14 25 - 26 44 - 49 129 - 152 1- 2 24 9th 
5 12 - 13 24 50 - 62 153 - 192 0 21 - 23 5th 
4 11 23 63 - 70 193 - 249  19 - 20 2nd 
3 10 20 - 22 71 - 90 250 - 299  17 - 18 1st 
2 0 - 9 0 - 19 91 - 150 300  0 - 16 <1st 

Note: BNT = 30-item boston naming test; TMT = trail making test; AVLT = rey auditory 
verbal learning test. 
 
 Age, education, and sex were then used as predictors of these scaled scores in a series of 

multiple fractional polynomial regressions. The Royston and Altman algorithm determined that linear 

relationships (e.g., power of 1) between the predictors and scaled scores provided the best fit for each 

model. All models were significant at p<0.01, and the overall variance accounted for ranged from 2.8% – 

19.0% across models. Combined demographics accounted for more than 10% of the variance in Animal 

Fluency, Trail Making Test Part A, and Trail Making Test Part B across all time points, whereas they 

explained less than 10% of the variance in the 30-item Boston Naming Test, AVLT Recall, and AVLT 

Recognition. The predicted scaled scores and standard error of the model estimates were then applied in 

Formula 2 to calculate demographically-corrected T-scores for the six measures across the three time 

points. Formulas derived from the multiple fractional polynomial regressions, adjusted R2 for each overall 

model, and the partial r2 accounted for by each demographic predictor is presented in Table 15.  
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Table 15: T-score formulas with embedded practice effects derived from robust normal control 
performance using multiple fractional polynomials. 

Time 
Point Measure Multiple Fractional Polynomial T-score Formula Adjusted 

R2 
Age/Education/Sex 

Partial r2 

Ba
se

lin
e 

Animal 
Fluency 

[Scaled Score.0 – (14.153 + (-0.119 x Age.0) + (0.293 x Education) 
+ (0.334 x Sex))/ 2.802] x 10 + 50 .100 .054/.064/.003 

BNT [Scaled Score.0 – (12.749 + (-0.057 x Age.0) + (0.116 x Education) 
+ (-0.871 x Sex))/ 2.874] x 10 + 50 .061 .012/.018/.021 

TMT, Part A [Scaled Score.0 – (19.949 + (-0.154 x Age.0) + (0.103 x Education) 
+ (0.321 x Sex))/ 2.833] x 10 + 50 .084 .085/.008/.003 

TMT, Part B [Scaled Score.0 – (22.125 + (-0.196 x Age.0) + (0.159 x Education) 
+ (0.532 x Sex))/ 2.688] x 10 + 50 .153 .144/.021/.009 

AVLT Recall [Scaled Score.0 – (15.684 + (-0.120 x Age.0) + (0.190 x Education) 
+ (1.203 x Sex))/ 2.856] x 10 + 50 .092 .053/.027/.040 

AVLT 
Recognition 

[Scaled Score.0 – (11.9353 + (-0.0488 x Age.0) + (0.0854 x 
Education) + (1.3633 x Sex))/ 2.7771] x 10 + 50 .054 .010/.006/.053 

12
-M

on
th

s 

Animal 
Fluency 

[Scaled Score.12 – (16.772 + (-0.142 x Age.12) + (0.258 x 
Education) + (-0.248 x Sex))/ 2.786] x 10 + 50 .115 .076/.051/.002 

BNT [Scaled Score.12 – (15.602 + (-0.108 x Age.12) + (0.200 x 
Education) + (-0.570 x Sex))/ 2.571] x 10 + 50 .094 .052/.037/.011 

TMT, Part A [Scaled Score.12 – (20.259 + (-0.172 x Age.12) + (0.164 x 
Education) + (0.756 x Sex))/ 2.752] x 10 + 50 .127 .110/.022/.017 

TMT, Part B [Scaled Score.12 – (23.325 + (-0.206 x Age.12) + (0.152 x 
Education) + (0.207 x Sex))/ 2.731] x 10 + 50 .156 .152/.019/.001 

AVLT Recall [Scaled Score.12 – (1.844 + (-0.075 x Age.12) + (0.221 x 
Education) + (1.334 x Sex))/ 2.760] x 10 + 50 .081 .023/.038/.052 

AVLT 
Recognition 

[Scaled Score.12 – (14.081 + (-0.081 x Age.12) + (0.131 x 
Education) + (0.794 x Sex))/ 2.655] x 10 + 50 .046 .029/.015/.020 

24
-M

on
th

s 

Animal 
Fluency 

[Scaled Score.24 – (13.704 + (-0.112 x Age.24) + (0.301 x 
Education) + (0.328 x Sex))/ 2.765] x 10 + 50 .101 .049/.069/.003 

BNT [Scaled Score.24 – (14.8480 + (-0.085 x Age.24) + (0.151 x 
Education) + (-0.517 x Sex))/ 2.566] x 10 + 50 .058 .033/.021/.009 

TMT, Part A [Scaled Score.24 – (21.371 + (-0.188 x Age.24) + (0.194 x 
Education) + (0.604 x Sex))/ 2.817] x 10 + 50 .140 .124/.029/.011 

TMT, Part B [Scaled Score.24 – (20.423 + (-0.195 x Age.24) + (0.267 x 
Education) + (0.895 x Sex))/ 2.636] x 10 + 50 .190 .147/.061/.026 

AVLT Recall [Scaled Score.24 – (12.341 + (-0.075 x Age.24) + (0.205 x 
Education) + 1.046 x Sex))/ 2.853] x 10 + 50 .058 .022/.031/.031 

AVLT 
Recognition 

[Scaled Score.24 – (11.259 + (-0.045 x Age.24) + (0.143 x 
Education) + (0.883 x Sex))/ 2.805] x 10 + 50 .028 .008/.016/.023 

Note: All model p’s<0.001 except AVLT Recognition at 24-Months: p=0.01. Robust normal control 
sample: n=284. BNT= 30-item Boston Naming Test; TMT = Trail Making Test; AVLT = Rey Auditory 
Verbal Learning Test; Scaled Score.0 = Scaled score at baseline; Scaled Score.12 = Scaled Score at 12-
months; Scaled Score.24 = Scaled Score at 24-months. 
 
 The demographically-corrected T-scores were subsequently examined within the rNC sample 

(n=284) to evaluate their psychometric properties. Across the 18 T-scores, means ranged from 49.88 to 

50.11, and standard deviations from 9.90 to 10.01. The percentage of scores in the “impaired” range for 

each of the 18 T-scores – defined as less than 1 standard deviation below the mean (i.e., T<40) – fell 

from 12.3% to 17.6% in the rNC sample, and there were no significant differences from the percentage of 

individuals expected to fall within that range (i.e., 15.9%) on the normal curve (all p’s >0.104). 

Kolmogorov-Smirnov tests used to assess the normality of each T-score distribution in the rNC sample 

indicated that distributions for Animal Fluency, TMT Part A, TMT Part B, and AVLT Recall at each of the 
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three time points did not differ from a normal curve (all p’s>0.013). However, the distributions for BNT and 

AVLT Recognition at baseline, 12-months, and 24-months were significantly different compared to a 

Gaussian distribution (all p’s<0.001). As expected, separate linear regressions using age, education, and 

sex as demographic predictors for each of the 18 T-scores in the rNC sample was not significant (all 

p’s>0.996). Partial variance explained by the separate demographic predictors for each T-score was also 

non-significant (all p’s>0.807), and the corresponding partial r2 associations were all less than 0.03%. 

Inclusion of the age x education interaction term in each of these 18 models was not significant at a=0.01 

(12-month Animal Fluency: p=0.029, all other model p’s> 0.072), indicating that the lack of association 

between the demographic predictors and T-scores remained the same across all levels of age and 

education.  

Reliable Change Classification 

 Linear regressions in the rNC sample were used to calculate three reliable change z-scores for 

the six neuropsychological measures: baseline performance predicting 12-month performance, 12-month 

performance predicting 24-month performance, and baseline performance predicting 24-month 

performance. Across these eighteen reliable change z-scores, means ranged from -0.003 to 0.003 and all 

standard deviations were 0.998 in the rNC sample. The percentage of rNC participants classified with a 

“significant increase” from time 1 to time 2 (e.g., z>1.645) across the eighteen z-scores ranged from 1.8% 

to 6.0%, the percentage with a “significant decrease” (z<-1.645) ranged from 3.5% to 7.4%, and the 

percentage with “stable” performance (-1.645< z <1.645) ranged from 88.0% to 93.7%. Chi-square tests 

comparing the proportion of rNCs with a significant increase or decrease for each of the 18 reliable 

change indices to the expected percentage under a 90% confidence interval (i.e., 5% at each tail) found 

no significant differences at a=0.01 (all p’s>0.039). Reliable change z-score formulas, adjusted R2 for 

each model, and the proportion of rNC participants with a reliable decrease, increase, or stable 

performance is presented in Table 16.  
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Table 16: Regression-based reliable change z-score formulas derived from robust normal controls. 
Time 

Points Measure Reliable Change Z-score Formula Adjusted R2 Proportion 
Decrease/Stable/Increase* 

Ba
se

lin
e 

to
 1

2-
M

on
th

s 

Animal 
Fluency [T-score.12 – (19.807 + (0.606 x T-score.0))]/7.933 .364 .049/.915/.035 

BNT [T-score.12 – (20.847 + (0.586 x T-score.0))]/8.068 .341 .060/.898/.042 
TMT, 
Part A [T-score.12 – (19.570 + (0.607 x T-score.0))]/7.944 .365 .035/.919/.046 

TMT, 
Part B [T-score.12 – (23.619+ (0.530 x T-score.0))]/8.413 .280 .060/.880/.060 

AVLT 
Recall [T-score.12 – (23.442 + (0.529 x T-score.0))]/8.508 .276 .056/.901/.042 

AVLT 
Recognition [T-score.12 – (26.722 + (0.464 x T-score.0))]/8.837 .213 .046/.937/.018 

12
-M

on
th

s 
to

 2
4-

M
on

th
s 

Animal 
Fluency [T-score.24 – (17.768 + (0.645 x T-score.12))]/7.702 .408 .039/.915/.046 

BNT [T-score.24 – (18.037 + (0.639 x T-score.12))]/7.612 .409 .060/.905/.035 

TMT, 
Part A [T-score.24 – (17.677 + (0.646 x T-score.12))]/7.610 .416 .049/.095/.046 

TMT, 
Part B [T-score.24 – (19.343 + (0.615 x T-score.12))]/7.817 .377 .060/.908/.032 

AVLT 
Recall [T-score.24 – (16.833 + (0.664 x T-score.12))]/7.493 .439 .035/.908/.056 

AVLT 
Recognition [T-score.24 – (25.229 + (0.494 x T-score.12))]/8.665 .242 .053/.915/.032 

 B
as

el
in

e 
to

 2
4-

M
on

th
s 

Animal 
Fluency [T-score.24 – (22.254 + (0.557 x T-score.0))]/8.361 .303 .042/.905/.053 

BNT [T-score.24 – (21.066 + (0.581 x T-score.0))]/8.066 .337 .074/.898/.028 

TMT, 
Part A [T-score.24 – (23.230 + (0.533 x T-score.0))]/8.436 .282 .049/.901/.049 

TMT, 
Part B [T-score.24 – (24.306 + (0.517 x T-score.0))]/8.476 .268 .042/.919/.032 

AVLT 
Recall [T-score.24 – (24.591 + (0.507 x T-score.0))]/8.639 .254 .049/.908/.042 

AVLT 
Recognition [T-score.24 – (26.510 + (0.468 x T-score.0))]/8.809 .217 .063/.912/.025 

Note: Robust Normal Control n=284. Reliable Decrease: z<-1.645; Stable: z>-1.645 and <1.645; Reliable 
Increase: z>1.645. All model p’s<0.001. BNT = 30-item Boston Naming Test; TMT = Trail Making Test; 
AVLT = Rey Auditory Verbal Learning Test 
 
Serial Latent Profile Analyses 

Two to eight latent class models were separately tested at baseline, 12-months, and 24-months 

using the multi-year demographically-corrected T-scores as indicators. Fit indices and descriptive 

characteristics for each model across the 3 time points are provided in Table 17. At all three time points 

the AIC and sBIC comparative fit indices continually decreased with increasing latent classes, and the 

BLRT showed a similar pattern such that k classes were always a statistically better fit than k-1 classes. 

These indices failed to clearly converge on an optimal solution, as this trend would presumably continue 

past eight latent classes and result in data over-fitting based on other indicators (Nylund et al., 2007).  
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The 6-class solution at baseline had the lowest BIC, though the VLMR-LRT suggested 6-classes 

would result in class over-extraction. The baseline VLMR-LRT indicated that 4-classes represented a 

better fit than 3-classes, and 5-classes provided a better fit than 4-classes. Entropy was almost equivalent 

with both the 4-class and 5-class solution, and neither model had a class size less than 5%. Given the 

combination of VLMR-LRT, satisfactory entropy, class size, model parsimony, and consistency with 

number of empirical MCI subtypes demonstrated in past research studies (Clark et al., 2013; Edmonds et 

al., 2014), the 4-class solution was chosen as the best fitting model at baseline.  

At 12-months the solution with the lowest BIC was a 7-class solution, though both the VLMR-LRT 

and smallest class size (i.e., <5%) suggested a high likelihood of class over-extraction with this model. 

The VLMR-LRT indicated that the 4-class solution provided a better fit than the 3-class solution, the 5-

class solution a better fit than the 4-class solution, and the 6-class solution a better fit than the 5-class 

solution. All of these solutions had smallest class sizes greater than 5%, though the 4-class solution had 

the highest entropy. Similar to the baseline LPA, the 4-class solution was chosen as the best fitting model 

at 12-months due to the combination of consistency with number of empirical MCI subtypes demonstrated 

in past research studies, highest entropy, VLMR-LRT, class size, and model parsimony.  

The BIC index at 24-months demonstrated the same pattern of continuous decrease as the AIC, 

sBIC, and BLRT, suggesting likely class over-extraction. The VLMR-LRT suggested the 4-class model 

was a better fit than the 3-class model, though the 5-class model was not a better fit than the 4-class 

model. The 4-class solution also had the highest entropy of all solutions and its smallest class size was 

greater than 5% of the overall sample. Once again, the 4-class solution was chosen as the optimal model 

fit based on the VLMR-LRT, entropy, class size, model parsimony, and consistency with past research. 

Thus, a 4-class solution was selected as the best model fit at all three time points.  
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Table 17: LPA comparative fit indices, likelihood ratio tests and model characteristics in study 2. 
Time 
Point 

# of 
Classes Final LL AIC BIC sBIC VLMR-

LRT BLRT Entropy Smallest 
Class Size 

Ba
se

lin
e 

2 -18558.522 37155.045 37244.637 37184.300 p<0.0001 p<0.0001 0.777 33% 

3 -18424.159 36900.317 37022.917 36940.351 p=0.1232 p<0.0001 0.697 26% 

4* -18324.257 36714.515 36870.123 36765.327 p<0.0001 p<0.0001 0.749 16% 

5 -18270.770 36621.540 36810.156 36683.131 p=0.0007 p<0.0001 0.750 9% 

6 -18245.477 36584.955 36806.578 36657.323 p=0.1410 p<0.0001 0.754 7% 

7 -18223.805 36555.610 36810.241 36638.757 p=0.0592 p<0.0001 0.755 6% 

8 -18207.133 36536.265 36823.904 36630.190 p=0.8440 p<0.0001 0.708 6% 

12
-M

on
th

s 

2 -17025.204 34088.408 34176.215 34115.882 p<0.0001 p<0.0001 0.832 41% 

3 -16865.192 33782.384 33902.541 33819.981 p=0.0003 p<0.0001 0.769 30% 

4* -16743.349 33552.699 33705.205 33600.417 p<0.0001 p<0.0001 0.801 12% 

5 -16690.190 33460.381 33645.237 33518.221 p=0.0394 p<0.0001 0.796 8% 

6 -16648.033 33390.066 33607.272 33458.029 p=0.0061 p<0.0001 0.792 8% 

7 -16621.628 33351.257 33600.813 33429.341 p=0.3396 p<0.0001 0.784 4% 

8 -16601.281 33324.563 33606.469 33412.770 p=0.1694 p<0.0001 0.792 4% 

24
-M

on
th

s 

2 -14450.324 28938.648 29023.386 28963.062 p=0.0001 p<0.0001 0.778 41% 

3 -14235.897 28523.794 28639.752 28557.204 p<0.0001 p<0.0001 0.818 18% 

4* -14158.642 28383.283 28530.460 28425.687 p=0.0123 p<0.0001 0.820 8% 

5 -14107.167 28294.335 28472.731 28345.734 p=0.1312 p<0.0001 0.783 13% 

6 -14070.174 28234.348 28443.964 28294.742 p=0.2304 p<0.0001 0.805 6% 

7 -14044.275 28196.549 28437.384 28265.938 p=0.2557 p<0.0001 0.795 1% 

8 -14013.895 28149.790 28421.844 28228.173 p=0.4432 p<0.0001 0.810 5% 

Note: *Chosen as best class solution. LPA = Latent Profile Analysis; LL= Log-Likelihood; AIC = Akaike 
Information Criterion; BIC = Bayesian Information Criterion; sBIC = sample-size adjusted Bayesian 
Information Criterion; VLMR-LRT = Vuong-Lo-Mendell-Rubin Likelihood Ratio Test; BLRT = Bootstrapped 
Likelihood Ratio Test 
 
Neuropsychological Characterization of Latent Profile Classes 

 The final LPA solutions at baseline, 12-months, and 24-months classified participants into 4 

analogous neuropsychological profiles at each time point: 1) a multi-domain impairment class (MLT) with 

deficits ranging from mild impairment to moderate impairment (Heaton et al., 2004) across all cognitive 

measures, 2) an amnestic impairment class (AMN) with deficits ranging from mild impairment to mild-to-

moderate impairment only on memory measures, and below average to average performance on tests of 

language and attention/executive functions, 3) a dysexecutive/below average cognition class (DYS/BA) 

with scores in the mild impairment to below average range on tests of language and attention/executive 

functions, and below average scores on memory measures, and 4) an average cognition class (AVG) 
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with performance in the average range on tests of language and attention/executive functions, and in the 

average to above average range on memory measures despite their baseline MCI diagnosis. Final class 

counts and neuropsychological performance of each class at baseline, 12-, and 24-months is presented 

in Figure 10. 
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Figure 10: Neuropsychological profiles of the latent classes at baseline, 12-, and 24-months in study 2. 
Error bars denote 95% confidence intervals.  
Top Panel: Neuropsychological performance at baseline (n=825). 
Middle Panel: Neuropsychological performance at 12-months (n=751). 
Bottom Panel: Neuropsychological performance at 24-months (n=639).  
BNT = 30-item boston naming test; TMT = trail making test; AVLT = rey auditory verbal learning test. 

 

20

25

30

35

40

45

50

55

60

65

Multi-domain Impairment
n=250 (30.3%)

Amnestic Impairment
n=307 (37.2%)

Dysexecutive/Below Average Cognition
n=129 (15.6%)

Average Cognition
n=139 (16.8%)

M
ea

n 
T-

sc
or

e

Animal Fluency BNT TMT, Part A TMT, Part B AVLT Recall AVLT Recognition

20

25

30

35

40

45

50

55

60

65

Multi-domain Impairment 
n=227 (30.2%)

Amnestic Impairment
n=208 (27.7%)

Dysexecutive/Below Average Cognition
n=228 (30.4%)

Average Cognition
n=88 (11.7%)

M
ea

n 
T-

sc
or

e

Animal Fluency BNT TMT, Part A TMT, Part B AVLT Recall AVLT Recognition

20

25

30

35

40

45

50

55

60

65

Multi-domain Impairment
n=148 (23.2%)

Amnestic Impairment
n=268 (41.9%)

Dysexecutive/Below Average Cognition
n=174 (27.2%)

Average Cognition
n=49 (7.7%)

M
ea

n 
T-

sc
or

e

Animal Fluency BNT TMT, Part A TMT, Part B AVLT Recall AVLT Recognition



 58 

Class sizes varied across time points, with the MLT class ranging from 23.2–30.3%, the AMN 

class from 27.7–41.9%, the DYS/BA class from 15.6–30.4%, and the AVG class from 7.7–16.8%. The 

AMN class was the largest class at baseline and 24-months, while the DYS/BA class was the largest size 

by a small margin at 12-months (the MLT class was almost equivalent in size at 12-months). The DYS/BA 

class was the smallest size at baseline and the AVG class the smallest at 12- and 24-months. Class size 

as a proportion of the total sample at each time point is presented in Figure 11. 

 

Figure 11: Difference in LPA class sizes at baseline, 12-, and 24-months in study 2.  
Left Panel: Baseline LPA classes (n=825).  
Middle Panel: 12-month LPA classes (n=751). 
Right Panel: 24-month LPA classes (n=639).  
LPA = latent profile analysis. MLT = multi-domain impairment; AMN = amnestic impairment; DYS/BA = 
dysexecutive/ below average cognition; AVG = average cognition. 
 
Neuropsychological Parameter Comparisons 

 Omnibus Wald tests suggested differences between classes on every neuropsychological 

variable (all p’s<0.0001) at each time point. Post-hoc comparisons with a= 0.008 (i.e., a= 0.05/6) 

indicated the MLT class performed worse than the AMN and AVG classes on all measures at each of the 

three time points (all p’s<0.0035). The MLT class had worse performance on animal fluency and memory 

measures than the DYS/BA class at baseline (all p’s<0.0036), with no differences in baseline 

performance on the BNT or attention/executive function measures (all p’s>0.1822). At 12- and 24-months, 

the MLT class performed worse than the DYS/BA class on all measures (all p’s<0.0001). The AMN class 

performed better than the DYS/BA class at baseline on measures of language and had better 
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Across all three time points the AMN class demonstrated worse performance than the DYS/BA class on 

measures of memory, and at 24-months the AMN class also had worse animal fluency performance than 

the DYS/BA class (all p’s<0.0043). There were no differences between the AMN and DYS/BA classes on 

measures of language at 12-months, or on the BNT, TMT Part A, and TMT Part B at 24-months (all 

p’s>0.1571). The AVG class performed better than the AMN class on memory measures and animal 

fluency at all three time points and had better performance on the BNT and TMT Part A at 24-months (all 

p’s<0.0067). No differences between the AVG and AMN class were noted on the TMT Part B across all 

time points, or the BNT and TMT Part A at baseline and 12-months (all p’s>0.0102). The AVG class 

performed better than the DYS/BA class on all measures at baseline and 12-months, and at 24-months 

had better performance on the BNT and memory measures (all p’s<0.0074). There were no differences at 

24-months between the AVG and DYS/BA classes on animal fluency or measures of attention/executive 

functions (all p’s>0.0124). 

 Omnibus Wald tests of within-class neuropsychological comparisons across the three time points 

indicated that the MLT class had worse performance over the 24-months on measures of language, 

attention/executive functions, and AVLT recognition (all p’s<0.0001). There was no difference in AVLT 

recall between the three time points (p=0.0821) for the MLT class. The AMN class performed worse over 

the 24-months on measures of memory, animal fluency, and TMT Part A (all p’s<0.0460), though no 

differences were noted on BNT or TMT Part B performances (all p’s>0.0841). The DYS/BA class 

demonstrated better performance over time on measures of language, attention/executive functions, and 

AVLT recall (all p’s<0.0371), with no difference in performance on AVLT recognition (p=0.5152). The 

AVG class had improved AVLT recall performance across the 24-months (p=0.0042) but did not 

otherwise demonstrate differences in the neuropsychological measures over time (all p’s>0.2070). 

Omnibus and post-hoc within-class differences in neuropsychological performance across the three time 

points is presented in Table 18.   
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Table 18: Within-class comparisons of neuropsychological performance for the 4 latent classes at 
baseline, 12-, and 24-months in study 2. 

Latent Class 
Baseline  
(n= 825) 

12-Months  
(n=751) 

24-Months  
(n=639) 

  

Multi-domain Impairment 
30.3% 

(n=250) 
30.2% 

(n=227) 
23.2% 

(n=148) 
Omnibus Wald 

χ2 (df) p-value 

Animal Fluency 
35.2402,3 

(1.017) 
29.5541,3 

(0.855) 
26.9681,2 

(1.067) 
χ2(2)=43.510 p<0.0001 

BNT 36.1072,3 
(1.089) 

31.1741,3 
(1.043) 

27.5711,2 
(1.127) 

χ2(2)=38.655 p<0.0001 

TMT, Part A 
37.2462,3 

(1.430) 
33.0041,3 

(1.130) 
29.2131,2 

(1.440) 
χ2(2)=20.102 p<0.0001 

TMT, Part B 33.7793 
(1.226) 

31.0043 
(1.074) 

26.4351,2 
(1.735) 

χ2(2)=15.270 p<0.0005 

AVLT Recall 
30.892 
(0.587) 

32.280 
(0.409) 

31.929 
(0.426) 

χ2(2)=4.999 p=0.0821 

AVLT Recognition 
30.9352,3 

(0.586) 
27.3541 
(0.575) 

26.4351 
(0.772) 

χ2(2)=32.570 p<0.0001 

Amnestic Impairment 
37.2% 

(n=307) 
27.7% 

(n=208) 
41.9% 

(n=268) 
Omnibus Wald 

χ2 (df) p-value 

Animal Fluency 
45.8012,3 

(0.972) 
41.6971 
(1.200) 

40.9861 
(1.152) 

χ2(2)=16.220 p=0.0003 

BNT 
44.237 
(0.981) 

43.117 
(1.258) 

41.617 
(1.307) 

χ2(2)=3.590 p=0.1662 

TMT, Part A 
50.8693 
(0.880) 

49.7823 
(1.135) 

45.1381,2 
(0.944) 

χ2(2)=25.229 p<0.0001 

TMT, Part B 
47.531 
(1.087) 

46.691 
(1.052) 

44.595 
(1.023) 

χ2(2)=4.950 p=0.0841 

AVLT Recall 36.5403 
(0.926) 

34.832 
(0.557) 

34.0571 
(0.471) 

χ2(2)=6.883 p=0.0320 

AVLT Recognition 
37.0022,3 

(0.949) 
30.1151 
(0.743) 

31.3951 
(1.236) 

χ2(2)=6.358 p=0.0416 

Dysexecutive/Below 
Average Cognition 

15.6% 
(n=129) 

30.4% 
(n=228) 

27.2% 
(n=174) 

Omnibus Wald 
χ2 (df) p-value 

Animal Fluency 
39.7633 
(1.075) 

42.3173 
(0.865) 

45.4041,2 
(0.883) 

χ2(2)=17.477 p=0.0002 

BNT 
38.5292,3 

(1.326) 
43.1611 
(0.971) 

44.8901 
(1.040) 

χ2(2)=16.642 p<0.0001 

TMT, Part A 
35.5612,3 

(1.185) 
42.4011,3 

(1.323) 
46.4611,2 

(1.067) 
χ2(2)=46.217 p<0.0001 

TMT, Part B 
35.12822,3 

(1.211) 
40.7181,3 

(1.184) 
47.0081,2 

(1.132) 
χ2(2)=52.626 p<0.0001 

AVLT Recall 
44.879 
(0.884) 

42.530 
(0.709) 

45.065 
(1.396) 

χ2(2)=6.586 p=0.0371 

AVLT Recognition 
47.499 
(1.537) 

47.471 
(0.640) 

45.847 
(1.334) 

χ2(2)=1.326 p=0.5152 
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Table 18: Within-class comparisons of neuropsychological performance for the 4 latent classes at 
baseline, 12-, and 24-months in study 2, continued. 

Latent Class 
Baseline  
(n= 825) 

12-Months  
(n=751) 

24-Months  
(n=639) 

  

Average Cognition 
16.8%  

(n=139) 
11.7% 
(n=88) 

7.7% 
(n=49) 

Omnibus Wald 
χ2 (df) p-value 

Animal Fluency 
49.589  
(0.982) 

50.638 
(1.261) 

50.522 
(1.905) 

χ2(2)=0.702 p=0.7040 

BNT 47.380 
(0.978) 

47.785 
(1.356) 

49.964 
(1.574) 

χ2(2)=2.529 p=0.2824 

TMT, Part A 
51.639 
(1.135) 

52.445 
(1.265) 

50.012 
(1.498) 

χ2(2)=2.432 p=0.2963 

TMT, Part B 48.528 
(1.067) 

50.079 
(1.204) 

49.636 
(1.733) 

χ2(2)=1.495 p=0.4735 

AVLT Recall 
53.4143 
(1.222) 

56.115 
(1.504) 

60.3631 
(2.054) 

χ2(2)=10.945 p=0.0042 

AVLT Recognition 
55.673 
(0.953) 

55.628 
(1.007) 

57.438 
(0.966) 

χ2(2)=3.150 p=0.2070 

Note: Data summarized as mean (standard error) in T-scores.  Numbered superscripts denote significant 
Wald χ2 test post-hoc differences at p<0.0167 (a=0.05/3) within each analogous class across time points 
(1= Baseline, 2= 12-months, 3= 24-months). χ2 = chi-square; df= degrees of freedom; BNT = 30-item 
boston naming test; TMT = trail making test; AVLT = rey auditory verbal learning test 
 
Missing Data Analysis 
 

Analysis of missing data indicated that there were no Omnibus Wald chi-square differences 

between classes at baseline or 12-months in the proportion of individuals that had missing data at follow-

up time points (all p’s>0.140). Post-hoc differences between the classes at a=0.01 for each time point 

were also non-significant (all p’s>0.035). Proportion of missing follow-up data by LPA class at baseline 

and 12-months is presented in Table 19.  

Table 19: Missing participant follow-up data across latent profile classes at baseline and 12-months 
in study 2.  

LPA Time 
Point 

Missing 
Follow-up 

Multi-domain 
Impairment 

Amnestic 
Impairment 

Dysexecutive/ Below 
Average Cognition 

Average 
Cognition 

Omnibus 
Wald χ2 (df) p-value 

Baseline 12-months 
8.6% 
(2.3) 

7.3% 
(1.8) 

11.0% 
(3.8) 

8.4% 
(2.6) 

χ2(3)= 0.830 p=0.842 

Baseline 24-months 
22.6% 
(3.2) 

17.7% 
(2.6) 

29.8% 
(4.9) 

18.1% 
(3.6) 

χ2(3)= 5.482 p=0.140 

12-months 24-months 
19.6% 
(2.9) 

11.3% 
(2.7) 

13.1% 
(2.7) 

10.8% 
(3.5) 

χ2(3)= 5.279 p=0.152 

Note: Data summarized as mean (standard error) in percentages. There were no significant post-hoc 
differences at a=0.01 between classes using the Wald χ2 test (all p’s>0.035). LPA = latent profile analysis. 



 62 

 

Additional analyses among the total LPA sample at each time point indicated a significant 

difference in baseline scores such that those with missing data at 12-months (n= 74) performed worse on 

baseline animal fluency (Mean T-score Difference=2.751, t[823]=2.163, p=0.031) than individuals with 

available data at 12-months (n=751), and participants with missing data at 24-months (n=186) performed 

worse on baseline animal fluency (Mean T-score Difference=2.034, t[823]=2.340, p=0.020), TMT Part A 

(Mean T-score Difference=2.555, t[823]=2.720, p=0.007), and TMT Part B (Mean T-score 

Difference=2.855, t[814]=3.038, p=0.002) than individuals with available data at 24-months (n=639). 

Further examination revealed a similar pattern in the overall sample at 12-months, such that participants 

with missing data at 24-months (n=112) had worse 12-month performance on the BNT (Mean T-score 

Difference=3.938, t(747)=2.948, p=0.003), Trails A (Mean T-score Difference=3.890, t[749]=3.187, 

p=0.001), and Trails B (Mean T-score Difference=3.478, t[744]=2.974, p=0.003) than individuals with 

available data at 24-months (n=639).  

Demographic and Diagnostic Outcomes 

Demographic differences including age, education and sex across time points, as well as 

differences in concurrent ADNI diagnosis at 12- and 24-months is presented in Table 20. There were 

differences in age, education, and sex between the baseline classes (all p’s<0.023). Post hoc 

comparisons at baseline indicated that the AVG class was younger than the AMN class, more educated 

than the DYS/BA class, and had a higher proportion of women than the AMN class (all p’s<0.008). The 

MLT class also had a greater percentage of women than the AMN and DYS/BA classes (all p’s<0.002). 

There were no differences in age, education, or sex between the classes at 12-months (all p’s>0.092). At 

24-months, age and sex differed between classes (all p’s<0.007), though there was no difference in level 

of education (p=0.073). Post hoc comparisons at 24-months demonstrated that the AVG class was 

younger than the MLT, AMN, and DYS/BA classes, and the MLT class had a greater proportion of women 

than the DYS/BA class (all p’s<0.007).  

Examination of concurrent ADNI diagnosis at 12- and 24-months (all participants were diagnosed 

by ADNI with MCI at baseline) found diagnostic differences between classes at the time points (all 
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p’s<0.001). Post-hoc comparisons indicated that at 12- and 24-months, the MLT class had a higher 

percentage of participants diagnosed by ADNI with dementia and a lower proportion with MCI than the 

AMN, DYS/BA, and AVG classes (all p’s<0.001). The AVG class at 12- and 24-months had a higher 

percentage of individuals that were identified by ADNI as normal and a lower proportion diagnosed with 

dementia than the AMN class (all p’s<0.004). The DYS/BA class at 24-months also had a greater 

proportion of participants identified as normal and a lower percentage diagnosed with dementia than the 

AMN class (p<0.001). 

Table 20: Demographic differences between latent classes at baseline, 12-, and 24-months in study 2. 

Time 
Point 

Demo. 
Variable 

Multi-domain 
Impairment 

Amnestic 
Impairment 

Dysexecutive/ Below 
Average Cognition 

Average 
Cognition 

Omnibus 
Wald χ2 (df) p-value 

Ba
se

lin
e 

Age 
73.061 
(0.491) 

74.9374 
(0.460) 

74.113 
(0.776) 

72.6192 
(0.704) 

χ2(3)= 
9.518 

p=0.023 

Education 
15.964 
(0.213) 

15.916 
(0.189) 

15.0344 
(0.334) 

16.6423 
(0.234) 

χ2(3)= 
14.610 

p=0.002 

Sex (%) 
55.9% F2,3 

(4.6) 
28.3% F1,4 

(3.3) 
33.5% F1 

(5.1) 
47.1% F2 

(4.7) 
χ2(3)= 
24.844 

p<0.001 

12
-M

on
th

s 

Age 
74.256 
(0.483) 

75.741 
(0.571) 

75.116 
(0.530) 

73.318 
(0.900) 

χ2(3)= 
6.429 

p=0.092 

Education 
16.036 
(0.227) 

15.682 
(0.211) 

15.979 
(0.220) 

16.512 
(0.293) 

χ2(3)= 
5.348 

p=0.148 

Sex (%) 
46.5% F 

(4.0) 
33.2% F 

(4.5) 
38.4% F 

(3.8) 
45.2% F 

(5.8) 
χ2(3)= 
4.811 

p=0.186 

12-Months 
Diagnosis 

(%) 

NL: 0.0% (0.0)2,3,4 
MCI: 66.2% (3.9) 
DM: 33.8% (3.9) 

NL: 2.4% (1.3)1,4 
MCI: 91.1% (2.4) 
DM: 6.5% (2.3) 

NL: 3.8% (1.6)1 
MCI: 92.5% (2.0) 
DM: 3.7% (1.6) 

NL: 9.0% (3.1)1,2 
MCI: 91.0% (3.1) 
DM: 0.0% (0.0) 

χ2(6)= 
127.437 

p<0.001 

24
-M

on
th

s 

Age 
74.8114 
(0.567) 

76.4254 
(0.458) 

76.0974 
(0.663) 

71.4731,2,3 
(1.001) 

χ2(3)= 
21.969 

p<0.001 

Education 
16.096 
(0.263) 

15.926 
(0.190) 

15.867 
(0.244) 

16.883 
(0.337) 

χ2(3)= 
6.981 

p=0.073 

Sex (% F) 
52.1% F3 
(4.6) 

36.8% F 
(4.2) 

31.4% F1 
(5.7) 

50.9% F 
(8.0) 

χ2(3)= 
12.006 

p=0.007 

24-Months 
Diagnosis 

(%) 

NL: 0.0% (0.0)2,3,4 
MCI: 27.6% (4.8) 
DM: 72.4% (4.8) 

NL: 1.6% (0.9)1,3,4 
MCI: 79.6% (3.3) 
DM: 18.8% (2.3) 

NL: 12.0% (2.9)1,2 
MCI: 86.0% (3.0) 
DM: 2.0% (1.7) 

NL: 17.6% (5.8)1,2 
MCI: 82.4% (5.8) 
DM: 0.0% (0.0) 

χ2(6)= 
297.130 

p<0.001 

Note: Data summarized as mean (standard error) in T-scores.  Numbered superscripts denote significant 
Wald χ2 test post-hoc differences at p<0.0083 (0.05/6) between classes (1= Multi-domain impairment, 2= 
Amnestic Impairment, 3= Dysexecutive/Below Average Cognition, 4= Average Cognition. Demo.= 
Demographic; χ2 = chi-square; df= degrees of freedom; F = Female; NL = Normal; MCI = Mild Cognitive 
Impairment DM = Dementia 
 
Reliable Change Outcomes 

 Reliable change classification between classes at 12- and 24-months is presented in Figure 12. 
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Figure 12: Reliable change within latent classes at 12- and 24-months in study 2.  
Top Panel: Reliable change from baseline to 12-months in the 12-month LPA (n=751).  
Middle Panel: Reliable change from 12- to 24-months in the 24-month LPA (n=639).  
Bottom Panel: Reliable change from baseline to 24-months in the 24-month LPA (n=639).  
Decrease: z< -1.645, Stable: -1.645< z <1.645, Increase: z> 1.645. Animals = Animal Fluency; BNT = 30-
item Boston Naming Test; TMT = Trail Making Test; AVLT = Rey Auditory Verbal Learning Test; Recog = 
Recognition. 
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 Omnibus Wald tests between classes at 12-months and 24-months found differences in reliable 

change classification (i.e., significant decrease, stable, significant increase) for all neuropsychological 

measures (all p’s<0.001). Post hoc comparisons between the 12-month LPA classes indicated that the 

MLT class had a greater proportion of participants with a significant decrease in baseline to 12-month 

performance on measures of language and attention/executive functions than the AMN, DYS/BA, and 

AVG classes (all p’s<0.008). Both the MLT and AMN classes had a higher percentage of individuals with 

a significant decrease in baseline to 12-month performance on AVLT recall than the AVG class, and on 

AVLT recognition than the DYS/BA and AVG classes (all p’s<0.001), though the MLT and AMN classes 

did not differ from each other on memory measures. The DYS/BA class at 12-months had a greater 

proportion of participants with a significant decrease in baseline to 12-month performance on measures of 

attention/executive functions than the AMN and AVG classes, and a higher percentage with a significant 

decrease on AVLT recall than the AVG class (all p’s<0.008).  

 Post hoc comparisons between the 24-month LPA classes indicated that the MLT class had a 

greater proportion of participants with a significant decrease in 12- to 24-month and baseline to 24-month 

performance on measures of language and attention/executive functions than the AMN, DYS/BA, and 

AVG classes (all p’s<0.001). The MLT class also had a higher percentage of individuals with a significant 

decrease in 12- to 24-month and baseline to 24-month performance on AVLT recognition than the 

DYS/BA and AVG classes (all p’s<0.001), though no differences were found compared to the AMN class. 

The AMN class had a greater proportion of individuals with a significant decrease from 12- to 24-month 

AVLT recall performance than the AVG class, as well as a larger percentage of participants with a 

significant decrease in baseline to 24-month AVLT recall performance than the MLT, DYS/BA, and AVG 

classes (all p’s<0.008). There were no differences between the DYS/BA and AVG classes in reliable 

change classification from 12- to 24-month or baseline to 24-month performance on any of the 

neuropsychological measures. Differences in reliable change classification for the 12- and 24-month LPA 

classes are presented in Table 21.  
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Table 21: Differences in reliable classification between 12- and 24-month latent classes in study 2. 

Time  
Point 

Measure 
Multi-domain 
 Impairment 

Amnestic  
Impairment 

Dysexecutive/  
Below Average  
Cognition 

Average 
 Cognition 

Omnibus 
 Wald χ2 (df) 

p-value 

Ba
se

lin
e 

to
 1

2-
M

on
th

s 

Animal 
Fluency 

–: 51.6% (5.3)2,3,4 
=: 48.4% (5.3) 
+: 0.0% (0.0) 

–: 6.8% (3.3)1 
=: 92.4% (3.3) 
+: 0.9% (0.7) 

–: 11.3% (2.6)1 
=: 88.7% (2.6) 
+: 0.0% (0.0) 

–: 1.7% (2.8)1 
=: 90.4% (3.5) 
+: 7.9% (3.3)2,3 

χ2(6)= 
68.580 

p<0.001 

BNT 

–: 49.6% (4.7)2,3,4 
=: 48.1% (4.5) 
+: 2.3% (1.3) 

–: 7.1% (3.1)1 
=: 89.2% (3.0) 
+: 3.7% (1.6) 

–: 10.5% (2.6)1 
=: 85.2% (2.9) 
+: 4.4% (1.5) 

–: 8.5% (3.6)1 
=: 85.6% (4.2) 
+: 5.9% (2.7) 

χ2(6)= 
63.607 

p<0.001 

TMT, 
Part A 

–: 37.8% (5.3)2,3,4 
=: 62.2% (4.3) 
+: 0.0% (0.0) 

–: 0.0% (0.0)1,3 
=: 93.2% (1.9) 
+: 6.8% (1.9) 

–: 13.2% (3.9)1,2,4 
=: 86.8% (3.9) 
+: 0.0% (0.0) 

–: 2.3% (2.3)1,3 
=: 86.3% (4.3) 
+: 11.5% (3.8) 

χ2(6)= 
137.835 

p<0.001 

TMT, 
Part B 

–: 39.8% (7.3)2,3,4 
=: 60.2% (7.3) 
+: 0.0% (0.0) 

–: 1.6% (1.4)1,3 
=: 96.8% (1.5) 
+: 1.7% (0.9) 

–: 11.6% (3.3)1,2,4 
=: 88.4% (3.3) 
+: 0.0% (0.0) 

–: 0.0% (0.0)1,3 
=: 93.5% (2.8) 
+: 6.5% (2.8) 

χ2(6)= 
86.548 

p<0.001 

AVLT 
Recall 

–: 5.6% (1.7)4 
=: 94.4% (1.7) 
+: 0.0% (0.0) 

–: 6.1% (2.0)4 
=: 93.9% (2.0) 
+: 0.0% (0.0) 

–: 7.0% (2.0)4 
=: 93.0% (2.0) 
+: 0.0% (0.0) 

–: 0.0% (0.0)1,2,3 
=: 93.6% (2.7) 
+: 6.4% (2.7) 

χ2(6)= 
50.096 

p<0.001 

AVLT 
Recognition 

–: 55.1% (4.5)3,4 
=: 44.9% (4.5) 
+: 0.0% (0.0) 

–: 44.8% (5.7)3,4 
=: 55.2% (5.7) 
+: 0.0% (0.0) 

–: 0.2% (0.5)1,2 
=: 99.8% (0.5) 
+: 0.0% (0.0) 

–: 0.0% (0.0)1,2 
=: 94.8% (2.3) 
+: 5.2% (2.3) 

χ2(6)= 
344.729 

p<0.001 

Time 
Point 

Measure 
Multi-domain 
 Impairment 

Amnestic  
Impairment 

Dysexecutive/  
Below Average  
Cognition 

Average 
 Cognition 

Omnibus 
 Wald χ2 (df) 

p-value 

12
-M

on
th

s 
to

 2
4-

M
on

th
s 

Animal 
Fluency 

–: 34.9% (4.5)2,3,4 
=: 65.1% (4.5) 
+: 0.0% (0.0) 

–: 10.8% (4.3)1 
=: 87.4% (4.1) 
+: 1.8% (1.0) 

–: 6.3% (2.2)1 
=: 91.7% (2.4) 
+: 2.0% (1.3) 

–: 4.2% (3.0)1 
=: 87.8% (5.6) 
+: 8.0% (4.7) 

χ2(6)= 
51.639 

p<0.001 

BNT 
–: 41.0% (4.4)2,3,4 
=: 59.0% (4.4) 
+: 0.0% (0.0) 

–: 6.8% (5.9)1 
=: 88.8% (5.3) 
+: 4.4% (1.6) 

–: 8.9% (3.3)1 
=: 90.0% (3.0) 
+: 1.1% (1.4) 

–: 6.4% (3.7)1 
=: 89.1% (4.6) 
+: 4.5% (3.4) 

χ2(6)= 
64.824 p<0.001 

TMT, 
Part A 

–: 43.0% (5.8)2,3,4 
=: 57.0% (5.8) 
+: 0.0% (0.0) 

–: 6.1% (2.2)1 
=: 89.6% (2.3) 
+: 4.5% (1.4) 

–: 6.9% (2.7)1 
=: 91.2% (2.7) 
+: 1.9% (1.4) 

–: 5.9% (3.4)1 
=: 85.2% (5.1) 
+: 8.9% (4.1) 

χ2(6)= 
62.186 p<0.001 

TMT, 
Part B 

–: 53.2% (7.0)2,3,4 
=: 46.8% (7.0) 
+: 0.0% (0.0) 

–: 4.2% (1.7)1 
=: 92.4% (2.0) 
+: 3.4% (1.3) 

–: 3.9% (3.8)1 
=: 92.3% (3.6) 
+: 3.8% (2.0) 

–: 3.2% (3.2)1 
=: 90.6% (4.5) 
+: 6.2% (3.8) 

χ2(6)= 
79.198 

p<0.001 

AVLT 
Recall 

–: 2.2% (1.3) 
=: 97.8% (1.3) 
+: 0.0% (0.0) 

–: 10.2% (2.2)4 
=: 89.8% (2.2) 
+: 0.0% (0.0) 

–: 3.5% (2.0) 
=: 96.5% (2.0) 
+: 0.0% (0.0) 

–: 0.0% (0.0)2 
=: 87.9% (4.7) 
+: 10.3% (4.7) 

χ2(6)= 
43.121 p<0.001 

AVLT 
Recognition 

–: 48.0% (7.6)3,4 
=: 52.0% (7.6) 
+: 0.0% (0.0) 

–: 46.8% (8.0)3,4 
=: 53.2% (8.0) 
+: 0.0% (0.0) 

–: 0.4% (1.2)1,2 
=: 97.4% (1.5) 
+: 2.1% (1.1) 

–: 0.0% (0.0)1,2 
=: 100.0% (0.0) 
+: 0.0% (0.0) 

χ2(6)= 
260.137 p<0.001 
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Table 21: Differences in reliable classification between 12- and 24-month latent classes in study 2, 
continued. 

Time  
Point 

Measure 
Multi-domain 
 Impairment 

Amnestic  
Impairment 

Dysexecutive/  
Below Average  
Cognition 

Average 
 Cognition 

Omnibus 
 Wald χ2 (df) 

p-value 

Ba
se

lin
e 

to
 2

4-
M

on
th

s 

Animal 
Fluency 

–: 74.2% (5.5)2,3,4 
=: 25.8% (5.5) 
+: 0.0% (0.0) 

–: 4.7% (6.2)1 
=: 94.1% (6.1) 
+: 1.2% (0.7) 

–: 9.9% (3.4)1 
=: 88.7% (3.4) 
+: 1.5% (1.1) 

–: 0.8% (5.6)1 
=: 94.0% (5.2) 
+: 5.2% (3.9) 

χ2(6)= 
172.454 

p<0.001 

BNT 
–: 65.0% (5.7)2,3,4 
=: 35.0% (5.7) 
+: 0.0% (0.0) 

–: 8.1% (5.4)1 
=: 87.0% (5.0) 
+: 4.9% (1.6) 

–: 8.3% (2.8)1 
=: 88.5% (3.0) 
+: 3.2% (1.6) 

–: 5.8% (3.5)1 
=: 85.4% (5.4) 
+: 8.8% (4.3) 

χ2(6)= 
120.069 

p<0.001 

TMT, 
Part A 

–: 62.4% (8.5)2,3,4 
=: 37.6% (8.5) 
+: 0.0% (0.0) 

–: 5.3% (2.1)1 
=: 92.6% (2.0) 
+: 2.1% (1.3) 

–: 6.5% (3.2)1 
=: 89.6% (2.9) 
+: 3.9% (2.2) 

–: 5.9% (3.5)1 
=: 86.0% (5.3) 
+: 8.1% (4.3) 

χ2(6)= 
86.195 

p<0.001 

TMT, 
Part B 

–: 73.9% (5.9)2,3,4 
=: 26.1% (5.9) 
+: 0.0% (0.0) 

–: 1.7% (1.1)1 
=: 95.9% (1.4) 
+: 2.4% (1.0) 

–: 3.5% (2.8)1 
=: 92.4% (3.2) 
+: 4.1% (2.0) 

–: 5.3% (5.3)1 
=: 87.1% (6.0) 
+: 7.6% (4.2) 

χ2(6)= 
182.446 

p<0.001 

AVLT 
Recall 

–: 3.3% (1.8)2 
=: 96.7% (1.8) 
+: 0.0% (0.0) 

–: 12.5% (2.2)1,3,4 
=: 87.5% (2.2) 
+: 0.0% (0.0) 

–: 0.4% (0.7)2 
=: 99.6% (0.7) 
+: 0.0% (0.0) 

–: 0.0% (0.0)2 
=: 95.9% (2.9) 
+: 4.1% (2.9) 

χ2(6)= 
42.594 

p<0.001 

AVLT 
Recognition 

–: 70.2% (9.0)3,4 
=: 29.8% (9.0) 
+: 0.0% (0.0) 

–: 56.1% (14.2)3,4 
=: 43.9% (14.2) 
+: 0.0% (0.0) 

–: 0.1% (1.2)1,2 
=: 99.9% (1.2) 
+: 0.0% (0.0) 

–: 0.0% (0.0)1,2 
=: 93.7% (2.8) 
+: 6.3% (2.8) 

χ2(6)= 
385.917 

p<0.001 

Note: Data summarized as mean (standard error) in T-scores. Numbered superscripts denote significant 
Wald χ2 test post-hoc differences at p<0.0083 (0.05/6) between classes (1= Multi-domain impairment, 2= 
Amnestic impairment, 3= Dysexecutive/Below average cognition, 4= Average cognition). χ2 = chi-square; 
df= degrees of freedom; “-“ = significant decrease; “=” = stable; “+” = significant increase; BNT = 30-item 
boston naming Test; TMT = trail making test; AVLT = rey auditory verbal learning test 
 

Study 3: A latent transition model examining the likelihood of class change in neuropsychological 

subtypes of mild cognitive impairment. 

Measurement Invariance 

LPA models of measurement invariance were established by specifying four classes for each 

time point and using starting values from the LPA means in study 2 as class indicators. The Satorra–

Bentler scaled chi-square difference test indicated that an LPA model with full measurement invariance 

(i.e., all means constrained to be equal within each analogous class across the three time points) had 

worse fit the base model with all parameter means freely estimated at baseline, 12-months, and 24-

months (Satorra–Bentler χ2[48]=323.411, p<0.0001). Partial measurement invariance was examined by 

constraining means across baseline, 12-, and 24-months only for the neuropsychological indicators that 
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did not demonstrate significant differences within each analogous class over the three time points. Given 

the omnibus Wald test results of within-class comparisons in study 2, AVLT recall was constrained in the 

MLT class, BNT and TMT Part B were constrained in the AMN class, AVLT recognition was constrained 

in the DYS/BA class, and animal fluency, BNT, TMT Part A, TMT Part B, and AVLT recognition were 

constrained in the AVG class. Parameter means for all other neuropsychological variables within each 

class were freely estimated across time points. The Satorra–Bentler scaled chi-square difference test 

indicated no statistical difference in fit between this model of partial measurement invariance and the 

base model with all parameter means freely estimated at baseline, 12-months, and 24-months (Satorra–

Bentler χ2[18]=27.277, p=0.0739). All additional analyses used this model of partial measurement 

invariance and constrained the aforementioned parameter means to be equal over time within each 

respective class.  

Classes in Latent Transition Analysis 

A model of latent transition analysis was developed by specifying four classes for each time point, 

using starting values derived from the LPA means in study 2 as class indicators, and constraining the 

appropriate parameters over time for each class to establish partial measurement invariance. MPlus uses 

Bayesian analysis to perform multiple imputation of missing data under the missing at random 

assumption, allowing for LTA analyses to use the neuropsychological performance of all 825 participants 

as class indicators at each time point. Similar to study 2, the latent transition analysis produced a multi-

domain impairment class (MLT) with deficits ranging from mild impairment to moderate impairment across 

all cognitive measures, 2) an amnestic impairment class (AMN) with deficits ranging from mild impairment 

to mild-to-moderate impairment only on memory measures, and below average to average performance 

on tests of language and attention/executive functions, 3) a dysexecutive/below average cognition class 

(DYS/BA) with attention/executive function test scores in the mild impairment range, language test scores 

in the mild impairment to below average range, and memory test scores in the below average to average 

range, and 4) an average cognition class (AVG) with performance in the average range across all 

cognitive measures. Unlike its counterpart class in the separate LPAs of study 2, the DYS/BA class 

demonstrated relatively equivalent performance within a cognitive domain across all three time points 
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(e.g., mild attention/executive function impairment at baseline, 12-, and 24-months). Additionally, the AVG 

class did not demonstrate better memory performance over time, with scores remaining in the average 

range for both AVLT recall and recognition at baseline, 12-, and 24-months. Class size was also very 

consistent within analogous classes over the 24-months, further indicating that the LTA classes were 

highly stable across the three time points. High entropy (0.906) suggested that the LTA model fit the data 

well. Neuropsychological performance within each LTA class at baseline, 12-, and 24-months is 

presented in Figure 13. 
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Figure 13: Classes in the latent transition model in study 3. Error bars denote 95% confidence intervals.  
1st Panel: Multi-domain impairment class. 2nd Panel: Dysexecutive/below average cognition class.  
3rd Panel: Amnestic impairment class. 4th Panel: Average cognition class. 
BNT = 30-item boston naming test; TMT = trail making test; AVLT = rey auditory verbal learning test. 
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Latent Transition Probabilities 

 Latent transition probabilities are presented in Table 22. Across all classes participants had a 

high likelihood of remaining within their analogous class (86.7–98.6%) from baseline to 12-months, and 

12-months to 24-months, and a relatively small probability of transition to another class at the subsequent 

time point (0.7–8.3%). The MLT class had the least likelihood of transition such that 98–99% remained in 

the MLT class over time. Participants in the AMN class also had a high probability of staying in the AMN 

class (95–96%) over time, albeit with a very small but consistent likelihood (2–3%) of transition to the 

AVG class from baseline to 12-months and 12-months to 24-months. DYS/BA participants were slightly 

more likely to remain within the DYS/BA class from baseline to 12-months (92%) than 12-months to 24-

months (87%), and they demonstrated variable, albeit small probabilities of transition to each of the other 

three classes over the three time points (1–7%). Individuals in the AVG class had a slightly lower 

likelihood to remain within the AVG class from baseline to 12-months (87%) than 12-months to 24-months 

(93%), and they demonstrated a modest but consistent probability of transition to the AMN class (7–8%). 

A graphical representation of the model of latent transition probabilities is presented in Figure 14. 

Table 22: Latent transition probabilities between classes from baseline to 12-months and 12-
months to 24-months. 

  12-months 
  Multi-domain 

Impairment 
Amnestic 

Impairment 
Dysexecutive/ Below 
Average Cognition 

Average 
Cognition 

Ba
se

lin
e 

Multi-domain Impairment 0.986 0.000 0.014 0.000 

Amnestic Impairment 0.010 0.960 0.000 0.031 

Dysexecutive/ Below 
Average Cognition 0.057 0.000 0.919 0.023 

Average Cognition 0.000 0.083 0.050 0.867 

  24-months 
  Multi-domain 

Impairment 
Amnestic 

Impairment 
Dysexecutive/ Below 
Average Cognition 

Average 
Cognition 

12
-m

on
th

s 

Multi-domain Impairment 0.980 0.000 0.020 0.000 

Amnestic Impairment 0.000 0.956 0.018 0.026 

Dysexecutive/ Below 
Average Cognition 0.007 0.056 0.870 0.068 

Average Cognition 0.000 0.068 0.000 0.932 
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Figure 14: Graphical representation of the model of latent transition probabilities. Increasing arrow 
darkness and thickness indicates a higher likelihood of transition between classes across time.  
AVG = average cognition class; AMN = amnestic impairment class; DYS = dysexecutive/below average 
cognition class; MLT = multi-domain impairment class; @0 = at baseline; @12 = at 12-months; @24 = at 
24-months. 
 
 Model inclusion of a second-order effect investigating the lasting direct effect that class 

membership at baseline had on class membership at 24-months produced little change in transition 

probabilities. Participants across all classes continued to have a high likelihood of remaining within their 

analogous class (>85%) from baseline to 12-months, and 12-months to 24-months, with a relatively small 

probability of transition to another class at the subsequent time point (<9%). Individuals in the MLT and 

AMN classes continued to have the highest likelihoods of remaining within their class over the three time 

points, (MLT: 98–99%, AMN: 94-96%). There was also a small but consistent probability (3–4%) for AMN 

class participants to transition to the AVG class from baseline to 12-months and 12-months to 24-months, 

although they also demonstrated a very low likelihood of transition to the DYS/BA class across the three 

occasions with the second-order effect (1-2%). A similar pattern of remaining within class from baseline to 

12-months (92%) and 12-months to 24-months (85%) was observed for the DYS/BA class, again with 

small, variable probabilities of transition to each of the other three classes over the three time points (1–

7%). There was also a similar likelihood to remain within class for AVG participants from baseline to 12-
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months (87%) and 12-months to 24-months (92%), as well as a consistent probability to transition to the 

AMN class (7–8%). Latent transition probabilities in a model with a second-order effect are presented in 

Table 23.  

Table 23: Latent transition probabilities between classes from baseline to 12-months and 12-
months to 24-months with inclusion of a direct second-order effect of baseline to 24-months. 

  12-months 
  Multi-domain 

Impairment 
Amnestic 

Impairment 
Dysexecutive/ Below 
Average Cognition 

Average 
Cognition 

Ba
se

lin
e 

Multi-domain Impairment 0.987 0.000 0.013 0.000 

Amnestic Impairment 0.010 0.937 0.013 0.040 

Dysexecutive/ Below 
Average Cognition 0.058 0.000 0.920 0.022 

Average Cognition 0.000 0.084 0.050 0.865 

  24-months 
  Multi-domain 

Impairment 
Amnestic 

Impairment 
Dysexecutive/ Below 
Average Cognition 

Average 
Cognition 

12
-m

on
th

s 

Multi-domain Impairment 0.978 0.000 0.022 0.000 

Amnestic Impairment 0.000 0.957 0.014 0.029 

Dysexecutive/ Below 
Average Cognition 0.010 0.068 0.854 0.067 

Average Cognition 0.000 0.080 0.000 0.920 

 

Effect of Covariates on Latent Transition Probabilities 

 Available covariate data by class in the latent transition model is presented in Table 24. More 

than 99% of participants across all classes had available FAQ and APOE genotype information. AD-CSF 

biomarkers and ATN classification availability ranged from 65.3 – 75.1% across the LTA classes.  

Table 24: Available covariate data by class in the latent transition model (n=825) of study 3. 

Covariate Multi-domain Impairment Amnestic Impairment 
Dysexecutive/ Below  
Average Cognition 

Average Cognition 

FAQ 
(n=822) 

99.1% 100% 99.4% 100% 

APOE genotype 
(n=821) 

99.1% 99.6% 100% 99.3% 

AD-CSF 
biomarkers 

(n= 591) 
68.0% – 68.6% 71.3% – 72.4% 74.4% – 75.1% 72.1% – 72.8% 

ATN classification 
(n=566) 

67.1% – 67.7% 68.1% – 69.9% 71.0% – 71.8% 65.3% –67.1% 

Note: FAQ = functional activities questionnaire, APOE = apolipoprotein E; AD = Alzheimer’s disease; CSF 
= cerebrospinal fluid; ATN = Amyloid/Tau/Neurodegeneration. 
 



 74 

 The effect of FAQ on transition probabilities is presented in Table 25. MLT participants had a very 

high probability to remain within class across the three time points regardless of FAQ score (97–100%). 

Individuals in the AMN class were very likely to remain within class across the three time points when 

FAQ<6 (95–96%), but had a lower probability to stay within class from baseline to 12-months when 

FAQ>6 (84%) as well as a greater likelihood to transition to the MLT class (11%). DYS/BA class 

participants were most likely to remain within class across the three time points when FAQ<6 (92–94%). 

However, individuals in the DYS/BA class had a lower probability to remain within class when FAQ>6 (70-

86%) and also demonstrated a modest likelihood of transition to the MLT class from baseline to 12-

months (11%) and a moderate likelihood of transition to the AMN class from 12- to 24-months (30%). 

AVG class participants had a high probability to remain within class when FAQ<6 across the three time 

points (84-85%) as well as small likelihoods of transition to the DYS/BA (5-7%) and AMN (7-9%) classes. 

FAQ>6 had a variable effect on the likelihood of individuals in the AVG class staying within class (80–

96%), though it increased the transition probability of AVG participants to the DYS/BA class from baseline 

to 12-months (20%). 

Table 25: Latent transition probabilities between classes from baseline to 12-months and 
12- to 24-months by baseline FAQ score. 

FAQ <6 FAQ >6 

  12-months   12-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 0.973 0.000 0.027 0.000 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

AMN 0.000 0.964 0.000 0.036 AMN 0.111 0.839 0.050 0.000 

DYS/BA 0.050 0.000 0.921 0.029 DYS/BA 0.142 0.000 0.858 0.000 

AVG 0.000 0.099 0.054 0.847 AVG 0.000 0.000 0.203 0.797 
  24-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

12
-m

on
th

s 

MLT 0.969 0.000 0.000 0.031 

12
-m

on
th

s 

MLT 0.997 0.000 0.000 0.003 

AMN 0.000 0.947 0.034 0.019 AMN 0.000 1.000 0.000 0.000 

DYS/BA 0.000 0.064 0.936 0.000 DYS/BA 0.000 0.301 0.699 0.000 

AVG 0.013 0.072 0.072 0.843 AVG 0.000 0.000 0.045 0.955 

Note: FAQ = functional activities questionnaire; MLT = multi-domain impairment; AMN = amnestic 
impairment; DYS/BA = dysexecutive/ below average cognition; AVG = average cognition. 
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The effect of APOE e4 allele presence on transition probabilities is presented in Table 26. MLT 

participants had a very high probability to remain within class across the three time points regardless of 

APOE e4 allele presence (94–100%); a similar pattern was observed regarding the effect of APOE e4 

allele presence on the transition probabilities of individuals in the AMN class (94–98%). DYS/BA class 

participants were most likely to remain within class across the three time points with APOE e4-negativity 

(95%). However, individuals in the DYS/BA class had a lower probability to remain within class in the 

presence of APOE e4-positivity (75–90%) as well as a modest likelihood of transition to the AMN class 

from 12- to 24-months (14%). AVG class participants had a high probability to remain within class across 

the three time points regardless of APOE e4 allele presence (87–94%), though the likelihood of transition 

to the AMN class demonstrated a very small increase with APOE e4-positivity (6–8%) compared to APOE 

e4-negativity (8–9%). 

 
Table 26: Latent transition probabilities between classes from baseline to 12-months and 
12- to 24-months by APOE e4 allele presence. 

APOE e4 negative APOE e4 positive 

  12-months   12-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 0.936 0.000 0.064 0.000 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

AMN 0.000 0.943 0.011 0.046 AMN 0.028 0.967 0.000 0.005 

DYS/BA 0.054 0.000 0.946 0.000 DYS/BA 0.045 0.000 0.897 0.057 

AVG 0.000 0.076 0.057 0.867 AVG 0.000 0.091 0.000 0.909 
  24-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

12
-m

on
th

s 

MLT 0.949 0.000 0.051 0.000 

12
-m

on
th

s 

MLT 0.989 0.000 0.011 0.000 

AMN 0.000 0.938 0.031 0.031 AMN 0.000 0.979 0.000 0.021 

DYS/BA 0.000 0.000 0.946 0.054 DYS/BA 0.032 0.140 0.753 0.075 

AVG 0.000 0.062 0.000 0.938 AVG 0.000 0.082 0.000 0.918 

Note: APOE = apolipoprotein E; MLT = multi-domain impairment; AMN = amnestic  
impairment; DYS/BA = dysexecutive/ below average cognition; AVG = average cognition 
 
 The effect of baseline CSF pTau181 positivity on transition probabilities is presented in Table 27. 

MLT participants remained within class from baseline to 12-months regardless of pTau181 positivity 

(100%). However, they had a lower probability to stay in their class (76%) and a higher likelihood of 
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transition to the DYS/BA class from 12- to 24-months (24%) with pTau181 negativity, compared to a very 

high probability to remain within the MLT class from 12- to 24-months (99%) if they were pTau181 positive. 

Individuals in the AMN class were highly likely to remain within class across the three time points (93–

98%) regardless of pTau181 positivity. DYS/BA class participants were most likely to remain within class 

from baseline to 12-months irrespective of pTau181 positivity (94%), though these individuals were more 

likely to transition to the AMN (11%) and AVG (9%) classes from 12- to 24-months with pTau181 negativity 

compared to those that were pTau181 positive (AMN: 7%, AVG: 4%). pTau181 negative individuals in the 

AVG class were very likely to remain within class across the three time points (90–100%), though they 

had a modest likelihood of transition to the AMN class from baseline to 12-months (10%). Conversely, 

AVG participants with pTau181 positivity had lower probabilities to stay in the AVG class (83–88%) and a 

greater likelihood of transition to the AMN class from baseline to 12-months and 12- to 24-months (13%). 

Table 27: Latent transition probabilities between classes from baseline to 12-months and 
12- to 24-months by baseline cerebrospinal fluid pTau181 positivity. 

pTau181 negative pTau181 positive 

  12-months   12-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

AMN 0.000 0.940 0.015 0.045 AMN 0.007 0.974 0.000 0.020 

DYS/BA 0.063 0.000 0.937 0.000 DYS/BA 0.000 0.000 0.945 0.055 

AVG 0.000 0.102 0.000 0.898 AVG 0.000 0.131 0.040 0.829 
  24-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

12
-m

on
th

s 

MLT 0.757 0.000 0.243 0.000 

12
-m

on
th

s 

MLT 0.988 0.000 0.012 0.000 

AMN 0.000 0.931 0.035 0.035 AMN 0.000 0.979 0.000 0.021 

DYS/BA 0.000 0.109 0.806 0.085 DYS/BA 0.000 0.065 0.893 0.042 

AVG 0.000 0.000 0.000 1.000 AVG 0.000 0.125 0.000 0.875 

Note: pTau181 positivity based on Schindler et al. (2018) cutoffs. pTau181 negative < 19.2 pg/mL,  
pTau181 positive >19.2 pg/mL. pTau181 = tau phosphorylated at amino acid-181; MLT = multi-domain  
impairment; AMN = amnestic impairment; DYS/BA = dysexecutive/ below average cognition;  
AVG = average cognition. 
 
 The effect of baseline CSF total tau positivity on transition probabilities is presented in Table 28. 

MLT participants were more likely to remain within class from baseline to 12-months if total tau positive 
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(100%) versus total tau negative (90%); total tau negativity also resulted in a modest transition probability 

to the DYS/BA class (10%). Individuals in the MLT class had an equally high likelihood of remaining 

within class from 12- to 24-months irrespective of total tau positivity. AMN participants were also more 

likely to stay within the AMN class from baseline to 12-months if they were total tau positive (99%) versus 

total tau negative (92%), and total tau negativity resulted in a small probability of transition to the AVG 

class (8%). Individuals in the AMN class had an equally high likelihood of remaining within class from 12- 

to 24-months irrespective of total tau positivity (95–96%). Total tau positive individuals in the DYS/BA 

class were more likely to remain within their class across the three time points (93–95%) than total tau 

negative DYS/BA participants (82–91%), with small and varying transition probabilities to the other three 

classes (3–11%) irrespective of total tau positivity. Total tau negative individuals in the AVG class were 

very likely to remain within class across the three time points (91–96%), with a small likelihood of 

transition to the AMN class (4–9%). Conversely, AVG participants with total tau positivity were less likely 

to stay in the AVG class (76–89%), and had modest transition probabilities to the AMN class across the 

three time points (11–15%) as well as a small likelihood of transition to the DYS/BA class from baseline to 

12-months (9%). 
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Table 28: Latent transition probabilities between classes from baseline to 12-months and 
12- to 24-months by baseline cerebrospinal fluid total tau positivity. 

Total tau negative Total tau positive 

  12-months   12-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 0.896 0.000 0.104 0.000 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

AMN 0.000 0.924 0.000 0.076 AMN 0.013 0.987 0.000 0.000 

DYS/BA 0.091 0.000 0.909 0.000 DYS/BA 0.000 0.000 0.952 0.048 

AVG 0.000 0.090 0.000 0.910 AVG 0.000 0.149 0.093 0.758 
  24-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

12
-m

on
th

s 

MLT 0.985 0.000 0.015 0.000 

12
-m

on
th

s 

MLT 0.989 0.000 0.011 0.000 

AMN 0.000 0.948 0.024 0.027 AMN 0.000 0.962 0.013 0.025 

DYS/BA 0.000 0.112 0.820 0.068 DYS/BA 0.000 0.042 0.928 0.030 

AVG 0.000 0.040 0.000 0.960 AVG 0.000 0.109 0.000 0.891 

Note: Total tau positivity based on Schindler et al. (2018) cutoffs. Total tau negative <242 
pg/mL, Total tau positive >242 pg/mL. MLT = multi-domain impairment; AMN = amnestic 
impairment; DYS/BA = dysexecutive/ below average cognition; AVG = average cognition. 
 
 The effect of baseline CSF Ab1-42 positivity on transition probabilities is presented in Table 29. 

MLT participants remained within class from baseline to 12-months regardless of Ab1-42 positivity (100%). 

However, they had a lower probability to stay in their class (62%) and a higher likelihood of transition to 

the DYS/BA class from 12- to 24-months (38%) if Ab1-42 negative, compared to a very high probability to 

remain within the MLT class from 12- to 24-months (99%) if they were Ab1-42 positive. Individuals in the 

AMN class were more likely to remain within class from baseline to 12-months with Ab1-42 positivity (99%), 

and had a lower probability to stay in the AMN class if Ab1-42 negative (88%). Ab1-42 negative AMN 

participants also had equally small likelihoods of transition to either the DYS/BA or AVG classes (6%). 

DYS/BA class participants were most likely to remain within class from baseline to 12-months irrespective 

of Ab1-42 positivity (91–97%), though these individuals were less likely to remain in class from 12- to 24-

months if they were Ab1-42 negative (77%) versus Ab1-42 positive (88%). Regardless of Ab1-42 positivity, 

individuals in the DYS/BA class had small transition probabilities to the AMN class from 12- to 24-months 

(7-10%), though they had a greater likelihood of transition to the AVG class with Ab1-42 positivity (13%) 

than Ab1-42 negativity (5%). Ab1-42 positivity had little effect on the likelihood of individuals in the AVG class 
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remaining in their class from baseline to 12-months (85–86%) or 12- to 24-months (92–95%). Similar 

transition probabilities for AVG participants to the DYS/BA class were also observed irrespective of Ab1-42 

positivity from baseline to 12-months (11–14%) and 12- to 24-months (5–8%).  

Table 29: Latent transition probabilities between classes from baseline to 12-months and 
12- to 24-months by baseline cerebrospinal fluid Ab1-42 positivity. 

Ab1-42 negative Ab1-42 positive 

  12-months   12-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

AMN 0.000 0.877 0.060 0.063 AMN 0.005 0.995 0.000 0.000 

DYS/BA 0.032 0.000 0.968 0.000 DYS/BA 0.048 0.000 0.906 0.045 

AVG 0.000 0.113 0.033 0.853 AVG 0.000 0.141 0.000 0.859 
  24-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

12
-m

on
th

s 

MLT 0.624 0.000 0.376 0.000 

12
-m

on
th

s 

MLT 0.994 0.002 0.004 0.000 

AMN 0.000 0.972 0.000 0.028 AMN 0.000 0.960 0.019 0.021 

DYS/BA 0.000 0.099 0.771 0.129 DYS/BA 0.000 0.067 0.884 0.049 

AVG 0.000 0.081 0.000 0.919 AVG 0.000 0.054 0.000 0.946 

Note: Ab1-42 positivity based on Schindler et al. (2018) cutoffs. Ab1-42 negative >1098 pg/mL,  
Ab1-42 positive <1098 pg/mL. Ab1-42 = amyloid-beta1-42; MLT = multi-domain impairment; 
AMN = amnestic impairment; DYS/BA = dysexecutive/ below average cognition; AVG = 
average cognition. 
 
 The effect of baseline ATN classification on transition probabilities is presented in Table 30. With 

the exception of A+/T+/N-, MLT participants remained within class from baseline to 12-months 

irrespective of ATN classification (100%). However, from 12- to 24-months individuals in the MLT class 

with A-/T-/N-, A+/T-/N-, and A-/T+/N+ classifications had a lower likelihood to stay in their class (60–86%) 

and a modest to large probability of transition to the DYS/BA class (12–40%). MLT participants classified 

as A+/T+/N- had an equal likelihood to stay in the MLT class across the three time points (85%) and a 

modest transition probability (15%) from baseline to 12-months to the AMN class and from 12- to 24-

months to the DYS/BA class. Classification in the A+/T+/N+ resulted in a 100% probability to remain 

within the MLT class across the three time points.  
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 Individuals in the AMN class had a very high likelihood to remain within their class across the 

three time points (94–100%) for the three ATN classifications where the “A” (i.e., Ab1-42) was positive (i.e., 

A+/T-/N-, A+/T+/N-, or A+/T+/N+). AMN participants that were A-/T-/N- had a lower probability to remain 

in their class (83–92%) and a small likelihood of transition to the AVG class (8–9%) across the three time 

points. AMN participants in the A-/T+/N+ classification had a modest likelihood to transition to the 

DYS/BA class (13%) from baseline to 12-months, but stayed in the AMN class from 12- to 24-months 

(100%).  

 DYS/BA participants classified as A+/T+/N+ had a high probability of remaining in their class 

across the three time points (95%). A-/T-/N-, A+/T-/N-, and A-/T+/N+ individuals in the DYS/BA class had 

a high probability of remaining in their class from baseline to 12-months (93–98%), though they had a 

lower likelihood of staying in class from 12- to 24-months (83–84%). From 12- to 24-months, DYS/BA 

participants classified as A+/T-/N- and A-/T+/N+ had a modest likelihood of transition to the AVG class 

(15–17%) and those in the A-/T-/N- classification had a modest transition probability to the AMN class 

(16%). DYS/BA individuals classified as A+/T+/N- were moderately likely to stay in their class from 

baseline to 12-months, and had large (45%) and modest probabilities (19%) to respectively transition to 

the MLT and AVG classes over this time period. However, A+/T+/N- participants in the DYS/BA class 

remained in the DYS/BA class from 12- to 24-months.  

 A-/T-/N- and A+/T+/N- individuals in the AVG class had a high probability to remain in their class 

(81–82%) along with a modest likelihood of transition to the DYS/BA class from baseline to 12-months 

(17–18%). From 12- to 24-months these the AVG participants classified as A-/T-/N- and A+/T+/N- had a 

very high probability to stay in the AVG class (97–100%).  AVG class participants in the A+/T-/N- 

classification were most likely to remain within their class across the three time points (96–97%). AVG 

individuals classified as A-/T+/N+ had a high probability to stay within class (84–90%) and a small 

likelihood of transition to the DYS/BA class (9–10%) across the three time points; they also demonstrated 

a small transition probability to the AMN class from baseline to 12-months (7%). Although the majority of 

participants identified as A+/T+/N+ in the AVG class remained in their class across the three time points 

(68 – 88%), they also demonstrated a modest likelihood of transition to the AMN class (11-19%) from 
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baseline to 12-months and 12- to 24-months as well as a modest transition probability to the DYS/BA 

class (13%) from baseline to 12-months. 

Table 30: Latent transition probabilities between classes from baseline to 12-months and 12- to 24-
months by baseline A/T/N classification. 

A–  

T– 

N– 

  12-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

12
-m

on
th

s 
 MLT 0.667 0.000 0.333 0.000 

AMN 0.000 0.831 0.086 0.083 AMN 0.000 0.915 0.000 0.085 

DYS/BA 0.066 0.000 0.934 0.000 DYS/BA 0.000 0.156 0.826 0.017 

AVG 0.000 0.172 0.023 0.805 AVG 0.000 0.000 0.000 1.000 

A+ 

T– 

N– 

  12-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

12
-m

on
th

s 

MLT 0.857 0.021 0.121 0.000 

AMN 0.000 0.944 0.056 0.000 AMN 0.000 0.947 0.053 0.000 

DYS/BA 0.072 0.000 0.928 0.000 DYS/BA 0.015 0.000 0.839 0.146 

AVG 0.000 0.000 0.031 0.969 AVG 0.000 0.037 0.000 0.963 

A+ 

T+ 

N– 

  12-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 0.852 0.000 0.148 0.000 

12
-m

on
th

s 

MLT 0.849 0.151 0.000 0.000 

AMN 0.000 1.000 0.000 0.000 AMN 0.000 1.000 0.000 0.000 

DYS/BA 0.451 0.000 0.362 0.186 DYS/BA 0.000 0.000 1.000 0.000 

AVG 0.000 0.178 0.000 0.822 AVG 0.000 0.033 0.000 0.967 

A– 

T+ 

N+ 

  12-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

12
-m

on
th

s MLT 0.601 0.000 0.399 0.000 

AMN 0.000 0.866 0.134 0.000 AMN 0.000 1.000 0.000 0.000 

DYS/BA 0.000 0.017 0.983 0.000 DYS/BA 0.000 0.000 0.831 0.169 

AVG 0.000 0.092 0.071 0.836 AVG 0.000 0.102 0.000 0.898 

A+ 

T+ 

N+ 

  12-months   24-months 
  MLT AMN DYS/BA AVG   MLT AMN DYS/BA AVG 

Ba
se

lin
e 

MLT 1.000 0.000 0.000 0.000 

12
-m

on
th

s 

MLT 1.000 0.000 0.000 0.000 

AMN 0.016 0.984 0.000 0.000 AMN 0.000 0.969 0.000 0.031 

DYS/BA 0.000 0.000 0.954 0.046 DYS/BA 0.000 0.055 0.945 0.000 

AVG 0.000 0.186 0.133 0.681 AVG 0.000 0.113 0.000 0.887 

Note: A/T/N classification defined according to Jack et al. (2016). ‘A’ reflects amyloid (Ab1-42), ‘T’ reflects 
tau (pTau181), and ‘N’ reflects neurodegeneration (total tau). Cerebrospinal fluid Ab1-42, pTau181, and total 
tau positivities were based on Schindler et al. (2018) cutoffs. Ab1-42  = Amyloid-beta1-42; pTau181 = tau 
phosphorylated at amino acid-181; MLT = multi-domain impairment; AMN = amnestic impairment; 
DYS/BA = dysexecutive/ below average cognition; AVG = average cognition.  
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 Study 1, in part, is a reprint of the material as it appears in the Journal of the International 

Neuropsychological Society, (2017), 23(7), 564-576. Eppig, Joel S.; Edmonds, Emily C.; Campbell, 

Laura; Sanderson-Cimino, Mark; Delano-Wood, Lisa; and Bondi, Mark W. for the Alzheimer’s Disease 

Neuroimaging Initiative, Cambridge University Press. The dissertation author was the primary 

investigator and author of this paper. 
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V. Discussion 

The present dissertation research aimed to use latent mixture modeling to empirically identify and 

longitudinally characterize subtypes of mild cognitive impairment. To achieve this objective, the 

dissertation was comprised of three inter-related studies that built upon and advanced the foundation 

developed by the preceding study. Study 1 used LPA to investigate baseline neuropsychological 

heterogeneity across four cognitive domains (visuoconstructional ability, language, attention/executive 

function, and episodic memory) in ADNI participants diagnosed with conventional MCI. In contrast to past 

neuropsychological research in ADNI, tests of visuoconstructional ability were included to better capture 

aspects of visuospatial functioning in statistically-defined MCI subtypes and facilitate the identification of 

potentially unique cognitive phenotypes with visuoconstructional deficits. Exploratory outcomes of 

cerebrospinal fluid and genetic AD biomarkers, longitudinal outcome, and other ADNI measures were 

also evaluated between LPA classes. Study 2 examined the stability and consistency of MCI subtypes 

across 24-months using psychometrically advanced standardized scores. To build and improve upon the 

normative methods of study 1, an adaptation of the Heaton, Miller, Taylor & Grant (2004) standardization 

methodology was used to produce demographically-corrected T-scores at baseline, 12-, and 24-months 

based on robust normal control performance. Practice effects were also accounted for within the final T-

scores as the robust normal control participants completed all neuropsychological tests at each time 

point. Separate LPAs of neuropsychological performance at baseline, 12-, and 24-months were 

conducted on ADNI participants diagnosed with baseline MCI to establish serial measurement models. 

Mean performance within analogous classes and reliable change classifications between classes 

elucidated changes in neuropsychological performance over time. Study 3 investigated changes in class 

membership of the neuropsychological MCI subtypes over 24-months. Measurement invariance was 

evaluated within the LPA classes from study 2 and LTA was then used to determine transition 

probabilities from baseline to 12-months, and 12-months to 24-months. AD-risk factor covariates (i.e., AD 

cerebrospinal fluid and genetic biomarkers, functional ability) were added to the model to examine their 

effect on the likelihood of transition between classes over time. 
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In study 1, the optimal LPA solution contained three classes: a mixed MCI, an amnestic MCI, and 

LPA-derived normal class. Contrary to our expectations, a unique MCI subtype characterized by 

predominant visuoconstructional deficits did not emerge in the 3-class LPA.  Several reasons might 

explain the absence, including the neuropsychological measures chosen, psychometric properties of 

scoring systems, selected latent model, and MCI diagnostic criteria used by ADNI.  

Visuospatial assessments available in ADNI were unfortunately limited to visuoconstructional 

tasks, which are multi-factorial and require integration of visuoperceptual, organizational, and motor skills 

(Ahmed et al., 2016). Thus, low scores on clock drawing and MMSE pentagons may reflect a combination 

of visuospatial and executive functioning difficulties rather than “pure” visuospatial impairment.  

Additionally, the psychometric properties of these visuoconstructional measures were non-normally 

distributed, did not benefit from transformations, and poorly discriminated between normal and mildly 

impaired individuals (Eppig et al., 2017), likely contributing to these results.  

Another possible contribution is the initial ADNI diagnosis of MCI. ADNI inclusion criteria are 

heavily weighted towards verbal episodic memory to target preclinical AD, while previous research has 

demonstrated early, differential visuospatial/constructional impairment most frequently in individuals with 

non-amnestic MCI (Clark et al., 2013; Ferman et al., 2013; Molano et al, 2010). Thus, one might argue 

that ADNI’s reliance on a single memory score to determine MCI potentially biases the prevalence of non-

amnestic deficits in ADNI.  However, visuoconstructional impairment is not captured by verbal memory 

assessment and, along with other non-amnestic domains, remains uncharacterized with ADNI’s 

diagnostic criteria. In fact, past work (Bondi et al., 2014; Edmonds et al., 2015) has demonstrated 

considerable heterogeneity in ADNI neuropsychological profiles despite the vast majority of individuals 

receiving a conventional “amnestic MCI” diagnosis. Furthermore, recent research also indicates that the 

“pure” AD pathology targeted by ADNI is less common than multiple underlying neuropathologies 

(Schneider et al., 2009; Wilson et al., 2013; Zlokovic, 2011), providing further support for using 

comprehensive neuropsychological assessment to classify MCI across multiple cognitive domains.  

Unsurprisingly, results of the study 1 are similar to the cluster subgroups found by Edmonds et al. 

(2015), who reported analogous amnestic MCI (34.9%), dysexecutive MCI (12.5%), and cluster-derived 
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normal (34.2%) subtypes. Although amnestic MCI class in study 1 was much larger (56.5%), the LPA-

derived normal class was comparable in size (30.4%).  The mixed MCI class (13.2%) appears to 

correspond to the dysexecutive MCI group in Edmonds et al. (2015), with analogous size and 

performance. However, Edmonds et al. (2015) also found a fourth dysnomic/amnestic MCI subtype. 

There are two possibilities explaining its absence in study 1: 1) The statistical algorithms underlying LPA, 

which converged on a different solution, and 2) inclusion of visuoconstructional assessment, which 

revealed more robust impairment in a subset of dysnomic individuals.  These participants may have been 

reclassified as mixed MCI in the LPA and the remaining dysnomic subjects, lacking adequate 

differentiation in their scores, were folded into the amnestic class. Additionally, the 3-class solution was 

very consistent with another ADNI cluster analysis by Bondi et al. (2014) using conventional 

Petersen/Winblad MCI criteria. They also found three MCI subgroups (amnestic: 56.4%, 

dysexecutive/mixed: 12.3%, and “false positive” normal: 31.3%) of almost identical size and cognitive 

profile, along with similar genetic/CSF biomarker associations and longitudinal outcomes.   

Overall, study 1 is very consistent with previous findings and further underscores the problem 

using single test scores, cognitive screening measures, and subjective rating scales in MCI diagnosis.  

ADNI’s MCI criteria led to “false-positive” diagnoses in approximately a third of the sample; this class 

performed within-normal limits on all neuropsychological measures, had a lower proportion of AD-positive 

CSF and genetic biomarkers, and better longitudinal outcomes compared to the other MCI classes, 

similar to past results (Bondi et al., 2014; Edmonds et al., 2015).  Although the amnestic and mixed MCI 

classes in study 1 demonstrated unique neuropsychological profiles, the groups only differed in total 

MMSE score and rate of conversion to AD among all CSF/genetic biomarker, ADNI diagnostic, and 

longitudinal outcomes. These results raise the possibility that the amnestic and mixed MCI classes may 

represent stages of disease progression. A recent analysis of cortical atrophy patterns among Edmond et 

al.’s (2015) cluster-defined MCI subtypes supports such speculation, as the authors demonstrated distinct 

but overlapping profiles of cortical thinning consistent with their neuropsychological performance 

(Edmonds et al., 2016).  
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Despite the majority of similarities, a few notable differences were present in this study compared 

to past work (Bondi et al., 2014; Edmonds et al., 2015). Most importantly, the LPA-derived normal class 

yielded a rate of dementia progression (5.8%) that is almost half of Edmonds et al.’s (2015) finding 

(10.7%) and Bondi et al.’s (2014) results (9.3%). This significant result suggests LPA methods in study 1 

further improved classification accuracy and are preferential to cluster analysis. Another unique finding in 

study 1 was the disproportionate representation of the LPA-derived normal class by ADNI phase; fewer 

such individuals were enrolled during ADNI-1 than other classes, though significantly more were recruited 

in ADNI-GO.  This shift likely reflects ADNI-GO’s efforts to focus on “early” MCI (Aisen et al., 2010).  

However, without the incorporation of comprehensive neuropsychological assessment to inform 

diagnosis, ADNI may have unintentionally recruited cognitively normal individuals erroneously identified 

as “early” MCI.  Such misclassification has considerable implications for MCI research, where inaccurate 

diagnosis will increase the likelihood of Type-II errors, attenuate effects sizes, and reduce the efficacy of 

pharmacologic interventions (e.g., see Edmonds et al., 2018). 

In study 2, application of the Heaton, Miller, Taylor, & Grant (2004) standardization methodology 

to robust normal control performance at baseline, 12-, and 24-months resulted in demographically-

corrected T-scores with satisfactory psychometric properties and embedded practice effects. As 

predicted, all T-scores had a mean of 50 and standard deviation of 10 in the robust normal control 

sample, and the percentage of scores in the “impaired” range (i.e., T<40) amongst robust normal control 

participants did not statistically differ from the percentage of individuals expected to fall within that range 

(i.e., 15.9%) on the normal curve. As expected in the robust normal control sample, there were no 

residual associations between age, education, and sex and the final T-scores, or an age by education 

interaction. Most of the frequency distributions in the robust normal control sample for each T-score did 

not differ from a normal curve. However, contrary to expectations the distributions of BNT and AVLT 

Recognition at all three time points were significantly different than the normal curve. A likely explanation 

would be that despite the total range of the measures, the majority of healthy individuals actually perform 

within a narrow band on these tests, thus reflecting a different distribution. This notion has been 
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supported in the normative literature, where other measures with limited ranges do not tend to adhere to 

a Gaussian distribution (Heaton, Miller, Taylor, & Grant, 2004). 

Contrary to study 1 results, in study 2 the optimal LPA solutions at baseline, 12-months, and 24-

months produced four analogous classes: a multi-domain impairment, an amnestic impairment, a 

dysexecutive/below average cognition, and an average cognition class. Several reasons for the 

differences in the number of classes between study 1 and 2 are possible, including the exclusion of 

visuoconstructional measures and improved psychometric properties of standardized scores, allowing for 

more robust determination of classes. Additionally, comparative fit indices, likelihood ratio tests, model 

characteristics, and parsimony did not all converge on a clear solution for the number of LPA classes at 

baseline, 12- and 24-months. Rather, a combination of these objective statistical indices along with 

subjective factors such as meaningful class interpretation and consistency with past research were used 

to select the optimal model at all three time points. Thus, another reason for the difference in the study 1 

LPA versus the study 2 LPAs is the possibility that the incorrect class solution was selected, although 

objective indicators of fit (e.g., VLMR-LRT) suggest that class over-extraction is unlikely.  

Another reason that does not support data over-extraction is that the 4-class LPA solutions in 

study 2 are very consistent with the 4-classes found in past cluster analytic studies of conventional MCI 

(Edmonds et al., 2015; Bondi et al., 2014; Peraita et al., 2015). Similar to the amnestic, 

dysexecutive/mixed, and cognitively normal classes of Edmonds et al. (2015), study 2 found analogous 

amnestic impairment, multi-domain impairment, and average cognition classes in ADNI, albeit of different 

sizes. One notable difference between study 2 and their work is the size of the “false-positive” cognitively 

normal class, as it is 2–3x larger (depending on the time point chosen from study 2) in Edmonds et al. 

(2015). The class size of the average cognition class in study 2 varied greatly across time points, and in 

conjunction with better performance and the larger size of the dysexecutive/below average cognition 

class at 12- and 24-months, may indicate that the LPAs in study 2 are underestimating the size of the 

“false-positive” subtype as some participants were classified into a different group at later time points. 

Another difference from Edmonds et al. (2015) is the interpretation of the 4th class; the authors reported a 

dysnomic/amnestic subtype, while study 2 found a dysexecutive/below average cognition subtype. The 
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exact reason for this difference is unclear, although it may be due to the statistical method as well as the 

general variability in performance of participants in the dysexecutive/below average class over time.  

The neuropsychological profiles of LPA classes at each of the three time points in study 2 also 

appears to be relatively similar to those found in serial LPAs across 24-months by Peraita et al. (2015). 

These authors consistently produced 4-classes at three time points, each containing a healthy non-

impairment class, amnesic class, non-amnesic class, and multi-domain class which are analogous to the 

average cognition, amnestic impairment, dysexecutive/below average cognition, and multi-domain 

impairment classes in study 2. Similar to the findings in study 2, Peraita et al. (2015) also demonstrated 

that the cognitively normal class decreased in size with time, although the proportion of individuals in this 

class was 5–7x in Peraita et al. (2015). One possible explanation for this discrepancy between our 

studies is the use of continuous versus dichotomous indicators. Further compounding this difference was 

Peraita et al.’s (2015) use of a very liberal classification of “impairment” (<40th percentile), which is likely 

to be over inclusive of healthy normal individuals. Study 2 included continuous neuropsychological 

indicators of latent classes, thus avoiding unnecessary assumptions or dichotomizations of measures.  

Although the number of classes remained constant across the 24-months as predicted, the sizes 

of the classes, particularly the dysexecutive/below average cognition and average cognition subtypes, 

had more fluctuation than anticipated. Moreover, the dysexecutive/below average cognition class had 

improvement in neuropsychological performance over the 24-months. The reasons underlying the 

variations in size and to an extent, neuropsychological interpretation, of the dysexecutive/below average 

cognition class is not immediately evident. However, one possible explanation may relate to the 

relationship between missing data at follow-up time points and participants in this class. Although an 

analysis of missing follow-up data did not statistically differ across the baseline or 12-month LPA classes, 

practical examination shows that the dysexecutive/below average cognition class did have the highest 

percentage of missing data, particularly for 24-months follow-up in the baseline class. Additionally, MCI 

participants in the overall sample that were missing data at 24-months tended to perform worse on the 

attention/executive function measures (TMT Part A & B) than those with available follow-up. The 

combination of these two factors indicates the possibility that there was an association between 
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individuals with missing follow-up data and having worse performance on attention/executive function 

measures. Thus, their absence in the 12- and 24-month LPAs may have disproportionately affected the 

dysexecutive/below average cognition class and caused greater fluctuations in its size and improvement 

on these neuropsychological measures over time. As expected, within-class comparisons suggested the 

multi-domain impairment class performed worse on virtually all measures across the three time points. 

The amnestic impairment class had decreased neuropsychological performance on several measures 

over time, while performance within the average cognition class remained stable as predicted.  

Examination of outcomes between classes for each LPA suggested changing demographic 

differences across time points, which is likely a function of the changes in participant composition and 

size of classes at baseline, 12-, and 24-months. At the baseline and 24-month LPAs, the average 

cognition class had a tendency to be younger than some of the other classes, and the multi-domain 

impairment class generally had a higher percentage of women than the amnestic impairment and 

dysexecutive/below average cognition classes. Furthermore, the multi-domain impairment class had the 

highest proportion of participants with a concurrent dementia diagnosis from ADNI compared to the other 

classes in the 12- and 24-month LPAs; up to 73% received a dementia diagnosis at 24-months. The 

average cognition class had a higher proportion of individuals that were identified by ADNI as normal at 

their concurrent 12- and 24-month LPAs. These findings provide further support to evidence from past 

research suggesting that the average cognition class reflects cognitively normal individuals due to the 

susceptibility of conventional MCI to “false-positive” diagnoses. Additionally, the combination of similar 

neuropsychological interpretation of the multi-domain impairment class from baseline to 24-months, in 

conjunction with the high percentages of individuals within this class that received a dementia diagnosis, 

suggests that these participants may have also been misclassified with MCI at baseline and actually 

reflected a false-positive dementia diagnosis.  

This notion is further supported based on the results of differences in reliable change 

classification between LPA classes at 12- and 24-months. The multi-domain impairment class had the 

highest percentage of individuals with a significant decrease across almost all neuropsychological 

measures as compared to the other classes. However, AVLT recall appeared to be disproportionately 
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stable in reliable classification, which is consistent with the aforementioned lack of within-class mean 

decline on this measure in the multi-domain impairment class. The likely explanation for this stability in 

AVLT recall is a floor effect, such that the majority of individuals in the multi-domain impairment class 

already obtained the lowest possible score. The amnestic impairment class also had a large proportion of 

participants with a significant decrease in reliable classification compared to the dysexecutive/below 

average cognition and average cognition classes, though this finding was circumscribed to AVLT 

recognition, one of the memory measures. The proportion of individuals in the average cognition class 

with a significant decrease in reliable classification was consistent with that expected in a normative 

sample (i.e., 5%), and they also demonstrated higher percentages of a significant increase compared to 

the dysexecutive/below average group in the 12-month LPA. Taken together, these results continue to 

provide substantial evidence that the conventional MCI criteria are prone to misdiagnosis of healthy 

normal individuals, as well as individuals that have already progressed to the early stages of dementia.  

Study 3 found support for partial measurement invariance over time based on the LPA models 

from study 2. In line with expectations, good model fit was found when the mean of each 

neuropsychological measure (except for AVLT recall) at baseline, 12-, and 24-months was held equal 

across time in the average cognition class. Contrary to hypotheses, in the multi-domain impairment class 

model fit did not support equivalent means across time on almost all of the neuropsychological measures. 

Similarly, model fit indicated that the dysexecutive/below average cognition and amnestic impairment 

classes also had equivalent means across time for very few of the neuropsychological measures.  

The latent transition analysis in study 3 generated a higher degree of consistency within 

analogous classes across the three time points compared to study 2. Analogous classes were closer in 

size and demonstrated minimal fluctuation at baseline, 12-, and 24-months. Additionally, there was 

greater equivalency in neuropsychological interpretation of classes over time, as scores largely fell within 

mainly the same Heaton, Miller, Taylor, & Grant (2004) ranges. This is due, in part, to the constraint of 

select neuropsychological means across time within classes. However, another explanation may be 

related to the imputation of missing data used by MPlus (Muthén & Muthén, 2012). Bayesian imputation 

of follow-up scores based on the neuropsychological performance from prior time points allowed MPlus to 
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use all MCI participant data (n=825) at 12- and 24-months, and may have helped with the stability of 

solutions by accounting for those individuals with worse attention/executive performance that would 

otherwise be missing. However, the exploratory LPAs that were run separately in study 2 did not benefit 

from this form of imputation, as no relationships were established with prior time points in those models.  

Overall, transition probabilities established in study 3 indicated that a significant majority of 

participants (>86%) remained within their class from baseline to 12-months and 12- to 24-months. As 

expected, individuals in the multi-domain impairment class had the highest probability to stay in their 

class over time (>97%). Contrary to predictions, participants in the amnestic impairment class were also 

very likely to remain in their class (93%) and demonstrated little to no transition to the multi-impairment 

class. Probability staying in class for the dysexecutive/below average class was higher from baseline to 

12-months and was relatively lower from 12- to 24-months (with a slight increase in likelihood to the 

amnestic impairment or average cognition classes). Additionally, the dysexecutive/below average class 

also had the largest likelihood (although relatively small in absolute terms) of transition to the multi-

domain impairment class compared to the other classes. Despite expectations, the average class had the 

lowest likelihood to remain in class from baseline to 12-months (though still high in absolute terms), with 

small probabilities of transition to the amnestic impairment and dysexecutive/below average cognition 

classes. However, participants in the average cognition class were more likely to remain within class from 

12- to 24-months, with a small chance of transition to the amnestic impairment class. Inclusion of a 

second-order effect had minimal impact on the transition probabilities, an indication of little direct lasting 

effect of baseline class membership on 24-month class membership.  

Regarding the effect of covariates on transition probabilities, poor functional ability and AD-CSF 

biomarkers appeared to have the largest influence on the likelihood of transition. Presence or absence of 

the APOE e4 allele made little impact in the multi-domain impairment, amnestic impairment, and average 

cognition classes. However, the dysexecutive/below average cognition class had a slightly higher 

likelihood of transition to the amnestic class from 12- to 24-months in participants that were APOE e4-

positive. As anticipated, AD-CSF biomarker positivity and poor functional ability had little impact on the 

transition probabilities of the multi-domain class participants, who continued to remain most likely to stay 
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in their class over time. However, AD-CSF biomarker negativity as well as intact functional ability did 

increase the likelihood of transition to the dysexecutive/below average cognition class for several time 

points. A similar pattern was observed for A/T/N classification; in the presence of A+/T+/N+ participants in 

the multi-domain impairment class remained within their class. However, with two or fewer positivities in 

the A/T/N scheme, there were greater transition probabilities from the multi-domain impairment to the 

amnestic impairment and dysexecutive/below average cognition classes.  

 As predicted, poor functional ability in the amnestic impairment class modestly increased the 

likelihood of transition to the multi-domain impairment class from baseline to 12-months. However, 

contrary to expectations AD-positivity on CSF biomarkers had little impact on the transition probabilities of 

the amnestic to multi-domain impairment class. One possibility for this finding is that these LTA classes 

represent stages of illness progression. Thus, the lack of any intermediate stage of impairment to 

transition to in-between the amnestic and multi-domain subtypes may facilitate participants in the 

amnestic impairment class staying within their class and slowly declining in performance over time rather 

than suddenly transitioning to a profile of mild to moderate impairment across all cognitive domains.  

Poor functional ability increased the likelihood of transition for the dysexecutive/below average 

cognition class to the multi-domain impairment class from baseline to 12-months and to the amnestic 

impairment class from 12- to 24-months. The dysexecutive/below average cognition class also had 

increased probability of transition to the average cognition class with CSF Ab1-42 negativity. Despite small 

variable transition probabilities to the other classes at various time points, there were few other strong 

patterns of transition in the dysexecutive/below average cognition class. Past research conceptualization 

of “non-amnestic” MCI subtypes has indicated that this group may reflect multiple or heterogeneous 

etiologies (Petersen et al., 2004; Winblad et al., 2004), which may contribute to the lack of a clear pattern 

in transition probabilities among these participants.  

There was minimal impact of functional ability on the transition probabilities of the average 

cognition class. A similar pattern emerged with regard to the influence of Ab1-42. However, positivity on 

CSF total tau and pTau181 increased the likelihood of transition for participants in the average cognition 

class to the dysexecutive/below average cognition class. The minimal role Ab1-42 versus the prominent 
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impact of both tau markers on likelihood of transition in this group may be due to several reasons. One 

explanation is that the ordered, sequential progression of neuropathology and neuronal loss in AD that 

has been promulgated by the amyloid cascade hypothesis (Jack et al., 2016) does not accurately capture 

potential differences within AD of the driving neuropathology. Another possibility is that the increased 

transition probabilities within the context of tau for individuals in the average cognition class may reflect 

progression of a non-AD etiology, such as primary age related tauopathy (Crary et al., 2014), that is 

underlying changes in cognitive profiles, although Braak & Del Tredici (2011) counter that medial 

temporal tauopathy typically appears well prior to the emergence of amyloidosis in the developmental 

continuum leading to AD. Regardless, support for agnosticism in the initial appearance of amyloid or tau 

changes may be found in the effect of A/T/N classification on transition probabilities; irrespective of 

positivity specific to Ab1-42 or a tau, positivity on two or more biomarkers demonstrated modest increases 

in likelihood of transition to the amnestic impairment and dysexecutive/below average cognition classes 

across the three time points. This latter ‘tally’ system of biomarker risks concurs with Edmonds et al.’s 

(2015) finding of increasing rates of progression with increasing numbers of biomarker and ‘subtle 

cognitive decline’ positivities. Taken together, AD-risk factor covariates produced unique patterns of 

influence on transition probabilities among the four MCI classes, with modest to large increases in the 

likelihood of moving to another class across 24-months. The findings presented in this dissertation may 

help inform efforts to codify biomarker and cognitive risks in definitional schemes of Alzheimer’s disease 

and related disorders (e.g., see Jack et al., 2018).  

Strengths and Limitations 

Strengths of the current dissertation research include its large sample size, neuropsychological 

representation of several major cognitive domains, use of follow-up data across 24-months to examine 

longitudinal performance, inclusion of CSF AD-biomarkers and APOE e4 genotyping, adaptation of 

psychometrically advanced and well-established standardization methods to generate demographically-

corrected T-scores with embedded practice effects across three time points, use of a robust normal 

control group with complete neuropsychological data over 24-months to generate norms, and creation of 

reliable change classifications between three time points. Additionally, mixture models provide a 
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statistically sophisticated method to classify individuals, with increasing use in the MCI classification 

literature (Hanfelt et al., 2011; Köhler et al., 2013; McGuiness et al., 2015). This dissertation research is 

also among the first to employ latent transition analysis to examine the relationships of empirical 

neuropsychological subtypes in MCI over time. Limitations of the current dissertation include the paucity 

of neuropsychological measures administered across all ADNI phases, the lack of a diverse set of 

visuospatial measures in ADNI, the oversampling of normal control participants with a high levels of 

education and the undersampling of these same participants with low levels of education (<11 years), the 

limited range of performance on a few neuropsychological measures in a normative sample, missing data 

at follow-up time points and possible associations with level of performance on some neuropsychological 

measures, the lack of clear convergence among objective LPA fit indices on a best-fitting model across all 

three time points, and the potential for small cell size in the LTA with the use of certain covariates. 

Additionally, LPA and LTA are unable to answer questions regarding the rate of change over time with 

regard to longitudinal cognitive decline in MCI subtypes.  

Conclusions 

 Since the construct of mild cognitive impairment was introduced in the 1980’s, the definition of 

MCI has evolved over time from its early conceptual framework put forth by Petersen and colleagues  

(Petersen et al., 1999; Petersen, 2004; Winblad et al., 2004) to the current diagnostic criteria (Albert et 

al., 2011) that better reflect the cognitive and neuropathological heterogeneity that has been increasingly 

recognized within MCI (Bondi et al., 2014; Clark et al., 2010; Delano-Wood et al., 2009; Edmonds et al., 

2015, 2016, 2018; Eppig et al.; 2017, Libon et al., 2010; Hanfelt et al., 2011; McGuiness et al., 2015). 

Despite these improvements, issues remain with the ways in which conventional diagnostic criteria of MCI 

are operationalized in research and clinical practice. The current dissertation research adds to a growing 

body of literature that suggests a sizeable minority of individuals may represent false-positive diagnostic 

errors, the majority of whom continue to remain cognitively normal across 2 years. Additionally, this 

research indicates that at repeated clinical assessments, baseline MCI participants are most likely to re-

produce a similar cognitive profile over time that is reflective of their initial neuropsychological MCI 

subtype. However, AD-CSF biomarkers and functional ability have variable effects on the likelihood of 
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transition over time depending on the MCI subtype. Thoughtful incorporation of these AD risk factors into 

baseline clinical evaluations in the future may help clinicians better understand the probability of 

observing a change in an individual’s pattern of performance at future evaluations. Taken together, 

results of this dissertation research challenge the empirical validity of the conventional MCI classification 

system and advocate for the comprehensive neuropsychological assessment and actuarial approaches in 

the clinical and research diagnosis of MCI to improve classification, associations with AD biomarkers, and 

longitudinal outcomes (Bondi et al., 2014). Future research should examine the impact of cognitively 

normal “false-positives” on the attenuation of effect sizes in research studies and clinical trials, investigate 

the impact of neuroimaging markers of cortical thickness and AD-positive PET scans on transition 

probabilities, and model emergent MCI subtypes identified via actuarial neuropsychological methods that 

may improve diagnostic accuracy with latent mixture models. 

 Study 1, in part, is a reprint of the material as it appears in the Journal of the International 

Neuropsychological Society, (2017), 23(7), 564-576. Eppig, Joel S.; Edmonds, Emily C.; Campbell, 

Laura; Sanderson-Cimino, Mark; Delano-Wood, Lisa; and Bondi, Mark W. for the Alzheimer’s Disease 

Neuroimaging Initiative, Cambridge University Press. The dissertation author was the primary investigator 

and author of this paper. 
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