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The quantum alternating operator ansatz (QAOA) is a prominent example of variational quantum
algorithms. We propose a generalized QAOA called CD-QAOA, which is inspired by the counterdiabatic
driving procedure, designed for quantum many-body systems and optimized using a reinforcement learning
(RL) approach. The resulting hybrid control algorithm proves versatile in preparing the ground state of
quantum-chaotic many-body spin chains by minimizing the energy. We show that using terms occurring in
the adiabatic gauge potential as generators of additional control unitaries, it is possible to achieve fast high-
fidelity many-body control away from the adiabatic regime. While each unitary retains the conventional
QAOA-intrinsic continuous control degree of freedom such as the time duration, we consider the order of
the multiple available unitaries appearing in the control sequence as an additional discrete optimization
problem. Endowing the policy gradient algorithm with an autoregressive deep learning architecture to
capture causality, we train the RL agent to construct optimal sequences of unitaries. The algorithm has no
access to the quantum state, and we find that the protocol learned on small systems may generalize to larger
systems. By scanning a range of protocol durations, we present numerical evidence for a finite quantum
speed limit in the nonintegrable mixed-field spin-1=2 Ising and Lipkin-Meshkov-Glick models, and for the
suitability to prepare ground states of the spin-1 Heisenberg chain in the long-range and topologically
ordered parameter regimes. This work paves the way to incorporate recent success from deep learning for
the purpose of quantum many-body control.

DOI: 10.1103/PhysRevX.11.031070 Subject Areas: Quantum Physics

I. INTRODUCTION

The ability to prepare a quantum many-body system in
its ground state is an important milestone in the quest for
understanding and identifying novel collective quantum
phenomena. The degree to which ground states can be
confidently prepared in present-day quantum simulators
delineates the limits of our capabilities to investigate the
properties of new materials or molecules, and to propose
innovative technological applications based on quantum
effects, such as high-temperature superconductors and

superfluids, magnetic field sensors, topological quantum
computers, or synthetic molecules.
Quantum simulators—such as ultracold and Rydberg

atoms [1,2], trapped ions [3–6], nitrogen vacancy centers
[7–9], and superconducting qubits [6,10]—all require the
development of state preparation schemes via real-time
dynamical processes. Despite their high level of control-
lability, finding short protocols to prepare strongly corre-
lated ground states under platform-specific constraints is a
challenging problem in AMO-based quantum simulation
platforms because of the exponentially large Hilbert space
dimensions of quantum many-body systems. On this
background, speed-efficient protocols also become pro-
gressively more important for near-term quantum comput-
ing devices [11], where simulation errors grow with the
protocol duration due to imperfections in the implementa-
tion of the basic gate operations.
Developing versatile methods for ground-state prepara-

tion will enable quantum simulators to investigate hitherto
unexplored quantum phases of matter and determine the
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behavior of order parameters, correlation lengths, and
critical exponents. Theoretically, although an exact math-
ematical expression for the ground state might be known in
some models, it remains largely unclear how to prepare it in
a unitary dynamical process. In generic models, the lack of
closed-form analytical solutions motivates the use of
numerical algorithms. Prominent examples for quantum
state preparation include established quantum control
algorithms, such as GRAPE [12] and CRAB [13], and
variational quantum eigensolvers (VQE) [14], such as the
quantum alternating operator ansatz (QAOA) [15,16].
In this study, we present a novel hybrid reinforcement

learning (RL)/optimal control algorithm based on an
autoregressive deep learning architecture. We improve
the current state of the art for digital quantum control
techniques by enhancing the capabilities to find optimal
protocols that prepare the ground state of quantum many-
body systems. The emerging versatile algorithm combines
discrete and continuous control parameters to achieve
maximum flexibility in its applicability to a number of
different models.
To cope with the complexity of preparing ordered states

in quantum many-body systems, we introduce a novel
ansatz inspired by variational gauge potentials and counter-
diabatic (CD) driving [17–20]. This approach allows us to
excite the system away from equilibrium in a controllable
manner to find short high-fidelity protocols away from the
adiabatic regime. We demonstrate that combining features
of CD driving with the digital simulation character of
conventional QAOA yields superior performance over a
wide range of protocol durations and physical models.
Compared to the standard counterdiabatic driving algo-
rithms, CD-QAOA represents a more flexible ansatz, which
allows us to take into account (i) experimental constraints,
such as drift terms that cannot be switched off, (ii) control
degrees of freedom not present in CD driving, and (iii) the
fact that CD-QAOA is not tied to a drive protocol that obeys
specific boundary conditions (such as vanishing protocol
speed). Unlike continuous CD driving, CD-QAOA offers a
simple and easy-to-apply variational ansatz without refer-
ence to the exact ground state of the system, paving the way
for versatile digital quantum control.
In particular, our RL agent constructs unitary protocols

that transfer the population into the ground state of three
nonintegrable spin models (spin-1=2 and spin-1 mixed-
field Ising chains, and the anisotropic spin-1 Heisenberg
chain), which feature long-range and topological order, and
the integrable Lipkin-Meshkov-Glick (LMG) model, which
allows us to present simulations for a large number of
particles. We show numerical evidence for the existence of
a finite quantum speed limit in the nonintegrable mixed-
field spin-1=2 Ising model: An almost perfect system-size
scaling indicates that this behavior persists in the thermo-
dynamic limit. Our RL agent has no access to unmeasur-
able quantum states that grow exponentially with the

number of degrees of freedom in the system: this allows
the protocols we find to generalize across a number of
system sizes (for the spin-1=2 mixed-field Ising model),
opening up the door to apply ideas of transfer learning to
quantum many-body control. Finally, we demonstrate that
CD-QAOA has direct practical implications in digital
quantum control: It leads to much shorter circuit depths
while simultaneously improving the fidelity of the prepared
state, which can be utilized to reduce detrimental errors in
modern quantum computers.

II. GENERALIZED CONTINUOUS-DISCRETE
QUANTUM ALTERNATING OPERATOR ANSATZ

To prepare many-body quantum states, we seek a unitary
process U, which takes the system from a given initial state
jψ ii to the ground state jψGSi of the Hamiltonian H (which
we call the target state jψ�i). Typically, Hamiltonians can
be decomposed as a sum of two noncommuting parts
H ¼ H1 þH2, e.g., the kinetic and interaction energy. We
want to construct

Uðfαjgqj¼1; τÞ ¼
Yq
j¼1

Uðαj; τjÞ ð1Þ

from a sequence τ of q consecutive unitaries (or their
generators) τj chosen from a set A, with τj ≠ τjþ1. Each
Uðαj; τjÞ is parametrized by a continuous degree of
freedom αj (e.g., time or rotation angle), i.e.,
Uðαj; τjÞ ¼ expð−iαjτjÞ. We formulate state preparation
as an optimization problem, which consists of determining
(i) the sequence τ and (ii) the values of the variational
parameters αj, such that Ujψ ii ≈ jψGSi.
Our goal is to prepare the ground state of a Hamiltonian

H, without having access to the ground state itself.
Therefore, we use energy as a cost function

Eðfαjgqj¼1; τÞ ¼ hψ ijU†ðfαjgqj¼1; τÞHUðfαjgqj¼1; τÞjψ ii;
ð2Þ

or energy density E=N, which has a well-behaved limit
when increasing the number of particles N [21]. We denote
the ground-state energy by EGS ¼ hψGSjHjψGSi.
Note that conventional QAOA is recovered as a special

case where one only considers two unitaries
Uj ¼ Uðαj; HjÞ ¼ expð−iαjHjÞ, j ¼ 1; 2, and τ is one
of the two alternating sequences. Whenever nested com-
mutators ofHj span the entire Lie algebra, which generates
transport on the complex projective space associated with
the Hilbert space H of the system, applying QAOA is
already enough to prepare any state, provided that the
underlying circuit depth q is sufficiently large, and the
optimal αj can be found [22]. While true in theory, this is
often impractical since (i) it requires access to, in principle,
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unbounded durations, (ii) it increases the number of
optimization parameters αj, and—with it—the probability
to get stuck in a local minimum of the control landscape,
and (iii) the condition that nested commutators of Hj span
the entire Lie algebra is generally not satisfied for the Hj’s
of interest in quantum many-body physics due to, e.g.,
symmetry constraints.
The generalized QAOA ansatz [Eq. (1)] allows us to

utilize a larger set of unitaries A to construct the optimal
sequence and to reduce the circuit depth q. Inspired by CD
driving, we find that a particularly suitable choice in the
context of quantum many-body state manipulation is given
by the operators in the adiabatic gauge potential series
(Sec. III). Therefore, we call the resulting algorithm CD-
QAOA. A different ansatz using more than two unitaries
was considered in Ref. [23].
Compared to conventional QAOA, CD-QAOA introdu-

ces a discrete high-level optimization to find the optimal
protocol sequence τ. The combined optimization landscape
can be particularly difficult to navigate because of the
existence of so-called barren plateaus where exponentially
many directions have vanishing gradients [24–27].
Additionally, the total number of all allowed protocol
sequences, jAjðjAj − 1Þq−1 [28], scales exponentially with
the number of unitaries q and presents a challenging
discrete combinatorial optimization problem per se; indeed,
state preparation, formulated as optimization, can feature a
glassy landscape [29,30] (Appendix D). However, over-
coming these potential difficulties is associated with a
potential gain: CD-QAOA allows us to retain the flexibility
offered by continuous optimization while increasing the
number of independent discrete control degrees of freedom
to jAj; this enables us to reach larger parts of the Hilbert
space in shorter durations, and with a smaller circuit depth,
as compared to conventional QAOA.
Thus, we formulate ground-state preparation as a two-

level optimization scheme [31]. (1) Low-level optimization:
Given a fixed sequence τ, we find the optimal values of αj
using a continuous optimization solver, e.g., sequential
least squares programming (SLSQP) [33] (Appendix B). To
cope with the associated rugged optimization landscape
(Appendix D), we run multiple realizations of random
initial conditions and postselect the values that yield
minimum energy. This continuous optimization problem
is also present in conventional QAOA. (2) High-level
optimization: In addition to the low-level optimization,
we also perform a discrete optimization for the sequence τ
itself to determine the optimal order in which unitaries from
the set A should occur. To tackle this combinatorial
problem, we formulate the high-level optimization as a
RL problem. We learn the optimal protocol using proximal
policy optimization (PPO), a variant of policy gradient. The
policy is parametrized by a deep autoregressive network,
which allows us to choose the control unitaries Uðαj; τjÞ

sequentially. In practice, we sample a batch of sequences
from the policy, evaluate the energy of each sequence in the
low-level optimization, and apply policy gradient to update
the parameters of the policy. This two-level optimization
procedure is repeated in a number of training episodes until
convergence (Appendix A).

III. VARIATIONAL STATE PREPARATION
INSPIRED BY COUNTERDIABATIC DRIVING

A natural question arises as to how to choose the setA of
unitaries for the generalized discrete-continuous QAOA
ansatz. One possibility is to consider a set of universal
elementary quantum gates, e.g., in the context of a quantum
computer [34,35]; in this case, αj are angles of rotation. We
leave this exciting possibility for a future study and focus
here on many-body ground-state preparation instead.
The complexity of many-body systems motivates the use

of a physics-informed approach to defining the control
unitaries in A. Suppose we initialize the system in the
ground state of the parent HamiltonianHðλ ¼ 0Þ; we target
the ground state of Hðλ ¼ 1Þ, seeking the functional form
of a time-dependent protocol λðtÞ. If the instantaneous
ground state of HðλÞ remains gapped during the evolution,
the adiabatic theorem guarantees the existence of a solution
λðtÞ, t ∈ ½0; T�, provided T is large compared to the
smallest inverse gap along the adiabatic trajectory.
However, when the gap is known to close (e.g., across a
phase transition), or when the state population transfer has
to be done quickly, adiabatic state preparation fails.
Compared to the adiabatic paradigm, gauge potentials

provide additional control directions in Hilbert space,
which enable paths that nonadiabatically lead to the target
state in a short time. In many-body systems, it is not known,
in general, how to determine the exact gauge potential
required for CD driving. However, it is possible to define
variational approximations [36,37] using an operator-
valued series expansion (Appendix E) similar to a
Schrieffer-Wolff transformation [38], or shortcuts to adia-
baticity methods [35,39]. Nonetheless, recent numerical
simulations suggest that the exact gauge potential in
generic many-body systems is a nonlocal operator
[36,40] that renders the series expansion asymptotic.
For these reasons, here we consider the constituent terms

to every order of the variational gauge potential series, Hj,
independently, and use them to generate the set of unitaries
A ¼ fe−iαjHjg for CD-QAOA [41]. We emphasize that our
CD-QAOA ansatz is not designed to approximate the gauge
potential itself, as opposed to Ref. [42], yet it yields similar
benefits with respect to preparing the target state. In Sec. V,
we directly compare our approach with the variational
gauge potential ansatz from Ref. [36].
Since CD-QAOA is a generalization of QAOA aimed to

be useful in practice, we need to ensure the accessibility of
the control terms Hj. Because they appear in the first few
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orders of the gauge potential series, Hj are (sums of) local
many-body operators (cf. Appendix E). Thus, in principle,
there is no physical obstruction to emulate them in the lab,
although this depends on the details of the experimental
platform (especially for the interaction terms). Additionally,
in the context of many-body systems where energy is
extensive, in order to guarantee that we do not tap into a
source of infinite energy, we constrain the norm of the
generators αjHj: We view αj ≥ 0 as time durations and fixPq

j¼1 αj ¼ T, with T the total protocol duration. This
approach keeps αj on the same order of magnitude as the
coupling constants in the parent Hamiltonian whose ground
state we want to prepare.

IV. MANY-BODY GROUND-STATE
PREPARATION

We consider four nonintegrable many-body systems of
increasing complexity: the spin-1=2 and spin-1 mixed-
field Ising models, the spin-1 Heisenberg model, and the
integrable LMG model, where a large number of degrees
of freedom is accessible in a classical simulation. The goal
of the RL agent is to prepare the ordered ground states,
starting from a product state. To generate training data, we
numerically compute the exact time evolution of the
system. We apply CD-QAOA using a set of unitaries
built from the terms in the series expansion for the
variational gauge potential. To determine the allowed
terms in the gauge potential series, cf. Table I (lower
group), we consider the minimal set of symmetries shared
by the Hamiltonian and the initial and target states
(Appendix E).

A. Mixed-field spin-1=2 Ising chain

First, consider the antiferromagnetic mixed-field spin-
1=2 Ising chain of N lattice sites,

H ¼ H1 þH2;

H1 ¼
XN
j¼1

JSzjþ1S
z
j þ hzS

z
j; H2 ¼

XN
j¼1

hxSxj ; ð3Þ

where ½Sαi ; Sβj � ¼ δijε
αβγSγj are the spin-1=2 operators. We

use periodic boundary conditions and work in the zero
momentum sector of positive parity. In the following, J ¼ 1
sets the energy unit, and hz=J ¼ 0.809 and hx=J ¼ 0.9045.
We initialize the system in the z-polarized product state
jψ ii ¼ j↑ � � �↑i, and we want to prepare the ground state of
H in a short time T, i.e., away from the adiabatic regime.
We verify that similar results can be obtained starting
from j↓ � � �↓i.
To acquire an intuitive understanding of the advantages

brought about by the gauge potential ansatz, consider first
the noninteracting system at J ¼ 0, for which the control
problem reduces to a single spin. Both the initial and target
states lie in the xz plane of the Bloch sphere, and hence, the
shortest unit-fidelity protocol generates a rotation about the
y axis. In conventional QAOA, one would construct a y
rotation out of the X and Z terms (cf. Table I) present in the
Hamiltonian. For a single spin, this construction is always
possible because of the Euler angle representation of
SU(2), but for the interacting spin chain, this is no longer
the case. The role of the gauge potential Y is to “unlock”
precisely this geodesic in parameter space and make it
accessible as a dynamical process. Thus, we can prepare the
target state faster, compared to the original X, Z control
setup. In the language of variational optimization, an
accessible Y term includes the shortest-distance protocol
into the variational manifold, and the RL agent easily finds
the exact solution (Appendix F 1).
For the interacting system, J > 0, applying conventional

QAOA using the two gates Uj ¼ e−iαjHj , withH1 ¼ ZjZ þ
Z and H2 ¼ X, is straightforward, but it does not yield a
high-fidelity protocol [Fig. 1 (blue squares)]. It was
recently reported that much better energies can be obtained
using a three-step QAOA, which consists of the three terms
in the Hamiltonian (3), ZjZ, X, and Z, applied in a fixed
order [43]. Invoking, again, a Euler-angles argument
provides an explanation: The X and Z terms effectively
generate the Y gauge potential term.
In stark contrast to conventional QAOA, adding just the

zero-order term H3 ¼ Y from the gauge potential series
(Appendix E 3), we find that CD-QAOA already gives a
significantly improved protocol; this is achieved by the
high-level discrete optimization, which selects the order of
the operators in the sequence. However, we can do better:
Since jψ ii is a product state while jψ�i is not, and because

TABLE I. Shorthand notation for the generators Hj used to

construct the set of unitaries A ¼ fe−iαjHjgjAj
j¼1 in CD-QAOA.

The j indicates operators acting on neighboring sites. Terms from
the variational gauge potential series are shown in the lower
group (cf. Appendix E for the derivation).

Shorthand notation Spin operator Hj

X
P

i S
x
i

Z
P

i S
z
i

ZjZ P
i S

z
i S

z
iþ1

ZjZ þ Z
P

i JS
z
i S

z
iþ1 þ hzS

z
i

Y
P

i S
y
i

XY
P

i S
x
i S

y
i þ Syi S

x
i

YZ
P

i S
y
i S

z
i þ Szi S

y
i

XjY P
i S

x
i S

y
iþ1 þ Syi S

x
iþ1

YjZ P
i S

y
i S

z
iþ1 þ Szi S

y
iþ1

XjY − XY
P

i½Sxiþ1 − aSxi �Syi þ ½Syiþ1 − aSyi �Sxi
YjZ − YZ

P
i½Sziþ1 − bSzi �Syi þ ½Syiþ1 − bSyi �Szi

X̂Y ð1=NÞPi;j S
x
i S

y
j þ Syi S

x
j

ẐY ð1=NÞPi;j½Szi þ ðI=2Þ�Syj þ Syi ½Szj þ ðI=2Þ�
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H3 is a sum of single-particle terms, in order to create the
target many-body correlations using a fast dynamical
process, we also include the two-body first-order gauge
potential termsH4 ¼ XjY andH5 ¼ YjZ, which results in a
nonadiabatic evolution that prepares the interacting ground
state to an excellent precision [Fig. 1 (red diamonds)].
In Ref. [44], it was shown that, in the integrable limit

hz ¼ 0, one can prepare the ground state of the system at
the critical point using a circuit of depth q ¼ 2N with
conventional QAOA. Albeit for the specific initial and
target states chosen, we find that it only takes CD-QAOA a
depth of q ¼ 3 to reach the target ground state, independent
of the system size N [45]. This result, though model
dependent, may come as a surprise at first sight, given
that the mixed-field Ising chain is a quantum chaotic system
without a closed-form solution, which makes it susceptible
to heating away from the adiabatic limit.
Our data also reveal a finite many-body QSL at

TQSL ≈ 4.5. Importantly, this QSL appears insensitive to
the system size to a very good approximation (Fig. 2), and
we expect it to persist in the thermodynamic limit. The
absence of a finite QSL in conventional QAOA in the
mixed-field Ising chain suggests that the observation of a
QSL using CD-QAOA depends on the specific set of
unitaries related to the variational gauge potential, show-
casing the utility of our ansatz for many-body control.
Remarkably, we find an almost perfect system-size collapse

of the target state energy-density curves as a function of the
total protocol duration T. In Sec. VI, we explore this feature
and demonstrate the ability of the RL agent to learn on
small system sizes and, subsequently, generalize its knowl-
edge to control bigger systems with exponentially larger
Hilbert spaces.
CD-QAOA performs successfully on the nonintegrable

spin-1=2mixed-field Ising chain, for a circuit depth as short
as q ¼ 3, which shows an advantage of our ansatz when
compared to conventional QAOA. However, the small size
of the sequence space, jAjðjAj − 1Þq−1 ¼ 80 at jAj ¼ 5,
poses a natural question regarding the necessity of using
sophisticated search algorithms, such as RL, to find the
control sequence. We now show that this is a peculiarity of
the physical system, as we turn our attention to a larger
sequence space.

B. Heisenberg spin-1 chain

The eight-dimensional spin-1 group SU(3) provides a
significantly larger space of gauge potential terms to build the
optimal protocol from. We consider a total of jAj ¼ 9
unitaries: Five are generated by the imaginary-valued terms
in the gauge potential series Y; XY; YZ; XjY; YjZ
(cf. Table. I), plus the two real-valued QAOA operators
H1 and H2, which build the Hamiltonian H ¼ H1 þH2

whose ground state we target [Eq. (4)], and the two real-
valued Hamiltonian terms XjX and Z. At q ¼ 18, this
amounts to jAjðjAj − 1Þq−1 ≈ 1016 possible sequences.
The exponential scaling of the sequence space size with q
renders applying exhaustive search algorithms infeasible and
justifies the use of sophisticated algorithms, such as RL.

FIG. 2. Spin-1=2 Ising model: energy minimization and the
corresponding mean absolute error (inset, log scale) against
protocol duration T for different system sizes using CD-QAOA
with circuit depths q ¼ 3. System-size scaling of the variational
energy density suggests the results hold for larger systems. For
the number of spins N ¼ 12, 14, 16, 18, the Hilbert space sizes
are dimðHÞ ¼ 224, 687, 2250, 7685, respectively. The model
parameters are the same as in Fig. 1.

FIG. 1. Spin-1=2 Ising model: energy minimization and the
corresponding many-body fidelity (inset) against protocol dura-
tion T obtained using conventional QAOA (blue squares) and
CD-QAOA (red diamonds) with circuit depths p ¼ q=2 ¼ 2 and
q ¼ 3, respectively. The dotted vertical line marks the quantum
speed limit TQSL. CD-QAOA outperforms conventional QAOA.
The initial and target states are jψ ii ¼ j↑ � � �↑i and jψ�i ¼
jψGSðHÞi for hz=J ¼ 0.809 and hx=J ¼ 0.9045. The alternating
unitaries for conventional QAOA are generated by
AQAOA ¼ fZjZ þ Z; Xg[cf. Eq. (3)]; for CD-QAOA, we extend
this set using adiabatic gauge potential terms to
ACD−QAOA ¼ fZjZ þ Z; X;Y; XjY; YjZg. The cardinality of the
CD-QAOA sequence space is jAjðjAj − 1Þq−1 ¼ 80. The number
of spins is N ¼ 18, with a Hilbert space size of dimðHÞ ¼ 7685.
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The (anisotropic) spin-1 Heisenberg model reads as

H ¼ H1 þH2;

H1 ¼ J
XN
j¼1

ðSxjþ1S
x
j þ Syjþ1S

y
jÞ; H2 ¼ Δ

XN
j¼1

Szjþ1S
z
j;

ð4Þ

with the spin exchange coupling J ¼ 1 set as the energy
unit, and Δ the anisotropy parameter; we use periodic
boundary conditions and work in the ground-state sector of
zero momentum and positive parity, defined by the pro-
jector P. In the thermodynamic limit, this model features a
rich ground-state phase diagram, including ferromagnetic
(FM, Δ=J ≪ −1), XY (−1≲ Δ=J ≲ 0), topological/
Haldane (0≲ Δ=J ≲ 1), and antiferromagnetic (AFM,
Δ=J ≫ 1) order [46], with phase transitions belonging to
different universality classes [47–49]. While the FM, XY,
and AFM states are characterized by a local order param-
eter, the gapped Haldane state has topological order not
captured by Landau-Ginzburg theory. We consider the
AFM initial state jψ ii ¼ Pj↑↓↑↓ � � �i and target the
ground states of Eq. (4) deep in the FM, XY, and
Haldane phases, where system-size effects are the smallest.
Because CD-QAOA is not restricted to adiabatic evolution,
the conventional paradigm of a closing spectral gap when
transferring the population between two states displaying
different order does not apply in our nonequilibrium setup,
even in the thermodynamic limit.
Figure 3 shows a comparison between conventional

QAOA with an alternating sequence between the
Hamiltonians H1 and H2, and CD-QAOA. We find that
CD-QAOA shows superior performance for all three ordered
ground states: While the gain over conventional QAOA for
the Haldane state is already a faster protocol, we clearly see
how the gauge potential terms can prove essential for
reaching the ground state in the FM and XY phases within
the available durations. Note that the FM target state is
doubly degenerate, and minimizing the energy, it ends up in
an arbitrary superposition within the ground-state manifold.
Interestingly, we do not identify any distinction between
preparing states with long-range and topological order,
presumably because of the small system sizes that we reach
in our classical simulation.
TheCD-QAOAprotocol sequences found by theRLagent

have peculiar structures (Appendix F 2): Some of them
closely resemble the alternating sequence of conventional
QAOA, with the notable difference of applying additional
unitaries to rotate the state to a suitable basis, either at the
beginning or at the end of the sequence. While this case is
formally equivalent to starting from or targeting a rotated
state, the rotations use two-body operators; hence, the
resulting basis does not coincide with any of the distin-
guished Sx, Sy, and Sz directions. Variationally determining
such effective bases demonstrates yet another advantage

offered by the CD-QAOA. Another kind of sequence
encountered contains two different sets of alternating uni-
taries, similar to two independent QAOA concatenated one
after the other. Finally, for those values of T where CD-
QAOA and QAOA have the same performance, we also
observe that CD-QAOA finds precisely theQAOAsequence.
In this case, conventional QAOA already generates the
shortest path, and the extra gauge potential terms, to second
order, do not give any advantage; a better performance might
be expected when the three- and four-body higher-order
terms from the gauge potential series are included.
Similar to other optimal control algorithms, RL agents

typically find local minima of the optimization landscape;
thus, there is no guarantee that the CD-QAOA protocols
provide global optimal solutions. However, these sequen-
ces can serve as an inspiration to build future variational
ansatzes tailored for many-body systems.

C. Lipkin-Meshkov-Glick model

The nonintegrable character of the previously discussed
models precludes us from applying CD-QAOAwith a large
number of degrees of freedom since reliably simulating
their dynamics on a classical computer is prohibitively

FIG. 3. Heisenberg spin-1 chain: energy minimization against
protocol duration T using conventional QAOA (dashed lines) and
CD-QAOA (solid lines) for three different states. We start from
the AFM state jψ ii ¼ Pj↑↓↑↓ � � �i and target three different
parameter regimes, corresponding to the FM (Δ=J ¼ −2.0), XY
(Δ=J ¼ −0.5), and Haldane (Δ=J ¼ 0.5) states, respectively.
CD-QAOA outperforms conventional QAOA (p ¼ q=2), more
notably in the FM and XY targets where it allows us to reach close
to the target state using a short protocol duration. The empty
symbols mark the duration at which we show the evolution of the
system in Fig. 20. The alternating unitaries for conventional
QAOA are generated by AQAOA ¼ fH1; H2g [cf. Eq. (4)]; for
CD-QAOA, we extend this set using adiabatic gauge potential
terms to ACD−QAOA ¼ fH1; H2; Z; XjX;Y; XY; YZ; XjY − XY;
YjZ − YZg. The circuit depths are q ¼ 28 (Δ=J ¼ −2.0), q ¼
18 (Δ=J ¼ −0.5), and q ¼ 18 (Δ=J ¼ 0.5). The cardinality of
the CD-QAOA sequence space is jAjðjAj − 1Þq−1 ≈ 1016 at
q ¼ 18. The system size is N ¼ 8, where dimðHÞ ¼ 498.
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expensive. In order to study the behavior of CD-QAOA in a
large enough system that also features a quantum phase
transition, we now turn our attention to an exactly solvable
many-body system.
The LMG Hamiltonian [50] describes spin-1=2 particles

on a fully connected graph of N sites:

H ¼ H1 þ hH2;

H1 ¼ −
J
N

XN
i;j¼1

Sxi S
x
j ; H2 ¼

XN
j¼1

�
Szj þ

1

2

�
; ð5Þ

where J is the uniform interaction strength and h the
external magnetic field. In the thermodynamic limit,
N → ∞, the system undergoes a quantum phase transition
at hc=J ¼ 1 between a ferromagnetic (FM) ground state in
the x-direction for h=J ≪ 1, and a paramagnetic ground
state for h=J ≫ 1. The spectral gap ΔLMG between the
ground state and the excited state closes as ΔLMGðhcÞ ∼
N−1=3 at the critical point [51]. The LMG model is within
the scope of present-day experiments with ultracold atoms
[52,53]; therefore, developing fast ground-state preparation
techniques can prove useful in practice.
Defining the total spin operators as Sα ¼ P

N
j¼1 S

α
j , the

Hamiltonian takes the formH¼−J=NðSxÞ2þhðSzþN=2Þ.
Hence, the total spin is conserved, ½H;S · S� ¼ 0, and the
ground-state symmetry sector contains a total of N þ 1
states, i.e., dimðHÞ ¼ N þ 1, which allows us to simulate
large system sizes.
Our goal is, starting from the z-polarized paramagnetic

initial state, jψ ii ¼ j↓↓ � � �i, to target an arbitrary super-
position in the doubly degenerate FM ground-state mani-
fold at fixed values of the external field h=J, which controls
the magnitude of the transversal fluctuations on top of the
ferromagnetic order. Figure 4 shows that the overlap of the
initial and target states is vanishingly small in the FM
phase, and it quickly approaches unity across the critical
point into the paramagnetic phase. Therefore, we choose to
prepare ground states in the FM phase, where the problem
naturally appears more difficult.
Figure 5 shows a comparison between CD-QAOA and

QAOA on the LMG model at h=J ¼ 0.5 for N ¼ 501 spins
(more h=J values are shown in Appendix F 3). First, note
the superior performance of CD-QAOA, as compared to
conventional QAOA in a range or short durations T in the
nonadiabatic driving regime. We applied CD-QAOA with
two different sets of generators, A ¼ fH1; H2;Yg and
A0 ¼ fH1; H2;Y; X̂Y; ẐYg (cf. Table I), and found that,
for the LMG model, the higher-order two-body terms
X̂Y; ẐY do not offer any advantage deep in the FM phase.
This observation can be understood as follows: To turn the
z-polarized initial state into the x ferromagnet, it is
sufficient to perform a rotation about the y axis, which
coincides precisely with the single-body term in the gauge
potential series expansion (cf. Appendix E 1 c). Indeed, for

all protocol durations smaller than the quantum speed limit,
T < TQSL, the RL agent finds that the optimal protocol
consists of a single Y rotation, while for T ≥ TQSL, the
optimal protocol is degenerate and typically involves the
various terms from A. This finding allows us to extract
the QSL as a function of the external field h, cf. Fig. 6.

FIG. 4. LMG model: overlap between the initial state jψ ii and
the target state jψ�i, which is vanishingly small in the ferro-
magnetic phase h=J ≪ 1 and motivates the parameter choice for
the target state. In the vicinity of the critical point, the overlap
increases and approaches unity in the limit h=J → ∞. Note that,
in the FM phase, the ground state is doubly degenerate, in which
case the overlap is computed with respect to the ground-state

manifold: jhψ ijψ ð1Þ
� ij2 þ jhψ ijψ ð2Þ

� ij2. In the paramagnetic phase,
the ground state is unique. We use N ¼ 501 spins.

FIG. 5. LMG model: energy minimization against protocol
duration T using conventional QAOA (blue square) and CD-
QAOA (red dashed line, green solid line). We start from the z-
polarized state jψ ii ¼ j↓↓ � � �i and target the ground state of
LMG Hamiltonian (5). CD-QAOA significantly outperforms
conventional QAOA for short durations. The alternating unitaries
for conventional QAOA are generated by AQAOA ¼ fH1; H2g
[cf. Eq. (5)]; for CD-QAOA, we extend this set using adiabatic
gauge potential terms to ACD−QAOA ¼ fH1; H2;Y; X̂Y; ŶZg and
A0

CD−QAOA ¼ fH1; H2;Yg. The external field is h=J ¼ 0.5, the
circuit depth is q ¼ 8, and the system size is N ¼ 501, where the
effective Hilbert dimension dimðHÞ ¼ 502.
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Close to the critical point hc, we observe strong
sensitivity in the best-found protocols to system-size
effects, and a single Y rotation is no longer optimal below
the QSL. Interestingly, at the critical point (and in the
paramagnetic phase), the optimal protocol is given by
QAOA. In this regime, despite the larger set of terms A
we use in CD-QAOA, the RL agent correctly identifies the
sequence of alternating H1 and H2 terms as optimal, which
shows the versatility of CD-QAOA; the algorithm can
always select a smaller effective subspace of actions when
this is advantageous in the parameter regime of interest.

V. COMPARISON WITH COUNTERDIABATIC
DRIVING

To compare and contrast the CD-QAOA with CD and
adiabatic driving [36], consider the driven spin-1 Ising
model [54]:

HðλÞ ¼ λðtÞH1 þH2;

H1 ¼
XN
j¼1

JSzjþ1S
z
j þ hxSxj ; H2 ¼

XN
j¼1

hzS
z
j; ð6Þ

where λðtÞ ¼ sin2ðπt=2TÞ, with t ∈ ½0; T�, is a smooth
protocol satisfying the boundary conditions for CD driving:
λð0Þ ¼ 0, λðTÞ ¼ 1, _λð0Þ ¼ 0 ¼ _λðTÞ. The initial state is
the ground state at t ¼ 0, i.e., jψ ii ¼ j↓ � � �↓i, while the
target state is the ground state of the Ising model at t ¼ T
for hz=J ¼ 0.809 and hx=J ¼ 0.9045. Unlike the setup
in Sec. IVA, adiabatic state preparation following the

protocol λðtÞ suggests using the QAOA generators
AQAOA ¼ fH1; H2g.
Figure 7 shows a comparison between different methods

using the best-found energy density (main figure) and the
corresponding many-body fidelity (inset). Let us focus
on CD-QAOA and QAOA first. As expected, CD-QAOA
(red) performs better for short durations T since it
contains conventional QAOA (red) as an ansatz, i.e.,
AQAOA ⊊ ACD-QAOA.We emphasize that such a performance
is not guaranteed in practice since it is conceivable that the
RL agent gets stuck in a local minimum associated with
lower energy than the QAOA solution (Appendix D), e.g., if
the deep autoregressive network architecture is not expres-
sive enough or if the learning rate schedules are not well
tuned to the problem. Unlike the spin-1=2 Ising model, here
we cannot clearly identify a finite QSL, as the CD-QAOA
energy keeps improving with increasing circuit depth q
(Appendix A).
To construct the counterdiabatic Hamiltonian HCD ≈

HðλÞ þ _λXðfβjgÞ for Eq. (6), we make a variational ansatz
[36] for the gauge potential X and solve for the optimal
parameters βj numerically (Appendix E). We note the
following differences between this approach and

FIG. 6. LMG model: quantum speed limit TQSL as a function of
the transverse field h, for a target state in the ferromagnetic phase.
At h=J ¼ 0, we have TQSL ¼ π=2, which is the angle required to
turn the z-polarized initial state into the x ferromagnet. For finite
h=J, quantum fluctuations in the target ferromagnetic ground
state decrease the angle required to transfer the population from
the initial state, which results in a smaller value of TQSL. The
dashed cyan line is a least-squares fit for small values of h=J,
suggesting the behavior TQSLðhÞ ¼ −h=J þ π=2þOðh2Þ. We
used N ¼ 501 spins.

FIG. 7. Spin-1 Ising model: energy minimization and the
corresponding many-body fidelity (inset) against different pro-
tocol duration T for four different optimization methods—CD-
QAOA (red line), conventional QAOA (blue line), variational
gauge potential (green line), and adiabatic evolution (magenta
line). The empty symbols mark the duration for which the
evolution of physical quantities is shown in Fig. 24. The initial
and target states are jψ ii ¼ j↓ � � �↓i and jψ�i ¼ jψGSðHÞi for
hz=J ¼ 0.809 and hx=J ¼ 0.9045. The alternating unitaries for
conventional QAOA are generated by AQAOA ¼ fH1; H2g
[cf. Eq. (6)]; for CD-QAOA, we extend this set using adiabatic
gauge potential terms to ACD−QAOA ¼ fH1; H2;Y; XY;
YZ; XjY; YjZg. The variational gauge potential in CD driving
uses all five imaginary-valued gauge potentials fY; XY; YZ; XjY;
YjZg. The CD- and adiabatic-driving simulations are both based
on the smooth protocol function λðtÞ ¼ sin2ðπt=2TÞ, with a time-
discretization step Δt ¼ 0.2. The value of q ¼ 20, and the size of
sequence space is jAjðjAj − 1Þq−1 ≈ 1015. The system size is
N ¼ 8, where dimðHÞ ¼ 498.
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CD-QAOA: (i) The variational gauge potential depends on
time t continuously, which requires further discretization
when performing a gate-based implementation; (ii) the
number of variational parameters in the standard variational
gauge potential method is NT jAj, with NT the number of
steps used to discretize the time interval ½0; T� (instead, in
CD-QAOA, we have q variational parameters); and (iii) the
variational gauge potential method does not constrain the
magnitude of the variational coefficients βj, and hence
the time-averaged norm of HCD over the protocol can grow
indefinitely (especially for short durations T, this typically
gives a higher fidelity). By contrast, in CD-QAOA, the
time-averaged norm of the unitary generators αjHj

summed along the sequence is kept bounded via the
constraint

P
j αj ¼ T. Nonetheless, in practice, we find

that these norms are on the same order of magnitude for all
methods considered (Appendix F 4).
As anticipated, Fig. 7 shows that CD driving performs

better than adiabatic driving, and the two agree in the limit
of large T. Moreover, we see explicitly that the CD and
QAOA solutions are far from the adiabatic regime. Not
surprisingly, CD driving outperforms conventional QAOA
for small T, as it can increase the values of the variational
parameters (and, with it, the norm) indefinitely. However,
CD-QAOA consistently outperforms CD driving in the
entire T range; the contrast is especially pronounced in the
many-body fidelity (Fig. 7, inset). CD-QAOAmakes use of
the variational power of QAOA, combining it with physics-
motivated input from CD driving.
Table II shows a comparison with the best-obtained

energies for N ¼ 10 spin-1 particles (qutrits): The superior
performance of CD-QAOA remains despite the exponen-
tially growing Hilbert space size. Reaching significantly
larger system sizes is infeasible with the present-day
computational power: We note that this is a feature of
the quantum system rather than a drawback of CD-QAOA,
cf. discussion on LMG model in Sec. IV C.
We emphasize that CD-QAOA features some important

advantages as compared to CD driving: (1) Because of the
nested commutators in the definition of time-ordered expo-
nentials, the QAOA dynamics can effectively implement

total unitariesUðfαjgqj¼1; τÞ generated by effective nonlocal
operators; therefore, CD-QAOA can, in principle, realize a
nonlocal effective Hamiltonian as an approximation to the
true CD Hamiltonian, thereby overcoming convergence
issues related to operator-valued series expansions.
(2) CD-QAOA lifts the boundary constraint present in
adiabatic and CD driving where the initial and target
Hamiltonians are eigenstates ofHð0Þ andHð1Þ, respectively;
an interesting open question is whether a local effective
Hamiltonian exists, which captures the evolution of the
system in this case. Examining the evolution of the entan-
glement entropy and other local observables induced by the
optimal protocol suggests that this is indeed the case
(Appendix F 4). (3) One can add any control unitary to
the set A, not just terms related to gauge potentials: CD-
QAOA has high flexibility to accommodate experimental
constraints. (4) Determining the variational gauge potential
inCDdriving requires using the exact ground state in order to
minimize the action, which can be a significant drawback
when the ground state is not known or cannot be computed.

VI. TRANSFER LEARNING AND
GENERALIZATION OF THE RL ALGORITHM TO

DIFFERENT SYSTEM SIZES

The scale collapse in the energy density of the spin-1=2
Ising model presents a test bed for the transfer learning
capabilities of RL. In transfer learning, the RL agent learns
to control one physical system and is then used to
manipulate another. In our case, the two systems are given
by the same Ising model at two different system sizes. Note
that transfer learning would not have been possible had we
defined the learning problem using the full quantum states
because the latter are vectors in Hilbert space whose size
grows exponentially with N.
To apply transfer learning, consider first a fixed protocol

duration T. For every fixed system size N, we first train a
different RL agent. Next, we build the set of protocols
across all system sizes (found by these agents) and
determine the number of unique protocols (cf. legend in
Fig. 8). Finally, we apply all unique protocols to all system
sizes available and store the energy densities they result in,
which leaves us with a set of energy-density values for
every fixed T. The error bars in Fig. 8 show the best and the
worst protocols over this set. Observe that, below the QSL,
there are only a few points T where the best control
protocol is the same across all system sizes. Transfer
learning works well, as can be seen by the small error
bars. In this regime, the RL agent generalizes its knowledge
and learns universal features of the protocol, which are
required to control the Ising model. In contrast, for
T > TQSL, there are many more protocols giving approx-
imately similar ground-state energies. While the corre-
sponding energies are similar in value, the agent does not
generalize. Nevertheless, we checked that, in this regime,

TABLE II. Spin-1 Ising model: comparison of the best-ob-
tained energy ratio E=EGS after optimization for four different
optimization methods: CD-QAOA, variational CD driving, con-
ventional QAOA, and adiabatic evolution, at T ¼ 4, 8, 12 for
N ¼ 10 qutrits, where dimðHÞ ¼ 3219. The remaining setup and
parameters are the same as in Fig. 7.

E=EGS½N ¼ 10�
T CD-QAOA CD QAOA Adiabatic

4 0.943837 0.923199 0.79534 0.067807
8 0.961383 0.933067 0.93386 0.438856
12 0.990415 0.942857 0.96275 0.658182
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training on smaller system sizes still provides a useful
pretraining procedure for learning on larger systems.

VII. DISCUSSION AND OUTLOOK

We analyzed many-body ground-state preparation using
unitary evolution in the spin-1=2 Ising model, the spin-1
anisotropic Heisenberg and Ising models, and the fully
connected LMG spin-1=2 model. We introduced the CD-
QAOA: A RL agent optimizes the order of unitaries in the
protocol sequence, generated from terms in the adiabatic
gauge potential series, and obtains short high-fidelity
protocols away from the adiabatic regime. The resulting
algorithm combines the strength of continuous and discrete
optimization into a unified and versatile control framework.
We found that our CD-QAOA ansatz consistently outper-
forms both conventional QAOA and variational CD driving
across different models and protocol durations. An inter-
esting open question is whether one can use CD-QAOA to
find a nonlocal approximation to the variational gauge
potential itself, which is beyond the scope of asymptotic
series expansions. Another straightforward application of
CD-QAOA would be imaginary time evolution [55].
For the nonintegrable spin-1=2 Ising chain, we revealed

the existence of a finite quantum speed limit. Moreover, we
found a remarkable system-size collapse of the energy
curves, suggesting that the sequences found by the agent
hold in the thermodynamic limit; this was corroborated by
numerical experiments on transfer learning, which dem-
onstrate that one can train the agent on one system size
while it generalizes to larger systems. In the Heisenberg
spin-1 system, CD-QAOA allows us to prepare long-range
and topologically ordered ground states, even when the
initial state does not belong to the phase of the target state.

The optimal protocols found by the RL agent contain
nontrivial basis rotations, intertwined with alternating
QAOA-like subsequences, suggesting new ansätze for
more efficient variants of CD-QAOA. Numerical studies
of nonequilibrium quantum many-body systems, in turn,
suffer from limitations related to the exponentially large
dimension of the underlying Hilbert space; future work can
investigate dynamics beyond exact evolution.
Compared to conventional QAOA, using terms from the

variational gauge potential series has higher expressivity,
which results in much shorter, yet better performing,
circuits. This method can be used, e.g., to reduce the
cumulative error in quantum computing devices. However,
gauge potential terms are not always easy to realize in
experiments since they implement imaginary-valued terms
that break time-reversal symmetry; that said, it is often
possible to generate such terms using auxiliary real-valued
operators via a generalization of the Euler angles or by
means of change-of-frame transformations [36]. Moreover,
as we have demonstrated, CD-QAOA admits nongauge
potential terms as building blocks for control sequences,
e.g., universal gate sets. Other experimental constraints,
such as the presence of drift terms, which cannot be
switched off, can also be conveniently incorporated by
redefining the set of unitaries A.
Finally, let us remark that RL provides only one possible

set of algorithms to explore the exponentially large space of
protocol sequences; in practice, one can apply other
discrete optimization techniques, e.g., genetic algorithms
and search algorithms like Monte Carlo tree search.
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performed on Savio3 Condo of Berkeley Research
Computing (BRC).

APPENDIX A: HIGH-LEVEL OPTIMIZATION:
POLICY GRADIENT USING DEEP
AUTOREGRESSIVE NETWORKS

Recently, progress made in machine learning (ML) [58–
61] has raised the question as to how we can harness such
modern advances to improve techniques to manipulate
quantum systems. Examples of ML applications include
model-based optimization [62], differentiable program-
ming [63] and Bayesian inference [64] quantum control,
cavity control [65], designing quantum end-to-end learning
schemes [66], and measurement-based adaptation protocols
[67], as well as applications to quantum error correc-
tion [68,69].
RL algorithms [70,71], such as policy gradient [72–74],

Q-learning [75,76], and AlphaZero [77], have recently
attracted the attention of physicists—in particular, how they
can be combined with physically motivated VQEs for
improved performance. In RL, policy gradient has been
proposed as an alternative optimizer for QAOA, showcas-
ing the robustness of RL-based optimization to both
classical and quantum sources of noise [78]; a related
study applied PPO to prepare the ground state of the
transverse-field Ising model [79]. The QAOA with policy
gradient has been applied to efficiently find optimal
variational parameters for unseen combinatorial problem
instances on a quantum computer [80]; Q-learning was
used to formulate QAOA into a RL framework to solve
difficult combinatorial problems [81] and in the context of
digital quantum simulation [82].
In the following, we introduce the details of the

reinforcement learning algorithm used for the high-level
optimization in this work.

1. Reinforcement learning basics

Reinforcement learning comprises a class of machine
learning algorithms where an agent learns how to solve a
given task through interactions with its environment using a
trial-and-error approach [70]. It is based on a Markov
decision process (MDP) defined by the tuple ðS;A; p; RÞ,
where S andA represent the state and action spaces, p∶S ×
S ×A → ½0; 1� defines the transition dynamics, and R∶S ×
A → R is the reward function that describes the environ-
ment. Let πðajjsjÞ∶A × S → ½0; 1� denote a stochastic
policy that defines the probability distribution of choosing
an action aj ∈ A given the state sj ∈ S. Rolling out the
policy πðajjsjÞ in the environment can also be viewed
as sampling a trajectory τ ∼ Pπð·Þ from the MDP,
where PπðτÞ ¼ p0ðs1Þπða1js1Þpðs2js1; a1Þ � � � πðaqjsqÞ
pðsqþ1jsq; aqÞ is the probability for the trajectory τ to
occur, q sets the episode or trajectory length, and p0 is the
distribution of the initial state; an example of a trajectory is

τ ¼ ðs1; a1;…:; aq; sqþ1Þ. The goal in RL is to find a policy
that maximizes the expected return:

JðθÞ ¼ Eτ∼Pπ

�Xq
j¼1

Rðsj; ajÞ
�
: ðA1Þ

To maximize the expected return JðθÞ, we use policy
gradient—a RL algorithm—which is (i) on-policy (i.e.,
trajectories have to be sampled from the current policy πθ:
π ¼ πθ) and (ii) model-free [i.e., the agent does not need to
have a model for the environment dynamics: pðs0js; aÞ is
assumed to be unknown for the purpose of finding the
optimal policy]. Highly expressive function approximators,
such as deep neural networks, help parametrize the policy
using variational parameters θ. Policy gradient gradually
improves the expected return in a number of iterations (or
training episodes) by increasing the probability for actions
that lead to higher rewards and decreasing the probability
for actions that lead to lower rewards, until it reaches a
(close to) optimal policy.
We mention, in passing, that we use the terms return and

cost function (the latter being the negative of the former)
interchangeably: The goal of the RL agent is thus to
maximize the expected return or to minimize the cost
function.

2. Policy gradient reinforcement learning for quantum
many-body systems

Actions.—To apply the reinforcement learning formal-
ism to quantum control, we identify actions taken at each
time step within a learning episode, selecting unitaries one
at a time within the circuit depth q. Choosing the same
unitary at two consecutive time steps is prohibited because
the same actions can be merged, resulting in a lower
effective circuit depth q − 1. At the initial time step j ¼ 1,
the quantum wave function is given by the initial state jψ ii;
for each intermediate protocol step j, the action aj ¼ Hj is
chosen according to the policy πθ. Note that the RL agent
only selects the generator Hj out of the set of available
actionsA (or, alternatively, which unitary to apply). In other
words, unlike Ref. [78], the RL part of CD-QAOA is not
concerned with finding the corresponding optimal duration
αj; one can think of this low-level continuous optimization as
being part of the environment (cf. Appendix B) [83]. At the
end of the episode, the quantum state is evolved by applying
the entire generated circuit Uðfαjgqj¼1; τÞ to the initial
quantum state jψ ii.
States.—Since the initial state jψ ii is fixed and thus the

quantum state at any time step j is uniquely determined by
the previous actions taken, here we represent the RL state
by concatenating all the previous actions up to step j [85].
One reason for this approach is that, in many-body
quantum systems, the number of components in the
quantum state scales exponentially with the system size
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N, which quickly leads to a computational bottleneck for
the simulation on classical computers. A second advantage
of this choice is that the first layer of the underlying deep
neural network architecture, which parametrizes the policy,
will not depend on the system size N either, which allows
the algorithm to handle a large number of degrees of
freedom. Using the quantum state would not be viable on
quantum computers either because quantum states are
unphysical mathematical constructs that cannot be mea-
sured. Therefore, we can simplify the form of trajectories to
consist of actions only, e.g., τ ¼ ða1; a2;…; aqÞ.
Rewards.—The reward Rj ¼ Rðsj; ajÞ is chosen as the

negative energy density at the end of the episode:

Rj ¼
�
0 if j < q

−Eðfαjgqj¼1; τÞ=N if j ¼ q:

We use energy density since it is an intensive quantity that
has a well-defined limit by increasing the number of
particles N. In all figures, we show the relative energy
E=EGS for clarity (the ground-state energy EGS is typically
negative in our models), but the RL agent is always trained
with the (negative) energy density −E=N. Rewards can also
be other observables or nonobservable quantities, such as
the overlap squared between two quantum states (fidelity)
or the entanglement entropy.
Notice that the reward is sparse: Only at the end of the

episode is the negative energy density given as a reward;
there is no instantaneous reward during the sequence (and
thus we can use the terms reward and total return inter-
changeably). This case is motivated by the quantum nature
of the control problem, where a projective measurement
results in a wave-function collapse.

3. Policy parametrization using an autoregressive
neural network

An essential part of the policy gradient algorithm is the
definition of the policy πθ. It is common to parametrize the
policy with a highly expressive function approximator,
such as a neural network. In our setup, we use a deep
autoregressive network, which has recently been used in
physics applications of learning to generate samples from
free energies in statistical mechanics models [86], and
variational approximators for quantum many-body states
[87]. This architecture is selected to incorporate causality
by factorizing the total probability into a product of
conditional probabilities:

πθða1; a2;…; aqÞ ¼ πθða1Þ
Yq
j¼2

πθðajja1;…; aj−1Þ; ðA2Þ

where the marginal distribution πθða1Þ and the conditional
distribution πθðajja1;…; aj−1Þ are discrete categorical
distributions overA. This kind of parametrization explicitly

tells how the actions taken in the earlier steps of an episode
affect the actions selected later on during the same episode.
Such a causal requirement would not be necessary had we
used the full quantum state, which would make the
dynamics of the environment Markovian. Each of the
conditional probabilities in Eq. (A2) can be modeled
explicitly using the autoregressive neural network archi-
tecture, which naturally allows the policy to depend on all
the previous actions only. The structure of the policy
network is shown in Fig. 9, the sampling of the autore-
gressive policy is depicted in Fig. 10, and the hyper-
parameters of the algorithm (including the number of
parameters) are given in Table III.

4. Training procedure: Proximal policy optimization

In each iteration of the policy gradient algorithm, a batch
of sampled trajectories fτkg ¼ fðak1;…; akqÞgMk¼1 are rolled
out (i.e., sampled) from the current policy, where M is the
batch or sample size. Then, the return RðτkÞ corresponding
to trajectory τk is computed as

RðτkÞ ¼
Xq
j¼1

Rk
j ¼ −Eðfαkjgqj¼1; τ

kÞ=N:

To compute the energies, we use the low-level optimization
to determine the best-estimated values of αj, given a
sequence τ (see Appendix B). To minimize the chance
of getting stuck in a suboptimal local minimum, each
sequence is evaluated multiple times, starting from a
different initial realization for the αj optimizer, and the
best result is selected (Appendix D).
For every iteration, we can define three quantities for a

fixed batch of samples: (i) mean reward (over the current
batch), (ii) max reward (over the current batch), and
(iii) historically best (best-encountered reward over all
the previous iterations). These quantities measure the

FIG. 9. Schematics of CD-QAOAwith an autoregressive policy
network. The ancestral sampling procedure used for training is
displayed in Fig. 10. The details of the network structure and its
training hyperparameters are shown in Table III.
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performance of the learned policy and are shown in Fig. 11.
Figure 12 shows the scaling of these quantities for the
spin-1 Ising chain, as a function of the episode length q.
The performance of CD-QAOA increases because the
action space for a larger value of q always contains, as
a subset, the action space for a smaller q.
In order to improve the policy represented by the

autoregressive network, the RL algorithm interacts with
the quantum environment by querying the reward for
samples from the current policy. Each trajectory is assigned
a reward, once the simulation of the quantum dynamics is
complete (note that the simulation may be more expensive
if evaluated on a quantum computer). Thus, it is advanta-
geous to reduce the sample size needed to learn the policy,
i.e., to improve the sample efficiency.

The vanilla policy gradient method is known for its poor
data efficiency. Thus, we adopt PPO [89], a more robust
and sample-efficient policy-gradient-type algorithm. To be
more specific, we use the following clipped objective
function:

GðθÞ ¼ Eτ∼πθt ½minfρθðτÞAθtðτÞ;
clipðρθðτÞ; 1 − ϵ; 1þ ϵÞAθtðτÞg�: ðA3Þ

Here, τ ¼ ða1; a2;…; aqÞ is the action sequence sampled
from the previous policy πθt (cf. Algorithm 1). Typically,
the policy from the last iteration is chosen to be the old

FIG. 10. Exact sampling algorithm for CD-QAOA with an autoregressive policy network, where faded nodes and connections
represent unused nodes and connections. The action at each time step is generated sequentially by computing its respective conditional
categorical distribution and sampling according to that. Notice that only a single column is processed at each time step, and in order to
sample a complete sequence of actions in an episode, one needs to make a forward pass through the network architecture q times.

TABLE III. Hyperparameter values for training the autoregres-
sive deep learning model. In the case of jACD−QAOAj ¼ 9; q ¼ 18
[cf. Eq. (3)], the total number of parameters is 24 431; for
jACD−QAOAj ¼ 7; q ¼ 20 [cf. Eq. (7)], the total number of
parameters is 21 985.

Parameter Value

Optimizer Adam [88]

Learning rate (ηf0g) 1 × 10−2

Learning rate decay steps 50
Learning rate decay factor 0.96
Learning rate decay style Staircase
RL temperature (β−1S;f0g) 1 × 10−1

RL temperature decay steps 10
RL temperature decay factor 0.9
RL temperature decay style Smooth
Baseline exponential moving decay factor (m) 0.95
Gradient steps (PPO) 4
Clip parameter ϵ 0.1
Number of hidden layers 2
Number of hidden units per layer (dhidden) 112
Nonlinearity ReLU
Number of samples per minibatch (M) 128

FIG. 11. Spin-1 Ising model: training curves for CD-QAOA
with energy minimization as a cost function. The mean negative
energy density (red) is computed for a sample generated using the
policy at the current iteration; max (blue) is the maximum within
the sample; the historically best (green) is the best-encountered
policy during the entire training process (i.e., considering all
iterations). Each curve shows the average out of three simulations
corresponding to three different seed values for the high-level RL
optimization; the fluctuations around the seed averages are shown
as a narrow shaded area. The total duration is T ¼ 28, and the
number of spin-1 particles is N ¼ 8. The initial and target states
are jψ ii ¼ j↓ � � �↓i and jψ�i ¼ jψGSðHÞi for hz=J ¼ 0.809
and hx=J ¼ 0.9045. The CD-QAOA action space is
ACD−QAOA ¼ fZjZ þ X; Z;Y; XY; YZ; XjY; YjZg, and we use
q ¼ 20.
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policy; ρθð·Þ ¼ ½πθð·Þ=πθtð·Þ� is the importance sampling
weight between the new policy πθ and the old policy πθt ;
and AθtðτÞ ¼ RðτÞ − b is the advantage function, where b is
called a baseline—the advantage measures the reward gain
of choosing a specific action with respect to the baseline.
For example, a simple baseline can be the average reward,
e.g., b ¼ Eτ∼πθt ½RðτÞ�, and then the advantage measures
how much better (or worse) an action is with respect to the
average; in the numerical experiments, we use an expo-
nential moving average (cf. Appendix A 5 for details).
Further, the clip function,

clipðr; x; yÞ ¼ max (min ðr; xÞ; y);

clips the value of r within the interval ½x; y�, which is used
to restrict the likelihood ratio in the range ½1 − ϵ; 1þ ϵ�;
this prevents the policy update from deviating too much
from the old policy after one gradient update. The clipped
objective function is designed to improve the policy as well
as to keep it within some vicinity of the last iteration, hence
the name proximal policy optimization.

We update the network parameters θ by ascending along
the gradient of the RL objective GðθÞ. To provide intuition
about the PPO objective, consider the following limiting
case. If we only have the first term in the objective, i.e.,
G1ðθÞ ¼ Eτ∼πθt ½ρθðτÞAθtðτÞ�, we obtain the following gra-
dient:

∇θG1ðθÞ ¼ Eτ∼πθt ½∇θρθðτÞAθtðτÞ�

¼ Eτ∼πθt

�∇θπθðτÞ
πθtðτÞ

AθtðτÞ
�
:

Since we are taking the gradient with respect to θ, it will
pass through πθt and AθtðτÞ. Furthermore, whenever the
parameters θ ≈ θt, the gradient above is identical to the
policy gradient:

∇θG1ðθÞ ≈ Eτ∼πθ

�∇θπθðτÞ
πθðτÞ

AθðτÞ
�

¼ Eτ∼πθ ½∇θ log πθðτÞAθðτÞ�:

However, PPO performs multiple gradient updates on the
sampled data, rendering policy learning more sample
efficient [89].

a. Incentivizing exploration using entropy

Maintaining a balance between exploration and exploi-
tation is another major challenge for the reinforcement
learning algorithm. Too much exploration prevents the
agent from adopting the best strategy it knows so far; on the
contrary, too much exploitation limits the agent from
attempting new actions and achieving a potentially higher
reward. Therefore, it is more appropriate for the agent to
explore substantially in the initial iterations of the training
procedure and to gradually switch over to exploitation
towards the end of the training procedure.
In order to incentivize the agent to explore the action

space at the beginning of training, we include an entropy
“bonus” [90,91] to the PPO objective from Eq. (A3). To do
this, consider the maximal-entropy objective, where the
agent aims to maximize the sum of the total reward and the
policy entropy S [cf. Eq. (A5)]:

J ðθÞ ¼ GðθÞ þ β−1S SðπθÞ

¼ Eτ¼ða1;…;aqÞ∼πθt

�
minfρθðτÞAθtðτÞ; clip(ρθðτÞ; 1 − ϵ; 1þ ϵ)AθtðτÞg þ β−1S

Xq
j¼1

S(πθð·ja1;…; aj−1Þ)
�
; ðA4Þ

where S(πθð·ja1;…; aj−1Þ)≡ S(πθð·Þ), for j ¼ 1. The
trade-off between exploration and exploitation is controlled
by the coefficient β−1S , which carries a meaning analogous
to temperature in statistical mechanics: For β−1S → 0 (or

βS → ∞), any exploration is limited to the intrinsic
probabilistic nature of the policy; if training is successful,
it is expected that, for deterministic environments, the
policy eventually converges to a delta distribution (over the

FIG. 12. Spin-1 Ising model: energy minimization against
different circuit depths q using CD-QAOA. The mean negative
energy density (blue) is computed for a sample generated using
the final, learned policy; max (orange) is the maximum within the
sample; the historically best (green) is the best encountered policy
during the entire training process (i.e., considering all iterations).
The total duration T ¼ 20, and the values of q range from 8 to 24.
The other model parameters are the same as in Fig. 11.
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action space) at the later training iterations; this may
deteriorate exploration and learning. However, in the
opposite limit, β−1S → ∞ (or βS → 0), every action is
selected with equal probability, and the values of the policy
π become irrelevant. Therefore, in practice, we use a decay
schedule for the inverse temperature β−1S to gradually
reduce exploration (see Appendix A 5).
Since the marginal distribution πθð·Þ and the conditional

distribution πθð·ja1;…; aj−1Þ are discrete categorical dis-
tributions over A, we can compute a closed-form expres-
sion for the entropy of the categorical distribution policy.
For trajectory τi ¼ ðai1;…; aiqÞ, the jth term in the entropy
bonus simplifies to

S(πθð·jai1;…; aij−1Þ)
¼ −

X
a∈A

πθðajai1;…; aij−1Þ log πθðajai1;…; aij−1Þ: ðA5Þ

We emphasize that the entropy considered here is the
Shannon or information entropy associated with the policy
as a probability distribution and should be contrasted with
the thermodynamic entropy, associated with the logarithm
of the density of protocol configurations (a.k.a. density of
states) in the optimization landscape. The Shannon entropy
help the agent to explore the space of policies, and thus the
annealing of the corresponding Lagrange multiplier, β−1S , is
not related to thermal annealing in the optimization (or
energy) landscape in a straightforward manner. Moreover,
notice that the policy optimization is part of the classical
postprocessing of the quantum data; i.e., it does not
compromise the nature of the quantum data which is fed
to the algorithm in the form of rewards.
Figure 13 shows a comparison of PPO with and without

entropy, as controlled by the value of the temperature β−1S .
Introducing the policy information entropy keeps the policy
a bit broader in the initial stages of training, which
enhances exploration. Towards the end of training, the
information entropy is not needed; therefore, we gradually
“anneal” β−1S (cf. Appendix A 5).

5. Technical details

We train the CD-QAOA algorithm for 500 epochs or
iterations with a minibatch size of M ¼ 128. Throughout
the training, we sample trajectories according to the
marginal and conditional policy distributions given by
the autoregressive network.
We useAdam to perform gradient descent on the objective

in Eq. (A4), with the default parameters β1 ¼ 0.9 and
β2 ¼ 0.999, which define the exponential decay rate for
the first- and second-moment estimates, respectively. The
learning rate is initialized as αflr;0g ¼ 0.01 and decays by a
factor of 0.96 every 50 steps in a staircase fashion. Tobemore

precise, the learning rate at the kth iteration with the
exponential decay reads as αlr;fkg ¼ 0.01 × 0.96bk=50c. The
subscript fkg denotes the iteration or episode number.
We also introduce an exponential decay schedule for the

prefactor (a.k.a. temperature), β−1S , of the entropy bonus from
Eq. (A4). The temperature initializes at β−1S;f0g ¼ 0.1 and
decays by a factor of 0.9 every 10 steps. At the kth iteration,
the temperature is β−1S;fkg ¼ 0.1 · 0.9k=10. Eventually, the
temperature is annealed to zero.
We estimate the advantage function by AθoldðτÞ ¼

RðτÞ − b, where b is the baseline used to reduce the variance
of the estimation. Our baseline b uses an exponential moving
average (EMA) of the previous rewards. EMA stabilizes the
training and also leverages the past reward information to
form a lagged baseline. In practice, we find that the RL
algorithm can achieve better rewards compared with using
the average of current samples as the baseline. To be more
specific, the exponential moving baseline update is bfkg ¼
ηbfk−1g þ ð1 − ηÞR̄fkg, where bf0g ¼ 0 and η ¼ 0.95. Here,
R̄fkg is the sample average of the reward at the kth iteration,
i.e., R̄fkg ¼ ð1=MÞPM

i¼1 R
i
fkgðτiÞ.

In terms of policy optimization, we perform multiple
steps of Adam on the objective [Eq. (A4)]. The gradient
update steps are 4 per minibatch. The clipped parameter in
the objective is set to ϵ ¼ 0.1.
The hyperparameters of the algorithm are listed in

Table III.

FIG. 13. Spin-1 Ising model: comparison of the mean reward
with (β−1S;f0g ¼ 0.1) and without (β−1S ¼ 0) the entropy bonus
during training. For comparison, the dashed horizontal line marks
the performance of QAOA. The inset shows the evolution of the
policy information entropy during training. Adding entropy gives
more room for the RL agent to explore the space of policies
instead of directly exploiting the knowledge it obtains. As
becomes clear from the figure, the RL algorithm with the entropy
bonus achieves a better final performance at the end of training, at
the cost of suffering an intermediate lower reward at the
beginning of training. The simulation parameters are the same
as in Fig. 11.
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APPENDIX B: LOW-LEVEL OPTIMIZATION:
FINDING OPTIMAL PROTOCOL TIME STEPS αj

In order to determine the values of the time steps αj, we
proceed as follows. For any given sequence of actions (or
protocol sequence) τ ¼ ða1;…; aqÞ of total duration T, we
solve the following low-level optimization problem:

min
fαjgqj¼1

�
N−1Eðfαjgqj¼1; τÞ

����
Xq
j¼1

αj ¼ T; 0 ≤ αj ≤ T

�
; ðB1Þ

where q is the sequence length (circuit depth), N is the
system size, and Eð·Þ is the energy of the final quantum
state [cf. Eq. (2)] after evolving the initial quantum state
jψ ii according to the fixed protocol τ.
Note that the αj optimization is both bounded and

constrained. It fits naturally into the framework of the
SLSQP. SLSQP solves the nonlinear problem in Eq. (B1)
iteratively, using the Han-Powell quasi-Newton method

with a Broyden–Fletcher–Goldfarb–Shanno update [92] of
the B-matrix (an approximation to the Hessian matrix) and
an L1-test function within the step size.
During each iteration of the policy update, a batch of

trajectories fτig ¼ fðai1;…; aiqÞgMi¼1 is sampled. Each tra-
jectory sequence τi is assigned a reward by solving the
optimization problem in Eq. (B1). Since performing the
low-level optimization in Eq. (B1) is independent of
the high-level optimization discussed in Appendix A, we
run the former concurrently to boost the efficiency of the
algorithm. We distribute every sequence τi ¼ ðai1;…; aiqÞ
to a different worker process and aggregate the results back
to the master process in the end. In practice, we use the
batch size M ¼ 128, and we distribute the simulation on 4
nodes with 32 cores each so that each core solves only one
optimization at a time.
Recently, it was demonstrated that it is possible to

perform the continuous optimization on par with the
discrete one, which eliminates the need to use a solver
and results in a fully RL optimization approach [84].

Algorithm 1. CD-QAOA with autoregressive network based policy.

Input: batch sizeM, learning rate ηt, total number of iterations T iter, exponential moving average coefficient m, entropy coefficient β−1S ,
PPO gradient steps K.
1: Generate and select the gauge potential sets A using Algorithm 2.
2: Initialize the autoregressive network and initialize the moving average R̂ ¼ 0.
3: for t ¼ 1;…; T iter do
4: Autoregressively sample a batch of discrete actions of size M, denoted as B:

τk ¼ ðak1; ak2;…; akqÞ ∼ πθða1; a2;…; aqÞ; k ¼ 1; 2;…;M:

5: Apply the SLSQP solver to the lower-level continuous optimization (cf. Appendix B):

min
fαkjgqj¼1

�
N−1Eðfαkjgqj¼1; τ

kÞ
����
Xq
j¼1

αkj ¼ T; 0 ≤ αkj ≤ T

�
:

6: Use the negative energy density as the return and compute the moving average:

Rk ¼ −N−1Eðfαkjgqj¼1; τ
kÞ; R̂ ¼ m · R̂þ ð1 −mÞ · 1

M

XM
k¼1

Rk:

7: Compute the advantage estimates Ak ¼ Rk − R̂.
8: Initialize the parameter θ½1�tþ1 ¼ θt.
9: for κ ¼ 1;…; K do
10: Evaluate the likelihood of samples using the parameters from the last iteration and the current iteration, i.e., πθtðτkÞ, πθ½κ�tþ1

ðτkÞ, and
compute the importance weight ρ½κ�k ¼ π

θ½κ�tþ1

ðτkÞ=πθtðτkÞ.
11: Use the advantage estimate and importance weight to compute Gk;Sk, following Eqs. (A3) and (A5).
12: Compute the CD-QAOA objective Eq. (A4) and backpropagate to get the gradients:

∇θJ ðθ½κ�tþ1Þ ¼
1

M

X
fafkgj gqj¼1

∈B

∇θ½G½κ�
k þ β−1S S½κ�

k �:

13: Update weights θ½κþ1�
tþ1 ← θ½κ�tþ1 þ ηt∇θJ ðθ½κ�tþ1Þ.

14: Update the parameter θtþ1 ← θ½Kþ1�
tþ1 .
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APPENDIX C: SCALING WITH THE NUMBER
OF PARTICLES N, THE PROTOCOL DURATION

T, AND THE CIRCUIT DEPTH q

Next, we discuss the computational scaling of CD-
QAOA. While there are a number of (hyper)parameters
in the algorithm, here we focus on the system size N, the
protocol duration T, and the circuit depth q—which are,
physically, the most relevant ones. We also consider the
continuous and discrete optimization steps separately (the
continuous step also being an essential part of conven-
tional QAOA).
When it comes to the continuous optimization performed

by a solver (cf. Appendix B), the main computational cost
comes from the quantum evolution itself. The basic
operation inside the solver is a multiplication of the matrix
exponential expð−iαjHjÞ by the state jψ ii. The
Hamiltonian Hj is stored as a sparse matrix, and the action
of the matrix exponential onto the quantum state,
expð−iαjHjÞjψ ii, can be evaluated without computing
the matrix exponential itself with the help of a sparse
matrix-vector product; this operation scales exponentially
with the system sizeN, i.e.,O( expðcNÞ) for some constant
c. If we denote the sequence length (a.k.a. circuit depth) by
q, then the total cost for evaluating a single value of the
continuous angle α scales as Oðq expðcNÞÞ. We stress that
this cost is also incurred by conventional QAOA.
For the discrete optimization performed using reinforce-

ment learning (Appendix A 4), notice first that the machine
learning model is agnostic to the physical quantum model
because we do not use information about the quantum
model to train the policy (cf. Appendix A 2). Because the
policy input is, by construction, independent of the quan-
tum state, the input layer of the neural network architecture
is shielded from the exponential growth of the physical
Hilbert space with N. Hence, the deep neural network is
independent of the Hilbert space dimension. Further, we
use an autoregressive network model that scales linearly
with the sequence length q and also linearly with the size of
the available action set jAj. Thus, the total computational
cost for the reinforcement learning optimization scales as
OðqjAjÞ. The scaling of the neural network with the
variational network parameters (weights and biases) is
trivially given by the matrix-vector multiplication, as is
the case for typical ML deep networks, and it is also
independent of the physics of the controlled system.
A comparison of the wall-clock time for the discrete and

continuous optimization steps is provided in Table IV. We
distinguish between the continuous solver optimization and
the discrete RL optimization, and show the average times
for one successful step of each in the two columns on the
right-hand side. The total cost can then be obtained by
multiplying the time for tsolver by the appropriate number of
repetitions (e.g., continuous solver initial conditions, policy
sample batch size, PPO training episodes, etc.) and by

multiplying the time for tRL by the number of PPO
iterations, thereby taking into account any parallelization
if used; for instance, the most expensive simulation we
performed ran for about 109 hours on four nodes (Intel
Xeon Skylake 6130 32-core 2.1 GHz) to produce the
N ¼ 10, T ¼ 12, q ¼ 20 data point shown in Table II.
We emphasize that the time tsolver required for the

continuous optimization is an essential part of conventional
QAOA and is the current limiting factor for reaching large
system sizes, as is the case in merely all simulations of
quantum dynamics on classical computing devices. In
sharp contrast, the cost for training the deep autoregressive
network is N independent, and tRL per iteration is negli-
gible; however, the choice of RL algorithm can strongly
impact the number of iterations. Thus, CD-QAOA is
suitably designed for potential applications on quantum
simulators and quantum computers, which will enable one
to access large system sizes, bypassing the exponential
bottleneck intrinsic to simulations of quantum dynamics on
classical devices.

TABLE IV. Wall-clock running time of the two-level CD-
QAOA optimization steps with different system sizes N, protocol
durations T, and circuit depths q. The right-hand side of the table
shows the time used for the lower-level solver (column tsolver) and
the time spent for the high-level RL algorithm (column tRL) at
every successful iteration. The total cost can then be obtained by
multiplying the time for tsolver by the appropriate number of
repetitions (e.g., continuous solver realizations, policy sample
batch size, PPO training episodes, etc.), taking into account any
parallelization if present. Every number represents an average
over 40 independent runs with the corresponding standard
deviation shown; the significant deviation in tsolver is caused
by the random initial solver state used, which causes the
algorithm to take a different number of steps to converge within
the given tolerance (cf. Appendix D). This test is carried out on a
single-processor Intel Core i7-8700K CPU 6-core 3.70 GHz.

N T q tsolver (sec/iter) tRL (sec/iter)

10 20 20 57.254� 13.829 0.042� 0.005
8 20 20 17.24� 2.554 0.055� 0.024
6 20 20 10.559� 3.963 0.028� 0.004
4 20 20 6.021� 5.149 0.027� 0.002
10 28 20 68.55� 19.044 0.055� 0.019
10 24 20 61.425� 15.171 0.038� 0.009
10 20 20 57.254� 13.829 0.042� 0.005
10 16 20 49.043� 12.447 0.041� 0.007
10 12 20 39.33� 13.976 0.038� 0.006
10 8 20 24.689� 14.348 0.033� 0.008
10 4 20 7.023� 2.651 0.025� 0.001
8 20 24 20.723� 3.903 0.065� 0.024
8 20 20 17.24� 2.554 0.055� 0.024
8 20 16 12.626� 3.129 0.024� 0.004
8 20 12 8.641� 2.654 0.02� 0.003
8 20 8 5.511� 2.18 0.016� 0.002
8 20 4 2.092� 1.312 0.011� 0.002
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APPENDIX D: MANY-BODY CONTROL
LANDSCAPE

Let us briefly address the question about the difficulty of
the many-body ground-state preparation problems that we
introduced in the main text. To this end, recall that CD-
QAOA has a two-level optimization structure: (i) discrete
optimization to construct the optimal sequence of unitaries
(Appendix A) and (ii) continuous optimization to find the
best angles, given the sequence, to minimize the cost
function (Appendix B). Here, we focus exclusively on
the continuous optimization landscape and postpone the
discrete landscape to a future study.
The RL agent learns in batches or samples of M ¼ 128

sequences, which sample the current policy at each iteration
step and provide the data set for the policy gradient
algorithm. To evaluate each sequence in the batch, we use
SLSQP to optimize for the durations αj in a constrained
and bounded fashion:

P
j αj ¼ T and 0 ≤ αj ≤ T

(cf. Appendix B). This method provides us with the full
unitary Uðfαjgqj¼1; τÞ; applying it to the initial state, we
obtain the reward value for this sequence. This procedure
repeats iteratively as the RL agent progressively discovers
improved policies.
Once the RL agent has learned an optimal sequence, i.e.,

after the optimization procedure is complete, we focus on
the best sequence from the sample and examine how
difficult it is to find the corresponding durations αj using

SLSQP. To this end, we draw q values at random from a
uniform distribution over the interval ½0; T=q� and use them
as initial conditions for the αj to initialize the SLSQP
optimizer. We use the same q as the circuit depth so that the

initial durations αð0Þj are, on average, equal. We then repeat
this procedure P times and generate a sample M ¼
ffαnjgqj¼1gPn¼1 of the local minima in the optimization
landscape for αj. The larger P, the better our result for
the true reward assigned to τ is.
Notice that, in the beginning of the training, the RL agent

is still in the exploration stage, and the reward estimation
does not need to be too accurate; this reward estimation
needs to be more accurate as the agent switches over to
exploitation during the end of the training. In order to make
the algorithm computationallymore efficient, we introduce a
linear schedule for the number of realizations of the αj
optimizer, starting from 3 with an increment of 1 every 30
iteration steps, i.e., Ptot

fkg ¼ 3þ bk=30c, where the subscript
k indicates the iteration number for the RL policy optimi-
zation. In order to further save time in the reward estimation,
we also introduce some randomness here by sampling Pfkg
from a uniform distribution over 1; 2;…; Ptot

fkg.
Even though they all correspond to the same sequence,

every local minimum in M represents a potentially differ-
ent protocol since the durations αj will cause the initial
quantum state to evolve into a different final state. For every

FIG. 14. Spin-1=2 Ising model: visualization of the continuous optimization landscape for the durations αj in the fidelity-
entanglement entropy plane, for the best sequence found by the RL agent (see Appendix D). Each point corresponds to a local minimum,
obtained using the SLSQP optimizer, starting from a uniformly drawn random initial condition. The system size is N ¼ 16, and the rest
of the parameters are the same as in Fig. 1.
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protocol in M, we can evaluate the negative log-fidelity,
− logFτðTÞ, and entanglement entropy of the half chain,
SN=2
ent . Since the target state for the Ising model is an ordered

ground state, it has area-law entanglement. Figure 14 shows
a cut through the landscape in the fidelity-entanglement
entropy plane for a few different durations T for the spin-
1=2 Ising model. The better solutions are located in the
lower-left corner. The proliferation of local minima across
the quantum speed limit has recently been studied in the
context of RL [29] and QAOA [43]. This behavior indicates
the importance of running many different SLSQP realiza-
tions; otherwise, we may misevaluate the reward of a given
sequence, and the policy gradient will perform poorly.
Figure 14 also provides a plausible explanation for the

destruction of the scaling collapse for T ≳ TQSL (Fig. 2).
Although the precision of the SLSQP optimizer is set at
10−6, the entropy curves for large durations no longer fall
on top of each other. Hence, the occurrence of many local
minima of roughly the same reward, which correspond to
different protocols, effectively removes any universal
features from the obtained solution; therefore, different
system-size simulations end up in different local minima.

APPENDIX E: VARIATIONAL GAUGE
POTENTIALS

Consider the generic Hamiltonian

HðλÞ ¼ H0 þ λH1; ðE1Þ

with a general smooth function λ ¼ λðtÞ. We define a state
preparation problem where the system is prepared in the
ground state of H0 at time t ¼ 0, and we want to transfer
the state population in the ground state of H by time t ¼ T.
Unlike adiabatic protocols, counterdiabatic driving

relaxes the condition of being in the instantaneous ground
state of HðλÞ during the evolution. The idea is to reach the
target state in a shorter duration T (compared to the
adiabatic time) at the expense of creating controlled
excitations [with respect to the instantaneous HðλÞ] during
the evolution, which are removed before reaching the final
time T. To achieve this, one can define a counterdiabatic
HamiltonianHCD. In general, the originalHðλÞ differs from
HCD, whose ground state the system follows adiabatically:

HCDðλÞ ¼ HðλÞ þ _λAλ; ðE2Þ

where Aλ is the gauge potential; Aλ is defined implicitly as
the solution to the equation [19]

½∂λH þ i½Aλ; H�; H� ¼ 0: ðE3Þ

The boundary conditions HCD(λð0Þ) ¼ H(λð0Þ) and
HCD(λðTÞ) ¼ H(λðTÞ) impose the additional constraint

_λð0Þ ¼ 0 ¼ _λðTÞ, which suppresses excitations at the
beginning and at the end of the protocol.
Using Eq. (E3), one can convince oneself that the gauge

potential Aλ of a real-valued Hamiltonian H is always
imaginary valued [19].
For generic many-body systems, it has recently been

argued that the gauge potential Aλ is a nonlocal operator
[36]. Nevertheless, one can proceed by constructing a
variational approximation X ≈ Aλ, which minimizes the
action

SðXÞ ¼ hG2ðXÞi− hGðXÞi2; GðXÞ ¼ ∂λHþ i½X ;H�:
ðE4Þ

For ground-state preparation, h·i ¼ hψGSðλÞj · jψGSðλÞi is
the instantaneous ground-state expectationvaluewith respect
to HðλÞ. More generally, one can use h·i ¼ Tr(ρth × ð·Þ),
where ρth ∝ expð−βHÞ is a thermal density matrix at
temperature β−1: For β → ∞, we recover the ground-state
expectation value; for β → 0, all eigenstates are weighted
equally.
We mention, in passing, that alternative schemes to

approximate the adiabatic gauge potential have also been
considered [39].

1. Spin Hamiltonians

a. Real-valued spin-1=2 Hamiltonians

Let H now be a real-valued spin-1=2 Hamiltonian with
translation and reflection invariance. Such a system is
given, e.g., by the mixed-field Ising model discussed in
the main text. We now construct an ansatz for the
variational gauge potential X , which obeys these sym-
metries and is imaginary valued.
We can organize the terms contained in X according to

their multibody interaction type, as follows. The only single-
body imaginary-valued term we can write is

P
j βjS

y
j .

Translation and reflection symmetries, whenever present
inH, further impose that the coupling constant βj ¼ β be site
independent, i.e. spatially uniform. Hence, this is the zeroth-
order term in our variational gauge potential construction,
cf. Eq. (E5).
Next, we focus on the two-body terms. Because the exact

Aλ is imaginary valued for real-valued Hamiltonians, we
may only consider interaction terms where Sy appears
precisely once: SxSy and SySz. For spin-1=2 systems, the
two operators have to act on different sites, or one can
further simplify their product to single-body operators
using the algebra for Pauli matrices. Once again, translation
invariance dictates that the coupling constants are uniform
in space, while reflection invariance requires us to take a
symmetric combination. Further imposing that the inter-
action be short ranged (we want to construct the most local
variational ansatz), we arrive at
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XðfβðkÞl gÞ ¼
X
j

βð0Þ0 ðλÞSyj þ βð0Þ1 ðλÞðSxjþ1S
y
j þ Syjþ1S

x
jÞ

þ βð1Þ1 ðλÞðSzjþ1S
y
j þ Syjþ1S

z
jÞ: ðE5Þ

The coefficients βðkÞl are the variational parameters that we
need to determine to find the approximate CD protocol. To
find their optimal values, we minimize the action SðXÞ
[19]. Note that, since we do not have a closed-form
expression for the instantaneous ground state of HðλÞ,
we do the minimization numerically at every fixed time t
along the protocol λðtÞ (cf. Appendix E 2).
We can, in principle, add the next order terms to the

series; however, they will either be less local or consist of
three- and higher-body interactions, which is hard to
implement in experiments.

b. Real-valued spin-1 Hamiltonians

The situation is more interesting for spin-1 systems: The
eight-dimensional Lie algebra suð3Þ, which generates
SU(3), contains three distinct imaginary-valued directions,
which form a closed subalgebra suð2Þ ⊊ suð3Þ; hence,
there is more room to generate imaginary-valued combi-
nations. To find all imaginary-valued terms consistent with
a set of symmetries, we use QuSpin’s functionality to
implement an algorithm (Appendix E 3) that lists them for
generic bases [56,57].
Translation and reflection symmetric spin-1Hamiltonians,

such as the spin-1 Ising and Heisenberg models, have a
similar expansion to their spin-1=2 counterparts but allow for
more terms. Restricting the expansion to two-body terms, we
have

XðfβðkÞl gÞ ¼
X
j

½βð0Þ0 ðλÞSyj þ βð0Þ1 ðλÞðSxjSyj þ SyjS
x
jÞ þ βð0Þ2 ðλÞðSzjSyj þ SyjS

z
jÞ

þ βð1Þ0 ðλÞð½Sxjþ1 − aSxj �Syj þ ½Syjþ1 − aSyj �SxjÞ þ βð1Þ1 ðλÞð½Szjþ1 − bSzj�Syj þ ½Syjþ1 − bSyj �SzjÞ�: ðE6Þ

where the constantsa andb are chosen so that all five termsaremutually orthogonalwith respect to the scalar product inducedby
the trace (i.e., Hilbert-Schmidt) norm; this ensures the linear independence of the constituent terms. Note that the three
imaginary-valued on-site terms correspond precisely to the imaginary-valued suð2Þ ⊊ suð3Þ.
Adding magnetization conservation and spin inversion symmetry further reduces the allowed terms in the series.

Therefore, one has to restrict to three- and four-body terms:

XðfζðkÞl gÞ ¼
X
j

ζð2Þ0 ðλÞðiSþj S−jþ1S
z
jþ2 þ iSzjS

−
jþ1S

þ
jþ2 þ H:c:Þ þ ζð3Þ0 ðλÞðiS−j SzjSþjþ1S

z
jþ1 þ iSþj S

z
jS

−
jþ1S

z
jþ1 þ H:c:Þ: ðE7Þ

Because these terms are multibody and less local, we
refrain from using them in CD-QAOA in the present study.
We merely list them here for completeness.
As explained in the main text, to apply CD-QAOA

for many-body ground-state preparation, we consider the
constituent terms in X as independent generators fHjgjAj

j¼1,
which is in contrast to the variational gauge potential

method where the ratios between the coefficients βðkÞl play
an important role.

c. Variational gauge potential ansatz
for the Lipkin-Meshkov-Glick model

As explained in the main text, the LMG Hamiltonian,
cf. Eq. (5), models homogeneously interacting spin-1=2
particles on an all-to-all connected graph in the presence of
an external field. Here, we compute the lowest-order terms
appearing in the series for the variational gauge potentialX ,
going beyond Ref. [93].

The starting point is the LMG Hamiltonian

H ¼ −
J
N
ðSxÞ2 þ hðSz þ N=2Þ: ðE8Þ

We introduce two bosonic modes, s and t, where Sz ¼
t†t − N=2 ¼ nt − N=2 and Sþ ¼ t†s, and cast the LMG
Hamiltonian in the form

H ¼ ht†t −
J
4N

ðt†sþ s†tÞ2: ðE9Þ

Recalling, once again, that real-valued Hamiltonians
have imaginary-valued gauge potentials and that gauge
potentials do not have diagonal matrix elements, we make
the following ansatz:

XðfβðkÞl gÞ ¼ βð0Þ0 ðλÞY þ βð1Þ1 ðλÞX̂Y þ βð0Þ1 ðλÞẐY; ðE10Þ
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where

Y ¼ Sy ¼ i
2
ðs†t − t†sÞ;

X̂Y ¼ 1

N
ðSxSy þ SySxÞ ¼ −

i
2N

½ðt†sÞ2 − ðs†tÞ2�;

ẐY ¼ 1

N
(

�
Sz þ N

2

�
Sy þ Sy

�
Sz þ N

2

�
)

¼ i
2N

ðs†t†tt − st†tt† þ s†tt†t − st†t†tÞ: ðE11Þ

To compute the matrix elements of the gauge potentials,
we define the basis

jN; nti ¼
ðt†Þntðs†ÞN−ntffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt!ðN − ntÞ!

p j0i; with nt ¼ 0;…; N:

The gauge potentials have the following nonzero matrix
elements (plus their conjugates to make the operators
Hermitian):

hN; ntjYjN; nt þ 1i ¼ −
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnt þ 1ÞðN − ntÞ

p
;

hN; ntjX̂YjN; nt þ 2i ¼ i
2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnt þ 2Þðnt þ 1ÞðN − nt − 1ÞðN − ntÞ

p
;

hN; ntjẐYjN; nt þ 1i ¼ i
2N

ð2nt þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnt þ 1ÞðN − ntÞ

p
: ðE12Þ

2. Numerical minimization to obtain
the variational CD protocol

Since the action S in Eq. (E4) is quadratic in the
variational parameters βj, it is possible to derive a generic
linear system, whose solutions are the optimal parameters
of the variational gauge potential within CD driving [94].
Suppose that X ¼ P

r
j¼1 βjHj is given by a linear

combination of r gauge potential terms. Then, it is
straightforward to see that

GðXÞ ¼ ∂λH þ
Xr

j¼1

i½Hj;H�βj: ðE13Þ

Defining the operator-valued quantities B0 ¼ ∂λH and
Bj ¼ i½Hj;H� and setting β0 ¼ 1, we arrive at the follow-
ing expression for the variational action:

SðXÞ ¼

�

B0 þ
X

j
Bjβj

�
2
�
−
�


B0 þ
X

j
Bjβj

��
2

¼
Xr
i;j¼0

ðhBiBji − hBiihBjiÞβiβj; ðE14Þ

which is a quadratic form in the unknown coefficients βj.
To find the minimum of SðXÞ with respect to βj, we can
take the derivative and set it to zero to obtain the linear
system of equations for the optimal βj:

X
k

Mjkβk ¼ −M0j; ðE15Þ

where Mjk ¼ hBjBki þ hBkBji − 2hBjihBki. Solving the
system, we obtain the minimum fβjgrj¼1 of the variational
action S.
The ground-state expectation values in the above pro-

cedure, as well as the Hamiltonian H(λðtÞ), depend
implicitly on time t ∈ ½0; T� via the protocol λðtÞ.
Therefore, to find the time dependence of βjðtÞ, we
discretize the time interval ½0; T� into NT time steps and
repeat the procedure at every time step. This process yields
βjðtiÞ at the time steps ti. To recover the full functional
dependence, we use a fine discretization mesh and apply a
linear interpolation to βjðtiÞ. Alternatively, notice that the
coefficients βj ¼ βj(λðtÞ) depend on time t only implicitly
via the protocol λ. Therefore, it is also possible to discretize
the range of λðtÞ instead.
For the spin-1 Ising model, the time dependence of βj is

shown in Fig. 15, defining HCD, which generates the CD
evolution. In Sec. V and Appendix F 4, we compare
variational CD driving to CD-QAOA and conventional
QAOA.

3. Algorithm for generating gauge potential terms in the
presence of lattice symmetries

Finally, we also show the algorithmwe used to determine
the terms appearing in the gauge potential expansions in
Eqs. (E5)–(E7), which obey a fixed set of symmetries.
In general, one can represent any local operator of the

kind Ji1;…;ilO
γ1
i1
� � �Oγl

il
as a triple (Y, I , J), where J ¼

Ji1;…;il is the coupling coefficient constant, I ¼ ði1;…; ilÞ
is the set of sites the operators act on, and Y ¼ ðγ1;…; γlÞ
defines the types of operators that act on the corresponding
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sites. The triple (Y, I , J) can then be used to construct the
operator.
In the following, we refer to the separate terms

appearing in the gauge potential series as Hamiltonians
Hj, i.e., X ¼ P

j βjHj; a Hamiltonian is defined as
H ¼ P

ði1;…;ilÞ∈Λ Ji1;…;ilO
γ1
i1
� � �Oγl

il
, where Λ is the lattice

graph. As we argued above, real-valued Hamiltonians have
purely imaginary-valued gauge potentials; thus, the coef-
ficient J is chosen to be purely imaginary.
We build the series for the variational gauge potential X

recursively: We first consider a set Lelem of elementary
operators O—the building blocks for the expansion; e.g.,
for the spin-1 chains, these can be the spin-1 operators
Lelem ¼ fSþ; S−; Szg. We construct the terms in the expan-
sion for X iteratively at a fixed order l, e.g., l ¼ 1
comprises single-body terms, and l ¼ 2—two-body terms,
etc. We also assume that we have access to a routine that
checks if a trial list of operators obeys a given lattice
symmetry; if not, the same routine returns the missing
operators to be added to the original list, so the symmetry is
now satisfied (e.g., such a routine is used in QuSpin
[56,57].)
The pseudocodewe developed is shown inAlgorithmE 3.

To construct multibody terms at a fixed order l, we define
combinations of the elementary operators and store them in
the listLop; theway these combinations are built can be used
to implement constraints, such as particle or magnetization
conservation, etc. This method is implemented via the
product operator (line 2 of Algorithm E 3). It generates
all possible combinations of selecting l elementary
operators with replacement. The sets of lattice sites that
the operators fromLop act on are stored in the listLsites (line 3
ofAlgorithm 2). Then, for each trial triple (Y, I , J), wemake
use of the routine to check the symmetry and record any

operators that do not respect it. We append these so-called
missing operators to the original list, and we keep checking
the symmetry condition until we obtain all operators that
satisfy the symmetry (lines 10–15 ofAlgorithm 2). The finite
number of combinations guarantees a termination in a finite
number of steps.
In order to avoid repeating previously identified

Hamiltonians, we discard equivalent Hamiltonians (line
17 of Algorithm 2): Two Hamiltonians are called equivalent
when one is a scalar times the other. Since here we consider
imaginary-valued gauge potentials, the multiple constant
should be real. To test whether the HamiltoniansH1 andH2

are equivalent in practice, it suffices to test whether H1 is
equal to �ðkH1k=kH2kÞH2, where we use the Hilbert-
Schmidt norm.

APPENDIX F: CD-QAOA FOR MANY-BODY
STATE PREPARATION

Here, we provide a supplementary discussion on the
performance of CD-QAOA for many-body pure state
preparation using the quantum spin chains introduced in
the main text. We refer the reader to the main text for the
definition of various model parameters; the shorthand spin
operator notation used is defined in Table I.

FIG. 15. Spin-1 Ising chain: time dependence of the optimal
coefficients βðkÞl ðλðtÞÞ in the variational gauge potential [Eq. (E6)]
with translation and reflection symmetry, determined from the
procedure in Appendix E 2. The total duration T ¼ 12 with the
time discretization step Δt ¼ 0.2, and the system size N ¼ 8. The
protocol we use is λðtÞ ¼ sin2ðπt=2TÞ. The other model param-
eters are the same as in Fig. 7.

Algorithm 2. Generation of variational gauge potential.

Input: a list of required symmetries Lsym, order l, a list of
elementary operator types Lelem.

1: Initialize empty list for gauge potential terms Lgauge.
2: Generate all possible combinations of local operators at order l,

Lop ¼ productðLelem; repeat ¼ lÞ:

3: Enumerate all possible combinations of lattice sites Lsites
the lth order operators act on.

4: for Y in Lop do
5: for I in Lsites do
6: Initialize an empty list LH .
7: Set J ¼ iði ¼ ffiffiffiffiffiffi

−1
p Þ.

8: Append (Y, I , J) to LH .
9: Set the flag IsSym ¼ False.
10: while IsSym is False do
11: Set IsSym ¼ True.
12: for sym in Lsym do
13: if exists missing operator (Y0, I 0, J0), then
14: Set IsSym ¼ False.
15: Append (Y0, I 0, J0) to LH .
16: Build Hamiltonian H using the triplets in LH .
17: if H or equivalents not included in Lgauge then
18: Append H to Lgauge.
19: Return the list of gauge potential basis Lgauge.

product: Cartesian product, equivalents: equivalent mod
scalar,

missing operator: the operator missed for the symmetry
requirement
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1. Spin-1=2 Ising chain

First, we show results for the single-spin problem
(J ¼ 0):

H ¼ H1 þH2; H1 ¼ hzSz; H2 ¼ hxSx: ðF1Þ

In Fig. 16, we clearly see that CD-QAOA (red curve) has a
smaller quantum speed limit TQSL ≈ 4.0 than conventional
QAOA (blue); this is anticipated since CD-QAOA has a
larger control space at its disposal. Moreover, we find that,
for T < TQSL, CD-QAOA only makes use of a single Y
rotation by setting the durations αj associated with any
other unitaries from the set A to zero. As mentioned in the
main text, conventional QAOA tries to represent this Y
rotation by means of Euler angles, i.e., composed of X and
Z rotations; in general, this results in a higher duration cost
to complete the population transfer (leading to a larger
TQSL). However, for short durations T, a Y rotation can be
exactly obtained using a proper sequence of the X and Z
terms. For these reasons, we find an exact agreement
between the two curves for small values of T ≲ 3.
Let us now switch on the spin-spin interaction strength

J > 0; consider the spin-1=2 Ising chain

H ¼ H1 þH2;

H1 ¼
XN
j¼1

JSzjþ1S
z
j þ hzS

z
j; H2 ¼

XN
j¼1

hxSxj : ðF2Þ

Figure 17 (top panel) shows a comparison of the best
learned energies, between conventional QAOA, and CD-
QAOA for two sets (A;A0) with different numbers of
unitaries: jAj ¼ 5; jA0j ¼ 3 (see caption). We find that,

additionally using only the single-particle gauge potential
term Y (green line), typically accessible in experiments, one
can already obtain a higher-fidelity protocol than QAOA to
prepare the ground state. Interestingly, for short protocol
durations T, the two-body gauge potential terms, present in
A but not in A0, do not contribute to improving the energy
of the final state, as can be seen from the agreement of the
red and green lines for T ≲ 1.5. This result suggests that
single-particle processes dominate over many-body proc-
esses when it comes to lowering the energy of the z-
polarized initial state, and it implies that the target ground
state is single-particle-like (i.e., close to a product state).
The nonsmooth behavior of the green curve at larger
durations is attributed to the ruggedness of the control
landscape, as different runs of the SLSQP optimizer may
get stuck in one of the many suboptimal local minima
(Appendix D).
One may wonder if it is possible to prepare the ground

state by straightforward fidelity maximization. We define
the many-body fidelity to transfer the population to the
target state using the unitary process Uðfαjgqj¼1; τÞ, withPq

j¼1 αj ¼ T, as

FτðTÞ ¼ Fðfαjgqj¼1; τÞ ¼ jhψ�jUðfαjgqj¼1; τÞjψ iij2: ðF3Þ

The fidelity can be less relevant from the perspective of
many-body physics because (i) the many-body fidelity is
typically exponentially suppressed and (ii) it requires a
reference to the ground state itself (which we seek) in order
to be computed. However, the fidelity of a quantum process
is a widely used benchmark in quantum computing; it also
provides a better measure (than energy density) for the
distance between two states in the Hilbert space H.
Figure 17 (bottompanel) shows themany-body fidelity for

N ¼ 14 spins. Unlike the inset of Fig. 1 from the main text
(where we show the fidelity associated with the protocol
obtained using energy-density minimization), here we use
the fidelity as a reward function for QAOA. We observe that
optimizing the fidelity is quantitatively similar to optimizing
the energy density. We would like to emphasize here, once
again, the advantage of the gauge potential ansatz: The
conventional QAOA simulation is done using q ¼ 80
variational parameters αj (yet no significant improvement
is observed for q ≥ 4, cf. Fig. 1), while CD-QAOA requires
only q ¼ 3 variational parameters.
Although the fidelity FτðTÞ is anticipated to vanish for

T < TQSL in the thermodynamic limit, the negative log-
fidelity density, −N−1 logFτðTÞ, is more likely to remain
finite. Figure 18 (inset) shows the finite-size scaling of the
fidelity curves. Similar to the energy density (Fig. 2), we
obtain an almost perfect scale collapse. We verify that
maximizing the fidelity produces similar results as mini-
mizing the negative log-fidelity density for the spin-1=2
chain: At first sight, this is nontrivial because FτðTÞ is
exponentially suppressed with the system size N for

FIG. 16. Single spin-1=2 state preparation: energy density
against protocol duration for CD-QAOA with ACD−QAOA ¼
fZ; X; Yg (red) and conventional QAOA with AQAOA ¼
fZ; Xg (blue). The value of q is 3 for both methods. For
conventional QAOA, we train two possible alternating patterns
[i.e., ðZ → X → ZÞ and ðX → Z → XÞ] and pick the best one for
comparison. The model parameters are the same as in Fig. 1
with J ¼ 0.
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T < TQSL; however, this behavior is likely explained by the
generalization capabilities of the RL agent from small to
large system sizes (cf. Sec. VI).

2. Anisotropic spin-1 Heisenberg chain

Next, we discuss in detail the ground-state preparation
process in the anisotropic Heisenberg spin-1 chain:

H ¼ H1 þH2;

H1 ¼ J
XN
j¼1

ðSxjþ1S
x
j þ Syjþ1S

y
jÞ; H2 ¼ Δ

XN
j¼1

Szjþ1S
z
j;

ðF4Þ

where the model parameters are defined in the main text.
An important detail worth mentioning is that the ferro-

magnetic ground state atΔ=J ¼ −2.0 is twofold degenerate
(one state, corresponding to one of the two z polarizations).
While being a trivial observation, this requires certain care
when analyzing the physics of the protocols found by the
agent. In particular, notice that energy minimization is
insensitive to this degeneracy, and hence, the final state can
appear as an arbitrary superposition of the two ferromag-
netic states and still have the correct ground-state energy.
This result leads to ambiguity when computing the fidelity
of being in the target state: Related to this, the cost function
landscape likely develops a continuous one-dimensional
structure for the (degenerate) global minima. Because we
are interested in energy minimization, here we define the
fidelity using the projector to the ground-state manifold

P ¼ jψ ð1Þ
� ihψ ð1Þ

� j þ jψ ð2Þ
� ihψ ð2Þ

� j:

FτðTÞ ¼ Fðfαjgqj¼1; τÞ ¼ jhψ ð1Þ
� jUðfαjgqj¼1; τÞjψ iij2

þ jhψ ð2Þ
� jUðfαjgqj¼1; τÞjψ iij2;

where jψ ð1Þ
� i; jψ ð2Þ

� i are any two orthonormal states that
span the doubly degenerate ground-state manifold (e.g., the
two FM ground states).
Figure 19 shows a comparison between CD-QAOA and

conventional QAOA for FM, XY, and Haldane target states:
The top row shows the result of energy-density minimi-
zation (cf. Fig. 3); the bottom row, on the other hand,
displays the many-body fidelity associated with the same
protocols. For Δ=J ¼ 0.5, CD-QAOA allows us to reach
the target topological Haldane state faster, as compared to
conventional QAOA. Notice, also, that the gauge potential
ansatz appears to be essential for reaching the target for
both the XY (Δ=J ¼ −0.5) and FM states (Δ=J ¼ −2.0),
which becomes particularly obvious from the many-body
fidelity curves. The latter also reveals an interesting detail:

FIG. 18. Spin-1=2 Ising model: many-body fidelity maximi-
zation and corresponding quantity (inset, log scale) against
protocol duration T for different system sizes N. The QAOA
parameters are q ¼ 3 and A ¼ fZjZ þ Z; X;Y; XjY; YjZg. The
model parameters are the same as in Fig. 1.

FIG. 17. Spin-1=2 Ising model: energy minimization (top) and
many-body fidelity maximization (bottom) against protocol
duration T. We compare CD-QAOA with ACD−QAOA ¼ fZjZ þ
Z; X;Y; XjY; YjZg (red), CD-QAOA with A0

CD−QAOA ¼ fZjZ þ
Z; X;Yg (green), and conventional QAOA with AQAOA ¼
fZjZ þ Z; Xg (blue). The model parameters are the same as in
Fig. 1, with the number of spins N ¼ 14.
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At Δ=J ¼ 0.5, a regime emerges around T ≈ 5, where the
QAOA fidelity is better than the CD-QAOA fidelity.
However, this peculiarity below the quantum speed limit
can be explained, recalling that the RL agent is given the
(negative) energy density as the reward signal and not the
fidelity (note that CD-QAOA outperforms QAOA in
energy).
In order to investigate in detail the protocols found by

CD-QAOA, we fix a duration T and consider the time
evolution of the state, jψðtÞi ¼ Uðfαjgqj¼1; τÞjψ ii, for three
physical quantities:

(i) The energy,

EðtÞ ¼ hψðtÞjH�jψðtÞi;

provides a measure of how far away in the cost
function landscape the state is, at any given
time t ∈ ½0; T�.

(ii) The instantaneous fidelity,

FτðtÞ ¼ jhψ�jψðtÞij2

(and its generalization to the doubly degenerate
ground-state manifold), measures how far the cur-
rent state is from the target state jψ�i in the Hilbert
space; typically, we choose the ground state as the
target state jψ�i ¼ jψGSðHÞi.

(iii) The entanglement entropy of the half chain,

SN=2
ent ðtÞ ¼ −trA½ρAðtÞ log ρAðtÞ�;
ρAðtÞ ¼ trĀjψðtÞihψðtÞj;

where A denotes a contiguous spacial region with a
complement Ā comprising half the periodic chain, and
ρAðtÞ is the reduced density matrix on A at time t. For
many-body systems, it is common to look at the
entanglement entropy per site, which for spin-1
systems lieswithin the interval2N−1SN=2

ent ∈ ½0; log 3�.
Figure 20 shows the time evolution of the energy, fidelity,

and entropy density, for all three target states of interest. For
Δ=J ¼ 0.5, transferring the population from the AFM initial
state to the Haldane state can be obtained equally well using
either QAOA or CD-QAOA. Table V(d) shows the optimal
protocol found by the RL agent: Notice the three vanishing
durations α2 ¼ α17 ¼ α18 ¼ 0; factoring them out, we re-
cover precisely the conventional QAOA sequence (albeit
with q odd). Thus, we see that the CD-QAOAmay converge
to conventional QAOAwhenever the latter provides a high-
reward sequence. This result exemplifies our claim that CD-
QAOA generalizes QAOA successfully. Of course, it is not
clear whether this is the true global minimum of the cost
function landscape (the RL agentmakes use of the additional
gauge potential terms for T < 7). Nevertheless, all physical
quantities are expected to be prepared with similar accuracy
under both protocols: To see this, notice that the

FIG. 19. Anisotropic Heisenberg spin-1 chain: energy minimization against protocol duration T—the corresponding energy (top row)
and many-body fidelity (bottom row) for three ordered target states, corresponding to the ground state of the ferromagnetic (left,
Δ=J ¼ −2.0), XY (middle, Δ=J ¼ −0.5), and Haldane (right, Δ=J ¼ 0.5) target states, respectively. The empty symbols mark the
duration at which we show the evolution of the system in Fig. 20. The model parameters are the same as in Fig. 3.
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entanglement entropy density depends only on the quantum
state (unlike expectation values of observables) and that its
value at t ¼ T is close to the value for the target state (dashed
horizontal line). Importantly, the entanglement remains area-
law type, as seen by the values being much smaller than the
maximum entropy per site, log(3), suggesting the existence
of a local effective Hamiltonian that generates the population
transfer process dynamically.
The best sequence for targeting the XY state at Δ=J ¼

−0.5 is shown in Table V(c). Although its structure is more
complicated, factoring out the vanishing αj, we can discern
two clear patterns: (i) The sequence starts and ends with
two different single-particle basis rotations, and (ii) there is
an alternating subsequence based on the subset
fXjX þ YjY; Yg ⊊ ACD−QAOA. Interestingly, the only
gauge potential term used by the RL agent is the exper-
imentally accessible single-particle Y rotation, and it is
sufficient to reach the target with very high many-body
fidelity. For comparison, conventional QAOA appears

insufficient to prepare the target state for the circuit depth
of q ¼ 18 (p ¼ 9). The advantage of CD-QAOA is also
visible in the entanglement entropy density curve: QAOA
can easily lead to volume-law entanglement, while CD-
QAOA manages to generate as little entanglement as
needed for the target state.
The discrepancy between conventional QAOA and CD-

QAOA is best visible in the FM state preparation at
Δ=J ¼ −2.0. In this case, a naive application of QAOA
with the set AQAOA ¼ fXjX þ YjY; ZjZg is a priori
doomed to fail: Starting from the initial AFM state, which
is orthogonal to the target FM manifold, the resulting
QAOA unitaries leave the target AFM manifold invariant;
in other words, transitions between the initial and the target
states are forbidden by selection rules within the QAOA
dynamics. Therefore, the many-body fidelity remains zero
at all times during the QAOA evolution. The energy and
entanglement entropy curves certify that the state under-
goes nontrivial dynamics: Similar to the XY state, QAOA

FIG. 20. Anisotropic Heisenberg spin-1 chain: time evolution generated by the protocol given by CD-QAOA (blue line) and
conventional QAOA (red line) for the three target states, corresponding to the ferromagnetic (Δ=J ¼ −2.0), XY (Δ=J ¼ −0.5), and
Haldane (Δ=J ¼ 0.5) target states, respectively. Three quantities are shown: many-body fidelity (first row), energy ratio (second row),
and the entanglement entropy density of the half chain (third row). The horizontal dashed line in the entanglement entropy curve shows
the value in the target state, while the shaded area for the FM state denotes that in the span of the doubly degenerate ground-state
manifold. The protocols correspond to the duration T ¼ 7 in Fig. 3. The related CD-QAOA protocol sequences are given in Table V(b)
[ferromagnetic (Δ=J ¼ −2.0)], Table V(d) [XY (Δ=J ¼ −0.5)], and Table V(c) [Haldane (Δ=J ¼ 0.5)]. The simulation parameters are
the same as in Fig. 3.
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creates volume-law entanglement and cannot reach the FM
ground-state manifold in energy, while CD-QAOA is well
behaved and sufficient to prepare the target. The CD-
QAOA protocol sequence is shown in Table V(b): While
we do not discern an obvious pattern, we emphasize that,
this time, the RL agent makes use of both single-particle
and two-body gauge potential terms.
Next, we show the system-size scaling of the energy

curves for the three target states in Figs. 21(b)–21(d). Similar
to the spin-1=2 Ising chain, we find very little system-size
dependence for the Haldane (b) and XY states (c). However,
we cannot extrapolate the results to the thermodynamic limit
because of the relatively small system sizes we were able to
investigate. System-size effects are more pronounced for the
ferromagnetic state (d), which is the one furthest away in
Hilbert space from the initial perfect antiferromagnet.
Lastly, we mention in passing that we do not show results

on preparing the AFM ground state at Δ=J ¼ 2.0 since this
problem is somewhat trivial: Indeed, starting from a perfect
AFM in the z direction, the AFM ground state of the spin-1
Heisenberg model can be easily reached, even using
adiabatic evolution, because it lies within the AFM phase.

3. Lipkin-Meshkov-Glick model

In the main text, we also introduced the ferromagnetic
LMG model, described by the total spin Hamiltonian

H ¼ −
J
N
ðSxÞ2 þ h

�
Sz þ N

2

�
:

Figure 22 shows the comparison between CD-QAOA
and QAOA for two more values of h=J ¼ 0.1 (deep in the

ferromagnetic regime) and h=J ¼ 0.9 (close to the critical
point at h=J ¼ 1.0). While the behavior for h=J ¼ 0.1 is
qualitatively similar to h=J ¼ 0.5 (discussed in the main
text), we see that, close to the critical point, the two-body
gauge potential terms X̂Y and ẐY may offer some degree of
improvement below the quantum speed limit, as compared
to using only the single-body Ŷ term. We mention, in
passing, that we observed a stronger system-size depend-
ence in the optimal protocol found by the RL agent in the
immediate vicinity of the critical point hc=J ¼ 1.

4. Spin-1 Ising chain

Finally, let us turn to the spin-1 Ising chain:

HðλÞ ¼ λðtÞH1 þH2;

H1 ¼
XN
j¼1

JSzjþ1S
z
j þ hxSxj ; H2 ¼

XN
j¼1

hzS
z
j ðF5Þ

FIG. 21. System-size scaling of the energy minimization
against protocol duration T for different system sizes N:
(a) Spin-1 Ising chain; (b)–(d) anisotropic Heisenberg spin-1
chain for Δ=J ¼ −2.0, Δ=J ¼ −0.5, Δ=J ¼ 0.5, respectively.
Note that the y-axis scale is different for the spin-1 Ising model in
panel (a). The model parameters are the same as in Figs. 7(a)
and 3(b)–3(d), correspondingly.

FIG. 22. LMG model: energy minimization against protocol
duration T using conventional QAOA (blue square) and CD-
QAOA (red dashed line, green solid line). The model parameters
are the same as in Fig. 5 but for h=J ¼ 0.1 (top panel) and h=J ¼
0.9 (bottom panel).
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(see main text for discussion of the model parameters).
Using this model, we compare four state preparation
techniques: CD-QAOA, conventional QAOA, CD-driving
using a variational gauge potential, and adiabatic evolution.

In order to compare these four methods, we first
investigate their energy budget, i.e., the amount of energy
required by the corresponding protocols. This approach is
necessary since variational CD driving does not put any
constraints on the magnitude of the expansion parameters
βjðλÞ (cf. Appendix E), and we know that larger energies
(i.e., generators of unitaries Hj with large norms), in
general, allow for a faster population transfer. To quanti-
tatively measure the energy budget of a protocol, we use the
average energy density along the protocol trajectory

N ¼ 1

T

Z
T

0

dt
kHðtÞk

N
; ðF6Þ

where HðtÞ is a unified notation for the continuous
protocols in the case of adiabatic or CD driving, and the
piecewise-constant (in time) sequences in CD-QAOA and
conventional QAOA; kHk denotes the Hilbert-Schmidt
norm of the operator H. Since we are interested in
many-body systems, it is also natural to look at the energy
density, i.e., kHðtÞk=N. Figure 23 (bottom panel) shows
that N is on a similar scale for all four methods within the
range of durations of interest, which allows for a mean-
ingful comparison between them. As expected, CD driving
approaches adiabatic driving at large T since the gauge
potential term comes with a prefactor _λ, which vanishes for
T → ∞; in the opposite limit of T → 0, the energy budget
of CD driving blows up as a result of βjðλÞ being
unconstrained.
In Fig. 23 (top panel), we see that the many-body fidelity,

associated with the protocols obtained using energy-density
minimization, increases the performance contrast between
the performance of the different methods (cf. Fig. 7, main
text). Since the fidelity is defined as the overlap square of
the final with the target states [Eq. (F3)], like the entangle-
ment entropy, it is insensitive to any specific observable,
which implies that CD-QAOA outperforms the other three
methods on all observables, not just energy. This result is
anticipated because CD-QAOA combines the variational

FIG. 23. Spin-1 Ising model: energy minimization against
different protocol duration T for four different optimization
methods: CD-QAOA (red line), conventional QAOA (blue line),
variational gauge potential (green), and adiabatic evolution
(magenta). Two associated quantities are shown: many-body
fidelity Fτ (top panel) and normalized time-averaged energy
density N over the protocol (bottom panel). The empty symbols
mark the duration for which the evolution of physical quantities is
shown in Fig. 24. The parameters are the same as in Fig. 7.

FIG. 24. Spin-1 Ising model: time evolution generated by the four different methods—CD-QAOA (red line), conventional QAOA
(blue line), CD driving using the variational gauge potential (green line), and adiabatic evolution (magenta line). Three quantities are
shown: the many-body fidelity (left panel), energy (middle panel), and entanglement entropy of the half chain (right panel). The
protocols correspond to the empty symbols during T ¼ 12 in Fig. 7. The horizontal dashed line in the entanglement entropy curve shows
the value in the target state. The CD-QAOA protocol sequence is given in Table V. The model parameters are the same as in Fig. 7.
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TABLE V. Ising spin-1 chain and anisotropic Heisenberg spin-1 chain, with the protocol sequences and corresponding durations given
by CD-QAOA. The protocol (a) correspond to Ising spin-1 in Fig. 24; the (b), (c), (d) three sequences correspond to the three phases in
the same setting as Fig. 20. The short-hand notation is the same in Table I. Terms of zero durations are marked bold.

(a) Ising spin-1

Hamiltonian Duration

XjY 0.312
Y 0.299
Z 0.216
Y 0.717
Z 0.000
Y 0.537

ZjZ þ X 0.477
Y 0.054

ZjZ þ X 0.657
Z 0.000

ZjZ þ X 0.269
YjZ 0.274

ZjZ þ X 0.478
YjZ 0.372

ZjZþX 0.000
Z 1.794
XjY 0.072
Z 0.039
Y 1.007
Z 4.426

(b) Ferromagnetic (Δ=J ¼ −2.0Þ
Shorthand notation Duration

YjZ − YZ 0.122
XjX þ YjY 0.178
YZ 0.027
ZjZ 0.376
YjZ − YZ 0.234
ZjZ 0.000
XjX þ YjY 0.323
ZjZ 0.284
YjZ − YZ 0.366
ZjZ 0.000
XjX þ YjY 0.314
ZjZ 0.188
YjZ − YZ 0.535
Y 0.001
XjX 0.342
ZjZ 0.105
YjZ − YZ 0.538
XjX 0.208
Y 0.000
ZjZ 0.051
Y 0.658
YjZ − YZ 0.002
Y 0.900
Z 0.771
Y 0.005
XjY − XY 0.474
YjZ − YZ 0.000
XjXþ YjY 0.000

(c) XY (Δ=J ¼ −0.5Þ
Shorthand notation Duration

Y 0.795
XjX 0.000
Y 0.772
XjX þ YjY 0.143
XjX 0.383
Y 0.001
XjX þ YjY 0.284
XjX 0.180
XjX þ YjY 0.467
XjX 0.113
XjX þ YjY 0.635
XjX 0.097
XjX þ YjY 0.617
Y 0.000
ZjZ 0.162
XjX þ YjY 0.265
XjX 0.092
Z 1.995

(d) Haldane (Δ=J ¼ 0.5Þ
Shorthand notation Duration

XjX þ YjY 0.149
XjX 0.000
XjX þ YjY 0.052
ZjZ 1.376
XjX þ YjY 0.313
ZjZ 0.668
XjX þ YjY 0.187
ZjZ 0.723
XjX þ YjY 0.289
ZjZ 0.528
XjX þ YjY 0.218
ZjZ 0.561
XjX þ YjY 0.254
ZjZ 0.684
XjX þ YjY 0.360
ZjZ 0.639
XjX 0.000
Z 0.000
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power of QAOA with physical insights from CD driving.
Despite its better performance, notice how CD-QAOA also
has a smaller energy budget than either CD and adiabatic
driving.
To demonstrate the nonequilibrium character of the

optimal protocols found by the RL agent in this setup,
we fix T ¼ 12 and look at the time evolution of the energy,
the fidelity, and the entanglement entropy within the
learned protocol, cf. Fig. 24. While the protocol sequence
[Table V] appears impenetrable, we remark that (i) the RL
agent makes use of both single-particle and two-body
gauge potential terms and (ii) some step durations αj are
found to vanish identically, suggesting that the value of q
may be reduced. As anticipated, the behavior of the
dynamics generated by the CD and adiabatic driving is
smooth, in contrast to the circuitlike, piece-wise, continu-
ous curves of QAOA and CD-QAOA. The highly non-
monotonic behavior of the energy curve shows that the
CD-QAOA dynamics can be highly nonequilibrium, which
likely stems from the RL objective (cf. Appendix A)—the
total expected return: the agent only cares about maximiz-
ing the reward at t ¼ T and is insensitive to any inter-
mediate values, allowing the agent to drive the system
through various states that are very far away from the target
(e.g., with respect to the fidelity). (Curiously, these bad-
energy states are all distinct since they have different
entanglement entropy, and the system does not visit the
same quantum state twice during the evolution.) The
nonsmooth and nonmonotonic behavior of the CD-
QAOA solution raises the question about how robust the
protocol is to small external perturbations—a topic of
future studies.

[1] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A.
Sen, and U. Sen, Ultracold Atomic Gases in Optical
Lattices: Mimicking Condensed Matter Physics and Be-
yond, Adv. Phys. 56, 243 (2007).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Many-Body Physics
with Ultracold Gases, Rev. Mod. Phys. 80, 885 (2008).

[3] H. Häffner, C. F. Roos, and R. Blatt, Quantum Computing
with Trapped Ions, Phys. Rep. 469, 155 (2008).

[4] R. Blatt and C. F. Roos, Quantum Simulations with Trapped
Ions, Nat. Phys. 8, 277 (2012).

[5] C. Monroe and J. Kim, Scaling the Ion Trap Quantum
Processor, Science 339, 1164 (2013).

[6] M. H. Devoret and R. J. Schoelkopf, Superconducting
Circuits for Quantum Information: An Outlook, Science
339, 1169 (2013).

[7] M.W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. Hollenberg, The Nitrogen-Vacancy
Colour Centre in Diamond, Phys. Rep. 528, 1 (2013).

[8] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen,
Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors
for Physics and Biology, Annu. Rev. Phys. Chem. 65, 83
(2014).

[9] F. Casola, T. van der Sar, and A. Yacoby, Probing Con-
densed Matter Physics with Magnetometry Based on Nitro-
gen-Vacancy Centres in Diamond, Nat. Rev. Mater. 3,
17088 (2018).

[10] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid
Quantum Circuits: Superconducting Circuits Interacting
with Other Quantum Systems, Rev. Mod. Phys. 85, 623
(2013).

[11] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell
et al., Quantum Supremacy Using a Programmable Super-
conducting Processor, Nature (London) 574, 505 (2019).

[12] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, Optimal Control of Coupled Spin Dynamics:
Design of NMR Pulse Sequences by Gradient Ascent
Algorithms, J. Magn. Reson. 172, 296 (2005).

[13] T. Caneva, T. Calarco, and S. Montangero, Chopped
Random-Basis Quantum Optimization, Phys. Rev. A 84,
022326 (2011).

[14] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, A
Variational Eigenvalue Solver on a Photonic Quantum
Processor, Nat. Commun. 5, 4213 (2014).

[15] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin,
Quantum Approximate Optimization Algorithm: Perfor-
mance, Mechanism, and Implementation on Near-Term
Devices, Phys. Rev. X 10, 021067 (2020).

[16] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D.
Venturelli, and R. Biswas, From the Quantum Approximate
Optimization Algorithm to a Quantum Alternating Operator
Ansatz, Algorithms 12, 34 (2019).

[17] M. Demirplak and S. A. Rice, Adiabatic Population Trans-
fer with Control Fields, J. Phys. Chem. A 107, 9937 (2003).

[18] M. Berry, Transitionless Quantum Driving, J. Phys. A 42,
365303 (2009).

[19] M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov,
Geometry and Non-adiabatic Response in Quantum and
Classical Systems, Phys. Rep. 697, 1 (2017).

[20] M. Bukov, D. Sels, and A. Polkovnikov, Geometric Speed
Limit of Accessible Many-Body State Preparation, Phys.
Rev. X 9, 011034 (2019).

[21] We focus on pure states, although the cost function can
trivially be generalized to mixed states.

[22] V. Jurdjevic and H. J. Sussmann, Control Systems on Lie
Groups, J. Diff. Eqs. 12, 313 (1972).

[23] L. Zhu,H. L. Tang,G. S. Barron, F. A. Calderon-Vargas, N. J.
Mayhall, E. Barnes, and S. E. Economou, An Adaptive
Quantum Approximate Optimization Algorithm for Solving
Combinatorial Problems on a Quantum Computer, arXiv:
2005.10258.

[24] J. R.McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren Plateaus in Quantum Neural Network
Training Landscapes, Nat. Commun. 9, 4812 (2018).

[25] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles,
Cost Function Dependent Barren Plateaus in Shallow
Parametrized Quantum Circuits, Nat. Commun. 12, 1791
(2021).

[26] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An Initialization Strategy for Addressing Barren Plateaus in
Parametrized Quantum Circuits, Quantum 3, 214 (2019).

JIAHAO YAO, LIN LIN, and MARIN BUKOV PHYS. REV. X 11, 031070 (2021)

031070-30

https://doi.org/10.1080/00018730701223200
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1038/nphys2252
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1146/annurev-physchem-040513-103659
https://doi.org/10.1146/annurev-physchem-040513-103659
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.3390/a12020034
https://doi.org/10.1021/jp030708a
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1016/j.physrep.2017.07.001
https://doi.org/10.1103/PhysRevX.9.011034
https://doi.org/10.1103/PhysRevX.9.011034
https://doi.org/10.1016/0022-0396(72)90035-6
https://arXiv.org/abs/2005.10258
https://arXiv.org/abs/2005.10258
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.22331/q-2019-12-09-214


[27] P. Huembeli and A. Dauphin, Characterizing the Loss
Landscape of Variational Quantum Circuits, Quantum
Sci. Technol. 6, 025011 (2021).

[28] Considering τj as a choice of unitaries, we impose the extra
constraint that, even though unitaries can be repeated in the
sequence τ, the same unitary cannot appear consecutively
(or one can combine the two corresponding choices τj into a
single variable).

[29] A. G. R. Day, M. Bukov, P. Weinberg, P. Mehta, and D. Sels,
Glassy Phase of Optimal Quantum Control, Phys. Rev. Lett.
122, 020601 (2019).

[30] M. Bukov, A. G. R. Day, P. Weinberg, A. Polkovnikov, P.
Mehta, and D. Sels, Broken Symmetry in a Two-Qubit
Quantum Control Landscape, Phys. Rev. A 97, 052114
(2018).

[31] A similar procedure appeared recently in Ref. [32], although
they considered a different problem setup with greedy or
beam search algorithms.

[32] L. Li, M. Fan, M. Coram, P. Riley, and S. Leichenauer,
Quantum Optimization with a Novel Gibbs Objective
Function and Ansatz Architecture Search, Phys. Rev.
Research 2, 023074 (2020).

[33] In principle, one can use any optimizer that allows for
constraining the sum

P
j αj ¼ T.

[34] N. Lacroix, C. Hellings, C. K. Andersen, A. D. Paolo, A.
Remm, S. Lazar, S. Krinner, G. J. Norris, M. Gabureac, J.
Heinsoo, A. Blais, C. Eichler, and A. Wallraff, Improving
the Performance of Deep Quantum Optimization Algo-
rithms with Continuous Gate Sets, PRX Quantum 1,
110304 (2020).

[35] Y.Ding,Y.Ban, J. D.Martín-Guerrero, E. Solano, J. Casanova,
and X. Chen,Breaking Adiabatic QuantumControl with Deep
Learning, Phys. Rev. A 103, L040401 (2021).

[36] D. Sels and A. Polkovnikov,Minimizing Irreversible Losses
in Quantum Systems by Local Counterdiabatic Driving,
Proc. Natl. Acad. Sci. U.S.A. 114, E3909 (2017).

[37] A. Hartmann and W. Lechner, Rapid Counter-Diabatic
Sweeps in Lattice Gauge Adiabatic Quantum Computing,
New J. Phys. 21, 043025 (2019).

[38] J. Wurtz, P. W. Claeys, and A. Polkovnikov, Variational
Schrieffer-Wolff Transformations for Quantum Many-Body
Dynamics, Phys. Rev. B 101, 014302 (2020).

[39] N. N. Hegade, K. Paul, Y. Ding, M. Sanz, F. Albarrán-
Arriagada, E. Solano, and X. Chen, Shortcuts to Adiaba-
ticity in Digitized Adiabatic Quantum Computing, Phys.
Rev. Applied 15 (2021).

[40] M. Pandey, P. W. Claeys, D. K. Campbell, A. Polkovnikov,
and D. Sels, Adiabatic Eigenstate Deformations as a
Sensitive Probe for Quantum Chaos, Phys. Rev. X 10,
041017 (2020).

[41] Below, we sometimes abuse notation and set A ¼ fHjg,
denoting the set of unitaries by their generators.

[42] J. Wurtz and P. J. Love, Counterdiabaticity and the Quantum
Approximate Optimization Algorithm, arXiv:2106.15645.

[43] G. Matos, S. Johri, and Z. Papić, Quantifying the Efficiency
of State Preparation via Quantum Variational Eigensolvers,
PRX Quantum 2, 010309 (2021).

[44] W.W. Ho and T. H. Hsieh, Efficient Variational Simulation
of Non-trivial Quantum States, SciPost Phys. 6, 29 (2019).

[45] The role of the RL algorithm is to decide which three out of
the five unitaries Uj to apply and in which order.

[46] We define “order” in the context of phase transitions in
condensed matter physics.

[47] W. Chen, K. Hida, and B. C. Sanctuary,Ground-State Phase
Diagram of S ¼ 1 XXZ Chains with Uniaxial Single-Ion-
Type Anisotropy, Phys. Rev. B 67, 104401 (2003).

[48] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa,
Entanglement Spectrum of a Topological Phase in One
Dimension, Phys. Rev. B 81, 064439 (2010).

[49] A. Langari, F. Pollmann, and M. Siahatgar, Ground-State
Fidelity of the Spin-1 Heisenberg Chain with Single Ion
Anisotropy: Quantum Renormalization Group and Exact
Diagonalization Approaches, J. Phys. Condens. Matter 25,
406002 (2013).

[50] H. Lipkin, N. Meshkov, and A. Glick, Validity of Many-
Body Approximation Methods for a Solvable Model: (I).
Exact Solutions and Perturbation Theory, Nucl. Phys. 62,
188 (1965).

[51] R. Botet and R. Jullien, Large-Size Critical Behavior of
Infinitely Coordinated Systems, Phys. Rev. B 28, 3955
(1983).

[52] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B.
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