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ABSTRACT OF THE DISSERTATION
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by
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Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2023

Professor Dennis W. Hong, Chair

Delivering packages from a warehouse to the customer’s front door consists of

a diverse set of sub-tasks, from packing packages into a truck to organizing them

based on destination and even carrying them to a doorstep. Such a variety of

behaviors can often be difficult for a single robot to achieve efficiently. Numerous

research papers have proposed splitting the tasks amongst specialized robots with

some dedicated to robotic arm manipulation and others to wheeling packages to

their destination. Recently, companies have even started to pivot to the full gen-

eralized solution of humanoid robots. Although some success has been seen with

both solutions, these technologies occupy large amounts of space, often have large

costs, and have significant limitations that prevent parallelization and scalability.

As a result, this reduces the amount and efficiency of overall package delivery

capacity.

To resolve these bottlenecks, we introduced a new robotic platformed called

LIMMS, or Latching Intelligent Modular Mobility System. LIMMS is a symmetric

6 degree of freedom (DOF) modular manipulator robot with a latching mechanism

and wheels at both ends. In one configuration, LIMMS can use its end effector to

latch itself to designated anchor points to behave like a traditional manipulator

and move boxes around. Meanwhile, by placing anchor points on the box, multiple
ii



LIMMS can attach themselves to a box to act as legs in which the box is the

body to facilitate transportation across larger distances including outside of the

truck. In this way, all package delivery sub-tasks are covered by the different

modes LIMMS can be in. The only limiting factor to the functionality of LIMMS

is the anchor points. These anchor points, sometimes referred to as latching

patterns or patterns, can be as close as a few inches or even tangent to each other

given the box is sturdy enough. Many more LIMMS can work together to lift

heavier boxes than any humanoid robotic system could. Not only has its physical

constraints been reduced, but its spatial constraints as well. When parallelizing

a task, having more robots can increase efficiency. However, too many robots

working together can cause congestion leading to an inefficient system. With

the latching mechanism, LIMMS can use any surface with latching patterns, e.g.,

walls, ceilings, boxes. This increases the overall operational surface area reducing

the chance for gridlocks. With all of these features, LIMMS can be used to solve

a large variety of problems more efficiently that no other system can due to its

design.

This manuscript aims to detail the development and research findings of

LIMMS. In particular there are five major contributions. The first being the

introduction of LIMMS as a platform and the prototypes designed and built.

Secondly, the latches on LIMMS are designed in such a way that it admits

a large region for which latching is theoretically guaranteed. This theoretical

boundary exceeds existing self-aligning mechanisms. The third contribution is

the use of Jacobian fields to determine trajectories in which the load at the

end effector is balanced through the structure of the robots, such that the

effective torque required is much lower. Fourthly, we formulate an optimization

problem to generate trajectories for LIMMS to use to deliver packages. Lastly,

we demonstrate LIMMS as a concept with four LIMMS connecting to a box to

form a quadruped to deliver itself and then return to the truck.
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IC instant center, Fig. 3.4

l1, l2 arc length of unblocked α1 and α2, Fig. 3.12
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Subscripts Definition
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CHAPTER 1

Introduction

Last mile delivery presents a very challenging problem due to the uncontrolled,

dynamic environments and the varied tasks that the robot must face to complete a

successful delivery. To start, delivery vehicles are filled to capacity and packages

often are shuffled and flipped around during transit. Then at the destination,

packages need to be correctly identified and unloaded. Once outside of the vehicle,

traversing the landscape to the door proves difficult as cracked, concrete paths and

curbs in front of skyscrapers or single story houses with lawns and dogs must all

be accounted for. The package may need to be delivered up multiple stairways

while avoiding people and animals along the way. Even after all that, the package

deliverer now needs to make it back to the delivery truck in a timely manner and

prepare for the next delivery.

For robotics attempting last mile delivery, the criteria required for unloading

the packages from the delivery truck and moving them to their desired location are

vastly distinct. Often times robots are usually highly specialized for a particular

task. As such a number of research directions explored the collaboration between

different types of robots, such as, manipulators mounted on top of quadrupeds [6,7]

or manipulators robots working with wheeled robots [8, 9]. These technologies,

though theoretically capable of last mile delivery, are not specifically designed for

package delivery. Two separate existing systems are simply combined.

Practical solutions that have been adopted recently only solve a sub-task rather

than the full one, meaning that the robots can be specialized. For example,

Starship robot [1] as seen in Fig. 1.2a is designed to wheel contents to the end user.

They require the vendors and customers to do all the manipulation. Couriers and
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Figure 1.1: LIMMS, which stands for Latching Intelligent Modular Mobility System, concept
depiction of it doing last mile delivery. First when inside the truck, LIMMS can sort packages
ahead of time a queue them as needed. It can behave like a manipulator by fixing its base on
the truck walls with a latching mechanism. Four LIMMS can then attach to the box to move
the package like a quadruped robot by using the box as its body. Once the package is delivered,
LIMMS can return to the truck in a wheeled mode.

businesses have to place the package into Starship robot’s cargo bay, and recipients

have to remove the package when the robot arrives. Starship robots only handle

transportation. Numerous robots, such as Kiva robots [10] which move shelves in

large warehouses for workers to sort, have been widely adopted in industry but

confined to tasks preceding last mile delivery.

Wheeled robots by design are constrained to moving atop planes, though be it

very efficiently. When the environment is unknown, it is difficult for these systems

to plan in real-time a proper route that maintains the terrain is flat enough while

avoiding obstacles or dead-ends. Even when operating in the presence of multiple

wheeled robots, the two dimensional planar constraints often causes bottlenecks

in the absence of complex coordination. In warehouses it is not uncommon to

have robots waiting in place while others are moving to avoid colliding with them.
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This can have a cascading effect where more and more robots end up stalled

on the floor. Effectively, wheeled robots change the boundaries of other robots’

operational space at any given time. Each move a robot establishes a new physical

constraint. Scaling up to hundreds or thousands of these robots becomes very

difficult in terms of efficient planning. Trucks, on the other hand, have a much

smaller floor surface area than a warehouse. This exacerbates the gridlock issue.

Having too many wheeled robots confined in a space can make it more inefficient

than a single robot, e.g. a huge traffic jam.

From this perspective drones are much better since they can utilize all three

dimensions. Amazon Prime Air [2], see Fig. 1.2b, has been testing this service for

years without large adoption. This in part could be due to several factors including

the types of spaces they can safely and reliably operate in. Noise and airspace

regulations as well as safety concerns limit geographically where and when drone

deliveries can be made. Additionally, any apartment complex with a mail room

would not be able to easily receive any packages. The weather is another factor

that can hamper drone usage as well.

Robots that are able to handle more complex tasks are often more complex

in design and larger in scale. ANYmal for instance, as shown in Fig. 1.2c, is a

quadruped robot [3, 7] about the size of a large dog and is capable of traversing

a far greater variety of terrains and obstacles than a wheeled robot could. With

the additional degrees of freedom (DOF) quadrupeds can even manage to twist

their bodies to unload packages from their backs onto the ground. Quadrupeds

like ANYmal have been outfitted with wheels to provide efficient locomotion over

flat surfaces [11]. Other quadrupeds have been shown to be able to convert two

of its legs to arms for simple manipulation [12].

In this sense humanoid robots can be viewed as a more complex quadruped

robot with more general capabilities. Delivery robots would ideally be humanoid

robots since they theoretically can do what humans do in environments designed
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(a) (b)

(c) (d)

Figure 1.2: Existing delivery robot platforms: (a) Starship robot [1], (b) Amazon Prime Air
drone [2], (c) ANYmal quadruped robot [3], (d) Digit humanoid robot [2].

for humans. Humanoid robots such as Digit, as seen in Fig. 1.2d, have been

proposed as all purpose platforms capable of last mile delivery [2].

General, legged-manipulation systems like humanoids and to an extent

quadrupeds tend to have a higher cost of transport [13], which increases the

cost per package. Legged systems, additionally, require a much larger spatial

footprint reducing the total space devoted to packages. This compounding effect

can drastically decrease the efficiency of an automated last mile delivery system.

Therefore, legged systems, though capable of fulfilling the entire last-mile delivery

task, are not cost efficient for scale and parallelizability for wide adoption.

To overcome these limitations other platforms possess, we propose LIMMS,

which stands for Latching Intelligent Modular Mobility System. This robot as

the name implies is a 6-DOF, modular arm-like robotic system with latching

mechanisms at both ends allowing it to fix one end to a latching pattern. In
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this way, either side of the robot could be the robots base. Conceptually, each

latch is driven by a single motor with two output shafts where the other output

shaft drives a wheel. When multiple LIMMS fix their bases to a box, it can

behave like a quadruped robot where the box is its body and wheels provide

efficient transportation over flat terrain. By fixing its base to different surfaces,

LIMMS can also behave like an arm for manipulation or modes that combine

manipulation and locomotion. When a large number of LIMMS work together,

they can cooperate and take on various responsibilities to optimize the last-mile

delivery problem in more efficient ways not considered before.

Similar modular arm-like robotic concepts have been first proposed for space-

craft applications, although none of them have incorporated the use of them to

transform themselves into a system like a quadruped. Using a system without a

fixed base in space reduces the burden on each end effector actuator when serving

the role as the base of the robot, which has to additionally carry any load as

well as the full robot itself. The Mobile Servicing System with its Space Station

Remote Manipulator System and the European Robotic ARM from the Interna-

tional Space Station (ISS) are a few examples of space manipulators that can

both use attachment points and move end-over-end to different parts of the ISS

for servicing and maintenance [14–17]. Truss manipulators have taken inspiration

from these space manipulators in being able to construct large truss structures

that have many latching points along each truss to traverse upon [18,19].

More generally these types of robots can be classified as modular self-

configurable robots (MSR), which tends to focus more on connecting with each

other to reconfigure themselves into more sophisticated systems [20]. LIMMS

technically could do this albeit with limited use cases since the scale of a singular

robot is much larger, on the order of a meter, than the typical MSR. One

of the first leading papers that started the MSR field compared MSR to cells

reorganizing themselves with a single robotic cell being on the scale of centimeters
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[21]. The field has now branched out to other MSR systems such as LIMMS

where now its environment and objects it manipulates can be incorporated into

the system’s structure itself for even more complex behaviors [2].

A conceptual rendering of how LIMMS operates is shown in Fig. 5.1. The

delivery vehicle makes its way down the street to the address of the package

recipients location. The walls, floors, ceiling of the truck and the surfaces of the

boxes are lined with simple anchor points, also referred to as latching patterns, to

which LIMMS can attach one end to. During the driving period, LIMMS attaches

to these surfaces to find and move the next box towards the front of the truck.

Once close to the desired location, four LIMMS can attach themselves to the

delivery box to form a quadruped with the box serving as the body of the new

system. The quadruped would then climb down from the truck and make its way

over the curb and up stairs to the front door of the customer. The wheels at the

end effectors closest to the ground can also be for more efficient locomotion when

in this mode. Once it reaches its target location, the quadruped can rest its body

near the front door, at which point each LIMMS unit can detach from the box.

LIMMS can either return as a single unit or attach with other LIMMS, depending

on the environment, to return to the delivery truck for the next package. Given

the size of LIMMS many units can fit into the delivery truck by fitting on the

roof or other less used places. This allows for LIMMS to scale to larger irregular

packages and parallelize to a large quantity easily.

This section was followed arguments made from [2]. The rest of this manuscript

is organized in the following manner: Chapter 2 talks about the design considera-

tion from concept to hardware as described in [2]. It also goes over each different

prototype that is used for experiments in latter chapters. Chapter 3 describes the

self-aligning latching mechanism that maximizes theoretical guarantees derived in

[22, 23] for successful latching. At the very end hardware implementations and a

locking mechanism is presented. Chapter 4 introduces the latest work in LIMMS
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that takes advantage of the systems unique kinematics to reduce the overall load

experienced by the joints. Chapter 5 discusses an offline mid-level planner to

optimize for a particular task, such as coordinating between two to four LIMMS

to move a box out of a truck [24]. The author collaborated with a colleague

by forming logical constraints necessary for the optimization formulation and the

environment in which the results were demonstrated. Finally, Chapter 6 covers

final thoughts on the works presented in all previous sections, on the future and

past experiences of LIMMS, and more broadly on the contributions to the field of

robotics.
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CHAPTER 2

Design

This chapter is focused on the overall design iterations of LIMMS body excluding

any in-depth discussion on the latches. The latching mechanism has its own

chapter. Please see Chapter 3 for a more detailed description of the latching

mechanism. Since this is a complex project with a short development horizon,

the focus has been on producing prototypes that were capable of demonstrating

the feasibility of LIMMS. Henceforth, much emphasis has been placed on the

mechanical design. Similarly, this chapter focus on the mechanical design, since

most of the electronics, sensors, and computational units are mostly off the shelf

and not optimized in any significant way. There are three distinct prototypes of

LIMMS that we built and tested: prototype iteration 1, prototype iteration 2, and

BEAR (Backdrivable electromechanical actuators for robotics) LIMMS prototype.

These suffice for a proof of concept and will be referenced throughout. However,

there are additional improvements required for achieving the original stated goal

for last mile delivery. This section’s contributions can be summarized by the

following:

1. Detailed LIMMS kinematic considerations and assumptions,

2. Established minimum torque requirements for feasibility of each mode in

simulation, and

3. Presented an early stage hardware prototypes of LIMMS.

This section was expanded upon from [2].
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2.1 Considerations & Assumptions

For practical purposes the design requirements depend on the average case of

package deliveries. This limits the weights and sizes that will be considered. The

travel distance and obstacles encountered are also restricted to simple door-to-

door delivery in a suburban neighborhood.

Based on public statistics and statements made, majority of Amazon’s deliver-

ies, 86%, weigh under 5 lbs, which is a target weight goal for their drone delivery

service [25]. For LIMMS the target weight capacity per package is 2 kg. This

would cover a significant portion of packages for an e-commerce company. The-

oretically, in the case of much heavier packages the number of LIMMS working

together can scale by adding more latching patterns.

The packages will take the form factor of cardboard boxes. To make stacking

boxes considered consisted of those coming in multiples of 12 in (≈30 cm) for

any dimension. The smallest box being 12 in × 12 in × 12 in. The largest box

we consider is elongated in one dimension to be 24 in × 12 in × 12 in. This

requirement makes for easier stacking and organization within a delivery vehicle.

For round trips from the vehicle to the porch, it is presumed to be 50 m, and

the most common obstacles for locomotion are curbs and steps. In the United

States curb heights are standardized to be 6 in (≈15 cm) [26]. Stairs leading to

the front door, though, can vary much more. The California Building Code states

that the maximum stair height is 7 in (≈18 cm) with a minimum depth of 11 in

(≈28 cm) [27]. To determine the duty cycle for LIMMS, the following schedule is

assumed:

1. Idle in delivery vehicle and charging battery (15 min).

2. Locate and attach to the delivery box (5 min).

3. Enter quadruped mode and get perception data (3 min).
9



4. Use wheels or trot towards destination (5 min).

5. Detach and return back to the delivery vehicle (5 min).

This section was expanded upon from [22,23].

2.2 Kinematics

Given the complexity of trying to manipulate boxes that have been shuffled around

in a truck without detrimental collisions and coordination with other LIMMS,

it is advantageous to have as many DOFs as possible. Given that either side

could be the base any additional actuators could hinder the robots performance.

Therefore, 6 DOFs was decided upon, so that at minimum it would have sufficient

DOFs to reach positions and orientations of latching patterns within its workspace.

With the bases being able to switch, those DOFs were placed in a nontraditional

symmetric fashion. The symmetry would allow for either end to serve in any

position irrespective of the particular role the LIMMS unit was serving at the

time. This would simplify coordination and eliminate constraints determined by

tasks that require a particular end as a base.

2.2.1 Joint Configuration

For comparison a traditional 6-DOF robotic manipulator arm usually has a 3-

DOF wrist for orientation and an elbow joint with 2 more DOFs at the base for

yaw-pitch. This configuration features a couple of advantages. One is that solving

its kinematics and inverse kinematics equations can be done in closed form. The

second is that since only one end serves as its base the torque requirements for

the base motors can be much larger to compensate for the weight of the robot

while maintaining smaller lighter actuators at the wrist.

Flipping a traditional robotic manipulator, similar to LIMMS, where its wrist
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(a)
(b)

Figure 2.1: First prototype iteration of LIMMS joint configurations without latches shown for
clarity. (a) LIMMS 6-DOF joint configuration. (b) Left depicts a front view of LIMMS with
joint frames. Right shows a side view. Note that these are nontraditional DH frames.

would serve as the new base of the robot would result in numerous disadvantages.

The arm would now consist of a new 3-DOF base and a new 2-DOF wrist. The

base motors of traditional robot arms are optimized to carry much of the inertia,

resulting in the new 2-DOF wrist being much heavier than its original configura-

tion. Moreover, its new 3-DOF base would have a much lower maximum torque

output that probably will not even be capable of lifting the arm itself with its

small wrist actuators. Effectively, this leads to any traditional robotic manipu-

lator configuration of the joints to favor one end as its base and suffer a loss in

most of its payload capacity in its other, assuming it can even function with its

new 3-DOF base. Even if all actuators consisted of similar power and weight,

the system would still favor the wrist for fine orientation control. LIMMS, on

the other hand, keeps a symmetric configuration with no single side being more

advantageous than the other.

LIMMS is designed with at 6-DOF symmetric joint configuration as shown in

Fig. 2.1a. The configuration has bilateral symmetry consisting of 2 joints near each

end and 2 joints near the elbow. Viewing this with the perspective of a traditional

6-DOF manipulator configuration, the elbow of LIMMS has to now swing out to

reach certain configurations which can make planning difficult. This is intuitive
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but quite simplistic though. Joints 3 and 4’s orientation has an offset of π
4

from

their vertical tubes. This further complicates the coupling of the positions and

orientations by adding a 3 dimensional (3D) twist. This phenomenon complicates

the analytic inverse kinematics (IK) making it nontrivial to solve in closed form

unlike a traditional arm. Even symbolic IK solvers could not find a proper solution.

Hence, damped least squares method [28] was used for numerical IK.

The joint axis frames shown in Fig. 2.1b are not set up using conventional

Denavit–Hartenberg (DH) parameters. It is possible to use DH parameters by

using multiple intermediate stationary frames with rotations. The motivation for

non-standard DH parameters was to utilize symmetry as much as possible such

that when switching bases the systems forward kinematics (FK) resulted in the

least amount of change. Naturally aligned axes with motor output axes were

chosen in such a way that each frames’ location and orientation did not change

with the base. A byproduct of this choice of frames with its bilateral symmetric

design is that each FK transformation is very similar in form. Some frames are

even the same. The only difference is that switching bases causes a few sign flips

in a few offset angles. For algorithm developers this establishes a cleaner more

consistent and intuitive approach. Switching bases is algorithmically equivalent to

flipping a boolean, for example transforming from joint 6 to joint 5 is almost the

same mathematical transformation as from joint 1 to joint 2 except the rotation

around the X-axis is reversed. Thus, when solving FK only a single algorithm is

needed when different bases are attached.

Using its FK, LIMMS workspace dexterity can be compared with traditional

6-DOF robotic manipulator arms, in particular the Universal Robot UR5e [5] de-

picted in Fig. 2.2a to the right, as a baseline comparison to evaluate the joint

configuration. From the plot for the Universal Robot UR5e, it is clear that this

manipulator suffers from low dexterity at the outer edges, and along the Y-axis

there is a large region with approximately zero dexterity due to an offset between
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(a)

(b)

Figure 2.2: Dexterity index over the workspace [4] with a higher value in bight yellow, denoting
the end effector can reach more orientations at a specified location, and a value of zero in dark
blue, implying the space cannot be reached, for: (a) Universal Robot UR5e [5], a traditional
6-DOF robot manipulator, and (b) LIMMS, a nontraditional 6-DOF robot.

two joints at the base. Despite LIMMS having a similar base configuration as the

Universal Robot UR5e, the π
4

offset double joint elbow increases the workspace

dexterity near the Y-axis, as shown in Fig. 2.2b. The slight difference in radius
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of the workspace dexterity shown is due to the actual physical size of each hard-

ware in real life. They can always be scaled to be the same size for an abstract

comparison.

2.3 Torque Requirements

Even with the state assumptions and considerations provided in the previous sec-

tion, determining the torque requirements for each actuator is a nontrivial task,

especially without any preexisting prototype. A delicate balance is required in pro-

totyping. Theoretical or numerical calculations inform hardware and vice versa.

Both need to be taken into consideration without holding up the other. There-

fore, before manufacturing the first prototype we setup a simulated environment

in Gazebo simulator [29] and only considered three modes out of the potentially

numerous modes as a minimal requirement for completing the full task:

1. Two LIMMS as dual manipulators,

2. Four LIMMS attached to a box as a quadruped, and

3. Single LIMMS in self-balancing wheeled mode.

Simple controllers were implemented for each of these tasks to gain a rough esti-

mate of what the torque and velocity requirements were at each actuator.

As part of the manipulation task for in last mile delivery, boxes need to be

moved towards the back of the truck or reoriented in such a way that LIMMS

can enter into quadruped mode. To approximate what torques the motors needed

during this phase of last mile, two LIMMS were simulated to simultaneously lift

the same box and stack it onto another box as seen in Fig. 2.3. The box weighed

the target 2 kg weight. A simple position PID (proportional-integral-derivative)

controller was used independently for each LIMMS, i.e. decentralized control or

no feedback on coordination. The operational space trajectory for the stacking
14



(a) t = 0s (b) t = 5s (c) t = 10s

(d) Torque of the joints on a single LIMMS. (e) Velocity of the joints on a single LIMMS.

Figure 2.3: Two LIMMS where the bases are assumed to be anchored in the vertical plane lifting
a box. t frames are the trajectory via points used to create this trajectory. The qs in the plot
indicate the joint number. The lowest number joint refers to the base of the robot whereas the
higher the number the closer it is to the end effector.

motion used three via points. Interpolation was used between each points to get

the joint position commands.

By observing Fig. 2.3d and Fig. 2.3e an estimate of the torque and velocity,

respectively, can be made for the manipulation portion of last mile delivery. Since

each LIMMS unit performs similarly mirrored motions to lift the 2 kg box, the

torque output is similar. From the graphs, the results are in line with what was

expected. The motors at the base holding the weight of the entire robot along

with part of the load from the box experience consistently large loads as seen in

Fig. 2.4e q1. As the box moves further away, the torque arm becomes larger. In

a few instances joint 2, q2, surpasses the base joint in torque on two occasions.

This is of interest because joint 2 should not have any large loads acting on it

since that would imply forces in the direction perpendicular to the trajectory

of the box as well as gravity. This implies that one LIMMS was pulling away

from the other. Since a simple decentralized controller was used, the LIMMS

possessed no reference for coordination, which is probably the reason for the spike
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(a) t = 0s (b) t = 0.25s (c) t = 0.5s (d) t = 0.75s

(e) Torque of joints on a single LIMMS. (f) Velocity of joints on a single LIMMS.

Figure 2.4: Four LIMMS attached to a 2kg box performing a trot gait. Frames of the trot gait
were taken starting from (a) through (e). The joints, q, are taken from the base, q1, to the end
effector joint, q6.

in torque. Though outside the scope, better coordination in the control algorithm

could slightly lower the overall torque requirement. The measured output torque

required from this test was around 25 Nm. The velocity for these trajectories

visually seemed acceptable.

Fig. 2.4 shows LIMMS in quadruped mode when attached to the four corners of

the box. The top of the figure shows the frames for simulating walking using a trot

gait. Raibert heuristics were used for footstep planning and Bezier interpolation

for swing leg trajectories [12]. The stance period and swing period for the trot

gait ere both 0.5 s. Decentralized position PID controllers then tracked the joint

positions from the gait’s planner similar to that for the manipulation task. In

Fig. 2.4a the quadruped transitions from stance to lifting red wheeled foot up as

seen in Fig. 2.4b. It then transitions back to stance in Fig. 2.4c and then to both

blue feet up Fig. 2.4d. By repeating this cyclically, LIMMS can move with the

2 kg box at 0.3 m/s despite no consideration for leg dynamics and an open loop

controller.

Fig. 2.4e and Fig. 2.4f show the torque and velocity when running three gait

cycles of trot gait in simulation, respectively. The peak torque reached was 28.6

Nm, whereas the maximum velocity reached 4.1 m/s. Though, that velocity was
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only sustained for 0.005 s. Since the ends of LIMMS are as heavy as its base, the

inertia and speed at which the foot slams into the ground is large resulting in a

large spike in velocity due to the momentum change. Given how the controller used

usually assumes no mass [30], a more complex controller to account for the mass

would relieve this issue. Though, for a rough estimation of torque requirements

this suffices.

Similar to manipulation, the base motor in quadruped mode requires the most

torque in swing phase since it has to lift the entire LIMMS leg. Most quadrupeds

do not suffer from this issue since most of their mass is concentrated near the base

of the leg and body to minimize the nonlinear effects [30]. LIMMS symmetric

joint configuration spreads the mass throughout the entire robot. Without the

leg dynamics modelled and taken into account of the controller, changing phases

in particular lifting off and touching down causes an unplanned stance phase

otherwise not seen in regular trot gaits. Further exacerbating the problem, LIMMS

weighs roughly double that of its 2 kg box body. As a result, the algorithm used

for trot became very sensitive to parameter variations in gait timing, step height,

and desired velocity.

Once delivering the package in quadruped mode, it is assumed that each in-

dividual LIMMS unit can return to the delivery truck in a self-balancing mode.

By commanding all motors besides the ones at both ends of LIMMS to hold a

folded position, LIMMS can balance itself on two wheels to move around, e.g.,

a Segway [31]. A PD controller can be used to achieve a desired velocity while

balancing [32]. This provides a simple strategy all LIMMS units can use to move.

Needless to say the requirements for torque and velocity were below those needed

for manipulation and quadruped.

From these simulation experiments, it is obvious that with sub-optimal con-

trol strategies the required torque and speed increases. Although this should

be resolved to improve features like lifting capacity, these shortcomings can be
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taken as a safety factor when determining motor torque-velocity characteristics.

Further optimizations can be made in the future. With the torque and velocity

curves for each of these tasks, a motor can be chosen to achieve the minimal tasks

needed for last mile delivery for LIMMS. With the joint configurations and torque

requirements a prototype can be built.

2.4 Hardware Prototypes

2.4.1 Prototype Iteration # 1

Based off of the kinematics analysis in Section 2.2 the first iteration of LIMMS

prototype was manufactured. The design principle was to develop a prototype

capable of testing all necessary functions separately as quickly as possible. This

allows for further analysis to be done for much more complex characteristics such

as torque requirements and link lengths, after which another design iteration can

be done with more insights into the system before the final design. As such,

this prototype’s end effector could only either attach the wheel or the latch but

not both at once. When the wheel is attached, it is directly connected to the

output shaft increasing it maximum velocity. On the other hand, the latching

mechanism is mounted to the output carrier of planetary gearbox with a gear

reduction increasing its torque. Despite having area for a battery and computer,

for testing those were only used for weight analysis. Most components were either

off-the-shelf or easily manufactured 3D printed parts. In total it weighed 4.14 kg

and could stretch up to 0.75 m. When folded, as depicted in Fig. 2.1b on the left,

the prototype can be contained within a 0.43 m × 0.22 m × 0.18 m box.

Fig. 2.5a shows the hardware of the first iteration. The battery and con-

troller are housed in carbon fiber tubes. Structural components used at the joints

were manufactured with a rapid prototype method called Selective Laser Sintering

(Fuse 1 SLS printer, Formlabs) using nylon 12 material. Design in this way allows
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(a)

(b)

Figure 2.5: The first iteration for a prototype of LIMMS. This unit has been designed for testing
and evaluations to inform future design choices for the next iteration. Therefore, some features
are missing, e.g. the latch. (a) LIMMS hardware prototype. (b) Section view of LIMMS
prototype using commercial off-the-shelf actuator with custom gearbox.
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for a quick turnaround new designs for further testing and experimentation.

The commercial off-the-shelf actuators used at the joints were DYNAMIXEL

XM540-W150-R motor from ROBOTIS. An extra external speed reduction was

required for these motors since they slightly differed from the target torque com-

puted in simulation. A 3.5:1 reduction ratio planetary gearbox was used to make

up for the difference as shown in Fig. 2.5b. The modified joint now achieved 31

Nm of peak torque with a 2 rad/s max velocity. To increase the structural rigidity

cross roller bearings (CRBT505A, IKO) were used.

Each end of LIMMS contained two outputs on the same surface, meaning that

the wheels and latches could only be tested independently for different modes.

Whenever the latch was used, the torque requirements were much larger than

velocity, so the output with the 3.5:1 reduction was used. On the other hand,

whenever the wheel was attached much larger velocities were needed, and the

wheel was connected directly to the motor.

2.4.2 Prototype Iteration # 2

The second iteration of the LIMMS prototype weighed a bit heavier at 4.7 kg.

When extended it could reach a length of 1.06 m, and when folded it reached 0.53

m. The wheel speed was improved from the 70 RPM in the first iteration to 475

RPM in this design. The batteries were split across both sides as seen in Fig. 2.6b.

This is in line with our design of the configuration such that no particular end

was favored for a specific task. A single on board computer was also integrated.

This prototype allowed for wireless communication, whereas the first prototype

had to be wired for power and computation.

When running tests on the first iteration of the prototype, it was obvious that

the wheels were too slow. Ideally, a custom end effector would be built with a

through shaft at which point the gear reduction ratios could be set for latching
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(a) (b) (c)

Figure 2.6: Second iteration of LIMMS prototype. (a) Depicts the hardware for the fully
assembled prototype. (b) An inside view of the wiring management and electronics inside
the tubes. The batteries shown in blue are distributed across each half to keep dynamics
approximately the same for either base. (c) The dual actuated end effector for latch and wheel.
The red arrow points to a slip ring used for power and communication transmission.

and wheels without interference. This, though, is considered outside the scope of

the current phase of the project. Instead overall torque capacity was sacrificed to

increase the wheels’ velocity. This was achieved by placing an additional actuator

at each end to actuate the wheel itself as seen in Fig. 2.6c. To reach 475 RPM,

a gear inside the off-the-shelf actuators was replaced by a custom manufactured

one. Despite introducing another actuator, the joint at the end effector and the

base joint will still be referred to as joint 6, q6, and joint 1, q1, respectively. The

wheel and latch could be decoupled with this design with the cost of a heavier

ends for LIMMS.

Having two actuators at the end effector makes the wiring for power and

communication a bit more challenging since the wheel will be rotating over a full

rotation. The latching mechanism also has two of its own actuators for a locking

mechanism as well as a camera for visual feedback. A slip ring was incorporated

into the design, as seen by the red arrow in Fig. 2.6c, to transmit power and

communication without limiting the number of rotations of the wheel or latch.

From Fig. 2.6b and Fig. 2.6a, there are wires that are still exposed resulting in
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a constraint in the number of rotations certain joints can achieve. Preferentially,

every joint would be able to rotate without limit. Practically, though, it is only

necessary that the wheels be able to do that. A compromise was reached to balance

fast design iterations with that of design goals for high-level optimization. The

wheels and latches at the end effectors could rotate infinitely. Joints 2 and 5 have

wires extruding and can only rotate slightly over a full rotation. Joints 3 and 4 in

the elbow have actuators offset such that wires can pass through without a slip

ring. Extra wire is provided such that roughly four full rotations can be made

collectively between the two joints.

2.4.3 BEAR LIMMS

The BEAR LIMMS prototype is similar to that of the first iteration of the LIMMS

prototype except everything is altered for high velocity dynamic motions. The

prototype is much lighter, approximately 2.5 kg. The BEAR motors used for

the prototype have a gear ratio of 9, and its speed constant is 27.3 RPM/V.

Theoretically, this prototype can move very quickly but at the cost of torque.

Its peak torque for 15 s at each joint is 3.5 Nm. In some joint configurations

the motors overheat and fail after extended periods. This prototype, however,

is designed to move fast and study what can be done at high speeds for future

extensions of LIMMS, thus, increasing the number of packages that could be

moved.

BEAR Motors An additional benefit of BEAR motors is that its low-reduction-

ratio gearboxes allow for backdrivability as well as high transmission transparency.

Its backdrivability and low reflected inertia can help deal with high impacts that

can occur when robots move highly dynamically. The low-reduction ratio also

reduces the friction losses and other non-linearities to the output. This gives rise

to the ability to estimate the torque output directly without an external force
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(a) (b)

Figure 2.7: (a) Shows 3 different in-house developed backdrivable electromechanical actuators
for robotics, also known as BEAR actuators. (b) CAD of the BEAR LIMMS prototype.

torque sensor, high transmission transparency [33, 34]. With these capabilities

indirect force control can be implemented on BEAR LIMMS to help with its

dynamic motions.

2.4.4 Conclusion

With these prototypes we were able to implement and test sub-components as well

as the full system. Each prototype played a role in the development process of

LIMMS. The first iteration was used to verify weight tests and different modes in

LIMMS. The second iteration tried to improve upon that by adding another motor

to wheel faster and removing the tether to make things wireless. This allowed for

testing of the full system untethered. The BEAR LIMMS were used to run fast

latching tests and demonstrate the potential for use of Jacobian to carry much

heavier loads than intended for.
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CHAPTER 3

Latching Mechanism

During a single last mile delivery, LIMMS will transform between different modes

frequently, e.g. lifting a package requires manipulation mode and moving a pack-

age quadruped. Even simply switching between these modes would give rise to

numerous latching and unlatching actions, especially if LIMMS needs to move

packages from the back of the delivery vehicle. Scaling this up to the countless

packages delivered on a daily basis and the demand for ever increasing speedy de-

livers, the action of latching and unlatching needs to be done quickly and reliably.

The latching mechanism must be able to interface with cardboard boxes, as-

sumed in Chapter 2, as well as stiff wall-mounted latching patterns in delivery

trucks. Many mechanisms exist that try to attach and detach similar to LIMMS.

Applications range quite widely from tool changers proposed in [35] to space shut-

tle docking solutions in [36–38] to modular, self-configuring robots [39–45]. The

underlying method for achieving successful attachment and detachment of two

different objects also ranges widely: spring-loaded pin locks, magnetic locks, and

pneumatically actuated locks to list a few. For many of these technologies, the

mechanism relies on intricate designs or gendered connectors to help with align-

ment such as ball plungers [46], opposing grip claws [47], and floating platforms

[15] among others.

For the application of last mile delivery these mechanism have distinct short-

comings when compared to the LIMMS latching mechanism introduced in this

chapter. Most of the mechanisms described above offer reliable solutions for their

particular use case, but they tend to be overly complex which either increases

the mechanisms weight, e.g. additional actuation to assist with alignment, or
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increases their spatial footprint, e.g. large geometric grooves for passive self-

alignment. Despite sacrificing being light-weight for these features, the number

of initial conditions for which latching will be successful or area of acceptance is

still quite small [48]. As a result, relative to the actual mechanism’s size, the

target area when aiming for alignment tends to be small, requiring very precise

controllers to position and orient when mating the surfaces. This results in the

process being very slow.

In addition, there are several operational restrictions LIMMS has during last

mile delivery in which more common approaches fail. The most obvious issue

being that one mating surface is limited to being a cardboard box without any

complex expensive to manufacture components, since the boxes will be considered

single use. Any modifications done to the box for the purposes of latching need to

have a small spatial footprint and be light weight to reduce energy expenditures

and, thus, delivery cost. The latching mechanism at the end effector of LIMMS

should similarly have a small volume with respect to affecting the overall available

space within a box, e.g. the latch should not protrude too deeply into the box

with respect to its mating surface. The mechanism should also be light weight,

since extra weight at the end effector will increase the energy consumption and

decrease its carrying capacity and locomotion capabilities.

Given these restrictions for the latching mechanism, LIMMS integrates a fe-

male latching pattern into the sides of the cardboard box. The simplest version

of this design cuts planar features and folds them into the box, creating flaps that

can assist with alignment, depicted in Fig. 3.2 and Fig. 3.3 (right). Another ver-

sion of the female latching patterns that is also introduced in this section simply

cuts the flaps, creating small holes for the latch to engage with as seen in Fig. 3.6.

This is low cost, does not add any weight to the box, and can be easily added to

preexisting manufacturing processes.

Typically, the slowest portion is alignment of the mating surfaces. This re-
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Figure 3.1: Depicts a 3-blade latching mechanism on LIMMS module with a box with corre-
sponding latching patterns near the corners of the box.

quires a fine tuned control capable of rejecting large disturbances and noise. Con-

sidering how variable packages and the environment could be for LIMMS, develop-

ing a self-aligning rotational mechanism that admits a large region for successful

latching with minor assumptions would be ideal. This reduces the burden placed

on the controller and, ultimately, achieves faster alignment.

A lightweight radial design with radial symmetric blades can mechanically

admit such an area. By rotating the last joint, the blades rotate and can engage

with the female pattern on the box. As the blades contact the edges of the

pattern, it rotates and generates a self-correcting force that passively centers itself,

assuming the joints of LIMMS is less stiff than the last joint. Since this only

depends on blades for alignment, mass at the end effector is negligibly affected

the addition of the blades.
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In this section we introduce a framework for these types of self-aligning mech-

anisms. Under certain assumptions, the geometry and mechanics can be analyzed

to inform designs that maximize misalignment tolerance. The analysis is limited

to radially symmetric blade patterns with point contact models for the tips that

engage with the mating surface of the box. For any position on the 2D mating

plane and a random orientation of the blades parallel to that surface, design pa-

rameters are derived to ensure the highest chance of successfully latching over

the largest area. The larger the area of acceptance is the less control effort is

needed on the alignment phase of latching. Though this framework uses many

assumptions, it can be extended to other designs and weaker assumptions.

Most of the detailed misalignment sensitivity analysis was carried out for 2-

blade and 3-blade latch designs, since it is clear by observation from experiments

shown in Fig. 3.14 that total area for successfully latching exponentially decays.

A metric defined by summing over the area of distribution of successful latch-

ing in the cardboard (X-Y) plane can then be used to calculate optimal design

specifications for the male and female latching components. With this, a latching

mechanism with a 2-blade design is shown to have a misalignment tolerance of 3

times the blade tip radius, which is a much lager distance than common designs

with 3 or more blade-like contacts can achieve. The following summarizes the

contributions in this section:

1. Introduced a class of self-aligning mechanisms,

2. Characterized their mechanics and likelihood of misalignment for the 2-blade

and 3-blade designs,

3. Formulated an error tolerance metric by which optimal design specifications

can be determined, and

4. Verified results in simulation and hardware.
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Figure 3.2: (a) Latching pattern cut from cardboard with red lines denoting engagement edges
where the blades contact when fully engaged, (b) Latch assembled configuration, and (c) Com-
ponents of the latch in blowout view.

Using the theory and framework developed in this section, a latch was de-

veloped for LIMMS that far outperformed other existing 6-DOF latching and

methods. The underlying maths highlights the significance of key characteristics

for passive alignment that have been largely overlooked in most designs. For ex-

ample, many similar existing mechanisms and literature mentioned above have 4

contact points, such as hooks, pins, blades etc., whereas the models from the pro-

posed framework suggests less contact points can be exponentially better. This

makes intuitive sense as more contact points means more constraints, which cuts

down on the number of solutions. For LIMMS, we show that a 2-blade design

is preferable for alignment. Findings, such as these, may even be beneficial for

non-rotational mechanisms.

3.1 Problem Setup

The framework as well as latching mechanism should be considered independent

from the LIMMS application. Therefore, the proposed methodology can be taken

for a class of self-aligning mechanisms. The problem statement of interest can be

summarized with the following criteria:

• Self-alignment at a fixed position is unique up to a finite number of rotational
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symmetries,

• Actuation only occurs about the latch’s axis of rotation,

• Design parameters should be optimal with respect to any two of the following

constraints: space, strength of mating surface material, and error tolerance.

The design process developed and introduced in Section 5.4, derived in Section 3.3,

is what the final bullet point’s parameters is referring to. Choosing any two pa-

rameters with respect to the latch’s total workspace W , the radius of the center

non-hole portion of the pattern r which is dependent on the strength of the mate-

rial, and Ψ a new metric for quantifying misalignment tolerance, fully defines the

set of optimal design parameters.

For convenience a few terms used throughout this section need to be mentioned

to avoid confusion. The hole pattern as seen in Fig. 3.2 (left) refers to the female

component of the mechanism on the box, and latch as seen in Fig. 3.2 (middle and

right) refers to the male component with symmetrically spaced blades though it

can refer to any feature that engages with the hole pattern. The non-hole portion

at the hole pattern’s center shown in Fig. 3.2 (left) is referred to as center island.

Different combinations and variations of these terms may arise.

3.1.1 Assumptions

Most of the mathematical proofs and theoretical concerns only apply to self-

alignment and deriving optimal designs for the latch and hole pattern parameters.

These derivations depend on a few minor assumptions that can be relaxed under

certain circumstances, given by:

• The latch rotates with a counter-clockwise torque.

• The holes of the latching pattern are radially symmetric pieces of a circle

with colinear edges extending to R.
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• The latch face and hole pattern face are always parallel with one another

and interact primarily in-plane with negligible out-of-plane effects.

• The forces applied to the latch in-plane during engagement are minimal.

Most of these assumptions can be relaxed in a form or changed. For example, in

the first bullet the analyses does not change based on the direction of rotation. The

resulting patterns are mirrored though. There exist patterns where the analyses

is similar for shapes that differ in the hole patterns, as seen in Fig. 3.2 (left)

outlined in the second bullet. The third assumption can be extended to handle

nonparallel cases but a set of looser assumptions are required as will be explored

in the latter sections. Also from hardware tests run in Section 5.4, the mechanism

can successfully latch despite clearly having out-of-plane misalignment. The last

point is also not a strict condition. From the hardware experiments, it is clear that

the robotic arm applies forces in X and Y. Please see this video link Footnote 1

for experiments.

Several assumptions were made about the physical dynamics of the latch as

the blades interact with the pattern’s cut slots. It is assumed that the blades

slide along the cardboard pattern’s surface and fall into the engagement slots,

ultimately resulting in a line of contact between the slot’s engagement edge and

the blade spacers, shown in red in Fig. 3.2 (left). Thus, it is also assumed that

the shape of the slot itself ultimately does not matter for final engagement, other

than the red engagement edges. These edges are radially symmetric intersecting

at the center. For the 3-blade design, it is kinematically impossible to be greater

than one latch radius away, since being greater than one radius away would result

in one of the blades being constrained to the same hole or outside of the hole

pattern region.

Due to these assumptions, in addition to this kinematic constraint, full cutouts

for the 3-blade are not drawn and are instead treated as a line as seen in Fig. 3.4
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and Fig. 3.12. This lack of dependence on overall slot shape is verified in practical

testing. However, this is not the case for the 2-blade design. In [22] we used a

conservative model for the 2-blade latching where only the final alignment edges

when the blade is fully engaged were considered. We extend this to include all

edges.

Furthermore, we make the assumption that there is minimal penetration into

the hole pattern. Additionally, once a blade is inside a hole pattern it is con-

strained to be within a hole pattern. Including these two assumptions gives us a

more realistic model and surprisingly substantially increases the total probability

as seen in Section 3.3. Again, this phenomenon is not seen in the 3-blade assembly

due to it being kinematically overconstrained.

In Section 3.3.4 derivations, it is assumed that the blade’s radial location can

be approximated as a single point, depicted by green dots in Fig. 3.3 (right) and

Fig. 3.4. In the case of three or more blades, the blade spacer and the engagement

edge will only contact at a single point until the latch is fully engaged due to the

spacer’s rounded shape. Additionally, the width of the spacer can be ignored since

the blades have a triangular shape. If the blades are rotated off-center, the sloped

surfaces of the blade will contact the pattern edges and force its overall location

to adjust until it’s aligned with the blade’s tip. We tested a mechanism with three

pins to verify that this assumption is valid as seen in the supplementary video1.

In later derivations for Section 3.3, it is assumed that the shape of the blade

does not matter beyond the requirements laid out in Section 3.3.4. For this reason

only the point locations of the blade tips and where they start are considered.

In all derivations, the mating pattern surface is assumed to be much stiffer

than the forces it is subjected to. This assumption needs verification based on the

application and materials involved. In our case, the cardboard’s strength is high
1 Experiments, verification, and a brief explanation of this mechanism and associated publi-

cation [23] can be found online at: https://youtu.be/W5_3vF3nT28
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Figure 3.3: (Left) Two blade design showing inner (red) and outer (blue) edges that correspond
to inner and outer alignment methods. (Right) Shows a sequence of a three blade design spinning
to align.

enough for this assumption to be valid.

Finally, only the 2-blade and 3-blade cases for the latch were considered. Pre-

liminary analyses showed that for more than three blades, the error tolerance is

worse, and there are no additional benefits. For successful alignment, each blade

must start its rotation in a separate angular region, since two blades cannot en-

ter the same engagement slot. Since blades must be evenly spaced over 2π rads,

increasing the number of blades effectively decreases the angular region available

for each blade to start at for successful alignment. Also, a single blade latch is not
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able to meet the self-aligning requirements as it cannot both constrain the angle

and the position of alignment when radially inserted into the mating surface.

3.2 Alignment Mechanics

This section analyzes the mechanism’s sequence of operations and self-aligning

motion when the latch is actuated to rotate about its center. For this analysis, it

is assumed that the starting configuration for latching is with the blades lightly

pressed against the surface of the cut pattern at some initial position (r′, θ) and

angle of rotation about the latch’s center axis γ similar to the configuration in

Fig. 3.3 (right, a).

3.2.1 Alignment with Two Blades

The 2-blade latch design consists of blades with an angular separation of π rads

as shown in Fig. 3.3 (left). As the two blades rotate and travel along the surface

of the cut pattern, the first blade that contacts the pattern’s edge becomes the

new pivot point that the latch begins to rotate about.

Once the second blade engages with an edge in the opposing hole, the latch

moves along the two aligned edges at the latch’s centerline. With only two blades,

it would appear impossible to fully constrain the position and rotation, r′ and θ,

given only a rotational actuation about its center. However, the final constraint

needed for a self-correcting motion comes from the blade profiles as the latch

inserts its blades further into the the pattern.

This self-correcting motion comes from the contact force between the blade

and the engagement edge as it rotates. This contact can occur at the blade’s

inner edge or outer edge. When the inner edge of the blade presses into the center

island of the hole pattern, this is referred to as inner alignment, with the inner

edge depicted in red in Fig. 3.3 (left). Outer alignment is when the blade edge
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furthest from the center pushes on the outer edges of the hole during engagement,

depicted with the blue edge in Fig. 3.3 (left). As the latch continues to rotate,

self-alignment occurs until the faces of the latch and hole pattern are touching.

The latch then becomes fully constrained due to the width of the blade.

Inner Alignment Since inner alignment uses the inner edge of the blade, the

blade needs to taper from its maximum allowable distance from the center W at

the tip of its blade to r. Let f(t) describe the inner edge contour, with f(0) = (ρ, θ)

and f(1) = (r, 0). As long as this contour follows the property that ||f(t)|| is

monotonically decreasing, then alignment will be successfully achieved.

Outer Alignment For outer alignment, no center island is needed, and the

blade uses its outer edge of the hole pattern to align. In this case, the blade

tapers out from its minimum distance from the center ρ at the blade’s tip to W

when fully aligned. This contour has a f(t) where f(0) = (ρ, θ) and f(1) = (W, 0).

If the contour obeys the property that ||f(t)|| is monotonically increasing, then

alignment will succeed.

3.2.2 Alignment with Three Blades

The process of aligning with 3 blades can be broken down into four stages: no

blade engaged, then one engaged, followed by two, and then finally all three. Note

that it is not required to start at the first stage, although it is the most likely case.

The blade locations are modeled as points, shown in green in Fig. 3.3 (right) and

Fig. 3.4 and mentioned in Section 5.2.

The behavior of the first 2 stages closely follow the mechanics for the 2-blade

case, where the first blade that contacts the edge of an engagement pattern be-

comes the new pivot point that the latch begins to rotate around. The behavior of

this pivot point and the direction of velocity can be explicitly stated using instant
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Figure 3.4: Visual representation of 3 blades (bright green dots on orange circle) aligning with
the hole pattern center island (blue circle). a) First, a single blade engages the cutout edge (red)
shown by the green dot on the far right. b) A second blade engages, resulting in a V in the
direction of alignment. The dark green arrows depict the edge of constraint in which the blades
can move given the torque direction.

centers, IC.

From the starting configuration, the mechanism first spins until one point

makes contact with an edge. As torque τ is continued to be applied, the resulting

forces can be seen in Fig. 3.4a. The figure further shows that the IC is not fully

constrained since there is only one line (dotted grey) perpendicular to hole pattern

edge (red line). In other words, the IC would need another grey dotted line that
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intersects to define a fully constrained point. Assuming µFN ≥ τ sin θr′

ρ2
, the far

right green dot in Fig. 3.4a will be a stationary point, making it the IC. The

blade assembly (large orange circle) rotates like a wheel around that point until

the blade (green dot) contacts with the second edge. Even if slipping occurs, the

constraint line (dark green) would cause the IC to be on the grey line, which would

lead to the second point engaging (green dot).

Once two points are in contact, the points are only free to slide along the edge

of the cutouts as shown in Fig. 3.4b. The IC for these two velocities appear in

the lower right of the figure indicated by a red dot. The direction of the resulting

velocity V is perpendicular to the line through the IC. This will continue until the

third and final blade engages.

Finally, the three points provide three independent constraints, fully defining

the latch’s position and orientation given the axis of rotation and direction of τ .

In this state the FN from the edges are equal and opposite to those caused from

τ , so the latching mechanism cannot move and is fully constrained at the target

alignment. Fig. 3.5 shows a simple demonstration with an early prototype of a

3-blade design.

Hardware Experiments 3-Blades Our initial prototype, as seen in Fig. 3.1,

has 3 blades that rotate into a cutout pattern of 3 triangular holes. The blades

are sloped to pull the mechanism closer to the mating surface as the assembly is

rotated. The spacers, as seen in the blowout view of Fig. 3.2, are used to establish

contacts with the edges of the triangular patterns to constrain the blade to linear

movements along the edge face as the latching sequence progresses. The goal is

that once all spacers have made contact with their respective mating edges, the as-

sembly and the cutout patterns should be concentrically aligned and mechanically

constrained.

One possible alignment and mating sequence is shown in Fig. 3.5 where the
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mating surface is made of clear acrylic to better illustrate the process. The latching

mechanism approaches the mating pattern in Fig. 3.5a but in gross misalignment

as only one of the sloped blades successfully enters a triangular cutout. The entire

assembly is rotated clockwise until the sloped blade makes contact with the edge of

the hole (highlighted in red). Upon contact in Fig. 3.5b, further rotation produces

two movements: 1) clockwise rotation of the latching mechanism about the point

of contact, bringing the second blade into alignment with the triangular cutout

in the bottom left and 2) moving the mating surface along the slope of the blade,

pulling the latching mechanism closer to the mating surface.

Subsequent rotation causes the edge to contact with the spacer at the bottom

of the blade as in Fig. 3.5c. In this state, the edge of the triangular cutout and the

flat face of the spacer are flush and held together by the clockwise torque of the

assembly. Due to the angle between the triangular patterns, the latching assembly

is constrained to travel along the contact edge, moving in the upper right hand

direction. Meanwhile, the second blade has now moved into the second triangular

cutout, pulled the mating surface in, and the spacer has made contact with the

second triangular edge.

With these two linear constraints, the final clockwise rotation will align the

assembly, causing the last blade and the last spacer to make contact and fix the

mating pattern to the assembly face as in Fig. 3.5d. With this the alignment pro-

cess is complete and LIMMS is attached to the mating surface. It is important to

note that while the above explanation was broken into steps, the entire procedure

with the hardware occurred at a continuous speed without stopping.

Another important distinction is that with this prototype, the assembly must

still apply torque to maintain the contact. The main goal of the prototype was

to verify the effectiveness of the alignment procedure. To prevent radial move-

ment and lock the latch in place, hooking blades that extend from the latching

mechanism through the mating surface is used and discussed in latter portions of
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(a) (b)

(c) (d)

Figure 3.5: Early LIMMS latching prototype self-aligning with initial misalignment into a sheet
of acrylic with three cutouts: (a) Initial position with latch center (orange) rotating (dark green)
until blade moving in direction (neon green arrow) until hits mating pattern edge (red) centered
at (blue), (b) Contact blade becomes a point in which the mechanism can pivot about until the
second blade engages, (c) Two blades are constrained to moving along the red lines with arrows
until the last blade makes contact, and (d) All blades are in contact (neon green dots) fully
constraining the mechanism in an aligned position (orange and blue dots are concentric).

this chapter. Thus, LIMMS will be free to use the end actuator to rotate while

maintaining the fixture to the surface.

In addition to the experiment in Fig. 3.5, testing with cardboard mating sur-

faces was conducted and was successful for initially misaligned configurations. A

key design feature of the 3 blade design is to place loads only on the radially

outward edges of the hole pattern. This prevents the center island connecting

all three holes on the mating surface from experiencing direct loads and causing

damage to the pattern. Based on the payload, the center island can be increased
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Figure 3.6: a) Diagram showing all the parameters that define the latching pattern for the two
blade case. b) R + δR indicates the maximum length that R can be. The features in green are
used to calculate the length.

in size to ensure structural stability. For the purposes in the experiment, an 8

mm radius was sufficient.

In Section 5.4, Fig. 3.16 has several visual frames for the 2-blade design exper-

iments. It is reserved until later chapters to contrast the difference in capabilities

after all the theory has been derived.

3.3 Alignment Tolerance Analysis

One of the key features of our latching mechanism is its robustness to misalign-

ment. Given an initial position (x, y) or (r′,θ) in polar, and a random orientation

γ of the blade assembly about its center axis, a probability distribution over the

area of the cutout mating surface can be derived. In [22] we demonstrated the su-

periority of the 2-blade latch by comparing a conservative model of its probability

distribution of latching successfully with that of the 3-blade latching mechanism

in closed form. As an extension of [22], this analysis includes all four edges as

show in Fig. 3.6a that fully define a hole in the pattern. Note that this figure

depicts many of the parameters to be used in this section. In addition in contrast
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Figure 3.7: Failure types: a) Type 0 where no edges engage with the pattern, b) Type 1 where
a single blade engages but the resulting trajectory causes the other blades to spin outside of the
pattern, and c) Type 2 where 2 blades end up in the same region or 2 blades constrain the latch
to a failure case.

with our previous analysis we highlight the importance of ϑ, the angle from which

the edges expand radially. In the 3-blade case the probability distributions stay

the same as it cannot take advantage of the edge defined by the outer arc, since

it would simply be constrained to only failure cases. However, the 2-blade case

does not have this issue, and its overall probability drastically increases. In this

section we first prove that a set of optimal parameters exist and show how to ob-

tain them for the 2-blade case. Then we show how suboptimal parameter choices

can affect the probability distribution. Finally, the derivations for the probability

distributions for the 3-blade design are used to draw contrast to the robustness of

the 2-blade design.

To draw a fair comparison between inner and outer alignment the maximum

area for the latch is defined by radius W , island size r, pattern angle by ϑ, and

the integral of the probability distribution for successfully latching. Successfully

latching means that each blade engages edges within different holes of the pattern.

The number of failure modes varies based on parameter choices. The types of

failure modes are defined as follows:

• Type 0: No blades engage with any edge,

• Type 1: One blade engages with one edge, while the other cannot engage
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with any edge, and

• Type 2: Two blades engage edges within the same hole.

3.3.1 Two Blades

The probability distribution for the 2-blade design depends on certain parameters

for both the pattern and the latch. The pattern is defined by r, R, and ϑ, and the

blades are defined by ρ and W . The parameters ρ∗, R∗, and ϑ∗ can be converted

to only depend on r∗ and W ∗. In this section the optimal parameters for 2-blade

inner align are derived for R∗ in a bounded set. Outer align derivations follow

similarly.

3.3.2 Inner Align

Proposition 1. For 2-blade inner align: ρ∗ = W ∗.

Proof. By definition of W it follows: ρ ≯ W ∀ ρ,W . Therefore, we consider if ρ <

W . There exists some scaling between R and ρ such that simply increasing both

by this factor would increase the overall maximum area of successfully latching

and the total probability mass. Therefore, ρ∗ = W and vice versa following the

same logic for W ∗.

Lemma 1. For 2-blade inner align:

R∗ ∈ [2ρ− r,
√

1
2
(r2 cos 2ϑ− r2) + 4ρ2 − r(cosϑ− 1)− r].

Proof. If R < 2ρ − r, then simply increasing R increases the total probability

of successfully latching. As R increases the number of Type 0 failures strictly

decreases since the maximum distance of engaging an edge increases. Some Type

0 failures get converted to Type 1 assuming small enough R. As R increases, Type

41



Figure 3.8: a) Probability distribution when R is bigger than the upper bound from Lemma 1. b)
Probability distribution when ϑ is almost π. c) Probability distribution when r = 0 and ϑ = 2π

3 .
The area of high probability is mostly out to the corners, which is not ideal for controllers. d)
Simulation showing how the probability distribution decreases when ϑ < ϑ∗.
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1 failures strictly convert to successes. Type 2 failures cannot exist in this case

since 2ρ≫ R and the blades’ circular trajectory cannot fit within the pattern.

The upper limit
√

1
2
(r2 cos 2ϑ− r2) + 4ρ2 − r(cosϑ − 1) − r is the furthest

distance away an engagement point can be in order to successfully latch as seen

in Fig. 3.6b. This point is defined by the furthest corner of a hole and the cor-

responding nearest small corner of the opposing hole. This distance at most

is 2ρ. This is then used to calculate the theoretical upper bound. If R >√
1
2
(r2 cos 2ϑ− r2) + 4ρ2 − r(cosϑ − 1) − r, one blade engaging on any part of

the larger arc of the hole pattern, as seen in Fig. 3.6a, will result in a Type 1

failure since it can no longer reach the other hole. Decreasing R would serve to

reduce those Type 1 failures.

For our purposes, we define R∗ as the following: R̂∗ = 2ρ − r, where R̂∗ is a

close approximation with bounded error on the true R∗. When r = 0, R∗ = R̂∗

since it is independent of ϑ and r. Furthermore, since R̂∗ is the lower bound on R∗,

the probability distribution for one half of the hole pattern (since it’s rotationally

symmetric by π) is a convex hull. This property provides continuous area without

any break near the center as seen in Fig. 3.8a. From a controls perspective having

any low probability around or near the axis of pattern engagement would be

detrimental.

Lemma 2. For r ∈ (0, ρ), ϑ∗ ∈ (π
3
, π). As r → 0, ϑ∗ → π

3
.

Proof. First, we establish that the largest distance between any two points on the

edges of a single hole d: d = 2ρ =⇒ ∃ϑ∗. If d > 2ρ, Type 2 failures strictly

increase since there now is a length in which two blades can fit into the same

hole. As d increases more successes are converted to Type 2 failures. Similarly,

if d < 2ρ, the number of Type 0 and Type 1 failures strictly increase since the

trajectory of a latch can either completely encompass one of the hole patterns

or engage with one hole pattern and encircle the other without making contact.
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At d = 2ρ, with probability zero it will be in an initial condition where it fails,

since there are only single points of failure along a continuous spectrum of real

numbers. Therefore, d = 2ρ is a necessary condition for the optimality for ϑ∗.

If r = 0, then R∗ = 2ρ by definition. Then the longest length d = 2ρ. That

means ϑ ∈ (0, π
3
) and is not unique. We take ϑ∗ to be the maximum value since

increasing ϑ increases the overall potential to convert Type 0 and Type 1 failures

to successes as the total area has increased, meaning ϑ∗ = π
3

from it being an

isosceles triangle. The other bounds are its physical limits by definition.

Theorem 1. There exists a unique ϑ∗ ∈ (π
3
, π) for every R∗, and ϑ∗ is monoton-

ically increasing with respect to r: ∃! ϑ∗ ∀ R∗, r ∈ (0, ρ) =⇒ ϑ∗ = 2arcsin ρ∗

R∗ .

Proof. From Lemma 2, when r = 0, ϑ∗ is chosen to be as large as possible to

increase the total number of potential successes. The argument for the remaining

interval of r follows similarly to the analysis presented in Lemma 1.

For ϑ < ϑ∗, then d ≤ 2ρ where the total number of failures either decrease or

remain the same when ϑ is increased. Type 0 failures decrease as the area of the

hole is larger. Type 1 failures remain unchanged or decrease since the possible

number of intersections in opposing holes have increased. There will still be no

change in Type 2 failures as d ≤ 2ρ except for potentially a few instances with

zero probability. A probability distribution for this case is shown in Fig. 3.8d.

Now that ϑ is monotonically increasing in r and is unique, we show that this

definition is optimal. For ϑ > ϑ∗ the overall probability distribution decreases.

By adding a small angle, δϑ to ϑ∗ as shown in Fig. 3.10. We can analyze what

happens when ϑ > ϑ∗. To complete this proof, a key insight was that adding δr

introduced a half circle of probabilities centered at δr that changed from 1 to 0 as

shown in Fig. 3.10. At the same time, adding δϑ will convert part of a radius of

probability from 0 to 1. An under-approximation of the probability loss δPl and
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over-approximation of the probability gained δPg are as follows:

δPl = δrπρ

δPg =
(2ρ)2

2
δϑ− r2

2
δϑ .

These regions are shown in Fig. 3.9 and Fig. 3.10b. Based on this insight the

relationship between δϑ and δr is critical and defined as:

δr =
2ρsin(δϑ)

2sin(δϑ+ ϑ)
.

Using this relationship we find:

δP ≤ 2δϑρ2 − δϑr2

2
− 4δϑρ2π

2δϑ+ ϑ
. (3.1)

The derivation for these relationships is derived below.

Derivation of the δr and δϑ Relationship All definitions for angles and side

lengths are provided graphically in Fig. 3.10. We note that γ = ϑ as they form an

isosceles triangle with β. Then we can calculate β using β+2ϑ = π and similarly

β′ using the new triangle defined by ϑ+ δϑ:

β = π − 2ϑ

β′ = π − 2(ϑ+ δϑ) .

Let δβ = β−β′. Since the red-green-blue triangle is isosceles as both the red side

and green side are 2ρ, ω is defined as:

ω =
π − δβ

2
.
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Figure 3.9: Simulations showing a progression of increasing ϑ. Note how when they are overlaid
the regions described in Theorem 1 show up.

Next δg can be computed using the law of sines:

δg = sin(δβ)
2ρ

sin(ω)
.

Finally δr can be calculated using the green-black-red triangle and the law of

sines:

δr =
sin(ω)δg

sin(π − (ω − γ)− ω)
,

Where the denominator is the angle opposite δγ in the green-black-red triangle.

Derivation of δPl and δPg The insight for defining δr can be seen in Fig. 3.10b.

If the circle defined by the path of the blade tips passes through δr then the first

point will engage such that the second point will also end up in the same cutout,

resulting in a Type 2 failure. One example of this is the orange circle with the green

points indicating the current and future locations of the blade tips in Fig. 3.10b.
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Figure 3.10: a) Geometry used for relating δϑ to δr. The red line with angle B′ and the blue line
with angle β is defined to have length of 2ρ. b) By perturbing ϑ∗ by δϑ, a net loss of probability
mass occurs, despite an overestimation of the probability gained, shown by the little triangle
sticking out on the upper left of the probability defined by δϑ and 2ρ−r, and an underestimation
of the probability loss, shown by the greyed out yellow arc in the upper left.

If δr is sufficiently small, this area can be calculated as δrπρ, which is shown in

the shaded region of the figure. At the same time some area is being converted

from probability 0 to probability 1 as now a blade tip can reach the upper edge of

the cutout removing some Type 0 failures. This area is shown as the yellow sliver

sticking out of the probability mass next to the shaded region. This area can be

calculated by subtracting two triangles: the smaller one defined by length r and

width rδϑ from the larger one defined by length 2ρ and width 2ρδϑ. This is an

upper bound on the area of probability mass added as the yellow sliver sticking

out clearly should not have been converted from probability 0 to 1 since it is at

least ρ away from δr. δPl is defined as the probability region that goes from p = 1

to p = 0.
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Decreasing Probability The right-hand side of Eq. (3.1) is negative over the

following sets of parameters defined by physical limitations:

{r, ρ, R|0 ≤ r < ρ ≤ R ≤ 1}

{ϑ, δϑ |0 < ϑ < π, 0 < δϑ < (π − ϑ)} .

Now when substituting the appropriate upper bounds to maximize the right-hand

side, we prove it is always negative on these sets:

2δϑρ2 − 4δϑρ2π

2δϑ+ ϑ
(Substitute minimum r)

2− 4π

2δϑ+ ϑ
(Factor out δϑ and ρ2)

2− 4π

2π − ϑ
(Substitute maximum δϑ)

2− 4

2− ϵ
(Substitute ϵπ > 0 for ϑ)

2− 4

2− ϵ
< 0 , ∀ ϵ ∈ (0, 1) (Bounds on ϑ) .

In addition, there is also a similar line of decreased probability for an arc-

like area centered about the bottom corner of the pattern. It is also caused

by an increase in the likelihood of Type 2 failures. This line, however, does

not add areas of zero probability, as there are still starting angles that lead to

successful alignments due to the rotation direction of the latch. This covers where

δr increases with δϑ.

Once ϑ is sufficiently large, increasing δϑ cannot increase δr, as the entire

upper edge of the slot already results in failure. In this case, no new area is

gained or lost on the upper edge or half circle around the upper corner, but the

area around the lower corner still decreases as the likelihood of Type 2 failures is

still increasing. Therefore, the change in probability brought about by a change
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Figure 3.11: a) Independent probability distributions suboptimal R and suboptimal ϑ overlaid.
Red hole pattern is of suboptimal R. The hole pattern for suboptimal ϑ is the same as the
figure on the right. b) Probability distribution for combined suboptimal R and suboptimal ϑ.
By rotating the superimposed hole pattern of suboptimal R over suboptimal ϑ from the graph
on the left, the overlapping regions compose to make the figure on the right.

in angle from ϑ to ϑ+ δϑ is always negative.

Intuition In Fig. 3.9, δϑ is much larger than the one used in the argument for

visualization purposes, which results in regions being shaped slightly differently.

However, the regions of interest and arguments still follow.

The final piece of the argument relies on the independence of R∗ and ϑ∗. To

see this we superimposed two distributions, one with a suboptimal R and another

with a suboptimal ϑ in Fig. 3.11. By rotating the superimposed image of the hole

pattern of suboptimal R over the hole pattern of suboptimal ϑ, the overlapping

regions compose to form the combined suboptimal R and ϑ graph.

From this ϑ∗ can be defined as the largest angle such that the largest distance

between any two points in a single hole pattern is exactly 2ρ. With zero probability

does the Type 2 failure occur, and it is uniquely defined. Given the problem

constraints the two points are exactly the points that define the ends of the outer

arc. It is then trivial to solve for ϑ∗.
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We found the approximation of R∗ with R̂∗ for inner align did not affect

performance noticeably in our practical experiments in Section 5.4. We consider

deriving the exact R∗ to be outside the scope of this work.

3.3.3 Outer Align

The propositions, lemmas, and theorems from the previous inner align section

also apply to outer align. The arguments are the same in both cases since the

model has been simplified down to contact points kinematically interacting with

edges. The only difference is W because the outer align uses the outer edges to

self-align and, therefore, will be larger than ρ. Additionally, as a design principle,

r is always 0 for outer alignment. This is because r arises from a mechanical

constraint dictated by the material and application. Since outer alignment uses

the outer edge, it does not need any strength for the center island. In fact, having

a center island creates an additional constraint, resulting in an adverse effect.

Even if r is small, assuming the island can hold, one should just use inner align

and scale the latch and pattern for the same W . Therefore, for outer align r = 0

is the only case considered.

Lemma 3. For outer alignment R∗ = W , and ρ∗ = R
2
.

Proof. By definition to fully constrain the latch using outer align: R = W . If

R > W , the latch cannot be fully constrained with the pattern. If R < W ,

there is more than one way to be constrained. Therefore, R∗ = W to uniquely

constrain the alignment of the latch and pattern. By following the proof Lemma 1

with r = 0, the bounds converge to a single point ρ∗ = R
2
, implying R∗ = 2ρ.

Unlike in the inner align case, we can derive the optimal set of parameters

without approximating R∗. Since kinematically, the analysis of outer align follow
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exactly the same as the inner align section above but instead of R̂∗ being used the

true R∗ is used. We now can claim that these are the exact optimal parameters

for outer align.

Theorem 2. For outer align, the summation over the probability distribution for

ϑ∗ and R∗ is greatest for a given ρ when r = 0.

Proof. By Lemma 1

P (ϑ ̸= ϑ∗, R ̸= R∗|r, ρ,W ) < P (ϑ ̸= ϑ∗, R∗|r, ρ,W )

And by Theorem 1

P (ϑ ̸= ϑ∗, R∗|r, ρ,W ) < P (ϑ∗, R∗|r, ρ,W )

Therefore, the probability is the greatest for ϑ∗ and R∗.

Now that we have proved optimal parameters, we derive the probability distri-

bution for those parameters. These distributions shown in Fig. 3.14 are calculated

by taking points ρ away from the edge of the hole pattern.

3.3.4 Three Blades

For the 3-blade case, the blades must be evenly spaced for radial symmetry, so

they must be located 2
3
π apart. These probabilities are rotationally symmetric. In

order to achieve successful latching in the 3-blade case, each blade needs to start in

separate regions outlined in Fig. 3.4 and Fig. 3.12 and not be blocked by the center

island. This is because each blade must be able to enter an engagement slot after

rotating, and no two blades can physically enter the same slot. If the center of

the latch is positioned such that an orientation exists where each blade is located

within its own region (and will enter its own slot), then a non-zero probability
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Figure 3.12: The three alignment cases for the 3-blade design: a) Case 1 where there are no
intersections, b) Case 2 where both intersections are either completely in α2 or α3, and c) Case
3 where one intersection is in α2 and the other is in α3.

exists that latching will succeed. If the probability distribution is defined over a

single region, it can be rotated by 2
3
π to get the full distribution.

The boundary with zero probability for a single region, i.e., 0 ≤ θ < 2π
3

, is

defined. For latching to be possible, when one blade is engaged and the assembly

begins to rotate, the second blade must be able to reach the other side of the

island to engage: |r′| ≤ ρ.

Two additional constraints appear due to the center island area blocking any

blades from entering the engagement slots, which would also result in zero proba-

bility. Fig. 3.12b and Fig. 3.12c show how the center island creates new boundary

constraints given by: y2+(x−r)2 ≤ ρ2 and (y−r sin (2π
3
))2+(x−r cos (2π

3
))2 ≤ ρ2.

Case 1 |r′| is sufficiently small such that the trajectory of rotation about the

blade assembly’s center, shown in orange in Fig. 3.12a, does not intersect the

center island indicated by the blue circle. In this case, the arc length of interest

is the smaller of α2 and α3, since it defines the first blade to violate a boundary.

However, there are also blades located 2
3
π away in the other regions. The feasible

arc lengths of these blades need to be considered as well. The minimum of this is

divided by 2
3
π to give the probability.
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Case 2 The trajectory when rotating about the assembly’s center intersects the

center island exactly twice as seen in Fig. 3.12b and Fig. 3.12c. Depending on

where the intersection occurs, the probability distribution function p(·) varies.

If the intersections are both in the same region, then it would look similar to

Fig. 3.12b. In this scenario, the arc lengths of l1 and l2 are of interest, as well

as how much of the other region is available for the blade tip, which is 2
3
π away

engaging. This is done for both l1 and l2, always taking the minimum of it and its

offset. Once this is done all of the resulting arc lengths are summed and divided

by 2
3
π to give the probability.

Case 3 The intersections are split across sectors as shown in Fig. 3.12c. This

case is similar to Case 1 where there are no intersections. The only exception is

when α2 and α3 are blocked by the center island.

The probability function for the 3-blade case is not continuous since it must

take into account different cases and take minimum values. In order to present the

closed form expression of p, several intermediate variables are provided to simplify

the expression, also depicted in Fig. 3.12:

β1 =
π

3
− sin−1

(
r′ sin (θ)

ρ

)
− θ

β2 =
π

3
− sin−1

(
r′

ρ sin (2π
3
− θ)

)
+ θ

β3 =
π

3
− sin−1

(
r′ sin (2π

3
+ θ)

ρ

)
− θ

α1 = (2π − (β2 + β1))

α2 = β3 + β2.

For 3 blades p is as follows:
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Case 1: r′ ≤ ρ− r (0 or 1 intersections with the island)

p = min(α2 + α3 − 2π
3
,min(α2, α3))

Case 2: r′ > ρ− r (2 intersections with the island)

(a) θ − ϕ2 <
4π
3

(2 intersections in α2)

l1 = β2 − ϕ1

l2 = β1 − α3 − ϕ1

p1 = min(max(α2 + α3 − 2π
3
, 0), l1)

p2 = min(max(α2 + α3 − l1 − 2ϕ1 − 2π
3
, 0), l2)

p = p1 + p2

(b) θ + ϕ2 >
4π
3

(2 intersections in α3)

p1 = min(max(α2 + α3 − 2π
3
, 0), l1)

p2 = min(max(α2 + α3 − 2π
3
− l1 − 2ϕ1, 0), l2)

p = p1 + p2

Case 3: r′ > ρ− r (1 intersection in α2 & other in α3)

θ + ϕ2 ≤ 4π
3

and θ − ϕ2 ≥ 4π
3

p1 = max(min(l1, l2) + 2ϕ1 − 2π
3
, 0)

p2 = min(α2 + α3 − 2π
3
,min(l1, l2))

p = max(p2 − p1, 0)

3.3.5 Alignment Tolerance Metric Ψ

With probability p now defined, the performance of different latch designs can be

compared based on their alignment tolerance. Ψ is a scalar quantity that can help

compare relative designs by summing over p:

Ψ(W, ρ, r) =

∫
D(0,Wc)

p(r′, θ|r, ρ,W )dA (3.2)
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Figure 3.13: Depicts p where brighter colors represent higher probabilities of success: a) Monty
Carlo (MC) experiments and closed-form (CF) expressions for the 3-blade design, with r values
of 0, 0.2, 0.5, and 0.7. b) Zoomed-in figures of our MC experiments for 4, 5, and 10 blades
with r values of 0.2, 0.5, and 0.7, where the 3-blade case was added to show how increasing the
number of blades decreases the misalignment tolerance.

where p(r′, θ|r, ρ,W ) is defined above, and c is a constant based on the application.

It is constrained to c ≤ 3, as this will capture the entire distribution. Due to the

complexity and piece-wise nature of p, Ψ can most easily be computed numerically.

Ψ is not unitless to allow it to maintain a physical meaning for design comparisons.

Comparisons are made on a relative scale for similar designs, but there are nuanced

specifications in which looking at both p and Ψ could be even more beneficial.

Although not a complete one-to-one comparison since it is not unitless, we show

the comparison of Ψ values for the 2-blade and 3-blade cases since the differences

are in such contrast. This is used to give some intuition for what the values of Ψ

should look like for certain cases. Ψ in general is non-negative and less than one.

For 3-blade case where W = ρ = 35mm, c = 3, and r = 8mm, Ψ = 0.0430. For

the 2-blade case with the same parameter values as in the 3-blade one, Ψ = 0.449.

This is approximately ten times better than the 3-blade case in terms of values of
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Ψ.

The best case offset from the center comes from the 2-blade case using inner

alignment when r approaches 0. When r goes to 0, it becomes 3ρ∗in. Although r

can never truly equal zero in a practical design, it can be reduced to nearly zero

if the hole pattern incorporates a stronger material such as metal or plastic to

reinforce the center island.

3.3.6 Monte Carlo vs Theoretical

For the 3-blade cases, our derivations are validated by comparing Monte Carlo

simulations (MC) to our closed-form expressions (CF) as shown in Fig. 3.13. The

left image, Fig. 3.13a, shows the two probability density functions side by side

for comparison. The two are the nearly identical, verifying our CF results for the

3-blade case. Fig. 3.13b shows a zoomed-in view of the bottom 3-blade patterns

from Fig. 3.13a and increases the number of blades in the pattern. It can clearly

be seen that the larger the number of blades in the pattern, the less robust it is

for handling misalignment. Inspecting Fig. 3.14 indicates that the 2-blade design

has a larger overall area of feasible positions with a higher probability of success

than any of the other designs with more than 2 blades.

3.4 Design Case Study

Design Framework Using Ψ defined in Eq. (3.2), three different design meth-

ods can be outlined based on known constraints for a particular application. These

can be alignment tolerance Ψ∗, a minimal r based on material properties, or a

maximum W based on the size constraints for the mechanism.

The designer must first decide if 2 or 3 blades work better for the application.

The 2-blade design has a better Ψ but uses r to align, while 3-blades has a worse

Ψ but does not use r for alignment. The flow charts shown in Fig. 3.15 show the
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Figure 3.14: Varying 2-blade probability distribution on the left versus 3-blade design on the
right. As one can clearly see, the 2-blade design is much more robust than the 3-blade design.

57



process for picking the best design given 2 of the 3 parameters. For the 3-blade

design, inner align is similar to that of the 2-blade’s.

Using Fig. 3.15a, a viable design for both 2-blade and 3-blade mechanisms for

use on LIMMS was developed. We first conducted experiments and determined

r ≥ 8 mm based on the strength of cardboard. Since corrugated cardboard is

an orthotropic composite material, patterns were cut with the flutes oriented the

same way to eliminate effects from the material anisotropic properties [49].

Verification Experiments To verify the results of our design methodology,

both the 2-blade and 3-blade latches were built and tested using two different

mating surfaces. The first surface tested was cardboard, which is required for

the last mile delivery problem. The cardboard chosen for experiments was C-

flute cardboard with a thickness of 4.4 mm, chosen to best simulate the average

properties of common shipping boxes. The second surface was acrylic, which is

transparent and has a lower coefficient of friction. This was to explore the option

of integrating a plastic insert with the cardboard pattern for reinforcement and to

study the mechanical behavior of the latch as it rotates. A set of stills from the

2-blade testing on acrylic can be seen in Fig. 3.16. In this figure, the blue point

denotes the center of the hole pattern, and the orange point marks the center of

the latch. The red lines indicate the edges of the hole pattern that contact the

blades. In Fig. 3.16a, the hole pattern and the latch are significantly misaligned.

As the latch is rotated, the blade tip enters the slot, and the latch self-aligns with

the hole pattern.

The blade mechanisms were attached to YORI, a 5-DoF robotic arm [50], to

simulate the mechanism’s behavior when attached to the LIMMS platform. YORI

was operated using a simple PID controller with minimal gain tuning. In these

tests, the latching mechanisms were able to align and hold as expected, as shown

in Footnote 1.
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Figure 3.15: Design process derived for 3 separate desired design specifications using defined
metric Ψ. The process is split based on starting parameters: a) W and r, b) W and Ψ∗, and c)
Ψ∗ and r.
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Performance Comparison The 2-blade LIMMS latch demonstrated superior

alignment capabilities compared to existing latching and alignment methods.

While the scale and mechanical approach varies widely between examples, we

can still compare alignment performance by designating the connector diameter

Dc and connector thickness Tc, and characterize misalignment distance as a ratio

of these geometries. The LIMMS prototype latch uses parameters ρ = 35 mm, W

= 40 mm, Dc = 80 mm, and Tc = 36 mm from the base to the blade tips.

It is important to note that most existing latching methods use male and

female hole patterns with identical diameters. For LIMMS, however, the connector

diameter Dc does not connect into a hole pattern of the same diameter. The hole

pattern diameter Dh is 140 mm, since the hole pattern on the cardboard does

not have the same size constraints as the connector. This significantly increases

the area of acceptance for successful latching. Additionally, for the following

comparisons, we define displacement in the X or Y direction as parallel to the

mating surfaces, while displacement in Z is the perpendicular distance between

the mating surfaces.

Most existing literature does not include an analysis of tolerance to misalign-

ment, but the few examples that do can only tolerate a very small amount of

misalignment. For example, the HiGen connector, when misaligned in X or Y by

0.035Dc, experienced a ∼65% drop in success rate [40]. It also has a tolerance

range of 0.33Tc in Z with a ∼50% drop in success rate. Comparatively, our data

and experiments show that the LIMMS prototype latch can be misaligned by up

to 1.31Dc and 0.83Tc with a 100% success rate. This is a tolerance increase of 37x

and 2.5x respectively.

For angular misalignments, the LIMMS latch’s capabilities far exceed that of

existing latches, with a 100% success rate at any angle about the Z-axis, even when

considerably displaced in X-Y. This is thanks to the blade design, which features

point contacts that can engage at any location in the slots. By comparison, the
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Figure 3.16: Two-blade latching with an acrylic mating surface. The blue point is the center of
the hole pattern, and the orange point marks the center of the latch. The red lines depict the
hole pattern edges that contact the blades.

HiGen connector experiences a ∼75% drop in success when displaced up to 12◦.

Other non-radial designs exhibit even lower tolerances, up to 1.7◦ [47].

The latch prototype used in these experiments does not represent the fully op-

timal case. These performance metrics can be enhanced even further by changing

some aspects of the design. The area of acceptance in X-Y could be increased by

setting ρ = W , which would allow the blade tips to engage even when displaced

by a distance equal to the entire connector diameter. The prototype could reach

a theoretical misalignment tolerance of 3ρ∗in or 1.5Dc with these changes. While

not the focus of this work, tolerance to Z-axis and angular misalignments can be

improved by increasing the blade length or angle of attack.
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Figure 3.17: Brown represents the pattern, and the yellow a 2-blade latch. (Left) depicts the
original constraint where both the latch and the pattern need to stay parallel. (Right) shows
the concept of being able to have a nonparallel orientation but maintain the 2ρ distance needed
to keep the optimal distance between blades.

3.4.1 Relaxing Assumptions

One of the largest limiting assumptions for the 2-blade case that was made for

the analysis above was that the latch and pattern both had to be parallel with

each other. This in practical terms is very limiting. To relax this assumption we

introduce two weaker assumptions in its place. The first is that only either inner

align edges make contact or outer align edges make contact during the process

of latching, and all other contacts with respect to latching are negligible. Under

certain use cases this assumption may hold true. Controllers can be adjusted

accordingly as well to further ensure this. The other assumption is that the latch

always can make progress into the pattern surface once both blades are engaged.

This means that it can overcome any sort of friction forces or locking that could

occur. As long as the two blades engage with their respective edges, the blades

rotating motion will self-align and lock the mechanism in place.

To ensure that the analysis from before still holds, we design the edge of contact

to have constant distance with the tip of the opposing blade. That constant

distance will be 2ρ. Given an orientation offset where only at full engagement the

base plate of the latch touches the pattern’s surface, the first time both blades

touch the surface of the latch pattern the distance will be 2ρ as shown by the
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Figure 3.18: Hardware prototype of the latch with locking mechanism shown by the reversed
blades machined out of aluminum. There is a camera at the center for perception. Each reverse
blade is driven by a separate motor with a worm gear making it difficult for backdrivability.

dotted lines at the surface of the pattern in Fig. 3.17, maintaining the relationships

derived in previous sections. By adding this last design feature, a mechanism is

developed to latch and self-align quickly while allowing for large misalignment

distances as well as nonparallel orientations. We were able to get the latch to

slam into the pattern at high speeds and still fully engage when it was over a

full latch pattern away. By doing this BEAR LIMMS prototype, as shown in

Fig. 2.7b, could switch bases in approximately 2 seconds, whereas other similar

systems can take up to the order of tens to hundreds of seconds.

3.4.2 Locking Mechanism

The last component missing from this latching mechanism is locking the mecha-

nism in place once it is fully engaged with pattern. To do this we decided to use

two blades that rotate upwards through the slots, shown in Fig. 3.18. The reason

reverse blades were chosen were to be able to adjust slightly in any deformation of

the cardboard box that may expand the hole in the pattern. It could continue to

rotate further to further engage or press into the surface of the box. The blades

are made of aluminum in our prototype and have small individual motors that ac-
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tuate the blades. Also there are worm gears to make backdrivability very difficult.

A camera was added to the center of the prototype for perception.

3.4.3 Conclusion

In this section we analyzed and showed that two blades were much better than

one. Optimal parameters were then derived to get a relationship between the

design parameters of the latch and pattern. This was then extended to nonparallel

relationships between the latch and pattern surfaces by only considering either

inner or outer align edges of contact. By holding a constant distance between the

blade edges and the opposing tips, the previous optimal parameters hold. Once

this was done then a hardware prototype was built with a locking mechanism and

camera.
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CHAPTER 4

Kineto-Static Duality

In this section covers a Jacobian method for finding trajectories where load on

the end effector would be absorbed partially or primarily through the structure

itself rather than through joint effort. This has a dual purpose of reducing the

overall torque requirements for the system and decreasing the amount of energy

consumed over time. This method is formalized as kineto-static duality where

deriving LIMMS statics relationship with differential kinematics gives way to the

following relationship [51,52]:

τ = JT (q)γe, (4.1)

Where J is the Jacobian of LIMMS give a pose q, and γe is the end effector forces

and wrenches. The Jacobian connects the relationship between the motor torque

outputs τ and γe. Though quite simple in form, Eq. (4.1) will allow LIMMS for

certain trajectories to carry loads much greater than what one would imagine given

LIMMS motor specification. As far as the contributors are aware this section’s

contributions can be summarized as follows:

1. Analyzed LIMMS kineto-static duality,

2. Discovered LIMMS unique areas of structurally load-bearing poses, and

3. Experimentation where BEAR LIMMS, designed for speed and not strength,

moves approximately 10 times its own weight.
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Figure 4.1: Two different views of small singular values close to zero of the Jacobian of LIMMS.
Each red dot represents a sampled point in the workspace of LIMMS. The Jacobian was then
calculated, and then its singular values. The space that it covers reaches the most outer and
inner parts of the workspace of LIMMS.

4.1 Jacobian

Eq. (4.1) uses JT to give way to a relationship between τ and γe. LIMMS is a

6-DOF system. As long at the motor axes are not sequentially parallel, it should

for the most part avoid singularities in J . Henceforth, JT would rarely hit a

singularity. Singularities in the Jacobian imply a lost in DOFs. A single motor

or combination of them result in a redundancy. Usually, this happens somewhere

over or under the base axis and directly aligned with that axis. LIMMS does

indeed follow this pattern. It has 3 over the base and 3 under the base as seen

in Fig. 4.3. What is particularly peculiar are the curves near those points. On

top of that the area near these regions are poorly conditioned meaning that the

Jacobian is close to a singularity or have very small eigenvalues or singular values.

Fig. 4.1 depicts a sampling of small singular values close to zero of the Jaco-

bian of LIMMS. These small singular values, not only have some sort of structure

or pattern clearly seen by the rings in 3D space, they reach almost the entire

workspace of LIMMS. They are abundant and dense in certain regions. By ob-

serving this structure, we can leverage the kineto-static duality.
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Figure 4.2: Depicts an analogy of the kineto-static duality using American football. Comparing
the stick figure on the left and in the center, the only difference is one has its elbow bent and
the other has it straight. In American football, depicted on the right an offensive lineman has
to protect the person with his hands. The stick figure with his elbows locked out can hold larger
forces or players for longer periods of time because the muscles in the arm do not have to hold
the weight of the player.

Even being close to small eigenvalues or singular values can be useful. The

nullspace of JT in Eq. (4.1) implies that the load is being absorbed by the struc-

ture. loads purely along the nullspace of the Jacobian would imply that the robot

can carry the load as long as its structure does not fail. For most systems the struc-

ture tends to be much stronger than the actuators. If nullspaces are rare amongst

robotic poses, poses with small singular values can be used instead. Loads in the

direction of small singular values or eigenvalues would indicate there is load shar-

ing between the actuators and structure. Depending on how small those values

are, the actuators may feel effectively a negligible load.

Intuition An analogy of what is being proposed is shown in Fig. 4.2 using

American football. The picture on the right shows the author playing the position

of offensive lineman. The job of this position is to keep the opposing players

from hitting the player with the ball, so they use their hands to keep opposing

players from getting to the players with the ball. The stick figure on the right and

center depict two poses by an offensive lineman. The left most one has its elbow
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bent. The center has its elbow straightened out. The left figure has to use its

arm muscles more to effectively maintain the opposing player. The player in the

center though, if already in contact with a player, can sustain much larger forces

for longer lengths of time since most of the force is generated from much larger

muscles in the hips and legs. The muscles in the arms do not have to work as

much.

Locked elbows and straight arms would correspond to a singularity in the Ja-

cobian and a loss of DOF. On the other hand the figure on the left would have

a corresponding singular value not close to zero. This section proposes finding

trajectories or heuristics to generate trajectories capable of lifting much heav-

ier weight than otherwise capable, reduce torque requirements, and save energy.

Specifically, during the LIMMS hardware implementation this helped reduce the

load felt by the motors allowing for increased mobility.

Data Collection Methodology To achieve this end, we sampled a radial slice

of the workspace of LIMMS give a particular end effector orientation as seen in

Fig. 4.3. To evenly sample, the workspace was used first, and then using its IK

we can translate it into joint space. As discussed in Chapter 2, numerical IK had

to be used. Due to this at some points it converged while in others it did not.

There are even very interesting clusters where it seemed to converge quite well.

At each of these points we calculated the corresponding Jacobian. This then was

multiplied by a unit vector pointing in the direction of gravity. From their the

maximum of all the torques was used to color the point with red corresponding

with small max torque values and blue with large ones. The base of LIMMS is to

the center left. If the figure and its mirror counterpart were combined, LIMMS

would sit at the center.
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Figure 4.3: Depicts a radial slice of LIMMS workspace showing the max torque required by
LIMMS to sustain a unit vector of force in the direction of gravity at the end effector for certain
poses. LIMMS base would be left center and any colored point would correspond to a point
LIMMS could reach. The color red indicates a small max torque value, while blue indicates a
large max torque values. These values were calculated using Eq. (4.1).
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Figure 4.4: Three robots and the cloud of max torques calculated similarly to Fig. 4.3 side-by-
side for comparison. The robots and cloud sizes are not to scale but have been enlarged to have
roughly the same semi-circle of radial slice of sampling. The left is LIMMS. The center is Kuka
KR5 Arc, and the right is UR10e. Note how much more red there is for LIMMS. However, our
techniques can still be applied here.

Observations There are interesting features of Fig. 4.3. First, note that the

closer to the center, the redder the samples are, and the further out the bluer. This

is not surprising, but the amount of red is quite astounding compared to some of

its peers in Fig. 4.4. Additionally, there are several nullspace points indicated by

the sharp edges. Around those regions there are also curved manifolds. The edges

of these manifolds can be considered as physical constraints placed its kinematics.

In other words, the physical structure keeps this constraint from being violated.

This implies that the nullspace of the Jacobian is perpendicular to the hyperplane

tangent to the boundary. As the points approach the sharp edges, the redder it

gets. The surfaces also get more horizontal, meaning the nullspace is more vertical

or aligned with the direction of gravity. The contour of the inner edges are much

more curved than some of its peers in Fig. 4.4. This curved manifold allows for

much more variation in the direction of nullspace at the edges as opposed to a

straight vertical wall. This would allow for different use cases of this technique

to handle loads or forces in a wide range of directions. Finally, there are long red

lines that extend from the second sharp point from the top and bottom points.

This implies that along that shelf line moving inner or out could be done with

much less torque.
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We hypothesize these characteristics have to do with the 45 degree opposing

joint elbow in the LIMMS design, as most loads on the end effector do not cause

a torque purely in the plane of rotation causing some of the forces to be absorbed

into the structure. As a side note, on the hardware implementation, due to the

massive loads, the 3D printed part link structures would flex. The direction of

flex usually is in the direction that reduces the torque output for the joints. This

needs more research to say any definitive statement though.

This method differs from the robot equation of motions in the sense that it is

not balancing the weight of the load with nonlinear terms. If a sampling method

was done for the robot equation of motion, it would have to be resamples for

every different load. Whereas, the Jacobian has a linear relationship meaning

the analysis still holds for any vector in the same direction. For most robots the

largest force motor torque has to deal with is gravity, which is why we chose it for

our analyses. Secondly, balancing points can be very thin and difficult to track.

Whereas, for LIMMS there is a large region in which this method can be done,

and Fig. 4.4 implies that this can be a much more general method applicable to

many systems.

4.1.1 Results

Finally, we tested this using BEAR LIMMS from Chapter 2. This prototype is

light weighing ∼ 2.5 kg and is not built for high torque tasks. For this test we

tried different poses and weights at the end effector as seen in Fig. 4.5. In Fig. 4.5

(left) it was given a pose where the small singular value of the Jacobian was not

aligned with gravity. It could not hold the weight, 7.5 lbs. Therefore, we had

to catch it. In Fig. 4.5 (right), we picked a pose where the small singular value

was aligned with gravity. It held ∼ 75 lbs. It even moved the weight with its

bottom motor. This show how powerful this method could be if applied properly.

Eventually, at this weight the 3D printed structures cracked as expected giving
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Figure 4.5: Shows the difference between poses where the small singular values are in the
direction of gravity. The BEAR LIMMS prototype was used for this. It is about ∼ 2.5 kg and is
meant for high speed not torque output. (Left) shows a pose where the Jacobian’s small singular
value is not aligned with the direction of gravity. It fails and falls only holding 7.5 lbs. (Right)
is a snapshot of BEAR LIMMS rotating its bottom base to move ∼ 75 lbs. This experiment
highlights how much of a difference this technique can make.

how much load was on the structure.

4.1.2 Conclusion

In this section we used kineto-static duality to develop a method for generating

trajectories that bore most of the load on the structure as opposed to the mo-

tors. Our analysis showed that for LIMMS regions near the vertical center line

could bear more weight. There were also curved manifolds in which the Jacobian

nullspace varied allowing for a much wider arrangement of nullspaces. As opposed

to the typical nullspace point seen in robots, LIMMS has a nullspace manifold that

changes in direction along those curves. We then used this to generate a trajec-

tory where we had BEAR LIMMS hold and move ∼ 75 lbs, which is astounding

for high speed low torque actuators.
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CHAPTER 5

Planning

In this chapter a motion planner for LIMMS is presented for multi-agent, multi-

modal package delivery. Coordinating amongst multiple LIMMS, when each one

can take on vastly different roles, can quickly become complex. For such a planning

problem we first compose the necessary logic and constraints. The formulation is

then solved for skill exploration and can be implemented on hardware after refine-

ment. To solve this optimization problem we use alternating direction method of

multipliers (ADMM). The proposed planner is experimented under various sce-

narios which shows the capability of LIMMS to enter into different modes or

combinations of them to achieve their goal of moving shipping boxes. Practically,

this planner would be done offline to gather solutions depending on the scenario.

It can then be used by a function approximator to predict solutions or even be

used as warm start to solve the actual problem online via Bender’s decomposition

[53].

Self-reconfigurable robots, such as LIMMS, present challenging mechanical

design, motion planning, and control problems. As the number of robots scales up,

issues arise in communication, coordination, and decision making partially because

it can no longer be assumed to have accurate global information. Modular self-

reconfigurable robot systems have attracted the attention of researchers [18,54,55].

The ability to transform relatively simple robot modules to realize various forms

and functions can be applied in areas such as aerial or space robotics [14,15] and

more recently last-mile delivery [56].

LIMMS introduces a challenging motion planning problem with each LIMMS

having multiple DOFs. This requires kinematic constraints which were rarely done
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Figure 5.1: Shows the various operational modes for LIMMS which will be considered for the
optimization formulation. Upper Left : four LIMMS attached to a box in quadruped mode.
Upper Right : a single LIMMS self-balancing to move. This is called free mode. Lower Left :
two LIMMS anchored to surfaces in manipulator mode. Lower Right : LIMMS attached to each
other. This can be used in both quadruped and manipulator mode.

in previous works [57, 58]. Moreover, each LIMMS operate in different modes: a

wheeled robot, a leg, or an arm. The delivery package can also be transported in

various ways: manipulation or locomotion via acting as the body for a quadruped

robot. This introduces complicated mixing of discrete decisions and continuous

constraints.

Various approaches have been explored to resolve the reconfiguration plan-

ning problem, such as graph search methods [57], reinforcement learning [59], or

optimization-based approaches [60]. We adopt optimization-based methods for

LIMMS. Among the optimization-based methods, mixed-integer programs (MIP)

are useful for discrete decision-making within multi-agent systems [61, 62]. How-

ever, the LIMMS motion planning problem includes nonlinear constraints such
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as kinematics. Therefore, the problem becomes a mixed-integer nonlinear (non-

convex) program (MINLP). MINLPs are known to be computationally difficult

when the problem scale is large. Aside from directly applying commercialized

solvers, e.g., SCIP, there are generally two approaches that transform the MINLP

problems into MIPs using linear approximations of the nonlinear constraints, or

into nonlinear programs (NLPs) using complementary constraints to replace bi-

nary variables. Unfortunately, as the problem scales up, nonlinear constraints

yield a large amount of piecewise linear approximations making the problem very

slow [63], and complementary constraints tend to cause infeasibility without a

good initial guess [64].

In this section, we implemented the alternating direction method of multipliers

(ADMM) to solve the MINLP problem, inspired by [65, 66]. ADMM decomposes

the problem into two sub-problems: an MIP problem and an NLP problem. By

decomposition, the problem scale of both MIP and NLP is reduced and becomes

more tractable. The logic constraints about the connections of LIMMS are for-

mulated into MIP while the nonlinear kinematics constraints are formulated into

NLP. We establish general rules for such a system to operate under and use ADMM

to explore possible approaches to resolve the given scenario, showing the feasibil-

ity of our proposed method as well as the richness of the system. To summarize,

this sections contributions are as follows:

1. Solved a unique type of problem that incorporates multi-agent locomotion

and manipulation,

2. Proposed a formulation that can be generalized to solve such types of multi-

agent motion planning problems, and

3. Solved the proposed formulation with ADMM and demonstrated it on hard-

ware.

This section was taken from [24]. The author’s main contribution on this work
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was in forming logical constraints needed for the optimization formulation and

built the environment to showcase our results. First two authors ran hardware

experiments and wrote [24] collaboratively.

5.1 System Description

One of the crucial aspects of LIMMS is its latching mechanism, which allows it

to attach either end to anchor points or itself, and it relaxes some of the strict-

ness presented in the optimization formulation. Latching will be used frequently

since it is how LIMMS transitions to different modes and grab objects for manip-

ulation. The current prototype proposed in [22] consists of a radially symmetric

multi-blade design. Fig. 5.1 (bottom right) depicts the latch prototype. By the

geometry of the blade and the anchor point hole pattern, the latch mechanically

self-aligns when it rotates. The mechanism is designed to maximize robustness to

misalignment in position and orientation about its center axis, see [22]. This has

a dual effect of easing control effort and allowing for the latches to pull the box

or itself into the desired position and orientation without being fully positioned.

If LIMMS is kinematically constrained and cannot fully reach the target position

and orientation, there is slack created by the latch’s mechanical design. In this

sense when latching to an anchor point, the alignment does not need to strictly

satisfy its constraint.

Modes of Operation Through latching, LIMMS can enter many different

modes to complete its tasks. For our proposed planner we only consider three dif-

ferent modes as these will be sufficient for delivering packages. However, LIMMS

has the potential for many other modes, some of which are described in [56].

Fig. 5.1 depicts three modes considered in our optimization formulation: four

LIMMS attached to a box are in quadruped mode, LIMMS attached to walls or

surfaces are in manipulator mode, a single LIMMS which wheels around or move
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like a snake is in free mode. The last sub-figure in the lower right shows two

LIMMS attached to the end of each other. This can be viewed as a sub-skill

accessible to all modes.

5.2 Problem Formulation

In this section, we demonstrate the optimization formulation for LIMMS motion

planning. The objective function of the optimization problem is to minimize the

distance from the box center position to the target box position, i.e. deliver the

box to the goal. The constraints consist of two parts: logic, which is formulated

into constraints using integer variables, and kinematics or dynamics, which is

formulated into linear or nonlinear equations of motion. As a result, the problem

is an MINLP, which will be separated into an MIP and NLP to be then solved

with ADMM. Assume there are B boxes and L LIMMS. Each box has SB = 4

anchor points at the center of each face. The optimization is run from t = 1, ..., T

time steps. We use upper case letters to indicate constants such as the number of

boxes B, the number of anchor points SB, and use the lower case letters to index

the quantities such as b = 1, ..., B, sb = 1, ..., SB. i is used to index the binary

variables. Upper case letters are also used as variable names. For example, zB,i

are binary variables associated with boxes. We state the assumptions made for

this formulation:

1. The box does not rotate and the momentum is assumed to be balanced.

This simplifies the dynamics constraints. In practice, this minimizes the

damage to the contents in boxes during shipping.

2. Multi-body dynamics of LIMMS are not enforced. This is to simplify the

constraints.

All binary and continuous variables are summarized in Table 5.1 and Table 5.2,
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Var Dim Description

zB,i [B, T ]
Mode for box b at time t. i = {1 : stable object,

2 : free object, 3 : manipulated, 4 : quadruped}

zL,i [L, T ]
Mode for limb l at time t. i = {1 : free,

2 : arm, 3 : add arm 4 : leg, 5 : add leg}

zS,i [B, SB, L, T ]

Mode of connection for anchor point sb on box b

to limb l at time t

i = {1 : empty, 2 : to arm, 3 : to leg}

zW,i [Sw, L, T ]
Mode of connection for anchor point sw on wall

to limb l at time t i = {1 : empty, 2 : to arm}

zAc,i [Lpr, Lpo, T ]

Mode for connection s.t. limb lpo

connects as an additional limb to lpr

i = {1 : not connected, 2 : connected}

zLc,i [Lpr, Lpo, T ]

Mode for connection s.t. limb lpo

connects as an additional leg to lpr

i = {1 : not connected, 2 : connected}
δLa

δLg

[J, L, P, T ]

[J, L, P, T ]

Joint j of limb l stays within convex

region p at time t

δBa [B,C, P, T ]
Corner c of box b stays within convex

region p at time t

B
in

ar
y

δBg [B,P, T ] Box b stays within ground region p at t

Table 5.1: Table of binary optimization variables

respectively. Binary variables δBa,i, δBg,i, δLa,i, δLg,i pertain to enforcing collision

avoidance with the environment, and the corresponding λ ∈ [0, 1] variables are for

convex combinations. Note pr is short for previous, and po is short for post.

5.2.1 Integral Logic Constraints

Mode for Boxes We define 4 modes for each box represented by 4 binary

variables: zBi[b, t], i = 1, ..., 4 for the mode of box b at t. Mode 1 is stable object

mode, where the box is supported by the ground. Mode 2 is free object mode
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Var Dim Description

pB [B, T ] Position of center of box b at time t

RB [B, T ] Orientation of box b

cB [B,C, T ] Position of corner c for box b at time t

pL [J, L, T ] Position of joint j of limb l at time t

RL [J, L, T ] Rotation matrix of joint j of limb l

fL [B, S, L, T ]
Contact force at anchor point s of box b

from limb l at time t

λLa

λLg

[B,C, V, P, T ]

[B,C, V, P, T ]

Convex combination variable for corner c of

box b by combining vertex v from patch p

λBa

λBg

[B,C, V, P, T ]

[B, V, P, T ]

Convex combination variable for corner c of

box b (or box b itself for ground) by combining

vertex v from patch p

a [L1, L2, T ] Normal vector of separating plane for l1 and l2

C
on

ti
nu

ou
s

b [L1, L2, T ] Offset of separating plane for l1 and l2

Table 5.2: Table of continuous optimization variables

where the box is in the air subject to gravity. Mode 3 is manipulated object mode

where the box is connected to a manipulator. Mode 4 is quadruped mode where

the box is used as a robot body. We currently only allow quadruped robot for

walking. This can be relaxed to incorporate more solutions such as simultaneously

bipedal walking while manipulating boxes as in [12]. At each t, a box is subject

to 1 mode, such that:
∑4

i=1 zBi[b, t] = 1 ∀b, ∀t.

Mode for LIMMS We define 5 modes for each LIMMS represented by 5 binary

variables: zLi[l, t],where i = 1, ..., 5 indicating the mode of LIMMS l at t. Mode 1

is free (wheeled) mode, where the corresponding LIMMS unit moves on the ground

like a Segway robot. Mode 2 is manipulation mode, where LIMMS connects to one

connection site on the wall and may connect to one box to manipulate it. Mode

3 is add arm mode, where a LIMMS can connect to another LIMMS to extend

the length of the arm for a larger workspace. Mode 4 is leg mode, where LIMMS
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connects to a box and serves as a leg. Mode 5 is add leg mode, where it can connect

to another LIMMS to extend the length of the leg similar to mode 3. At any time

step, LIMMS can only be in one mode, such that:
∑5

i=1 zLi[l, t] = 1 ∀l,∀t.

Mode for Anchor Points Each box has 4 anchor points on each side face. We

define 3 modes for each anchor point by 3 binary variables zSi[b, sb, l, t],where i =

1, ..., 3, denoting the connection mode for anchor point sb on b to l at t. Mode 1

is empty mode, where sb on b is not connected to l. Mode 2 is arm mode where l

connects to sb as an arm. Mode 3 is leg mode where l connects to sb as a leg. Their

summation has to be 1 at each time step:
∑3

i=1 zSi[b, sb, l, t] = 1 ∀b, ∀sb, ∀l, ∀t.

In addition, at each time sb can connect to no more than 1 LIMMS, while a given

LIMMS can connect to no more than 1 sb at its base point. This introduces

two more constraints:
∑

b

∑
sb
zSi[b, sb, l, t] ≤ 1 ∀l, ∀t and

∑
l zSi[b, sb, l, t] ≤

1 ∀b, ∀sb, ∀t. sb on b is associated with a physical connection. If latching is

enforced, the position and orientation of the base of LIMMS is constrained:

pL[j = 0, l, t] = pB[b, t] + RB[b, t]o[sb]

RL[j = 0, l, t] = Ro[s]RB[b, t]
(5.1)

Where o[s] is the constant offset vector from the center of the box b to the

anchor point sb. Ro[sb] is the constant rotation matrix from the box frame located

at the geometric center of the box to the sb frame located at anchor point sb. This

conditional equality constraint can be enforced through big-M formulation such

that if zS,i = 1, Eq. (5.1) is enforced.

Each anchor site on the wall sw has two modes. Mode 1 is empty mode where

sw is empty, and mode 2 is manipulation mode where l connects to sw as an arm.

Multiple sw can exist on the ground. Two binary variables zWi[sw, l, t],where i =

1, 2 are used to represent those modes. The associated mode constraints and

physical connection constraints are similar to the anchor points on the boxes. We
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also define binary variables for additional connections between LIMMS as arms

or legs: zAc,i[lpr, lpo, t] or zLc,i[lpr, lpo, t], i = 1, 2. If zAc,i[lpr, lpo, t] = 1, LIMMS lpo

connects as an additional arm to LIMMS lpr at t. Similar for zLc,i.

Logic for Boxes as Robot Bodies We define 4 logic rules for any box detailed

in rule 1 − 4 in Table 5.3. They constrain the boxes in quadruped mode and

LIMMS units connected to it. In short it is to ensure that several things happen

simultaneously: 1) b is used as the robot body, 2) four LIMMS are its legs, and

3) connections happen between them. On the other hand, if no box is used as

a quadruped body, no LIMMS should be used as legs. This is enforced through

formulating the rules into a loop as shown in Fig. 5.2. If a single LIMMS is used

as leg, it should connect to 1 anchor point on 1 of the boxes due to Logic 4, and

the corresponding box should be in quadruped mode due to Logic 2.

Each logic can be formulated as constraints between integer variables through

big-M formulation. For example, Logic 1 can be written as 1−M(1− zB,4[b, t]) ≤∑
l zS,3[b, sb, l, t] ≤ 1+M(1− zB,4[b, t]) where M is a large constant (usually 105).

Other constraints follow similarly.

Logic for Boxes as Manipulated Objects We define 7 logic rules for boxes as

objects and are manipulated by LIMMS as arms. They again constrain the modes

for the box and LIMMS connected to it. From a high-level perspective, this is to

ensure that the following happens simultaneously: 1) box is being manipulated by

1 or more LIMMS, 2) 1 or more LIMMS operate in arm mode, 3) connections occur

between the arm and box, and 4) arm is connected to 1 anchor point on the wall

or ground. While most of the logic rules are single directional, the bidirectional

rules are enforced by formulating implicit loops. For example, there is no explicit

rules enforcing a box to be in manipulated object mode (arrow from 8 to 12) if

LIMMS arm is manipulating it (block 8 in Fig. 5.2). However, block 8 is mutually
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exclusive with block 4 and 6. This means that if 8 happens, 4 and 6 cannot

happen, which means block 5 and 7 cannot happen (by reversing the direction of

implication). This in turn indicates that 12, which is the complement of 5 and 7,

has to happen. Note that we did not include the constraints for additional arm

or leg mode in Fig. 5.2, but similar arguments carry over.

Logic for Boxes as Stable or Free Objects Logic 12 in Table 5.3 is defined

for boxes as stable or free object modes which states that if a box is stable or free,

all its anchors are empty.

5.2.2 Continuous Constraints

Kinematics Kinematics constraints are imposed for each LIMMS through a

series of linear constraints and bilinear constraints in the same fashion as [67]:

p[j + 1, l, t] = pL[j, l, t] + RL[j, l, t]pj+1,j

RL[j − 1, l, t]zj−1,j = RL[j, l, t]zj,j

RL[j, l, t]RL[j, l, t]
T = I

RL[j, l, t] represents a right handed frame

(5.2)

Where pj+1,j is the constant position vector of the next joint as seen in the frame

of the previous joint, and zj−1,j is the constant orientation of the next joint as

seen in the frame of the previous joint, where ours are zj−1,j = [0, 0, 1]T .

Collision Avoidance with Environment To enforce constraints such that

LIMMS and boxes does not collide with the environment, we model the environ-

ment into discrete convex regions. All boxes and LIMMS have to stay within the

convex regions during the process. We also need to discriminate if the LIMMS

or box is making contact with the ground. This introduces additional binary
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variables δBa,i, δBg,i, δLa,i, and δLg,i. Note subscript g stands for ground, and a

stands for air. If LIMMS and boxes are within a convex region, the joint points of

LIMMS and corners of boxes are linear combinations of the vertices of the convex

region:

p =
∑
v

λvVv,
∑
v

λv = δ, λv ∈ [0, 1] (5.3)

Where p, λ and δ are associated with either corner points of the box cB or

position of joints of LIMMS pL as listed in Table 5.1 and Table 5.2. λv’s represent

the vertices of the convex region. If one region is not selected, all λv’s are zero

due to δ = 0.

Collision Avoidance Between Agents To enforce collision avoidance for

LIMMS-LIMMS and LIMMS-box contact, we use the formulation from [64] that

uses separating planes. For convex polygons, the two polygons do not overlap

with each other if and only if there exists a separating hyperplane aTx = b in

between [68]. That is, for any point p1 inside polygon 1 then aTp1 ≤ b, and for

any point p2 inside polygon 2 then aTp2 ≥ b. Our problem uses the following

constraints:

aTpL[j, l1, t] ≤ b, aTpL[j, l2, t] ≥ b

aTcB[c, b, t] ≤ b, aTpL[j, l, t] ≥ b ∀t, aTa ≥ 0.5
(5.4)

Where a and b is the normal vector and offset for planes associated with the

specific pair. 0.5 is just an arbitrary nonzero number that we choose, as a does

not necessarily need to be a unit vector. With this method, we enforce collision

avoidance purely through inequality constraints and avoid using complementary

constraints such as [69].
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Dynamics for Box The dynamics are required for the agent to generate strictly

feasible motions. However, enforcing dynamics for each LIMMS is expensive given

its high DOF. We only enforce dynamics for the boxes. This serves as two pur-

poses. First, it allows the system to generate dynamic motions such as throwing

or jumping. Second, it allows the system to select motion plans based on the box

weight.

When the box is in stable object mode, the gravity is compensated for by the

ground. Additionally, LIMMS can only apply reaction forces to the box when it

is connected through the anchor points on the box. We define the reaction force

on the end effector of a LIMMS l to the box b as fi[b, s, l, t], where the index s

indicates that the force is through the anchor point sb. When LIMMS connects to

the box as a leg, fi serves as the contact force on the ground, while when LIMMS

connects to the box as an arm, fi serves as the contact force to grasp the box.

The box dynamics are:

mp̈box[b, t] =
4∑

s=1

L∑
l=1

fi[b, s, l, t]−mg(1− zB,1[b, t]) (5.5)

4∑
s=1

L∑
l=1

(pL[j = 6, l, t]− pB[b, t])× fi[b, s, l, t] = 0 (5.6)

fi[b, s, l, t] only exists when l is connected to the box:

fi[b, s, l, t] = 0 if zS,1[b, sb, l, t] = 1 (5.7)

When l connects to the box as leg mode, f represents the contact force from

the ground. Therefore, f needs to satisfy the friction cone constraint:

f ∈ Cone if zS,i[b, sb, l, t] = 1 and δLg[j = 6, l,∃p, t] (5.8)
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Since LIMMS has a loading capacity, we enforce the max norm constraint on

any contact force: ||f|| ≤ fmax. Note that there is a contact moment across the

latching. Missing this moment results in the box incapable of being manipulated

with a single contact (moment balance will be violated). For simplicity, we fix

the box orientation: R = I. This can be justified as in manipulated mode, the

contact moment is sufficient to keep the orientation of the box, and in quadruped

mode, the four ground support points is sufficient to keep the body orientation.

Support Polygon The balance of moment constraint should guarantee the sta-

bility of the quadruped body. However, there are already many nonlinear con-

straints such as kinematics. To simplify the NLP formulation, one approach is to

enforce a simple stability constraint in replacement of the moment balance con-

straint. Since the rotation matrix is fixed, we can simply enforce that the end

effector of LIMMS stays to one side of the body which guarantees that the body’s

center of mass lies within the support polygon of the foot.

Stability of LIMMS One drawback of our formulation is that we do not include

the dynamics of LIMMS. As a compensation, there should be a constraint to

guarantee the stability when LIMMS is on the ground and tries to reach an anchor

point. We just assume that we have many latching points on the ground so

realizing this motion is relatively simple. Therefore, when LIMMS is in free mode,

we enforce that the base stays on the ground and give a speed constraint:

||pL[j, l, t+ 1]− pL[j, l, t]|| ≤ ∆P if δLg[j = 0, l, p, t] = 1 (5.9)

Continuity of Connection One suboptimal solution to avoid is having LIMMS

frequently latch on and off an anchor point. We enforce equality constraints for

binary variables within a range zS,i[t] = ... = zS,i[t + n]. We usually choose n
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between 3 and 5, decided based on the speed of latching.

5.3 ADMM Formulation

Collecting the constraints defined previously, the problem to solve becomes:

minimize
z, δ, p, R, f, λ, a, b

fobj

subject to

Mixed integer constraints:

Logic rules 1-12

collision avoidance with the environment Eq. (5.3)

Dynamics constraints: Eq. (5.5), Eq. (5.7), Eq. (5.8)

Stability of LIMMS on ground Eq. (5.9)

Nonlinear constraints:

Kinematics Eq. (5.2)

Collision avoidance between agents Eq. (5.4)

Dynamics constraints Eq. (5.6)

(5.10)

Where fobj is a quadratic equation that minimizes the distance of the box

to the goal position. The variables and constraints of problem Eq. (5.10) in-

corporate discrete and continuous variables with linear and nonconvex (bilinear)

constraints. This results in an MINLP. The commercial solvers tend to perform

non-satisfactory in this type of problem. There are generally two approaches

that convert this type of problem: an MICP using convex envelope relaxations

for nonlinear constraints [67] or conversion of the discrete variables into continu-

ous ones through complementary formulation [70]. MIPs with convex envelopes

tend to solve slowly when the problem scales up. Since there are many discrete

variables in this problem, complementary formulations will be numerically diffi-
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cult [66]. In this section, we adopt the ADMM. ADMM separates the problem

into two sub-problems. Although those sub-problems have different constraints,

ADMM iterates between sub-problems such that constraint 1 which may not ap-

pear in sub-problem 2 will be implicitly enforced as the iteration proceeds. In

the end, sub-problems will reach a consensus meaning their solutions are close

to each other. This procedure is detailed in Algorithm 1. In our problem, the

logic rule constraints are resolved through MIPs, while the nonlinear kinematics

and collision avoidance constraints are resolved through NLPs. Similar to [65], we

first make copies var2 of the variables var1 = [z, δ,p,R, f, λ, a, b]. Represent the

feasible set of mixed-integer constraints through 0−∞ indicator function by IM

and the nonlinear constraints by IN . The consensus problem between MIP and

NLP is:
minimize

var1 var2
fobj + IM(var1) + IN(var2)

s.t. var1 = var2
(5.11)

The constraints are moved to the objective function through the indicator func-

tion. Applying ADMM [71] to the Lagrangian L of Eq. (5.11) results in three

iterative operations:

vari+1
1 = argminvar1L(var

i
1, vari2, wi) (5.12a)

vari+1
2 = argminvar2L(var

i+1
1 , vari2, wi) (5.12b)

wi+1 = wi + vari1 − vari1 (5.12c)

Where w is the dual variable of the Lagrangian of Eq. (5.11). In Eq. (5.12),

Eq. (5.12a) solves the MIP problem:

minimize
var1

||vari1 − vari2 + wi||Wk
MIP

s.t. Mixed-integer constraints in Eq. (5.10)
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In the next step, Eq. (5.12b), solves the NLP:

minimize
var2

||vari2 − (vari+1
1 + wi))||Wk

NLP

s.t. Nonlinear constraints in Eq. (5.10)

And the next step, Eq. (5.12c), updates the dual variable w. To finish one

iteration, the weights for MIP, WMIP, the weights for NLP, WNLP, and the dual

variable w, are updated with line 6 − 7 in Algorithm 1. Within one iteration,

Eq. (5.12a), Eq. (5.12b), Eq. (5.12c) are solved in succession. This iterative pro-

cedure continues until the discrepancy between the MIP solutions and the NLP

solutions θ = vari1 − vari1 are lower than the user-set error threshold θth.

It is well known that ADMM has convergence guarantees for convex problems

and can significantly improve the solving speed. However, for complex MINLPs,

there is no convergence guarantee. In this problem, both MIP and NLP can

be slow and expensive. We avoid explicitly placing complementary constraints

to represent discrete modes as [65] did, since it hinders convergence for NLP.

However, NLP does need some information on discrete variables as it needs to

reason connections and turn variables such as f on or off accordingly. After solving

the MIPs, we directly use the solutions of zS,i, zW,i in the NLP step to enforce

connections. This improves the precision of the NLP step and the overall precision

of consensus. The price to pay is an increase in difficulty for NLP solvers to find

solutions.

5.4 Results

We performed 5 numerical experiments to evaluate the performance of the pro-

posed formulation and ADMM algorithm. For all experiments, the MIP formu-

lation was solved with Gurobi 9, and the NLP formulation was solved through

Ipopt on a Intel Core i7-7800X 3.5GHz × 12 machine. We solved all the scenarios
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Algorithm 1 ADMM for LIMMS

Input ρ, W0
MIP, W0

NLP, w0, var02, θth
1: Initialization i = 1
2: while θ > θth and i < imax do
3: Compute vari+1

1 via Eq. (5.12a)
4: Compute vari+1

2 via Eq. (5.12b)
5: wi+1 ←− wi + vari1 − vari1
6: Wk+1

MIP ←− ρWk
MIP, Wk+1

NLP ←− ρWk
NLP

7: wi+1 ←− wi/ρ
8: θ ←− vari1 − vari1
9: i = i+ 1

10: return vari2

for 15 iterations. Other parameters we have chosen are: ∆t = 1sec, fmax = 20N ,

max moving speed for LIMMS on the ground of 0.5m/s, and a 30cm cube box.

The 6-DOF LIMMS unit lengths are 5cm, 7.4cm, 33cm, 7.8cm, 33cm, 7.4cm,

5cm, respectively for each link starting at one end. Fig. 5.3 shows the MATLAB

visualization of the first 4 experiments. Animations of all tests can be seen in the

online video link related to published work [24] 2.

Throwing In the first experiment as seen in Fig. 5.3 (1), we placed 1 LIMMS

and 1 box in the scene and provided 1 anchor point on the wall. The goal is

set higher than a LIMMS unit can reach. The solver gives a solution where the

LIMMS unit connects to the wall and picks up the box, then throws the box to

the goal. This simple test shows the ability of the solver to generate manipulation

motions using dynamics.

Jumping In the second experiment as depicted in Fig. 5.3 (2), we placed 4

LIMMS and 1 box on a raised platform or inside a truck and set the goal position

to be lower on the ground. In addition, 2 anchor points are provided on the wall.

The planner provides the solution where 1 LIMMS latches itself onto the wall

and lifts the box. Then the other 3 LIMMS connects to the anchor points on the
2 Online video link to this sections related publication [24] showing planner under different

scenarios: https://www.youtube.com/watch?v=RH9gMOK24L0
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sides of the box which enters quadruped mode. This quadruped robot then jumps

down the step to reach the goal. The solver automatically changes modes from

manipulation to quadruped.

Weight Lifting In the third experiment as shown in Fig. 5.3 (3a) and Fig. 5.3

(3b), we investigate the behavior change due to a change in the weight of the box.

We place 4 LIMMS and 1 box down a ledge and set the goal to be above the

ledge. Two anchor points on the wall are provided. First, we set the box weight

to be 0.5 kg. The planner provides a manipulation trajectory where two LIMMS

connect to the wall and lift the box to move it to the goal. We then increase the

box weight to 7 kg. In this case, if we force LIMMS to manipulate the object,

the planner returns infeasible. The feasible trajectory returned by the solver set

3 LIMMS to be anchored onto the ledge and box, while 1 leg stays down from

the ledge to push the body up onto the platform. As the box weight exceeds the

capacity of dual arm manipulation, a quadruped motion is necessary to lift the 7

kg box.

Manipulation with Double-dual Arms In the fourth experiment in Fig. 5.3

(4), we again place 4 LIMMS and 1 box in the same scenario, below a desired

platform or step. Two anchor points are provided on the wall. However, we

enlarged the width of the truck such that 1 LIMMS cannot reach the box from

the wall. In this case, the solver connected a second LIMMS as an additional arm

to the first which is connected to the wall, allowing the arms to reach the box and

perform dual arm manipulation.

Quadruped Walking with Refinement In the fifth experiment, we placed 4

LIMMS and a box on flat ground and set the goal to be at the same elevation but

separated by a distance. LIMMS moved to the box and assembled a quadruped

robot which then moved towards the goal. Furthermore, since there is no gait
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Figure 5.4: Convergence of mean and max residual rpB , rpL, rRL for experiment 1-4. Solid lines
denote mean residuals and dashed lines denote max residuals.

optimization in our problem formulation, we used an additional planner similar

to [72] but included 6-DOF kinematics to provide the quadruped walking motion

to the goal. This experiment demonstrated that, although the planner may give

rough trajectories, they can be further refined with another planner to correct

kinematics discrepancies and gait cycles. This readies it to be implemented on

the hardware.

Box Lifting on Hardware In this experiment, one LIMMS is initially anchored

to the ground. There is another anchor point on the wall. The objective is

to lift the box higher. If LIMMS lifts the box with the other end anchored to

the ground, the kinematics quickly becomes infeasible. The planner instead lets

LIMMS first anchor to the box, then anchor to the wall from the box. The

LIMMS can easily lift the box higher with the other end anchored to the wall.

The hardware implementation is included in the video.
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# T # of variables # of constraints Time in Minutes
MIP NLP MIP NLP T-MIP T-NLP T-Total

1 10 4857 cont.
670 bin. 1777 3623 eq. 582

ineq. 5206 0.88 7.17 8.05

2 15 25917 cont.
3150 bin. 8787 34545 eq. 621

ineq. 28990 129 24 153

3a) 15 25917 cont.
3150 bin. 8787 33102 eq. 1686

ineq. 28990 41 107 148

3b) 10 17277 cont.
2100 bin. 5857 22032 eq. 1131

ineq. 19180 5 50 55

4 15 25917 cont.
3690 bin. 8787 35924 eq. 606

ineq. 31342 19 244 263

Table 5.4: Solving time for experiment 1-4. Note: Far left column in ascending order is: 1 for
Throw, 2 for Jump, 3a for Lifting with Arm, 3b for Lifting with Climb, and 4 for Double-dual
Arm.

Convergence Define the residual to be the mismatch between the MIP and

NLP solutions. The mean residuals for pB, pL and RL are the mean value of all

the norms:

rpB[i] = mean
b
||pB,MIP[b, i]− pB,NLP[b, i]|| (5.13a)

rpL[i] = mean
j, l
||pL,MIP[j, l, i]− pL,NLP[j, l, i]|| (5.13b)

rRL[i] = mean
j, l
||Vec(RL,MIP[j, l, i]−RL,NLP[j, l, i])|| (5.13c)

The max residual is the maximum value of all the norms. Fig. 5.4 depicts the

change of mean and max residuals as a function of time. ADMM generally showed

decent average consensus after iteration 10, where rpB or rpL usually converges

to cm-mm level and rRL usually less than 0.1 rad. The maximum residual can

sometimes be large. If we put the MIP solutions on the real hardware, we can run

another kinematics refiner to solve the kinematics to ensure that the nonlinear

constraints are strictly satisfied.

The number of variables, constraints and time cost for solving the experiments
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above are listed in Table 5.4. Generally, the NLP portion is the more challenging

portion of ADMM, since it includes kinematic and collision avoidance constraints.

To speed up the solving process, some linear constraints in can be moved into

the MIP formulations. This will speed up the NLP solver but the residual may

increase.

5.4.1 Conclusion

Here we have demonstrated an offline, mid-level planner capable of complex mo-

tions that coordinate between multiple LIMMS to achieve a common task. In

some instances even a combination of discrete modes appeared. In general this is

a difficult problem to solve given its a nonlinear MIP. Solving this offline allows

for a discovery of motion primitives given a task. Data from these offline trajecto-

ries given a problem state can be used online using a machine learning algorithm

and function approximators. Recent research may suggest that these nonlinear

MIPs could be solved online using prior solved problems such as the ones from

our offline generated database [53].
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CHAPTER 6

Conclusion

6.1 Implementation

The main goal for this project was to demonstrate that this idea was feasible. We

built and assembled a wireless LIMMS with the second iteration of the prototype.

In order to improve wheel speed another motor was added. This increased the

difficulty of quadruped mode seen in Fig. 6.1 (top left) due to the increase in

weight. We actually used heuristics from Chapter 4 to get quadruped to stand

up. Fig. 6.1 (top right) shows a workaround that had to be done in order to get

LIMMS quadruped mode to climb a step due to the weight. In future iterations

a custom end effector is needed where one motor has two output shafts, one to

the wheel and one to the latch. Fig. 6.1 (bottom left) shows a new mode that was

not present in the original concept. This mode has three wheels in the sense of

distinct contact points. This is useful when returning back to the truck and there

is an obstacle. Fig. 6.1 (bottom right) is another mode not in the original concept.

This mode has all four wheels aligned with the middle joint connected with the

other LIMMS unit. This mode drives very smoothly and should be used on flat

surfaces. A passive wheel should be added at the middle joint.

LIMMS ended up completing each sub-task individually but had trouble com-

pleting the entire task in one take. Overall, the setup time for the entire system

slowed progress time. It is understandable given it is an early prototype. How-

ever, for future development reducing time for battery changes and calibration

would improve productivity. Despite the extra setup time, it is very possible to

get a working prototype to complete the entire task from start to finish, and our
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Figure 6.1: Frames taken from the LIMMS demonstration moving a box out of the truck and
delivering it to a location and returning. (Top Left) shows LIMMS quadruped mode rolling
down the ramp. (Top Right) depicts a workaround that had to be made to compensate for the
extra motors to get LIMMS to climb a step. (Bottom Left) illustrates a three wheeled mode
used to return when overcoming obstacles. (Bottom Right) shows an aligned four wheel mode
used to traverse flat surfaces to return.

limited demonstration proves that.

6.2 Miscellaneous

In this section we cover some of the additional contributions made by the author

to the robotics community not covered yet. In 2019 a novel parachute mechanism

was introduced in [73]. Later that year we published an optimization paper for

vertical climbing of a six-legged robot in [74]. In 2020 we published work for

creating safe linear quadratic regions in function approximators in [75]. In 2022

we presented an optimization formulation for bookshelf organization problem with

obstacle avoidance in [76]. In the later half of that year we also published a warm-

start method to solve MIPs online in [64]. Finally, we went to RoboCup 2023 a

robotic soccer competition. We built an additionally state of the art adult-sized

humanoid robot in 6 months. The author also developed a key localization method

that surpassed the competitors.
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6.3 Summary & Final Thoughts

In this manuscript, LIMMS was introduced as a modular, multi-modal robotics

concept for last-mile delivery. Based on real-world data, the design requirements

and assumptions were laid out and tested. The LIMMS kinematics and design

were then shown to have a better workspace than a traditional 6-DOF robotic

arm and not suffer from asymmetric torque imbalances.

LIMMS fills a niche between the general purpose and task-specific robots.

While it is suited mainly for manipulation tasks, it still remains adaptable for

application on most other delivery tasks. The compact design allows multiple

LIMMS to replace larger, complex systems. This comes at a cost. For instance, the

wheeled delivery robot may be more energy efficient than the LIMMS quadruped

unit. However, the wheeled robot is effectively constrained to a specific type of

terrain. LIMMS is not. For a humanoid delivery robot, the arms and legs of the

robot are constrained by the physical structure of its back and hip widths. This

may be a disadvantage for very heavy or awkwardly shaped payloads as those

spacing constraints limit the methods in which to carry the box and how many

humanoids work together on a single box. LIMMS can potentially scale up to

carry heavier loads than a humanoid because it does not have the same physical

spacing constraints. Moreover, when scaling the number of LIMMS units it can

squeeze into a number of places and attach itself on walls or even roofs.

The generalizability of LIMMS additionally opens up new avenues of opti-

mization for logistics never before seen. As long as there are attachment points,

LIMMS can latch its base link to it, meaning that for warehouses there is a poten-

tial to not only optimize traffic of automated systems on the ground but vertically

as well. Mixing and matching all of the modes can bring about much more effi-

cient delivery logistics. For example, the wheels on LIMMS could be combined

with manipulator mode to form a dynamic mobile conveyor belt system to move
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stacks of boxes. Sub-tasks such as queuing up the next delivery or other portions

of logistics can be handled by LIMMS.

We also analyzed a class of self-aligning rotational latching mechanisms and

manufactured prototypes for use on LIMMS. The probability distributions for

both 2-blade and 3-blade designs were formally derived and verified using MC

and CF. By inspection of Fig. 3.13, it is clear that the 2-blade design outperforms

the others in terms of self-alignment. As the number of blades increased, the

rate of success decreased overall. From the probability distribution, a new metric

Ψ was introduced to compare relative designs and quantify alignment tolerance.

This metric also demonstrated that the 2-blade latching mechanism achieves self-

alignment more consistently than the other designs. Depending on the specific

application, using both Ψ and the probability distribution may be preferable when

designing the latch as there may be subtle trade-offs between robustness in (x, y)

and θ. Our analysis also showed that the 2-blade latch can be misaligned as far

as 3ρ∗in away and still align successfully with the hole pattern.

Our analyses were formalized as a design process for this type of latching

mechanism to find optimal design specifications for specific constraints as laid out

in Fig. 3.15. We then used this methodology to manufacture both a 2-blade and

3-blade latching mechanism. The theory was then tested using these mechanisms

with a robotic arm holding a single off-center position with PID control. The

results of these experiments with two different surface materials were consistent

with our theory, and the prototype demonstrated superior alignment capabilities

compared to existing methods.

To increase the strength of LIMMS when loads over torqued the actuators,

we used theory from kineto-static duality. By following trajectories in regions

where the structure absorbed loads, the weight capacity increased effectively re-

ducing the overall torque requirements for LIMMS. Analyzing the a radial slice

of the max torque needed to compensate for gravity force, it was discovered there
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was a curved manifold near the vertical center. This differed from other robotic

manipulator peers who all had completely flat vertical centers. Having a curved

manifold at the inner edge admits a continuum of directions of nullspaces in the

Jacobian. This can, therefore, be used in many different situations. This method

also maintains a linear map meaning the same analysis holds for differing weights

in the same direction, whereas the equation of motions do not. This method was

then demonstrated on the BEAR LIMMS prototype to move ∼ 75 lbs although

failing to even hold its own body weight in some positions. This method should

be regarded as a general method even if it is used as a heuristic for optimizing a

trajectory.

Finally, an optimization based motion planner was presented for the multi-

agent modular robot system LIMMS. We demonstrated solving the proposed for-

mulation with ADMM. The results show how LIMMS autonomously coordinates

between different modes and generates trajectories of the system under different

situations. With proper refinement, the trajectories can be implemented on the

hardware. It is worthwhile to mention that due to the separating plane for col-

lision avoidance, the NLP part of the problem takes a long time to solve. In

the previous work [64], we used data-driven methods to solve those constraints

fast online among numerous of other methods to transform offline data to solve

problems online.

We have introduced LIMMS and built the necessary tools required to get a bare

minimum demonstration to work. Throughout the process we have researched

and developed technologies related to latches and surface engagement, energy and

torque reductions in systems, and mid-level multi-agent planning. More research

and development will be needed in the near future to make this idea become a

reality but with this work we are close. To an extent even some sub-tasks or use

cases may be feasible with what was presented here.
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APPENDIX A

Supplementary Materials for Chapter 3

Probability Distributions

Several interesting higher resolution CF probability distribution functions are

shown in this section for 2 and 3 blade designs on the next page. In the three

blade designs, there are subtle details, and there does not seem to be one consis-

tent pattern as the island (red circle) scales. The red lines in the figure show the

separation of regions that indicate symmetry. Please note that in this figure the

relative scale between figures was distorted in favor of more details.

102



Figure A.1: Probability distribution functions: a) 3-blade r=0.9, b) 3-blade r=0.7, c) 3-blade
r=0.5, d) 3-blade r=0.2, e) 3-blade r=0, and f) 2-blade r → 0 with ϑ > ϑ∗.
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