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Abstract

Transfusion-related immunomodulation (TRIM) in the intensive care unit (ICU) is difficult to 

define and likely represents a complicated set of physiologic responses to transfusion, including 

both proinflammatory and immunosuppressive effects. Similarly, the immunologic response to 

critical illness in both adults and children is highly complex and is characterized by both acute 

inflammation and acquired immune suppression. How transfusion may contribute to or perpetuate 

these phenotypes in the ICU is poorly understood, despite the fact that transfusion is common in 

critically ill patients. Both hyperinflammation and severe immune suppression are associated with 

poor outcomes from critical illness, underscoring the need to understand potential immunologic 

consequences of blood product transfusion. In this review we outline the dynamic immunologic 
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response to critical illness, provide clinical evidence in support of immunomodulatory effects of 

blood product transfusion, review preclinical and translational studies to date of TRIM, and 

provide insight into future research directions.

Defining transfusion-related immunomodulation (TRIM) in critically ill patients is 

complicated by the underlying dynamic nature of the immune response to critical illness, 

variation in the timing of transfusion, number of transfusions received, variation in blood 

products transfused, and a myriad of additional immunomodulatory treatments often 

received in the intensive care unit (ICU). Early reports of TRIM in the 1970s stemmed from 

the observation that red blood cell (RBC) transfusion was associated with fewer episodes of 

organ rejection in renal transplant patients, implying an immunosuppressive effect of 

transfusion.1 On the other hand, subsequent studies have attributed a number of 

proinflammatory effects to blood transfusion.2–4 These seemingly incompatible findings 

may be explained by blood product–specific, host-related, and other contextual influences at 

the time of transfusion including the highly dynamic immunologic response to acute illness 

itself. Changes in blood banking practices over the last decade, including the adoption of 

near-universal prestorage leukoreduction, have likely changed the epidemiology and indeed 

the pathophysiology of TRIM. Furthermore, inflammation and immune function in pediatric 

and adult critical illness is now known to be more complex and dynamic than previously 

thought. Together, these observations provide impetus for a reevaluation of TRIM, both to 

place transfusion immunobiology in a modern ICU context and to highlight important 

research priorities in this rapidly changing field.

The dynamic immune response to critical illness

The need for a more comprehensive understanding of the immunologic effects associated 

with transfusion in critically ill children is underscored by recent data that suggest that the 

immunobiology of critical illness is far more variable than previously thought. Many of the 

events inciting critical illness are rooted in an amplified inflammatory response—or 

systemic inflammatory response syndrome. It is increasingly apparent, however, that this 

initial response is commonly accompanied by an overly robust compensatory anti-

inflammatory response syndrome, which leads to a significant critical illness-induced 

immune suppression. Restoration of immunologic homeostasis, with resolution of both the 

systemic inflammatory response syndrome and the compensatory anti-inflammatory 

response syndrome states, is an important goal of treatment (Fig. 1). This is evidenced by the 

fact that high systemic levels of proinflammatory mediators such as interleukin (IL)-6 and 

IL-8 and elevations in anti-inflammatory cytokines such as IL-10 have all been associated 

with increased risks for secondary infection or death from critical illness in both adults and 

children.5–10

Critical illness-induced immune suppression, termed “immunoparalysis” in its most severe 

form, can affect both the innate (e.g., neutrophil, monocyte, macrophage) and the adaptive 

(e.g., lymphocyte) arms of the immune system. This form of acquired immunodeficiency 

can be quantified with laboratory measures that have been used in single- and multicenter 

studies of immune function in critical illness. From the innate immune perspective, the two 
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assays most often associated with ICU outcomes are monocyte human leukocyte antigen 

(HLA)-DR expression and ex vivo lipopolysaccharide (LPS)-induced tumor necrosis factor 

(TNF)-α production capacity. HLA-DR is an important antigen presenting molecule that 

should be highly expressed on more than 90% of circulating monocytes. In the 

immunoparalyzed state, monocyte HLA-DR expression is markedly down regulated.11–14 

Another characteristic of the immunoparalyzed monocyte is diminished proinflammatory 

cytokine response to a standardized ex vivo LPS challenge. Healthy innate immune cells 

should produce large quantities of TNF-α upon ex vivo LPS stimulation. Markedly and 

persistently reduced whole blood ex vivo LPS-induced TNF-α production capacity predicts 

increased risks for secondary infection or death in the adult and pediatric ICU (PICU).
6,8,12,15,16

Adaptive immune suppression has also been clearly identified as a risk factor for adverse 

ICU outcomes. Severe and prolonged lymphopenia, along with lymphocyte apoptosis in 

lymphoid organs such as the spleen, are strongly associated with adverse outcomes in adult 

and pediatric sepsis.17–19 Further, lymphocyte hyporeactivity to ex vivo stimulation, with 

reduced interferon (IFN)-γ production in response to incubation with phytohemagglutinin or 

anti-CD3, has been demonstrated in adult sepsis nonsurvivors as well as in children with 

adverse infectious outcomes from sepsis.17,20

Mechanisms of critical illness-induced immune suppression are unclear, but are almost 

certainly multifactorial with host, environmental, and treatment-related factors all likely 

contributors. For instance, while specific genotypes have not been identified that confer 

increased risk for immunoparalysis in the setting of critical illness, strong evidence for both 

heritable and epigenetic factors exist.15,21 Interplay between proinflammatory and anti-

inflammatory mediators likely exists, wherein immunoparalysis has been reported in 

patients with many forms of “proinflammatory” critical illness including sepsis, trauma, 

multiple organ dysfunction syndrome (MODS), critical viral infections, cardiopulmonary 

bypass, and pancreatitis. It appears, however, that certain inflammatory insults, such as 

Staphylococcus aureus infection, confer particularly high risk for development of immune 

suppression.6 Additionally, many of the treatments employed in the PICU are intentionally 

immunosuppressive, including glucocorticoids, antineoplastic agents, and transplant 

rejection prophylaxis. Moreover, immunomodulatory side effects are common in the ICU 

pharmacopeia, including antimicrobials, catecholamines, sedatives, and diuretics, with the 

bulk of these effects being immunosuppressive.22

It is in this context that TRIM in the ICU must be considered, with weight being given to 

both proinflammatory and immunosuppressive effects of transfusion. Depending on the 

patient’s genetic background, diagnosis, comorbidities, severity of illness, and timing of 

transfusion, the immunologic effects of a given transfusion may be difficult to predict. 

However, it can be expected that ICU patients may be more sensitive to immunomodulatory 

mediators in blood products because of their background immune dysregulation. As 

transfusion remains a common occurrence in the PICU, particularly in children with high 

severity of illness, it is important to understand the contribution of transfusion to systemic 

inflammation and to critical illness-induced immune suppression.
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Epidemiology of transfusion in the PICU

Published rates of RBC transfusion among critically ill children vary from 49% among 

children admitted to the PICU for more than 48 hours to between 6.8 and 17% when 

considering all PICU admissions.23–26 Compared to nontransfused patients, those receiving 

RBC transfusion tend to be sicker, with higher pediatric logistic organ dysfunction (PELOD) 

scores and incidence of multiple organ dysfunction being independently predictive of 

transfusion status.24,25

Regarding plasma transfusion, Karam and colleagues27 recently published the most 

comprehensive-to-date study of the epidemiology of plasma transfusion in critically ill 

children. Among all children admitted to 103 included PICUs over 6 study weeks, a 

relatively low percentage of children (3.4%) received plasma. However, the mortality rate for 

the 443 children who received at least one plasma transfusion was as high as 27%, 

suggesting that children who receive plasma represent a cohort with high severity of illness. 

Very little is known about the epidemiology and outcomes associated with platelet (PLT) 

transfusion in the PICU, representing an important gap in the literature.

Clinical evidence suggesting TRIM in the ICU

In multiple observational studies, RBC transfusion is independently associated with adverse 

outcomes in hospitalized patients.28 However, because sicker patients tend to receive 

transfusions, these observational studies are often limited by confounding by indication. 

Consequently, several prospective randomized controlled trials in adults across a variety of 

clinical settings have compared restrictive versus liberal transfusion strategies and have 

demonstrated either improved outcomes in restrictive-group subjects or lack of benefit in the 

liberally transfused.29–34 Several meta-analyses have since been performed and support the 

finding that a restrictive transfusion strategy appears to be safe in most settings, with no 

obvious benefit to liberal transfusion practices.35–38

Similar to adult studies, retrospective studies in critically ill children identify RBC 

transfusion as an independent risk factor for morbidity and mortality.39,40 In prospective, 

multicenter observational study by Bateman and colleagues,23 after controlling for age and 

severity of illness, RBC transfusion was independently associated with longer mechanical 

ventilation, cardiopulmonary dysfunction, PICU stay, and mortality. In 2007 Lacroix and 

coworkers41 published a prospective randomized controlled trial of transfusion strategies in 

pediatric critically ill patients that demonstrated that a restrictive transfusion strategy 

decreased RBC transfusions without increasing the incidence of new or progressive MODS.
41 Subgroup analyses from this trial showed similar results in children after surgery or 

cardiac surgery and those with sepsis.42–44 Two additional prospective randomized trials in 

pediatric cardiac surgery, also examining hemoglobin (Hb) thresholds, found no benefit to 

liberal transfusions even in this high-risk population.45,46 Whether the lack of apparent 

benefit from liberal transfusion strategies stems from a lack of efficacy or from an increase 

in transfusion-related risk remains unclear and continues to be a topic of debate.47–50
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Potential risk may arise from immunomodulation related to RBC transfusion. Multiple 

analyses link RBC transfusion to infection risk in the ICU, suggesting that RBC transfusion 

may be associated with immune suppression. Earlier adult studies identified an association 

between infections and nonleukoreduced RBC transfusions, with more recent studies—using 

leukoreduced transfusions—confirming these results.28,51–55 Variations in storage duration 

and volume transfused drew criticism of these studies.56 However, when volume of 

transfusion is controlled for, the association between postoperative infection and RBC 

transfusion is supported.57,58 Meta-analyses in postoperative and medical patients 

comparing transfused versus nontransfused adults demonstrates increased risk for 

nosocomial infections in transfused patients.59–62 Large meta-analyses of medical and 

surgical patients randomized in restrictive versus liberal RBC transfusion trials demonstrate 

significantly reduced risks for health care–associated infections in those managed with a 

restrictive transfusion strategy.37,38,63

Critically ill children are also at risk for hospital-acquired infections, and RBC transfusions 

may increase this risk.64,65 Critically ill children with sepsis managed with a restrictive 

transfusion strategy had significantly fewer cases of nosocomial infection than liberally 

managed patients.42 Children with significant burn injuries receiving high numbers of blood 

transfusions were at increased risk for development of sepsis.66 Additionally, transfused 

children after cardiac surgery had higher incidence of ventilator associated pneumonia and 

postoperative infections.67,68

RBC transfusions in critically ill children are also associated with MODS and transfusion-

associated respiratory complications, including respiratory dysfunction, transfusion-related 

acute lung injury, and transfusion-associated circulatory overload.69–73 Like TRIM, these 

transfusion complications are likely the result of transfusion in a susceptible host under 

certain circumstances (two-hit phenomenon). They are also likely to be mediated by 

immunologic mechanisms.

Storage duration of the RBC unit may impact immune function in critically ill children, with 

longer storage duration of transfused RBCs associated with increased risks for postoperative 

infection, MODS, and hospital length of stay.74–76 While transfusion with shorter-storage 

RBCs has not been shown to improve outcomes in randomized trials in adults, premature 

neonates, or children with severe anemia, the ongoing Age of Blood in Children in Pediatric 

ICU (ABC-PICU) trial (NCT01977547) may shed light on this question in critically ill 

children.77–80 Notably, in the only studies to date evaluating immune function after RBC 

transfusion in critically ill or injured children, older prestorage leukoreduced RBCs were 

associated with persistent immune suppression and systemic inflammation compared to 

fresher RBCs.8,81

Taken together, these clinical studies strongly suggest some immunomodulatory effect of 

transfusion. Consequently, several preclinical and translational studies have been performed 

to try to define and clarify these effects.
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Proinflammatory versus immune suppressive effects of transfusion

Preclinical studies demonstrate mixed immunomodulatory effects of RBC exposure, with 

results suggesting both proinflammatory and immune-suppressive effects (Table 1). 

Investigations to date are heterogeneous with variation in blood product studied and model 

utilized, limiting direct comparison of effects. In studies suggesting a proinflammatory effect 

using murine and in vitro neutrophil models, stored RBCs resulted in greater induction of 

proinflammatory cytokines compared to fresh RBCs, with effects more often seen when 

nonleukoreduced RBCs were used.76,82–85,87 Studies evaluating immune-suppressive effects 

are more heterogeneous. Studies to date have used various in vitro immune cell models 

(including monocytes, lymphocytes, natural killer [NK] cells, and neutrophils), neutrophil 

chemotaxis models, and murine tumor models.88–95 These studies likewise suggest that 

suppression of immune cell function may be associated with RBCs of longer storage 

duration or nonleukoreduced RBCs. For instance, murine tumor suppression models suggest 

that there is less tumor progression after exposure to fresh RBCs or leukoreduced RBCs 

when compared to stored RBCs.94,95 On the other hand, more recent studies suggest that 

even when leukoreduced, stored RBC products can directly suppress monocyte or 

lymphocyte function in vitro.90,93 However, findings are not consistent, as some murine and 

ex vivo studies report mixed or even no effect on inflammatory markers.76,86 In this way 

TRIM may be analogous to RBC alloimmunization, whereby immunologic consequences of 

transfusion are highly variable and likely host and/or context specific. Overall, the evidence 

to date suggests that RBC transfusion has important immune modulatory effects in vitro and 

in animal models, but the clinical impact of these experimental effects remains to be 

determined.

Studies investigating immunomodulatory effects of PLT and plasma products are fewer and 

mostly limited to preclinical models. Similar to RBC studies, PLT products have 

demonstrated both proinflammatory and immune-suppressive effects. This is perhaps not 

surprising given emerging evidence that PLTs themselves may play important roles in 

activating and modulating the innate inflammatory response.96,97 On the proinflammatory 

side, PLT products may increase immune cell cytokine production and neutrophil activity.
98,99 By contrast, Aslam and colleagues100 demonstrated an immunosuppressive phenotype 

dependent on PLT major histocompatibility complex Class I expression with fresh but not 

72-hour-stored PLTs in a murine transfusion model. Similarly, PLT products have been 

shown to suppress dendritic cell function in in vitro models.101 Limited data suggest that 

pathogen reduction technologies may mitigate some PLT-associated TRIM effects, although 

further study in this area is certainly needed.99,102 Data regarding immunomodulatory 

effects of plasma products are even fewer. In a single in vitro study, allogeneic fresh-frozen 

plasma suppressed innate immune cell function as measured by LPS-induced cytokine 

production.103

Clinical studies on immunologic effects of RBC transfusion have been executed in a variety 

of patient populations (Table 2). The majority of studies have limited sample size and are 

observational, describing effects of RBC transfusion in a “before–after” design. Contrasting 

results are reported, including both immune-stimulatory as well as immune-suppressive 

effects. On the proinflammatory side, nonleukoreduced RBC products were used in most 
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studies demonstrating increases in posttransfusion cytokine levels.106–109 One observational 

study in neonates using leukoreduced RBC found mildly elevated plasma levels of select 

proinflammatory cytokines 2 to 4 hours posttransfusion.105 Notably, a relatively large 

randomized controlled trial comparing leukoreduced with white blood cell (WBC)-

containing, buffy coat–depleted RBCs in adult cardiac surgery patients suggested that in the 

heavily transfused patients (needing > 4 units), WBC-containing blood products induced a 

stronger proinflammatory response.107 Taken together, these data suggest that 

proinflammatory responses observed after RBC transfusion may be largely mitigated by 

leukoreduction.

By contrast, the studies that found no effect, mixed effects, or immune-suppressive effects 

associated with RBC transfusion largely employed leukoreduced RBC products.
8,81,110–112,114,115 Immunosuppressive effects of transfusion have been studied most often in 

surgical patients.51,113,115 Whether these patients are more prone to immunosuppressive 

effects of RBC transfusion, or that other patient populations are understudied, is not clear. 

Different immunosuppressive effects of transfusion have been observed, including decreased 

ability of immune cells to produce proinflammatory cytokines, increased production of anti-

inflammatory cytokines, and decreased function of T lymphocytes and NK cells.8,51,113–115 

Effects of storage duration in the context of RBC TRIM are unclear, with some studies 

indicating a storage effect, while others do not. Among critically ill children, observational 

data suggest that transfusion with RBCs of longer storage duration may be 

immunosuppressive, although these studies are currently limited by small sample size.8,81 

Further delineating potential storage-related effects on transfusion-related immune 

suppression remains an active area of investigation. Similarly, the precise mechanisms of 

immunosuppressive effects of RBC transfusion are not well understood and require further 

study.

Does TRIM exist in the ICU population?

Answering the question of whether or not TRIM exists is not an easy task. An in-depth 

review of epidemiologic, preclinical, and clinical studies reveal conflicting evidence for the 

existence of TRIM. Clearly one of the major obstacles to measuring effects of TRIM is the 

magnitude and variability of background immune modulation seen in ICU patients, 

independent of transfusion. Several (but not all) studies point to increased risk of infection 

after RBC transfusion, and while these data support an immunosuppressive TRIM effect, 

increased non–transferrin-bound iron may also provide an alternative explanation for 

increased infection after RBC transfusion, particularly after receipt of older units.87 Animal 

models show varied effects of TRIM depending on the model or immune cell tested. In our 

review, approximately twice as many animal studies showed immune-suppressive effects of 

transfusion compared to immune activation, although approximately one-third of published 

studies showed mixed or no immune effects of transfusion. Human studies showed a more 

balanced pro- vs. anti-inflammatory effect of transfusion, again with approximately one-

third of published studies showing mixed or no immune effects of transfusion. Given the 

mixed results of both preclinical and clinical studies, it is tempting to conclude that TRIM 

does not exist or if it does occur the effects must be small compared to other insults patients 

face in the ICU setting. The answer is probably more complex, as there are likely both 
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proinflammatory and immune-suppressive effects mediated by transfusion, and the balance 

of how these forces influence an individual patient will depend on the underlying 

physiology, age and comorbidities of the patient, the timing of transfusion, and the 

individual blood product(s) used. Understanding these interactions is important because 

RBC transfusion represents a potentially modifiable factor among the many potential 

mediators of immunologic dysregulation in the PICU.

Not all blood components are equivalent

Confounding most studies examining the potential immune modulatory activity of blood 

components is the growing recognition that blood donor variability (age, sex, race) and 

differences in blood component manufacturing can have a significant impact on the levels of 

pro- and anti-inflammatory molecules in transfused products.116–119 When different 

methods for the production of a RBC product were directly compared, enormous variability 

in immune modulatory agents including residual PLTs and WBCs, free Hb levels, 

extracellular vesicles, cell-free DNA, cytokines, growth factors, and lipid mediators were 

seen.117,119 While the length of storage of RBC products continues to be explored in 

randomized clinical trials, studies are now under way to examine the effect that donor 

factors and RBC component manufacturing may have on patient outcomes.120 In addition, 

plasma components have also been shown to have significant differences in levels of residual 

cells and extracellular vesicles depending on the method of manufacturing, and it is not 

inconceivable that similar observations will be made when different PLT products are 

evaluated.121 What is becoming clear is that it is no longer appropriate to consider all RBC, 

PLT, or plasma products used in transfusion as being equivalent, and care should be taken to 

understand which products are being used when evaluating the immune modulatory effect of 

transfused blood components.

Can studies be performed to measure immunologic consequences in the 

transfused critically ill child?

As noted, one of the biggest impediments to measuring immune-modulatory effects of 

transfusion is the heterogeneity of transfused patient populations and their underlying state 

of immune activation and competence. Indeed, a given blood product that may confer 

minimal risk in one critically ill child has the potential to confer substantial risk in another. 

Our understanding of how this risk is mediated, however, and how to mitigate it at the ICU 

bedside is rudimentary at best. Observational studies comparing transfused to nontransfused 

populations are limited by the fact that patients who receive transfusions are likely sicker 

than those who do not, introducing a confounding by indication bias which is difficult to 

overcome. However, the field of transfusion medicine may face an opportunity to study 

TRIM effectively in the near future. Further formal study of appropriate RBC transfusion 

“thresholds” for various patient populations are planned, as noted at the recent NIH State of 

the Science Symposium.122 Collection of biologic specimens in patients randomized to 

receive RBC transfusions or not would allow objective laboratory comparisons of immune 

function in these subjects, data that have been lacking to date. Incorporating comprehensive, 

longitudinal immunophenotyping into such a randomized trial would provide valuable 
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information that could never be obtained through observational studies. Ideally, the design of 

these trials would be informed by greater understanding of TRIM mechanisms, including 

patient-related and individual blood product–related risk factors. This therefore demands a 

more comprehensive understanding of the fundamental biology of TRIM, importantly 

placing transfusion in the physiologic context of the critically ill child. Only in this way can 

we begin to identify which blood products may have the potential for harm in a given 

individual. A multidisciplinary approach, spanning the spectrum of basic, translational, and 

clinical research methodologies, may well be required to accomplish this important task.

How does one define TRIM in the PICU? The answer to this question will likely be 

complex. In fact, immunomodulation associated with transfusion may not be a single entity, 

but may represent multiple context-specific effects—both proinflammatory and/or 

immunosuppressive. As stated, much more work is needed to understand the full spectrum 

of immunologic consequences in the transfused critically ill child.

ABBREVIATIONS:

ICU intensive care unit

LPS lipopolysaccharide

MODS multiple organ dysfunction syndrome

PICU pediatric intensive care unit

TRIM transfusion-related immunomodulation
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Fig. 1. 
The dynamic immune response to critical illness. Some patients experience severe 

hyperacute inflammation that results in early death before the immunosuppressive effects of 

the compensatory anti-inflammatory response can become clinically evident (A). Those who 

survive the initial proinflammatory insult can develop severe persistent immune suppression 

that is associated with increased risks for nosocomial infection and late death (B). An 

important goal of critical care management is to promote prompt restoration of immunologic 

homeostasis through resolution of systemic inflammation and normalization of immune 

function (C). The immunologic effects of a transfusion at a given point in time (white star) 

have the potential to be quite variable depending on the context, with some subjects being 

too ill to detect an effect (A), others being too well to have a clinical impact (C), and others 
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in a highly dynamic state where pro- or anti-inflammatory effects of transfusion could 

greatly influence overall immune function. SIRS = systemic inflammatory response 

syndrome.
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