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Computational studies with ωB97X-D density functional theory of the mechanisms of the steps 

in Trauner’s biomimetic synthesis of preuisolactone A have elaborated and refined mechanisms of 

several unique processes. An ambimodal transition state has been identified for the cycloaddition 

between an o-quinone and a hydroxy-o-quinone; this leads to both (5 + 2) (with H shift) and (4 

+ 2) cycloaddition products, which can in principle interconvert via α-ketol rearrangements. The 

origins of periselectivity of this ambimodal cycloaddition have been investigated computationally 

with molecular dynamics simulations and tested further by an experimental study. In the presence 

of bicarbonate ions, the deprotonated hydroxy-o-quinone leads to only the (5 + 2) cycloaddition 

adduct. A new mechanism for a benzilic acid rearrangement resulting in ring contraction is 

proposed.

Graphical Abstract

INTRODUCTION

Cycloaddition reactions of readily available feedstock alkenes or alkynes are powerful 

transformations to convert simple starting materials into ring systems and have been used 

extensively in the synthesis of complex biologically active molecules.1–3 The understanding 

of the cycloaddition reactions performed under a variety of reaction conditions has attracted 

the sustaining interest of both experimentalists and theoreticians.4–7 A number of recently 

discovered cycloaddition reactions show ambimodal transition states (TSs) that connect 

one set of reactants and two or more different products.8–12 These reactions feature 

post-transition state bifurcations (PTSB), which lead to the formation of two or more 

products through a lower energy transition state connected to the single (ambimodal) 

transition state, with no intermediate intervening. Since the first ambimodal bispericyclic 

cycloaddition discovered by Caramella et al. in the dimerization of cyclopentadiene (Figure 

1a),13 numerous pericyclic reactions with a bifurcating PES have been reported in the 

past few decades.14–21 Although the outcomes of such reactions cannot be predicted with 

conventional transition state theory, they can be investigated by molecular dynamics (MD) 

trajectory simulations.22,23

We have had a long interest in understanding how periselectivity, selectivity in formation 

of the pericyclic reaction products, is controlled. In 2018, we predicted a (4 + 2)/(5 + 2) 

ambimodal TS in the cycloaddition between two molecules of an ortho-quinone produced 

via the oxidation of pyrogallol (Figure 1b).19 However, such ambimodal (4 + 2)/(5 + 

2) cycloadditions have never been observed experimentally. Recently, a short, biomimetic 
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synthesis of the fungal metabolite preuisolactone A24 was described by Trauner et al.25 They 

developed a synthetic pathway starting from catechol 1 and pyrogallol 2 (Figure 2). The 

initial key step involves o-quinone 3 and hydroxy-o-quinone 4, obtained by oxidation of 1 
and 2, which could undergo a (5 + 2) cycloaddition to furnish tricyclic intermediate 5.

We have now carried out computational studies of the cycloaddition reactions in the reaction 

course, concentrating mainly on the factors that govern the reaction pathways for the (5 + 2) 

cycloaddition reaction. We report computational and additional experimental investigations 

of (1) revision of the steps in Trauner’s biomimetic synthesis of preuisolactone A with the 

aid of density functional theory (DFT) calculation, (2) the periselectivity of the plausible 

cycloadditions between o-quinone 3 and hydroxy-o-quinone 4, and (3) quasi-classical direct 

molecular dynamics (MD) simulations to elucidate the control of reaction outcomes in 

ambimodal transition states leading to both (5 + 2) and (4 + 2) cycloaddition products.

COMPUTATIONAL METHODS

All quantum mechanical calculations were performed using the Gaussian 16 Rev. A.03 

(sse4).26 Given the benchmark study done by Brinck and co-workers,27 geometry 

optimizations and frequency calculations were performed at the ωB97X-D28 /6–31+G(d, 

p) level of theory. The effect of solvation on molecular geometries was accounted for during 

optimizations using the SMD29 solvation model. Frequency calculations were carried out at 

the same level of theory to confirm the presence of local minima (no imaginary frequencies) 

and transition states (one imaginary frequency) on the PES. Transition structures have also 

been verified by intrinsic reaction coordinate (IRC) calculations.30,31 IRC calculations were 

performed to ensure that the saddle points found were true TSs connecting the reactants and 

the products. 3D renderings of stationary points were generated using CYLview 1.032 and 

PyMol 2.7. GaussView 5.0.9 was used to construct initial structures used in our calculations. 

Geometry optimizations were also performed with the M06–2X and B3LYPD3 functionals 

and the 6–31G(d) basis set for selected compounds and TSs to support the generality of our 

conclusions (see Table S1 in the SI).

MD simulations were performed at the same level of theory as those used for the geometry 

optimizations. Trajectories were propagated using the Progdyn/Gaussian interface developed 

by Singleton.21 Quasiclassical trajectories were initialized in the PES region near the TS. 

This involves normal mode sampling by adding the zero-point energy for each real normal 

mode and performing a Boltzmann sampling of geometries to afford the thermal energy 

available at 298 K with a random phase. The TS ensemble were then propagated for 400 

fs in both the forward and backward directions until either one of the products is formed 

(second forming C–C bond shorter than 1.5 Å) or the reactants are generated. The classical 

equations of motion were integrated with a velocity-Verlet algorithm using Singleton’s 

program Progdyn with the energies and derivatives computed on the fly at ωB97XD/6–

31+G(d, p) using Gaussian 16. The time step for integration is 1 fs.
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RESULTS AND DISCUSSION

The reaction of catechol 1 and pyrogallol 2 in the presence of potassium ferricyanide 

produces a mixture of interconverting isomers comprising the diosphenol 7 and its acetal 

form 8 (Figure 2a).25 The fundamental step responsible for the tricyclic framework in 7/8 is 

C–C bond formation through a (5 + 2) cycloaddition. Details about the (5 + 2) cycloaddition 

can be obtained via the MD simulations (vide infra). In the second phase of the synthesis, 

Koser’s reagent was used to oxidize the mixture of 7 and 8 to afford diketo lactone 9 as 

intermediate. In the original proposed mechanism,25 intermediate 9 undergoes a benzilic 

acid type rearrangement with ring-contraction via oxetane 10 to simultaneously form one of 

the butyrolactones and the adjacent tertiary alcohol of preuisolactone A.

We began our investigation by comparing the computed relative stabilities of the proposed 

intermediates. The formation of diosphenol 7 from o-quinone 3 and hydroxy-o-quinone 

4 is exoergic by 25 kcal/mol (Figure 2b). Isomer 7 is less stable than the isomer 8 by 

4.7 kcal/mol, consistent with the experimental observation. Surprisingly, our computations 

reveal that the originally proposed intermediate 10 (path a, Figure 2a), in the conversion 

of 9 to final product, is dramatically higher in energy than 9 by 40.7 kcal/mol. The ring 

strain in the four-membered oxo-heterocycle might account for the high relative energy of 

10. Specifically, the C–O–C angle is 87.4°, which is far from the ideal angle of 110° in 

ethers. We proposed another intermediate 11 with five-membered oxo-heterocycle, which 

could undergo a dyotropic shift33 to form the final product preuisolactone A (path b, Figure 

2a). In water, 11 is more stable than 10 by 28.2 kcal/mol in terms of free energy. An 

angle of 97.3° shows that the ether bond in 11 has not been greatly distorted in the same 

manner as the intermediate 10. However, we could not find the TS for the conversion of 

11 to preuisolactone A. Notably the experiment was carried out with aqueous phosphate 

buffer (pH = 8) during workup.25 Hence it is possible that PO4
3− or HPO4

2− could undergo 

intermolecular nucleophilic attack on the carbonyl. We thus explored path c, shown in 

Figure 2a, as an alternative that would facilitate a benzilic rearrangement, followed by 

spontaneous γ-lactonization involving a mixed carboxylic/phosphoric acid anhydride. As 

shown in Figure 2b, the PO4
3− attack (energy profile in blue) was calculated to be favored 

by 12.9 kcal/mol than the HPO4
2− attack (energy profile in red). The favorability of path 

c might be attributed to extra stabilization conferred by an OH···O hydrogen bond between 

the hydroxyl group and the carbonyl group. In other paths, this stabilizing interaction is 

diminished or difficult to achieve because of either geometric constraint or steric hindrance.

We next explored the detailed mechanism of the (5 + 2) cycloaddition reaction between 

o-quinone 3 and hydroxy-o-quinone 4. For ortho-quinone, we previously determined that 

two products are formed from an ambimodal TS because such units can not only serve as 

dienes for Diels–Alder cycloadditions but also undergo an intramolecular proton transfer to 

furnish the noncharge-separated (5 + 2) adduct (Figure 1b).19 Since 4 contains a α-hydroxy 

keto unit, it should also engage in ambimodal dipolar/Diels–Alder cycloadditions. The 

FMOs of the nucleophilic hydroxy-o-quinone 4 and the relatively electrophilic o-quinone 3 
and are shown in Figure 3a.
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Figure 3b shows the free energy landscape of this reaction based on the transition structure 

TS1. TS1 has activation free energies of 20.4 kcal/mol in water with respect to the isolated 

reactants. As shown in Figure 3b, TS1 is highly asynchronous and features three partially 

formed σ-bonds, C8–C6, C8–C7, and C9–C12 with forming bond distances of 2.91, 2.62, 

and 2.05 Å, respectively, which are comparable to our previously discovered ambimodal TS 

of ortho-quinone system (2.52, 2.80, and 1.94 Å).19 The (4 + 2) cycloadduct 5′ is calculated 

to be 12.6 kcal/mol higher in energy than (5 + 2) cycloadduct 5. The two cycloadducts 

can interconvert through an α-ketol rearrangement,34 including a 1,2-sigmatropic alkyl shift 

and a proton transfer, with TS2 of relative free energies of 15.6 kcal/mol, corresponding 

to a barrier of 20.6 kcal/mol. At TS1, the forming bond for formation of the (5 + 

2) cycloaddition is shorter in length and appears to be favored geometrically, in good 

agreement with the steepest-descent path from TS1 along the PES in mass-weighted 

coordinates (the minimum energy path (MEP), or IRC). The IRC displays that the two C–C 

bond formations in the (5 + 2) reaction are concerted but asynchronous, with no intervening 

minimum on the PES (Figure 3c). We thus hypothesized that TS1 is an ambimodal transition 

structure that could lead to (5 + 2)- and (4 + 2)-cycloadducts.

Quasi-classical direct dynamics simulations were used to evaluate the competition between 

the (5 + 2) and (4 + 2) pathways (Figure 4). Trajectories passing through TS1 lead to 

one of three possible outcomes. Out of 132 trajectories propagated, 20 (15%) afford the 

(4 + 2) adduct, 109 (83%) afford the (5 + 2) adduct, while 3 (2%) recross to reform the 

starting materials either with or without fully forming the C9–C12 bond. Figure 4b shows 

one example of each of these three reaction trajectories. These simulations demonstrate that 

the (5 + 2) pathway is much more favorable. We have defined reactions to be dynamically 

concerted when the time-gap between bond formation (defined as ≤1.7 Å) is <60 fs and 

dynamically stepwise when ≥60 fs.35 Trajectories leading to the (5 + 2) product have shorter 

time gaps between the two C–C forming events where the average time gaps are 115 fs for 

the (5 + 2) reaction and 171 fs for the (4 + 2) reaction. These results indicate that both 

pathways shown in Figure 4b are dynamically stepwise, which we have defined as reactions 

with time gaps of more than 60 fs, but the shape of the free energy surface may be more 

steeply descending on the (5 + 2) side of the bifurcation. We previously established the 

empirical linear equations that correlate MD product ratios to TS forming bond lengths.36 

According to the equation, (5 + 2)/(4 + 2) ratio is calculated to be 15.3:1 in this case, in a 

good agreement to the major product predicted by trajectory simulation (5.1:1).

Although MD calculation shows the dominance of the (5 + 2) pathway for this reaction, 

no (4 + 2) adduct was observed in the previous experiment.7 Since the experiment was 

performed in the presence of excess NaHCO3, we further investigated the role of bicarbonate 

ions on the periselectivity of the (5 + 2) cycloaddition. The relative acidity of the hydroxyl 

group in 4 was derived from the computed thermodynamics of model acid–base reactions 

involving intermolecular deprotonation of 4 by acetate.37,38 Using this method, the pKa 

value of 4 is calculated as 2.16, which is comparable to the pKa value of carbonic acid in 

water (3.58). The HOMO and the LUMO of 3 and 4a (anion of 4) are shown in Figure 5a. 

The HOMO energies of 4 and 4a are −8.6 and −7.3 eV, respectively. With a higher lying 

HOMO, the strength of the primary FMO interactions with 4a are more favorable than with 
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4. Both of the transition states TS1 and TS3 should be favored by the electrophilic nature 

of 3 and nucleophilic tendency of the 4/4a. Distortion/interaction analysis39–42 was used 

to compare the reactions of 3 with 4 or 4a (see Figure S6 in the Supporting Information). 

There is a stronger interaction between 3 and 4a in TS3 because of more favorable orbital 

interactions. Thus, a lower activation energy is found in the reaction of 3 with 4a due to the 

small distortion energy (of both 3 and 4a) and the relatively better overlap in the transition 

state.

We mapped out the free energy landscape of this reaction in the presence of excess 

bicarbonate ions (Figure 5b). The calculated free energies show that, compared to the neutral 

mode, the barrier is slightly lower for the ambimodal TS3. The (5 + 2) cycloadduct is 

significantly more stable than the (4 + 2) cycloadduct. Geometrically, TS3 is less biased 

toward (5 + 2) cycloaddition than TS1, with the C–C distance for the (5 + 2) cycloadduct 

being 0.14 Å shorter than the C–C distance for (4 + 2) cycloadduct. The TS structure, TS4, 

arising from the less stable intermediate 5a is 2.1 kcal/mol less stable than the TS2. The 

generation of ionic 5a is slightly endergonic by 1.4 kcal/mol. The exchange of a proton 

with the in situ generated H2CO3 furnishes 5, completing the (5 + 2) reaction. In contrast, 

the (4 + 2) cycloadduct in anion form, 5a′ is now significantly less stable than the (5 

+ 2) cycloadduct 5a. The IRC of TS3 indicates that the MEP of the reaction leads to 

the (5 + 2) product (Figure 5c). The IRC in water involves intramolecular proton transfer 

after the second C–C bond is virtually fully formed. We also analyzed the influence of a 

hydrogen-bonded tight-ion pair with water close to the carbonyl in the reaction of o-quinone 

3 and hydroxy-o-quinone 4a. The calculated free energies show that (see Figure S7 in the 

Supporting Information), compared to the reaction in absence of water shown in Figure 5b, 

the barriers are lower for both the ambimodal TS and the product interconversion TS. But 

the solvent does not influence the nature of the ambimodal TS and we do not expect it to 

alter the product ratio.

To further rationalize the experimental outcomes in the presence of excess NaHCO3, we 

carried out the MD trajectory simulation of TS3 (Figure 6). Although the C8–C7 forming 

bond is only 0.14 Å shorter than C8–C6 in TS3, trajectory simulations show the (5 + 2) 

pathway to be overwhelmingly more favorable. Out of 210 trajectories, 12 (6%) recross, 

198 (94%) yield the (5 + 2) adduct, but none yield the (4 + 2) adduct. In our previous 

investigation,36 when the difference between two bond lengths is 0.40 Å or greater, the 

percentage of the major product is >98%, nearly exclusive formation of one single product. 

This model fails to predict the dominance of the (5 + 2) pathway for this reaction. These 

results might be attributed to the instability of the (4 + 2) adduct anion, which apparently 

result in both kinetically and thermodynamically unfavorable to form the (4 + 2) adduct. The 

high periselectivity calculated in system with bicarbonate ions is consistent with the net (5 

+ 2) adduct observed experimentally. We thus proposed the mechanism in the presence of 

bicarbonate ions shown in Figure 7a, which proceeds through anionic intermediates.

The role of the bicarbonate ion was studied experimentally by performing the reaction in 

their absence, i.e., under more acidic conditions (see SI). Although the proposed (4 + 2) 

adduct 5′ could not be isolated from the reaction performed at low pH, we were able to 

identify biphenyl 14 as a product formed under these conditions. We hypothesize that it 
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is formed from 5′ via retro-aldol reaction, tautomerizations, and redox-disproportionation 

(Figure 7b; see also SI). Compound 14 was calculated to be more stable than the (4 + 2) 

adduct 5′ by 19.0 kcal/mol (Figure S5). Under alkaline conditions, the (5 + 2) adduct 5 is 

notably also not isolated due to its instability and subsequent retro–Dieckmann reaction.

We also tested other cycloaddition possibilities of 3 and 4 (Figure 8). For the other 

conformation of TS1, i.e., TS1a, the steric repulsion might hinder the approach of 3 
and 4. Using another double bond in 3 is also expected to be a less favorable pathway, 

as a methoxy group is more electron-donating than a methyl group. The calculated free 

energies show that TS1 is lowest in energy than other TS isomers. We then explored the 

homodimerization of 4. For the four TS isomers, TS44d is the lowest in energy, which 

involves the cycloaddition of the hydroxyl substituted double bond fragment. TS44d and 

TS1 are almost the same in energy. According to the reaction conditions, TS44d was also 

experimented by deprotonation one of the hydroxyl substituent (TS44d1) and two of the 

hydroxyl substituents (TS44d2). Both of the monoanionic TS44d1 and dianionic TS44d2 
were found to be less favorable than anionic TS3 of the experimentally observed pathway. 

Note that the three partially formed σ-bonds are all elongated in anionic systems and the 

difference of the two dynamically competing bond lengths are more than 0.4 Å in the 

monoanionic TS44d1 and dianionic TS44d2.

CONCLUSIONS

DFT calculations demonstrated the mechanism and origins of the cycloaddition reactions 

in the biomimetic synthesis of preuisolactone A. The aqueous phosphate buffer promotes 

benzilic rearrangement and spontaneous γ-lactonization to furnish preuisolactone A due 

to the intermediate structure featuring a strong hydrogen-bonding interaction between the 

hydroxyl and the carbonyl. For the reaction between o-quinone and hydroxy-o-quinone, 

the first ambimodal (4 + 2)/(5 + 2) cycloadditions have been detected experimentally 

with the aid of DFT calculations. We demonstrate experimentally and computationally that 

bicarbonate ions can direct the selectivity of these ambimodal reactions to the net dipolar 

cycloadducts via decreasing the stabilization of the Diels–Alder cycloaddition product by 

deprotonation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Representative example of ambimodal TSs with two competing Diels–Alder reaction 

pathways. (b) Our recent prediction of ambimodal TS in bifurcating dipolar/Diels–Alder 

cycloaddition. (c) Ambimodal transition state leading to both (5 + 2) and (4 + 2) 

cycloaddition products, which could interconvert via α-ketol rearrangements.
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Figure 2. 
(a) Mechanism for the formation of preuisolactone A using catechol 1 and pyrogallol 2 
as starting materials. (b) Computed structures and free energies of TSs, intermediates and 

products in the formation of preuisolactone A. All energies are denoted in kcal/mol, and 

interatomic distances are shown in angstroms. Energy profile in blue corresponds to the 

revised mechanism (path c).
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Figure 3. 
(a) Computed FMOs of o-quinone 3 and hydroxy-o-quinone 4. (b) Computed structures and 

free energies of TSs and products in the reaction of 3 with 4. All energies are denoted in 

kcal/mol, and interatomic distances are shown in angstroms. (c) Plot of energies (ωB97XD/

6–31+G(d, p)) versus points along the computed IRC starts from TS1. Molecular geometries 

are shown for select points on the IRC.
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Figure 4. 
Three-dimensional plots of trajectory geometries. TS ensemble geometries for TS1 (red), 

TS2 (gold) are overlaid in contrasting colors for clarity. (a) Plot of all 136 trajectories 

propagated from TS1. (b) Randomly selected trajectories propagated from TS1 leading to 

each product.
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Figure 5. 
(a) Computed FMOs of o-quinone 3 and hydroxy-o-quinone 4a. (b) Computed structures 

and free energies of TSs and products in the reaction of 3 with 4 in the presence of NaHCO3. 

All energies are denoted in kcal/mol, and interatomic distances are shown in angstroms. (c) 

Plot of energies (ωB97XD/6–31+G(d, p)) versus points along the computed IRC starts from 

TS3. Molecular geometries are shown for select points on the IRC.
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Figure 6. 
Three-dimensional plots of trajectory geometries. TS ensemble geometries for TS1 (red), 

TS2 (gold) are overlaid in contrasting colors for clarity. (a) Plot of all 136 trajectories 

propagated from TS3. (b) Randomly selected trajectories propagated from TS3.
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Figure 7. 
Rationalization of the experimentally observations. (a) Proposed mechanism for the net (5 + 

2) cycloaddition reaction in the presence of bicarbonate ions. (b) Experimental investigations 

and the isolation of the biphenyl derived from 5′.
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Figure 8. 
Computed free energies of possible TSs in the reaction of o-quinone 3 and hydroxy-o-

quinone 4 and the homodimerization of hydroxy-o-quinone 4. All energies are denoted in 

kcal/mol, and interatomic distances are shown in angstroms.
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