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abstract

Realistic simulation of nucleic acids in solution

Thomas Edward Cheatham, III

Advances in computer power, empirical force field representations, and the development of
more reasonable means to handle the long ranged electrostatic interactions now allow
routine “stable” nanosecond length unrestrained molecular dynamics simulations of nucleic
acids in explicit water. This has allowed the observation of spontaneous A-DNA to B-
DNA transitions in water, representation of the structure of A-RNA and DNA-RNA
hybrids, and the stabilization of A-DNA in mixed water/ethanol solutions. The basics and
history of the methods are discussed along with significantly more in-depth versions of

published papers investigating the simulation of nucleic acids in various environments.
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introduction

Not until the pioneering fiber diffraction studies of Franklin & Gosling (Franklin &
Gosling, 1953), the proposition of the double helix by Watson & Crick (Watson & Crick,
1953), and subsequent crystallization experiments (Dickerson et al., 1982) did a glimpse
into the structure of nucleic acids emerge. Since this time, advances in X-ray
crystallographic and NMR spectroscopic methods, coupled with the development of
recombinant DNA technology, has led to an ever expanding body of information about
nucleic acid structure. In this thesis, a series of papers and discussion are presented which
suggest that molecular dynamics simulations with an empirical force field can serve as a
complement to experimental studies and give insight into nucleic acid structure and
dynamics. This is in large part thanks to increases in computer power, advances in force
field representation and the application of methods for properly treating the long ranged
electrostatic interactions. When I first came to UCSF and the Department of
Pharmaceutical Chemistry in 1990, the simulation of nucleic acids was limited to in vacuo
calculations or short simulations in explicit solvent. Although the first simulations of DNA
in explicit water were reported in 1985 (Siebel et al., 1985), even five years later,
reasonable simulations with explicit solvent and full periodic boundary conditions were
extremely time consuming, requiring run time on supercomputers such as the Cray Y-MP,
and were generally limited to less than 200 picoseconds. Now, as I finish up this work in
the winter of 1996-1997, multi-nanosecond simulations are routine and require only days

on parallel computers such as the Cray T3E.

The work presented in this thesis took place mostly between 1994 and 1996 in the
laboratory of Dr. Peter A. Kollman. The goal of this work, in the early stages, was to
enable the simulation of small nucleic acids in explicit solvent on a nanosecond time scale

and to test the latest force field for nucleic acids (Comell ez al., 1995). Specifically, 10-mer



(and a few longer and shorter) duplexes of varying sequence were extensively studied.
These solvated systems were studied since I believed that it was important to first test the
methods and discover the limitations on these small representative systems prior to
performing larger scale simulations on protein-nucleic acid complexes or higher order
nucleic acid structures. Moreover, these small systems still offer a rich diversity in nucleic
acid structure, such as the effect of sequence and the environment on the structure. Along
with evaluation of the methods and force ficld, the hope was to demonstrate that molecular
dynamics simulations can lead to useful insight into nucleic acid structure and dynamics.
The larger challenge is to accurately represent this rich diversity in sequence dependent
structure and the effect of the environment on structure; this is something which the
methods are just now beginning to realize. The overall conclusion from all the data
presented herein is that molecular dynamics simulations can, in some cases, give useful
insight and a surprisingly good representation of nucleic acid structure. Moreover, in some
cases the methods can reasonably represent the effect of the environment on the structure of
nucleic acids. In other cases, the omnipresent “conformational sampling” problem

becomes an issue and definitive conclusions become a bit more specious.

In this introduction, a discussion about nucleic acid structure and its relationship to
function is presented along with some discussion of the methods and history of the atomic
simulation of nucleic acids. This is followed by a summary of my involvement in the
development and integration of enabling technology for studying nucleic acid structure and
dynamics. The calculations presented herein represent large scale simulations for the time
period; hence the use of high powered workstations and parallel supercomputers was
necessitated. To support this goal, the molecular dynamics simulations code AMBER
needed fairly general parallelism and overall optimization; this involved collaborations with
scientists at Silicon Graphics, Inc., Pennsylvania State University, the Pittsburgh

Supercomputing Center (PSC), Cray Research and other AMBER developers. An



additional enabling technology was the application of methods to properly treat the long

- ranged electrostatic interactions which involved a collaboration with Tom Darden at the
National Institute of Environmental Health Sciences (NIEHS) and Michael Crowley (PSC).
After the introduction, each chapter except for the final chapter represents a paper that is
cither published, in press, or submitted for review. A brief preface is presented before
cach paper which describes in a bit more detail the rational (at that ﬁmc) for pursuing the
research. The final chapter presents issues and problems encountered with the methods
and is concluded with a discussion of molecular dynamics trajectory analysis and the
software I developed for this purpose.

nucleic acids

structure and nomenclature

The nomenclature, chemical composition, and structure of nucleic acids has been reviewed
extensively in a variety of biochemistry texts (for example see Stryer’s Biochemistry
(Stryer, 1988)), and more extensively in the “bible” of nucleic acid structure, Saenger’s
Principles of Nucleic Acid Structure (Saenger, 1984) hence will not be extensively
reviewed herein. In general within the text nucleic acids are referred to by their principal
bases; adenine (ADE, A), thymine (THY, T), guanine (GUA, G), cytosine (CYT, C) and
uracil (URA, U) and the sequence is always written from the 5’ to 3’ end. Shown in
Figure 1 are the principal bases and connectivity (in the 5’ to 3’ direction) of DNA. In the
upper right of Figure 1 is shown the deoxyribose sugar. Changes in the conformation of
the sugar are a large determinant of nucleic acid structure. These changes in the
conformation of the sugar are often characterized by the sugar pucker pseudorotation phase
and sugar pucker amplitude (Altona & Sundaralingam, 1972). The puckering is also
referred to by common names, with puckers above the plane of the ring towards the S’
atoms called endo and puckers below the plane exo. Characteristic of B-DNA is a C2'-



endo sugar pucker (where the C2’ atom is above the plane) which has a sugar pucker
pseudorotation value in the ~144° to 180° range. Note that throughout the text “sugar
pucker” and “pucker” are used synonymously with the sugar pucker pseudorotation value
specified in degrees or by the common names (i.e. C3’-endo, C2’-endo, etc.).

O0=P—0—HC 0 o)
Lk
H| H N
o) NH
| { ¢
o=||=—o—Hzc ° N NZ NH,

Figure 1: Atom names and connectivity in DNA

The double stranded structures are, in general, created using standard nucleotides, Watson-
Crick base pairing and structures based on canonical geometries or model structures from
X-ray crystallography or NMR methods. In all the simulations, except where otherwise



mentioned, the terminal nucleosides lack a terminal phosphate group. The model building
is discussed in more detail in the methods section of each chapter and in more detail in
Chapter 5. Shown in Figure 3 (at the end of this section) are stereoviews of canonical A,
canonical B and the crystal (Prive et al., 1991) structures of d{ CCAACGTTGG], which are
studied extensively in this thesis. Helicoidal parameters used to describe the structure of
the nucleic acid conform to the Cambridge convention (Dickerson, 1989); the calculation of
these is discussed in more detail in the published discussion of “Curves” (Lavery &
Sklenar, 1988; Lavery et al., 1995) and “Dials and Windows” (Ravishanker et al., 1989).
Values for some of the helicoidal parameters which largely distinguish canonical A-DNA
and canonical B-DNA, compared to the crystal structure of d{CCAACGTTGG], (referred
to by the pdb designation 5dnb) are presented in Table 1.

A-DNA B-DNA Sdnb
rise (A) 2.56 3.38 3.43
x-disp (A) -5.43 -0.71 1.17
twist, Q (°) 32.7 36.0 35.3
inclination (°) 19.1 -59 2.3
pucker (°) 13 (C3'-endo) 192 (C2'-endo) 146

Table 1: Helicoidal values distinguishing A- and B-form geometries

In Table 1, the following trends are observed. The rise (along the helical axis) is lower in
A-form than B-form structures, as is the base pair displacement from the helical axis (in the
“x-direction”, or x-disp). The helical twist in B-DNA represents 10 base pairs per
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complete turn; A-DNA has a significantly lower twist. The inclination of the base pairs is
significantly positive in A-DNA whereas it is slightly negative or near zero in B-DNA
structures. A-DNA is characterized by C3’-endo sugar puckers and B-DNA by a mixture
of puckers with C2’-endo puckers dominating. Note that throughout the text the words
“conformation”, “structure” and “‘geometry” are used synonymously and refer to the
relative three dimensional atomic positions of all the atoms in the molecule. Also in the text
the backbone angles are referred to by common names (o, B, ezc.) defined below in Figure

2.
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Figure 2: Nucleic acid backbone angles
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Figure 3: Stereo views of canonical A-DNA, canonical B-DNA and the crystal structure of
d[CCAACGTTGG].
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structure and function

Knowledge of the structure of nucleic acids gives insight to function. For example,
differences in the structure between DNA:DNA, RNA:RNA and DNA:RNA hybrid
duplexes help explain why the RNAse-H domain from the HIV-1 reverse transcriptase
(Gotte ez al., 1995) preferentially degrades the RNA strand in DNA:RNA hybrids over
RNA:RNA duplexes. Structural deformations of the nucleic acid also play a functional
role. The widened minor groove characteristic of catabolite activating protein (CAP)
induced bends (Schultz et al., 1991) is the preferred site for DNase I and IN integrase
activity (Muller & Varmus, 1994). For some enzymes, distortion of the DNA
conformation is essential for catalysis (Steitz, 1990). Further examples include the
unwinding of the DNA helix by zinc finger proteins (Shi & Berg, 1996) or the enhanced
binding specificity of Eco R1 DNA methyltransferase to DNA due to disruption of base
stacking (Allan & Reich, 1996).

In addition to structural deformations, structural transitions in nucleic acids also
have an important function, such as the compaction of supercoiled DNA. The compaction
occurs due to the induction of local segments of A-DNA or Z-DNA structure in an
otherwise B-DNA coil (Levin-Zaidman et al., 1996). Structural transitions to A-DNA or
Z-DNA can be induced by the binding of poly-cationic ions such as spermine or neomycin
(Robinson & Wang, 1996) or inhibited by other ligands, such as the minor groove binders
netropsin and distamycin A (Burckhardt e al., 1996). Another intriguing example of a
structural transition which is functionally useful is the binding of small acid soluble spore

proteins (SASPs) to DNA in gram positive bacteria which significantly increases the
resistance of the bacteria to UV radiation damage (Mohr et al., 1991). This occurs since
the binding of the SASPs induces a transition from B-DNA to the more rigid and
photoresistant A-DNA conformation. Although the inherent deformability of nucleic acid
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structure is functionally important, clearly the flexibility of the nucleic acid also plays an
important role as is suggested by the photoresistance of the “rigid” A-DNA structure.
Changes in flexibility and alteration of the bending patterns are both suggested to play a
role in both the activation and repression of RNA polymerase by the transcription factor
MerR (although alteration of the bending patterns is more consistent with the data) (Ansari
et al., 1995). Differences in canonical structure, deformations of structure, transitions

between structures, and the inherent flexibility of nucleic acids all play a functional role.

All of these structural transitions, deformations and changes in flexibility are

possible since the conformation of a nucleic acid is strongly dependent on the environment.

In fact, it is this strong dependence on the environment and inherent flexibility that makes
structure determination of nucleic acids difficult. The more flexible the nucleic acid, the
more difficult it is to obtain a high resolution structure. Although much has been learned
about nucleic acid structure from X-ray crystallographic and NMR spectroscopic methods,
both techniques have their specific limitations. Crystallography is limited by the need to
obtain crystals which diffract to high resolution and the constraints imposed by crystal
packing. Crystal packing can deform the structure as seen in the experiments where the
same sequence crystallizes into different structures depending on the geometry of the
crystal lattice (Dickerson et al., 1987; Dickerson et al., 1994; Shakked et al., 1989) and the
crystallization conditions. NMR methods, on the other hand, suffer from the difficulty in
assigning all the proton resonance’s and the fact that the information obtained is short
ranged, representing less than 5 A or three connected bonds in distance. Since the
information derived is short ranged, this tends to question the reliability of NMR derived
nucleic acid structures for analyzing longer ranged structural features, such as nucleic acid
bending. Additionally, in some cases the refinement of NMR derived structures shows a
strong dependence on the methods used; it has been demonstrated that refinement by

simulated annealing with energy representations with and without explicit solvent converge
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to different structures (Leijon ez al., 1995). Both X-ray crystallography and NMR methods
have specific limitations which question their complete reliability in defining the effect of
environment and sequence on the structure of nucleic acids. Clearly large advances in the
understanding of nucleic acid structure have emerged, however it may be to early to
determine the reliability of the statistical analyses of NMR derived structures (Ulyanov &
James, 1995) or X-ray derived structures (Gorin et al., 1995; Young et al., 1995a).
Therefore the development of theoretical methods which can accurately describe the
structure and dynamics of nucleic acids is a clear advance. In the next section, an

introduction to the simulation methods applied in this thesis is presented.

simulation methods

PR e T 2 T“-:\\’

All of the simulations discussed herein were performed using AMBER (Pearlman et al.,
1995). AMBER-- “assisted model building with energy refinement”-- in common usage

represents both a suite of programs for the simulation of biomolecules and a series of

empirically derived molecular mechanical force field parameters (Comnell et al., 1995;

Weiner et al., 1984). The force field is in general use in a variety of simulation programs

B -

and the tools provided and methods employed in AMBER are very similar to a number of
other programs, including CHARMM (Brooks ef al., 1983), GROMOS (van Gunsteren &
Berendsen, 1987), XPLOR, CEDAR, DISCOVER, SYBYL and others. AMBER and the
Weiner et al. and Comell et al. force fields are specifically tailored for the simulation of
proteins and nucleic acids both in vacuo and in solution. An article by Pearlman ez al.
describes the development and history of AMBER (Peariman et al., 1995); this section

elaborates somewhat on the discussion presented in that paper.

The potential energy function, force fields and molecular mechanics

The heart of all molecular mechanical force field methods is the potential energy

representation; it is the accuracy of this representation which allows any connection to

10



physical reality. In AMBER, this is a rather simple and differentiable pairwise potential

energy function (E,,,.,) shown in its simplest form in Figure 4.

Epae = 2k r=r)+ Y k(0-6,)
bonds angles
1%
+ 2-21[1+cos(n¢+y)]
dikedrals n

SHEE T

j=1 i>j

Figure 4: The AMBER energy function
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This function is appropriate for representing the classical interactions between pairs of
atoms. It is not appropriate for simulations involving bond forming or breaking which
require the application of a Quantum Mechanical treatment, nor are any non-additive or .
polarization effects represented, although in principle they can be added at an additional ’ |
cost. Also not shown in Figure 4 are additional terms which may be added to restrain the
systern and scaling terms for the 1-4 nonbonded interactions. In the form above, the
potential energy representation can be thought of as a sum over all the bonds (2 covalently
bonded atoms), angles (the angle between two connected bonds), dihedrals (represented by
4 atoms and the rotation about the central bond or alternatively planarity constraints among

4 atoms with bonds to a common central atom) and all the “nonbonded” terms.
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bond angle dihedral

Figure 5: bonds, angles and dihedrals

The nonbonded terms represent the Lennard-Jones dispersion attraction and core repulsion

LS e N

and Coulombic electrostatic interactions between all pairs of atoms.

. e

The philosophy of AMBER is the application of a fairly general (and transferable)
force field. To this end, as few atoms types are chosen as possible to reasonably represent
the system. For polymeric systems such as nucleic acids and proteins, consistent

parameters are developed for a series of residues, typically at the nucleotide or amino acid

. vemm

level. It is then hoped that the parameters for the residues will be appropriate for larger ’

. e

macromolecules when the residues are connected together. The covalent terms (i.e.
equilibrium distances and force constants) for the potential energy representation are
developed from experiment and quantum mechanical calculations, where appropriate for a
series of generic atom types. Nonbonded parameters for the dispersion attraction and core
repulsion are also developed for these generic atom types, most recently based on liquid
simulations, such as with the OPLS (optimized potential for liquid simulation) force field
(Jorgensen & Pranata, 1990). The specific atom types are typically chosen based on the
covalent connectivity, i.e. sp® carbon atom vs. a generic sp’ carbon vs. sp’ nitrogen, etc.
with the goal of supplying transferability; for special chemical environments new atom
types may be specified, such as an aromatic sp? carbon or sp? aromatic carbon in a five
membered ring between two nitrogen’s. The equilibrium values for the bond (,, in A) and
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angle (6,, in °) represent the ideal values and the instantaneous values are r and 6,
respectively. The force constants for a particular bond and angle are k,, (kcal/mol-A?) and
k, (kcal/mol-deg?), respectively. The representation for the dihedral angle terms is slightly

more complicated due to complete rotation about the bond, hence the dihedral angle is
modcleé by a Fourier series where the periodicity is specified by 17 and phase by ¥ for a
given angle ¢. The force constant for each term in the series is V,/2 . The atomic repulsion
and dispersion attraction are modeled by 1/7,'* and 1/,° terms, respectively, where 7,
represents the distance between atoms i and j. The parameters for individual atoms types, 2
o, and €, represent the effective radius and equilibrium well depth for each atom. In
AMBER, Lorentz-Berthelot combining rules are applied and used to represent the

interactions between different atoms. All possible A; and B;; are precalculated for each

e A N

possible pair interaction based on the atomic radius (r") and equilibrium well depth (€) as

follows:
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Electrostatic interactions are represented, in the most simple form, by a Coulombic term
which is proportional to the charges and inverse distance between atoms. Unlike the other
parameters, the atomic charges are not as transferable and are strongly dependent on the
chemical environment. To this end, each atom in a particular residue has a different charge
(except for some atoms, such as methyl hydrogen atoms which may be equivalenced)
which is calculated by performing a fit to an electrostatic potential generated from quantum
mechanical calculations; this is discussed in much more detail in the respective force field

papers. The form of the Coulombic term is rather simple; ¢.4/€r,, where g and g; are the
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charges on each of the atoms, 7, is the distance between atoms and & is the effective

dielectric constant’.

The most computationally demanding part of the potential energy evaluation is the
calculation of the nonbonded terms. Since they involve all pairs of atoms, the calculation
can become prohibitive for large numbers of atoms. Therefore, typically the interactions
are truncated outside some cutoff distance, r_,. This approximation, as is discussed in
Chapter 1, can have drastic effects on the simulations. There are a variety of methods to
cut off the longer ranged nonbonded interactions, ranging from the simple truncation of all
interactions outside 7, to more complex smoothing or switching of the discontinuities in
the force or energy at the cutoff. An excellent description of cutoff methods and associated
problems is presented by Steinbach & Brooks (Steinbach & Brooks, 1994). Typically, the
interactions are cut off somewhere in the 9-15 A range. Within the sande r module of
AMBER, which is used in the simulations presented in this thesis, little effort was spent to
add proper methods to smooth the discontinuity at the cutoff, instead effort was spent
incorporating code to properly treat the long ranged electrostatic interactions through the

use of Ewald methods (as will be discussed in a later section of this introduction).

Throughout this text and within AMBER, all the distances are in angstroms (A),
angles in degrees (°), and energies in kcal/mol. For more information about particular force
fields and the development of the parameter sets see the AMBER manuals, the published
reports (Comell et al., 1995; Pearlman er al., 1995; Weiner et al., 1984) or the AMBER
“world wide web” page originally developed by Bill Ross and myself at
“http://www.amber.ucsf.edu”. All of the calculations discussed in this thesis utilize the
Comell et al. (1995) force field, unless otherwise mentioned.

' Not shown is the constant 4xe, (where €, is the permittivity of free space) in the denominator
necessary to balance the units.
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beyond “single point” energy evaluations

Given the molecular mechanics potential energy representation, various methods are used
to study the energetic landscape beyond simple single point energy evaluations. These
methods are discussed in much greater detail elsewhere?. Only a brief discussion is
presented here in order to introduce some of the issues which will be developed further in
later chapters. An obvious goal is the search for the lowest “energy” conformation, or
“global” minimum, since it is expected that this will be the most representative structure.
To this end, one can “minimize” the potential energy function of a molecule in a particular
conformation. However, due to the complexity and high dimensionality of the potential
energy hypersurface, minimization will generally only move the conformation of the
molecule to a “local” minimum. Without complete sampling of the set of available
conformations, it is impossible to determine if the minimum energy conformation is indeed

the “global” minimum or even whether it is at all representative of what might be expected

at room temperature’.
Although it is meaningless to compare the molecular mechanical energies of two

different molecules since these energies are not “absolute’ and correspond to different

? The methods are reviewed to some degree in the AMBER paper (Peariman et al., 1995) and
in texts by McCammon & Harvey (McCammon & Harvey, 1987) and Brooks, Karplus &
Pettitt (Brooks er al., 1988). An excellent review of molecular dynamics and issues
surrounding its use is presented by van Gunsteren and Berendsen (van Gunsteren &
Berendsen, 1990). The “must have” technical reference is the seminal work by Allen &

Tildesley (Allen & Tildesley, 1987).

* The expected distribution of conformations is that set of conformations that maximizes the
entropy; this is the thermodynamic ensemble or Boltzmann distribution. In the text above,
“energy” was used when in fact it is the conformation of lowest “free energy” or lowest
energy and maximium degeneracy which is most favored. In general, not only is the lowest
free energy conformation found or lowest free energy state populated, but conformations
within a few kT are also populated where k is the Boltzmann constant and T is the
temperature; at room temperature kT is approximately 0.6 kcal and it is not unreasonable
to expect to find conformations within a few kT of each other. However, in molecular
dynamics calculations it is highly unlikely during nanosecond length simulations to
overcome barriers of more than a few kT; clearly surpassing a barrier to interconversion of
10-20 kcal/mol, such as cis/trans isomerization of proline, is highly unlikely, however
smaller barriers, such as sugar repuckering or various backbone angle transitions in DNA
should be readily be traversed at room temperature during a molecular dynamics

simulation.
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scales, it is possible to compare the energy of two different conformations of the same
molecule in vacuo. This can give an indication of the relative difference in energy and may
carrelate with stability, however the relative energy difference is not a free energy since no
entropic effects are included. For in vacuo calculations, an estimate of the vibrational free
energy can be obtained by using a harmonic approximation to the normal modes to estimate
the vibrational entropy. This is valid as long as both conformations represent true minima
(which implies that the first six normal modes should be zero). It is this limitation which
precludes the use of this approach in simulations with explicit solvent since it is intractable
to “minimize” the positions of all the water, moreover, solvation is likely an ensemble
property and not well represented by considering a small set of minima. In addition to
giving an estimate of the vibrational entropy, the calculation of the normal mode

frequencies can give insight into the “motion” of a molecule. Based on equipartition
arguments, each normal mode frequency should be equally populated. However, low
frequency modes (< 100 cm™) lead to most of the motion (Tidor et al., 1983). Simulations
on proteins suggest that the first 3-8 non zero normal mode frequencies account for 70% of
the motion of the molecule (Levitt et al., 1985). Analysis of these low frequency
vibrational modes can give insight into which collective motions dominate. In Chapter 3,
this is used to gain insight into the relative flexibility of A- and B-form geometries. It
should be noted that the harmonic approximation to the normal mode frequencies may not
be completely valid since proteins and nucleic acids have significant anharmonic character
(McCammon & Harvey, 1987). However there are techniques for extracting information
about the anharmonic modes from molecular dynamics trajectories (Levy et al., 1984).

A drawback of minimization and normal mode calculations is the need for
investigating a representative minimum energy conformation of the molecule; in other
Words, the insight gained is only as good as the choice of the initial conformation.

Therefore, calculations of this type are generally limited to cases where the structure chosen
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is reasonable, such as an experimentally derived structure, and where it is assumed that the
force field will properly treat the structure as a minima. In the case of nucleic acids and
minimizations in vacuo, the latter assumption is not always valid; without some
representation of solvent in the simulations, the structure of a nucleic acid in solution will
tend to distort from experimental values. Since minimization gets trapped into local
minima, methods are desired which overcome this difficulty and reasonably represent an
“ensemble” of energetically reasonable conformations. The difficulty in finding all the
representative structures, for a given potential, is often termed the “local minimum” or
“conformational sampling” problem. Given the expense of minimization calculations and
the combinatorial explosion due to the independence of the degrees of freedom, exhaustive
searching of all possible (or even reasonable) conformations is not possible. Therefore,
other methods are such as Monte Carlo calculations and molecular dynamics methods are
typically applied. In Monte Carlo calculations, random moves are made to a new

A conformation and the move is always retained if the new conformation is more favorable
energetically. If it is less favorable energetically, the move is retained (probabilistically)
some of the time. Molecular dynamics methods, on the other hand, assign random
velocities about a mean temperature to each atom in the system, and propagate the dynamics
of the atoms by integrating Newton’s second law of motion. In Cartesian coordinates (r,),
where m, is the mass of each atom (and t is time), the force is equal to the mass times the

acceleration:

_, 9'5(t)
E(t)=m, T

With the Lagrangian defined in terms of the kinetic ( %z m,v’ where v, is the velocity on

each atom) and potential energies (the E, g as defined in Figure 4), the force is simply
the negative gradient of the potential energy (which is calculated analytically):
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Fi(l) = —-a—r'-EAmn(l",...,l'N).

b}

In AMBER, the propagation of the dynamics (or integration) is performed using the simple
first order Leap-frog algorithm which is derived based on Taylor expansions; this is shown

below for the velocities:
At av,| Ar 3*v, (A:)’l
It +—|=v(t)+—H —+ H |l —]| =+
V:( n 2) Vn( n) at . 2 atZ . 2 21
v(t -ﬂ)—v([ )——a_v‘_ £+32Vi ﬂ)z_l_-...
\t2) N a2 9| \2) 2
Ivi(t) _

F, .
— leads to a representation
t m,

Subtracting, re-arranging terms and substitution of

of the “half step” velocities based on the previous half step velocities and the forces, where

At is the time step:

An analogous derivation leads to the on step positions.

r(t,+At)=rx(t,)+ vi(tn+ éz—t)At.

In order to properly represent the high frequency bond stretching motion, the equations of
motion are integrated using a 1-2 femptosecond time step. This implies that a nanosecond

simulation requires on the order of a million time steps.

Molecular dynamics has the added benefit of providing some estimate of the
dynamics of the system and effective configurational entropy. However, given that the
kinetic energy added to the system is finite— generally the dynamics are simulated at
approximately room temperature or 300 K- the probability of overcoming large energetic
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barriers is very small. Therefore, molecular dynamics calculations can get “stuck” in the

vicinity of a local minima; this is exemplified nicely in Chapter 3 where it is observed that

double stranded RNA duplex gets trapped in A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>