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ABSTRACT OF THE DISSERTATION

High Efficiency Terahertz Free Electron Laser

by

Andrew Charles Fisher

Doctor of Philosophy in Physics

University of California, Los Angeles, 2024

Professor Pietro Musumeci, Chair

Despite the rapid development of novel THz sources in the last few decades, free electron

lasers remain attractive due to their unique advantages including frequency tunability and

high peak power. While most THz-FEL facilities use optical cavities to build power over

many passes, the ability to extract a significant fraction of the beam energy in a single

pass paves the way towards high average power as the repetition rate of electron sources is

increased.

In this dissertation, we study theoretically and experimentally a compact THz-FEL for

improved single pass efficiency. At long wavelengths, FEL gain is limited by diffraction as

well as slippage between the radiation and electron beam, requiring long bunch lengths for

a sustained interaction. The introduction of a waveguide transversely confines the radiation

and can be chosen to match the subluminal group velocity to the longitudinal electron beam

velocity. This so-called zero-slippage operation extends the interaction length for short, high

current beams allowing us to leverage developments in high brightness RF photoinjector

sources. Strong seeding with a prebunched beam enables large decelerating gradients where

resonance is maintained with strong undulator tapering, enhancing the extraction efficiency.

After beginning with the theory of waveguide FELs and zero-slippage resonance, we

present our simulation code GPTFEL, a custom element built on top of the 3D particle

tracking code General Particle Tracer. The code simulates free-space and waveguide FEL

interactions by decomposing the electromagnetic fields into a basis of frequency and spatial
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modes, evolving the complex amplitudes according to energy conservation with the beam

and enabling start-to-end beamline simulations within a single code. Waveguide disper-

sion is naturally included and for free-space interactions, a source dependent expansion is

implemented to limit the required number of transverse modes.

Two Tessatron experiments were performed on the UCLA Pegasus beamline using a meter

long, helical undulator designed for maximum FEL coupling. The undulator commissioning

used both pulsed-wire and Hall probe measurements to minimize trajectory and phase errors.

Due to the enclosed geometry and large beam trajectory amplitude, it was necessary to

develop a 3D pulsed-wiring technique to align the wire and tune higher order field moments.

The first experiment demonstrated 10% energy efficiency from a 200 pC electron beam

at 165 GHz by seeding with the beam compressed to sub-wavelength scale. To enhance the

spectral range, a second experiment utilized beamline upgrades including laser shaping on

novel photocathodes and a compact permanent magnet chicane to prepare a prebunched,

multipeak charge distribution at the undulator. By operating with a beam energy above

zero-slippage resonance, the frequency was tunable over the experimental energies from 500

to 700 GHz. Future paths of investigation, including resonance with higher waveguide modes

or a rectangular geometry, can improve charge transmission and are promising avenues to

further expand the spectral reach and application of the source.
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CHAPTER 1

Introduction to Tapered FELs

1.1 Introduction

While interest in terahertz (THz) radiation (0.1-10 THz) dates back to the early 1900s [2],

it remains an elusive region of the electromagnetic spectrum in terms of development of

sources and detectors. Electronic sources including klystrons, traveling-wave tubes, and

backward-wave oscillators are workhorses in the microwave regime, but have reduced power

output above 100 GHz due to limitations associated with the wavelength-scale apertures

and Ohmic losses in the waveguide structures [3]. On the other hand, advances in infrared

laser technology do not directly translate to THz frequencies as photon energies are smaller

than molecular band gaps and transitions are susceptible to thermal effects and phonon

scattering [4]. Scientific and industrial interest has lead to a significant research effort in the

last several decades with various THz sources under current development [5, 6] to fill this so-

called ”terahertz gap” with applications in time-domain spectroscopy, high-field resonant and

non-resonant excitation of solid-state systems, fusion research and high-gradient acceleration,

communications, medical or security imaging, and electron paramagnetic resonance [7, 8, 9,

10, 11, 12].

Free electron lasers (FELs), based on the ponderomotive interaction between a relativistic

electron beam and electromagnetic field co-propagating in a magnetic undulator, are an

attractive candidate for powerful THz sources. They enjoy unique advantages including

frequency tunability, high peak power and repetition rates limited only by electron-beam

availability. Many FEL facilities have played important roles in the development of THz

science [13, 14, 15, 16, 17, 18], with more user facilities coming online [19, 20, 21] and even
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more planned for future years [22, 23, 24]. However, the impact of FELs extends across the

electromagnetic spectrum from THz to hard X-Rays as up to multi-GeV electron beams are

used to generate intense radiation down to angstrom wavelengths. There is even current

interest in developing facilities with THz-Xray pump probe capabilities [25, 26].

At the same time, the FEL interaction presents some characteristic challenges in the long-

wavelength regime as single-pass gain in the undulator is typically limited due to slippage

and diffraction effects. The majority of these facilities use many-wavelengths-long electron

bunches with relatively low peak current densities in a resonator configuration to build

up power in an optical cavity. Advances in high-brightness (high current, low transverse

emittance) electron-beam sources [27] enable the generation of ultrafast electron bunches

with very high current densities and strong coupling with the radiation, but the difference in

longitudinal velocity between the beam and radiation in the undulator leads to a slippage of

the field over the current profile which is detrimental to efficient energy extraction for short

beams.

Our research combines two different concepts in FEL physics to overcome these challenges

and achieve high energy extraction efficiency in a single pass through the undulator. First,

we introduce a waveguide that not only transversely contains the radiation, but more impor-

tantly matches the subluminal radiation group velocity to the average electron beam velocity.

This eliminates slippage such that the radiation envelope remains temporally aligned with

the electron beam during the entire interaction, allowing strong compression of the beam to

increase FEL gain and generate several-cycle THz pulses with high peak power. This zero-

slippage condition has been known for decades, and was recently demonstrated to create

energy spread and streaking in a curved-parallel-plate waveguide [28, 29].

Secondly, building on the experience gained over the last decade of UCLA research into

highly efficiency FEL and inverse-FEL interactions, we utilize strong seeding and use undu-

lator tapering to enhance the superradiant emission from the electron beam. In a untapered

FEL, the interaction length is limited by gain saturation when the decelerated electrons no

longer resonate efficiently in the undulator. By tapering the undulator field or period to

maintain resonance with the strongly decelerated electrons, it is possible to prolong the in-
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teraction beyond this limit. The Tapering Enhanced Stimulated Superradiant Amplification

(TESSA) regime was successfully demonstrated at infrared frequencies [30], but with low

gain relative to the strong seeding laser. Achieving high-gain at THz frequencies would be

an important step towards the ultimate goal of increasing FEL efficiency at shorter (visible

and ultraviolet) wavelengths. This dissertation presents the design and results of the two

”Tessatron” THz-waveguide FEL experiments conducted on the Pegasus beamline at UCLA

to demonstrate high-efficiency in a single pass.

1.1.1 Outline of dissertation

The outline of the dissertation is as follows. In this first chapter, we introduce FELs as one

of several notable THz sources and provide a quantitative description of the dynamics in a

tapered helical undulator. Important differences from the more common planar undulator

geometry are mentioned. After considering the 1D low-gain regime and the pendulum equa-

tions describing Hamiltonian motion in the longitudinal phase space, we generalize to the

1D high-gain regime and describe exponential growth and saturation in FELs, motivating

the need for tapering to further increase the efficiency. The history of tapered FELs and

TESSA is described in more detail and we derive analytical 1D and 3D efficiency estimates

for strong tapering in the post-saturation regime. Finally, we introduce waveguide mode

theory and detail the zero-slippage operation in waveguide FELs.

The second chapter describes GPTFEL, a custom element developed for the particle

tracking code GPT that self-consistently simulates the interaction between radiation and

an electron beam in a waveguide or free-space. Though a variety of FEL codes exist, none

were sufficient to model our novel waveguide scheme. The code is benchmarked against

theory and a popular FEL code, GENESIS, in an FEL amplifier. Additionally, we discuss a

connection between waveguide FELs and 1D theory where the beam area is simply replaced

by an effective mode area.

Chapter 3 outlines the commissioning of the Theseus undulators used for the Tessatron

experiments. The large wiggling trajectory of the nominal low energy beam requires an

3



analysis of beam trajectory and transport, as well as the development of Hall probe and

pulsed-wire tuning procedures to ensure correct tuning of the 3D fields, a challenge given

the closed geometry of the undulator.

Finally, chapter 4 presents the Pegasus beamline at UCLA and the results of the Tes-

satron experiments. The first experiment successfully demonstrated high extraction effi-

ciency through zero-slippage operation. The following (Tessatron2) experiment extended

the spectral range of the THz-FEL source by seeding with a laser-shaped beam with im-

proved compression in a compact, permanent magnet chicane. Limited frequency tunability

was also achieved by detuning from the zero-slippage resonance.

1.2 THz Sources

The first coherent terahertz sources were far-infrared gas lasers developed in the 1960s that

utilize transitions between molecular rotation or vibrational states of gas molecules, excited

with optical pumping from a CO2 laser. By using different gases, emission has been demon-

strated at distinct lines throughout the terahertz region [31, 32]. They generate tens of

milliwatts in continuous operation and up to megawatts in pulsed operation, but due to the

limited photon conversion efficiency (0.1-10%) and relatively large footprint (10 cm by 1 m),

they have been replaced in part by more compact systems.

For example, compact quantum cascade lasers (QCLs), first demonstrated in the 1990s,

are able to generate higher (multi-watt) output powers in the range of 1-5 THz [33]. Instead

of relying on electron transitions between the valence and conduction bands, QCLs utilize

superlattices made from nanometer-thick layers of alternating semiconductor materials to

create a periodic potential well structure that electrons can tunnel between. When a bias is

applied, electrons move to higher energy states creating population inversion. The emission

wavelength is determined by the superlattice design, and only limited tuning can be achieved

with temperature control or discrete Vernier tuning [34]. To limit thermal effects, cryogenic

cooling is required.

Laser-driven THz sources have grown in interest due to the recent availability and preva-
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Figure 1.1: An overview of THz sources adapted from [1].

lence of high powered laser systems. Single cycle pulses around 1 THz can be generated

through optical rectification of femtosecond pulses in nonlinear crystals such as zinc-telluride

(ZnTe), lithium niobate (LiNbO3), or organic crystals. The quadratic dependence of the crys-

tal polarization with respect to the laser field generates a quasi-DC component that emits

radiation at a much lower frequency. Phase matching along the crystal is necessary for

maximizing the efficiency and can be achieved with pulsed-front tilting [35, 36]

Microwave sources have improved with fast-wave coupling schemes such as gyrotrons that

can reach well into the sub-terahertz frequency range (few hundred gigahertz) with relatively

higher power and efficiencies in the tens of percent [37, 38]. However, they are still based on

the use of mildly or non-relativistic electron beams, reducing the frequency scalability and

limiting the maximum peak power available.

Finally, accelerator-based sources are particularly attractive due to the scarcity of high

power solid-state sources and because the required electron beam and undulator parameters

are readily achievable with current technology [39, 40]. The resonant frequency in FELs can

tuned over a large range by changing the beam energy or magnet gaps in the undulator.
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Figure 1.2: A depiction of electron beam trajectories in planar and helical undulator geome-

tries as well as a geometrical interpretation for FEL slippage. The color-coded transverse

velocity shows constant coupling in the helical geometry.

Additionally, improvements in electron beam sources and repetition rates will enable higher

peak and average powers. We now present a quantitative analysis of 1D FEL dynamics in a

helical undulator.

1.3 1D FEL Dynamics

1.3.1 Low Gain, Pendulum Equations

The FEL interaction describes energy exchange between a relativistic electron beam and a

radiation field in the presence of a sinusoidal magnetic field, shown in Figure 1.2. A planar

undulator consists of magnet arrays with alternating dipole fields that create a wiggling beam

trajectory. The interaction can be improved by using a helical undulator where a second

magnet array is added in the other perpendicular dimension, shifted by a quarter period, to

generate a helical beam trajectory. Assuming a field amplitude B0 and undulator period λu,

the on-axis fields are given by

Bu = −B0

(
± cos(kuz)x̂+ sin(kuz)ŷ

)
(1.1)

where the ± denotes field helicity allowing resonance with right/left circularly polarized

light. We define right/left circular polarization as clockwise/counter-clockwise rotation of

the polarization vector in time at a given position as measured from the upstream source.
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The transverse motion of the beam is dominated by the Lorentz forces of the undulator’s

magnetic fields. Neglecting the relatively small interaction with a radiation field, we have

dp

dt
= F

d

dt
(γmcβ⊥) = −ec(β⊥ + βzẑ)×Bu

where γ is the relativistic factor related to beam energy by γ = E/mc2 ≈ 1.96 ·E[MeV] and

cβ = v. For a relativistic electron beam, |β⊥|/βz ≪ 1 and Bu,z ≈ 0 near the axis such that

the forces are in the transverse plane due to the cross product with the longitudinal velocity,

βz =
1
c
dz
dt
. We solve for β⊥ by inserting Eq. (1.1) and writing the right hand side as a total

derivative.

d

dt
(γmcβ⊥) = eB0

(
− sin(kuz)

dz

dt
x̂± cos(kuz)

dz

dt
ŷ

)
=
eB0

ku

d

dt

(
cos(kuz)x̂± sin(kuz)ŷ

)
β⊥ =

K

γ

(
cos(kuz)x̂± sin(kuz)ŷ

)
(1.2)

where K = eB0/mcku ≈ 0.934 ·B0[T] ·λu[cm] is defined as the undulator strength parameter

and describes the product of the total beam energy and peak transverse velocity. Practical

field strengths are limited to less than 1 T while undulator periods are usually on the order

of a few centimeters such that K is generally between 1 and 3. For a given beam energy γ,

the longitudinal velocity can be written as

βz =
√

|β|2 − |β⊥|2 =⇒ βz ≈ 1− 1 +K2

2γ2
(1.3)

where we assume the relativistic limit γ ≫ 1. Ignoring initial conditions, we integrate for

the beam position as

r⊥ =

∫
cβ⊥dt =

1

βz

∫
β⊥dz =

K

γkuβz

(
sin(kuz)x̂∓ cos(kuz)ŷ

)
(1.4)

such that the wiggling trajectory radius is |r⊥| = K/γkuβz. For low energy beams, the large

trajectory causes sampling of non-zero Bz fields off axis that contribute to the Lorentz force

and require corrections to the undulator parameter. This will be covered in detail with the

undulator field expansions in Chapter 3.
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We now introduce a right/left circularly polarized plane-wave field with an arbitrary

phase shift ϕ, considering the low-gain limit where the amount of energy exchanged in the

interaction is very small compared to the initial field energy. The electric field is given by

El = E0

(
sin(kz − ωt+ ϕ)x̂± cos(kz − ωt+ ϕ)ŷ

)
(1.5)

As magnetic forces do no work, the relativistic energy of the particles changes only due

to the work done on the beam by the electric field.

d

dt

(
γmc2

)
= F · v = −ecEl · β⊥

dγ

dt
=

−eE0K

mcγ

(
sin(kz − ωt+ ϕ) cos(kuz) + cos(kz − ωt+ ϕ) sin(kuz)

)
dγ

dt
=

−ckKlK

γ
sin(θ) (1.6)

where Kl = eE0/mc
2k is the field strength parameter and θ = (ku + k)z − ωt+ ϕ is known

as the ponderomotive phase which describes the effective interaction between the electrons

and radiation. Assuming an infinitely long beam, the system is periodic and we can restrict

our attention to a single period where θ ∈ [−π, π].

While this coupling is constant in a helical geometry, Figure 1.2 shows the sinusoidal

trajectory in a planar undulator where the transverse velocity and coupling vanishes at the

turning points. Additionally, the non-uniform βz leads to a figure-8 motion in the beam

reference frame. In this case, the deceleration is defined in terms of the average velocity

and requires an additional factor of JJ/2 where JJ = (J0(G)− J1(G)), Jn is the nth Bessel

function, and G = K2/4(1 + K2/2). Depending on field strength, JJ ranges from 0.7 to

1 such that a helical undulator can achieve gradients a factor or 2 or larger than a planar

undulator [41].

At different values of θ, electrons either give energy to or absorb energy from the radiation

fields. For net energy change to occur, the ponderomotive phase must be nearly constant.

The FEL phase resonance condition is derived by requiring the ponderomotive phase to be

constant.

dθ

dt
= 0 =⇒ ω = cβz

(
ku + k

)
for any ω(k) (1.7)
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A physical explanation is that the radiation slips ahead of the electron beam one radiation

wavelength every undulator period, as shown in Figure 1.2. Equation (1.7) describes FEL

phase resonance for any dispersion relation ω(k), but to simplify the analysis (which so far

extends generally to waveguide FELs) we now assume a free-space interaction and substitute

the expression for βz from Eq. (1.3),

λ =
λu
2γ2r

(1 +K2) assuming ω = ck (1.8)

giving the radiated wavelength in terms of the undulator period, undulator strength param-

eter and resonant beam energy, γr. This equation demonstrates the incredible tuning range

of an FEL. For reasonable values of K = 3 and λu = 2 cm, varying the beam energy from

100 MeV to 10 GeV allows lasing from micron to attosecond wavelengths.

To understand the longitudinal phase space evolution for particles close to the resonant

energy, we define the normalized energy variable η = (γ−γr)/γr about the resonant particle

at (θr, γr) and expand the rate of change equations to lowest order

θ̇ = c (kuβz + kβz − k) η̇ =
1

γ2r
(γ̇γr − γ̇rγ)

≈ cku

(
1 +

k

ku
(βz − 1)

)
≈ −ckKlK

γ2r
(sin θ − sin θr)

≈ cku

(
1−

��
����k

ku

1 +K2

2γ2r
(1− 2η)

)
θ̇ = 2ckuη η̇ = −cku

2KlK

1 +K2
(sin θ − sin θr) (1.9)

where 1/γ2 ≈ (1−2η)/γ2r and explicit reference to γr is removed with Eq. (1.8). This system

can be expressed using Hamiltonian dynamics where

H(θ, η) = cku

(
η2 − 2KlK

1 +K2
(cos θ + θ sin θr)

)
(1.10)

with ∂H/∂η = θ̇ and ∂H/∂θ = −η̇. Equivalently, this can be derived as an approximation

to the single particle Hamiltonian [42]. Hamiltonian theory states that particles follow paths

of constant value, H(θ, η). Thus if a contour of the Hamiltonian encloses the resonant point

(θr, ηr) and has value greater than H(θr, ηr), the interior is a stable region where particles

rotate in phase space around the resonant position. The contour with maximal value is

9
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Figure 1.3: The ponderomotive potential and bucket for different resonant phases. For a

bound state inside the separatrix, particles will rotate around the resonant point in the

bucket and oscillate in the potential well.

known as the separatrix as it separates the stable, bound particles states from the scattered,

unbounded particle states.

The function H(θ, 0) is referred to as the ponderomotive potential and is plotted in the

left panel of Figure 1.3 for a few resonant phases. Recall from Eq. (1.6) that positive resonant

phases corresponds to net deceleration. At negative resonant phases, particles experience

net acceleration where that the ponderomotive potential is simply mirrored across the line

θ = 0. This is known as the inverse-FEL interaction where a powerful seed laser can be used

to achieve large accelerating gradients. As we are only concerned with energy extraction, we

assume θr ≥ 0 in our analysis.

The points of interest along the ponderomotive potential are the minimum (θ0) and the

bounds θL, θR which can be seen as stable and unstable turning points, respectively. Both

θ0 and θR are simply evaluated by setting the derivative of the potential equal to zero

∂

∂θ
H(θ, 0) = 0 =⇒ sin θ = sin θr (1.11)

where the two solutions in [0, π] yield the expected trivial solution θ0 = θr and θR = π − θr.

For θr ≥ π/2, the potential well vanishes and there are no bound trajectories. The left edge

10
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Figure 1.4: A comparison of 1D numerical simulations for γ = 100 against the Hamiltonian

formalism. The simulation is run for half a synchrotron period and initially detrapped

particles are given a reduced opacity. The minor discrepancies are due to the near-resonance

approximation in the derivation of the Hamiltonian.

has to be solved numerically using H(θL, 0) = H(θR, 0) as

cos θL + θL sin θr = cos(π − θr) + (π − θr) sin θr (1.12)

The Hamiltonian is constant along the separatrix such that we can solve the boundary

of the so-called ponderomotive bucket using H(θ, η) = H(θR, 0) such that

η2sep =
2KlK

1 +K2

(
cos θ − cos(π − θr) + (θ + θr − π) sin θr

)
(1.13)

which is plotted in the right panel of Figure (1.3). It is clear that when targeting strong

decelerating gradients at large resonant phases, the area of the ponderomotive bucket is

decreased which limits the fraction of electrons that are trapped in the ponderomotive bucket

from which energy can be extracted.

The system of Eq. (1.9) can also be expressed as a second order ordinary differential

equation

θ̈ − ω2
0

(
sin θ − sin θr

)
= 0 where ω0 = 2cku

√
KlK

1 +K2
(1.14)

which is identical to the motion of a simple pendulum when θr = 0. If we consider small

oscillations (dθ ≪ 1) around the resonant point in phase space such that θ = θr + dθ,

11
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Figure 1.5: Schematic of a single buncher (not to scale) consisting of an untapered undulator

section to modulate the beam energy and a dispersive chicane to create density bunching.

the differential equation simplifies to simple harmonic motion with an angular frequency

of ω = ω0

√
cos θr. Figure 1.4 shows a comparison between a 1D numerical simulation and

the approximate Hamiltonian system. The simulation is run for half a synchrotron period

(0.5 ∗ 2π/ω) at an energy of γ = 100. Near resonance, particles complete half a rotation,

but the angular velocity slows significantly for particles near the edge of the ponderomotive

bucket. The intuition gained from this analysis of phase space evolution in the low-gain

regime is relevant to high-gain interactions as well.

For example, we consider the trade off between electron trapping and deceleration gra-

dient when optimizing overall efficiency. If we assume only electrons within the ponderomo-

tive bucket are decelerated with a gradient proportional to sin θ, then the efficiency scales

with ft sin θr where ft is the fraction of trapped electrons. Clearly, larger efficiencies can

be achieved if the electron beam is manipulated to increase the number electrons trapped

within the bucket separatrix. Physically, this concentration in phase space corresponds to

a periodic density modulation of the electron beam at the radiation wavelength known as

microbunching or prebunching.

Figure 1.5 shows a beam can be prebunched using an untapered undulator (modulator)

and dispersive chicane. In the modulator, the beam energy is modulated due to the FEL

12
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Figure 1.6: Optimization of low-gain efficiency with different prebunching schemes. (a) Trap-

ping fraction generally decreases with resonant phase but bunchers retain stronger trapping

at higher gradients. (b) Overall efficiency is increased and the optimal resonant phase shifts

higher.

interaction with the seed laser. The chicane, composed of 4 dipole magnets, deflects the

beam trajectory such that the path length is energy dependent and produces a shearing in

the phase space as quantified by the R56 element of chicane transport matrix. Thus, the

energy modulation is converted to density modulation that improves the capture in the final

undulator (radiator). More complicated schemes with multiple modulator/chicane pairs can

further improve the microbunching [43].

A general optimization of beam prebunching is complicated by specific design consider-

ations for the undulators, electron beam, and laser transport. Instead, we present a simple

example to demonstrate the importance of prebunching. For a single-buncher scheme, we

fix the scaled modulator amplitude A = ∆γ/σγ = 30 where ∆γ is the maximum energy

modulation, and the scaled bucket height Ab0 =
√

2KlK/(1 +K2)/σγ = 300. For the

double-buncher scheme, an additional upstream modulator/chicane pair is used to first con-

centrate most of the charge between −π/2 and π/2 using a small energy modulation and

strong dispersion. Figure 1.6 shows the optimal trapping fractions and scaled efficiency as a

13



Figure 1.7: Phase spaces for θr = 65◦. Prebunching uses energy dimension to better fill

ponderomotive bucket.

function of resonant phase or bucket size.

For most resonant phases, a single prebuncher provides a significant improvement in

trapping fraction, leaving diminishing returns for the added complexity of additional pre-

bunchers. The result of improved trapping is an increase in overall efficiency which occurs

at larger deceleration gradients. Figure 1.7 shows the phase spaces at the optimal resonant

phase θr = 65◦ for the double-buncher scheme indicated in the previous figures with black

dotted lines. The bunchers utilize the energy dimension of the ponderomotive bucket to in-

crease trapping. However, for a realistic beam with correlated energy chirp, the performance

of the double-buncher scheme will degrade due to the strong dispersion applied.

So far our discussion of phase space dynamics has neglected the parameter tapering re-

quired to maintain resonance with the decelerated electrons. We see from the FEL resonance

condition that for a fixed wavelength λ, the resonant energy can be adjusted by varying the

undulator strength K or period λu. In general, tapering the period allows for a larger tun-
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ing range, but complicates the undulator design and is less versatile. Except for the most

extreme cases, changing the undulator fields by adjusting the magnet gap is sufficient.

Conceptually, tapering should be applied such that the change in resonant energy matches

the deceleration gradient of the interaction. Setting the derivative of Eq. (1.8) equal to Eq.

(1.6) gives

1 +K2

2λ

dλu
dz

+
λuK

λ

dK

dz
= −2kKlK sin θr

=⇒ dK

dz
= −2kuKl sin θr when

dλu
dz

= 0 (1.15)

where we assume a constant undulator period. Later, we will see a generalization of this

tapering when discussing 1D efficiency in the high-gain regime. Note the tapering is implicitly

designed for a fixed resonant phase and depends on field strength through the Kl parameter.

As the separatrix depends on K, Kl and θr, optimal tapering may require varying the

resonant phase as the field amplitude evolves. Among various tapering models developed

[44, 45], one simple approach is to change the resonant phase such that the bucket area

remains constant [46]. This limits the detrapping of electrons while also preventing growth

in the longitudinal emittance. The tapering design should eventually be compared with

simulations, but an analytic model is invaluable for fast estimates and experimental design.

1.3.2 High Gain

Until now, we have restricted our analysis to the low gain limit where changes in the field

energy were considered negligible. We now allow the field amplitude to evolve due to inter-

actions with the beam as described by Maxwell’s wave equation,(
∇2

⊥ +
∂2

∂z2
− 1

c2
∂2

∂t2

)
E(x, z, t) = µ0

∂J

∂t
(1.16)

though we continue to assume a free-space interaction with an infinitely long, periodic elec-

tron beam such that the field consists of a single frequency component. It is convenient to

introduce complex notation and rewrite Eq. (1.5) as the real part of a complex field

E(x, z, t) = Re
{
Ẽ(z)ei(kz−ωt)n̂

}
and Ẽ(z) = −ieiϕ

√
2E(z) (1.17)
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where the unit vector n̂ = (x̂ ± iŷ)/
√
2 represents right/left circular polarization, Ẽ(z) is

the complex field amplitude, and E(z) is a real-valued field amplitude analogous to E0 in

the low gain analysis.

After applying the dot product with n̂∗ to both sides, we apply the derivatives by inserting

the frequency representation of the field,(
�
�
�∂2

∂z2
+ 2ik

∂

∂z
−��k

2 +����
ω2/c2

)
Ẽ(z)ei(kz−ωt) (1.18)

where we utilize the slowly varying envelope approximation (SVEA) such that the field

amplitude evolves slowly on wavelength scales (λ∂
2Ẽ
∂z2

≪ ∂Ẽ
∂z
).

For a collection of charged point particles, the 3D current density can be written as

J3D(x, z, t) =
Ne∑
j=1

−evjδ(x− xj(t))δ(z − zj(t)) (1.19)

where j indexes each of the Ne electrons in a wavelength period and the dirac delta function

δ(x) is defined as a distribution about 0 with unit area and infinitesimal width such that it

satisfies the well-known sampling property
∫∞
−∞ f(x)δ(x− x0)dx = f(x0).

The δ(x−xj(t)) sample the transverse distribution of the beam and assuming a gaussian

with spotsize σ, we can simplify to a 1D current density by considering the density on axis

or equivalently, dividing the 3D current density by the area of the transverse distribution.

J1D(z, t) =
−e
2πσ2

Ne∑
j=1

vjδ(z − zj(t)) (1.20)

Because the field is a transverse wave, only the electron’s transverse velocity is relevant

to the interaction. We express the transverse velocity in an undulator from Eq. (1.2) as

v⊥(z) =

√
2cK

γ
e−ikuzn̂ and v⊥(z) = v⊥(z) · n̂∗ (1.21)

After substituting the current density and solving for the evolution of the real field, we
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find

dẼ

dz
=

−iµ0

2k

(
∂J

∂t
· n̂∗
)
e−i(kz−ωt) (1.22)

=
−iµ0

2k

−e
2πσ2

√
2cK

γ

Ne∑
j=1

e−i(kz+kuz−ωt)cβz,j
∂

∂zj
δ(z − zj(t)) (1.23)

=
i
√
2e

4πϵ0σ2

K

γ

βz,j
k

(
Ne∑
j=1

e−i(kz+kuz−ωt)
∂

∂zj
δ(z − zj(t))

)
(1.24)

where have applied the chain rule on zj(t). To evaluate the derivative, we derive an identify

that utilizes symmetry of the delta function and integration by parts.∫ ∞

−∞
f(z)

∂

∂zj
δ(z − zj)dz = −

∫ ∞

−∞
f(z)

∂

∂z
δ(z − zj)dx

=

∫ ∞

−∞
δ(z − zj)

∂

∂z
f(z)dz −

�����������:0
[f(z)δ(z − zj)] |∞−∞

f(z)
∂

∂zj
δ(z − zj) = δ(z − zj)

∂

∂z
f(z) (1.25)

Beam energy loss γ = γ(z) and tapering of the undulator field K = K(z) are assumed

negligible compared to the derivative of the exponential term (dK
dz
, dγ
dz

≪ ku + k) such that

f(z) = e−i(kz+kuz−ωt). After differentiating, further simplification is made by assuming only

particles that satisfy the FEL resonance of Eq. (1.7) contribute to energy exchange such

that γ → γr. Inserting Ẽ(z) = −ieiϕ
√
2E(z) and taking real quantities gives

dE

dz
≈ e

4πϵ0σ2

K

γr���
����*

1
βz,j(ku + k)

k
Re

{
Ne∑
j=1

ie−iθδ(z − zj(t))

}
(1.26)

where we identified the ponderomotive phase, θ. Due to the SVEA approximation, we can

use period-averaging to replace the sum over individual electrons with a collective measure

of coherence known as the bunching factor, ⟨e−iθj⟩ =
∑Ne

j=1 e
−iθj/Ne, which ranges from 0

(fully incoherent) to 1 (fully coherent). We take this opportunity to express the electron

number in terms of the beam current

Ne∑
j=1

δ(z − zj)e
−iθ ≈

∫
λ

∑Ne

j=1 δ(z − zj)e
−iθdz∫

λ
dz

=

∑Ne

j=1 e
−iθj

λ
=
Ne

λ
⟨e−iθj⟩ = I

ec
⟨e−iθj⟩ (1.27)
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such that the final result can be expressed as

dE

dz
=

IK

4πϵ0cσ2γr
⟨sin θj⟩ (1.28)

In agreement with conservation of energy, the equations describing evolution of the field

and beam energy have a negative sine dependence on the ponderomotive phase. Furthermore,

we see that beams with high current densities (high current and small spotsize) generate the

strongest fields. One subtlety is that we have preemptively defined E(z) to be a real quantity

without allowing for the complex field phase ϕ to vary along the undulator. This is equivalent

to assuming an appropriate tapering such that the electron beam remains centered at a given

resonant phase. The addition of Eq. (1.28) to the system in (1.9) yields a description of

FELs in the 1D, high gain regime.

dE

dz
=

IK

4πϵ0cσ2γr
⟨sin θj⟩ bunching → field (1.29)

dηj
dz

=
−eK
mc2γ2r

E
(
sin θj − sin θr

)
field → energy modulation

dθj
dz

= 2kuηj energy modulation → bunching

There is a clear feedback mechanism in these equations. First, a coherence in the beam

density improves field emission. Second, increased fields lead to stronger energy modulation.

Third, energy modulation leads to a bunching of the beam density, known as microbunching.

The interaction can be seeded from any of the three components: a prebunched electron

beam, an external laser, or a beam with energy modulation. In the absense of seeding, the

interaction grows from random statistical noise in the beam, also called shot noise. Operating

from self-amplified spontaneous emission (SASE) is how X-Ray FELs (XFELs) are able to

generate sub-nanometer radiation.

1.3.3 Universal Scaling and Collective Variables

It is helpful to redefine the 1D system in terms of scaled, dimensionless variables that express

important time and length scales that govern the FEL interaction across all parameter

regimes. We assume an untapered undulator (θr = 0) and begin by introducing the scaled
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length z̃ = 2kuρz into the phase equation with the (as of now) undefined Pierce parameter

ρ.
∂θ

∂z̃
= η̃j where η̃j ≡ ηj/ρ (1.30)

After inserting into the energy equation and defining a scaled field variable ã, we substitute

all into the field equation and fix ρ such that the coefficient of the bunching factor is 1.

∂η̃j
∂z̃

− 2ã sin θj where ã ≡ eK

4kuρ2γ2rmc
2
E (1.31)

∂ã

∂z̃
=

eIK2

ρ332πϵ0mc3σ2γ3k2u
⟨sin θj⟩ ≡ ⟨sin θj⟩ =⇒ ρ =

(
eIK2

32πϵ0mc3σ2γ3k2u

)1/3

(1.32)

We rearrange and express in terms of undulator period or radiation wavelength as

ρ =

(
1

16π

I

IA

K2

γ3
λ2u
A

)1/3

=

(
1

4π

I

IA

(
K

1 +K2

)2
γλ2

A

)1/3

(1.33)

where IA = 4πϵ0mc
3/e = 17045 A is the Alfvén current and A = 2πσ2 is the transverse

beam area. In the next chapter, we show that the analogous ρ for a waveguide FEL simply

replaces the beam area with a measure of the waveguide area (see Eq. 2.2).

The Pierce parameter describe the scaling for many properties of an FEL including the

saturation power, saturation length, spectral bandwidth, and energy spread constraints for

lasing.

Psat = ρPbeam = ρ

(
γmc2

e

)
I Lsat ≈ λu/ρ ∆ω/ω ≈ ρ ∆γ/γ < ρ (1.34)

While a full characterization is outside the scope of this dissertation, we emphasize that

the efficiency of an untapered undulator is limited to the value of ρ which is generally on

the order of 10−3 to 10−2. We make the connection between ρ and the 1D power gain length

P ∝ ez/Lg using a collective variable approach following [47]. In addition to the complex

bunching factor b = ⟨e−iθj⟩, we define the collective momentum P = ⟨ηje−iθj⟩ and treat ã as

a complex quantity. Denoting ∂/∂z̃ with primes, the system becomes

ã′ = ib

b′ = −i⟨θ′je−iθj⟩ = −iP

P ′ = ⟨η̃′je−iθj⟩ − i⟨η̃jθ′je−iθj⟩ = −iã+�����
iã⟨e−i2θj⟩ −�����

i⟨η̃2j e−iθj⟩ (1.35)

19



0 0.2 0.4 0.6 0.8 1

z/L
sat

10-10

10-5

100

P
/P

sa
t

0

0.2

0.4

0.6

0.8

1

B
un

ch
in

g

(a)

(b)

(c)
(d)

-4

0

4

2
/;

(a) (b) (c) (d)

Figure 1.8: Simulation of the exponential growth in power and bunching in a 1D untapered

FEL. Power and distance are scaled by Psat and Lsat defined in Eq. (1.34) and plotted

against the analytic gain length Lg = λu/4π
√
3ρ (black dashed line). The longitudinal phase

space and ponderomotive bucket are plotted at four points along the undulator.

where we neglect higher order terms in the momentum evolution. This can be expressed as

a third order differential equation in the field ã′′′ = −iã where for the ansatz ã = eiµz̃, µ is

given by the cubic roots of unity. The solution for exponential growth requires Im{µ} < 0

such that the steady state growth for power is given by |ã|2 ∝ ei
√
3z̃ ≡ ez/Lg where the gain

length can be identified as

Lg =
λu

4π
√
3ρ

(1.36)

The gain length is an important benchmarking tool for GPTFEL and other FEL sim-

ulations. Corrections for 3D effects including finite beam emittance, energy spread, and

radiation diffraction commonly rely on fitting formulas developed by Ming Xie [48].

Figure 1.8 compares a simulation of exponential power growth P (z) ∝ ez/LG in an un-

tapered FEL with the analytic estimates of Eqs. (1.34) and (1.36). The 1D simulation is

seeded with a very small amount of density bunching and after an initial startup period grows
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exponentially in good agreement with the theory shown by the dashed black line. Addition-

ally, the values for Lsat and Psat correctly predict the position and power of saturation. The

bunching is shown on a linear scale to make the exponential growth more apparent. Phase

spaces are shown along the interaction along with the ponderomotive bucket approximations

where we note the bucket height near saturation is on the order of ρ. The power saturates

when the electrons reach a minimum energy at which point the power decreases as electrons

begin to reabsorb energy from the fields.

1.4 TESSA Regime

The strong emission near saturation is due to the coherent emission of the bunched electron

beam and can be described by a simple model where the total field is represented by the

sum of sinusoids emitted from Ne electrons as

E ∝
∑
j

E0e
ik(z−zj) (1.37)

The intensity relies on the point-wise distances and can be separated into diagonal and

off-diagonal terms.

|E|2 ∝
∑
j,ℓ

eik(zj−zℓ) = |E0|2
(
Ne +

∑
j ̸=ℓ

eik(zj−zℓ)

)
(1.38)

For an unbunched beam, the off-diagonal terms average to zero and the intensity grows lin-

early with Ne. If the beam charge distribution instead has non-negligible bunching according

to f(z) = 1 + 2b cos(kz), the remaining sum can be written as an expected value over the

beam distribution∑
j ̸=ℓ

eik(zj−zℓ) = Ne(Ne − 1)

∫ λ

0

∫ λ

0

f(z1)f(z2)e
ik(z1−z2)dz1dz2 ≈ Ne(Ne − 1)b2 (1.39)

such that even a small amount of coherence leads to intensity scaling as N2
e . The term

superradiance was first coined by Dicke [49] in work relating to optic lasers, but has since

been adopted for FELs to refer to the quadratic intensity scaling and the importance of

beam microbunching for producing large intensities [50, 51].
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In an untapered FEL, the high gain interaction length is limited by gain saturation which

occurs when the electrons lose enough energy to drop out of resonance or when the efficiency

is roughly equal to ρ. To maintain resonance with decelerated electrons, the undulator field

strength or period length can be tapered. Interest in tapered FELs dates back to the first

demonstration of FEL gain by Madey, et al in 1976 [52], with the seminal paper by Kroll,

Morton, and Rosebluth [42] in 1981 which describes resonance for a tapered interaction.

Experiments at Los Alamos and Lawrence Livermore National Laboratories demonstrated

tapered interactions at 10.6 µm (3.7% efficiency) and 9 mm (34% efficiency) [53, 54], but

a future effort to improve the efficiency at infrared wavelengths was not successful due to

limitations in beam brightness [55].

In the last decade, interest in strong-tapering for improving FEL efficiency has renewed

at UCLA [56, 57] partially motivated by the study of inverse-FELs where a strong laser seed

can accelerate beams with gradients competitive with state of the art RF technology [58, 59].

To accelerate a significant fraction of the electrons, the beam must be microbunched at the

radiation wavelength. In 2014, a collaboration between UCLA and Brookhaven National

Lab lead to the Rubicon experiment which demonstrated over 50 MeV energy gain with a

∼ 100 MeV/m average accelerating gradient with a helical undulator geometry [60].

Due to the symmetric nature of the FEL interaction, the strong external seeding (laser

and beam microbunching) that generated large accelerating gradients in inverse-FELs can

similarly produce large decelerating gradients to maximize energy extraction from the elec-

tron beam. A follow-up experiment (appropriately named Nocibur) reversed the undulator

tapering and decelerated 45% of the electrons from 65 MeV to 35 MeV resulting in 30%

energy extraction efficiency [30]. This demonstrated Tapering Enhanced Stimulated Super-

radiant Amplification (TESSA) [61], in the low gain limit as the external 200 GW CO2 laser

dominated the output radiation. The name alludes to an analogy between FEL amplification

due to strong seeding and the stimulated emission of photons in a solid-state laser.

The Tessatron experiments are intimately connected to this research, utilizing TESSA

in conjunction with zero-slippage operation to produce a compact THz-FEL source. The

future application of TESSA to visible frequencies is underway with the FAST-GREENS
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collaboration between UCLA, RadiaBeam Technologies, RadiaSoft, and Fermilab National

Laboratory [62]. The program goal is to achieve record single-pass efficiency (∼ 10%) and

the first experimental measurements of the spectral and transverse profile characteristics of

the amplified radiation, demonstrating a path to high power, short wavelength sources. Ad-

ditionally, an oscillator configuration [63] could be used to significantly improve the average

power with important applications for EUV lithography and molecular imaging [64, 65, 66].

1.5 Efficiency Estimates

1.5.1 1D Efficiency

An analytic estimate for the efficiency of the high-gain, 1D FEL system in the non-linear

regime can be obtained using the resonate particle approximation which assumes that all

trapped electrons behave similarly to a resonant particle (γj → γr and sin θj → sin θr) and

that untrapped electrons result in negligible energy transfer. The efficiency is then defined

as the energy loss of the trapped electrons over the initial energy

η1D(z) = ft

∣∣∣∣∣γr(z)− γr0
γr0

∣∣∣∣∣ (1.40)

where we return to the original energy variable γ. With the resonant-particle approximation,

we can integrate Eqs. (1.6) and (1.28) to find

γr(z)− γr(0) = − e

mc2

∫ z

0

K(z)

γr(z)
E(z) sin θrdz (1.41)

E(z) = E0 +
I

4πϵ0cσ2

∫ z

0

K(z)

γr(z)
ft sin θrdz (1.42)

Note the resonant particle assumption leads to the bunching factor being approximated by

ft sin θr. Instead of preemptively defining a tapering, we assume that K(z)/γr(z) ≈ K0/γr0

(valid for small efficiencies) such that the integrands are simplified and E(z) is seen to grow
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linearly in z. Inserting equation (1.42) into (1.41), we obtain the 1D efficiency estimate

η1D(z) =
e

γr0mc2

[
E0

(
K0

γr0
ft sin θr

)
z +

I

8πϵ0cσ2

(
K0

γr0
ft sin θr

)2

z2

]
(1.43)

η1D(z) =
kKl

γr0

(
K0

γr0
ft sin θr

)
z +

I

IA

1

2γr0σ2

(
K0

γr0
ft sin θr

)2

z2 (1.44)

which is a function of the product ft sin θr and we have simplified coefficients with the field

strength parameter and Alfvén current. The linear and quadratic terms describe the effect

of the seed laser and beam current density, respectively. We can also describe the evolution

of the radiation power by Prad = P0 + η1DPbeam as

Prad = P0 + E0

(
K0

γr0
Ift sin θr

)
z +

Z0

8πσ2

(
K0

γr0
Ift sin θr

)2

z2 (1.45)

where P0 = 2πσ2E2
0/Z0, Pbeam = Iγr0mc

2/e, and Z0 = 1/cϵ0 is the impedance of free space.

Linear and quadratic coefficients for the tapering can be estimated fromK(z)/K0 = γr(z)/γ0

by inserting γr(z) = γr0(1− t1z − t2z
2) into Eq. (1.40) to find η1D(z) = ft (t1z + t2z

2) such

that

K(z) = K0(1− t1z − t2z
2)

where t1 =
kKlK0

γ2r0
sin θr and t2 =

I

IA

K2
0

γ3r0

ft sin
2 θr

2σ2
(1.46)

Notice that in the low gain limit (I = 0), we can substitute the FEL resonance for γ2r0

and assume (1 +K2
0)/K

2
0 ≈ 1 to find

K(z) = K0 − 2Klkuz (1.47)

which agrees with low gain prediction of Eq. (1.15).

The 1D efficiency theory doesn’t account for time-dependent effects as it assumes an in-

finitely long beam and most importantly doesn’t include diffraction effects that will diminish

efficiency. This is most clear for the limit σ → 0 where the 1D efficiency diverges toward

infinity. The 1D theory can be applied to waveguide FELs by replacing the beam area with

the effective mode area defined in Eq. (2.2), but the effects of frequency dispersion must be

considered for short beams.
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1.5.2 3D Efficiency

We now seek to incorporate diffraction into the efficiency estimate while retaining the as-

sumption of an infinitely long beam such that fields are represented by a single frequency.

Inspired by the work of Saldin et al. [67], we augment the resonant particle approximation

and assume the beam maintains a constant longitudinal bunching in order to compute the

radiation field in the presence of diffraction. To this end, we build off the derivation for the

1D, high gain field evolution where the only differences are the inclusion of the transverse

Laplacian ∇2
⊥ and a 3D current density given by

J⊥ = −ev⊥n⊥(r)
Ne∑
j=1

δ(z − zj(t)) and n⊥(r) =
1

2πσ2
e−r

2/2σ2

(1.48)

where n⊥ is the transverse electron number density and r refers to the transverse position.

The exact form of the longitudinal density is irrelevant as it will be period-averaged into the

complex bunching factor b ≡ ⟨e−iθj⟩. Applying derivatives to the frequency representation

of the field, we find(
∇2

⊥ +
2iω

c

∂

∂z

)
E = S(r) where S(r) = −KωIb

ϵ0c2γ
n⊥(r) (1.49)

Using a Green’s function formulation, the field can be expressed as

E(z, r) = −
∫ z

0

∫ π

0

∫ ∞

0

G(z − z′, r− r′)S(r′)r′dθ′dr′dz′

where G(z − z′, r− r′) =
1

4π(z − z′)
exp

(
iω|r− r′|2

2c(z − z′)

)
(1.50)

is the Green’s function solution for the homogeneous paraxial wave equation and θ′ is the

angle between r and r′ (note the integration limits). We expand |r−r′|2 = r2+r′2−2rr′ cos θ′

and apply the Jacobi-Anger expansion, eia cos θ =
∑∞

n=−∞ inJn(a)e
inθ, where only the n = 0

term survives the azimuthal integral.

E(z, r) =
KωIb

ϵ0c2γ

1

2πσ2

×
∫ z

0

1

4(z − z′)
eiωr

2/2c(z−z′)
[∫ ∞

0

eiωr
′2/2c(z−z′)J0

(
ωrr′

c(z − z′)

)
e−r

′2/2σ2

r′dr′
]
dz′ (1.51)
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Figure 1.9: Radial dependence of the electron distribution and emitted field for various

Fresnel numbers N. Near-axis approximations are shown in black.

Defining the scaled variables ẑ = z/Lu and r̂2 = kr2/Lu where k = ω/c and Lu is

the undulator length, as well as identifying the Fresnel number of the electron beam, N =

kσ2/Lu, the bracketed radial integral can be computed as∫ ∞

0

eir̂
′2/2(ẑ−ẑ′)J0

(
r̂r̂′

ẑ − ẑ′

)
e−r̂

′2/2N r̂′dr̂′ =
2N(ẑ − ẑ′)

ẑ − ẑ′ − iN
exp

(
−r̂2

2(ẑ − ẑ′)

N

(ẑ − ẑ′ − iN)

)
(1.52)

using the identity
∫∞
0
e−αxJ0(β

√
x)dx = 1

α
e−β

2/4α. After some algebraic simplification, we

have

E(z, r) =
ωKIb

4πϵ0c2γ

∫ ẑ

0

dẑ′

ẑ − ẑ′ − iN
exp

(
ir̂2

2(ẑ − ẑ′ − iN)

)
(1.53)

Utilizing a near-axis expansion ear̂
2 ≈ 1 + ar̂2, the final integration is simple and can be

rewritten by expanding complex logarithms according to ln
(
aeiθ

)
= ln(a) + iθ to give

E(z, r) ≈ i
ωKIb

4πϵ0c2γ

[
arctan

(
ẑ

N

)
− i

2
ln

(
1 +

ẑ2

N2

)
− r2

2σ2

(
ẑ

N + iẑ

)]
(1.54)

where the last term gives the off-axis correction. In the 1D, on-axis limit where the

electron beam and seed spot sizes are large (N ≫ 1), we recover equation (1.28) for the field

evolution in the 1D high-gain regime where Re{ib} = ⟨sin θj⟩. Figure 1.9 plots the exact

numeric integration of Eq. (1.53) against the small r̂ approximation of Eq. (1.54) at ẑ = 1
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along with the electron radial distribution. For N > 0.01, it is clear that simply assuming

the on-axis field would not be an accurate representation of the fields seen by the particles.

In computing our analytic estimates, we evaluate Eq. (1.54) at the expected value of the

beam distribution such that r = σ.

Under the assumption of constant bunching, Maxwell’s equations are linear and we can

include the presence of a seed field with waist size w0 and position zw by simply adding a

TEM00 gaussian mode

Es(z) = E0
w0

w(z)
ei(kz−ωt+ψ(z)) (1.55)

where ψ(z) = − arctan ((z − zw)/zr)) is the Guoy phase, zr = πw2
0/λ is the Rayleigh length,

and w(z) = w0

√
1 + (z − zw)2/z2r is the transverse spotsize where λ is the seed wavelength.

We define the ponderomotive phase relative to the seed field such that θ = (k + ku)z − ωt.

The electron bunch should be injected at the resonant phase of the seed field where the

ponderomotive potential is deepest and the energy acceptance is large such that ϕb(0) =

θr − ψ(0) where b = |b|eiϕb . When the beam size is on the order of the seed waist, a

correction term is needed to account for particles sampling off-axis fields. This is achieved

by scaling the seed field with the convolution of the electron beam density with the seed’s

radial dependence.∫ 2π

0

∫ ∞

0

(
1

2πσ2
e−r

2/2σ2

)
e−r

2/w(z)2rdrdθ =
w(z)2

w(z)2 + 2σ2
≡ ξs (1.56)

Particles are expected to follow the phase of the total field such that the 3D efficiency

estimate can be expressed as a semi-analytic formula in terms of the total amplitude of the

combined seed and emitted fields.

η3D(z) =
e

γ0mc2
K

γ
ft sin θr

∫ z

0

|ξsEs(z) + E(z)|dz (1.57)

For an example, we consider the experimental parameters for the high efficiency FAST-

GREENS experiment at 515 nm in Table 1.1. Simulations of the first two undulator sections

disregard the break section between the undulators to be consistent with the analytic model.
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The microbunched beam is prepared using a single-buncher scheme with ∆γ ≈ 1.4 energy

modulation and R56 ≈ 100µm dispersion to achieve a bunching factor of 0.7.

Table 1.1: Parameters for the 515 nm FASTGREENS Experiment

Electron Beam Radiation and Undulator

Energy 220 MeV λ 515 nm

Energy Spread 0.1 % Input Power 1 GW

|b| 0.7 Rayleigh Length 1.41 m

ϵn,x, ϵn,y 3 mm·mrad Waist location 0.4 m

Ipeak 500 A Krms 2.23

σx, σy 100 µm λu 3.2 cm

Lu 1.92 m

To first make a direct comparison to 1D theory, we consider the zero current limit for

various seed waist sizes (or rayleigh lengths) shown in Figure 1.10, where the seed power is

adjusted to maintain an identical peak-field. In the large waist limit, the 1D and 3D estimates

converge nicely in agreement with the simulated efficiencies. For moderately small waists,

simulations track with the 3D estimate while a strong discrepancy develops at short rayleigh

lengths. While it is true that the correction in Eq. 1.56 doesn’t account for transverse

phase dependence, we expect this to have a small effect on phase space dynamics. More

importantly, the inlay shows that the assumption of a constant bunching is violated as the

bunching phase drifts with the field phase. The electrons are trapped in the ponderomotive

potential of the total radiation field and in the presence of very strong diffraction (zr < 0.5)

the phase drift is fast enough to cause many particles to become detrapped, leading to

smaller efficiencies. In practice, a small seed waist is unfavorable as it limits the interaction

length with the electrons, such that this discrepancy for large seed diffraction will have little

practical effect. Additionally, the electrons can be injected at a different phase or energy to

try to limit the detrapping.

Figure 1.11 shows the estimated and simulated frequencies as a function of Fresnel number

where the parameter is tuned by varying the electron beam spotsize. GPT simulations use
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Figure 1.10: Comparison of simulated and analytic efficiencies in the zero-current limit as a

function of seed waist. Contrary to the fixed bunching approximation, the inlay shows that

the bunching phase drifts along with the diffracting radiation seed.

a fixed gaussian mode for the seed and a GPTFEL element with 61 free-space modes to

model the emitted field. The solid and dashed lines show the 3D estimate with and without

the correction factor from Eq. (1.56). Without the correction, the 1D and 3D efficiency

estimates converge, while the corrected estimate and simulated efficiency continue to decrease

due to the violation of σ ≪ w(z). At small spotsizes the 1D efficiency incorrectly diverges,

emphasizing the need for an efficiency estimate that can include diffraction effects. When the

electron spotsize becomes comparable to the trajectory radius, r⊥ = K/γku, it is necessary

to model with an effective spotsize given by σeff =
√
σ2 + r2⊥.

Figure 1.12 shows the phase evolution of the fields and complex bunching along the

undulators with initial phases labeled in red. The seed field diffracts independent of the

interaction. The emitted field starts with phase π/2 larger than the bunching, but lowers

quickly due to strong diffraction as its waist is on the order of the beam spotsize. The complex

bunching is phase-locked to the ponderomotive potential of the total field, as predicted.

29



0.01 0.05 0.1 0.5 1 2

N

0

2

4

6

8

10

E
ffi

ci
en

cy
 (

%
)

1D est.
3D est.
GPT Sim.

40 89 125 281 397 561
< (7m)
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small seed waist.

30



0 0.5 1 1.5 2

Z (m)

-90

-45

0

45

90

P
ha

se
 (

de
g)

Field
?

b

Seed

Emitted

?b(0)

A(0)

i?b(0)

Figure 1.12: Evolution of phases along the undulators with theoretical initial phases shown

in red. The electron bunching is phase-locked to the total field due to the ponderomotive
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in the increased efficiency, it is also necessary for prebunching.
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Finally, we consider variations in the tapering by changing the resonant phase. Figure

1.13 plots the analytic estimates against simulation with and without a seed field. The

simulation tracks well with estimates though there is a noticeable drop around 50 deg in

the seeded case due to detrapping. The importance for external laser seeding can be seen

explicitly in the increase efficiency (linear term of Eq. (1.43) from 1D theory) as well as

implicitly in the need to produce a bunched beam with large bunching factor.

Figure 1.14 shows bunching and trapping fractions along with emitted field for the seeded

simulation at θr = 40. The dashed and solid lines show estimated and simulated values,

respectively. The amplitude of the emitted field aligns nicely with theory even though

the assumption of constant bunching phase is technically violated. The bunching factor

undulates due to synchrotron oscillations in the ponderomotive bucket, but remains close

to its estimate value. The theoretical trapping fraction ft is computed using a sinusoidal

longitudinal density 1 + 2b cos(kz), where b is the bunching factor. The distribution is

unphysical for b > 0.5, but provides a good estimate for the simulation. It is clear that

detrapping is starting to occur in the second undulator, which worsens at higher resonant

phases causes the drop in efficiency above θr ∼ 50◦. This suggesting the estimated tapering is

too aggressive at higher resonant phases. In the limit as θr → 90◦, the simulated efficiencies

do not drop to zero even though particles immediately become detrapped as there is still a

small amount of deceleration. The phase space evolution is shown in Figure 1.15 along with

the tapering-defined resonant energy and ponderomotive bucket where coloring indicates

trapping of the electrons.

1.6 Waveguide FELs

Until now, we have described the FEL interaction in free space, without any materials or

boundaries near the interaction. However, at long wavelengths the FEL interaction is de-

graded by excessive radiation diffraction and slippage. A waveguide can be added to contain

the radiation transversely at the cost of introducing an aperture and power attenuation not

seen in the free-space FEL. Another important advantage is the ability to choose waveguide
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dimensions such that the subluminal group velocity of the radiation matches the average

longitudinal velocity of the waveguide. This zero-slippage operation extends the interaction

length for high current, compressed electron beams that emit strong electric fields. In this

section we develop the theory for waveguide modes necessary to setup a discussion of the

GPTFEL code as well as introduce the details of the zero-slippage condition essential to the

operation of the UCLA THz Waveguide FEL.

We begin by considering the electromagnetic fields in a conducting waveguide with the

general form

E(x, z, t) = (E⊥(x) + ẑEz(x)) e
ikzz−iωt (1.58)

Waveguides support traveling wave solutions in two distinct set of bases referred to as trans-

verse electric and transverse magnetic modes defined by Ez = 0 and Hz = 0 with Neumann

or Dirichlet boundary conditions, respectively. TEM modes (Ez = Hz = 0) do not exist as

the application of Gauss’s Law ∇ ·E = 0 and Ampere’s Law ∇×B = 0 prohibit a non-zero

solution. We assume vacuum in the waveguides which is necessary for electron propagation.

The general field descriptions are derived in [68] as

Transverse Electric (TE) Transverse Magnetic (TM) (1.59)

Ez = 0,
∂Hz

∂n̂

∣∣∣∣
S

= 0 Hz = 0, Ez|S = 0(
∇2

⊥ + k2⊥
)
Hz = 0

(
∇2

⊥ + k2⊥
)
Ez = 0

H⊥ =
ikz
k2⊥

∇⊥Hz E⊥ =
ikz
k2⊥

∇⊥Ez

E⊥ =
−ωµ0

kz
(ẑ×H⊥) H⊥ =

ωϵ0
kz

(ẑ× E⊥)

where S denotes the waveguide boundary surface, n̂ denotes the boundary normal, and ∇2
⊥

and ∇⊥ represent the transverse Laplacian and gradient for the given geometry.

Waveguide modes exhibit dispersion where frequencies propagate at different speeds ac-

cording to

ω2/c2 = k2z + k2⊥ (1.60)

where the phase and group velocities are defined by vp = ω/kz and vg = dω/dkz. The group

velocity (evaluated at the central frequency) describes the speed of the waveform envelope
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and is constrained by causality to be less than to the speed of light with equality in the

free-space/large aperture limit. The phase velocity describes the speed of the wavefront and

is greater than or equal to the speed of light as it can be shown from Eq. 1.60 that vpvg = c2.

A derivation of diffraction effects including the group velocity dispersion, β2 = ∂2k/∂ω2, is

given in Appendix B.

Each waveguide mode has a cutoff frequency ωc = ck⊥, which denotes the lowest fre-

quency capable of propagation. At lower frequencies, kz is imaginary and the complex

exponential in Eq. (1.58) leads to an exponential decay of the fields in the so-called evanes-

cent modes. Single-mode operation in a waveguide occurs at frequencies where only the

fundamental mode can propagate. If operated at higher frequencies, the waveguide becomes

over-moded and multiple modes can propagate.

In a waveguide, power is absorbed due to ohmic losses in the walls with an attenuation

constant βwg defined as

P (z) = P (0)e−2βwgz or βwg = − 1

2P

dP

dz
(1.61)

where the time averaged power P flowing down the waveguide can be computed from a

surface integral over the pointing vector S = Re (E×H∗) /2. The ohmic losses due to the

non-ideal conduction in the waveguide and skin depth penetration of the fields is commonly

expressed as power loss per area of wall. We can express the power lost per unit length by

performing a contour integral around the waveguide boundary.

dP

dz
=

∮
dP

dA
dℓ

It can be shown [68] that for a generic TE mode

βwg =

∮
|Hz|2 + |n̂×H⊥|2dℓ

4σδP
where P =

ωkzµ0

2k2⊥

∫∫
|Hz|2dA (1.62)

where σ is the material conductivity, δ = 2/µσω is the skin depth, and µ is the magnetic

permeability of the material. For most materials, it can be assumed that µ ≈ µ0.
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1.6.1 Circular Waveguide

We first consider a circular waveguide geometry used for the Tessatron Waveguide FEL

experiments. The Laplacian and gradient are given by ∇2
⊥ = ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂ϕ2
and ∇⊥ =

r̂ ∂
∂r

+ ϕ̂1
r
∂
∂ϕ

and the Helmholtz equation can be solved with a separable solution, R(r)Φ(ϕ).

The azimuthal function Φ(ϕ) must be 2π-periodic in ϕ such that ∂2Φ/∂ϕ2 = −m2Φ where

m is an integer. The double degeneracy that exists for |m| > 0 represents right/left circular

polarizations.

Table 1.2: Tabulated zeros for Jm and J ′
m

n J0(x) J1(x) J2(x) J ′
0(x) J ′

1(x) J ′
2(x)

1 2.4048 3.8317 5.1356 3.8317 1.8412 3.0542

2 5.5201 7.0156 8.4172 7.0156 5.3314 6.7061

3 8.6537 10.1735 11.6198 10.1735 8.5363 9.9695

The radial differential equation

r2
∂2R
∂r2

+ r
∂R
∂r

+ (r2kmn −m2)R = 0 (1.63)

is satisfied by Bessel functions Jm(kmnr) where the boundary conditions for TE and TM

modes allow discrete solutions in terms of the nth zero of Jm or J ′
m. Table 1.2 shows the

zeros for the first few Bessel functions. The longitudinal fields are given by

(TE) Hmn
z (r, ϕ) = H0Jm(kmnr)e

±imϕ where kmn = wmn/R, J ′
m(wmn) = 0

(TM) Emn
z (r, ϕ) = E0Jm(kmnr)e

±imϕ where kmn = umn/R, Jm(umn) = 0 (1.64)

where H0 and E0 are normalization constants. The cutoff frequency occurs in the funda-

mental TE11 mode at ωc = 1.8412c/R.

Only modes with non-zero transverse electric fields on axis can resonant with an electron

beam in a waveguide FEL. To identify right-circularly polarized resonant modes (m > 0),

we convert the cylindrical transverse electric fields to cartesian using the small-argument
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expansion of the Bessel function, Jm(r) ≈ rm/2mm!+O(rm+2). For TM modes, we compute

the transverse fields from the gradient of Emn
z directly as

E⊥(r, ϕ) =
ikz
k2⊥

∇⊥Ez = E0
ikz
k2⊥

(
r̂
∂

∂r
+ ϕ̂

1

r

∂

∂ϕ

)
Jm(k⊥r)e

±imϕ

≈ E0
ikz
k2⊥

km⊥ r
m−1

2m(m− 1)!
e±imϕ

(
r̂± iϕ̂

)
= E0

ikz
2k⊥

(x̂± iŷ) where m = 1 (1.65)

where |E⊥(r = 0)| ≠ 0 only for m = 1. Thus, out of all the TM modes, only the TM1n

modes can resonate with an electron beam. The TE modes have a similar mathematical

structure such that we can borrow from Eq. (1.65) and similarly find resonance occurs only

in TE1n modes.

E⊥ = −iωµ0

k2⊥
(ẑ×∇⊥Hz)

= −H0
iωµ0

k2⊥

km⊥ r
m−1

2m(m− 1)!
(ẑ× (x̂± iŷ))

= ∓H0
ωµ0

2k⊥
(x̂± iŷ) where m = 1 (1.66)

Figure 1.16 plots the first few resonant circular waveguide modes. As n increases, the

area of the uniform field region diminishes. We choose to normalize modes according to

|E⊥(r = 0)| = 1 such that E0 =
√
2k⊥/kz and H0 =

√
2k⊥/ωµ0.

We now compute the power attenuation for the fundamental TE11 waveguide mode used

in the experiments. It can easily be shown that |r̂ × H⊥|2 = k2z
r2k4⊥

|Hz|2. The integrand of

the contour integral is constant along the boundary (r = R) such that the integral simply

contributes a factor of 2πR. The area integral is solved by∫ R

0

J1(k11r)
2rdr =

R2

2

(
J0(w11)

2 + J1(w11)
2 − 2

w11

J0(w11)J1(w11)

)
(1.67)

such that after rearranging constants we find

βwg =
w2

11δ

2R3kz

(
1 +

k2zR
2

w4
11

)(
J1(w11)

2

J0(w11)2 + J1(w11)2 − 2J0(w11)J1(w11)/w11

)
(1.68)

where the units of βwg are np/m and 1 dB/1 np = 8.69. The attenuation is a function of

frequency through the longitudinal wavevector kz(ω) and the skin depth δ(ω) =
√
2/ωµσ
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Figure 1.16: The first few FEL-resonant (m=1) modes for a circular waveguide. Arrows

show local field polarization with phase chosen such that polarization is ŷ on axis. Coloring

shows coupling with resonant electrons (v = vŷ).
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Figure 1.17: Waveguide power attenuation for the Tessatron experiments. Tessatron used

a 5.54 mm ID stainless steel vacuum pipe which doubled as a waveguide while Tessatron2

used a 4.06 mm ID copper waveguide. The experimental frequency ranges are shaded.
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where σ is the material conductivity. At THz frequencies, skin depths are limited to a few

micron such that the thickness of the waveguide walls has negligible effect on the attenua-

tion. Figure 1.17 shows the attenuation constants for the waveguide materials used in the

two Tessatron experiments along with the experimental frequency range. The sub-optimal

stainless steel material in the first experiment was due the fact the vacuum pipe itself served

as the waveguide, leading to 30% loss in THz energy in the 1 meter waveguide. Using a

copper waveguide in the following experiment reduced the attenuation loss to 5%.

1.6.2 Rectangular Waveguide

Next we consider a rectangular waveguide geometry with walls at x = 0, x = a and y = 0,

y = b with a cartesian Laplacian given by ∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
. Using the separable solution

X(x)Y (y) and applying boundary conditions we find

(TE) Hmn
z = H0 cos(kxx) cos(kyy)

(TM) Emn
z = E0 sin(kxx) sin(kyy)

where kx = mπ/a, ky = nπ/b, and kmn =
√
k2x + k2y. The mode indices m and n run

over non-negative integers except for TMm0, TM0n, and TE00 where the fields are trivially

zero. The cutoff frequency occurs in the fundamental TE10 mode assuming a > b such that

ωc = cπ/a.

The transverse electric fields computed from Eq. (1.59) share a similar transverse depen-

dence on x and y and are given by

(TE) Emn
⊥ = H0

iωµ0

k2⊥

(
− ky cos(kxx) sin(kyy)x̂+ kx sin(kxx) cos(kyy)ŷ

)
(TM) Emn

⊥ = E0
ikz
k2⊥

(
kx cos(kxx) sin(kyy)x̂+ ky sin(kxx) cos(kyy)ŷ

)
We assume without loss of generality that the waveguide is used in a planar undulator

with By field and sinusoidal beam trajectory in x̂. Only fields where Ex(a/2, b/2) ̸= 0

support resonance with an electron beam, requiring even m and odd n indices. The first few

TE resonant modes are shown in Figure 1.18. Normalizing such that |E⊥(a/2, b/2)| = 1 fixes
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Figure 1.18: The first few FEL-resonant TE rectangular waveguide modes where m is even

and n is odd. The transverse field dependence is nearly identical for TM modes except

TM0n modes do not exist. Arrows show local field polarization with phase chosen such that

polarization is x̂ on axis. Coloring shows coupling with resonant electrons (v = vx̂)

H0 = k2⊥/ωµ0ky and E0 = k2⊥/kzkx. The equivalent TM modes are nearly identical except

that the TM0n modes do not exist.

1.6.3 Zero Slippage

In a waveguide FEL, the waveguide dimensions can be tuned to match the radiation group

velocity to the average longitudinal velocity of the electron beam, effectively eliminating FEL

slippage [69, 70, 71]. This enables strong compression of the beam which greatly increases the

current density for effective FEL seeding. In addition to the waveguide dispersion relation

(1.60) and FEL phase resonance condition (1.7), the zero-slippage condition introduces an

additional ”group-resonance” constraint on the FEL parameters.

cβz = vg =
c2kz
ω

(1.69)

Thus for fixed undulator and waveguide parameters, zero-slippage can only be achieved

at a singular frequency, restricting the precious frequency tunability of the FEL interaction.
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Figure 1.19: Zero-slippage in time and frequency domain. a) The colored phase fronts slip

past the beam according to the FEL phase-resonance condition while the waveform envelope

remains temporally aligned. b) Satisfying both the phase and group resonance conditions

corresponds to matching the point and slope of the waveguide dispersion curve, enabling a

large-bandwidth interaction that supports the generation of several-cycle radiation pulses.

In the Tessatron2 experiment, we will seek a compromise between minimal slippage and

maximal tunability by operating detuned from the zero-slippage condition.

We present the derivation for zero-slippage in a circular waveguide mode, but geometry

only affects k⊥ such that the analysis can be quickly adapted to other geometries. To apply to

TE and TM modes generally, we let k⊥ = η/R where η can represent either of the tabulated

Bessel zeros umn or wmn.

Figure 1.19a shows a schematic of zero slippage where the colored phasefronts move at

the phase velocity and continue to slip past the electron beam one wavelength every period

in accordance with the phase-resonance condition. However, the envelope of the waveform

(shown in black) moves at the group velocity which remains temporally aligned with the

electrons which allows for an extended interaction. To determine parameter relations at

zero-slippage, we assume the undulator and waveguide properties K and k⊥(R) are fixed,

and solve for ω, kz, and βz(γ) using our three conditions. Values at zero-slippage resonance
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are denoted with a zero subscript and we utilize the shorthand γ2z = γ2/(1+K2) = 1/(1−β2
z ).

kz + ku =
ω

cβz
=

ω2

c2kz
=
k2z + k2⊥
kz

by (1.69) and (1.60) (1.70)

=⇒ kz0 = k2⊥/ku =⇒ ω0 =
ck⊥
ku

√
k2⊥ + k2u =⇒ βz0 =

k⊥√
k2⊥ + k2u

, γz0 =

√
1 +

k2⊥
k2u

where the solution of kz0 is easily back-substituted to solve for ω0 and βz0. It can be more

insightful to instead generate a quadratic equation in ω describing the phase resonance curves

by solving Eq. (1.7) for kz and substituting into Eq. (1.60).

0 = ω2(1− 1/β2
z ) + ω(2cku/βz)− c2(k2u + k2⊥)

= ω2 − 2ckuβzγ
2
zω + c2β2

zγ
2
z (k

2
u + k2⊥) where − β2

zγ
2
z =

1

1− 1/β2
z

ω = ckuβzγ
2
z

(
1±

√
1− k2u + k2⊥

k2uγ
2
z

)
(1.71)

Figure 1.19b shows a comparison of the dispersion in a waveguide and free-space FEL.

In a free-space FEL, the phase resonance is represented by the point of intersection with

the electron beam dispersion leading to a narrow bandwidth as required by slippage in the

temporal domain. On the other hand, the additional zero slippage condition in a waveguide

FEL is geometrically represented as matching the slope of the waveguide and electron beam

dispersions. The tangential intersection leads to a large bandwidth of frequencies that can be

excited, enabling the generation of short, few cycle waveforms. It can been seen in Eq. (1.71)

that the requirement for a singular solution (zero discriminant) gives the same zero-slippage

value of γz as in Eq. (1.70) matching our physical intuition. If the energy is detuned above

the zero slippage condition, there are now two frequencies that can simultaneously lase in

the FEL. Conversely, at energies below the zero-slippage condition there is no lasing that

can occur. For realistic beams with 3D effects including energy spread and finite emittance,

the electron beam dispersion curve thickens and the optimal overlap with the waveguide

dispersion will occur at a small positive energy detuning.

From Eq. (1.71) we also gain solutions for the frequency and waveguide radius as a
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Figure 1.20: Phase resonance curves for the first few circular waveguide modes along with

the free-space limit (black line) and analytic approximations (black dashed lines).

function of beam energy.

ω0 = ckuβz0γ
2
z0 and R0 =

η

ku
√
γ2z0 − 1

(1.72)

It is interesting to note that in the relativistic limit βz0 ≈ 1, the resonant frequency is

exactly one half that of an FEL in free-space as computed from Eq. (1.8). We can expand

the quadratic in ω about the zero-slippage solution, defining γz = (1 + δγ)γz0 such that

ω = ωc (1 + 2δγ)
(
1±

√
2δγ

)
(1.73)

which describes the two resonant frequency branches at higher energies. Figure 1.20 shows

the actual numeric solutions and approximations for the first few resonant modes of the

4.06 mm diameter waveguide used in the Tessatron2 experiment, bound below and above by

the waveguide cutoff frequency and free-space resonance asymptote. The energy dependence

of the lasing is clear as well as the increasing frequencies of the zero-slippage condition for

higher order which helps compensate for the lack of tunability due to the extra condition. The
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approximation is very accurate for the high frequency branch where the resonant frequency

varies significantly with the beam energy while the low frequency branch deviates due to the

lower bound of the mode’s cutoff frequency.

From Eq. (1.72), we see that increasing the resonant frequency requires higher energy

beams and smaller waveguide dimensions, introducing challenges for full charge transmission

through the undulator. The ratio of the beam trajectory amplitude to waveguide radius is

bounded and nearly constant for fixed K.

rmax
R

=
K

Rkuγ0βz0
=

1

η

K√
1 +K2

1

βz0
√

1 + k2u/k
2
⊥

≈ 1

η

K√
1 +K2

≤ 1

η
(1.74)

where we assume the relativistic limit γ ≫ 1 such that k⊥/ku ≫ 1 For example, in the

fundamental TE11 mode, 1/η = 0.543 such that the beam trajectory is roughly 1/2 the

waveguide radius. While the ratio is bounded, the challenge of full transmission does increase

for smaller waveguide dimensions due to the finite matched spotsize σx =
√
ϵnλu/2K and

undulator tuning/alignment tolerances. The undulator tuning poses novel challenges as the

large beam trajectory samples fields off axis, requiring strategies for ensuring correct tuning

of the 3D undulator fields. Lasing with a higher order mode reduces tolerances on charge

transmission at the cost of reduced coupling with the electron beam. A more promising

direction is to utilize a rectangular waveguide with a planar undulator geometry where the

aspect ratio of the waveguide aperture can be chosen to optimize charge transmission without

affecting the coupling.
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CHAPTER 2

GPTFEL and start-to-end simulations

2.1 Motivation

Numerical simulations have played a significant role in the development of FELs. As FEL

theory [72, 73] only admits analytical solutions under strong approximations, accelerator

physicists have developed an assortment of numerical approaches over the years to better

understand the details of the evolution of charged particles and electromagnetic fields in

their interaction through magnetic undulators.

There are a large variety of FEL simulation codes and many good reviews on the subject

have been given [74, 75, 76]. These range from fast one dimensional models (Perseo [77],

Perave [78]) which help in quick design studies and can be used to explore time-dependent

and nonlinear effects, to more complete 3D simulations (Ginger [79], Genesis 1.3 [80], Fast

[81], Puffin [82], Minerva [83]) which include transverse effects and can simulate wakefields

and complex beam distributions with correlations between the phase spaces. Each code

has been (at least initially) developed to solve a particular FEL problem, but it has often

been the case that, by comparing and understanding the various assumptions in each model,

insights on the various physical processes taking place in an FEL system have been gained.

Here we introduce yet another instance of a three dimensional FEL simulation based on

the decomposition of the electromagnetic field in a discrete set of transverse and frequency

modes. In this respect it is more similar to the family of frequency-based codes like Puffin or

Minerva. The GPTFEL code is built as an expansion of the widely available General Particle

Tracer code (GPT) for charged particle simulations [84]. In this sense, it can use a complete

set of already built-in functions for beam transport and interface seamlessly with photoin-
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jector [85] and CSR calculations [86]. This choice also brings several important advantages.

Similarly to Puffin and Minerva, the calculation does not resort to period averaging and a

full (simulated or even measured) undulator field map can be used to track the particles.

The effects of the interaction at the undulator entrance and exit can therefore be correctly

evaluated. Furthermore, GPT functions allow space charge effects to be naturally incorpo-

rated, including the transverse space charge effects that play a significant role in the beam

transport and evolution at low energies.

The code can be used to simulate both free-space and waveguide propagating electromag-

netic fields and naturally takes into account dispersive properties the medium. In free-space

there is some freedom in choosing the basis for the field expansion, making it possible to

take advantage of the Source Dependent Expansion [87, 88] algorithm to reduce the number

of modes needed to accurately describe the field and significantly speed up the calculation,

a capability that also exists in Minerva.

In this chapter, we first derive the modal expansion and detail the numerical implemen-

tation of the equations in the simulation [89]. We then present three different application

examples. The first is a simple seeded FEL amplifier in vacuum (analyzed both in a helical

and planar geometry). The second applies to the strongly nonlinear regime beyond satura-

tion and refers to initial simulations of the TESSA266 experiment [90] which was adapted

into the FASTGREENS experiment after complications due to the COVID pandemic. The

third example is a waveguide-THz FEL operating in the zero-slippage regime [69]. Finally,

we conclude the chapter by making a connection between waveguide FELs and 1D FEL

theory to benchmark the code for circular and rectangular waveguide geometries.

2.2 Theory

2.2.1 3D Frequency Domain Analysis

To begin our derivation of the GPTFEL equations, we return to the full 3D wave equation

(see Eq. (1.16)) and relax the time-independent assumption of periodicity. To this end, we
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require a full Fourier representation of the complex field.

E(x, z, t) =
1

2π

∫ ∞

−∞
Ẽ(x, k, t)eikz−iωtdk (2.1)

Each frequency component can be further decomposed into an orthogonal mode basis labeled

by index q such that Ẽ(x, k, t) =
∑

q aq(t)Θq(x, k) whereΘq is a solution to the homogeneous

wave equation. We normalize the modes to unity amplitude on axis, |Θq,⊥(x = 0)| = 1, and

define the mode area Aq as ∫∫
Θ∗
qΘ

′
qdx = δqq′Aq (2.2)

After inserting the expansion for the field, the left hand side (LHS) of the wave equation

can be written as

LHS =
1

2π

∫ ∞

−∞

(
����äq(k, t) +

2iω

c2
ȧq(k, t)

)
Θq(x, k)e

ikz−iωtdk (2.3)

where we assume the slowly varying envelope approximation (SVEA) for the field such that

the second order derivative can be neglected. To evaluate the right hand side, we express

the beam current density as a sum over delta functions

J(x, z, t) =
∑
j

qjvδ(x − xj(t))δ(z − zj(t)) and v(z) =

√
2cKrms

γ
e−ikuzn̂ + cβzẑ (2.4)

where the longitudinal beam velocity can couple to the Ez field in TM waveguide modes.

We note that Krms is equal to K/
√
2 or K for planar or helical geometries, and use n̂ =

(x̂+ ipŷ)/
√

1 + p2 where the parameter p can specify planar (0) or right/left circular (±1)

polarization. We make use of the shorthand notations nx = 1/
√
1 + p2 and ny = p/

√
1 + p2

to generalize equations for any polarization.

It is not computationally feasible to track all the electrons in a real beam, so we instead

model the the beam with a smaller number of macroparticles with charge qj. In order to

compare with the LHS, we rewrite the source term using nested Fourier transforms giving

RHS =
µ0

2π

∂

∂t

(∫ ∞

−∞

∫ ∞

−∞
J(x, z′, t)e−ikz

′
dz′eikzdk

)
(2.5)

such that the
∫∞
−∞ dk integrands are equivalent. We integrate over z′ using the delta function

sampling property and apply the time derivative using chain rule on xj(t) and zj(t) to find

2iω

c2
ȧq(k, t)Θq(x)e

−iωt = µ0

∑
j

qj (vj · ∇j)
(
e−ikzjvjδ(x− xj(t))

)
(2.6)
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where ∇j = x̂ ∂
∂xj

+ ŷ ∂
∂yj

+ ẑ ∂
∂zj

. We solve for the evolution of the mode amplitudes by

multiplying by Θ∗
q′ and integrating over the transverse coordinates

ȧq(k, t) =
−iµ0c

2

2ωAq

∑
j

qj (vj · ∇j)
(
e−ikzj+iωt(vj ·Θ∗

q,j)
)

(2.7)

where Θq,j refers to evaluating the qth mode at the jth particle position.

The terms with transverse derivatives are negligible as the transverse velocity is much

smaller than the longitudinal velocity and the spatial dimensions of the mode (waveguide

aperture or free-space mode waist) are larger than the radiation wavelength. It can also be

reasonably assumed that K and γ have slow dependence on zj (
∂K
∂z
, ∂γ
∂z

≪ k+ ku), such that

applying ∂/∂zj gives

ȧq(k, t) = −
∑
j

qj
2ϵ0Aq

[
cβz
ω

(k + ku)

](
(v⊥,j ·Θ∗

q,j) +
k

k + ku
(vz,j ·Θ∗

q,j)

)
e−ikzj+iωt (2.8)

Only electrons that are nearly resonant with the given mode will significantly contribute to a

net energy exchange, such that the bracketed term can be approximated as 1. Additionally,

the undulator period can be assumed much larger than the radiation wavelength to combine

terms.

ȧq(k, t) = −
∑
j

qj
2ϵ0Aq

(
vj ·Θ∗

q,j

)
e−ikzj+iωt (2.9)

If the undulator period is passed as a parameter there is no necessity for these two approxi-

mations in the code, but in practice the simulation results are nearly identical.

Equation (2.9) can also be derived from energy conservation. The total radiation energy

energy is given the volume integral over the energy density

W =

∫
V

ϵ0
2
Re{E}2 + 1

2µ0

Re{B}2dV =

∫
V

1

2
ϵ0|E|2dV (2.10)

where the energy stored in magnetic fields is equal to energy in the electric fields. Utilizing

the frequency domain representation of the field allows the transverse integral to be evaluated

over the modes.

W =
ϵ0
2

1

2π

∫ ∑
q

|aq|2Aqdk (2.11)
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The rate of change in the electromagnetic energy is equal to the negative of the work

done on the particles,

dW

dt
= −

∑
j

qj Re{E(xj, zj, t)} · Re{vj}∫ ∑
q

a∗q
2π

[
ȧq
ϵ0Aq

2

]
dk + c.c. = −

∑
j

qj
4
(E∗(xj, zj, t) · vj) + c.c.

=

∫ ∑
q

a∗q
2π

[
−
∑
j

qj
4
e−ikzj+iωt(Θ∗

q,j · vj)

]
dk + c.c. (2.12)

where terms that do not satisfy the resonant condition average to zero in the sum over

particles. Finally, equating the coefficients of a∗q gives the same result as Eq. (2.9). In other

words, the evolution of the amplitude of each electromagnetic mode in the system is simply

calculated by tracking the energy changes induced by that mode on the particles. Finally,

we include a term for the waveguide attenuation, cβwgaq, with βwg defined by Eq. (1.62)

such that

ȧq = −
∑
j

qj
2ϵ0Aq

(vj ·Θ∗
q,j)e

−ikzj+iωt − cβwgaq (2.13)

2.2.2 Numerical Implementation

In order to extend the capabilities of GPT to self-consistently calculate the interaction with

the radiation modes in the undulator, we based our development on the built-in GPT function

gauss00mf which computes the interaction for the gaussian modes of an optical resonator. In

the numerical model, the continuous integral over spatial frequencies is approximated using

a discrete basis of spatial frequency modes

E(x, z, t) =
∑
q

∑
i

(uqi + ivqi)Θqi(x, ki, t)e
ikiz−iωit (2.14)

where q and i index transverse modes and spatial frequencies. With respect to the previous

section, uqi and vqi now represent the real and imaginary parts of the actual electric field

amplitudes which have absorbed the user-defined mode separation interval ∆k and the 1/2π

from the Fourier transform. Consequently, the source term in Eq. (2.13) also gains an

additional factor of ∆k/2π.
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In the input file, the user can specify the number of frequency modes (Nm) and the interval

(fmin, fmax) for the simulation. That choice of interval and associated spectral resolution

should be taken judiciously to include the resonant frequency of the system and to correctly

simulate the radiation bandwidth. Since the latter depends on various factors including the

gain parameter, the length of the undulator, and the electron bunch length, it is always

advisable to check the results for consistency and convergence as the number of modes and

their separation is varied. For a simulation of Nm modes, each simulated mode represents

dNm = 2L(fmax − fmin)/cNm physical modes such that the effective round trip periodicity

is reduced to Lrt = 2L/dNm where ∆k = 2π/Lrt. Thus, the effect of discretization involves

1

2π

∫
dk →

∑
i

∆k

2π
and aq → aqi

2π

∆k
where

∆k

2π
=
dNm

2L
(2.15)

To define general equations for electric fields and mode evolution for both waveguide and

free-space modes, it is convenient to describe modes in terms of their real and imaginary

components (dropping the spatial and frequency indices for clarity).

Θ ≡ (ΘxR + iΘxI)x̂+ (ΘyR + iΘyI)ŷ + (ΘzR + iΘzI)ẑ (2.16)

For free-space interactions, we choose the Laguerre-Gaussian modes in polar coordinates.

Assuming azimuthal symmetry, the modes can be expressed in terms of the single index q

as

Θqi(r, z) =
1√

1 + α2
i

Lq

(
2r2

w2
i

)
e−r

2/w2
i eiαir

2/w2
i−i(2q+1)ψi n̂ (2.17)

where Lq refers to Laguerre polynomials, αi = (z − zw)/zr,i and wi = w0,i

√
1 + α2

i describe

the location and size of the mode waist in terms of the rayleigh length zr,i = kiw
2
0,i/2, and

ψi = tan−1(αi) is the Guoy phase. It is straightforward to identify the real and imaginary

components for Eq. (2.16).

For waveguide modes, the analytic expressions for transverse fields in TE and TM modes

are given by Eq. (1.59) in terms of derivatives of the non-zero longitudinal field. Cartesian

derivatives can be sampled numerically with finite differences for any waveguide geometry
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such that the components of the complex mode are easily given by

(TE) Θ =
ωµ0

k2⊥

(
−∂HzI

∂y
+ i

∂HzR

∂y

)
x̂− ωµ0

k2⊥

(
−∂HzI

∂x
+ i

∂HzR

∂x

)
ŷ + 0ẑ (2.18)

(TM) Θ =
kz
k2⊥

(
−∂EzI

∂x
+ i

∂EzR
∂x

)
x̂+

kz
k2⊥

(
−∂EzI

∂y
+ i

∂EzR
∂y

)
ŷ + (EzR + iEzI) ẑ

The fields are then given by summations over the spatial and frequency modes

Ex(xj, zj, t) =
∑
q

∑
i

uqi
(
Θqi
xR cos θi −Θqi

xI sin θi
)
− vqi

(
Θqi
xR sin θi +Θqi

xI cos θi
)

Ey(xj, zj, t) =
∑
q

∑
i

uqi
(
Θqi
yR cos θi −Θqi

yI sin θi
)
− vqi

(
Θqi
yR sin θi +Θqi

yI cos θi
)

Ez(xj, zj, t) =
∑
q

∑
i

uqi
(
Θqi
zR cos θi −Θqi

zI sin θi
)
− vqi

(
Θqi
zR sin θi +Θqi

zI cos θi
)

B⊥ =
1

ωi
k̂i × E

Bz(xj, zj, t) =
∑
q

∑
i

uqi
(
Hqi
zR cos θi −Hqi

zI sin θi
)
− vqi

(
Hqi
zR sin θi +Hqi

zI cos θi
)

(2.19)

where θ = kzzj − ωt and Hz = 0 for free space and TM waveguide modes. The source code

is simplified by further defining T = Θeiθ such that

TξR = ΘξR cos θ −ΘξI sin θ and TξI = ΘξR sin θ +ΘξI cos θ (2.20)

for ξ ∈ {x, y, z}.

From these fields, the electromagnetic forces acting on the particles are computed at each

time step. Particle velocities and positions are then used to self-consistently calculate the

evolution of the mode amplitudes according to the discretized mode evolution equation

ȧqi = −dNm

2L

∑
j

qj
2ϵ0Aq

(vj ·Θ∗
qi,j)e

−ikizj+iωit − cβwgaqi (2.21)

A subtle point is that the GPT code provides real macroparticle velocity components

Re{v⊥} = vxx̂ + vyŷ while the GPTFEL equations are defined with a complex transverse

velocity, v⊥(z) =
√
2cKrms

γ
e−ikuzn̂. This leads to an additional factor of 2 in the transverse
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terms such that the explicit code implementation is given by

u̇qi = −
∑
j

Fj (2vxTxR + 2vyTyR + vzTzR)− cβwguqi

v̇qi = +
∑
j

Fj (2vxTxI + 2vyTyI + vzTzI)− cβwgvqi (2.22)

where Fj = dNm · qj/4ϵ0AqL. The discretized energy is given by

W =
2L

dNm

ϵ0
2

∑
q

∑
i

|aqi|2Aqi (2.23)

It is also possible to run the code in single frequency mode where the field is assumed

to be perfectly periodic, with only one spatial frequency term in Eq. (2.14). In this case,

the effective round trip length is simply λ such that L = λ/2 and dNm = 1. The electron

beam charge must be scaled to represent the charge within one period and the time-averaged

power is found by multiplying Eq. (2.23) by c/λ.

2.2.2.1 Mode Initialization and Output

Simulations can be seeded with a gaussian field in the fundamental mode, parameterized by

a bandwidth σf about the central frequency f0 = fmin/2 + fmax/2. The mode amplitudes,

Aqi =
√
u2qi + v2qi, are initialized by specifying the peak field E0 in x̂ according to

if q = 0 then Aqinx =
E0e

−(fi−f0)2/2σ2
f∑

i e
−(fi−f0)2/2σ2

f

else Aqi = 0 (2.24)

where fi = fmin + ifmax−fmin

Nm−1
. For helical geometries, this definition is consistent with Eq.

(1.5). The initial mode phases, ϕqi = arctan(uqi/vqi), are determined by specifying the initial

location of the gaussian pulse, dz, relative to the cavity center. We can identify ϕqi = −kidz

from an explicit waveform shift in z.

∑
i

Aqie
iki(z−dz) =

∑
i

Aqie
iϕqieikiz =⇒ ϕqi = −kidz (2.25)

In waveguide simulations, the pulse shape is maintained under shifting and no dispersion

is introduced. In free-space simulations, the shift does not change the location of the mode
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Figure 2.1: Initialization of a gaussian seed in the optical cavity. The parameter dz changes

the pulse position while zw controls the location of the mode waist.

waist which is specified relative to the cavity center with zw to initialize αi in Θqi as depicted

in Figure 2.1.

The temporal waveform has a periodicity of 2L/dNm determined by the user-specified

frequency resolution and is represented by the position vector zt which spans from −L/dNm

to L/dNm with sufficiently small spacing to resolve fmax. The field outputs, Ext and Eyt,

travel in the radiation frame as the position of the electron beam is modeled by z = dz+vgt.

Ext =
∑
i

Ainx cos
(
k(zt + dz + vgt)− ωt+ ϕi

)
Eyt =

∑
i

Ainy sin
(
k(zt + dz + vgt)− ωt+ ϕi

)
(2.26)

The instantaneous power can be computed from the flow of energy density through a cross-

sectional area.

Pt = vg

∫∫
1

2
ϵ0|E|2dx =

vgϵ0
2

∫∫
|Θ|2

(
E2
xt + E2

yt

)
dx =

vgϵ0A
2

(
E2
xt + E2

yt

)
(2.27)

2.2.3 Quiet Start

In multifrequency simulations where many longitudinal wavenumbers and corresponding

frequencies are used to simulate the field along a finite length bunch, it is critical to pay

attention to the details associated with loading the particle coordinates in the simulation.

Because it is common to have a much smaller number of macroparticles than real number of
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Figure 2.2: left) Longitudinal phase space distribution with quiet loading for time-

independent (i.e. single frequency) simulation. right) Longitudinal phase space distribution

for multifrequency simulation. Particles are color coded by their charge weight. The projec-

tion onto the z-axis shows the Gaussian current profile.

electrons, the noise in the bunching source term can be unacceptably high, causing unphysical

growth of the field along the undulator.

This problem is common and well discussed in the vast literature of simulations for FELs

[91, 92]. While there are a number of possible solutions, our situation is slightly complicated

as we need to ensure that the intrinsic bunching is and remains very small for all of the

discrete frequencies in the simulation. This first requires equally distributing particles in

the z-coordinate over a length Lrt = 2π/∆k. For example in Fig. 2.2 we show the input

phase space when the simulation spans a bandwidth of 3 % around the central wavelength of

266nm. In this case, the beam longitudinal profile (a gaussian with rms bunch length 30 µm)

is initialized by assigning a different charge weight to each macroparticle. When shot-noise

effects are desired, each macroparticle’s position is shifted by a small ∆z according to well

described algorithms [93, 94] to achieve the correct statistics.

In addition, it is important to make sure that the noise from other coordinates would

not contribute to a growth of the bunching as the beam propagates in the absence of an

interaction. This is taken care of by mirroring the energy, transverse coordinates, and
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Figure 2.3: Bunching as a function of wavelength at various points along beam propagation.

The original 5D phase space is mirrored over 80 bins to sustain minimal bunching over the

simulated bandwidth.

momenta over a large number of 5D phase space bins. The number of bins (typically larger

than 32) should be chosen such that bunching in the absense of an interation remains small

for all the discrete frequencies included in the simulations, as demonstrated in Figure 2.3.

2.3 Free-Space Simulations

2.3.1 Source Dependent Expansion

In free-space FEL simulations, the effectiveness of the Laguerre-Gaussian mode expansion

depends critically on the initialization of the waist size and location to accurately model

the field transversely and in the absence of prior knowledge the simulation should include

a large number of spatial modes. In many cases, for example when the FEL is seeded with

an external laser and the radiation’s transverse profile is mainly dominated by one or a few

modes, it is a good approximation to truncate the sum to only include a small number of

terms. However, in the case of an FEL amplifer a large number of modes will be needed to

simulate the gain guiding over an extended length as shown in Figure 2.4.
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Figure 2.4: Spatial Modes. a) The first 5 spatial modes of the free-space Laguerre basis. b)

The number of necessary modes increases as the radiation waist diffracts, demonstrating the

utility of a Source Dependent Expansion.

To minimize the number of necessary modes and proportionally speed up the computa-

tional time of the simulation, it is possible to take advantage of a source dependent expansion

(SDE) algorithm [87, 88] where the waist size and location are able to evolve dependent on

the source. The idea is to insert the field decomposition of equation (2.14) directly into the

wave equation (2.30), allowing the position and waist of the mode to vary in time, αi(t)

and wi(t). The result will be recursive mode excitation equations where evolution of a given

mode depends on the amplitude of adjacent modes in the expansion. The time dependent

Laguerre-Gaussian modes are given by

Θqi(r, t) =
1√

1 + αi(t)2
Lq

(
2r2

wi(t)2

)
exp

[
−r2/wi(t)2

]
× exp

[
iαi(t)r

2/wi(t)
2 − i(2q + 1) arctan(αi(t))

]
n̂ (2.28)

with mode areas defined by Eq. (2.2).

Aqi =
πwi(t)

2

2(1 + α2
i (t))

(2.29)

To avoid repetition, we refer to [95] which performs the GPTFEL derivation from the

wave equation specifically under the assumption of a transversely polarized field Θqi = Θqin̂
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such that(
∂2

∂r2
+

1

r

∂

∂r
+

2iωi
c2

∂

∂t

)(∑
q

aqi(t)Θqi(x, ki, t)

)
= Si(x, ki, t)

where Si(x, ki, t) =
dNm

2L

∑
j

−iµ0qjcβz,j(ku + ki) (vj · n̂∗) δ(x− xj(t))e
−ikzj+iωit (2.30)

To simplify the algebra, we change the transverse variable to ξi =
2r2

w2
i
and temporarily

redefine the complex amplitudes and spatial modes by absorbing the Guoy phase and mode

normalization into the complex amplitude.(
∂

∂t
− 4ic2

ωw2

(
ξ
∂2

∂ξ2
+

∂

∂ξ

))(∑
q

âq(t)Θ̂q(ξ, t)

)
= −ic

2

2ω
S where âq =

aqe
−i(2q+1)ψ

√
1 + α2

and Θ̂q(ξ, t) = Θq(ξ, t)
√
1 + α2ei(2q+1)ψ = Lq (ξ) e

(iα−1)ξ/2 (2.31)

Because frequencies evolve independently, we drop the frequency index i for clarity. Differ-

entiation with respect to time and argument is denoted by dots and primes, respectively.

After carefully applying derivatives, we utilize the following Laguerre identities

0 = ξL′′
q(ξ) + (1− ξ)L′

q(ξ) + qLq(ξ)

ξL′
q(ξ) = qLq(ξ)− qLq−1(ξ)

ξLq(ξ) = (2q + 1)Lq(ξ)− (q + 1)Lq+1(ξ)− qLq−1(ξ) (2.32)

to remove any explicit ξ dependence and collect coefficients to get

−ic
2

2ω
S =

∑
q

˙̂aqΘq + AqâqΘ̂q − i(q + 1)BâqΘ̂q+1 − i(q)B∗âqΘ̂q−1

where Aq =
ẇ

w
+ i(2q + 1)

(
c2(1 + α2)

ωw2
− αẇ

w
+
α̇

2

)
and B =

(
c2

ωw2
(α2 − 1)− αẇ

w
+
α̇

2

)
+ i

(
c2

ωw2
2α− ẇ

w

)
(2.33)

Using the orthonormality property
∫∞
0

Θ̂qΘ̂
∗
qdξ = δq,q′ by multiplying Θ̂∗

q′ and integrating∫∞
0
dξ leads to the mode excitation equation for the source-dependent system

˙̂aq + Aqâq − iqBâq−1 − i(q + 1)B∗âq+1 = F̂q

where F̂q =
−ic2

πωw2

∫
S(r)Θ̂∗

q(r)d
2x (2.34)
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where we have subsequently let q′ → q and note that aq = 0 when q < 0. The evolution of

the mode parameters is determined by B,

ẇ =
2c2α

ωw
− wBI and α̇ =

2(1 + α2)c2

ωw2
+ 2BR − 2αBI (2.35)

where in the limit B → 0, we recover the free-diffraction limit of αi(t) = ct/zr,i and wi(t) =

w0,i

√
1 + c2t2/z2r,i.

We now revert back to our original definitions of the complex amplitude and spatial

modes, multiplying both sides by
√
1 + α2ei(2q+1)ψ. The source term is simplified by inserting

S(r) from Eq. (2.30) and again particles satisfy FEL resonance.

Fq =
√
1 + α2�����

ei(2q+1)ψ × −ic2

πωw2

∫
S(r)Θ∗

q(r)
√
1 + α2�����

e−i(2q+1)ψd2x (2.36)

=
dNm

2L

2(1 + α2)

πw2

∑
j

−qj
2ϵ0

(vj · n̂∗)Θ∗
q,je

−ikzj+iωt (2.37)

Fqi = −dNm

2L

∑
j

qj
2ϵ0Aqi

(vj ·Θ∗
qi,j)e

−ikizj+iωit by (2.29) (2.38)

Adding the frequency indices and expressing Aq in terms of B with Gi =
2

1+α2
i
(BR,i −

αiBI,i), we find

ȧqi = Fqi + (BI,i + αiGi + i(2q + 1)(Gi −BR,i)) aqi

+ iqBe2iψiaq−1,i + i(q + 1)B∗e−2iψiaq+1,i (2.39)

where we recover Eq. (2.21) in the B → 0 limit.

Giving freedom for the modes to evolve means the system is no longer fully determined

and needs an additional constraint. One idea is to assume N modes are sufficient to model

the transverse profile and require aq = 0 for q ≥ N . Using Eq. (2.34) for q = N , we can

solve for B as

Bi =
iFN,i

NaN−1,i

e−2iψi (2.40)

While the system is now fully defined, the solution is divergent when aN−1,i ≈ 0. If the

highest order spatial mode is not sufficiently seeded, the simulation will produce erroneous

results. For this reason, the SDE method works best with a limited (≤ 10) number of spatial

modes.
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Figure 2.5: SDE Thresholding. a) At z = 0, the electrons see a Gaussian seed focused at

its waist. Only the first spatial mode has a non-zero coefficient, such that SDE evolution

is unstable and the simulation continues with non-SDE dynamics. b) The amplitude of the

highest simulated spatial mode now exceeds the user-specific threshold (black dotted line)

and the simulation allows SDE dynamics. c) The waist size and location of the mode basis

is now changed according to SDE, reducing the number of required spatial modes.

One possible correction is to include a threshold such that when aN−1 is small, the modes

evolve according to non-SDE dynamics until the amplitude is safely nonzero. This is depicted

schematically in Figure 2.5. A closer inspection of Eq. (2.35) suggests the distance c/|B|

sets the scale for the variation of the mode parameters and can be used as a threshold. For

example, modes evolve according to SDE dynamics only if c/|B| > Lthresh where the input

parameter Lthresh is interpreted as the minimum length scale for mode evolution.

While this is our current implementation for SDE modes, there are other interesting

strategies to consider. For example, if aN−1 is small we could additionally check if the a0 mode

amplitude was sufficient to compute B for N = 1, allowing a middle step between full SDE

and no SDE. It is also possible to utilize a sigmoid function such as B = (1+10(aN−1−ac)/wa)−1

to continuously turn on SDE as a function of the aN−1 amplitude where ac and wa specify

the position and width of the transition region. For problems with strong gain guiding, we

could assume a constant moving waist where α = 0 and w = w0. This greatly simplifies the

59



mode evolution

ȧqi = ((2q + 1)Bi) aqi + iqBaq−1 + i(q + 1)Baq+1,i + Fqi (2.41)

and removes the divergent behavior in the small field limit.

In practice, the application of flexible SDE modes requires more care and intuition that

using a fixed mode basis. However, they provide the ability to achieve reasonable results

with fast simulations that compute only a handful of spatial modes. When accuracy is

paramount, it can be preferable to run a non-SDE simulation with many modes.

2.3.2 Genesis Comparison

We benchmark GPTFEL against Genesis in two examples targeting different regimes of FEL

operation. The first case is a classical single-pass FEL seeded, untapered amplifier which

will enable a quantitative comparison with the semi-analytical Ming Xie gain length formulas

for both planar and helical geometries. The second example was relevant to the TESSA266

experiment as it was originally planned for the LEA beamline at the APS linac in Argonne

National Laboratory aiming at very high conversion efficiency at 266nm.

This case serves to illustrate the capability of using a 3D magnetic field map for a fairly

complicated segmented tapered undulator. The code compares well with a traditional FEL

code like Genesis, even deep in the non-linear regime. The details of the beam transport

(injection, entrance and exit sections and especially undulator break sections) can only be

included in Genesis by using a linear beam transport approximation. GPT follows the

evolution of the beam distribution along the beamline using fieldmaps for all the magnetic

elements (undulators, quadrupoles, and phase shifter dipoles) and calculates energy exchange

using the self-consistent interaction with the free-space modes. The results allow us to

quantitatively include the effects of the entrance and exit sections (which add an effective 0.5

periods of interaction on each side of the undulator) and the trajectories after the prebuncher

and in between the undulators.

The parameters for the amplifier example are reported in Table 2.1 and somewhat ar-

bitrarily chosen to be similar to an un-tapered version of the TESSA266 experiment. The
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main differences are that a 200 period long undulator (with no break-section) is used for

this example and the input seed power is lowered to 10 kW. An analytical model for the

undulator magnetic field is used. The beam is transversely matched to the undulator natural

focusing (equally distributed in the horizontal and vertical plane) so that the rms spot size

remains nearly constant along the undulator. The main goal of this example is to benchmark

GPTFEL against the fitting formulas for the 3D gain length of an untapered FEL amplifier

and compare with a conventional FEL code like Genesis. We also used this example to evalu-

ate the performance of the single mode SDE approximation versus a simulation with n = 11

azimuthally symmetric Laguerre Gaussian SDE modes to decompose the electromagnetic

field. GPTFEL took 1.5 minutes to simulate 76800 particles on an 8 processor for the single

SDE mode and 5 minutes for 11 SDE modes.

Table 2.1: Parameters for the 266 nm FEL amplifier simulation.

Electron Beam Radiation and Undulator

Energy 375.5 MeV λ1 266 nm

Energy Spread 0.1 % Input Power 10 kW

RMS Bunch length 20 µm Rayleigh Length 1.41 m

ϵn,x, ϵn,y 2 mm·mrad Waist location 0 m

Ipeak 1 kA Krms 2.82

σx, σy 72.5 µm λu 0.032 m

The time-independent, single frequency results for the planar and helical geometries are

shown in Figure 2.6 and compared with Genesis 1.3. When using multiple spatial modes,

the gain lengths in the planar and helical case are in good agreement (within 10 %) of

the semi-analytical and numerical model predictions. The radiation spot sizes defined by

σ2
r =

1
2

∫
r2|E|2d2x∫
|E|2d2x also closely follow the prediction. Note that while a single SDE mode is able

to achieve qualitative results up to and near saturation, a larger number of spatial modes is

required to correctly simulate the evolution of the radiation profile after saturation.

The multi-frequency simulation used an SDE gaussian mode for 31 spatial frequencies

with a 6% bandwidth to simulate 128,000 particles in 23 minutes. The user-defined parameter
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Figure 2.6: A comparison of GPTFEL running with SDE versus Genesis 1.3. left) The

predicted gain length for the planar amplifier is 0.287 m. Simulating with SDE and a single

spatial mode overshoots by 16%. Running with 11 SDE spatial modes reduces the error to

5.9%. right) The predicted gain length for the helical amplifier is 0.224 m. Simulating 1 and

11 SDE modes leads to errors of 15% and 8.2%, respectively

Figure 2.7: GPTFEL results for 31 spatial frequencies, each with a single gaussian transverse

mode. a) Waterfall plot of normalized power. b) Spectrum at P=0.1 GW for different

thresholds on SDE interaction. ∆ is the ratio of Lthresh to the theoretical gain length.

Numerical errors occur when ∆ ≤ 1 because noise in the small amplitude, higher order

modes quickly excite significant changes in the mode parameters. This suggests Lthresh

should be set to roughly 5 times the theoretical gain length for convergent results.
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Figure 2.8: Results from shot noise amplifier simulation with undulator entrance at Z=0.1

m. a) On axis field profile at Z=3 m showing the characteristic spike structure. b) Peak

power and relative RMS spectral bandwidth.

Lthresh limits the spot size variation along the undulator. Figure 2.7a shows a waterfall plot

in the electron beam frame normalized at each z position to display the relative velocity

of the radiation wavepacket, which is close to the beam velocity in the exponential regime

and becomes superluminal in the non linear regime [96]. In Figure 2.7b, the spectrum just

before saturation is shown as a function of Lthresh normalized to the gain length. If an

increased spectral resolution is required, computation time scales linearly with number of

tracked modes.

SDE modes can reduce the number of spatial modes needed when a strong seed or strong

bunching is present. On the other hand, if the amplification starts from shot noise seeding,

simulations should be performed using a larger number of non-SDE modes as the transverse

mode is not predefined. Figure 2.8 shows results for a helical FEL amplifier with no external

seed power using 91 frequencies and 31 spatial modes. As expected, the pulse temporal

profile after amplification exhibits a sequence of temporal spikes of characteristic length

equal to the FEL cooperation length which in our case is Lcop = Lg · λ/λu = 2.5 µm. The

evolution of the energy (power integrated along the pulse) and the spectrum bandwidth are

also consistent with SASE FEL theory [97].
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Figure 2.9: Trajectory and electron beam and radiation spot size (inset) along the TESSA

Beamline

Figure 2.10: Particle bunching and energy exchange in the first two tapered undulators of

the TESSA beamline.
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2.3.3 TESSA 266 Experiment

In this next example we take advantage of the GPT functions to track the electron beam

in the fairly complex transport line of the TESSA 266 experiment. The beamline includes

a short, 8 period undulator followed by a 3 dipole chicane to convert the imprinted energy

modulation into microbunching. Quadrupole doublets match the beam transversely into the

focusing channel of each 0.96 meter, strongly tapered undulator section. A small dipole is

placed between the second quadrupole doublet so that the three magnets can be used as a

phase shifter between the undulator sections.

The GPT transport functions are used to set up the trajectory and the beam optics prior

of turning on the seed and the FEL interaction module. Our time-independent simulation

of the TESSA266 beamline includes 21 higher order spatial modes to ensure an accurate

modeling of the radiation profile. A 1 GW peak power input radiation pulse is focused at

the entrance of the tapered undulator to a waist of 0.3 mm. The simulation is compared with

Genesis results, but it should be noted that GPTFEL uses full 3D magnetic field maps for

the undulators as well as for the dipoles and quadrupoles in the system. The magnetic field

in the chicane dipoles is fine tuned to maximize the bunching and simultaneously optimize

the injection phase of the beamlets relative to the radiation phase at the entrance of the

tapered undulator. In Genesis, both the R56 and phase shifts are applied post-facto to the

beam distribution at the entrance of the tapered undulator, explaining the large difference

in the bunching factor evolution in Fig. 2.10a. In practice, the phase shifter between the

tapered undulator sections had to be re-optimized to account for the additional slippage

incurred by the beam when passing in the entrance and exit section of the wigglers. This

is accomplished by horizontally shifting the quadrupoles in opposite directions to steer the

beam and tuning the magnetic field amplitude of the dipole to recover a straight trajectory

while maximizing the energy exchange in the second undulator. Figures 2.10b and 2.9 show

the energy exchange and beam trajectory in the undulators.
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Figure 2.11: Benchmarking dispersion and attenuation in GPTFEL against analytic theory.

A large-bandwidth gaussian pulse is propagated through a waveguide without an electron

beam. Consistent with theory, the peak field decays due to ohmic losses and the frequency

dispersion which broadens the temporal profile. The theory does not include higher order

terms beyond the group velocity dispersion which are responsible for the asymmetry of the

dispersed pulse.

2.4 Waveguide Simulations

2.4.1 Zero-slippage THz Amplifier

The modal decomposition of GPTFEL is perfect for handling waveguide simulations, nat-

urally incorporating dispersion and power attenuation as demonstrated in Figure 2.11. As

a final example, we simulate zero-slippage operation in a circular waveguide FEL using pa-

rameters (listed in Table 2.2) that resemble the Tessatron experiments.

The beam is given a cosine density distribution, n(z) ∝ 1+ b
2
cos(kz), over four radiation

wavelengths with a bunching factor of b = 0.4 to model the generation of four beamlets

off the cathode from laser shaping. The zero-slippage resonance occurs at a frequency of

0.22 THz, allowing an extended interaction between the radiation and short electron beam.
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The undulator fields are tapered quadratically to maintain resonance with the decelerated

electrons.

Table 2.2: Simulation Parameters for zero-slippage waveguide FEL

Electron Beam Undulator/Waveguide

Energy 6 MeV fres 0.22 THz

σγ/γ 1% Lu 96 cm

|b| 0.4 Krms 2.27

ϵn,x, ϵn,y 3 mm·mrad λu 3.2 cm

Qtot 300 pC R 2 mm

σx, σy 100 µm

Figure 2.12 shows the final longitudinal phase space where 8% of the electron beam

energy is converted into coherent radiation. Energy conservation is satisfied in the simulation

as shown in the inlay. The output radiation field is aligned to the fields experienced by

the particles, with are slightly reduced due to the off-axis trajectory. The the waveguide

eliminates diffraction, but it is clearly shown that dispersion has an effect on the fields and

ponderomotive trapping across the four beamlets.

The radiation spectrum and power are shown in Figure 2.13. The zero-slippage condition

produces a large-bandwidth interaction at the resonant frequency (dashed line). The slight

redshift can be attributed to 3D effects including energy spread and finite emittance. We

confirm the integrated power matches the energy computed by summing over individual

frequency modes.

2.4.2 Connection to 1D Theory

The dynamics of single-frequency operation in a waveguide is analogous to 1D FEL theory.

In order to maintain consistent definitions of field (similar to Eq. (1.17)), the complex mode

amplitude should be written as aq = −i
√
2E(t)eiϕ. For large wiggling trajectories, we include

a mode sampling factor ⟨Θq⟩ that corrects for reduced fields off-axis. However, we do not
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Figure 2.12: Radiation waveform and beam longitudinal phase space at the end of the

undulator. With energy conservation satisfied in the simulation, 8% of the beam energy is

converted to radiation. Dispersion is clearly visible in the temporal fields.
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Figure 2.13: Radiation spectrum and power. Zero-slippage operation produces a large band-

width pulse. Total energy is consistent between frequency domain and time domain.
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account for the non-zero Ez fields seen off-axis in TM modes which have significant effect on

the gain length.

Substituting Eq. (2.4) for v, simplifying the complex phases into the ponderomotive

phase e−iθj , and rewriting in terms of the beam current I = ce/λ = ce/L, we can express

the field evolution as

dE

dz
=

IK⟨Θq⟩
2ϵ0cAqγr

⟨sin θj⟩ (2.42)

where a comparison with Eq. (1.28) reveals the beam area has been replaced by the effective

waveguide mode area. The mode sampling factor also corrects the field source term in the

equation for energy modulation. Thus, a dimensionless scaling of the waveguide system leads

to the modified Pierce parameter

ρ =

(
⟨Θq⟩2

16π

I

IA

K2

γ3
λ2u
Aq

)1/3

where Lg =
λu

4π
√
3ρ

(2.43)

In the previous chapter, we showed that only TE1n and TM1n modes can resonant with

an electron beam in a circular waveguide. The TE mode areas are computed as

A1n =

∫ 2π

0

∫ R

0

|E⊥|2rdrdϕ

=
4π

k2⊥

∫ R

0

r

(
∂

∂r
J1(k⊥r)

)2

+
1

r
J1(k⊥r)

2 dr

A1n = 2πR2
(
J2
0 (w1n) + (1− 2/w2

1n)J
2
1 (w1n)

)
(2.44)

where the TM1n mode areas are equivalent with the replacement w1n → u1n.

To compute the mode sampling factor, we consider an electron with position re and

velocity ve in a helical trajectory such that re ·ve = 0. In a TE mode, the dependence of the

coupling with respect to the trajectory radius can be written (up to a complex phase) as∣∣∣ve · E⊥

∣∣∣
r=re

∝ Eϕ

∣∣∣
r=re, ϕ=0

∝ J0

(w1nre
R

)
− J2

(w1nre
R

)
=⇒ ⟨Θ1n⟩ = J0

(w1nre
R

)
− J2

(w1nre
R

)
(TE) (2.45)

Similarly, using Eϕ for TM modes gives

⟨Θ1n⟩ ≡
2R

u1nre
J1

(u1nre
R

)
(TM) (2.46)
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Figure 2.14: Gain length errors as a function of wiggling trajectory radius expressed relative

to the zero-slippage trajectory radius.

Both expressions are normalized to make ⟨Θ1n⟩ = 1 on-axis. At zero-slippage resonance

where w1nre/R ≈ u1nre/R ≈ K/
√
1 +K2 by Eq. (1.74), the TE and TM corrections

evaluate to 0.65 and 0.88, respectively, in the K ≫ 1 limit.

Figure 2.14 compares the gain length from single-frequency GPTFEL simulations in a

circular waveguide against the theory in Eq. (2.43). The beam is given a slight density

modulation (0.005 bunching factor) to seed the interaction. Figure 2.14 shows the relative

gain length errors for the first four waveguide modes as a function of trajectory radius

relative to the zero-slippage trajectory radius. In the high energy limit where particles are

close to the axis, the simulations converge to the analytic theory (< 1% error). As the beam

energy is reduced, the non-zero Ez fields in the TM modes act to resist the natural FEL

microbunching, increasing the gain length. On the other hand, the TE modes maintain fairly

good agreement (< 10%) out to the zero-slippage limit.

In a rectangular waveguide, only modes with even m and odd n indices can resonate and
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Figure 2.15: Simulated gain length errors for modes in rectangular waveguide as a function

of wiggling trajectory amplitude expressed relative to the zero-slippage trajectory amplitude.

TM0n modes do not exist. The mode area calculations are straightforward and give

(TE) A0n =
ab

2
else Amn =

ab

4

(
1 +

k2x
k2y

)
(TM) Amn =

ab

4

(
1 +

k2y
k2x

)
(2.47)

As a beam propagates in a planar undulator, recall there is no coupling at the trajectory

turning points and maximal coupling when the transverse velocity is largest as the beam

crosses through the axis. For this reason, the wiggling amplitude of the trajectory has

minimal effect on resonance and the mode sampling factor is simply ⟨Θmn⟩ = 1.

Similar to Figure 2.14, we benchmark the rectangular waveguide simulations for various

modes in Figure 2.15. Again, we see that all simulations converge to the analytic gain length

in the high energy limit. The TE modes maintain agreement at lower energies while the

coupling in TM modes suffer from non-zero Ez fields.
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CHAPTER 3

Undulator Commissioning

3.1 Introduction

Undulator technology is pivotal to the operation of FELs and different schemes have been

researched to improve on the original permanent magnet undulator, each with their relative

advantages and disadvantages. Superconducting undulators currently provide the largest

peak fields and shortest undulator periods, making them attractive for generating high-

energy X-rays [98, 99] at the cost of additional complexity while simpler hybrid undulators

similarly improve the magnetic fields by using iron poles to focus the magnetic flux of perma-

nent magnets [100]. To optimize energy extraction from the beam, it is necessary to employ a

helical geometry with strongly-tapered fields, which is best achieved by a permanent magnet

design with linear magnetic response.

In the last decade, tapered helical undulator technology has been developed for high

gradient inverse-FEL and FEL experiments through a collaboration between UCLA and

Radiabeam Technologies. This work has culminated in the design of the Theseus undulators

for the FASTGREENS experiment, planning to target 10% efficiency at 255 nm in four 1-

meter long undulator sections. The design is based on permanent magnet Halbach arrays held

together by four strongbacks with machined slots so magnets can be moved perpendicular to

the beam axis with tuning screws, enabling tapering and tuning of the field amplitude and the

particle trajectories. The helical geometry enjoys an increase in the FEL coupling by at least

a factor of two compared to planar undulators, but the enclosed geometry creates engineering

challenges for magnetic field measurements, beam diagnostics, and vacuum pumping.

One of the Theseus undulators was borrowed for the Tessatron waveguide FEL exper-
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iments. The low beam energy required for zero-slippage operation causes the electrons to

wiggle with a beam trajectory amplitude which is roughly half of the waveguide radius,

experiencing large focusing forces and strong coupling between the transverse coordinates.

This poses a significant challenge in controlling the beam trajectory and transport including

full transmission of the injected beam charge through the small waveguide aperture.

Therefore, it is important to understand the optical characteristics of helical undulators

for low energy beams and develop a strategy for measuring and tuning the good field region of

these devices. Traditional on-axis Hall probe or pulsed-wire measurements are not sufficient

to ensure correct tuning of the off-axis fields in the closed geometry. In order to optimize the

beam trajectory and ensure maximal charge transmission through the waveguide, we utilize

a pulsed-wiring setup and leverage the ability to translate the wire transversely with respect

to the magnetic axis to sample and correct the off-axis fields.

This chapter discusses the commissioning of the Theseus undulators (Figure 3.1) for

the Tessatron experiments and is organized as follows. We first present the most general

expression for the field in a helical undulator and discuss the resulting beam dynamics,

showing the importance of the off-axis fields in the optical properties of the device. Next,

we present the tuning and magnetic design of the Theseus undulators and introduce Hall

probe tuning procedures including corrections for probe position and angle errors. Finally,

we derive the theory for pulsed-wire measurements and discuss limitations due to wire sag

and dispersion. Transverse wire scans are used to identify the magnetic axis from the local

field concavity as well as measure integrated effects of higher order field moments on the

beam trajectory. In order to guide the tuning of quadrupole and sextupole moments in the

undulator field, we present an analytic model that accurately predicts the effects of varying

magnet positions to correct the 3D fields and minimize deviations in the off-axis trajectories.
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3.2 Theory

3.2.1 Beam Dynamics

The most general expression for the field of a helical undulator can be constructed from the

separated variable solution to the Laplace equation (∇2ψ = 0) for the magnetic scalar poten-

tial of a single undulator array with λu = 2π/ku periodicity in the z-direction. Superposing

the potentials for two planar arrays, phase shifted by 90 degrees and rotated with respect to

each other, we can write

ψ =
B0

αku
sinh(αkux) cos(βkuy) cos(kuz) +

B0

αku
sinh(αkuy) cos(βkux) sin(kuz) (3.1)

using normalized transverse wavenumbers α = kx/ku and β = ku/ku which satisfy α2−β2 = 1

due to the Laplace condition k2x − k2y = k2u. Here, we have chosen the sign of the phase shift

to construct right-handed fields.

In general, α is real due to the longitudinal fringe fields of each magnet while β can be

real or imaginary depending on the magnetic profile due to the transverse pole geometry as

shown in Figure 3.2. For a concave pole shaping, the imaginary β results in an exchange

between harmonic functions and hyperbolic functions. As an example, for the bifilar coil case

of Madey’s original FEL we have α2 = 1/4 and β2 = −3/4 such that both traverse functions

are hyperbolic. On the other hand, the Theseus undulators (Figure 3.1) are designed with

convex pole shaping to maximize the undulator field.

The magnetic field B = −∇ψ is the gradient of the scalar potential and an expression

for the fields of the helical undulator near its axis can be obtained through a small-argument

expansion for the hyperbolic and harmonic functions,

Bx/B0 = −
(
1 +

ku
2

2
(α2x2 − β2y2)

)
cos(kuz) +

(
ku

2β2xy
)
sin(kuz)

By/B0 = −
(
1 +

ku
2

2
(α2y2 − β2x2)

)
sin(kuz) +

(
ku

2β2xy
)
cos(kuz)

Bz/B0 = kux sin(kuz)− kuy cos(kuz) (3.2)

such that the on-axis fields match Eq. (1.1).
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a)

Figure 3.1: Theseus Undulator. a) Helical geometry consisting of two permanent magnet,

Halbach arrays. b) A single period modeled in RADIA with magnetic chamfering.

Convex Planar Concave

Figure 3.2: Simulations of magnetic fields in the transverse plane for different pole shaping.

75



Now we review the dynamics of relativistic electrons in the helical undulator to highlight

the role of α and β in the beam transport and the coupling between the transverse planes

at low energy. Closely following the work of [101, 102], it is helpful to start with the single

particle Hamiltonian in terms of the undulator magnetic vector potential (B = ∇×A),

H =
√

(p− eA)2c2 +m2c4 = γmc2 (3.3)

Ax
ku
B0

= −
(
1 +

ku
2

2
(α2y2 − β2x2)

)
cos(kuz)−

(
ku

2β2xy
)
sin(kuz)

Ay
ku
B0

= −
(
1 +

ku
2

2
(α2x2 − β2y2)

)
sin(kuz)−

(
ku

2β2xy
)
cos(kuz)

Az
ku
B0

= 0 (3.4)

where the constant particle energy is defined in terms of the relativistic beam factor. Note

we assume negligible interaction with the field E = −∇Φ − ∂A/∂t such that Φ ≈ 0 and

the vector potential is prescribed entirely by the undulator fields. Hamilton’s equations of

motion give the following system of equations.

ṗx = −∂H
∂x

=
e

γm

∂A

∂x
· (p− eA) ẋ =

∂H

∂px
=
px − eAx
γm

ṗy = −∂H
∂y

=
e

γm

∂A

∂y
· (p− eA) ẏ =

∂H

∂py
=
py − eAy
γm

(3.5)

It is customary to evaluate the beam dynamics specified by the Hamiltonian by separating

the solution of the beam trajectory r into a fast oscillation (rf = xf x̂+ yf x̂) and slow drift

(rs = xsx̂+ ysx̂) such that r = rf + rs. The fast oscillations are obtained by neglecting the

off-axis contribution to the vector potential. In this case, we find the helical trajectory given

by

ẋf =
cK

γ
cos(kuz) and ẏf =

cK

γ
sin(kuz) (3.6)

which is another derivation of the transverse velocity already seen in Eq. (1.2) where K =

eB0/mcku is the undulator strength parameter. Integrating with the change of coordinates

z = cβzt, the full trajectory is given by

x = xs +
K

γkuβz
sin(kuz) and y = ys −

K

γkuβz
cos(kuz) (3.7)
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The slow drift is evaluated by substituting (3.7) into (3.5), applying period-averaging, and

expanding to lowest order in p and rs. After collecting terms, normalizing the momentum

p̂ = p/γmcβz, and converting to spatial derivatives, we find

dp̂x
dz

= −k2uδ2xs − kuδ
2p̂y

dxs
dz

= p̂x − kuδ
2ys (3.8)

dp̂y
dz

= −k2uδ2ys + kuδ
2p̂x

dys
dz

= p̂y + kuδ
2xs (3.9)

where δ = K/
√
2γβz details the orders for the relativistic approximation γ ≫ 1. This

system is notably independent of the magnet poleshapes and transverse wavenumbers since

each nonvanishing term only contains the combination α2 − β2 which is constrained to be

1. In other words, though the off-axis field expansion can vary locally, the average effect on

the particle trajectory depends only on the Laplace condition and is the same regardless of

the details of the undulator magnet technology. The system of coupled equations can be

reduced to

d2ξ

dz2
= 2kuδ

2i
dξ

dz
− k2uδ

2ξ (3.10)

keeping the lowest order terms in δ where ξ = xs + iys.

A guess of the form ξ = eik±z yields k± = ±kuδ
(√

1 + δ2 ± δ
)
≈ ±k0 + δk0 where

k0 = kuK/
√
2γβz and the full solution is a linear combination ξ = c1e

ik+z + c2e
ik−z with

complex constants. Expressions for xs and ys are found by taking the real and imaginary

parts yielding

xs = (c1R + c2R)C0Cδ − (c1I + c2I)C0Sδ + (−c1I + c2I)S0Cδ − (c1R − c2R)S0Sδ (3.11)

ys = (c1I + c2I)C0Cδ + (c1R + c2R)C0Sδ + (c1R − c2R)S0Cδ + (−c1I + c2I)S0Sδ (3.12)

where c1 = c1R + ic1I , c2 = c2R + ic2I , and we use the short-hand notation S0 = sin(k0z),

C0 = cos(k0z), Sδ = sin(δk0z) and Cδ = cos(δk0z). The real constants are expressed in terms

of the input beam coordinates as

c1R =
1

2k0
y′s0 +

1− δ

2
xs0 c1I =

−1

2k0
x′s0 +

1− δ

2
ys0 (3.13)

c2R =
−1

2k0
y′s0 +

1 + δ

2
xs0 c2I =

1

2k0
x′s0 +

1 + δ

2
ys0 (3.14)
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where x′s0 = dxs0/dz and y′s0 = dys0/dz refer to the initial trajectory angles.

Recasting xs, x
′
s, ys, y

′
s in terms of xs0, x

′
s0, ys0, y

′
s0 we can identify the 4x4 linear transfer

matrix for the undulator:

R =

 R1 R2

−R2 R1

 (3.15)

where

R1 =

 C0Cδ + δS0Sδ
1
k0
S0Cδ

−k0(1− δ2)S0Cδ C0Cδ − δS0Sδ


and R2 =

−C0Sδ + δS0Cδ − 1
k0
S0Sδ

k0(1− δ2)S0Sδ −C0Sδ − δS0Cδ

 (3.16)

In the ultrarelativistic limit, δ → 0 and the R1 matrix provides the natural undulator

focusing effect with the well-known β = 1
k0

=
√
2γ

Kku
. At lower beam energies the dynamics are

more complex and one has to take into account the coupling terms. The R2 block matrix

clearly indicates that low energy transport inside the undulator can not be decoupling even

in the linear transport approximation.

We compare the linear matrix transport against numerical integration of the Lorentz

force equation in Figure 3.3 using the particle tracking code GPT [103] at two different

energies (relativistic factor γ = 200 and γ = 20) where the beams are given an initial x-

offset of 500 µm in an undulator with K = 2.18. The period-averaged slow drift rs is plotted

on top of the semi-transparent trajectory r. At lower beam energies, significant coupling is

introduced in addition to the shortening of the betatron oscillation period, but the matrix

transport still accurately tracks the average position of the beam.

Figure 3.4 compares the results of matrix transport through the Tessatron undulator

against beam centroid measurements performed at the UCLA Pegasus laboratory for an

input beam energy of γ = 14.5. The beam centroid is measured on a screen 14 cm down-

stream of the undulator while the horizontal and vertical beam angles are adjusted with a

calibrated steering magnet 8 cm upstream of the entrance. The orientation of the centroid

measurements with respect to steering is consistent with the matrix transport where the
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Figure 3.3: Comparing undulator focusing matrix transport against particle-tracking simu-

lation at high and low beam energies. The period-averaged and full simulated trajectory (rs
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Figure 3.4: Comparison between matrix transport and beam measurement. A 2D raster scan

of an upstream steering magnet (8 cm before undulator) varies the beam injection angle and

the centroid is measured on a screen 14 cm downstream of the undulator exit.

79



0 200 400 600 800 1000 1200
r? (7m)

1

1.02

1.04

1.06

1.08

K
=K

0

T
es

sa
tr

on

T
es

sa
tr

on
2

GPT Sim.
Analytic

Figure 3.5: Corrections to the undulator strength parameter due to stronger transverse fields

and non-zero Bz fields off-axis.

coloring highlights transverse coupling as changes in horizontal steering lead to vertical de-

flections out of the undulator. The asymmetry seen in the beam data can be produced in

GPT simulations by varying the initial alignment into the undulator.

In addition to coupled focusing, low energy beams have an increased wiggling ampli-

tude such that the electrons samples stronger transverse fields and non-zero Bz fields that

contribute to the Lorentz force and alter the undulator strength parameter defined by

βz =
√
1 + 1+K2

γ2
which can alternatively be expressed as K = γβ⊥. The transverse ve-

locity can be computed by considering the cyclotron motion in the transverse plane given

by γmc2|β⊥|2/|rf | = Fr where Fr is the radial Lorentz force given by

Fr = ec
(
βzBy(rf )− βyBz(rf )

)
x̂+ ec

(
βxBz(rf )− βzBx(rf )

)
ŷ (3.17)

where the full radial Lorentz force is computed along the fast trajectory of Eq. (3.7) using

the nominal parameter K0 = eB0/mcku. Expanding to lowest order in K0 and γ, we find

K = K0

(
1 +

9K2
0

8γ2
+O(1/γ4) +O(K4

0/γ
4)

)
(3.18)

The strong focusing affects the transverse coupling and was included in the matrix trans-

port of Figures 3.3 and 3.4. Figure 3.5 benchmarks Eq. (3.18) against GPT simulations
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as a function of wiggling amplitude using nominal parameters from the Tessatron exper-

iments. In this extreme example, operation at the zero-slippage waveguide resonance for

the Tessatron experiments requires beam trajectories with an amplitude of roughly half the

waveguide radius of 2 mm. There is little effect on resonance, though, as the beam energy

can be changed to compensate for errors in K.

3.2.2 Theseus Undulators

The Theseus undulators were designed to maximize the coupling between a relativistic beam

and radiation field for high efficiency experiments. They are comprised of two planar Halbach

magnet arrays rotated 90◦ and shifted a quarter period relative to each other. A Halbach

array (Figure 3.6d) includes additional magnets with longitudinal magnetization to close

the magnetic circuit, enhancing fields near the axis and reducing stray fields outside the

undulator . The NdFeB permanent magnets (Figure 3.6e) have a residual magnetization of

1.18 T and are glued into holders with an angled notch to help resist the strong attractive

forces between opposing magnets. The undulators contain 30 periods of length λu = 3.2 cm

including entrance and exit periods which are designed using 2 mm, 4 mm, and 6 mm length

magnets to keep the electron beam trajectory close to the beam axis [104]. Thus, a full

undulator is comprised of 484 magnets with an overall length of 96 cm. Three dimensional

magnetostatic simulations were completed using RADIA [105], a software developed at the

European Synchrotron Radiation Facility.

Figure 3.6a and b show a schematic and image of the tuning design. Strongbacks made

from 360 brass span the full undulator length and provide the rigidity necessary to withstand

the magnets forces. Magnet gaps are adjusted via 8-32 tuning screws with 800 µm travel

per rotation. Hardstops limit the minimum gap to 5.58 mm to avoid damage to the vacuum

pipe (5.56 mm OD). The maximum gap is 7.5 mm, but shims can be inserted under the

tuning plates to increase the gap further. It was decided to chamfer the magnets for safer

handling, though it was later realized during characterization and confirmed with magneto-

static simulations that this led to a non-negligible 10% reduction in magnetization strength.
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Figure 3.6: Undulator construction. The magnet gap is tuned by adjusting a tuning screw

held between the tuning plates (a) and (b). The undulator is assembled (c) by inserting

magnets (e) into grooves in the undulator strongback. Each tuning plate covers 4 magnets

(1 period) of the undulator. The Halbach array (d) utilizes magnets with longitudinal

magnetization to help close the magnetic circuits, reducing stray fields and making the inner

fields more robust to external influences. The Hall probe (f) is glued to a flat rode that slides

along a fix u-shaped channel. An end view (g) shows the magnet gaps before installation of

the vacuum pipe.
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Figure 3.7: Completion of undulator tuning. The prebuncher and Theseus 1 (a) were the first

undulators tuned and shipped to Fermilab for the FASTGREENS experiment. Six months

later Theseus 2 and 3 (b) were constructed and tuned at UCLA. Theseus 2 was shipped to

Fermilab (c) while Theseus 3 was installed on the Pegasus beamline (d) for the Tessatron

experiments.
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Figure 3.8: Undulator performance as a function of period. The design period of 3.2 cm is

shown by the red line and the colored background indicates the beam energy required for

zero-slippage resonance at f = 500 GHz.

The undulator performance as a function of period is shown in Figure 3.8, along with the

beam energy required for zero-slippage resonance at f = 500 GHz. The maximum field at

mimimum gap is 890 mT corresponding to K = 2.66.

The full undulator periods are tuned with Hall probe scans to first minimize errors in

the fields, then to minimize slippage or phase error between the electrons and radiation. A

pulsed-wire bench allows instantaneous measurements of the first or second field integrals

for tuning the beam trajectory in the entrance and exit periods. By scanning the wire

transversely, higher order field moments can be tuned to ensure accuracy in the off-axis

fields.

3.3 Hall Probe Measurements

The enclosed geometry of the helical undulator significantly increases the difficulty of Hall

probe measurements necessary for tuning the undulator fields. Figure 3.6f shows the probe

transport design where the probe head is glued to a flat brass piece which slides along a
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Figure 3.9: Tuning Eigenfunctions. A comparison between simulated and measured eigen-

functions for the transverse and longitudinal magnetic fields.

hollowed out brass rod. The rod diameter is chosen to fit snugly inside the vacuum pipe which

can be tensioned with vacuum screws. The rod is held fixed relative to the undulator with set

screws and a clamp such that the probe (Senis HS probe with F3A transducer calibrated to

0.1%) can be moved along the undulator with a 1 m translation stage (Zaber A-LST1000A-

C) with 2 µm resolution. Due to the fragility of the flat brass piece, measurements were

only performed while pulling the probe which was manually reset between scans. Before

measurements, the probe warms up for 15 min so the sensors to reach steady state and field

offsets are measured in a zero-gauss chamber. Errors in the probe’s traverse position and

roll angle, expected due to warping of the brass rod during machining and the inability to

observe the probe’s motion in the undulator, were corrected in post-processing.

The hall probe scans yield measurements of Bx(z), By(z), and Bz(z) with 50 steps per

period. The absence of soft magnetic materials in the undulator allowed the tuning to rely

on the superposition where the change in total field is equivalent to the sum of the adjust-

ments from individual magnets. The normalized change in transverse and longitudinal fields

for each magnet (called the tuning eigenfunctions) were simulated in RADIA and are com-

pared with measurements in Figure 3.9. After a Hall probe scan, a Matlab script minimizes
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Figure 3.10: Measurement of errors in Hall probe position and angle. a) The amplitude

and phase of Bz indicate the probe offset. Polynomial fits are used to compute the effective

on-axis fields. b) Probe angle is inferred from changes in the field periodicity and confirmed

against laser measurements off a mirror glued next to the probe head.

the difference between the measured fields and the simulated target field by adjusting the

eigenfunction coefficients at each magnet. To speed up the optimization and ensure conver-

gence, the transverse and longitudinal fields are tuned individually, allowing the movement

of opposite magnets which produce similar eigenfunctions to be grouped together, halving

the number of variables. After a successful optimization, the script prints out the eigen-

function coefficients (mT units) at all magnet positions. For each adjustment, the probe is

first positioned at the eigenfunction maximum (differs depending on magnetization or field

component) and the magnet pair is moved equal amounts to change the field by the quoted

coefficient.

The optimization fundamentally relies on the probe accurately measuring the fields along

a fixed axis in the undulator. Systematic twisting or bending of the tuning carriage caused

by machining errors or gravitational sag is accounted for by utilizing the field expansion

from Eq. (3.2). From the expression of Bz, it can be seen that a transverse error in probe

position results in a sinusoidal Bz field where the amplitude and phase indicate the amount
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Figure 3.11: Hall probe measurements (corrected for probe position and offset) of the un-

dulator fields for the Tessatron Experiment. a) Strong undulator tapering is necessary to

target high efficiency. b) The Bz component emphasizes the need for corrections to the field

measurements.

and direction of the probe offset such that

rhp,⊥(z) =
−1

B0π

∫ z+λu/2

z−λu/2
Bz(z)

[
cos(kuz)x̂+ sin(kuz)ŷ

]
dz (3.19)

Additionally, an error in the probe angle manifests as a shift of the perceived peak field

positions zc and a change in the measured period lengths. Since the probe position is well-

known from the micron accuracy of the translation stage, the probe angle can be inferred

from

θhp(zc)− θhp(0) =
π

2

(
zc −

λu
4
round

(
zc

4

λu

))
(3.20)

Figure 3.10 shows errors in probe angle and position from a Hall probe measurement.

Using smooth polynomial fits, the fields are transformed to the effective on-axis field. The

ability to infer probe offset was corroborated by directly influencing bends in the vacuum

pipe through torque on the flanges. The probe twist was confirmed by removing the top array

of magnets and measuring the angular deflection of laser light off a small mirror on the flat

rod. Figure 3.11a shows the corrected on-axis fields for the first Tessatron experiment, with
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Figure 3.12: Slippage errors for the Tessatron2 Experiment. Phase errors are found scaling

by 2π/λr where the resonant wavelength is λr = 1.5 mm.

strong field tapering to target high extraction efficiency. The importance of the correction

is seen in the significant reduction of the Bz component (Figure 3.11b) which should be zero

for ideal fields.

While minimizing the residuals between the measured undulator fields and simulated

design fields is sufficient for coarse tuning, a more appropriate figure of merit is the slippage

or phase error [106]. Field errors cause deviations in the longitudinal beam velocity and

ponderomotive phase of the electrons which can lead to detrapping. In an FEL, the slippage

between the radiation wavefronts and the electron beam is given by

S =

∫ (
ω

kz
− cβz

)
dt ≈

∫ (
ω

ckz
− 1 +

1

2γ2
+
β2
x + β2

y

2

)
dz (3.21)

where we use the change of variables z ≈ ct. The first three terms are constant and the

undulator parameter is defined by β2
x + β2

y = K2/γ2 such that the slippage grows linearly as

K2

2γ2
. For this reason, after computing the transverse velocities from the measured magnetic

fields, a linear fit of the slippage with known γ reveals the tuned K parameter. The residuals

from the linear fit give the slippage errors, which can equivalently be expressed as phase

errors by scaling by 2π/λr where λr is the resonant wavelength. Figure 3.12 shows the tuned

slippage error for the Tessatron 2 experiment. The THz waveguide FEL is particularly
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robust to phase errors (up to 10%) as the rapid field growth produces a deep ponderomotive

potential well where the particles are stably trapped.

3.4 Pulsed-Wire Measurements

3.4.1 Setup

A pulsed-wire bench allows for instantaneous measurement of the first and second field inte-

grals and are especially useful in small-aperture magnetic structures [107, 108]. In addition

to tuning the beam trajectory in the entrance and exit periods, we describe how the scheme

can be used to fidicialize the magnetic axis and tune off-axis fields necessary for transmission

of low energy beams.

Figure 3.13 shows a schematic and pictures of the UCLA pulsed-wire bench where a

50 µm diameter CuBe wire is strung through the undulator and tensioned over a pulley

with a hanging weight. The wire end holders each have four machined ficualization cups

for referencing the wire position. A function generator passes square current pulses through

the wire such that the magnetic forces excite a pair of left/right traveling waves. For an

undulator with Nu periods of length λu, we will show the time-dependent wire deflection is

proportional to either the first or second field integral in the limit of very short or infinitely

long pulse durations.

The wire deflection is measured in both transverse dimensions with laser-photodiode

pairs. The inlay shows that after passing through a 50 µm slit, the laser light is partially

blocked by the wire such that the photodiode voltage varies in relation to the wire displace-

ment. Nonlinearity is introduced due to diffraction between the slit and wire. To allow a full

undulator measurement before interference from reflections, the wire must extend at least

half the undulator length beyond the laser-diode pairs. Measurements are captured on an

oscilloscope triggered by the function generator. Oil dampers enable higher repetition rates

(Figure 3.14) such that errors can be reduced by averaging over many (∼ 30) shots, while

also damping noise due to air currents and table vibrations.
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Figure 3.13: Schematic and pictures of the pulsed-wire measurement bench at UCLA.
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Figure 3.14: The use of one or two oil dampers significantly decreases the attenuation time

constant allowing a higher repetition rate and averaging over more shots.

3.4.2 Theory

We now derive the time-dependence of the vibration waves on a string with tension T and

linear density λ in the presence of undulator fields B(z). The 1D solution to the vibrat-

ing string PDE with initial conditions u(z, 0) = f(z) and ∂u(z, 0)/∂t = g(z) is given by

d’Alemberts formula

∂2u

∂t2
= c2w

∂2u

∂z2
=⇒ u(z, t) =

1

2
(f(z + cwt)− f(z − cwt)) +

1

2cw

∫ z+cwt

z−cwt
g(z′)dz′ (3.22)

where the wave velocity on the wire cw is initially assumed constant and equal to c0 =
√
T/λ.

We first consider the limit of a short current pulse (c0δt ≪ λu) with amplitude I and

duration δt such that the vibrational waves travel negligibly short distances in δt relative to

the undulator period. The wire is initially at rest, f(z) = 0, with a velocity given by the

magnetic force on the wire, g(z) = IδtB(z)/λ. Using Eq. (3.22), the displacement at z = 0

is given by

uδ(t) =
Iδt

2c0λ

∫ c0t

0

B(z′)dz′ (c0δt≪ λu) (3.23)
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where we assume undulator fields are nonzero only for positive z. The measured deflection

for a short pulse is thus proportional to the first derivative of the field and the electron

transverse velocity.

We can now generate the response for a pulse of arbitrary duration ∆t using Eq. (3.23)

by modeling the current pulse as a sum of short pulses with δt spacing from 0 to ∆t. The

contribution of the jth pulse at tj = j · δt is given by uδ(t − tj). In the limit δt → dt′, the

sum becomes an integral where tj → t′ and we find

u∆(t) =
∑
j

uδ(t− tj) =
I

2c0λ

∫ min(t,∆t)

0

∫ c0(t−t′)

0

B(z′′)dz′′dt′ (3.24)

where min(t,∆t) is used to handle the two cases where t < ∆t and t > ∆t. If we now assume

an infinite pulse duration such that the pulse is on for the entire measurement (∆t > Nuλu),

we can redefine redefine t′ = t− t′ and let z′ = c0t
′ and z = c0t to give

u∞(t) =
I

2c20λ

∫ z

0

∫ z′

0

B(z′′)dz′′dz′ (c0∆t > Nuλu) (3.25)

where the measured deflection is proportional to the second integral of the field and the

electron beam trajectory.

The are a few practical limitations to this ideal analysis [109]. First, the wire will sag

according to the equation of a catenary y(z) = gλ
T
cosh

(
Tz
gλ

)
where g = 9.81 m/s2. For a

wire of total length L, the maximum sag is S = y(L/2)− y(0) and evaluates to

S =
T

gλ

(
cosh

(
Lgλ

2T

)
− 1

)
≈ gλL2

8T
(3.26)

In long undulators, the use of ultralight dielectric threads have been used to support

the wire outside the undulator, but it is simpler and sufficient to account for sag using the

off-axis expansion of the undulator fields [110, 111]. In our setup, the CuBe wire with a

mass density of 8.25 g/cm3 and maximum tensile strength of 800 MPa such that the sag in

a 2-meter wire is roughly 50 µm and had negligible effect on the measurements.

Another important consideration is dispersion in the wire such that the wave speed is

a function of frequency cw(k) where ω = cwk. Euler-Bernoulli analysis for beam deflection
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Figure 3.15: Pulsed-wire dispersion fit to Euler-Bernoulli theory from two laser measurements

with 10 inch separation. Using the dispersion fit, distorted measurements can be corrected

with numerical algorithms.

predicts a dispersion according to

c(k) = c0

√
1 +

EI

T
k2 (3.27)

where EI is the flexural rigidty. The wire dispersion can be fit from only two measurements

of the same waveform at two positions separated by a distance ∆z. A delay of ∆z/cw(ω) in

the time domain corresponds to a phase shift of −ω∆z/cw(ω) in the frequency domain such

that by comparing the phases of the Fourier transforms, we can estimate the wave velocity

as a function of frequency. Figure 3.15 depicts the two temporal measurements before and

after a 10 inch drift where the phase velocity is fit with Eq. (3.27) over frequencies with

non-negligible amplitudes returning the fit values c0 = 207.5 m/s and EI/T = 6.39 ×

10−8 Nm2. Once the dispersion is known, the effect on measured signals can be removed

using appropriate correction algorithms [112, 113], which we now discuss in detail.

To incorporate dispersion into our theoretical formulation, we need to express the undula-

tor fields as a sum over spatial frequencies using a Fourier transform, B(z) =
∫∞
−∞ B̃(k)eikzdz,

where d’Alemberts formula is applied separately to each frequency. After integrating over
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z’, we find

uδ,disp(t) =
Iδt

2λ

∫ ∞

−∞

−i
ω
B̃(k)

(
eicwkt −����e−icwkt

)
dk (3.28)

using the fact that fields only exist for z > 0 to neglect summing over waves propagating to

the right. Similar to before, we model an arbitrary pulse duration of ∆t ≤ t as an integral

over uδ,disp.

u∆,disp(t) =
I

2λ

∫ ∞

−∞

∫ ∆t

0

i

ω
B̃(k)e−icwk(t−t

′)dt′dk (3.29)

=

∫ ∞

−∞

(
I

2λ

eicwk∆t − 1

c2wk
2
(
k ∂cw
∂k

+ cw
)B̃(k)

)
e−iωtdω (3.30)

≡
∫ ∞

−∞
H(k)e−iωtdω (3.31)

where we change the variable of integration from k to ω and define the transfer function

H(k). Similarly, we can define H0(k) in the zero-dispersion limit.

u∆(t) =

∫ ∞

−∞

(
I

2λ

eic0k∆t − 1

c30k
2

B̃(k)

)
e−iωtdω

≡ c0

∫ ∞

−∞
H0(k)e

−ic0ktdk (3.32)

As a final step, we note the two practical limits of F (k) = H0(k)/H(k) for a short (∆t = δt)

and infinitely long pulse (∆t = t).

Fδ(k) =

(
cw(k)

c0

)(
cw(k)

c0
+
k

c0

∂cw
∂k

)
where

eic0kδt − 1

eicwkδt − 1
≈ c0
cw

(3.33)

F∞(k) =

(
cw(k)

c0

)2(
cw(k)

c0
+
k

c0

∂cw
∂k

)
where

eic0kt − 1

eicwkt − 1
≈ 1 (3.34)

We are now able to describe the procedure for removing known dispersion from a mea-

sured signal taken with a short or long current pulse. Note that this algorithm also corrects

for the finite width of a short current pulse. First, compute the Fourier transform of the

measured signal.

H(ω) =
1

2π

∫ ∞

−∞
u∆,disp(t)e

iωtdt (3.35)
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Figure 3.16: Dispersion in undulator using long current pulse. Dispersion in PMQ using

short pulsed.

Assuming small relative changes in wave speed, the dispersion relation of Eq. (3.27) can be

inverted through an expansion as

k ≈ ω

v0

√
1− EI

T

ω2

v20
(3.36)

to compute H(k). A small subset of the k(ω) with non-negligible amplitudes can be chosen

to speed up the computation. Next, compute H0(k) by scaling with the appropriate transfer

function from Eq. (3.33). Finally, the dispersion-corrected signal, u∆(t) can be numerically

integrated for different times using Eq. (3.32). An inverse Fourier transform cannot be used

because the k values are not uniformly distributed.

Figure 3.16a applies the correction algorithm to a simulated measurement of the trajec-

tory in a Theseus undulator. The effect of dispersion is hardly noticeable except for the

last field peak, suggesting that dispersion correction was not necessary for the undulator

tuning. In general, distortion is largely dependent on the measurement bandwidth with the

strongest effects seen at the beginning and end of the signal. By maximizing the wire tension

(> 80% of the nominal tensile strength), we achieved a relatively small dispersion parameter,

EI/T ≈ 6.4× 10−8 m2 and minimized the wire sag. On the other hand, Figure 3.16b shows

a simulated measurement of a permanent magnet quadrupole triplet with large bandwidth
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Figure 3.17: Pulsed-wire calibration. Sensitivity is defined as change in voltage over wire

displacement. Normalized sensitivity is proportional to the sinusoidal amplitudes of undu-

lator beam trajectory measurements.

such that distortion is clearly visible. The correction algorithm recovers the ideal signal with

minimal error.

3.4.3 Calibration and Wire Alignment

Another deviation from ideal theory involves nonlinearity in the calibration curve of Fig-

ure 3.17 due to laser diffraction between the slit aperture and the wire. The dotted lines

show numerical simulations of the diffraction in good agreement with the measurements.

The nonlinear dependence is easier to observe in the measurement sensitivity, defined as the

derivative of the photodiode voltage with respect to the wire displacement. Notably, for un-

dulator measurements the normalized sensitivity is proportional to the change in trajectory

amplitude as the laser photodiode pair is moved across the wire. Our setup achieves a max-

imum sensitivity of 119 mV/µm and though resolution was limited by the 8bit oscilloscope,

a higher sensitivity improves the signal to noise ratio.

Before tuning, the wire must be aligned to the undulator magnetic axis. The tensioned

wire behaves like a high energy (> 1 GeV) beam that is little affected by undulator focusing
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Figure 3.18: Wire alignment. The position of the magnetic axis along the undulator is

inferred from the variation in field strength measured by the change in signal amplitudes.

The inlay shows the symmetry axes of quadratic fits at each magnet position along the

undulator.

such that the relative field strengths can be inferred from the trajectory amplitudes at

different transverse wire positions. Quadratic fits of the field concavity at each magnet

provide an estimate of the magnetic axis along the undulator. Figure 3.18 shows data

for normalized amplitudes in ŷ as a function of wire offset in x̂, matching the theoretical

concavity 1 + α2k2ux
2/2 denoted by the black curve. The inlay plots the symmetry axes

of the quadratic fits with marker size determined by the fit residuals, allowing repeatable

identification of the magnetic axes to an accuracy of 100 µm.

The concavity fits are better constrained with large wire offsets, the field errors can

produce strong deflections in the wire such that the sensitivity changes appreciably along

the measurement (see Figure 3.17). This is corrected with a nonlinear calibration of the

normalized sensitivity as a function of voltage S(v) through repeated measurements where

the laser is scanned across the wire as shown in Figure 3.19.

It is important to have a robust algorithm for computing signal amplitudes. To estimate

peak locations in the presence of noise or strong deflections, it is better to smooth with a
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Figure 3.20: Calculation of signal amplitudes. a) Given estimate locations, peaks are eval-

uated with polynomial fits. Amplitudes and means are computed from neighboring peak

values. b) Strong linear deflections shift peak locations and reduce measured amplitudes.
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Savitzy-Golay filter and then numerically differentiate. The signal peaks are then shifted a

quarter period relative to the clearly identifiable derivative peaks which can are found with

built-in peak finding algorithms such as MATLAB’s findpeaks function. Given an estimate

location, the signal peaks yj are calculated with polynomial fits over nearby data points

as shown in Figure 3.20a. The signal mean voltages, µj = yj−1/4 + yj/2 + yj+1/4, and

amplitudes, Aj = yj−1/2 − yj/4 + yj+1/2, are evaluated using the values of neighboring

peaks. As previously mentioned, the mean voltages are used with S(µj) to correct for the

nonlinear calibration.

Additionally, strong linear deflections of the sinusoidal waveform shifts peak positions

such that measured peak-to-peak amplitudes are reduced (Figure 3.20b). From the simple

model sin(kuz)+∆z/λu, it can be shown the amplitudes are decreased by the factor 1− 1
2

(
∆
2π

)2
where ∆ is the change in voltage over a period divided by the amplitude.

Once identified, the magnetic axis is fiducialized (Figure 3.21) for accurate installation

on a beamline. A laser tracker accurately measures (to within 25 µm) the distance to the

retroreflector when placed in each of the fiducial cups (marked in red). This method is

superior to robotic-arms for measuring large dimensions as errors do not compound with

distance. Four fiducial cups are machine into each wire holder and four are glued onto the

undulator. The left and right wire holders have been characterized such that the wire end

positions can be determined from the fiducial measurements.

3.4.4 Higher-moment corrections

By measuring local field concavity, we can identify the magnetic axis along the undulator.

However, it is also necessary to minimize errors in the integrated fields (beam trajectory) off-

axis. For example, Figure 3.22 shows pulsed-wire measurements of the beam trajectory after

hall-probe tuning for the Tessatron THz-FEL experiment, before and after 3D pulsed-wire

tuning. Ideally, the measured trajectories would be straight and independent of the wire’s

transverse position, but the initial off-axis measurements clearly exhibit strong deflections

at localized magnet positions. This demonstrates the need for a 3D pulsed-wire procedure
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Figure 3.21: Fiducialization of the FASTGREENS prebuncher. The laser-tracker accurately

measures the distance to the retroreflector (a) when placed in each of the fiducial cups (b).

Locations of fiducial cups are marked in red.
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Figure 3.22: Off-axis pulsed-wire measurements before and after 3D pulsed-wire tuning.
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Figure 3.23: Schematic of toy dipole model. The four tuning cases represent changes in

magnet gap and magnetization angle in the transverse plane.

to tune the integrated higher order field moments when low energy beams travel far off-axis.

In fact, it is good to remember that in a helical trajectory the beam never sees the on-axis

fields.

To describe the effect of magnet adjustments on undulator fields and integrated beam

trajectories, we examine a simple empirical toy-model where a pair of undulator magnets is

represented by two pure magnetic dipoles. The strength and separation of the dipoles are

fit to RADIA simulations of Theseus magnets with B0 = 730 mT peak field and 7.1 mm

full-gap such that each magnet is best modeled by a dipole with m = 1.59 × 106 A·mm2

located 7.33 mm inside the magnet tip. While this model is fit to fields, we later verify that

it performs sufficiently well in describing the effect of tuning on beam trajectories.

In our model, dipoles are nominally placed at g = ±gx̂ with moments m = mx̂ as shown

in Figure 3.23. We allow small adjustments to the position (δg in ±x̂) and magnetization

angle (m = m cos θx̂ +m sin θŷ) to simulate tuning of the magnet gaps and slight changes

in the magnet angle, where the tuning space is spanned by four different cases.
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The fields of each dipole are expressed by

B(r, δg, θ) =
B0

4

3
(
m̂ · R̂

)
R̂− m̂

R̃3

 (3.37)

where B0 = mµ0/πg
3 and R̃ = R/g where tildes generally indicate normalization by the

nominal half-gap g. Summing both dipole fields and Taylor expanding about the axis yields

the dipole field with a higher-order skew sextupole field as expected from the general undu-

lator expansion in Eq. (3.2).

B(z = 0) = B0

(
1 +

6

2
(2x̃2 − ỹ2)

)
x̂−B06x̃ỹ ŷ (3.38)

Note that the asymmetry of the dipole model (α/β = 1.414) is in fairly good agreement with

the Theseus fields (α/β = 1.319). The transverse velocity is given by an integral over the

Lorentz force as

β⊥(r⊥, δg, θ) = − e

γmc

(
ẑ ×

∫ ∞

−∞
B⊥dz

)
(3.39)

Remembering m · ẑ = 0, the integral over the transverse field can be evaluated in terms of

R⊥ for each dipole as

β⊥(r⊥, δg, θ) = −β⊥,0
4

[
ẑ×

(
4(m̂ · R̃⊥)R̃⊥

R̃4
⊥

− 2m̂

R̃2
⊥

)]
(3.40)

where β⊥,0 = egB0/γmc. To describe the net change in beam trajectory, we consider the

relative change in the transverse velocity given by δβ = (β⊥(r⊥, δg, θ)− β⊥(r⊥, 0, 0)) /β⊥,0.

Summing the contributions of each dipole for the four cases and expanding to lowest order

yields

δβ1 = 2δg̃

(
ŷ + 12

(
x̃ỹx̂+

1

2
(x̃2 − ỹ2)ŷ

))
dipole + sextupole

δβ2 = 6δg̃ (ỹx̂+ x̃ŷ) quadrupole

δβ3 = θ

(
−x̂+ 6

(
−1

2
(x̃2 − ỹ2)x̂+ x̃ỹŷ

))
dipole + skew sextupole

δβ4 = 2θ (−x̃x̂+ ỹŷ) skew quadrupole (3.41)

where δg̃ = δg/g and terms are grouped into different magnetic moments. The first and third

cases show that altering the magnet position or angle in opposite directions can be used to
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Figure 3.24: A comparison of measured and theoretical deflections due to magnet tuning as

a function of transverse wire position. For case 1, opening the magnet gaps leads to a clear

sextupole dependence on top of the dipole kick. In case 2, shifting the magnet gap creates a

quadrupole dependence. Measurements are in agreement with RADIA simulations and the

dipole model.

tune the dipole fields in ŷ and x̂. To simultaneously tune the regular and skew sextupole

moments, one must utilize adjustments in the other magnet array with magnetization in ŷ

found by the coordinate transformation x→ y and y → −x. Quadrupole fields can be tuned

using the second and fourth cases where the magnet position or angle are altered similarly

and only skew or regular quadrupole moments are generated to first order.

Figure 3.24 benchmarks the analytic dipole model against pulsed-wire data and an ideal

RADIA simulation using numerical integration of Theseus magnet fields. The first two cases

are considered as it is easier to accurately adjust the magnet gaps with fine adjustments.

Both components of δβ1(ỹ = 0) and δβ1(ỹ = 0) are plotted as a function of wire position

along the x-axis. The magnet gaps are tuned by δg = 200 µm which corresponds to a

quarter-turn of the 8-32 tuning screws with 784 µm/rev pitch.

Pulsed-wire measurements of the beam trajectory were taken in both transverse dimen-

sions at each wire position before and after the tuning a magnet pair. For each offset,

reference measurements are subtracted and the residual signals are period-averaged to elim-

inate any remaining periodicity. Linear fits are applied to the waveform before and after the
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tuned magnet pair such that the change in slope is proportional to the change in velocity.

The proportionality constant includes the calibrated conversions from time and voltage to

position, i.e., the voltage amplitude of an individual measurement can be related to the

nominal beam trajectory amplitude in the undulator. The data is plotted with error bars

showing the standard deviation of 30 measurements.

Figure 3.24a shows the net change in normalized velocity of the first case normalized

by the dipole field. The measurement variation is relatively large as the concavity of the

sextupole moment occurs on top of a large dipole field. This produces a strong deflection

in the wire requiring corrections to the non-uniform sensitivity along the measurement and

reducing the voltage resolution of the 8bit scope measurement. The data shows a clear

sextupole dependence in x̂ with minimal effect in ŷ. In the figure we also show the results of

RADIA simulations where the same magnet adjustment are performed on the Halbach array.

The agreement between the dipole model, the simulations and the data is remarkable and

can be used to guide the undulator tuning with quick convergence. In Figure 3.24b we show

the quadrupole moments resulting from shifting the magnet offsets in the same direction

(i.e. second case from Figure 3.23). In this case, the measurements, which match closely the

prediction from our simple two-dipole model and the RADIA simulations, are more accurate

since there is no undulator dipole component and the variance is smaller.

Guided by Eq. (3.41), appropriate magnet pairs can be adjusted to tune the deflections

seen in Figure 3.22. In practice, the corrections are limited by the tuning range and precision

when adjusting magnet angles. The phase error between the beam and radiation was only 1%

after Hall probe tuning such that the main limitation for high efficiency is charge transmission

through the undulator. The red and blue trajectories in Figure 3.22 measure the field

integrals along the wire axis and do not exactly represent the fields seen by the helical

trajectory of a low energy beam. Instead, we approximate the true beam trajectory as the

average of pulsed-wire measurements at wire offsets of ±1000 µm in x̂ and ŷ. The final

averaged trajectories are tuned flat to a centroid deviation of less than 300 µm from the

axis, sufficiently smaller than the mm-scale wiggling amplitude and the 2 mm waveguide

inner radius employed in the experiments.
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CHAPTER 4

Tessatron Experiments

4.1 Introduction

The Tessatron experiments are demonstrations of a compact, single-pass THz waveguide

FEL on the Pegasus beamline at UCLA. Zero-slippage operation enables compression of

the electron beam to increase the current density and provide seeding at the long wave-

lengths. The helical Theseus undulator, designed to optimize FEL coupling, allows strong

field tapering to extract a significant fraction of the electron beam energy.

We begin the chapter by introducing the layout and operation of the Pegasus beamline

for the first Tessatron experiment, including an overview of the software controls. Next,

we present the experimental results demonstrating zero-slippage operation and large (10%)

extraction efficiency. The second experiment seeks to improve the spectral range and fre-

quency tunability of the FEL by detuning from the zero-slippage resonance. We discuss the

major beamline upgrades including novel photocathodes that enabled lossy laser shaping,

a compact permanent-magnet chicane for compression, and a solenoid for beam matching

into the undulator. After sharing the experimental results, we finish by considering future

implementations including resonance with higher order waveguide modes and the use of an

optical cavity.

4.2 Pegasus Beamline

The Pegasus beamline is a university-sized (∼ 10 m) accelerator beamline at UCLA ca-

pable of producing electron beam energies up to 8 MeV with bunch charges ranging from
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hundreds of femtocoulombs to hundreds of picocoulombs. It supports a variety of research

including ultrafast electron diffraction, microscopy, cathode characterization, and the study

of dielectric and THz acceleration schemes to name a few [114, 115, 116, 117, 118].

4.2.1 Layout

The electron beamline sits in a concrete-shielded bunker with interlocked door where the

creation of an electron beam requires simultaneous laser and radio-frequency (RF) power

for the photo-emission and acceleration of electrons in the gun. These two systems are

synchronized to a master low-level signal (2.856 GHz) produced from an analog or digital

RF board.

The drive laser (Titanium-Sapphire system from Amplitude) can produce 23 mJ at

800 nm and consists of a laser oscillator and regenerative amplifier. The oscillator is mode-

locked to a 79.33 MHz down-conversion of the master signal and the power buildup/release

from the regenerative amplifier is controlled with pockel cells, which provide a trigger for

each shot. The laser pulse is split by a polarized beamsplitter into two paths known as the

infrared (IR) and ultraviolet (UV) lines. The relative laser strength in each path is adjusted

with a half-wave plate before the beamsplitter. The IR path is propagated to the bunker and

will be used for the electro-optic sampling measurement described in the second Tessatron

experiment. On the UV path, a frequency-doubling crystal first creates 400 nm light, then

the two wavelengths are combined in a frequency-summing crystals to generate 266 nm UV

light. The temporal overlap is fine tuned with a delay stage and the conversion efficiency

can be attenuated with a remote-controlled polarizer, allowing the operator to control the

UV pulse energy which determines the emitted electron beam charge. Additionally, the laser

pulse can be shaped into distinct beamlets using a set of birefringent α-BBO crystals capable

of generating 0.5, 1, 2, 4, 8, and 16 picosecond time delays. The light is transported to the

bunker with UV-mirrors that pass the residual 400 nm and 800 nm wavelengths into beam

blocks. Finally, the remaining UV is clipped with an iris aperture and imaged onto the cath-

ode in the gun, allowing control of the transverse beam size. A virtual cathode diagnostic for
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Figure 4.1: Schematic of Pegasus beamline and THz diagnostics for Tessatron.

the cathode laser spotsize is achieved by placing a beamsplitter before the vacuum window

such that a small percentage (∼ 1%) of the laser energy is reflected onto a screen with the

same path length as to the cathode, and viewed with a CCD camera.

The master low-level signal is also send to the klystron room after passing through a

control room phase shifter that the operator uses to adjust RF timing relative to the laser.

The signal is amplified to a kilowatt before seeding the modulator and klystron capable of

producing 10 MW of pulsed RF power. The RF is propagated to the bunker in a waveguide

filled with high dielectric sulphur-hexafluoride gas to increase the electric field break-down

limit. A waveguide splitter sends power to the gun as well as the booster linac cavity

where a relative phase difference is adjusted with a stepper-motor controlled phase-shifter.

Alternately, the linac power can be redirected into an absorbing load to effectively turn off

the linac cavity.

The main beamline and THz diagnostics for the first Tessatron experiment are depicted

in Figure 4.1. Bunch charges up to 200 pC are generated from copper photocathodes and

accelerated to a total energy of 3.6 MeV in the 1.6-cell S-band RF gun. The bunch charge is

measured non-destructively by a turbo integrating current transformer (ICT) and a solenoid
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focuses the beam into an 11-cell S-band high-shunt-impedance linac with peak gradient of

20 MV/m, capable of accelerating the beam to 8 MeV. The energy distribution can be mea-

sured on spectrometer 1 (radius of curvature of 0.67 m and bending angle of 45 deg). The

beam is focused transversely using a quadrupole triplet located just before a 29-inch long

vacuum box. The beam position and angle into the undulator is adjusted with two steering

magnets to optimize transmission and THz generation. The spent beam passes through a

5 mm diameter hole in an off-axis parabolic mirror (OAP) which reflects the generated ra-

diation out of the beamline to the THz diagnostics. A quadrupole doublet focuses the beam

into an transverse deflector (9.6 GHz with 500 kV maximum deflecting voltage), allowing

longitudinal phase space measurements on spectrometer 2 (radius of curvature of 0.93 m,

bending angle of 45deg). The energy acceptance is limited to ±9% due to a 12 mm aper-

ture in the vacuum pipe. The expected deceleration (> 25%) requires stitching of several

spectrometer measurements such that a third low-resolution spectrometer using a short rect-

angular dipole was installed to independently confirm the average beam loss and validate

the stitching approach.

A short 4.7 mm diameter extension pipe transports the THz from the end of the undulator

to the focal point of a gold-coated OAP, which reflects and collimates the radiation at

90◦ out of the beamline through a z-cut quartz window to a diagnostics table. The total

energy in the radiation pulse can measured by placing a removable 50 mm diameter OAP

mirror immediately outside the vacuum window to focus the radiation onto a 9 mm diameter

pyroelectric Gentec terahertz detector.

When the last OAP is removed, the collimated terahertz radiation propagates to a Michel-

son interferometer where a lossy (30%) beamsplitter separates the radiation along two paths.

After reflecting off mirrors, the beams recombine and are focused onto a pyroelectric detector

that can record the field autocorrelation of the radiation pulse by varying the path length

difference in the interferometer.

It was expected that roughly 13% and 10% energy losses would be incurred from the

waveguide out-coupling and THz window, respectively. Additionally, the strong diffraction

caused significant clipping on in-vacuum apertures. To better characterize these losses, a
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Figure 4.2: Structure and organization of Pegasus beamline controls software.

10 mW continuous-wave 140-GHz radiation source was placed at the entrance of the undu-

lator and it was found that only 27% of the radiation at the undulator exit was successfully

collected at the detector. In fact, the signal on the interferometer is less than 10% of the

reference signal due to the large absorption of the beamsplitter and additional diffraction

losses caused by the relatively small-aperture, 40 mm diameter terahertz window.

4.2.2 Software and Controls

The organization and structure of the beamline software and controls are outlined in Figure

4.2. LabVIEW VIs provide the main graphical user interfaces for controlling the beamline

settings (magnet currents, motor positions, shutters, screens) which are logged in an SQL

database along with hardware measurements (charge, vacuum levels, camera images, RF

amplitude/phase). The dynamic tables are synchronized (Appendix A) on the same pri-

mary key that uniquely identifies each electron beam shot on the beamline. Additionally,

static tables are used to store various parameters (calibrations, camera and motor settings,

hardware IP and COM addresses) which can be read into LabVIEW, along with previous

magnet settings.
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While the VIs interface well with hardware, coding even simple algorithms or logic into the

visual-programming language is tedious. For this reason, a Matlab interface was developed

that provides programmatic control of the LabVIEW VIs. The communication utilizes a

network TCP/IP connection where serial commands of the form key = value trigger events

identical to a manual input. Dedicated scripts take care of the network connection and error

handling, such that new users can quickly develop their own scripts for data acquisition. In

additional to speed and flexibility, this approach fosters collaboration between users as the

centrally located scripts can be viewed and copied by others. More complicated features

include outlier detection, automatic image gain adjustment, and real-time plotting can be

used to ensure a sufficient amount of quality data is acquired. A separate library of Matlab

functions also provides common database queries and analysis routines to simplify the initial

data analysis.

4.3 Tessatron

The goal of the first Tessatron experiment was to demonstrate record extraction efficiency

at THz wavelengths by utilizing two different concepts in FEL physics, namely zero-slippage

and strong tapering of the undulator to enhance stimulated superradiant emission from

the injected electron bunch. To achieve strong decelerating gradients in the absence of an

external laser, seeding must be provided by a microbunched, high current beam where the

1D efficiency is proportional to the product of the current and bunching factor (see Eq.

(1.54)). At long wavelengths, this can be achieved by compressing the beam to a bunch

length smaller than a radiation wavelength. The linac cavity can be operated off-crest to

imprint a negative energy chirp on the beam, leading to compression in the drift between

the linac and undulator.

Figure 4.3a shows GPT simulations of the beam compression at the undulator entrance as

a function of linac phase. Longitudinal Coulomb repulsion decreases at relativistic energies

due to length contraction, implying the strongest space charge effects occur in the gun before

the electrons have been accelerated to relativistic speeds. The inlay shows that higher bunch
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Figure 4.3: Beam compression and FEL seeding as a function of linac phase and beam charge.

a) Full compression requires a large, negative energy chirp provided by linac operation far

off-crest. b) Large seeding occurs for high beam charge near full compression, but the radius

of the undulator vacuum pipe restricts zero-slippage operation to γ > 10.65.

charges indeed lead to longer, positively-chirped beams at the exit of the gun. For linac

phases below 70◦, limited compression is applied in the drift space and the bunch charge

plays a significant role on the bunch length at the undulator. At phases above 70◦, however,

it is the higher charge beams that first reach full compression. This is because the position

of maximal compression is determined by energy chirp alone, and though the high charge

beams are initially longer, they have smaller energy chirp after then gun such that the linac

can imprint a larger negative chirp for compression.

Figure 4.3b plots the beam energy versus linac phase as well as the scaled 1D efficiency

(charge times bunching) where the bunching factor is computed at the γ-dependent frequency

of the zero-slippage condition. For low compression, increased charge reduces bunching

such that the 1D efficiency suffers. On the other hand, at full compression the bunching

factor is nearly independent of charge and the 1D efficiency increases proportional to beam

charge. Zero-slippage resonance at a lower beam energy requires a larger waveguide aperture

such that the custom-made vacuum pipe from MDC (outer diameter of 5.56 mm and inner

diameter of 4.55 mm) places a lower limit on the beam energy.
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TE11 waveguide mode in the undulator. The temporal envelope of the radiation remains

aligned to the electrons as the superluminal phase fronts move past.

In fact, it was decided to use the vacuum pipe itself as the waveguide to allow operation

at the highest efficiency. Ohmic losses are incurred from the non-optimal conduction in

the stainless steel vacuum pipe, but the choice also greatly simplifies the beam-waveguide

alignment along the undulator. A schematic of the FEL interaction is shown in Figure 4.4.

For a peak undulator field of B0 = 730 mT, resonance with the fundamental TE11 circular

waveguide mode where k⊥ = 1.8412/R occurs at a frequency of 165 GHz for a beam energy

of γ = 10.65, where a 5% off-axis correction to K is included due to the large wiggling

amplitude of the electron beam trajectory (Figure 3.5).

The beam transport is shown in Figure 4.5a. After exiting the gun, the diverging beam

is focused with a solenoid to a waist in the linac cavity and then focused at the undulator

entrance with a quadrupole triplet. A larger beam size at the quadrupoles increases their

focusing strength but can introduce non-linear off-axis field errors. The real limitation is

the 1.15 m drift between the quadrupoles and undulator entrance due to beamline space
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Figure 4.5: Simulated Beam Transport. a) Beam sizes, energy, and energy spread along the

Pegasus beamline. b) Charge transmission and radial electron position along the undulator.

constraints which limits the minimum focused spotsize to 600 µm, much larger than the ideal

matched spotsize of 150 µm. The resulting betatron oscillations (with
√
2γλu/K = 21 cm

period) are clearly seen in the undulator.

Operating the linac far off-crest leads to increased energy spread that is generally detri-

mental to FEL interactions. However, during the drift compression, space charge forces act

to compensate the strong energy chirp, resulting in a relatively low energy spread at the

undulator. Additionally, the broad gain curve at zero-slippage can allow successful trapping

of electrons even in the presence of relatively large energy spread.

A significant challenge in this experiment was achieving high charge transmission through

the undulator. Figure 4.5b shows the simulated transmission and radial beam distribution

relative to the vacuum pipe which is shown with dotted lines. In this ideal simulation,

already 10% of the charge is lost due to the unmatched spotsize at the undulator entrance

and further losses are expected due to trajectory tuning errors or misalignment of the vacuum

pipe.

The effect of tapering is evident in maintaining a constant average trajectory radius

(∝ K/γ) as the beam decelerates. To obtain an initial estimate for the undulator tapering
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Figure 4.6: Optimization of ft sin θr for the simulated longitudinal phase space at the undu-

lator entrance.

we return to 1D FEL theory where it was shown by Eq. (2.42) that for a waveguide FEL,

the beam area is replaced with the effective mode area along with a mode sampling factor.

To compute the efficiency at zero-slippage, we also need to include the effects of power at-

tenuation and dispersion on the evolution of the field amplitude, dE/dz. Attenuation can be

included with the scale factor e−βwgz where βwg is defined by Eq. (1.68). Additionally, Ap-

pendix B shows that the amplitude of a gaussian waveform is reduced by (1 + β2
2c

4z2/σ4
z)

−1/4

due to the group velocity dispersion, β2 =
∂2k
∂ω2 . In the absence of a seed field, the efficiency

estimate is given by a numeric integral including these scale factors as

η(z) =
I

IA

K2
0

γ3r0
(ft sin θr)

2 2π

A11

⟨Θ11⟩2
∫ z

0

∫ z′

0

(
1 +

β2
2c

4z′′2

λ4

)−1/4

e−βwgz′′dz′′dz′ (4.1)

where ⟨Θ11⟩ = 0.71 for the fundamental TE11 mode at zero-slippage, βwg = 0.39 for the

stainless steel vacuum pipe, and we assume σz ≈ λ for a compressed beam. The product

ft sin θr can be optimized for the simulated phase space at the undulator entrance as shown in

Figure 4.6 where the optimal resonant phase is θr = 42◦ where ft = 0.8. Using these values,

the estimate efficiency in the 1-meter undulator is 27%! This demonstrates the power of

zero-slippage operation as the compressed 200 pC beam is able to continuously interact with
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Figure 4.7: a) Initial and final phase spaces of a GPTFEL simulation of the undulator. While

some particles detrap, the majority are decelerated > 20%. b) Change in THz energy and

beam deceleration due to waveguide resistivity in the 1-meter vacuum pipe.

the radiation along the entire undulator.

The undulator tapering can be obtained from a quadratic fit calculated from the efficiency

η(z) as

K(z) =

√
(1 +K2

0) (1− η(z)/ft)
2 − 1 ≈ K0(1− t1z − t2z

2) (4.2)

where t1 = 0.08 and t2 = 0.44. Figure 4.7a shows the initial and final longitudinal phase

space for a GPTFEL simulation using the estimate tapering with waveguide attenuation. The

resonant energy at the end of the undulator is shown by the black dotted line. While some

of the electron beam has become detrapped, a majority experienced significant deceleration

resulting in an overall efficiency of 22%.

The finite resistivity leads to a fraction of the THz energy being absorbed in the vacuum

pipe. If we assume uniform emission along the undulator, the reduction in THz energy due

to attenuation can be estimated by∣∣∣∆W
W

∣∣∣ = P0L−
∫ L
0
P0e

−2βwgzdz

P0L
= 1− 1

2βwgL

(
1− e−2βwgL

)
(4.3)

as shown in Figure 4.7b for two undulator lengths. In our 1-meter stainless steel vacuum

pipe, the loss is approximately |∆W/W | ≈ 30%. Clearly, this can be reduced by changing
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Figure 4.8: Simulations showing the efficiency and trapped fraction at the end of the undu-

lator. a) Linear and quadratic tapering varied for a 200 pC beam. b) Quadratic tapering

(t1 = 0) with different beam charge.

the waveguide material, but an additional option would be to use grooved waveguides to

reduce the attenuation losses further [119].

In Figure 4.8a, simulated efficiencies and trapping fractions at the end of the undulator are

shown for various field taperings. The highest efficiencies occur for trapping fractions around

0.8, which agrees with Figure 4.6. Additionally, the tapering region with high efficiency is

quite large and suggests the interaction is robust to small changes in the tapering profile.

This is to be expected from the deep ponderomotive potential and broadened gain curve at

zero-slippage that maintains trapping of electrons slightly detuned from resonance.

The amount of charge transmission through the the undulator is a pivotal parameter for

choosing a design tapering. For example, with only 50% transmission, the theoretical taper-

ing reduces to t1 = 0.04 and t2 = 0.24 with a 15% efficiency. Figure 4.8b plots efficiency and

trapping fraction against a purely quadratic tapering and bunch charge. This is simulated

by transporting a full 200 pC to the undulator, then reducing the charge at the entrance to

approximate realistic charge loss. It was decided to conservatively tune the undulator with

t1 = 0 and t2 = 0.35 after a delay of 50 mm to compromise between the possibilities of high

or low charge transmission. For low transmission, the initial slow tapering would be able
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Figure 4.9: Undulator Field Tapering. a) Shims with 250 µm thickness are added under the

tuning places of each period to keep the nominal field centered in the magnet tuning range.

b) A picture of the shimmed undulator on the tuning bench.

to maintain a large trapping fraction in the first half of the undulator. On the other hand,

with high transmission the strong tapering in the second half of the undulator could still

decelerate the beam a significant amount.

The nominal tapering is shown by Figure 4.9a in terms of field strength and full magnet

gap along the undulator where 250 µm shims were added under the tuning plates of each

period to center the nominal field in the magnet tuning range. The relationship between gap

and field was simulated in Radia and confirmed against Hall probe measurements. Figure

4.9b shows a picture of the shimmed undulator.

4.3.1 Experimental Results

The FEL interaction was established by recording the energy profiles of the beam from the

high-resolution magnetic spectrometer as well as the terahertz radiation energy measured by

the reference pyrodetector as a function of the input beam charge. In the contour plot in Fig-

ure 4.10a, the energy spectra are normalized to better highlight the evolution of the energy

distribution as the terahertz FEL interaction grows in strength. For charges above 50pC, in
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Figure 4.10: Electron beam and THz energy measurements. a) High-resolution electron-

beam spectra as a function of the charge injected into the undulator. Two reference raw

spectrometer images for the lowest (left) and highest (right) charge are also shown. b)

Relative beam energy centroid variation and terahertz pulse energy from the reference py-

rodetector corresponding to a. The horizontal error bars correspond to the width of the

charge bins, which is chosen to be equal to the r.m.s. charge fluctuations. The vertical

errors on the centroid data represent the r.m.s. of the beam centroid distribution calculated

over ≥ 10 images. Measured (c) and simulated (d) longitudinal phase spaces for a 150-pC

injected beam charge. For this comparison, the longitudinal phase space at the exit of the

undulator is propagated up to the deflector plane located 6.5 m from the cathode.

119



conjunction with the appearance of a clear signal on the pyrodetector (Figure 4.10b), the

electron-beam spectrum broadens and redshifts to a lower mean beam energy. The spec-

tra also develop large and deep modulations that are characteristic signatures of the FEL

longitudinal phase space dynamics occurring in the tapered undulator [30]. At the highest

injected beam charge (220pC), the average beam energy decreases by 10%, with some par-

ticles losing more than 20% of their initial kinetic energy. Taking into account the terahertz

pyroelectric detector calibration and the losses in the terahertz transport line, the maximum

signal recorded on the detector yields an estimated terahertz energy at the undulator exit

of 50 µJ, which is in good agreement with the average energy loss by the electron beam,

considering the stainless-steel waveguide losses and that only 40% of the injected charge is

transmitted through the undulator. We note that the charge values reported in the figures

refer to ICT measurements before the undulator. The transmission through the undulator

and 5 mm hole in the OAP was strongly energy-dependent, monotinically decreasing from

full transmission at high injection energies to below 40% for lower energies. As mentioned,

this is due to the inability to focus the beam to the matched spotsize and the significant

trajectory radius (1.1 mm at γ = 10.6) inside the undulator which reduces the clearance and

makes it difficult to precisely tune the undulator field quality using conventional hall probe

or pulsed wire methods which assume small deviations from the beam axis.

The terahertz signal and the associated electron spectra are well correlated with the

injected charge through the undulator (Figure 4.10b), with output fluctuations of less than

10% for a given input charge, mostly attributable to energy and pointing fluctuations. The

overall stability is remarkable for a single-pass FEL in the absence of an external radiation

seed signal, and is explained by the initial bunching from the compressed electron beam,

which effectively works as a FEL seeding signal.

The X-band deflector located after the undulator can be used to streak the beam vertically

and visualize the longitudinal phase space on the spectrometer screen. A sample phase space

corresponding to 150 pC injected charge is shown in Figure 4.10d. Although the resolution

of the longitudinal phase space measurement is blurred from the large transverse size of

the beam in the deflector and relatively large emittance of the beam after the undulator,
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Figure 4.11: Bunching remains nearly constant as the linac phase is used to change the beam

energy. This is due to the fact that the less-compressed high energy beams resonate at lower

frequencies.

the most salient features in the beam distribution, such as chirp, energy spread and bunch

length, are well reproduced in the measured image. A single decelerating bucket can be

identified, in good agreement with the simulation results.

The resonant nature of the interaction was then studied by adjusting the linac phase to

vary the initial beam energy. We note the bunching factor remains constant (Figure 4.11) as

the higher energy beams experience less compression but resonate at lower frequencies such

that the ratio of bunch length to radiation wavelength is unchanged. The spectral content

was measured using the Michelson interferometer as shown in Figure 4.12. Two sample

autocorrelation traces and the associated Fourier transforms are displayed for beam energies

near (blue) and above (orange) the expected zero-slippage resonant value. Clear differences

in period and radiation pulse length can be observed in the corresponding spectra. A more

complete scan of the peak frequency and spectral bandwidth is reported in Figure 4.12c,d

where beamline measurements are compared with GPT simulations. Notably, the peak

frequency is observed to decrease when increasing the beam energy, a behaviour peculiar

for FEL physics, but well reproduced by the simulations and explained by the quadratic
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Figure 4.12: Interferometry measurements. a) Interferometer traces for input beam energies

near (blue) and above (orange) the zero-slippage condition. b) Power spectrum of the emitted

radiation, computed from a fast Fourier transform (FFT) of the interferometer traces and

plotted together with the beam bunching factors obtained from beam dynamics simulations.

c) The interferometer peak frequency measurements are compared to general particle tracer

(GPT) simulations and to the theoretical phase-resonance curves. The simulated pulse

energies show a maximum interaction at a slight positive energy detuning. Measurements

of FEL efficiency versus input electron-beam energy are plotted against GPT results. The

error bars in the energy loss data represent the r.m.s. of the distribution calculated over

≥10 images. The charge in these simulations is scaled by the observed transmission through

the undulator. d) Terahertz spectrum bandwidth (FWHM) shown as a function of the peak

radiation wavelength for measurements and simulation. Errors bars represent 95% confidence

intervals of Gaussian fits to the spectral peaks, like those shown in b.
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dispersion of the waveguide FEL. The low frequency branch dominates the interaction as

the compressed beam has a smaller bunching factor at higher frequencies. In Figure 4.12d

the spectrum full-width at half-maximum (FWHM) is plotted versus the peak frequency.

When approaching the zero-slippage condition at 165 GHz, the radiation pulse is only a

few cycles long and its relative bandwidth approaches 50%. This occurs for an injection

normalized energy γ = 11, where the largest amount of terahertz energy is predicted and

the largest relative deceleration in the electron-beam spectrum is measured.

The measurements and simulations both predict that the largest terahertz pulse energy is

produced from beams slightly detuned from the analytic zero-slippage condition. This is due

to the beam energy spread and transverse emittance, which contribute to a finite bandwidth

for the electron-beam dispersion line as shown in Figure 4.13a. Electrons with energies below

the zero-slippage resonant condition cannot be phase-matched with the electomagnetic field,

so a higher injection mean energy maximizes the number of particles participating in the

interaction.

Figure 4.13b shows the simulated evolution of the electron-beam and terahertz energy.

The behavior is initially quadratic, matching the expected tapering curve. Further into

the undulator, charge losses and dispersive effects limit the energy exchange as the field

amplitude reaches nearly 15 MV/m in the waveguide. The insets show two different snapshots

of the longitudinal profile of the electric field along the undulator exhibiting the strong chirp

characteristic of a large-bandwidth pulse propagating in a waveguide.

4.4 Tessatron2

The Tessatron experiment successfully demonstrated the use of zero-slippage and strong un-

dulator tapering to achieve 10% efficiency in a single pass of a 1 meter undulator, opening

the door to high average power applications with increased electron beam repetition rate.

However, the additional zero-slippage constraint restricts resonance to a single frequency

for a given undulator and waveguide aperture, undermining FEL tunability. It also puts

tight tolerances on transverse alignment and matching of the beam through the undulator
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Figure 4.13: 3D dispersion and simulation. a) Beam emittance and energy-spread broaden

the electron-beam dispersion such that more frequencies resonate at a slight energy detuning.

b) Simulated beam deceleration and terahertz growth along the undulator. The insets of the

THz field show frequency chirp due to waveguide dispersion.

as the wiggling trajectory amplitude becomes comparable with the waveguide size, making

it challenging to transmit the full charge through the system. In order to recover frequency

tunability, it is possible to purposefully detune the beam energy from the zero-slippage con-

dition, striking a compromise between maximal tunability and minimal slippage in the FEL.

Increasing the beam energy has the additional advantages of easing the charge transmission

in the system as well as increasing the frequency of the generated radiation.

In this regime off the zero-slippage condition, though, the strategy of fully compressing

a beam to sub-wavelength scale is limited by strong space charge forces as well as the

slippage introduced by the group velocity mismatch. In order to preserve the compactness

of the system, effective seeding for the FEL interaction can be obtained by injecting a

multicycle-long beam with strong spectral form factor at the system’s resonant wavelength

[50]. Over the years, various schemes have been developed to control the longitudinal beam

profile and generate microbunching at the ps-scale, including photocathode laser shaping

[120, 121], energy modulation of the beam on the ps-time scale [122, 123] and dispersive
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Figure 4.14: Phase resonance curves of the 3 lowest modes for the 4.05 mm diameter waveg-

uide used. Markers indicate group resonance and dashed/dotted lines show the bounding

fundamental cutoff frequency and free-space limit, respectively. The beam energy range of

the experiment is shaded.

section masking [124, 125]. For high current applications ranging from coherent radiation

generation to wakefield acceleration, it has been shown that space charge effects can be used

to effectively enhance the bunching content by controlling the evolution of the space-charge

induced beam plasma oscillations [126, 127].

For these reasons, a follow-up experiment was purposed and completed on the Pegasus

beamline along with several beamline upgrades. First, the copper cathodes were replaced

with novel multi-alkali photocathodes with high quantum efficiency (QE) enabling lossy

laser-shaping with birefringent α-BBO crystals without compromising bunch charge. Next,

a compact permanent-magnet chicane was designed for installation in the vacuum box, pro-

viding sufficient compression for high charge beams and reducing the necessary energy chirp

from the linac allowing operation at higher beam energies. A second solenoid was installed

after the chicane to provide strong focusing for matching the beam into the undulator. Fi-

nally, instead of using an interferometer to measure the terahertz autocorrelation signal, the

temporal waveform is measured directly using a single-shot electro-optic sampling diagnostic.

In order to target higher frequencies, a larger vacuum pipe from Nor-Cal (ID = 4.93 mm,
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Figure 4.15: Start-to-end particle tracking simulations along the UCLA Pegasus beamline.

Top) Evolution of the x,y,z rms moments of the particle distribution. Bottom) Energy and

energy spread of the beam along the beamline. Solid and dotted lines show transport of

beamlets and smooth longitudinal profile, respectively.

OD = 6.35 mm) was used with a copper waveguide (ID = 4.06 mm, OD = 4.76 mm) that

fit tight inside the vacuum pipe, eliminating the need for separate alignment. The waveguide

was cut such that it extended to the focus of the OAP, eliminating the need for the 1.33”

bellows that mostly responsible for clipping THz in the vacuum system.

Figure 4.14 shows the energy range of the experiment (shaded) determined by the chicane

energy acceptance to be between 7.5 − 8.5 MeV. For the same peak field of B0 = 730 mT,

zero-slippage resonance is reduced to γ = 11.35, where the low frequencies (∼ 120 GHz) are

bound below by the nominal waveguide cutoff frequency while the high frequency branch

can be tuned in the range 500-700 GHz.

Start-to-end GPT simulations of the beam transports are shown in Figure 4.15 for the

two different schemes of laser temporal shapes employed in the experiment, i.e. a sequence of
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Figure 4.16: The permanent magnet chicane (a) and second solenoid (b) installed on the

Pegasus beamline.

well-separated beamlets and a smooth flat-top longitudinal profile represented by solid and

dotted lines, respectively. The initial transport is similar to the previous experiment, except

that bunch charges can now exceed 250 pC with laser shaping. The booster linac cavity

is adjusted in phase and amplitude to both accelerate the beam and imprint a tunable

energy chirp for compressing the beam in the permanent magnet chicane. A quadrupole

triplet focuses the beam into the permanent magnet chicane (Figure 4.16a) where the dipole

entrance and exit angles are shaped to symmetrize the focusing in the horizontal and vertical

planes. After the chicane, the diverging beam is matched into the undulator with the second

solenoid (Figure 4.16b) as shown by the minimal betatron oscillations in the undulator.

Note that while the linac phase was tuned to achieve maximal compression for the smooth

distribution, the beam distribution was undercompressed to generate a multi-cycle charge

density explaining the differences in bunch length evolution.

4.4.1 Beam Generation

The Na-K-Sb cathodes for this experiment were grown at Cornell and transported to UCLA

in a vacuum suitcase. They provide an order of magnitude improvement in QE compared to

photocathodes, and while a full characterization of the photoemitted beam characteristics is
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Figure 4.17: Spectrometer measurements of beamlets and smooth charge distributions cre-

ated with α-BBO crystals and fused silica rod. Energy is mapped to time using simulations

calibrated to linac measurements.

beyond the scope of this paper, a maximum QE approaching 1 % in the UV and charges up

to 500 pC were recorded at Pegasus.

In practice, the 100 fs FWHM initial laser pulse is shaped using different thickness bire-

fringent α-BBO crystals [128]. A 150 mm long dispersive fused silica rod can also be added

when a smooth profile is desired. Stretching of the photocathode laser pulse reduces the

beam current density in the gun significantly reducing space charge induced energy modula-

tions. Most importantly, as described below, it is possible to generate a well separated train

of beamlets to enhance the seeding at higher frequencies in the FEL. This is critical when

the FEL is detuned from group resonance since a fully compressed single bunch no longer ef-

ficiently couples to radiation. In this case, the slippage-dominated interaction instead favors

a more advanced pulse shaping scheme with strong bunching in multicycle beams.

Figure 4.17 demonstrates pulse shaping as measured on the energy spectrometer at low

charge when the linac phase is set 40 deg off crest. The beamlet distribution is generated
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Figure 4.18: Simulated chicane fields with beam trajectory. i) A photo of an as built single

dipole magnet. ii) Energy dispersion measurements from screen 83 cm downstream of chicane

exit plotted against the original and modified RADIA chicane models.

with a series of 8, 4, and 1 mm crystals (inducing 8, 4 and 1 ps delays at the cathode) where

the 1 mm crystal is used to maximize the charge per beamlet without sacrificing beamlet

separation. The smooth distribution utilized an additional 2 mm crystal with the 150 mm-

long UV fused silica smoothing rod. For higher charges, the beam undergoes longitudinal

space charge oscillations [126] and the energy distribution is not a good representation of

the temporal profile.

4.4.2 Chicane

A compact, permanent magnet chicane was used to compress the beam within a short dis-

tance which fitting within the space constraints on the beamline. The R56 design value

of 6.4 cm allows for reaching full compression with a limited energy chirp, minimizing the

reduction in FEL gain associated to the beam energy spread. The chicane is comprised of

four C-shaped NeFeB permanent magnet based dipoles (shown in Figure 4.18i inlay) with

8 mm gap and peak fields up to 250 mT [129, 130]. Each dipole magnet consists of two

50 × 50 × 12.5 mm3 NeFeB magnets inside a yoke of 1006 High Carbon Steel. The outer
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Figure 4.19: Exit position and angle measurements as a function of upstream steering against

modified RADIA model. Data inferred from two screens 15 cm and 83 cm downstream.

and inner chicane magnets are offset -13 mm and -50 mm in x̂ relative to the beam axis to

target an energy acceptance of γ ∈ [15, 17], limited by the large bending angle (θb = 37◦).

The pole angles (θ1, θ2) were chosen to equally distribute focusing between the transverse

dimensions while maintaining zero dispersion in simulations. Note that the choice θ2 > 90 deg

was necessary to compensate for the simulated x-dependence in peak fields, seen in Figure

4.18. The magnet fields are tuned offline with iron shims and online with a motorized shunt

across the inner-chicane magnets. Figure 4.19 shows chicane focusing measured with raster

scans of a steering magnet 26 cm upstream of the chicane entrance, imparting a 5 mrad/A

kick with beam position measured on two screens, 15 cm and 83 cm downstream of the

chicane exit.

During the experiment, it was observed the chicane did in fact exhibit a small negative

energy dispersion, although at a level where beam matching into the undulator was not com-

promised. Figure 4.18ii shows data and simulations for the chicane dispersion as measured

on a screen 83 cm downstream of the chicane. Hall probe measurements performed after the

chicane was removed from the beamline showed little x-dependence in the magnetic fields

with the simulation discrepancy due to an incorrect value for the magnetic susceptibility of

the carbon steel yoke. Corrected simulations show agreement with the measured dispersion

data while suggesting minimal dispersion for θ2 = 90◦. Measurements of chicane focusing
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Figure 4.20: THz measurements. a) Energy recorded with the pyro detector as function of the

injected bunch charge as measured with an integrated current transformer located between

the gun and the linac. Shading shows simulated energy content of high and low frequency.

The black dotted line is a fit to the data for charge below 50 pC where transmission losses are

negligible showing the expected quadratic growth. b) Schematic of the EOS measurement

with measured temporal intensity and computed spectrum for beamlet distribution at γ =

16.3.

(Figure 4.19) inferred from two downstream screens as a function of upstream steering align

with the corrected simulations, demonstrating good agreement in the transverse dynamics.

4.4.3 THz Diagnostics

Figure 4.20a shows a measurement of THz pulse energy as a function of the nominal bunch

charge for a smooth beam distribution. Since the charge measurement is before the undula-

tor, it does not account for transmission losses in the waveguide. Below 50 pC, the energy

grows quadratically as expected for superradiant emission. As the charge is increased, space

charge effects cause a decrease in bunching and an increase in transmission losses through

the undulator, resulting in sub-quadratic energy growth. Note that these pulse energies have

not been corrected for the estimated 35% loss in THz transport. At the maximum injected
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charge of 350 pC, we measured 18.5 uJ at the detector (estimated 28 uJ before losses) and

160 pC transmitted through the 1-meter undulator in rough agreement with the expected

quadratic dependence. The efficiency in this experiment is notably lower than the previous

experiment [131] due to the reduced initial bunching factors at higher frequencies, and, even

more importantly, to the slippage effects which stretch the radiation pulse and lower the

decelerating field amplitude in the undulator.

In Fig, 4.20a we also show simulated results for the energy content at frequencies above

and below 300 GHz, which the pyro-detector can not distinguish and simply adds up. Inte-

grating photons over the entire spectral range completely hides the complexity of the radia-

tion pulse structure. To better understand the behavior of the system, the pyro-detector is

replaced with a ZnTe crystal and a single-shot, cross-polarized electro-optic sampling (EOS)

measurement of the temporal profile of the field [132] is implemented as shown in Figure

4.20b. In this measurement, the time-trace of the THz FEL electric field is encoded in the

spectrum of a synchronized chirped IR pulse and can be retrieved in a single shot which is

critical to eliminate issues related to timing jitter which severely limit the resolution above

500 GHz. In the time-traces of the pulse, corresponding to an input energy of 8.1 MeV,

it is immediate to observe a leading high frequency pulse followed by a low frequency tail.

The high frequencies are at the limit of measurement resolution while the low frequencies

experience greater slippage and fill a majority of the waveform. Due to the large dispersion

(and hence delay) between high and low frequency components in the waveguide, the entire

radiation pulse covers a window of nearly 200 ps, so that a complete measurement with

sufficient resolution requires stitching together multiple EOS images, each covering a 65 ps

time window. The timing is adjusted with a calibrated delay stage and ∼ 30 single-shot EOS

images are averaged at each position after subtracting temporal jitter. A Fourier transform

of the EOS trace shows peaks in the spectral response at 125 GHz and 700 GHz, matching

the analytical predictions for the resonant frequencies at the injected beam energy from Fig.

4.14.
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Figure 4.21: Simulations of smooth and beamlet charge distributions. a) Longitudinal phase

space at the undulator entrance with histogram projections and an inlay showing the spectral

bunching factors. b) THz energy and bunching magnitude (computed at 700 GHz) versus

the RF linac phase where 0◦ corresponds to the maximum energy setpoint.

4.4.4 Prebunching

In the absence of external radiation seeding, the beam must be manipulated to generate a

large initial bunching b which can be defined as the amplitude of the normalized Fourier

transform of the longitudinal current profile at a given frequency. At long wavelengths, seed-

ing can be achieved by compression to sub-wavelength scale, but the challenges in reaching

sub-ps bunch lengths with > 100 pC charges at moderately relativistic energies limits this

scheme as frequencies approach 1 THz.

More importantly, detuning from group resonance introduces slippage that erodes the

feedback between radiation and ultrashort beams. In order to compensate these shortcom-

ings, we employed the prebunched, multicycle charge density generated from beamlets using

α-BBO crystals. Even with similar bunching factors, the beamlets increase the intensity of

the high frequency content with respect to the fully compressed, smooth distribution. Figure

4.21a shows a comparison of the longitudinal phase spaces for the two distributions at the

undulator entrance with an arbitrary positional shift added for visual clarity. The effects of
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non-linearities in energy chirp and strong longitudinal space charge after compression can

be seen in the folded z-shape of the smoothed distribution. The beamlets are generated

using 8, 4 and 1 mm α-BBO crystals which have been found to maximize the bunching after

the non-linear longitudinal space charge oscillations in the beamline [126]. Gun and linac

phases are adjusted to tune the beamlet overlapping, resulting in a peaked current density

with partially tunable period. It has been pointed out [133, 134] and experimentally demon-

strated [135] that the emission of radiation can be significantly enhanced by using proper

energy-phase correlation. In practice, the RF phases are fine-tuned as optimal bunching

at the undulator entrance does not necessarily correspond to maximal emission due to the

evolution of the longitudinal phase space along the undulator [134].

Figure 4.21b plots the simulated bunching and high frequency energy for each distribution

at various compressing linac phases. Though both distributions have a maximal bunching

factor above 40% at phase resonance, the beamlet distribution reduces uncorrelated energy

spread and is more robust to slippage introduced off group resonance, leading to nearly double

the high frequency content of the smooth distribution. The smooth distribution requires

stronger compression and thus operates at a higher linac phase. When overcompressed, the

nonlinear chirp results in two density peaks which causes oscillations in the bunching factor

as their separation increases. Note that pulse energies are larger in ideal simulations than

experiment due to optimal beam transport and alignment. Both the beamlets and smooth

beam provide strong emission at the low frequency, generating 23 µJ and 31 µJ at 125 GHz,

respectively.

Figure 4.22 shows normalized lineouts of EOS measurements proportional to field in-

tensity where gun and linac phases were tuned to optimize the high frequency content. As

expected, the beamlet distribution generates a waveform with a larger relative high frequency

response. By integrating the lineouts over each frequency regime, it is estimated that the

energy ratio for high frequency to low frequency is improved by a factor of 2.5 consistent

with the simulation prediction.

134



0 50 100 150 200 250

Time (ps)

N
or

m
. I

m
ag

e 
P

ro
je

ct
io

n

Beamlets
Smooth

Figure 4.22: Normalized EOS measurements of temporal intensity for smooth and beamlet

distributions at γ = 16.3.
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Figure 4.23: EOS temporal measurements and computed spectra as function of beam energy.

(a) Ebeam arrival inferred from simulation. (b) Data traces are plotted over the start-to-end

simulation results from GPT-FEL. The dotted lines show the phase resonances from the

analytical theory. Inlay shows tunability of the central peak in the high frequency branch

and the associated rms spectral bandwidth (white) over theory (black).
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4.4.5 Frequency Tuning

While the zero-slippage condition is rigorously satisfied at a single frequency for a fixed

waveguide, different frequencies can be targeted when the beam energy is detuned above

resonance. Temporal EOS measurements are shown in Figure 4.23a as a function of beam

energy where gun and linac phase are adjusted to optimize high frequency bunching for each

measurement. The arrival times for the electron beam (solid) and phase-resonant frequencies

(dashed) are simulated to account for the beam velocity/group velocities in the waveguide

and for differences in beam propagation time to the undulator. Time zero is chosen as the

high frequency arrival of γ = 14.8 for both measurement and simulation.

The measured waveform aligns well with the theoretical arrival of both resonant fre-

quencies and the emission strength along the undulator can be indirectly inferred due to

waveguide dispersion as radiation emitted near the entrance and exit corresponds to the

waveform intensity near at the solid and dashed lines, respectively. The weak low frequency

signal in the middle of the waveform can explained by a reduction in bunching factor and

loss of charge transmission through the waveguide. At higher energies, charge is better

transmitted through the system and both the low and high frequency generation is more

uniform. While there is significant energy content in the low frequencies, the high frequen-

cies experience less slippage and are more closely coupled with the longitudinal phase space

dynamics.

Figure 4.23b shows the spectra calculated from the EOS measurements on top of GPT-

FEL simulations and the analytic phase resonances for an effective waveguide diameter of

3.75 mm. As when operating the beamline, compression setpoints in simulation were chosen

to optimize the bunching factor for the higher resonant frequency at the undulator entrance.

The low frequencies line up well with simulation and theory with the bandwidth narrowing

off resonance due to an increase in slippage. On the other hand, for the high frequency

branch, there is a clear redshift at the lowest input beam energies both in the measurements

and simulation which can be traced back to the large energy spread of the beam at the

entrance of the undulator for these cases. For γ > 16, the central frequency in the pulse
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is in better agreement with the analytical theory, but a clear increase in bandwidth can

be observed (again consistent with the simulation). This is attributed to the difficulty of

attaining and maintaining strong bunching at these high frequencies leading to a broadening

of the spectral form factor. The inset in Figure 4.21a more clearly shows tunability and

bandwidth of the source as a function of beam energy.

Increasing the spectral range and improving frequency tunability makes the THz FEL a

more flexible tool, and there are other implementation to consider. An interesting option

is to recirculate a fraction of the terahertz radiation and use it as a high-intensity external

seed for the interaction to improve the capture efficiency and maximize the final terahertz

energy. The temporal separation of the electron bunches would have to be matched to the

roundtrip of the terahertz cavity, typically on the order of 10−20 ns for an undulator length

of 1 m [136].

While a helical geometry features important advantages such as stronger FEL coupling

and a circularly polarized output radiation, a planar undulator would allow the aspect ratio

to be chosen in order to maximize charge transmission. Additionally, a planar geometry can

be used with an adjustable-gap curved parallel-plate waveguide that allows the zero-slippage

resonance condition to be tuned in order to obtain high efficiency over a larger frequency

range. Eventually wakefield effects in the waveguide will limit the smallest dimensions (and

therefore the highest frequency) achievable in the fundamental mode. In this case, zero-

slippage resonance with higher order modes could trade a reduction in coupling for increased

transmission and higher resonant frequency for a given waveguide.
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APPENDIX A

Beamline Synchronization

The Pegasus beamline uses LabVIEW VIs on several computers to interface and collect

measurements from various hardware. It is important that the data is synchronized and

saved with the same primary key (aka rudyshot) as defined by the master VI on the main

control computer.

An initial attempt to communicate the rudyshot from the master VI to multiple minion

VIs used a static database table, but this slow approach led to race conditions whenever the

repetition rate approached 2 Hz. With the installation of a new solid-state modulator that

could operate up to 10 Hz, water cooling and data synchronization became limiting factors.

A faster communication protocol using network streams has since been implemented, which

can propagate rudyshot values across a network connection in < 30 ms with little overhead.

A schematic of the Labview implementation is shown in Figure A.1.

First, we describe the main loop in a minion VI. Once data is acquired, the minion

appends the current rudyshot and performs analysis before storing the record in the database.

The time for acquisition can vary across VIs up to∼100 ms depending on the data complexity

(i.e. single value versus 16bit image). On the other hand, the main loop in the master VI

starts by incrementing and publishing the new rudyshot to all available minions. After

acquiring, analyzing, and storing in the database, the loop has to wait long enough to allow

all minion data collection to finish before incrementing and publishing the next rudyshot.

However, the wait cannot be too long such that minions read the next measurement before

receiving the correct, updated rudyshot.

It is necessary that each VI can run independently, and that handshakes are appropriately

handed when either VI is stopped or started. To be successful, both the master and minion
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Figure A.1: Schematic of synchronization logic in Master and Minion Labview VIs.

have to attempt the handshake within the specified timeout, otherwise an error is returned.

This process is controlled by the nearly identical writer and reader loops, creating a network

endpoint when the VI starts and destroying the endpoint when the user ends the program. If

there is an error, a handshake is attempted. If no error, the minion reads the last published

rudyshot. Note that a separate writer loop exists for each minion in the master VI.
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APPENDIX B

Dispersion

To quantify the effects of dispersion on a propagating waveform, we consider a gaussian pulse

measured at z = 0 with central frequency ω0, along with its Fourier transform

E(0, t) = e−t
2/2σ2

t e−iω0t and E(0, ω) =
σt√
2π
e−(ω−ω0)2/2σ2

ω (B.1)

where σωσt = 1 and we have used the identity
∫∞
−∞ e−ax

2+bxdx =
√
π/a eb

2/4a. The phase

advance of the different frequency components are determined by the dispersion relation

k(ω) and the temporal waveform can be written as a integral over the Fourier components

as

E(z, t) =
σt√
2π

∫ ∞

−∞
e−(ω−ω0)2/2σ2

ωeik(z)z−ωtdω (B.2)

We apply a Taylor expansion about the central frequency to second order,

k(ω) ≈ k0 + (ω − ω0)/vg + β2(ω − ω0)
2/2 (B.3)

neglecting higher order terms and defining the group velocity vg = ∂ω/∂k
∣∣
k=k0

and group

velocity dispersion β2 = ∂2ω/∂k2
∣∣
k=k0

. Substituting Eq. (B.3) and regrouping terms yields

E(z, t) =
σt√
2π
ei(k0z−ω0t)

∫ ∞

−∞
e−(ω−ω0)2(σ2

t−iβ2z)/2 ei(ω−ω0)(z/vg−t)dω (B.4)

where the velocity of the phase fronts is given by ω0/k0. If we assume β2 = 0, it is can

be seen from the integrand that the field magnitude is constant for z = vgt, such that the

waveform envelope travels at the group velocity. On the other hand, it is clear that a finite

β2 symmetrically alters the bandwidth of the waveform. Higher order expansion terms would

be needed to model asymmetric effects.
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Taking the integral and simplifying, we find

E(z, t) =
1√

1− iβ2z/σ2
t

e−(z/vg−t)2(1+iβ2z/σ2
t )/2σ

2

eik0z−ω0t

where σ = σt

√
1 + β2

2z
2/σ4

t and |E(z, t)| = (1 + β2
2z

2/σ4
t )

−1/4 (B.5)

where the effect of β2 on the waveform width and amplitude is evident. Sometimes σ is

used to represent the spread of the intensity instead of the field. Using the replacement

σE →
√
2σI , the change would be given as σ = σt

√
1 + β2

2z
2/4σ4

t . For waveguide dispersion

where ω2/c2 = k2 + k2⊥, it can be verified that vg = c2k0/ω0 and β2 = −k2⊥/c2/k30.
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