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PCA in High Dimensions: An orientation

Iain M. Johnstone and
Department of Statistics, Stanford University, Stanford CA 94305.

Debashis Paul
Department of Statistics, University of California, Davis.

Abstract

When the data are high dimensional, widely used multivariate statistical methods such as principal 

component analysis can behave in unexpected ways. In settings where the dimension of the 

observations is comparable to the sample size, upward bias in sample eigenvalues and 

inconsistency of sample eigenvectors are among the most notable phenomena that appear. These 

phenomena, and the limiting behavior of the rescaled extreme sample eigenvalues, have recently 

been investigated in detail under the spiked covariance model. The behavior of the bulk of the 

sample eigenvalues under weak distributional assumptions on the observations has been described. 

These results have been exploited to develop new estimation and hypothesis testing methods for 

the population covariance matrix. Furthermore, partly in response to these phenomena, alternative 

classes of estimation procedures have been developed by exploiting sparsity of the eigenvectors or 

the covariance matrix. This paper gives an orientation to these areas.

Keywords

Marchenko-Pastur distribution; principal component analysis; phase transition phenomena; 
random matrix theory; spiked covariance model; Tracy-Widom law

I. Introduction

Principal Component Analysis (PCA) is used throughout science and engineering to help 

summarize, represent and display data measured on many variables in terms of a smaller 

number of derived variables. The method originated with Karl Pearson in 1901 [1] and 

Harold Hotelling in 1933 [2]; further historical discussion appears in the book by Joliffe [3]. 

Its routine use in analysis of data required—and boomed with—the advent of electronic 

computers: an early classic in meteorology is the use by Lorenz [4] of the Whirlwind general 

purpose computer at MIT in the early 1950s to summarize air pressure data from p = 64 

stations across the U.S.

The scale of data collection has exploded in recent decades, and it is no longer uncommon 

that the number of variables or features collected, p, may be on the order of, or larger than, 

the number of cases (or sample size), n. In this “high-dimensional” setting, under certain 
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assumptions on the covariance structure of the data, the statistical properties of PCA exhibit 

phenomena that are perhaps unexpected when viewed from the historically standard 

perspective of many samples and a fixed number of variables.

This paper seeks to give an orientation to some of these high dimensional phenomena, which 

we label eigenvalue spreading, Section III, eigenvalue bias, Section IV and eigenvector 

inconsistency, Section V. The discussion is couched in terms of a particular assumed form 

for the covariance structure, the “spiked covariance model”, and focuses on a proportional 

asymptotic growth model in which p/n → γ ∈ (0, ∞) While certainly somewhat special, it 

allows clear statements of the phenomena which occur more widely. The results are 

introduced first in the setting of Gaussian observations, then Section VI reviews some of the 

many results now available beyond the Gaussian assumption.

Section VII looks at consequences of these high-dimensional phenomena in two estimation 

settings: covariance matrix estimation in a simple spiked model, and the exploitation of 

sparsity to estimate leading eigenvectors. Section VIII considers inferential questions in 

spiked models from the point of view of hypothesis tests.

Section IX departs from the proportional growth asymptotic model to review some non-

asymptotic results and bounds, valid for p and n fixed. Finally Section X contains some 

concluding discussion, including some directions for extension of spiked models both for 

PCA, and for a variety of other multivariate models.

A. Basics of PCA

We start with observed data X1, …, Xn ∈ ℝp,, always using n for the number of observations 

on each of p variables, dimensions, or features. In this paper the observations will be 

assumed independent, though frequently they are correlated, as in time series. The data for 

us is real-valued, but everything goes over to the complex valued data that arises in signal 

processing, and indeed results are sometimes easier to prove for complex valued data.

The p × p sample covariance matrix is

Sn = n−1 ∑
i = 1

n
Xi − X Xi − X ′

Mean correction by X is important in practice, but here for simplicity we assume that 

𝔼Xi = 0, and work instead with

Sn = n−1 ∑
i = 1

n
XiXi′ = n−1XX′,

where the p × n data matrix X has as its ith column the observation Xi. In the traditional 

formulation of large sample theory, p is taken as fixed and n is large, and it is then well 

known that we can estimate the population covariance matrix ∑ consistently. For example if 
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the Xi are assumed independent and identically distributed (i.i.d.) with 𝔼XiX′i = Σ , then 

Sn
a.s. Σ  as n ∞ .

Our main focus is1the eigenstructure of covariance matrices. Linguists and information 

theorists note that the most basic concepts typically have short representations in many 

languages. So it is with the eigenvalue-eigenvector decomposition of a sample covariance 

matrix, which has been given acronyms in many fields, curiously always with three letters, 

for example: PCA: Principal Component Analysis, KLT: Karhunen Loeve Transform, EOF: 

Empirical Orthogonal Functions, and POD: Proper Orthogonal Decomposition. It is also 

closely related to the SVD: Singular Value Decomposition of the data matrix X.

It is important to distinguish the population and the sample versions of the 

eigendecomposition. For the population covariance matrix, we write the eigenvalue-

eigenvector decomposition as

Σ = ℓ1 u1u′1 + … + ℓp upu′p = ULU′,

where U is a p × p orthogonal matrix whose columns are the eigenvectors ui and L is a 

diagonal matrix, with entries ℓi being the eigenvalues of ∑, by convention arranged in 

decreasing order, and assumed here to be distinct. The sample covariance 

eigendecomposition is

Sn = λ1 v1v′1 + … + λpvpv′p = V Λ V′,

where now the orthogonal matrix V has columns which are the sample eigenvectors vi and 

diagonal Λ has entries being the sample eigenvalues λi, again in decreasing order. Even with 

distinct eigenvalues, the sign of the eigenvectors is not identified—this is usually handled by 

specifying a convention for choice of sign. Again, in the traditional setting of p fixed, and 

large i.i.d. samples n, the sample eigen-quantities converge to their population targets: as n 

→ ∞, we have λk
a.s. ℓk and vk

a.s. uk, for each k = 1,..., p. Comprehensive references for 

this setting include classic texts such as [3], [5], [6].

p and n and all that. We noted that the traditional setting has p much smaller than n. 

Conversely, there are now many applications in which p is much larger than n - for example 

in genomics, in which there may be hundreds of patients n but millions of SNPs. For 

definiteness, this paper, and much theory, considers the important “boundary” case, where p 
is of the same order of magnitude as n, so that it makes sense to do asymptotic 

approximations in which p and n grow proportionately: γn = p/n → γ ∈ (0, ∞).

B. A low rank “spiked” covariance model

We focus on an idealized model for the population eigende-composition, consisting of a 

known ‘base’ covariance matrix ∑0 and a low rank perturbation:
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Σ = Σ0 + ∑
k = 1

K
hkuku′k, (1)

The signal strengths, or “spikes” hk, as well as the orthonormal eigenvectors uk are taken as 

unknown. The rank K is small, (and stays fixed in asymptotic models as p and n grow). In 

the simplest form of this “spiked” model, ∑0 is assumed equal to the identity matrix, or to a 

(possibly unknown) scalar multiple ∑0 = σ2I, [7]. The term generalized spike model is used 

when ∑0 is not necessarily a multiple of the identity [8], [9].

Our study of statistical properties will be primarily asymptotic, and we remark that an 

essential feature of high dimensionality captured in the (generalized) spiked model is that as 

p grows, the empirical distribution (defined in Section III) of the population eigenvalues of ∑ 

is approximated by a nontrivial limiting probability distribution—or by a sequence of 

distributions, one for each p, in the case of approximation by deterministic equivalents, e.g. 

[10, Ch. 6]) on [0, ∞). We contrast this with, for example, the important domain1of 

“functional data analysis” and functional PCA, in which the observation vectors Xi have 

some intrinsic temporal or spatial smoothness, and the eigenvalues of ∑ decay at some rapid 

rate, e.g. [11], [12].

Returning to model (1), regarding the eigenvectors u1,..., uK, we want to contrast two 

situations. The first makes no assumptions about them, while in the second, we assume that 

they are sparse in some known orthonormal basis.

For simplicity, we mostly assume distinct population eigenvalues so that eigenvectors are 

identified. Many of the papers cited in fact include cases when population eigenvalues 

coalesce (i.e., are degenerate), and some consider estimation of the resulting eigensubspaces, 

i.e., the linear subspaces spanned by the eigenvectors corresponding to distinct population 

eigenvalues.

1) Some examples: A (generalized) spike model may be an attractive and plausible 

idealization for data arising in many domains in science and engineering. An early example 

[13], [14] is provided by electrocardiogram (ECG) traces, Figure 1. The signal measured in 

the ith beat might be modeled as

Xi = μ + ∑
k = 1

K
hkskiuk + σZi . (2)

The periodic beats vary about the mean beat according to a small number of modes uk with 

random Gaussian amplitudes, the kth mode having variance hk. Independent Gaussian 

measurement noise is added. The corresponding covariance matrix Cov(Xi) has the finite 

rank perturbation form (1) with ∑0 = σ2I.

Some other examples, described superficially, might include
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• Microarrays: Xi might represent the levels of expression of p genes in the ith 

individual. The eigenvector ui may be sparse as only a small number of genes 

may be involved in a given pathway.

• Satellite images: Xi may be suitable sub-images. After a discrete cosine 

transform, the ui may be sparse, [15].

• Medical shapes: Xi may be vectors derived from landmarks of body organs. 

Eigenvectors ui may be sparse due to localized variation, [16].

• Climate: Xi might be measurements from a global sensor network at time i, the 

EOFs ui are often localized.

• Signal detection: Xi are observations at sensors, ui columns of the steering 

matrix, with signals ski (compare model (2)).

• Finance: Xi is a vector of returns of p assets at time i, ui are factor loadings, often 

not sparse, f ki = hkski are factors and Zi idiosyncratic terms.

In summary, the many examples suggest that the spiked model is worthy of theoretical study, 

especially because it is relatively easy to manage.

II. Statistical framework : Distribution of eigenvalues of the sample 

covariance matrix

For explicit calculations and proofs it is often helpful to assume that the observations Xi are 

Gaussian and we will do so in Sections II– V unless stated otherwise. The results often 

remain true if the vectors Xi are not Gaussian, though still independent, satisfying some 

structure and moment conditions – these will be discussed in Section VI.

The Wishart Distribution.

Suppose then that the column vectors Xi are independently distributed as Np(μ, ∑), a p- 
variate multivariate normal distribution with population mean vector μ and covariance 

matrix ∑. With mean μ = 0, the unnormalized sample covariance H = XX′ is said to have the 

Wishart Wp(n, ∑) distribution with p variables and sample size, or degrees of freedom n. In 

what follows, the “null” case will have ∑ = I, though one could put in an unknown scale 

parameter. If p ≤ n, which we suppose for the rest of this section, then H is non-singular with 

probability one. For p > n, the singular Wishart distribution is defined in [17].

For completeness, we briefly describe the joint density function of H and its eigenvalues, 

although they will not be needed in the sequel. Already in 1928, Wishart showed [18] that 

the density function of H ~ Wp(n, ∑) is

cpn det Σ −n/2 detH n − p − 1 /2exp − 1
2tr Σ−1 H .
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For details, including the normalization constant cpn, see e.g. [6, pp. 85, 62]. The joint 

density of the sample eigenvalues λ1 > λ2 > ⋯ > λp of S = n−1H was obtained by James 

[19], and has the form

cpn′ detΣ −n/2 ∏
i = 1

p
λi

n − p − 1 /2 ∏
i < j

p
λi − λ j 0 F0

(p) − n
2 Λ, Σ−1

where the normalizing constant c′pn is given in [6, p. 388], F0 0
p X, Y  is a hypergeometric 

function with two symmetric p × p matrix arguments X and Y , defined in [6, p. 259], and 

Λ = diag λ1 , …, λp .

These density functions, although explicit, are sufficiently elaborate in form that it is 

desirable to develop approximations. When dimensionality p and sample size n are large, 

such approximations may be derived from random matrix theory, as will be reviewed in 

succeeding sections.

III. High-dimensional phenomena I: Spreading of eigenvalues

Our first high dimensional phenomenon relates to the general fact, perhaps emphasized first 

by Charles Stein, [20], [21], that the sample eigenvalues are more spread out, or dispersed, 

than the population eigenvalues.

When p is proportional to n, the effect is very strong. Figure 2 illustrates this: in the left 

panel, all population eigenvalues equal 1, but the p = 100 sample eigenvalues have a 

histogram (over repeated sampling) that spreads over an order of magnitude! In the right 

panel, the population eigenvalues are equally spaced between 5 and 25, and the sample 

eigenvalues spread over a range from less than 1 to over 50. We see that the effect depends 

both on the population matrix ∑ and also very strongly on the ratio γn = p/n, becoming more 

pronounced as γn increases.

The Quarter Circle Law.

The importance of the spreading phenomenon, and the complexity of the exact joint 

distributions for fixed n and p makes it natural to look for approximations and limits. 

Marchenko and Pastur [22], see also [23], [24], gave a celebrated functional equation for the 

limiting distribution as p/n → γ for general ∑. The special case of ∑ = I, that is, the ‘null’ or 

‘white’ case, has a simple and important form that we show here. Suppose that H ~ Wp(n, I). 
The empirical distribution function for the p sample eigenvalues of Sn = H/n is given by 

Fp x = p−1 # λ j ≤ x .

If p/n → γ ≤ 1, then the empirical distribution converges Fp(x) → F (x), with the limit 

distribution F having a density function of the celebrated quarter-circle form

f MP x = 1
2π γ x b+ − x x − b− , (3)
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for x within the interval defined by the upper and lower edges b± = 1 ± γ 2 . The larger the 

ratio p/n, and hence γ, the larger the interval, in other words, the larger is the spreading of 

sample eigenvalues. If p is small relative to n then the distribution concentrates at 1, as 

occurs for p fixed, and as is to be expected when the data asymptotically allows perfect 

estimation. Figure 3 shows the examples p = n/4 in blue, and the extreme case p = n in 

green.

If p > n, the sample covariance Sn has only n positive eigenvalues (with probability 1), and 

the remaining p – n eigenvalues equal 0. If p/n → γ > 1, the limit distribution F may be 

written in differential form as

F dx = 1 − 1/ γ δ0 dx + f MP x dx,

with δ0 representing a unit point mass at 0, and fMP as above, supported on the interval 

b± = γ ± 1 2 .

The name quarter-circle law also recalls the related, and celebrated Wigner semicircle law 

[25] which describes the limiting eigenvalue distribution for symmetric square matrices with 

i.i.d. entries1.

IV. High-dimensional phenomena II: Eigenvalue bias

The second important phenomenon to emerge when p is proportional to n is that of bias in 

the top eigenvalues, combined with a phase transition in behavior that depends on the 

strength of the spike(s). Known as the Baik-Ben Arous-Péché (BBP) phase transition, it was 

first established for complex valued data in [27]. We first give an informal description of the 

bias and limiting distribution of the top sample eigenvalue(s) in the spiked model, and then a 

fuller set of references to the now large literature.

Consider a single spike, K = 1, and suppose that a basis has been chosen so that the 

population covariance matrix is diagonal: Σ = diag ℓ1 , 1, …, 1 . If p = γn, the sample 

eigenvalues are approximately spread out according to the Marchenko-Pastur distribution, 

with upper end point of the bulk at b+ = 1 + γ 2, compare Figure 4.

In a “null hypothesis” case, we have also ℓ1 = 1. In that case, the largest sample eigenvalue 

is located near the upper edge b+ and fluctuates on the (small) scale n−2/3 approximately 

according to the real-valued Tracy Widom distribution: λ1 ≈ μ(γ) + n−2/3σ(γ)TW1, where

μ γ = b+ = 1 + γ 2, σ γ = 1 + γ 4/3γ−1/6 . (4)

1An historical note: the quarter-circle law was derived for ∑ = I independently, though not published, by Charles Stein [26]. It was 
presented as a generalization of Wigner’s law in a Stanford course in 1966, though “it seemed clear at the time that he had done the 
derivation somewhat earlier (perhaps in the 1950’s)” (Stephen Portnoy, personal communication).
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For fixed γ ∈ (0, ∞), this was established for complex-valued data (with limit distribution 

TW2) in [28] and for real-valued data in [7]. An extension for p/n → 0 or ∞ (so long as 

min{p, n} → ∞) was given by [29].

In the non-null cases, with ℓ1 > 1, the limiting bulk distribution of all sample eigenvalues is 

unchanged, essentially since it is unaffected by a single value. More surprisingly however, 

for ℓ1 ≤ 1, + γ, the largest sample eigenvalue has the same limiting Tracy-Widom 

distribution – the (small) spike in the top population eigenvalue has no limiting effect on the 

distribution of the sample top eigenvalue. Put another way, asymptotically the largest sample 

eigenvalue is of no use in detecting a subcritical spike in the largest population eigenvalue.

A phase transition occurs at 1 + γ: for larger values of ℓ1 , the largest sample eigenvalue λ1 

now has a limiting Gaussian distribution, with scale on the usual order of n−1/2, compare 

Figure 5. The mean of this Gaussian distribution shows a significant upward bias, being 

significantly larger than the true value of ℓ1 . It is perhaps noteworthy that the phase 

transition point 1 + γ for ℓ lies buried within the bulk.

Appendix A gives a heuristic derivation and explanation for the inconsistency and the bias 

formula above the phase transition.

To summarize, for 1 ≤ ℓ < 1 + γ,  if p/n = γ + o n−2/3 ,

n2/3 λ1 − μ γ
σ γ

𝒟
TWβ, (5)

where μ(γ), σ(γ) in (4) do not depend on ℓ . The limiting Tracy-Widom distribution TWβ is 

more dispersed for real valued data (β = 1, [30]) than complex data (β = 2, [31]), but the 

centering and scaling constants are unaffected. The complex data result is established in [27] 

via analysis of Fredholm determinants, and the real case in [32] using a triadiagonal 

representation of XX′.

On the other hand, above the phase transition, ℓ > 1 + γ,

n1/2 λ1 − λ ℓ , γ
τβ ℓ , γ

𝒟
N 0, 1 . (6)

There is a simple formula for the limiting upward bias in λ1,

λ ℓ , γ − ℓ = γ ℓ
ℓ − 1 , (7)
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which does not vanish as ℓ increases; on the contrary it decreases to the limiting value 

γ as  ℓ ∞ . See Figure 6. The bias formula (as an almost sure limit) was established in 

[33]. The asymptotic variance is

τ1
2 ℓ , γ = 2 ℓ2 1 − γ

ℓ − 1 2 .

in the real case, the convergence (6) being established by [34] by a perturbative method. An 

O(n−1/2) Edgeworth correction term is given by [35]. In the complex case, τ2
2 = τ1

2/2, as 

shown in the orignal BBP paper [27], via a Fredholm determinant analysis.

If ℓ − 1 − γ wn−1/3, corresponding to the critical regime, then the limit distribution for λ1, 

still on scale n−2/3, is given by a modification of TW that depends on w, [27],[32].

In the domain of factor models in economics, [36] shows how these formulas exactly explain 

formerly puzzling phenomena observed in an influential empirical study [37] of properties 

of PCA applied to factor models published nearly 20 years earlier.

V. High-dimensional phenomena III: Eigenvector inconsistency

The third new phenomenon of the proportional sample size regime is perhaps the least 

recognized: namely that the leading eigenvectors in high dimensional PCA can be 

inconsistent.

Continuing the informal description in Figures 4 and 5, note that even when the population 

eigenvalue ℓ1 is well above the phase transition, there is a non-trivial angle between the 

sample eigenvector v1 and its population counterpart u1. As the signal strength of the 

eigenvalue ℓ1 decreases, the angle between v1 and u1 increases, indeed, when ℓ1 falls below 

the phase transition 1 + γ, v1 is asymptotically orthogonal to u1, and gives no information 

about u1. More explicitly, if p/n → γ > 0,

v1, u1
2

1 − γ / ℓ1 − 1 2

1 + γ / ℓ1 − 1 ℓ1 > 1 + γ

0 ℓ1 ∈ 1, 1 + γ ,
(8)

Appendix B gives a heuristic derivation of this formula, continuing the arrowhead matrix 

method set out in Appendix A.

Inconsistency of the largest sample eigenvector in this setting was first established by Lu 

[38], [39]. The formula (8) appears in various settings in the physics literature [40], [41], and 

rigorous discussions in high dimensional PCA under various model assumptions have 

appeared in many articles, including [34], [42]–[46].
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Figure 7 depicts the sample PC v1 as approximately uniformly distributed on a spherical cap 

at a non-zero angle to the population PC u1 More precisely, the angle v1, u1
2 concentrates 

near the limiting value given in (8). However, if v⊥ = v1 − v1, u1 u1 is the component of v1 

orthogonal to u1, then v⊥/ v⊥  is uniformly distributed on a unit sphere Sp−1. This picture is 

exactly correct when the data Xi are i.i.d. Gaussian [34, Theorem 6], and asymptotically 

accurate more generally – the “delocalization” property to be discussed in Section VI-B 

below.

The discussion here focuses on the proportional regime p/n → γ ∈ (0, ∞). The behavior of 

PCA in settings when dimensionality p is much larger than n has been studied for example 

in [47]–[50]. Broadly speaking, if the spike eigenvalues remain fixed as p grows, the 

inconsistency properties can only get worse, but if the spike eigenvalues grow sufficiently 

fast with p and n, then consistent estimation of eigenvalues and vectors can still be possible.

VI. Universality phenomena

As we have seen, in the context of spectral analysis of the sample covariance matrix, the 

boundary case, namely when p/n → γ ∈ (0, ∞), yields many fascinating phenomena 

associated with the spectral elements of the Wishart matrix S = n−1XX′ with far reaching 

implications for statistical inference and signal processing in high-dimensional problems. 

However, many of the asymptotic results, especially those related to the behavior of extreme 

sample eigenvalues, and the sample eigenvectors under a spiked covariance model, were 

initially derived under the assumption of Gaussianity. In spite of providing valuable insights, 

these results by themselves are therefore still limited in their scope for practical data 

analysis. However, during the last decade, a large body of literature has been developed, 

primarily by analysts and probabilists, under the banner of “universality”, that has greatly 

extended the scope of these results, and therefore enhanced the scope of statistical inference.

Universality in the context of random matrix theory (RMT) typically refers to the 

phenomenon that the limiting behavior of certain eigenvalue/eigenvector statistics does not 

depend on the distribution of the entries of the random matrix. One of the major threads of 

contemporary research in RMT has been to establish that the asymptotic behavior of 

eigenvalues both at the bulk and and at the edges essentially remains invariant as long as the 

first few moments of the distribution of entries match with those of a Gaussian data matrix.

A. Universality of eigenvalue statistics

At the level of convergence of the empirical spectral distribution, the bulk behavior of the 

eigenvalues of the sample covariance matrix is universal, as long as the entries of that data 

matrix X are standardized independent random variables satisfying a Lindeberg-type 

condition [51]. The limiting distribution of normalized extreme (or edge) eigenvalues started 

receiving increased attention with the works of Soshnikov [52] who proved the Tracy-

Widom limit of the normalized largest eigenvalues a Wishart matrix. This result, and its 

extension by[53] required the existence of all moments (in particular, sub-Gaussian tails) 

and symmetry of the distribution of entries of X. Phase transition phenomena for the leading 

eigenvalues of a sample covariance matrix were established by [54] assuming only the 
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existence of fourth moments of the observations. Bai and Yao ([55]) extended these results 

and the Gaussian limits for the leading sample eigenvalues when their population 

counterparts are above the phase transition point. In [56], they extended these results further 

to the setting of a generalized spiked model where the non-leading eigenvalues are slowly 

varying as opposed to a constant.

Over last few years, radical progress on establishing the universality phenomena have been 

made by Erdös, Yau and co-authors ([57]–[60]), and Tao and Vu ([61]–[63]) who used 

analytical techniques to study the question of both bulk and edge universality under much 

more relaxed assumptions on the entries. The “Four Moments Theorems” of Tao and Vu 

assert effectively that the limiting behavior of the local eigenvalue statistics of a matrix of 

the form XX′ is the same as when the entries of the data matrix X are i.i.d. standard 

Gaussian, provided the first four moments of the entries of X match with those of the 

standard Gaussian. A prototypical instance of such results is the following.

Theorem ([63]): Let X = ((Xij)) and X = Xi j  be p×n matrices with p, n → ∞ such that 

p/n → y ∈ (0, 1]. The entries Xij (respectively, Xi j) are independently distributed, have 

mean zero and variance 1, and obey the moment condition supi, j𝔼 Xi, j

C0 < C for a 

sufficiently large constant C0 ≥ 2 and some C independent of p, n. Moreover, all the 
moments of order up to 4 are identical for Xij and Xi j .. Let S and S denote the associated 

covariance matrices. Then the following holds for sufficiently small c0 and for every ε ∈ (0, 

1) and for every k ≥ 1:

Let G:ℝk ℝ be a smooth function obeying the derivative bound

∇ jG x ∞ ≤ n
C0

(where ⋅
∞

 denotes the largest element) for all 0 ≤ j ≤ 5 and x ∈ ℝk . Then for any εp ≤ i1 < 

i2 < ⋯ < ik ≤ (1−ε)p, and for sufficiently large n on depending ε, k, c0, we have

𝔼 G n λi1
S , …, n λik

S − 𝔼 G n λi1
S , …, n λik

S ≤ n
−c0,

where λj denotes the j-th largest eigenvalue.

[64] extended the domain of validity of the bulk and edge universality results even further by 

only requiring that the first two moments of the entries of X match that of a standard 

Gaussian, subject to a sub-exponential tail behavior. Key steps in the derivation of these 

results are: (i) to derive a strong local Marchenko-Pastur law, which gives a precise estimate 
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of the local eigenvalue density; (ii) to embed the covariance matrix into a stochastic flow of 

matrices so that the eigenvalues evolve according to a coupled system of stochastic 

differential equations, called the Dyson Brownian motion; (iii) to implement a Green 

function comparison method that establishes closeness between the eigenvalue statistics of 

the Dyson Browian motion at time t = O(n−1) with that of the original matrix, corresponding 

to flow at time t = 0. As a corollary, one obtains that the limiting distribution of the 

normalized largest eigenvalue of S is the Tracy-Widom distribution. The use of Dyson 

Brownian motion in the work of [64], can be broadly seen as a stochastic interpolation 

technique that builds a bridge between the data matrix X and a matrix of the same dimension 

with i.i.d. Gaussian entries with identical first two moments.

Above universality results are for the null Wishart case. For the more general setting, when 

X = ∑1/2Z, where ∑1/2 is a symmetric p × p matrix and Z is a p × n matrix with i.i.d., zero 

mean, unit variance entries, universality of extreme eigenvalues of S = n−1XX′ has been an 

object of intense study more recently. For a spiked covariance model, universality of extreme 

eigenvalues was established by [65] under the assumption that ∑ is diagonal with all but a 

finite number of diagonal entries equal to 1, and the entries of Z have vanishing odd 

moments. The latter assumption was relaxed by [66], who also established large deviation 

bounds on the spiked eigenvalues of S. Edge universality, and in particular the phase 

transition phenomena and Tracy-Widom limit for renormalized spiked sample eigenvalues in 

the sub-critical regime, for a general non-identity diagonal matrix ∑, has been established by 

[67] and [68]. They have used techniques closely related to those utilized by [64].

B. Universality of sample eigenvectors

Study of the behavior of the eigenvectors of a sample covariance matrix arises in the context 

of PCA. When X has i.i.d. zero mean Gaussian entries, distributional invariance under 

multiplication of X by orthogonal matrices implies that the matrix of eigenvectors of the 

sample covariance matrix S is Haar distributed, that is, the distribution is uniform on the 

space of orthogonal matrices. In particular, this means that the individual eigenvectors of S 

are uniformly distributed on the unit sphere in ℝp . Several results have been derived to 

describe analogous behavior of the matrix of eigenvectors even when X is not Gaussian. A 

first result of this kind was proved by [69] who showed that if the first four moments of the 

entries of the data matrix match those of the standard Gaussian, then the matrix of 

eigenvectors is asymptotically Haar distributed as p/n → γ ∈ (0,∞).

One of the qualitative features of these results is the observation that entries of individual 

sample eigenvectors are of similar magnitude, a phenomenon often referred to as a 

delocalization property of eigenvectors. Such delocalization results are typical byproducts, 

and indeed important ingredients, in the contemporary investigations on universality of 

sample eigenvalues ([63], [64]).

Eigenvectors associated with the spiked eigenvalues of S under a spiked covariance model 

are of obvious interest. The eigenvector phase transition result (8) suggests that when a 

population spike is below the phase transition limit 1 + γ, the corresponding sample 

eigenvector is orthogonal to the population eigenvector and therefore does not contain any 
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information about the latter. As a generalization, [66] established the large deviation 

properties of linear functionals of the sample eigenvectors under a spiked population model, 

with a diagonal population covariance matrix ∑ that is a fixed rank perturbation of the 

identity, and with distributions of observations having subexponential tails. They showed 

that, when a population spike eigenvalue ℓ j is above the phase transition limit 1 + γ, the 

corresponding sample eigenvector vj concentrates on the intersection of the unit sphere and a 

cone around the true population eigenvector, as in the Gaussian case (Figure 7). Moreover, 

the eigenvector vj is completely delocalized in any direction orthogonal to the corresponding 

population eigenvector uj, while for spikes below and strictly away from the phase transition 

limit, the corresponding sample eigenvectors are completely delocalized. A surprising 

finding of [66] is that, when a spiked eigenvalue ℓ j, say, is in close proximity to the phase 

transition point, so that, ℓ j − 1 + γ ≪ 1, the complete delocalization of the sample 

eigenvector vj in the direction of the corresponding population eigenvector uj breaks down.

VII. Estimation in spiked models

Spiked covariance model has a natural interpretation in terms of factor models that are 

commonly used in econometrics and various branches of sciences. Partly because of this, 

and partly owing to the well-understood characterization of the asymptotic behavior of the 

sample eigenvectors and eigenvalues, the spiked covariance model has gained popularity in 

high-dimensional statistical estimation theory and inference. Investigations have focused on 

two related problems, one primarily dealing with estimation of the leading eigenvectors of a 

spiked covariance matrix, and the other focusing on the estimation of the covariance matrix 

itself.

A. Estimation of leading eigenvectors under sparsity

One branch of this estimation theory assumes some form of sparsity of the eigenvectors 

associated with the spiked eigenvalues. Specifically, the covariance matrix ∑ is assumed to 

be of the form Σ = ∑k = 1
K ℓk ukuk

T + σ2I p, where ℓ1 ≥ ⋯ ≥ ℓK > 0, with the orthonormal 

eigenvectors u1,..., uK having only a few coordinates significantly different from zero. Under 

this framework, various nonlinear estimation strategies have been proposed for estimating 

the eigenvectors of ∑. This line of research started with [14] who established consistency of 

an eigenvector estimator that is obtained by a two-stage procedure. In this method, the first 

stage involves selection of coordinates based on thresholding the sample variances, which is 

then followed by a PCA of the selected submatrix of the sample covariance matrix. 

Improved coordinate selection schemes, together with detailed analyses of the minimax 

optimality of the proposed estimators have been studied by [70] and [71], while alternative 

estimation strategies and their asymptotic properties have been investigated by [72] and [73], 

among others. Under the assumed model, the eigenvector estimators can also be utilized to 

obtain consistent estimates of ∑ or ∑−1 (e.g. [74]).
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B. Estimation of the covariance matrix

While the assumption of sparsity of the eigenvectors allows one to solve the problem of 

covariance estimation in dimensions much larger than the sample size, in the absence of 

such structural assumptions, there is little hope of obtaining meaningful estimates in the p ≫ 
n setting. However, interesting covariance estimation procedures have been developed by 

making use of the eigenvalue and eigenvector phase transition phenomena in the “boundary 

case” p/n → γ ∈ (0, ∞) under the spiked covariance model. There are alternative estimation 

strategies (notably, by [75] and [76]) that do not rely on a spiked covariance formulation, but 

rather restrict attention to rotation-equivariant estimators. These estimators of ∑ are of the 

form Vη Λ V′, where V Λ V′ denotes the spectral decomposition of the sample covariance 

matrix S, and η(.) denotes an appropriate nonlinear shrinkage applied to the·sample 

eigenvalues (diagonal of Λ).

To keep the discussion well-connected with the remainder of this paper, below we focus on 

an estimation strategy [77] specifically designed for a spiked covariance model. It also 

shows clearly the consequences for estimation of each of the three high-dimensional 

phenomena discussed in Sections III, IV and V.

The strategy is inspired by early work of Stein, reported in the 1975 IMS Rietz Lecture, 

partly published in [78]. Suppose that Xi
i . i . d .N p 0, Σp , for i = 1,...,n, with ∑p having a 

spiked covariance structure, namely, the eigenvalues of ∑ are ℓ1 ≥ ⋯ ≥ ℓr > 1 = ⋯ = 1 for 

some fixed r ≥ 1. Because of the eigenvalue spreading phenomenon, we want to shrink the 

sample eigenvalues. Here we propose using a single univariate function η to do the 

shrinking. With no prior information about the population eigenvectors, we leave the sample 

eigenvectors alone. This leads to an orthogonally invariant estimator of the form

Ση Sn = η λ1 v1v′1 + … + η λp vpv′p

While this is a more special form than the general rotation invariant estimator Vη Λ V′
mentioned earlier, it turns out that in the present setting, nothing is lost asymptotically by the 

restriction to scalar shrinkers [77, Sec. 8].

In view of the eigenvalue bias phenomenon, and the explicit upward bias function (7) for the 

top sample eigenvalue, it is natural to think that one could just undo the bias by choosing the 

shrinkage function η to be the inverse of λ ℓ :

ℓ λ =
λ + 1 − γ + λ + 1 − γ 2 − 4 λ

2 λ > λ+ γ

1 λ ≤ λ+ γ .
(9)

Note that the inversion is to be applied only to sample eigenvalues above the phase transition 

λ+ γ = 1 + γ 2 .
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However, this idea is complicated by the eigenvector inconsistency phenomenon. In view of 

(8), the top population and sample eigenvectors u1 and v1 span a plane, shown in Figure 8. 

Inversion of λ1 to ℓ λ1  still makes an error because the error of v1 in tracking u1. 

Depending on how we measure the error, it seems clear that some other shrinkage value 

η(λ1) might lead to smaller error than simply undoing the bias.

Indeed, Table I shows some many commonly used orthogonally invariant loss functions, 

such as the Operator loss, Frobenius loss, Entropy loss, Stein’s loss and Fréchet loss, and the 

optimal shrinkage function, available in closed form, that minimizes the limiting loss

L∞ η ℓ1 , …, ℓr = lim
n, p ∞

Lp Σp , Ση Sn , (10)

in the asymptotic framework p/n → γ ∈ (0, 1] as p, n → ∞. Indeed, for operator norm, it is 

best to invert the bias function, but for the other loss functions, a notably larger amount of 

shrinkage is done, especially for Stein’s loss. The key point is that the choice of loss 

function critically affects which estimator is optimal, and this follows directly from the high 

dimensional phenomena outlined earlier.

VIII. Inferential questions under the spiked model framework

One of the earliest uses of the distribution of the largest eigenvalue of the sample covariance 

matrix is in testing the hypothesis H0 : ∑ = Ip when i.i.d. samples are drawn from a N(μ, ∑) 

distribution. This testing problem, typically referred to as testing the hypothesis of 

sphericity, has a long history. Mauchly [79] first derived the likelihood ratio test for 

sphericity under the classical fixed p and Gaussian observations regime. The (Gaussian) 

locally most powerful invariant (under shift, scale and orthogonal transformations) test was 

obtained by John ([80], [81]) and by [82]. [83] proposed extensions (for the unknown and 

known scale problems) of John’s test, while [84] proposed corrections to Mauchly’s 

likelihood ratio test for the p/n → γ ∈ (0, ∞) regime. Taking a different approach, Pillai 

([85], [86], [87]) utilized the asymptotic behavior of the largest sample eigenvalue to 

develop tests for sphericity under the fixed p (Gaussian) regime.

The Tracy-Widom law for the largest sample eigenvalue under the null Wishart case, i.e., 

when the population covariance matrix ∑ = Ip, allows a precise determination of the cut-off 

value for the largest root test. With a careful calibration of the centering and normalizing 

sequences, this cut-off value is very accurate in terms of having the correct level of 

significance even for relatively small p and n ([7], [88], [89]). In addition, the Tracy-Widom 

law for the largest eigenvalue has been extensively used for signal detection ([90], [91], [92], 

[93]). Many of these approaches use a sequential hypothesis testing framework whereby the 

Tracy-Widom law is used to determine the null distribution for testing the presence of an 

additional signal direction.

In view of various contrasting approaches, a detailed analysis of the behavior of the power 

function for tests of sphericity requires formulating suitable alternative models. The spiked 

covariance model provides such a convenient model that has easy interpretability, and at the 
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same time has enabled researchers to carry out precise power analysis. The asymptotic 

power of various tests for sphericity has been thoroughly investigated by Onatski, Johnstone 

and coauthors ([94], [95], [96]). We provide here a brief overview of these works.

Onatski et al. [94] studied the asymptotic power of tests of sphericity against perturbations 

in a single unknown direction as both p and n go to infinity. They established the 

convergence, under the null hypothesis and contiguous alternatives, of the log ratio of the 

joint densities of the eigenvalues of the sample covariance under the alternative and the null, 

to a Gaussian process indexed by the norm of the perturbation. They showed that when the 

norm of the perturbation is below the phase transition threshold, the limiting log-likelihood 

ratio process is nondegenerate, and the joint eigenvalue densities under the null and 

alternative hypotheses are mutually contiguous. Importantly, consistent with formula (5) 

above, under the contiguous alternative regime, the asymptotic power of the Tracy-Widom-

type tests is trivial (i.e., equals the asymptotic size), whereas that of the eigenvalue-based 

likelihood ratio test is always larger than the size and increases to one as ℓ 1 + γ .

IX. Finite sample behavior of principal components

While most of the work within the framework of high-dimensional PCA is asymptotic in 

nature, with both p, n → ∞ together, there have been notable recent developments in terms 

of providing finite sample bounds on the discrepancy between the population eigenvalues 

and eigenvectors and their sample counterparts. One of the first works of this kind is by 

Nadler [42], who considered a Gaussian observation model with a single spike for the 

covariance matrix, and established probabilistic bounds for fluctuations of the largest 

eigenvalue of the sample covariance matrix for arbitrary p and n. He also established a finite 

sample probabilistic bound for the sine of the angle between the leading sample eigenvector 

and the corresponding population eigenvector. A feature of the work by Nadler [42] is the 

use of “small-noise-asymptotics”, whereby for fixed p and n, the noise variance (which 

equals the value of the non-spiked eigenvalues) is allowed to converge to zero. He provided 

analytic expansions of the leading sample eigenvalue under this asymptotic regime. [97] 

extends this small-noise approach to other spiked multivariate models.

Understanding the behavior of eigenprojections – orthogonal projection operators onto the 

eigensubspaces – of the sample covariance matrix, not necessarily under the spiked 

covariance model, has received attention from multiple communities. Vaswani and coauthors 

[98], [99] studied signal recovery through PCA in a framework that allows both nonisotropic 

noise and noise that are correlated with the signal. Specifically, they considered the 

observation model

Y t = Qat + MtQat + vt, (11)

where Q is a p × m matrix with m ≪ p, with Qat denoting the random signal, while the 

uncorrelated noise component vt satisfies 𝔼 Qatvt
T = 0. For unknown p × p matrices Mt, the 

component MtQat represents the component of noise that is correlated with the data. They 

discussed various engineering and signal processing applications, including PCA based on 
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missing data. In each case, an estimate of Q is formed by the matrix consisting of the first r 
eigenvectors of the sample covariance matrix of {Y1,..., Yn}. Assuming sub-Gaussian signal 

and noise, [99] established finite sample probabilistic bound for subspace recovery error, 

defined as sine of principal angle between the column spaces of Q and Q . Under the spiked 

covariance model, their results are analogous to those by [42].

In related works, Koltchinskii and Lounici [100], [101] studied the behavior of Pr − Pr 2
2,

where Pr denotes the eigenprojection corresponding to the r-th largest distinct eigenvalue of 

the population covariance ∑, and Pr is the corresponding sample eigenprojection based on 

i.i.d. observations from the population, while the norm is the Hilbert-Schmidt norm. They 

established the uniform convergence of the standardized version of this quantity to a 

standard normal distribution. While their work is not within the context of the p/n → c > 0 

setting, they showed that the accuracy of the normal approximation is characterized by the 

so called “effective rank” r Σ : = trace Σ / Σ  where Σ  denotes the operator norm of 

∑. They also established finite sample concentration bounds for Pr − Pr 2
2 and 

nonasymptotic bounds its expectation and variance.

The framework adopted by [100] is closely linked with the functional principal component 
analysis framework studied by many researchers. Without delving into the huge literature 

associated with this topic, we just mention a few works that are most relevant. [102] 

established nonasymptotic bounds on the L2 risk of estimating the eigenfunctions of a 

covariance operator under different regimes, including polynomial and exponential decay of 

the eigenvalues of the population covariance operator. [103] established nonasymptotic 

bounds on the expected excess empirical risk associated with the projection of the observed 

data onto the eigensubspaces associated with the leading eigenvalues. The bounds show that 

the excess risk differs considerably from the subspace distances between the population and 

sample eigenprojections.

X. Concluding Discussion

We have provided a broad overview of the key phenomena associated with high-dimensional 

PCA. In this section, we summarize some of the recent trends, and discuss some unresolved 

questions, in theoretical analyses of PCA and allied methodologies. Strikingly, this literature 

is characterized by increasingly sophisticated utilization of tools from random matrix theory. 

The research directions we outline here are broadly categorized into three sub-categories: (i) 

extensions around high-dimensional PCA in different domains, including time-dependent 

data, variance components modeling, and hypothesis testing involving the covariance matrix; 

(ii) exploration of spike phenomena in other multivariate models; and (iii) resampling based 

inference for principal components.

A. Some extensions (around PCA)

Time dependent data: While traditional multivariate statistical analysis focuses on 

independently observed samples, much of the data in real world are intrinsically time-

dependent. It is notable that PCA is routinely applied for dimension reduction and signal 
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detection in data that can best be characterized as a time series. There is a voluminous 

econometric literature focusing on static factor models with time-dependent factor loadings 

when p/n → 0. There is also a growing literature on dynamic factor models (DFM) [104]. 

Until recently, there were little theoretical investigations on statistical properties of 

estimators under these models when p/n → c ∈ (0, ∞). Motivated by the question of 

determination of the number of dynamic factors in a DFM, Jin et al. [105] established the 

existence of a limiting spectral distribution of the ESD of symmetrized sample 

autocovariance matrices based on the “null model”, i.e., when the observations are assumed 

to be i.i.d. and isotropic. Liu et al. [106] extended these results to a class of linear processes 

with simultaneously diagonalizable coefficient matrices. A further relaxation on the structure 

of the linear process was achieved by [107]. These results raise the prospect of extending 

analyses already carried out for i.i.d. observation, such as establishment of phase transition 

phenomena, characterization of limiting distribution of extreme eigenvalues, establishment 

of CLT for linear spectral statistics, estimation of spectra of population covariance, to the 

setting of time-dependent data. Significant progress related to phase transition phenomena 

for singular values of sample autocovariances has been made in [108] and [109]. A method 

for estimating the joint spectrum of coefficient matrices of a class of ARMA processes has 

been developed in [110]. A different kind of phase transition phenomenon for the largest 

sample eigenvalues and associate eigenvectors, when the coefficient matrix of an AR(1) 

process has low rank, has been described in [111]. These results point to the possibility of a 

rich exploration of phenomena associated with eigen-analysis in the context of high-

dimensional time series.

Multivariate variance components: We have been concerned with spectral properties 

of data relating to a single high-dimensional covariance matrix. In a multivariate variance 

components model, more than one covariance matrix appears:

X = U1α1 + ⋯ + Ukαk .

Here Ur are fixed n × Ir design matrices, while the Ir rows of αr are independently 

distributed as Np(0, ∑r). High dimensional settings in which p, n and each Ir grow 

proportionately are of interest, for example, in quantitative genetics. Spectral properties of 

quadratic estimators Σr = X′BrX of the variance components ∑r can be investigated: [112] 

and [113] describe results for the bulk and edge eigenvalues of Σr . Work in progress by the 

same authors studies analogs of the results of Sections IV and V for spiked models for each 

∑r.

Tests of sphericity beyond the spiked alternative: In a recent work, Dobriban [114] 

dealt with the question of detection of directionality in high-dimensional data by going 

beyond the spiked alternatives formulation. His approach addresses the question whether it 

is possible to detect weak PCs under the general covariance matrix models of [22]. He 

formulated the hypothesis testing problem within the framework of a non-parametric, non-

Gaussian generalization of the spiked model. Specifically, denoting Ep to be the empirical 

distribution of the eigenvalues of ∑, this formulation boils down to testing
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H0, p:Ep 1 − h/ p E + h/ p G0

against

H1, p:Ep 1 − h/ p E + h/ p G1

where E, G0 and G1 are pre-specified probability distributions supported on ℝ+, and 0 < h < 

p is a specified constant. Clearly, by taking E = G0 = δ1 (degenerate at 1), the test becomes 

that of testing sphericity, while at the same time, taking h to be a fixed integer and 

G1 = h−1∑ j = 1
h δ1 + c j

 for positive cj’s leads to a spiked alternative. [114] developed new 

tests based on asymptotic Gaussianity of linear functionals of eigenvalues of the sample 

covariance matrix to detect weak PCs under this model. A related approach to test of 

sphericity, involving a correction for the likelihood ratio statistic to compensate for the 

dimensionality, is discussed in [115].

B. Other multivariate models

PCA is only one of a whole arsenal of methods of multivariate statistics which are based on 

eigenvalues and eigenvectors of one or two sample covariance matrices. Examples include 

signal detection, MANOVA and multiple response regression, canonical correlations, 

discriminant analysis and so on—these form much of the content of textbooks on 

multivariate statistical analysis such as [5]. James ([116]) organized all these problems into a 

hierarchy of five different classes (indexed by the classical hypergeometric functions pFq).

The high dimensional phenomena discussed in earlier sections extend to the James 

hierarchy. For example [95] and [96] consider the spike testing problem. Each of James’ five 

testing problems is related to the eigenvalues of E−1H where H and E are independent and 

proportional to high-dimensional Wishart matrices. Under the null hypothesis, both Wisharts 

are central with identity covariance. Under the alternative, the non-centrality or the 

covariance parameter of H has a single eigenvalue, or a spike, that stands alone. When the 

spike is larger than a case-specific phase transition threshold, one of the eigenvalues of E
−1H separates from the bulk. This makes the alternative easily detectable, so that reasonable 

statistical tests are consistent, in the sense that their power converges to 1 and a local 

asymptotic normality theory can be built [96]. In contrast, when the spike lies below the 

threshold, none of the eigenvalues separates from the bulk, which makes the testing problem 

more challenging. [95] shows that, the measures corresponding to the joint distributions of 

the eigenvalues under the alternative and the null hypotheses are mutually contiguous when 

the magnitude of the spikes are below the phase transition threshold. Furthermore, the log-

likelihood ratio processes parametrized by the values of the spikes are asymptotically 

Gaussian, with logarithmic mean and autocovariance functions. These findings allow 

computation of the asymptotic power envelopes for the tests for the presence of spikes in the 

different multivariate models.
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C. Bootstrapping high-dimensional PCA

Resampling methods have been very popular in statistics and machine learning due to their 

distribution-free characteristics and easy applicability. In finite-dimensional problems, under 

mild regularity conditions, bootstrap techniques provide a useful alternative to (nearly 

always) asymptotic inference procedures that typically involve quantities requiring costly 

estimation procedures. However, application of bootstrap techniques to high-dimensional 

inference, especially in the context of PCA, has had limited success. A succinct explanation 

of the failure of standard non-parametric bootstrap methods in the p/n → c ∈ (0, ∞) setting 

has recently been given by El Karoui and Purdom [117]. They also showed that, in the case 

where the population covariance matrix is well-approximated by a finite rank matrix, which 

corresponds to a spiked model with much larger spiked eigenvalues compared to the noise 

eigenvalues, the bootstrap performs as well as it does in the finite-dimensional setting. In a 

complementary study, Lopes et al. [118] developed a consistent method for bootstrapping 

linear spectral statistics of sample covariance matrices by appropriately modifying the usual 

parametric bootstrap procedure. This method has the salient feature that it allows the user to 

circumvent the difficulties of complex asymptotic formulas involved in the description of 

CLT for linear spectral statistics. Development of provably consistent resampling strategies 

constitutes an exciting new frontier for high-dimensional PCA and related techniques such 

as MANOVA and CCA.
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Appendix A: Heuristic derivation for bias

We work in the simplest setting, with a single spike. We follow, with modifications, the 

approach of Nadler [42]. Assume that the observations are Gaussian, and that population 

covariance matrix is diagonal, with a single signal dimension with variance ℓ1 > 1, so that 

Σ = diag ℓ1 , 1, …, 1 . In the spiked model, we can achieve this if necessary by a population-

level rotation of the variables.

The data matrix X, by assumption, has n independent columns, each with mean zero and 

covariance ∑. Now partition

X =
X′1
X′2

with the first 1 × n row containing the “signal” observations with elevated variance ℓ1 , and 

an (p − 1) × n matrix X′2 containing the noise variables.

Create modified data
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X =
X′1

V′2X′2

by rotating the noise variables by an orthogonal matrix V2 obtained from the 

eigendecomposition

n−1X′2X2 = V2 Λ V′2, Λ = diag λ2 , …, λp

The first row X′1 is left alone. Note that the rotation V2 = V2(X2) is data dependent.

In this new basis, the sample covariance has the form of an arrowhead matrix. Indeed, with

XX′ =
X′1

V′2X′2
X1 X2V2 ,

we obtain, on defining the scalar s = n−1X′1X1 and vector 

b = b2, …, bp ′: = n−1V′2X′2X1 ∈ ℝp − 1,

S = n−1XX′ = s b′
b Λ =

s b2 ⋯ bp
b2 λ2
⋮ ⋱
bp λp

The shaft of the arrow consists of the sample noise eigenvalues, which are of order 1 

because we have normalized the sample covariance matrix.

The border entries bi (the “head” of the arrow) are much smaller, as we now show. Since ∑ is 

diagonal and the data Gaussian, the first row X′1 is independent of the noise matrix X′2 The 

entries of X1 are i.i.d. N 0, ℓ , so we calculate

E b X2 = 0

E bb′ X2 = n−2X2′ E X1X′1 X2

= n−2 ℓ X2′ X2 = n−1 ℓ Λ

Thus, conditional on X2, each bj has mean 0 and variance n−1 ℓ λ j and so is Op(n−1/2).

Spectrum of arrowhead matrices For an arrowhead matrix, we can solve more or less 

directly for the eigenvalues and vectors. Indeed, the equation Xv = xv can be written (if we 

normalize v by setting v1 = 1) as
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s + b2v2 + ⋯bpvp = x

b2 + λ2v2 = xv2
b3 + λ3 v3 = xv3

⋮
bp + λp vp = xvp

From the last p − 1 equations, it is immediate that

v ∝ 1,
b2

x − λ2
, …,

bp
x − λp

, (12)

while the first equation reduces to the secular or characteristic equation2

f x = x − s − ∑
j = 2

p b j
2

x − λ j
= 0. (13)

Since the noise eigenvalues λj are distinct with probability one, a graph of f(x) against x 
shows that the sample covariance eigenvalues xi interleave the λj:

λp < xp < λp − 1 < ⋯ < λ3 < x2 < λ2 < x1 .

We can now read off the behavior of the top sample eigenvalue from the eigenvalue 

equation, rewritten in the form

x1 = s + ∑
j = 2

p b j
2

x1 − λ j
(14)

2Here is another route to the eigenvalue equation. We can write S − xI as a rank two 

perturbation of the diagonal matrix of the diagonal matrix D = diag(s − x, λ2 − x,..., λp − x):

S − xI = D + e1 b b′
e′1

where, with slight abuse of earlier notation, now b′ = (0 b2 … bp) and e1′ = 1 0…0 . Apply 

the matrix determinant lemma D + UV′ = D I + V′D−1U : the diagonal entries of V′D−1U
vanish because of the zero pattern in b and e1, hence
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I + V′D−1U =
1 b′D−1b

e1′ D−1e1 1
= 1 − 1

s − x ∑
j = 2

p b j
2

λ j − x .

Equivalently the eigenvalues xi solve the secular equation (13). together with the fact that 

s = ℓ1 + Op n−1/2  and the bj have expected square of order 1/n.

If p is fixed, the contribution of the sum is negligible and the leading eigenvalue converges 

to ℓ and so is consistent:

x1 = ℓ1 + Op n−1/2 + Op n−1

However everything changes if p/n → γ > 0. Recalling the behavior when we condition on 

the noise variables X2, we have

E s X2 = ℓ E b j
2 X2 = ℓ

n λ j

Proceeding heuristically, the sum on j in (14) now looks like an empirical average of a 

function of the noise eigenvalues λi:

x1 ≈ E x1 X2 = ℓ + ℓ p
n ⋅ 1

p ∑
j = 2

p λ j
x1 − λ j

Since the empirical distribution of the sample λj converges to Marchenko-Pastur, it is 

plausible and can be shown that as p/n → γ, the largest eigenvalue x1 converges to a limit 

λ ℓ  which satisfies the equation

λ ℓ = ℓ + ℓ γ ∫ λ
λ ℓ − λ dFγ

MP λ (15)

While the integral can certainly be evaluated directly, it is instructive to consider an 

alternative indirect approach. The Stieltjes transform of a probability measure, in this case 

the Marchenko-Pastur law, is defined by

m(z) = ∫ dFγ
MP( λ )
λ − z , z ∈ ℂ+,

and is known [51] to satsify the quadratic equation

γzm2(z) + (z + γ − 1)m(z) + 1 = 0. (16)
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Equation (15) above can be rewritten using the Stieltjes transform as

ℓ γλm( λ ) = ℓ − ℓ γ − λ , (17)

where we abbreviate λ=λ( ℓ ) . Evidently, we may substitute the latter equation into the 

former, evaluated at z = λ ℓ . When the resulting equation is viewed as a (quadratic) 

polynomial in λ, it turns out that the constant term vanishes, and so one arrives at the 

evaluation

λ ( ℓ ) = ℓ + ℓγ
ℓ − 1 . (18)

Thus, above the phase transition at 1 + γ, the bias is given by γ ℓ /( ℓ − 1) . So the bias is 

always at least γ, no matter how large the top population eigenvalue is.

Appendix B: Heuristic derivation for eigenvector inconsistency

Recall that by assumption the top population eigenvectur u1 = e1. Using the explicit form 

found in (12), one easily calculates the cosine between population and sample as

cos2α =
v,e1

2

v
2 = 1

1 + T2 , T2 = ∑
j = 2

p b j
2

(x1 − λ j )2 (19)

When p is fixed there are a finite number of terms each of order 1/n, so cos2 α → 1 and the 

sample eigenvector is consistent.

However, when p is large and proportional to γn, then T2 converges to a positive constant:

T2 ℓ γ∫ λ
λ ℓ − λ 2dFγ λ > 0

An easy way to evaluate this integral is to observe from (15) and (18) that

∫ λ
λ ℓ − λ dFγ t = 1

ℓ − 1 .

Differentiating w.r.t. ℓ, we obtain

λ′ ℓ ∫ λ
λ ℓ − λ 2dFγ λ = 1

ℓ − 1 2 .

From (18), λ ′( ℓ ) = 1 − γ/( ℓ − 1)2.Substituting into (19), we find that
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cos2α
1 − γ/( ℓ − 1)2
1 + γ/( ℓ − 1)

0
ℓ > 1 + γ

ℓ ≤ 1 + γ .
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Fig. 1. 
sample from an ECG trace sampled at 500 Hz, via Jeffrey Froning and Victor Froelicher, 

then at cardiology group at Palo Alto Veterans Affairs Hospital.
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Fig. 2. 
Eigenvalue spreading, for p = 100, n = 200. Population eigenvalues shown as histograms in 

red: left all at 1, ∑ = I, right equally spaced on [5, 25]: ∑ = diag(25,..., 5). Corresponding 

histograms of sample eigenvalues shown in blue. Figure credit: Brett Naul.
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Fig. 3. 
Two instances of the Marchenko-Pastur quarter circle law fMP (x) from (3): blue for γ = p/n 
= 1/4, green for γ = 1.
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Fig. 4. 
Below phase transition: Population quantities are in red, sample ones in blue. All population 

eigenvalues equal 1 except perhaps for the top one, ℓ1. Below the critical value 1 + γ,, the 

value of ℓ1 has no effect on the limiting distribution of λ1, the Tracy-Widom distribution as 

in (5).
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Fig. 5. 
Above the phase transition: for ℓ1 > 1 + γ, the limiting distribution of λ1 is now Gaussian, 

as in (6).
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Fig. 6. 
Upward bias of (asymptotic) mean of λ1, denoted by λ ℓ = λ ℓ , γ  in (7) above, for 

ℓ > 1 + γ. Marchenko-Pastur density shown for reference in blue – the phase transition 

point is well inside the bulk.
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Fig. 7. 
Inconsistency of the top sample eigenvector v1 for estimating the top population eigenvector 

u1 in the spiked covariance model when p ∝ n. See (8).
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Fig. 8. 
Schematic to motivate dependence of optimal shrinkage on the error measure. The observed 

sample eigenvalue λ1 is shrunk by η(λ1) along sample eigenvector v1. Since v1 is 

necessarily mis-aligned with the truth u1, the error incurred depends on the metric used.
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TABLE I

Optimal shrinkage functions η∗(λ; γ) for a selelection of loss functions under a spiked covariance model [77]. 

We set c = c( ℓ ) = (1 − γ/( ℓ − 1)2)/(1 + γ/( ℓ − 1)) and s = 1 − c2 .. Here ℓ = ℓ ( λ ), c = c( ℓ (λ)) and 

s = s( ℓ (λ)) depend on λ through (9) and implicitly also on γ. Values shown are shrinkers for λ > λ+(γ); all 

shrinkers satisfy η∗(λ) = 1 for λ ≤ λ+(γ).

Loss function Form of Lp(A,B) Optimal shrinker η∗(λ; γ)

Operator loss A − B op
ℓ

Frobenius loss A − B F
2 ℓ c2 + s2

Entropy loss 1
2(trace(B−1A − I) − log( A / B )) ℓ c2 + s2

Frobenius loss on precision A−1 − B−1
F
2 ℓ /(c2 + ℓ s2)

Stein loss 1
2(trace(A−1B − I) − log( B / A )) ℓ /(c2 + ℓ s2)

Fréchet loss trace(A + B) − 2( A B) (s2 + ℓ c2)
2
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