
UC Irvine
ICS Technical Reports

Title
Software defect classes and no-fault liability

Permalink
https://escholarship.org/uc/item/11v8f8tc

Authors
Turner, Clark Savage
Richardson, Debra J.

Publication Date
1999-04-05
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11v8f8tc
https://escholarship.org
http://www.cdlib.org/


Software Defect Classes and No-fault Liability

Department of Information and Computer Science
University of Califomia, Irvine, CA. 92697

Technical Report No. 99-17

April 5, 1999

Abstract

(13
Clark Savage Turner
Debra J. Richardson fUD,

Software is increasingly used to control systems that can cause harm to the consumer. There is consensus
among commentators that many software systems are "products" for purposes of the law of products
liability. However, strict products liability in tort has yet to be applied to software products. The day is
certainly coming.

The Restatement of the Law, Third, Products Liability, explains that the legal standard for defect in design
is based in negligence, while the standard for defect in manufacturing is strict. Expected costs for software
developers are higher for defects in manufacture because "due care" provides no defense under the strict
standard. The mere existence of the uefect that causes injury will trigger liability for damages. Software
defects have not yet been characterized relative to these categories.

The necessary characterization of defects depends on the existence of an algorithm that can distinguish
product design from manufacture; deliberate engineering decisions from nondeliberative activities in
implementing the design. Solution is sought by analogy to working algorithms used in traditional
engineering domains. Due to some properties fundamental to software, no such algorithm can be found.
Neither legal nor software engineering notions of defect present workable alternatives.

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)



Introduction

Software^ is a relatively new technological artifact to reach the consumer market. It

has made possible a new array of technological possibilities with its speed, efficiency

and general applicability. It is increasingly being tasked to control products that

are very valuable to society, but have the potential for personal injury. Such

products have already been involved in cases of personal injury and death.^

When a consumer is injured and the common law of products liability is invoked,

two different legal standards are available: negligence and strict liability. These

standards have different incentive structures for the parties and may result in very

different outcomes for similar facts. The application of each standard to the proper

case is very important to support the overall goals of the tort liability system. The

applicable legal standard is determined relative to the category of the particular

defect under consideration. The proper legal categorization of product defect is

therefore critical to proper operation of the law of products liability.

Software as a product may be fundamentally different from traditionally engineered

products.' If this is true, to what extent will the nature of this new product affect

the application of traditional legal and engineering tools and defect classifications

^For a definition of "software," see generally Schach, CLASSICALAND OBJECT-
ORIENTED SOFTWARE ENGINEERING, 4™ ED., McGraw-Hill, 1999; Gemignani,Product
Liability and Software, 8 Rutgers Computer & Technology L. J., 173 (1981).
^Leveson, Turner,AnInvestigation ofthe Therac-25 Accidents, IEEE Computer, Vol. 26,no.
7, July 1993.
' Hamlet,Are We Testingfor TrueReliability? IEEE Software, 21,July 1992.



used to determine the standard of liability? This is the central question for this

paper.

Organization of this Paper

In Part 1, the basics of the law of products liability are summarized, and emphasis

is put on concepts critical to analysis of defects classification. In Part 2, the

software product is introduced and realistically assessed for applicability of strict

products liability.

Part 1: Strict Products Liability

The modern law of products liability developed from roots in negligence and

warranty causes of action. In the 1960's strict products liability in tort developed in

response to the perceived inadequacies of negligence and warranty causes of action

when applied to products of modern complexity involved in personal injury.It

was to be based on proof of product defect rather than proof of fault. Once a product

defect was proven to have caused injury to the person, damages could be awarded.

On the other hand, for a negligence case, unreasonable conduct must be proved and

the injury may be merely economic in nature. The reasonableness of human

conduct presents many arguable issues, and this raises expected costs for the

•* For a good historical view ofthe development ofstrict products liability, seegenerally
Bimbaum, Unmasking the Test for Design Defect: from Negligence [to Warranty] to Strict
Liability to Negligence, 33 Vanderbuilt L. Rev. 593 (1980).



plaintiff in prosecuting a successful case.® Defendants have a lower expected cost

under this legal standard because they have a chance to win more cases by proof

that their conduct was reasonable.

To reiterate, In order to apply the strict products liability standard, personal injury

must be involved. Mere dissatisfaction with the product or economic damages will

not support a case; neither will the provision of services. The instrumentality

causing the injury must be considered a "product." Therefore, the first critical legal

inquiry may be whether a product is involved in the injury. Next, the defect must

be classified. In the defect classification many critical legal and technical issues

arise.

Product "Defect"

The term "defect" has evolved to encompass two general categories: defects in

"manufacture" and defects in "design." Both categories have given rise to the same

legal label: strict products liability. However, the defect in design has been a

controversial category respecting its proper inclusion under the strict products

liability rubric.®

Courts and commentators have, over time, recognized that the nature of the design

defect more properly involves a negligence analysis. This is justified on the grounds

®See generally, PROSSER AND KEETON ON TORTS, Fifth Edition, section 99(1), page 695,
West Publishing, 1984
®The argument has been that design defects should besubject to a negligence standard. See
note 4, supra..



that the element of human intention is essential to any design inquiry: the defect is

preventable.' The manufacturing defect correctly entails a strict liability analysis

since its essence is inadvertence in product construction: it is inevitable that such

defects occur to some degree.® The Restatement ofProducts Liability 3df section 2,

recognizes this in its definition of the categories of product defect:

Categories of Product Defect

A product is defective when, at the time of sale or
distribution, it contains a manufacturing defect, is defective in
design, or is defective because of inadequate instructions or
warnings. A product:

(a) contains a manufacturing defect when the product
departs from its intended design even though all possible care
was exercised in the preparation and marketing of the
product;

(b) is defective in design when the foreseeable risks of
harm posed by the product could have been reduced or
avoided by the adoption of a reasonable alternative design by
the seller or other distributor, or a predecessor in the
commercial chain of distribution, and the omission of the
alternative design renders the product not reasonably safe;
[...]

Notice that the manufacturing defect depends on a failure to satisfy "intended

design" and that due care (negligence analysis) is explicitly excluded from

consideration. Any application of this definition depends on a determination of

intended design for comparison to the product itself. Defect in design entails the

' See generally, Owen, Defectiveness Restated:Exploding the "Strict"Products Liability Myth,
1996 U. 111. L. Rev. 743.

'Id.
' Restatement Third, Torts: Products Liability, American Law Institute, 1998.



failure to consider and adopt a reasonable alternative design that would have made

the product reasonably safe, a basic negligence analysis."

A continuing role for the strict liability standard

Some might say that strict liability in tort fades in importance since design

litigation is now seen to be based in negligence. However, to the extent that the

strict liability standard is genuinely advantageous to plaintiffs, there will be

pressure from the plaintiffs' bar to characterize product defects as defects in

manufacture whenever possible."

The ultimate social importance of the strict liability standard itself is demonstrated

by the legal treatment of medical devices and pharmaceuticals. Unfettered

innovation in these areas of manufacture is considered so very important that the

design liability standard is raised well above ordinary negligence for the plaintiffs

case." However, even for such an important class of products, the manufacturing

defect will still result in strict liability."

" These ideas havebeen discussed long andhard in cases andliterature. See, for example,
note 7, supra.
" Note that defects in manufacture can always becharacterized simultaneously as defects in
design, since any gooddesign should anticipate the possibility of manufacturing defect and
plan to avoid or mitigate harmful effects.
" See generally. Restatement Third, Products liability, section 6 (c).



Determination of the Standard of Liability: Determination of Defect Category

Commonly understood meanings of the terms "design" and "manufacture" have not

proved sufficient to distinguish the categories of defect. The essential

characteristics of the two categories have been defined and developed over time by

common law decisions. Briefly, several basic characteristics that distinguish these

defect categories are shown below in table form." The classification of defects is

given across the top of the table and the conceptual dimensions that have been used

to distinguish them are given in the rows.

Design Manufacture

Standard used for

comparison
external, a social
standard for risk-

utility decisions

internal, the
manufacturer's own

standard is considered

Degree of human
intention

conscious decision of

the design engineers
inadvertent, a
"mistake"

Avoidability of the
danger

avoidable by proper
risk-utility
consideration

unavoidable

Defect 'Visibility" visible part of
functionality, a
planned characteristic
of the product

latent, not known
before the accident (or
QC would have
rejected!)

Consumer

participation in risk
reduction

sometimes consumer

found "best" risk

avoider

not possible because
defect is latent

FIGURE 1.

See Id., section 6 (b) (1).
" See generally the discussion and cases cited in Id., comments to section 2.



Standard Used for Comparison: Design is judged "defective" by a social standard.

The Court or jury must decide whether the design intention reasonably balances

social risks and utility. In contrast, a manufacturing defect is found by comparison

of the product to the manufacturer's own technical standards.If the product is

defective by internal technical standards, it is more dangerous than it was designed

to be!'®

Degree of Human Intention: Design defects may be avoided by a socially

responsible risk-utility consideration during design. Manufacturing defects cannot

be eliminated this way, they are not the result of "consideration" of alternatives at

all, but are failures in the process of construction of the product."

Avoidabilitv of the Danger Design defects involve conscious decisions of the design

engineers. Manufacturing defects are not the result of conscious decisions but of

inadvertence. The manufacturer knows that a certain amount of imperfection

results from the construction process, regardless of the care taken in quality

control.'®

Defect Visibilitv: Design features define the product's functionality. Thus, any

defect in design is a consciously chosen characteristic for the product. In this sense,

the defects are "known" and "visible" to anyone who understands the product.

" See generally, Prentisv. Yale Mfg. Co.. 421 Mich. 670, 365 N.W.2d 179 (Sup. Ct.MI, 1984).
See supra, note 5.

" See generally id.
Restatement of the Law, Torts, Products Liability, section 2, page 16.



Manufacturing defects are not seen or known since they are latent. They are

unplanned "features" of the product.

Consumer Participation in Risk Reduction: Some design features include necessary

risks in their beneficial use." In such cases, consumers must participate in risk

reduction in order to enjoy the product's benefits. Manufacturing defects are latent

and consumers cannot generally participate in risk reduction.^"

Practical Application of the Law

As shown in the Restatement Third, Courts seek "intended design" as the marker to

determine whether there is a manufacturing defect. Caselaw exhibits two basic

ways that Courts actually determine this marker:^^

1. design specifications

2. deviation from the norm.^^

" Consider the knife. Should manufacturers ofknives beheld liablewhen a consumer gets
cut by the knife? The cutting is the feature the consumer desires from the product, and is
expected to use it with care to minimize the chance of accident. This is a very simplified
analysis but does make the point.

For an interesting discussion of the issues, see Henderson & Twerski, Closing the American
Products Liability Fontier: The Rejection ofLiability Without Defect, 66 NYU L. Rev. 1263
(1991).
" See, for example, the casescitedin the Restatement Third,Products Liability, section 2 in
the Reporter's Notes, comment c. Manufacturing defects.
" This test for manufacturing defects was so named by Justice Traynor in Traynor, The Ways
and Meanings of DefectiveProducts and Strict Liability, 32 Term. L. Rev. 363, 367 (1965).



1. Design specifications as an expression of intended design

When the Court searches for the manufacturer's intended design, a natural starting

point is internal design documentation for the product. After all, the manufacturer

often uses such documentation in its own efforts at quality control. In this sense,

these documents can exhibit the manufacturer's intended design: a precise

definition of what the manufacturer intended to produce.

Ideal design specification documents contain a complete, consistent, correct,

unambiguous, comprehensible expression of the product design. If such design

documents were always on hand, if product features were always traceable to their

counterparts in the specification, and if the specification counterpart could be used

to answer the question, "is the specification satisfied," they would indeed be

sufficient to reliably make the desired distinction between design and

manufacturing defects.^'

Though there are cases where design documentation can be used to unambiguously

determine whether intended design had been properly executed, ideal

documentation is a chimera.^'' Real design documentation often does not provide

Have an expert compare the alleged product defect to the design specifications for
discrepancies.

Requirements always contain conflicts such as speed and safety, efficiency and cost, etc. 'It
is quite impossible for any design to be the logical outcome of the requirements' simply
becuase, the requirements being in conflict, their logical outcome is an impossibility." Pye,
THE NATURE AND AESTHETICS OF DESIGN, Van Nostrand Reinhold Company, 1978.



Part Two: The Software Product

Software is increasingly used to control physical machines capable of causing [and

contributing to causing] personal injuries. Nuclear power plant shutdown systems,

medical therapy systems, avionics systems, and automobile ignition and antilock

braking systems are some common examples.^' Personal injury and death has

already resulted from the use of such computer controlled systems.^® Caselaw has

yet to demonstrate the applicability of strict products liability to software

systems.^®

The Kind ofSoftware Considered in this Paper

Potentially dangerous software systems can:

1. directly contribute to risk of injury by use of an embedded software control

system^" in the context of a physical machine; and,

2. indirectly contribute to the risk by providing inaccurate information or advice''^

to other decisionmakers.

See generally the Risks forum, usenet: comp.risks. The archives contain volumes of
examples.

See supra note 2.
But one federal court has stated that software is a product for purposes ofproducts liability

law in the context of the aeronautical charts line of cases. See^ Winter v. O-P. Pntnam's .SnnR
938 F. 2d 1033 (9'' Cir. 1991).

Often the basic actions must be made so quickly as to eliminate the possibility of human
intervention, thus, automatic decisionmaking must be implemented in support of the safety
goals of the system.

11



Examples of the first tjrpe of software system include automated nuclear plant

shutdown systems, medical linear accelerator systems, and antilock braking

systems where system requirements do not allow time for human intervention.

Examples of the second t5q)e of software system include medical expert systems and

automobile mapping display systems where humans must make the ultimate

decisions. This work is only concerned with the first type of software, embedded

software that controls a physical machine capable of inflicting personal injury.

Software Products Liability

1. Software as a "product" for purposes ofproducts liability

Legal discussions about software and products liability question whether software

is really part of a "product" or more in the nature of a "service" performed for a

client. If all software is classified as the provision of a service, any strict products

liability analysis ends because the case does not involve a product.^^ Though this

issue has not been settled by the courts, there is a general consensus among

commentators that certain software systems are considered products for the

For example, artificial intelligence expert systems, hospital record systems, computerized
warning devices.

The negligence standard applies to the provision of services. If software is indeed seen as
service oriented, the attendant professional negligence issues will come to the forefront as
pressure from the plaintiffs bar rises. For a general discussion of such issues, see, Kaner.
Software Negligence and Testing Coverage, Software QA Quarterly, Vol. 2, No. 2, 1995 for a
discussion of software professional negligence issues.

12



purpose of products liability.Software that is part of a hardware system (already

a product) that is mass produced for the consumer market is the primary example.

The class of software systems considered here falls within this group.

The Scope of the Definition of "Software" as Used in this Paper

The analysis of "software," as the term is used in this paper, will focus on the

software design and the source code parts of the software product. Source code is

the implementation of the software design solution to a problem in a programming

language.^®

2. Software Defects in "Manufacture"

There is a conceptual difficulty with the term "manufacturing." That term, as it is

commonly understood, does not appear to describe many aspects of software

development and production.'® One software researcher explains that the only

" See generally Miyaki, ComputerSoftwareDefects: Should ComputerSoftware
Manufacturers Be Held Strictly Liable For Computer Software Defects'? (Comment) 8
Computer & High Technology Law Journal 121 (1992).

It is an integral part of a physical product. One might also argue that the software is a
"component" of a larger product system as in Wolpert, Product Liability and Software
Implicated in Personal Injury, Defense Counsel Journal, October 1993, 519, 523.

The source code is written by a human being and then translated (by another program) into
an isomorphic machine readable form. The machine readable form of the code is used in the
computer to bring about the desired result or functionality. The computer is a general
purpose machine and cannot perform useful functions without a properly written program.
Thus the program may also be considered a necessary component of the programmer!
computer product. The Restatement of Torts, section 5 explains that strict liability may be
had for defectivecomponents. This is an additional way to explain strict liability for software
even if it is not formally considered a "product."

Recall the difficulty with patentability of software algorithms made difficult by the
commonly used term "mathematical algorithms"? The term "algorithm" was used in a

13



"manufacturing" that occurs during software production is program compilation and

diskette reproduction." A legal commentator uses a similar analysis and concludes

that the only possible "manufacturing" defects for software occur due to physical

diskette or tape flaws, eliminating the possibility of such defects in the code itself.^®

Such analyses depend on the common definition of "manufacturing" as descriptive of

the legal essence of the defect.

Other legal commentators do not find the common usage of the term dispositive to

their conclusions. They would find manufacturing defects in programmer errors in

carrjdng out the instructions ofthe software designer.^® This is a very different

view of what constitutes a manufacturing defect in a software product.

As has been shown in the first section, common law courts have discussed the

essential characteristics of the categories of product defect in terms other than the

labels of "design" and "manufacture."

Software Flaws that are in the Nature of Manufacturing Defects

There is no argument about the nature of a physical defect in a diskette or other

physical media: it is a product manufacturing defect in the traditional sense. No

engineer designed such a thing as a product feature. However, when the defect is

different sense in software than it was in the law, and the law finally caught up to the
domain specific meaning.
" Pamas, et. al.. Evaluation of Safety-Critical Software, 33 Communications of the ACM
number 6, page 636, 638 (June 1990).
" See supra note 33, page 532.

14



not perceived as "physical," when it appears to be a defect in "logic," the legal

categories are not clear.

Consider this class ofsoftware flaw: the failure ofa programmer to satisfy the

software design when constructing source code using a compiled, high level

programming language.

1. Basic Characteristics of a Defect in Manufacture

In the previous part, fundamental characteristics of defects in manufacture are

contrasted with fundamental characteristics of defects in design. Recall, as shown

in figure 1, fundamental characteristics of the defect in manufacture are:

1. the flaw itself is discovered by comparison to the internal design standard of the

manufacturer;

2. the essence of the defect is inadvertence, not inadequate engineering intention;

3. the danger due to the defect is not avoidable by improved engineering analysis;

4. the defect is not known beforehand, it is latent;

5. the consumer is generally powerless to avoid the danger due to the defect

because it is latent.

The standard for defining a manufacturing defect is an internal one. Correctness of

software source code utilizes an internal standard, ideally the software design

specification. Notice that risk-utility considerations carefully done by the software

designers (during design) cannot eliminate these sorts of coding flaws, human

Brannigan & Dayhoff, Liability for Personal Injuries Caused by Defective Medical

15



programmers can and will make mistakes.^" Also notice that these flaws are

certainly unintentional, programmers are trained and will generally work to

produce correct code. Software programming flaws share the characteristic of

latency, for if they had been found, software quality control is responsible to reject

the product and the flaw must be corrected. Finally, the software consumer or user

doesn't normally have a chance to minimize risks due to such flaws because the

flaws are latent. Overall, this sort of flaw shares all the common characteristics of a

manufacturing defect.

2. Legal Definition of a Defect in Manufacture

The defect in source code considered above fits the general characteristics of a

manufacturing defect in products liability, but does it fit the formal legal definition?

Recall the salient part of the Restatement definition:

... when the product departs from its intended design even

though all possible care was exercised in the preparation and

marketing of the product; ... (emphasis is mine).

The essence of this definition is a departure from intended design.

The failure of a programmer to correctly satisfy the software design exhibits a

departure from intended design' by definition. The essence of the defect is the

Equipment, 7 Am. J. Law & Medicine No. 2, 123, 125 (1981).

16



difference between the designer's intention and the programmer's construction of

the code product to satisfy that design intention.

Application of the Law to the Software Product

Recall that there are two ways for Courts to divine "intended design" - comparison

with the design specifications and comparison with the production norm.

1. Manufacturer's software design specifications

Similar to other engineered products, the software product involves human

decisions that exhibit engineering tradeoffs:'*' reliability versus safety, cost versus

safety, performance versus safety, etc. These decisions are ideally recorded in

software product specifications.^®

The state of the art for software design specifications

Software design specifications that are not "complete" cannot be counted on to

express full design intention, they are only a partial expression. Inconsistent

specifications can exhibit opposing design decisions depending on what part of the

specification is consulted. Incorrect specifications cannot be relied upon to exhibit

the true intention of the designers. Ambiguous specifications can be interpreted to

See generally, Pamas, Clements, A Rational Design Process, How and Why to Fake It, IEEE
Transactions on Software Engineering, Vol. SE-12, No. 2, 251 (1986).

See generally Leveson, Safeware, Addlson-Wesley, 1995.

17



give differing views of design intention with equal authority. Any of these problems

with a software design specification interfere with its use as an "oracle" to answer

questions about whether the product satisfies its specifications. Software research

explains that the problems ofconsistency, correctness, completeness and ambiguity

are serious and continuing ones for software products of nontrivial size and

complexity.^^ These practical and omnipresent deficiencies with software

specifications become problematic for a Court whose task is to determine whether a

software product departs from its design intention.

2. Deviation from the norm

The problems discussed above are not new for engineers in general.'" Fortunately,

the deviation from the norm test can often be applied to determine whether the

product departs from its specifications without reference to the written design

specifications.

Surprisingly, the software flaws considered here may be cast as "generic," that is,

the defects will appear in all copies of the product. The flaw is present in the

software source code and then compiled into the executable. Copies are made from

that executable, therefore, the same flaw appears in all copies of the software

product. Thus, software exhibits a completely new class of product defect: the

The use ofsoftwaredesignspecifications is commonly taught in software engineering
courses, but no standard methods or models have yet emerged.

See generally, Jaffe, Completeness, Robustness, and Safety in Real-Time Software
Requirements Specifications: ALogical Positivist Looks at Requirements Engineering,
Dissertation, University of California, Irvine, UMI, 1988.
'*'* Petroski, TO ENGINEER IS HUMAN, Vintage Books, NY., 1992.

18



generic manufacturing defectNotice that the deviation from the norm test fails to

distinguish these defects from those of design, there are no "norms" to compare to if

all the copies are exactly alike.

Design and Construction ofSoftware Code

Similarly to all manufactured products, software production is often discussed in

terms of discrete stages where distinct activities occur.^®

Basic view:
Software Design
activities:

decisions and

engineering tradeoffs

Implementation of
Software Design:
construction of code to

satisfy design

However, more realistic views of the software process exhibit feedback loops

showing that these stages are not really discrete, but intertwined.'"

It is interesting to note that another commentator has thought about a similar problem: the
"inadvertent design defect." See Henderson, Judicial Review ofManufacturers' Conscious
Design Choices: The Limits ofAdjudication, 73 Columbia Law Review 1530, 1543 (1973). The
term "generic manufacturing defect" was suggested by another researcher in this area. Gem
Kaner, during our discussions about software defects.

Most evident in the "waterfall model" of the software process, Schach, supra note 1.
For a wonderful discussion of this issue, see generally Pamas, supra note 41.

19



activities

Implementation
activities:

construct code

feedback from

implementation to design

Nothing is really new here. This is true for automobile manufacturing, too. There

is certainly feedback from the assembly line, especially during the early stages of

production, where construction to the given design proves problematic and the

designers must rework the design to accommodate production and physical reality.^

This mixing ofdesign and implementation activities turns out to be more extensive

during software development than for traditional manufacturing ofphysical

artifacts, and it goes to the heart of our ability to distinguish design intention from

construction (implementation) activities in software code.

See generally Petroski, supra, note 45.

20



Here is a more detailed view of the software coding process:

Inadvertent

mistake in coding

Design
activities

Software programming -
"construction"

testing

feedback information to

Intentional choice of

coder: to make it work,

Notice that the feedback loop from programming to design results from broad

categories of intentional decisions that are possible, necessary, and occur frequently

during the programming activity for software/®

The scale and extent of this design activity during construction (programming) for

the software product is of a degree and on a scale that is new to engineers.™ If

major design is done concurrently with construction, then the two activities may

merge as an activity and the dividing line between them becomes very murky or

vanishes.

" This is explained in Pamas, supra, note 41. Note also that the design choices that occur
during construction are easily distinguished from the inadvertent manufacturing defects for
physical products by the deviation from the norm test.

21



For many traditionally engineered products, such as automobiles, the medium of

design specification is logical description, drawings, models and other ways of

capturing design intention so that the product may he constructed in a physical

medium, characterized by physical constraints. The design specification can be

used to construct a product within acceptable "tolerance" and be said to meet that

specification." There is a workable dividing line between the design and

construction of the product in that the physical medium is normally distinguishable

from the medium of design. And in difficult cases, the deviation from the norm test

can he used to place a given defect in a class reasonably well.®^

For software, the medium of design and the medium of construction are the same.

The software coder, in the general sense, is only as constrained as the designer was

in the construction of the product. With automobiles and many other traditional

physical products, the construction of a particular product is heavily constrained by

physical laws, by tooling, by training, by the parts made available by the

management in the plant, etc.'̂ These constraints are, for the most part, either

missing or not as prevalent in software construction. Consider the following chart

comparing software products to automobiles:

See generally, Pamas, supra, note 38.
" Notice also that for physical systems characterized by "tolerance," overdesign, or design
strength may be used to increase safety. Software cannot be easily characterized by
"strength" to increase safety factors.
" Thistest canbe used to determine the defect category 'Svell enough" for social and
engineering purposes. No arguments have been made that this is a bad way to decide, and it
has been in use for some time. See generally Tra3mor,supra note 22.
" For example, theguys on theFord Taurus line cannot just decide to build an Oldsmobile,
and they cannot decide to build a boat that day. However, the software programmer is
generally as free as the designer!

22



SOFTWARE AUTOMOBILE

MEDIUM of design
Logic Logic, drawings, ...

MEDIUM of construction

Logic
(must be "correct")

Physical
(must meet "tolerance")

The coding (software construction) activity is seen as one where both

implementation (construction, inadvertent mistakes) and design (intentional

choices) activities take place side by side. Since the deviation from the norm test

fails for software products, the only possibility for distinguishing a manufacturing

from a design defect is to find design intention in the design specifications and

documentation.

The Software Design Specification

As seen above, the nature of the software product dictates that design activities

necessarily accompany construction activities, recorded and intermingled in the

code. Ideally, the design decisions made (or changed) in code are then recorded in

some design document through the feedback loop shown above." In the end, after

the fact, this would result in a more "complete" set of design documents. However,

what is the real incentive structure to such ideal maintenance of the design

documents? What is the possibility of creating such ideal sets of design documents

for software? There are substantial factors that militate against such an ideal

23



document capable of distinguishing design intention from inadvertent coding

mistakes in the software [code] product:®^

1. it is expensive

2. it is time consuming

3. it is difficult, maybe impossible

4. many incentives for incomplete, ambiguous design documents®®

The first 2 reasons may go without much explanation, it takes time and resources to

accomplish such ideal documentation for a complex product. The difficulties of

creating such ideal documentation are known and active areas of research in the

software engineering community. Even the possibility of creating truly ideal

design documentation is in doubt among commentators in the field of software

engineering,®^ though methods for improvement are of great interest and the subject

of large efforts.®® Even if such ideal documentation could be created (or approached

through application of great resources), the realities of the market must be

addressed: the limitations of finite amounts of time and other resources.

Or maybe in the comments of the source code!
See Pamas, supra, note 41.
In response to some discussions I had with a fellow student of software engineering, Arthur

Reyes, he explained that in response to the definitions of product defect he would like to
create a design document that is always satisfied, so that he could pull all cases against his
product into the negligence realm. This is possible by writing specifications that are much
less detailed, or at a high level of abstraction, or maybe even "trivial" in the sense that most
any product would fit the specification.

The main arguments against such ideal documentation may be foimd in Pamas, supra, note
41.

®® Certainly the formal methods proponents believe that they have much to add to the value of
design documentation, including preciseness and ability to create products consistent with

24



Conclusions and Consequences

Injuries involving software products will be dealt with under the law of products

liability. However, in real cases, we need a method to distinguish the types of

defect in order to properly support the goals of the law of products liability: a

reasonable balance of product benefit against product risk. This paper shows that

there is currently no reliable method by which we can distinguish a manufacturing

from a design defect in the software code product.

The obvious solution is to relegate the software product to a pure negligence

standard for any defects. This has already been suggested for other reasons.®®

Though this path may be difficult,™ it certainly is possible and has the appeal of

uniformity. However, this path may produce a fundamental anomaly in the

common law. Is software, in general, of higher social value than medical devices

and pharmaceuticals? Pharmaceuticals and medical devices are subject to the strict

liability standard for manufacturing flaws even though the design standard is much

different than ordinary negligence in recognition of such high social value. In fact,

if software products were subject to a pure negligence standard a strange incentive

structure is set up: incorporate more software with more responsibility for safety in

any product and enjoy freedom from strict liability for inadvertent coding defects!®'

design documents. See generally, Schach, supra, note 1 for pointers to some work in this
area.

See, for example, Miyaki, supra, note 33.
See Kaner, supra note 32.
This is an alternative that produces more uncertainty in the field of safety, according to

software safety experts. See generally, Leveson, supra note 42.

25



This is in direct opposition to the fundamental goal of products liability: an

incentive towards safer products for society.

In conclusion, we see that embedded, real-time software products present new

challenges to the law of products liability to form rules that support the basic goals

of a safer society with balanced concern for promotion of innovation. Discussions of

the core issues must take place now, involving the main stakeholders: software

engineers and personal injury attorneys. These discussions must take place before

the first cases arise so that all involved may have the benefit of a thorough

discussion of the issues that will confront them, and not be stuck making decisions

that may prove to be irrational (or oppose basic social goals) in the long run.

26




