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Abstract

Mammalian cells have been used widely as biopharmaceutical cell factories due to their ability 

to make complex biotherapeutic proteins with human-compatible modifications. However, their 

application for some products has been hampered by low protein yields. Numerous studies have 

aimed to characterize cellular bottlenecks in the hope of boosting protein productivity, but the 

complexity of the underlying pathways and the diversity of the modifications have complicated 

cell engineering when relying solely on traditional methodologies. Incorporating omics-based and 

systems approaches into cell engineering can provide valuable insights into desirable phenotypes 

of cell factories. Here, we discuss cell engineering strategies for enhancing protein productivity in 

mammalian cell factories, particularly CHO and HEK293, and the opportunities and limitations 

of the genome-wide screening and multi-omics approaches for guiding cell engineering. Systems 

biology strategies will also be discussed to show how they refine our understanding of the cellular 

mechanisms which will aid in effective engineering strategies.
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Introduction

Many diseases result from dysfunction of specific proteins; thus, therapeutic proteins 

provide breakthrough therapies for diverse diseases. For example, monoclonal antibodies 

with cancer-targeting properties have revolutionized immunotherapy. However, the 

rising demand for high-quality recombinant therapeutics requires efficient cell–based 
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manufacturing. Thus, there has been a need to develop new host cells by engineering cellular 

pathways involved in cell viability, high cell density, and specific productivity. In particular, 

the host cell secretory pathway is a common bottleneck in the production of many difficult 

to express (DTE) recombinant proteins (rProtein). The overexpression of a heterologous 

protein can overwhelm the secretory pathway, leading to cell stress, inefficient secretion, 

and protein aggregation, ultimately triggering apoptosis. Thus, engineering the secretory 

pathway has been of interest in many cell engineering strategies to alleviate bottlenecks. 

Recent advances in high throughput omics technologies, genome wide screening, and 

systems biology now provide invaluable tools for investigating host cell traits linked to 

protein production and elucidate novel engineering targets to boost cell productivity. Here, 

we first discuss the two most common engineering strategies for enhancing protein yield: 

improving the cell viability and improving specific productivity. We then highlight advances 

in genome-wide screening (CRISPR and RNAi screening) and omics-based technologies 

(genomics, epigenomics, transcriptomics, proteomics, and interactomics) used to enhance 

protein productivity. Finally, we discuss how advances in systems biology strategies 

can elucidate cellular mechanisms involved in protein production and introduce effective 

engineering strategies.

Improving host cells by enhancing culture longevity and cell viability

In bioreactors, apoptosis can be triggered by different types of stress stemming from 

hypoxia, shear, nutrient depletion, temperature, protein misfolding, osmolality, and pH. 

Apoptosis engineering targets genes such as the BCL2 family, caspases, heat shock proteins, 

and cell cycle components, resulting in apoptosis-resistant cell lines with extended lifespan 

and higher viable cell densities [1,2]. For example, multiplexed CRISPR-Cas9 was used 

to remove pro-apoptotic Bak, Bax, and Fut8, leading to knockout cells with improved 

resistance to apoptosis [3]. Similarly, overexpressing HSP27, an anti-apoptosis heat shock 

protein, in monoclonal antibody (mAb)-expressing CHO cells boosted viable cell density, 

delayed loss of culture viability, and increased mAb titer without affecting N-glycosylation 

by slowing down caspase activities [4]. As another example, mTOR, a kinase regulating 

cell cycle and proliferation, was overexpressed, extending culture duration by up to 4 

days, leading to 2–3 fold increases in IgG titer [5]. In HEK293 cells, four pro-apoptotic 

genes were knocked out (Caspase-3, Caspase-6, Caspase-7 and AIF1), which generated 

an apoptosis-resistant HEK293 cell line with increased expression of recombinant apoptosis-

inducing proteins [6]. With the aim of engineering a high-producing host for efficient 

transient expression, Bax and Bak were knocked out in HEK293 cells. This double knock-

out increased resistance to apoptosis and shear stress, compared to the parental cells [7]. 

Additionally, several nutrients are converted to growth inhibitory byproducts during cell 

culture, such as lactate and ammonia [8]. Various metabolic engineering approaches have 

reduced toxic byproduct buildup in bioreactors [9]. For example, Mulukutla et al. engineered 

phenylalanine-tyrosine (Phe-Tyr) and branched chain amino acid (BCAA) catabolic 

pathways of CHO cells and significantly improved cell culture process performance [10].
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Improving host cells by boosting specific productivity

In addition to gains from enhanced cell viability, increased biotherapeutic yields can be 

achieved by increasing cell specific productivity. Towards this, engineering strategies have 

targeted different components and subpathways of the secretory pathway, e.g., chaperones, 

protein disulfide isomerases (PDIs), protein trafficking, and the UPR. For example, 

intracellular chaperone retention rates in the ER were improved, boosting productivity. 

Specifically, overexpression of the KDEL receptor (KDELR), which mediates localization of 

soluble ER chaperones, enhanced specific productivity of IgG by 13.2% during exponential 

phase and 23.8% in deceleration phase in CHO batch culture experiments. [11]. In another 

study, stable downregulation of two secretory pathway genes, Tbc1D20 and CerS2, in 

CHO-IgG-producing cells increased specific productivity by 50–66%. [12]. Furthermore, 

the benefits were neither cell line nor productspecific, as the same combined knockdown 

in CHO-DG44 cells stably expressing a distinct IgG antibody and human serum albumin 

showed significant improvements in specific productivity. Another group developed a high-

throughput microscale transfection platform to simultaneously target and test multiple genes 

encoding discrete ER or secretory pathway components [13]. Improvements in cell growth 

were seen with an even greater impact on specific productivity. This benefit may stem 

from improved vesicular trafficking at the ER/Golgi complex interface. Finally, specific 

productivity was also improved in HEK293 cells through folding and secretory pathway 

engineering. For example, overexpression of SNAP-23 (synaptosome-associated protein 

of 23 kDa) and VAMP8 (vesicleassociated membrane protein 8), involving in the fusion 

of secretory vesicles to the plasma membrane, increased the production of recombinant 

proteins in HEK293 cell [14].

Genome-wide genetic screens provide actionable engineering targets

Genome-wide screens using RNAi or CRISPR-Cas9 are popular, high-throughput 

techniques that have identified novel cell engineering targets (Figure 1) [15]. For instance, 

a cross-species screen in CHO cells using a mouse siRNA library identified targets for 

enhancing rProtein titer, including knockdown of Rad21 (from the cohesin complex) and 

Chd4 (from the histone deacetylase NuRD complex) [16]. Another CHO- specific RNAi 

screen identified genes that consistently enhance antibody production, including Cyp1a2, 

Atp5s, and Dgki genes (involved in distinct pathways and localized in different organelles). 

Targeting these genes resulted in >90% increase in specific antibody productivity [17]. 

Strategies for engineering HEK293 cells also were found using screens, such as an unbiased 

genome-wide siRNA screen developed by Inwood et al. [18]. As an example, Xiao et al. 

identified target genes associated with recombinant firefly luciferase expression in HEK293 

and demonstrated they were in several pathways involved in spliceosome formation and 

mRNA processing, transcription, metabolic processes, transport, and protein folding. Among 

the confirmed genes, silencing OAZ1, the gene encoding the ornithine decarboxylase 

antizyme1, was shown to enhance luciferase expression without affecting cell viability [19].

Aside from protein titer, screens have found targets for other important traits. For example, 

the metabolite glutamine is usually over-fed to increase TCA cycle flux. However, ammonia 

may accumulate and inhibit growth, so a cell-line capable of growing in glutamine-free 
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media would be valuable. A CRISPR-Cas9 screen in CHO cells identified a network 

of glutamine-sensitive genes, which included Abhd11, a poorly characterized lipase. Its 

deletion substantially improved cell growth in glutamine-free medium [20]. Another study 

exploited genome-wide CRISPR screens to identify innate immune and metabolic restriction 

factors that limit cell-derived influenza vaccine production. This included 64 putative 

influenza restriction factors wherein GO enrichment showed highly significant enrichment 

of terms related to influenza, but the majority of the putative restriction factors identified 

were not associated with these GO terms [21]. Thus, genome-wide screens can provide 

novel engineering targets (Figure 1); however, further knowledge is needed to fully describe 

the molecular mechanisms through which these targets contribute to desired phenotypes. 

The generation of additional omics data combined with systems modeling efforts can 

provide the needed insight into these mechanisms to make target selection more robust.

Omics-based profiling of host cells

To further our understanding of the cellular biology of rProtein production, many studies 

have leveraged omics data at the genome, transcriptome, proteome, and metabolome levels 

(Figure 2). The publication of the CHO-K1 genome [22] laid the foundation for CHO 

systems biology research. Analysis of additional CHO cell line genomes have further 

facilitated the targeted engineering for biopharmaceutical production and application of 

other omics technologies [23,24]. For example, an analysis of the CHO-K1 genome found 

homologs to 99% of human glycosyltransferases; however only 53% of these genes are 

expressed in CHO [22]. Such genomic studies can guide the targeted engineering of 

glycosylation genes to improve biopharmaceutical production in CHO cell lines [25]. 

Additionally, research in CHO genome stability has been facilitated by the ongoing efforts 

to sequence commonly used CHO cell lines. Spahn and Zhang et al. [26] leveraged whole-

genome sequencing data from 11 CHO cell lines and identified mutations in key DNA 

repair genes in CHO. The authors subsequently reverted these mutations through genome 

editing and demonstrated improved DNA repair efficiency and reduced chromosome 

instability, resulting in significantly increased stability of product titer in long-term cultures. 

Importantly, an accurate and complete reference genome sequence enables cell engineering 

efforts, which is being achieved by efforts to completely resequence C. griseus using the 

hybrid assembly with single molecule real time and short read Illumina- based sequencing 

[27], along with high- throughput chromosome conformation capture methods [28].

Transcriptomics studies have also helped determine gene targets for cell line engineering 

by leveraging analysis techniques such as differential expression analysis, gene ontology, 

and pathway enrichment. For example, transcriptomics helped identify 32 genes that are 

consistently upregulated in high producing CHO cell clones [29], suggesting these genes 

may play a role in mediating high productivity. An ontology analysis revealed that these 

candidate genes were predominantly involved in signaling, protein folding, cytoskeleton 

organization, and cell survival functions. They found several targets that showed beneficial 

effects, most notably overexpression of Foxa1 resulted in increased cell density, viability, 

and yield of difficult-to express proteins [29]. Another group conducted a meta-analysis of 

CHO transcriptomic datasets to identify engineering targets to improve rProtein production 

[30].
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Integrating additional omics can shed further light (Figure 2). For example, integrating 

transcriptomics, metabolomics and fluxomics showed that a broad adaptation of the cellular 

network compensated resources for recombinant protein production while maintaining 

the same growth rate in HEK293 cells. [31]. This study also showed upregulation of 

genes associated with endoplasmic reticulum stress indicates a possible bottleneck at the 

point of protein folding and assembly. In another study, the authors analyzed genomic 

and transcriptomic data, along with metabolic pathway analysis, from industrial HEK293 

variants and parental cells. Changes were found in the expression of cellular component 

organization, cell motility and cell adhesion. Specifically, alterations in gene expression 

between adherent and suspension included changes in cholesterol biosynthesis and other 

processes during the transition from adherent to suspension growth [32].

Since the correlation between mRNA and protein abundance is not always linear, many 

genomic and transcriptomic studies have been supported with complementary proteomic 

analyses. Proteomic technologies have quantified different proteins in high- and low-

producing CHO cell lines, enabling identification of protein factors potentially significant 

for protein productivity. For example, comparative proteomics of three CHO sublines 

identified regulators of cell growth and protein expression [33], ultimately proposing novel 

engineering strategies to optimize CHO host cells.

In addition to the more common forms of omics technologies, researchers have also applied 

metabolomics [34], lipidomics [35–37], epigenomics [23], and glycomics [38] to investigate 

mammalian host cell biology and reveal novel engineering targets. However, while the 

diverse omics technologies have been invaluable for profiling the cells and providing novel 

biological insights, the molecular mechanisms driving enhanced productivity still remain 

unclear. Interactomics could potentially elucidate mechanisms by identifying interactions 

between molecules, allowing us to directly capture the molecular pathways underlying 

different cellular phenomena, including protein secretion [39]. While high-throughput 

efforts have charted a significant portion of the human protein interactome [40], weaker 

and more transient interactions can often escape detection using standard methods such 

as co-immunoprecipitation. Since many transient interactions support protein secretion 

[41–45], novel proximity-based labeling techniques [46] have been applied to profile the 

dynamic interactions between recombinant secreted protein and the secretory pathway. For 

example, BioID, a method wherein a BirA domain is fused to the protein of interest, 

can biotinylate all interacting proteins. Using BioID, protein interaction networks were 

found that support the synthesis and secretion of SERPIN-family proteins, each bearing 

different post-translational modifications. The effort led to identification of oxidative folding 

as a cellular bottleneck and a specific disulfide isomerase (PDIA4) as a crucial enzyme 

for expression of disulfide bond-rich rProteins [47]. PDIA4 was also found to support 

monoclonal antibodies production in CHO cells [48], supporting its crucial role in secretion 

of molecules with multiple disulfide bonds. While these methods help generate the omics 

data of the future, without cutting edge modeling to understand the underlying connections 

we cannot create a complete picture of the interactome (Figure 2).
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Systems approaches supplement cell engineering by elucidating molecular 

mechanisms.

While omics data are shedding light on rProtein production in mammalian cells, many 

omics findings only provide a snapshot of the cellular mechanisms. More recently, efforts 

to integrate insights from omics studies with mechanistic knowledge of the mammalian 

host can provide more detailed insights into mechanisms underlying the phenotypes being 

studied (Figure 2). A recent study identified and validated key genes underlying high-density 

suspension HEK293 cell lines by taking a network approach to multi-omics data analysis 

[32]. For CHO cells, genome-scale metabolic models (GeM) [49–52] have accelerated the 

integrative analysis and interpretation of omics data by accounting for cellular context 

and biochemical constraints (e.g., metabolic flux balancing and mass conservation), and 

is enabling more targeted cell line engineering by bridging genotype and phenotype 

[53]. For example, an integrative analysis coupling GeM with omics data [54] identified 

significantly altered pathways during antibody production, including energy metabolism, 

extracellular transport, and amino acid metabolism. To identify genes characteristic of high 

mAb production, studies have paired GeMs with transcriptomic data [55] and enzyme assays 

[56]. GeMs have also been extended to the CHO secretory pathway [57,58], enabling the 

prediction of metabolic costs associated with protein secretion. Furthermore, the model also 

allows the simultaneous quantification of other secreted host cell proteins. By knocking out 

several host cell proteins that impose heavy secretory energetic burden, improved growth 

characteristics were obtained in the engineered cells [59].

GeMs have also helped identify targets to engineer in microbial species by simulating the 

effects of gene deletion, addition, and modulation of expression levels [60–62]. While, the 

complexity of mammalian cells has limited similar applications in CHO, hybrid models, 

combining data-driven approaches with mechanistic insights, provide a middle ground 

between the two types of models, allowing for more realistic parameterization of the 

otherwise complex, underdetermined GeMs [63,64]. For example, metabolite analysis was 

coupled with metabolic models to optimize fed-batch cultivations of CHO cells [65]. When 

augmented by machine learning, CHO metabolic models were shown to accurately predict 

time course dependent prediction of individual amino acid concentration in culture medium 

throughout the production process [66]. These approaches integrating mechanistic models 

with machine learning will be invaluable for increasing the predictive nature of GeMs by 

addressing uncertainty among some pathways.

Conclusion:

Advances in omics and genome editing tools have helped in the study and development 

of cell lines for rProtein production. However, the impact of omics technologies can be 

greatly increased when accompanied by systems approaches to elucidate the molecular 

mechanisms underlying desired phenotypes in biotherapeutic production. While systems 

approaches often shed light on engineering targets within the cell, the resulting titer 

improvements reported by the studies surveyed in this review [59,62] remained moderate 

in contrast with traditional approaches such as media and bioprocess optimization, clonal 
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selection, and bioreactor designs [67]. We argue that advances in omics data generation and 

sharing will help augment current modeling techniques, allowing for more context-specific 

predictions and engineering target discovery. As omics data are integrated with genome-

wide screens, phenotypic data (e.g., specific productivity and/or cell culture longevity) 

and systems approaches, a clearer image of the protein secretion and associated pathways 

will be achieved, thus allowing the generation of custom producers and an expanded 

list of engineering targets. Additionally, identification of the protein interaction networks 

supporting biosynthesis of rProteins helps define the product- specific secretion machinery, 

opening avenues for mammalian cell engineering efforts, wherein biotherapeutic production 

hosts can be rationally engineered to improve the titer of diverse proteins in a client- specific 

manner.
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Figure 1. 
Genetic screens using RNAi or CRISPR-Cas9 systems provide a high-throughput tool for 

gene target identification to boost protein production. While this method can help find 

engineering targets, it does not rely on understanding the underlying molecular mechanisms 

of the identified target. This can impede replicability or the ability to apply this engineering 

target in other contexts.
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Figure 2. 
Due to the importance of biologics in the healthcare field, there is increasing pressure in 

industry to efficiently develop high yield and robust cell lines for the manufacturing of 

therapeutics. The intersection of omics technologies and systems biology methods provides 

a unique opportunity to enhance our understanding of the mechanisms driving protein 

yield in cell culture, promoting a shift from empirical to rational approaches for cell line 

engineering.
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