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TRANSVERSE SPACE-CHARGE EFFECTS IN CIRCULAR ACCELERATORS.

Frank James Sacherer
R ' - Lawrence Radiation Laboratory

University of California
Berkeley, California

October 30, 1968

ABSTRACT

The particles in an accelerator interact with one another by
electromagnetic forces and are held together by externai focusing
forces. Such a many-bbdy system haé a large number of transverse modes
e v of oscillation (plasma osgiliations) that can be excited at character-
istic frequencies by errors in the external guide field. |

In Part I we examine one mode of oscillation in detail, namely
the quadrupole mode that is excited in uniformly ch#rged 5eams by
gradient errors. We derive self-consistent equations of motion for the
bean ehvelope and solve these equations for the case in which the space-
charge.forée‘is much less than the external focusing force,'i.e., for
strong-~-focusing synchrotroné; We find that the resonance inﬁensity is
shifted from the value predicted by the usual traﬁsverse incoherent
space-charge limit; moreover, because the space-gharge force depends on
the shape and size of the beam, the beam growth in aiﬁays>limited. For
gradient errors of the magnitude normally present in stfongefocusing

r.

synchrotrons, the increase in beam size is small provided the beam
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parameters are properly chosen; otherwise the growth may be large. Thué
gradient errors neea not impose d_limit_on the number of perticles that
can be accelerated.

In Part II we‘exahine the other modes of collective oscillation.
that are excited by machine imperfections. For simplicify we consider
only one-dimensional beams that are confined by harmonic potentials,‘and
only sﬁall-amplitude oscillations. The linearized Vlasov and Poisson
equations are used to find the twofold infinity of nofmai modes.and‘
eigenfrequencies for the stationary distribution that has uniform charge
density in real space. In practice, only the low-order modes (the

dipole, gquadrupole, sextupole, and one or two additional modes) will be

'serious, and the resonant conditions for these modes are located on a

tune diagram. These results, which are valid for all beam intensities,

~are compared with the known eigenfrequencies for the stationary distri-

bution that has uniform particie density in phase space, and are

extrapolated to the Gaussian distribution observed in the Brookhaven- AGS.
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INTRODUCTION
The beam of particles .in an accelerator is a manyébody system'of
charged parficlésvinteracting with one another by electromagneﬁic forCes
and‘held together by‘externél focusing forces. Such a many-body system
has a large number of modeé'of collecti&e oscillations that can be

excited by machine imperfections at characteristic frequencies. 1In the

limit of low intensities, the interactions are negligible, and the

collective modes and eigenfrequencies are easy to find. Consider, for
example, a one-dimensional beam in an external harmonic potential; in

the absence of space charge, the individual particles obey the équation'

— + vx = 0 , : (l)
etk o ‘ . . 1 dx » :

and any distribution of particles rotates rigidly in the x - > a@ o n

phase space with the frequencdy v. A distribution with cireular

symmetry (Fig. la) is stationafy, while a distribution with circular

symmetry, but displaced from the origin (Fig. 1b), oscillates with the

x' x' x!

v

A
)

@ @) ' (@)
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freqﬁency v - ih real space; the beam oséillates rigidly-back'and;forth
at the'frequency v. In fact, there is an infinite numbei of modes with
the circular form of Fig. 1b, each with a different‘ra&i51'dependeﬁce;
but eéch oséillafing ét,ffeqﬁency v. Similarly, there is aﬁ infiﬁité
number of modeé with the elliptical symmetry of Fig; lc; in real space,
these ﬁodes éxpand and éontract ﬁith‘frequency 2v. In genefal,.fheré-
is an iﬁfinite numﬁer of modes with a given néfoid‘symmetry of rotétion,
and each mode oscillates with the'frequency nyv. Therefore, iﬁ the
absence éf space éharge, the eigenfrequencies for.ény distribption aré
jusﬁ harmonics of the ﬁnperturbed betatroﬁ frequency, and each eigen-v
frequency is infinitely degenerate..

Resonance can occur when an eigenfrequency is an integral
multiple of fhe rotation frequency iﬁ the aécélerator, i‘e.,>when
ny = m; this condifioh is of ééurse identicai with that obfained from
the.éingle-particle approach, which is eqﬁivalent to the mény—body ‘
apbroach in the iimit of zero intenSity. Thus if.a driving tern of the
form %" cos k ¢ is added to Eq. (l); the various dipole médes (Fig. 1b)

will be excited if v =k and n = 0,2,4,-++; the quadrupole modes

ig. 1lc) are excited if v == and n =1,3,5,"*"; e sex upole
(Fig. lc) ited if g a 1,3 th tupol
modes if v = % and n = 2,&,6,"', and so on for the higher-order

.modes.

| Space—chérge interactions modify these fesulté.u For intensities
of interest in synchrotrons, and for smali—ampiitude oséillations, the
eigenfreéuencies are shifted by small amdﬁnts proporfional to the beam

intensity, and the degeneracy is removed so that the eigenfrequehcies
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occur in clusters near the unperturbed, degenerate values nv. As a
result, eaeh of the forbidden lines on a tune diagfem that would eccur
for an integer, half-integer, or subharmonic vaiue of v in the absence
of space cherge is split into an infinite number ef closely spaced
lines. For exemple; fhe various dipole modes that are excited for the
same frequency v =k in the-absence of space charge are excited iﬁ the
presence of space charge at different frequencies'that are cluetered_
below the value v = k: there.is one mode for which the beam oscillates
rigidly back and forth at the unperturbed freqeency Q,‘but there is
aiso,an infinite number of nonrigid modes whose eigenfrequehcies are
shifted Belpw v = kK by amounts proportional to the beam intenSity;v

The above remarks apply only to small-amplitude oscillations.

For larger-amplitude oscillations, space charge provides a very effective

mechanism for limiting beam growth through the nonlinear dependence of

'thebspace-charge'forces on the shape and size of the beam. A quantita-

tive study of this important effect is extremely difficult in the general

- case; however, it was shown by Lloyd Smitﬁland by P. M. Lapostolle2

-that the quadrupole mode excited by gradient errors in uniformly charged

beems can be analyzed even in the nonlinear regions;

| In Part I of this paper we exemine this case in detail. In 
Section 1, eelf-consistent eqeafions of motion for ﬁhe beam boundary |
are defived‘for uniformly charged beams with'one and two degreee of .
fieedom. The derivation, which ie more geneial than we need;:is
applicable-whenever the seiffforces and external forces ecting on the

individual particles within the beam are linear. In Section 2, the
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envelope‘équation for the one-dimensional (planér).beam.is solved, and

~in Section 3, various two-dimensional (cylindrical)'béamsxare examined.
For either case, the nonlinear character of the space-charge force ‘f'
causes the ffequency of theAquadiupole mode of oscillation to dependvon'

. its amplitude. Thus the beam growth caused by gradient errors is always
boundedr _Weralso investigate the process of‘resonance.crossing thatv
results from slow variations in externéi focusing or effective space?.
charge force ahd'find, for gradient errbfs of. the magnitude normally
encounfered in. AG synchrotrons, that resonances can be crossed in the
direction of increasing frequency with only a small increase in beam

size. Howéver, if fhe fesonénce ié crossed in the direction ofidecfeasing
frequency, a substahtiél increase in beam size can occur. For‘ekample,
if. the beanm is céused to bunch in the‘synchrotron, the space-charge force
inéreases, and the beam size can grow quite léfge ﬁear the intensity
predicted by the bunched incoherent space-charge'limit. However, a
prebunched beam-ﬁhosé intensity ié considerably largér than the incohéfent 
space-charge limit may be successfully accelerated. In this case, the
resonancé is croésed in the‘dirécﬁion of decreasiﬁg séace-charge force,
and very little beam growth occurs; Thus, the incoherent space-charge
iimit,wés’usually defined, need not impose a. limit on the beam intensity.

3

Similar results have been derived by F. Sacherer,” and by P. M. Lapostolle
and L. Thorndahl.
In Part II we investigate the other modes of collective oscilla-

tion that are excited by machine imperfections. For simplicity we

restrict our attention to one-dimensional, planar beams, and consider
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only small-amplitude oscillations.. In this case the twofold infinity
of normal modes (plasma oscillations) and eigénfrequencies can be found
by means of the linearized Vlasov equation and Maxwell's equations..

Harker5'has given a general prescriptidn for reducing these equations

4to an integral equation of the Fredholm type, but numerical methods are

usually required to extract the eigenfunctions and eigenvalues. HoWevér,
an important result of this paper is a direct method for finding all-

the normal modes and éigenfrequencies for the stationary distribﬁtion
correspoﬁding to a uniform charge diétribution in real’space.-'

In Section 1 of Part II, we find the eigenfunctions and eigen-

values for this case, and determine which modes are excited by a given‘

external driving force. Thén, since the complete eigenvalue spectrum

is known, the resonant frequencies fof the #arious dipole, qﬁadrupole, -
and highefeorder modesvcan be located on a tune diagram. Besides being |
uséful ih themselves, these resuits provide considerable'insight into
the more difficult normal mode problem for nonuniform beams.

In’Sectiqn 2, this mode strucfure is compared with that obtained
by Ehrman6 for the stationary distribution that has a uniform pafticle
distribution in phase space. In this case the ‘charge densityvin real
space 1is ﬁpproximately uhiform, and we find that the‘eigenv;lue spectra
for the two diétributions aré_very siﬁilar. Ve algg_exfend these

results to a distribution with Gaussian charge density similar to that

. measured for the Brookhaven AGS.
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PART I. UNIFORMLY CHARGED BEAMS IN THE PRESENCE OF
GRADIENT ERRORS

1. Envelope Equations

: In'fhis éection we find sélf;consistent envelopevequations for
" the case in ﬁhich both external forces and sélf—forces acting on the
paiticles in a beam are linear. The requirement of linear forces
'restricts ué'to uniformly charged beams and‘to linear machine imber—

'
fections, namely gradient errors, but allows us to study -the effects
of space‘charge oﬁ large-;mplitude 0séillations of the beam.

‘We first consider the simple caée of a beam with only-one
.aegreevof freedom, then exténd the derivation.to two degrees of free-
dom, aﬁdlfinally_shOW‘that the derivation can not be exteﬁded’to three

degrées of freedom.

The One-Dimensional Beam

o

“In the absence of space-charge forces, we take the equation of

motion for the individual particles to be
—= + K(s)x = 0., : ' - (1-1)

where K(s) is the external focusing functiOn; s measures distance
along the equilibrium orbit, and all the particles are assumed to have

the same velocity' %% = vp;

The self-forces acting on a particle arise from the internal

7

charges and currents within,the beam, ' as well as from the charges

and currents induced in the vacuum chamber walls,8 and also from

Wy

!
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- collisions. between particles. Fortunately, the effect of collisions

is ﬁegligible for the times of interest; and for the low particle densi-
ties typical in accelerators.9
We incorporate the image force into the exfernal focusing term
K(s) x, and neglect its nonlinear components and its weak dependence on
the beam size. Then the net effect of the image fofce is to shift the
tune by an amoﬁnt that depends on intensity and energy but not on the

beam size,8 in contrast to the direct self-force.

We also neglect the magnetic field’component_that>resuité from

| the transverse particle velocities because %% is onlyea hundredth ﬁbv

a thousandth of the longitudinal velocity %% . The force from the
' 2
. v v
remaining magnetic field component is Just -%— . times the electric
: c

force, and need not be celculated explicitly. The complete self-force
7 .

is_"'l/y2 times the electric force.

The electric field calculation is simplified'by neglecting the

~curvature of the equilibrium orbit and by neglecting the variation of

'the beam cross section with s. Aetually the beam is modulated around

the orbit circumference, but the modulétion_length is approximately half

“the betatron wavelength and ie therefore negligible in comparison with

the transverse dimensions of the beam.
The beam geometry then has the reetilineaf form ehOWn in Fig. 2,

and in order that the self-forces be linear, the charge'deheity must be

" uniform between the boundary planes, x = #X(s). We assume for the
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©

moment that the particles can be arranged in the x - %§ phase space -

to produce the required uniform charge density, and that the charge
density remains uniform as the system evolves under the.action of the
assumed linear forces. Then the equation of motion for the individual

particles 1is

2 2 N o
X o x(s)x - ;‘“e st —x -0 (1-2)
ds y 2X(s) ‘

eN

‘where §§Z%7 is the charge dénsity and éNl'»is the total charge per

unit surface area. It is convenient to write (1-2) in the form of the

two first-order equations . : ‘ {‘;
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i - P >
| 2 N | '
%B = [-K(_S) + );ﬂe 5 ¢ L ] X P) (1’5)
s y v, 2x(s)

and to define X =(;§> so that Egs. (1-3) can be written in the

compact matrix form
Bs) _p(s) w(s) , k)

We also introduce the transfer matrix T(s, sd)

X(s) = (s, s,) Xsg) e
“and note that the elements of T(s, so) satisfy

ar(s, so) . ‘

—g—— = F(s) (s, sp) (1-6)

Since we know the equations of motion for the individual parﬁicles,
we can determine the evolution of any distribution of particles in phase

space. 'Invparticular, if the diStribution at any position s, has the

0
elliptical boundary %M-l(so)X = 1, where M(so)b is an arbitrary

symmetric matrix, then the bbundaryfremains elliptical at other values

. of s and has the form

SRR -1, o | (1-7)
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where M(s) = T(s, so) M(so) %(s,_sb). We can use (1-6) to write the

equation of motion for M(s) in the differential form

S

S(s) | g M(’s) + M(s) F(s) o (1-8)

ds

which depends only on the known quantities F(s).

The relationship BetWeen the componeﬁts of M and fhe boundary
ellipse is shown in Fig. 3, where the aréa of the ellipse is. ﬁ VDet M,
which we designate by xE. We are primarily-interested in thé beam half-

Iz
/

aN
% |

Fig. 3.

width X(s) =¥ Mii(s) » and it is convenient to parameterize M(s) |

in the form

M= o A ._ )

- 'b‘.‘fl‘f

-y,
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[ 2 .
where P2 + §§ is the maximum extent of the distribution in the
X . , ’

p-direction.\ Then thé equations of motion for the guantities X(s),

P(s), and E(s) follow immediately from (1-8):

11 22

which is Jjust Liouville's theorem. When the form of F(s)‘ corresponding - -

ax
ap : o |
3 = FxX + F22P +, Flzx_5 ’ | (1-10)
&E 1 | |
- '2'_(F11 ¥ '.F22>E

For a Hamiltonian system, F,. + F,, =0, and thus E is constant, -

to Eq. (1-3) is used, Egs. (1-10) reduce to

d2X : . E2 Enele ‘
- *+ K(s)X - = - 373 < o , o (1-11)
ds X Y mvp _

for the beam half-width X(s).

We now demonstrate the Eq. (1-11) is self-consistent, i.e., that

the individual particles can be distributed in'phase space to produce

the assumed uniform charge density within x = #X(s). We require that

the particle'dénsity in x-p space at s = sb have the form

0
f(x; D, SO).= f[%M-l(so)X], where f(x, p, s)dxdp 'is the number of

particles at s within the ranges (x, x + dx) and (p, p + dp).. Then"™
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at arbitrary s the distribution has the form f(x, p, s) = f[%M'l(s)x],

and the functional form of f is determined by the requirement

—xm - f e (s)xlap . Coaae

We solve this equation by introducing the néW‘variablés

v S
' 1 . . :
v = <; = D(s)X, where the matrix D(s) satisfies
D(s) D(s) = M7 (s) . . (1-13)
. : &
s el L ..o 2
Then the quadratic form XM ~(s)X is transformed into vyE Vs, and
the elliptical distribution becomes circular, as.shown in Fig. L. e
P Yo Vo
| //////{>v ///A ~ N
il b N
//} x v ‘ , 1/ v
(M,// K\Mqlé; 1 \\S“MJ// -
(a) o (p) - (e)
Pig. 4. . . o : et
Actﬁﬁlly} the four components of D(s) ‘are not uniquely specified by s e
(1-13) because M(s) depends on only three parameters; the ellipse is S

mapped into a ‘circle buﬁ'the:orientatibn of.the circle is'not épééified;_
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We fix the form of D(s) by requiring that the vertical lines

x = constant be mapped into vertical lines in. v (Fig. bec). Then

- . D, =0, and D(s) is determined by (1-13) to be
1
x 0 |
D = | (1-14)
2 X |
E E_}

This is a convenient choice for D(s) because it maps the integration

over p in Eq. (1-12) into an integfation over ALY with v, = Zéél_dp. .

A ' ‘The requirement of uniform charge density is then simply
4
Vet -. . . N -
. v o 1 2 .2 ‘ v
T _ = - jf(vl Fv,Sav, : , (1-15)
whére the'range of integration is restricted to vl2 + v22 £ 1. Note
that (1-15) is independent of s. 1In terms of the radius
r = v12 + v22 , Eq. (1-15) becomes »
[ |
Ny f!rggrdr ‘
% = _ = - (1-16)
v Vre'- v 2
1 1
'  ‘This integral eQuation can be inverted by Abel's theoremlo to give
- o N, | ' N .
T (X)) = L = - LN —
' | - N A=A \/2 \2 Ex }°
_ 27E V1 - XM X 2x VE© - (Xx' - X'x)° - ./
) ' , . | : (1)
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which is the_ﬁnique solution of. . (1-12). This demonstrates tﬁat»the
particle distribution required to produce a uniform charge density doés
indeed exist. It‘occupies the interior of the boundary ellifsev »
' %M'lxv= 1, and thé particle density approaches infinity‘at the bQundafy,
‘Equation (1-11) is then the envelope equation for this diétriﬁution;
'Actualiy; this method for finding self-consi;teﬁt envelope
equations’is not restricted to uniformly charged beams, but is applic-
able whenever the.external forces and self-forces are linéar. For.”
example, it was used by H.‘G. Hereward and A. S¢renssen‘to stﬁdy ibngi-
tudinal beam effectéll where, due to. the shielding of the vécuﬁm
chamber, a parabolic charge density is reQuired td préduée liﬁear self-
. forces. For any case, the envelope equations are just equations (l;lQ)
where F(s)‘ is specified by £h¢ eqﬁatiohs'of motion (1-4) for the indi-
vidual particles. Tﬁe‘distribution f(%M-lX) that producés the

required charge density p(x),

0

o) = [ e, (1-18)

3
-0

can be found by the_samevprocédure that was used for the case of
v - : - L.X . '
uniform charge density. The condition _Jr p(x)dx = N, requires that
' -X L
Nl

D(X) have the form- %

g(%), and Eq. (1-18) can be transformed by
D(s) into the circular form

N , _ _ s
5% g(yl)' = J[ f(vl2 + v22)dv2 , . " (1-19)

ST

-

e
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which can be inverted by Abel's theorem provided -~——— 1is continuous.

dvl

Thus, the self-consistency of the envelope equations is guaranteed

provided p(x) has a continuous first derivative.

‘The Two-Dimensional Beam

In principle this method can also be extended to beams.with two
and three degrees of freedom. The matrix equations remain formally
valid'when.the vector X(s) 1is increased to four or six componenﬁ; bﬁt
now the constants of the motion ?M-l(s)x describe hyperellipsoids‘ in -
the four- or six-dimensional phase spaces. The required‘disfribution J

function f(%M-lX) that produces linear self-forces can be found by

fransforming the defining equation for f into thelcircuiar.form

.analogouS'to (1-19), but now for four or six dimensions.

Consider first the case of a beam with two degrees of freedom.

We again assume that all the particles have the same velbcity Vp = %% a

~.and for the purpose of calculating the electric field, that the beam is

in the form of a cjlinder with an infinite extent in the s diréction.

" Then the condition of linear self-forces requires that the beam have an

elliptical cross section and a uniform charge density. However, the

axes of the elliptical cross_section need not be aligned with the

- coordinate axes, and the external focusing force may include linear

coupling between the two transverse directions. The evolution of the
distribution is then determined by a four-by-four matrix F(s) (Eq. 1-4),
and the éonstants of the motion ?M-lX describe hyperellipsoids in ‘the:

dx

X, ag,'z, %%_ phase space.
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We can immediately write the defining equation for f in. the
form
L o 2 2 2 ' SRR
constant = -j’f(vl AR TR )dv5dv)_L , (1-20)

where the integration is restricted to v12‘+ v22'+ v52 + vﬁg <1, and
where the éonstént can be deﬁermined by the nofmalizatiOn of f.lg This
shorteut avoids the spedificatidn of D(s). With a change of variatles,

Eq. (1-20) becomes

Ny, oo R N
—_— = f £(q) da , : : (1-21).

where ,N2 is the number of particles per unit length in the beam. The

required distribution function is the solution of (1-21):

N2

2o

() - 5(1 - RN, (1-22)
.where 8(x) is the usual delta function. Theipafticles”aré distributed
with uniform density on the surface of the four-dimensional hyper-
ellipsoid- %M-lX = 1, whose shépeAand Qrientation‘is'speCifiéd by the

~ ten indevendent pdrametérs“of the four-by-four métrix M(s).

The'selffforces are determined by the projection of this distri-

bution onto the vhysical 'x-z oplane.' This projection is wniform and -

has the boundary
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2 | 2 . >
M33x + 2M13xz oM,z o= MllM35 - M15 s (1-23)
f 28
which describes an ellipse of area ﬁ\‘Mllej _ Ml}- . In terms of

- the major and minor axes and angle of rotation as shown in Fig. 5,

X
s
Fig. 5.
these matrix elements are
= a2 00329 +.b2 singe' s
1
M33 - a2 sin%0 + b2 cos?G s (1-24)

I |
{b® = a7)sin6 cose ,

13

‘and the self-forces are easily determined.

The evolution of the distribution is then deﬁermined;by
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ds

vgﬂiil’ = F(s) M(s) { M(s) f(s)' , - '(1-25)

.where F(s)‘ contains the known external forces as wéll as the self-forces,
which depend on the matrix elements Mil’ M13’ apd M35. In genergl.all
ten equations of (1-25)‘ar¢ necessary to describe the evolution of the
gystem. However, if the equationé of motion for the individual pafticles
do not involve coupling between the two transverse planes;.and if>the |
.hyperellipsoid'is oriented‘so thaf the off-diagonal submaffix ﬁith

| elements Mij"Mih’ MéB’ Mzh iS'zéro, then the”hyperellipséid will
maintain this orientation and these matrix elements will remain zero.

The remaining six equations (three for the x direction and three for the
z direction) can be parameterized in the form.analogous to (1-9) for the
one-dimensional beam. The self-fields for this case are | |

heN ' LeN

- i?i_:_ZT X and ’ zri—:—zy z, ~and the envelope equations
become- | '
2
QEE + K (s)X - %5_ - - - =. 0"
/ - J
.ds2 b X5 75mv 2 X+ 2Z
- (1-26)
2 o S
'ng E, ke N, 1
-3 + K (S)Z - 7 - 3 5T+ 7 = 0 R
ds Z 04 mvp

where X(s) and Z(s) are the beam half-widths, and E . and E  are

the beam emittances in the x_-‘%f and 2z - %S. phase spaces; . These

g T
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self-consistent envelope equations, which describe a cylindrical beam'

oriented with © = O in Fig. 5, were first obtained by I. M. Kapchinsky

‘and V. V. Vladimirsky.15

The'Three-Dimensional Beam

Finally consider the case of a beam with three degrees of
freedom. The condition of linear self-forces requires that the beam
have an ellipsoidal shape in real spaée and a uniform charge density.
Then Eq. (1-8) will specify the beam envelope provided a distribution
of the form f(%M-lX) exists that produces the fequired uniform charge

density. In this case the defining equation for f has the form

2. 2 2 2 -2 2
constant = . jrf(vl TV AT ATy vs© g )dvhdv5dv6

(1-27)

This equation upfortuhately has no solution th#t‘can be interpreted as
a‘distribution function. The forms of the one- and two-dimensional
distributions indeed suggest that the progression from

f o (1 - %M-IX)-% in one dimension to f oc 8(1 - ?M-lX) in two

dimensions will have no extension to three or more dimensions. The

 actual proof, due to Maurice Neuman (private communication), is

reproduced in Appendix A.
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2. The One-Dimensional Beanm

We are now in a position to investigate the motion of the uni-
form one-dimensional beam in a self-consistent manner. We rewrite the

envelope equation (1-11),

a2x £° gﬂeaN1' '
— + K(s)X - = - 33 =09 v (2-1)
"~ ds : Xy mvp o

where X(s) is the beam half-width, ﬁE is the‘béém‘e@ittanCé,v'Nl; a
is the numbef of barticleé per unit surfaéé:érea of the‘beﬁﬁ; énd .Vp

is the particle velocity. The extéfnél-focusing term K(s)v,includés
both thé ideal focusiné forces and gradient errors. The nonlinéér
emittanée term arises froéifhe conservafion of the beam’emittahce, and
has the same form as the centrifugal force term that results from the

conservation of angular momentum in central force problems. It prevents

a beam with finite emittance from becoming afbitrarily small, but in the

1L

vabsence_of space charge, it does ndt limit thellafge—amﬁlitude growth.
H0wever, in the preséncé of.space charge, the'cbmbination of the last
.two terms in (241) will 1limit the resonant gfbﬁth of the Eeaﬁ.

We first eliminate the rapidly'yérjiﬁg_part of K(s) ffom}the
envelope equation‘by transforming to ”smddth” variablés. In tﬁe absencé
of épace'charge,vthe periodic solution of (251),..Xp(é) =VX§(S + C)?
where C is the orbit circumference; can be found by staﬁdard methods

once K(s) is known. It is»conventionally written in the form.

X,(s) = \/-Eé(S) , o o _',(2-2)'

-3
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/

where pB(s) is the familiar amplitude function of Courant and Snyder.15

Then if we transform to the dimensionless variables

| x=§§—37, '¢=-§—§, (2-3)

the unperturbed envelope equation (in the absence of space charge and

gradient errors) becomes
N ‘

2 2 . . o
L2+ -5 -0 o (e-b)
ag bs :
. - where vy 1is the. number of betatron oscillations per revolution and '¢

increases by 2x each revolution. The general solution. of this equation
oo : is ' . e
2 2 . |
X = 1+A + A sin(2vg + ) (2-5) - -
where A and « are arbitrary constants. The matched solution is
A =0 and x =1, and any other solution oscillates about this matched
: i : \
solution with the frequency 2v. Thus the dimensionless variable x
measures'the beam envelope in units of the unperturbed matéhed envelope.
In terms of the variables x. and ¢ the complete envelope
equation becomes
2 ’ 2

- :. B . . 9*__.2}5 + (V2 + QVAV COS n¢)x - l/—- - QVAV = 0 Ty . (2'6)
‘ . a T s | ) sc -
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where we have assumed an nth-harmonic gradient error with stopband width

Avé, and where the last term is. actually a function of s (or @), : x
23/2, \  2zeN S
_ vp(s) 1 -
2vhv,, = = 3 5. (2-7)

'\/-E_. ¥ mvp ' ' L

In what follows, we replace g(s) by its average value % "and neglect
the high-frequency small-amplitude ripple,tompbnents in the already
small space-charge term.  Then VIR is independent of ¢ and has the

form

' .

Av.. = = bre’s" 11 S (2-8) |
= ] : . . \

sc 2v 75mv 2 2a v 3

wherev a =_\/%Eﬂ ‘is the average amplitude éf the unperturbed envelope.
The quantity Avsc is- the space-charge-induced frequency shift fﬁr.a
"beam whose envelope is constrained to the consfaﬁt value .a;r it is a
convenient’measure of the beamaintensity and is in fact identical ﬁith
the é#pfession con&entionally used f¢r prédicting aispace—charge limit.
Before solving the nonlinear eﬁvelo@e equation, it is informa-

tive to examine its small-amplitude solutions.” In the absence of
. , Av .
sc . g

- 2v 4

and for oscillations of small‘amplitude"a about this constant value,

gradient errors, Eq. (2-6) has the-constant solution x =1 +

the équation becomes . I

d26

d¢2 pEs (hve.- 6vAch)6 = -2vAv cos ﬁ¢ 1_;' (2f9) o .

P
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Thus the envelope oscillates with the natural frequency 2(v - % Avsc),

and resonance occurs for 2(v - E-Avs ) =n. If v is larger than a

c
half-integer by the amount- Av, 1.e., v = % + Av, then resonance occurs

at a beam intensity corresponding”to the value

Avg, = %’Av P | (2—10)

which is one third larger than the value usually assumed. The fallacy -
in tB& usual procedure for prédicting space-charge limits lies in the
as tion of a constant beam size: 1if the envelope modulation:is
neglected, resonance occurs when the individual'particlé freQuency

c

falls within the stopband at 1%; in other words, for the

intensity Avsc = Av. However, the modulation of the envelope causes

" the self-fields to exactly cancel the effect of the gradient error at

“this 1ntensity,16 and the resonance is shifted to Av,, = 3 Ov. This

c 3

shift in resonant intensity is not restricted to uniform beams; it

occurs for any mode of collective oscillation and is discussed in detail

. in Part II.

The amplitude of the periodic solutibns of the linearized

equation (2-9) are shown in the form of a response diagram for fixed

Av ' Av o
Z;E in Fig. 6. The Z;E = O asymptote represents the free envelope
oscillations,.whiéh are periodic for the inteﬁsity Avg, = %-Av. The

remainder of this section is concerﬁed'with the distortion of these

curves in the large-amplitude region by the nonlinear terms in (2-6).
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Avyg
o 0o AV
0.04 |0.04
.8r - 0.08 0.08
1.6+
»
O
£ !
pd
L4l
12t
'.O 1 T T I
0 2.4 2.8

XBL689- 3914

Fig{ 6. ‘Response diagram for the linearized envelope eguation:

Avs AV

sc
2v

in

X = +
*nax 1 [BAVS

— =T where the quantity

Mg
5o has been neglected.
v

the constant solution x ='lh+

.
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General Solution of the Envelope Equation

Both the space-charge term and the gradient-error term are’

Av
sc

small for alternating-gradient‘synchrotrons--they are .of order

Av
and —;5 compared with the remaining terms. Consequently we treat

these terms as perturbations and use in place of x and -%% the

variables A and Q defined by

X = 1+4% + A sin(2vg + @)

]

vA cos (2vf + )

>

In the absence of perturbations, both A and « are constant, while

for small perturbatiohs they change slowly in time, with small high- .

. frequéncy variations superimposed. »If:Eqs.'(é-ll)'are inserted in the

envélope equation (2-6), the following first-order equations for A

and O result:

2l

o : Ay o W/ 2
AvSV1.+ A® sin[(2v - n)@ + a] - ﬁsc Jf A+ V1 + A sin u

A 9% -
ag - — , »
' e V 1+ A2v+ A sin u
(2-13)

plus additional terms that vary with the frequencies 2v, bv, etc.,
whiéh are neglected.
Equatlons (2-12) and (2- 13) may be combined and 1ntegrated to

obtain the constant of the motlon,

(2-11);_

~av V1 + 4% cos [(2v -=n)g +a] , ' (2-12)

du

.4
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, . . 2Av 2 _ sc | 2A
constant = A sin Q + Z;;f Vl + A (8 - - E(k) , | (2-14) ,

where Q = (2v - n)§ + o and E(k)' is the complete elliptic integral of

the second kind®!| with modulus k° = - A . This equation
v . : > Lo
A+ V1 +A

specifies the phase‘trajectories in thé A, Q space, or‘alternativély
by means of (2—%1),_in:the X - %% phase space at any point along'the”
orbit, i.e., for any azimuth ¢.. In pafticular; Figs.Jk7a) and (7b) f
show-typical trajectoriesvfor azimuth ¢ = O and for twé Vaides of the
beam intensity, while Fig. (7c) shows the same trajectories as;Fig. (70),
but for aZimpth g = %. 'As.expected,vthé phase trajectoriesvare'always-
_boﬁndea and the beam size remains finite.

of special.intereétgare the fi#ed poiﬁts, which have constanf

values of A and Q. They are determined by Egs. (2-12) and (2-13) to

have Q = i%' and

25 '
A+ V 1 + A2 sin u du

Av - Av
p oo sl s T2 L Yse 1 f axV14a sinug, |
2 Av Av 25 _\/———2-1 v
_ o 1L +A +Asinu
(2-15)
_ : . Avg v A ' : :
which determines A as a function of Z;T-_and .- The beam motion =~ =~ .

. v : i ' L

jcorfesponding to these fixed poinﬁs is described by - . . : . : A S

x2 = V1 + A2 + A cos n¢' s ‘ _ (2-16) '
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7. Phase trajectoriés for. ~o = 0.04. TFigure (a) shows the trajectories at azimuth
Avsc : B :
# = 0 for the intensity — = 1.40; (b) shows the trajectories at the same
: S . : ' 5
' Ase . ' 3
azimuth but for the larger intensity -—= = 1.45. The trajectories in (c) are the A3
— 2
| o o, . Z
same n: those in (b) but now for ¢ = % .. The separatrix is the trajectory that
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which represenﬁs a beam oscillating wifh the periOdicity of the‘gradient -
error.’ The amplitudes for these periodic oscillatione or fixed points
are shown in‘Fig. 8 for several values of the stopband width Avg. The
- response curves are distorted ffom the linearized diagram Fig. 6 beeause
the nonlinearity causes the-frequency of the envelope oscillafions to

. . Av _
depend on amplitude; the —= _ 0 curve shows directly the amplitude

Av
dependence of the periodic free envelope oscillations. As a result, the

resonant amplitudes are always finite. Another‘consequence of this
v Av ;

distortion is the existence of three fixed points for c. greater than

. YANY, ) : ,

the critical value (which depends on. Z;i), rather than the usual single
fixed point. The two labeled S% and S  are stable whefeas Ul s
unstable; it can be seen from Fig. 7 that configuration points near S+ <

and ST oscillate with small amPlitude about'these points whereas

points near U+ may follow the separatrix and make much larger excur-
: AV,

_sions. ‘As the quantity decreases; the phase trajectories_of
Fig. Tb are transformed smoothly ihto those of Fig. .7a; the stable
~ region around s shrinks down to a point aﬁd then disappears-for

Av c
Ay

less than its critical wvalue.

In the absence Qf_bOth space charge  and gradieﬁt>errors; the
matehed beam COIfesponds ﬁo the solution -x=1. 1In the.presence of
space charge and gradientverrors, the matched cendiﬁionvcorreéponds to
.the lowest fixed pdinfvof Fig. 8. This solution is periodic, so that . ;.;j"
the beam envelope remains stationary with respect te fhe aceeleratbr;v : | »

o .
but it is modulated n times around the orbit circumferenee,‘Where n -
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Fig. 8. Response diagram: X oox = < V1 + A%+ Ai)z. .The

: AN .
curves to the left of Z;i = 0 correspond to the upper

‘sign in Egs. (2-15) and (2-16); those to the right
correspond to the lower sign. The points where the
slope is vertical (indicated by the dashed curve) are

~referred to as critical points.
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is the periodicity of tﬁe gradient error. Any mismatch will leéd to slow
oscillatioens in the envelope ab¢ut this matched value just as in thé more
familiaf'iow-iﬁtensity cése. The frequency of these oscillations depends
on whiCh‘phaég'trajectery of Fig. 7'the'begm'is on,ibﬁt near stable-
fixedfpoints it 'is approximately 2Avv timeé.per'revolutiéﬂﬁ Note from
Fig. 8 that the matched condition fbr'largé.intensitiéé closely
approaches the low-intensity matched value x = l, provided.thengradient
errors are émall.énd the intensity is not tobvnear'the_resonant leﬁe‘
Avsc - % Av‘-’

Resonance Crossing-

The foregoing considerations apply only to a coasting beam
whose parameters remain fixed. :Hoﬁever; the parameters deScfibing'an

accelerated beam change with time,'and the beam may cross ﬁhe

. )4 A ) . P . : ’ . . A ;
Avsc = 3 Av resonance. We consider the worst .case of a slow, adiabatic
crossing.

 The envelope equations can be derived from a Hamiltonian with

the canonical variasbles x and %% , and therefore LiouViilefs theorem';'

applies to the x =~ %g phase Space.' Configuratibn points lying on
cloéed contours continue to lie on closed confoﬁrs'as the parameters

are vafied adiabatically, and the area~enel6§ed by thesé_éontouts remains
constant. However, tﬁe adiabatic assumption Breaké down near the
stagnation foint' U+’ so that the area éncloééd by ﬁhe,sepatfix‘changes;
.For example, the stable phase area around st becbmes smalier‘as;

Ay )
sc

Av

decreases.

=
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‘Consider first the case of a resonance crossing in the direction

Av
se

of decreasing . A beam whose intensity is larger than the resonant

-value and whose envelope was adjusted before injection to the matched -

t

value x =~ 1 oscillates with small amplitude about s* in Fig. 8, and

corresponds to a point on one of the trajectories around S+ in Figs. 7o
Av :
decreases and the stable

and T7c. . As the beam is accelerated,
area around S+' shrinks until the configuration point is forced onto
the sepatrix. At this point the beam suddenly oscillates with a larger
amplitude.as'its configuration point moves around the separatrix. The

maximum beam size can be read directly from Fig. 9, which shows the

 maximum and minimum beam size for a point on the separatrix at the

Ay :
¢ 1f the vacuum chamber is large enough to

critical value of

accommodate this increase in beam size, then the resonance has been
Av
continues

safely passed and the oscillations become smaller as
to decrease.

On the other hand, it is‘possible for a beam to cross the
resonance in the opposite direction. For example, if the beam is~

bunched after injection, -Avsc increases. Also Av = v - % may .
o Av,

change dUring‘acceleration and cause tQ increase.- In this case

a nearly matched beam that oscillates around 'S”  continues to lie on
Ay ' . '

increases, and therefore the beam

a contour enclosing S as
: Vo Av

sc
Av

size increases indefinitely as increases (Fig. 8).

Summary

This completes our analysis of the uniform one-dimensionalbbeamr

In the presence.of gradient errors, the beam envelope oscillates, and
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9. The maximum and minimum team sizes are shown for a
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point on the sevaratrix at the critical value of s

~ the value for which the stable area around 8" shrinks

~to a point.
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resonance occurs for the beam inﬁensity cofresponding to Avsc = % Avs
this is one third larger than the usual space-charge limit, which
assumes that tﬁe beam size is constant. Furthermore, because of the
nonlinear dependence of the space-charge force on the beém size, the

envelopé is always bounded. The amount of beam growth caused by crossing
Av '

the resonance in the direction of decreasing has been calculated
for nearly matched beams (Fig. 9), and is less than fifty percent for
stopband widths Avs.s 0.01 Av. This resonant growth is minimized for

small gradient errors and for large values of Av = v - %. On the

other hand, adiabatic resonance crossing in the direction of increasing

Ay . .
Aic _would produce very large resonant growths, and should be avoided.
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3. Two-Dimensional Beams

The envelope equations for the two-dimensional cylindrical beam

can be written in terms of the dimensionless variables x and 2z as

2 2 , .
2 , v by

dx- 2 : X P - ‘ -
— + [vx + 2v Av,, cos ng] - T ax i tr - o (3-1)
a¢ _ v x _ _

2 2
9352+ [ 2 4o A cos n¢] - 'z - “ = 0 '(3_2)
d¢2 Vs Vi Vsz o _ZB’ ax + bz ’ _

where again the ripple components have been neglected. The quantities
Vy and v, are the betatfon frequencies in:the absénce of space

charge and gradient errors. As in the last section, x and z _are

o ER ER
the beam semi-axes measured in units of a = ';5— and b = ;E—
: : X Z

respectively, where a and b are the semi-axes of the matched beam

in the absence of gradient errors and space chargé;‘ The quantity

r R : .
o 2 = a9 1 , where N is the number of particles in the beam,
el nB ab 2 _ : _ . _ :
, B
e2 : : : o _
Ty = % _the classical electrostatic particle radius, and B is the

bunching factor (fhe fraction of the circumference occupied by particles).

Thé space chargé3induCed frequency shifts for a beam with the cbnstant

: 2

W
__b . p
envelope x = 1, z = 1l are Avscx P and

no

“p
Ay = R
2VZ

An Eﬁh-harmonic gradient error haS'been‘iﬁCIuded

with stopband widths Av__ and Av_ .
T TUsx _ sz
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The overall envelope motion described by (3-1) and (3-2) is
very Simple: the énvelopé has twq modes of oscillation; corresponding
to its two degrees of freedom, and the resonant growth of each mode is
liﬁited by the nonlinear space éharge tefms Just as for thé one-
dimensional beam. However, tﬁe mathematical details are more‘complicated_
now: whereas the motion of the one-dimensional beam depends on only

Av AV

and Z;E' and can be represented by a config-

the two parameters
uration point moving on a trajectory in a two-dimensional phasé space,
the motion of the two-dimensional beam depends on six paraﬁetef& and
requires g four-diménsional phase space.

Physically, the envelope motion can be characferized_by the
degree of coupling between the x and =z directions, which arises

from the space-charge terms in (3-1) and (3-2). Very loose coupling -

“occurs when the individual particle frequency Ve T Avscx is very

different from v, Avscz' Then the envelope motioﬁ is nearly one-

dimensional and the solutions are similar to those found in the last
section. On the other hand, very tight coupling occurs when

- A
Vx Vse

x 18 approximately equal to v, - AVSCZ; in this case the

“x and z  amplitudes of envelope oscillations are approximately equal

and the envelope motion is two-dimensional. In the following we
concentrate on a few special cases. In A the solution for the tightly
coupled case . Ve =V, ~and E# = EZ is presented in detail; ih B

several. cases leading to the one-dimensional 1limit are briefly examined.
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A. Equal Ffequencies and Emittances

In this case the'envelope eQuations Wifhout gradient errors are

bdex o v2 hV‘&Vsc v N
>t VX - 5 - e =0, (3-3)
ag X . .
iz 2 vv2 ‘ 1W‘Avsc ' : - '
2T VE T3 Tx e 0 (3-4)
d¢- z7 : . _ .

| _ o

: A : : w ,

where v, = v, =v and AVscx__z Mgz = DVger with Avsc.% E%f oI

.we éonsider oscillations of small amplitude SX, SZ about ﬁhe constant -

Ay
sc

solution x = 2z = 1+
2v

, we find a symmetric mode with circular

cross section (6X = SZ) that oscillates with the frequency

2(v - %:Avsc); and an antisymmetric mode with elliptical cross section:

o o : . ' - _ 3
(SX__ az) that oscillates with the frquency 2(v T &vge

) -
Therefore, in the presence of gradient errors of frequency n, reson-~

ances occur for the beam intensities corresponding to Avsc = 2Av and

NP

- to Av =
: s

o Av . where again Av = v - g. Note thatrthese resonant -

intensitieé differ from.the usual space-charge limit‘ Av ., = Dy ‘that
is calculated for a static béam. Any collective mode df osclllation
produces Similar frequengy shifts, as will be seen in Part II.

We nOW'exaMineAthése two modesviﬁ fhe nonliﬂéar-regime. The
symmefric-mode is driven by fhe symmetric grééiént erfdr.vAQS = Avs

X. z’

and the antisymmetric mode is driven by the ahtisymmetric gradient. error

Av = - Av_ . When either gradient error is included in (3-3) and
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(3-4), the equations can be solved by the same method that was used for
the one-~dimensional enVelope equation. - The results are presented here,
while the calculations are‘outlined in Appendix B.

For the symmetric gradient error, we find symmetric solutioné

of the form
© = 2£ = Vi+a® + 2 cos(ng + Q) , (3-5)
where the slowly varying quantities A and Q _satisfy the equation

DAY Py Ay
constant = A cos Q + =¢V1 +a° -2 —2C (1 + \/1 + A% )
Avs Avs

(B13)'

which specifies a trajectory in the two-dimensional A,Q space. The
corresponding{tréjectories in x - %% spacé or z - %% space have the_
same form as those found for the.one-dimensional beam (Fig. 7), but now

the fixed points occur for @ = O,x and for values of A that satisfy

/

, Av - Av \/ 2 ‘
PR VS sc LA -1 (Bi6)

—— +
Av Av A

{

_ Thése fixed_points describe a circular beam that oscillates with the
periodicity of the grad;ent error. They aré showﬁ in the form of a
response diagram in Fig, 10, which is again distérted from_thé linearigzed
diagram so that only bounded solutions are possible. Note from (3-5)

' that the symmetric character.qf‘the normal mode solution (SX :vSZ)
remains symmetric‘evénvin the nonlinear regime, the only effect 6f the

nonlinearity being to limit its resonant amplitude.
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XBLEBS~ 3913

10. The response curves for a'symmetric gradient error, with

resonance near Avsc = 2Av, are superimposed on those for an

: antlsymmetrlc gradlent error, with resonance near

Av_ = 3 Av. For either case, x =z (,Vl + A >

s¢ 3 max ma.
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For the case of an antisymmetric gradient error, there are

antisymmetric solutions of the form

x2 = 1+ A2 + A cos(nd +q) ,

(3-6)
2 2 '
z° = 1+ A - Acos(ng +q) ,

‘which describe an elliptical beam. Now A and Q satisfy
' | Ay 2 AVsc 2 [K(k)
constant = A cos Q +2 — V1 + A" -2 [4n A - = dk] ,
Avs Avs 7 k
(B13)
T where .K(k) is the complete elliptical integral of the first _kind.17

U © The resulting trajectories in x - %% or z - %% space againvhave the

‘same form as those for the one-dimensional envelope, but now the fixéd.

ﬁoints dccur for Q = O;n and for values of A ~that satisfy

. Av VAN ‘
A = FL_S7p 42 ,_S8C —[l—-——K(k)] , (B16)
2 Av Av A
where k = —A___ . They describe a beam that oscillates antisym-
5 »

1 +A
metrically»with fhe ﬁeribdicity of the gradiént error,bi.el, x ‘is
largest when 'z . is smﬁllest and vice vefsa, and'are'élso shown in-
Fig. 10. For either mode of‘envelopé osgillation, the Avsv=_0 curves
represent the free envelope oscillations thatlaré.périodic.‘
| Note from (3-6) that the antisymmetric character of the normal-

8

_ mode solution (Bx = ASZ) is approximately maintained in the honlinear;
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regime. Indeed, this is a general resultf the character of the normal-

mode solutions determined by the linearized envelope equations (the
5 | | ' . |
ratio g—) is approximately maintained in the nonlinear regime, the
z - ' '

main effect of the nonligearity being to limit the resonant amplitudes
of each mode. |

The ngnlinearity also produces_an addifional effect that‘is'not
predicted by linear . theory, ﬁamely, it producés a weak coupling between:
a gradient errér of one symﬁetry and a mode ofvenvélope oscillation éf
oﬁpqsitevsyﬁmetry. Thus the résponse‘curves for ﬁhé symmetfic mode of
- oscillation'in;Fig.~i§'areAmodified by fhe pfééénce of .an antisymmetric
gradient error, and vice versa. -Although this:effect is émali; it ﬁas
been a soufée of confusién,‘so.ﬁe briefly describe ifvhere; We.write

“the fixed points in the form

“ = Vi+a® + a cos(ng +Q) -,

| o (318)
2 L a2 '
2S = \/1 + A - Acos(ng -Q) ,

where for the éymmetric'fixed points, Q = O,x, while for the anti-
symmetric fixed points, Q = %, %1'; Figure lla shows the fixed-point:

, SAYY
solutions in the absence of gradienterrors, in other words the —=2 -0

curves of Fig. 10. They specify the amplitude dependence of the free
envelope oscillations that are periodic. If now an»antisymmetric

- gradient error is present, the antisymmetric fixed points still occur
' : , VNI
in the Q = O,n planes, but contrary to linear theory, the Z;i =0

curves for the symmetric fixed points are modified, -as indicated in

13
i
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Fig. 11. The fixed pbints in the absence of gradient errors
‘is shown in (a); the transition from a purely antisymmetric
gradient error to a purely symmetric gradient error is

~ shown in (b), (¢), (d), (e), and (f).
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Fig. 11b. The analogous situation occurs for the symmetric gradient‘
error (Fig. 11f). This coﬁpling Betwéen fixed points of one symmetry
and gradient errors of opposite symmetry insures that the transition
'from a pufely symmetric gradient ef?br to a purely antisymmetric
gradient error oécurs in a continuous fashion, as indicatéd'in Figs. il

(c), (d), and (e). However, only the small-amplitude fixed points are

'affectéd, and in the following we neglect this weak nonlinear effect and.

assume that a mode of a given symmetry ‘is affected>only by driving terms

of the same symmetry.

Resonénce'cfossing

| If only one fype of gradient errdrris present,'the.resbnance
croésiﬁg'is'éimilar to that for thé one-dimensiohal beam. A nearly
'météhed beam with x ~1, 2z ~ 1. and whose ihtensity is larger tﬁan
thé,fesonaht value oscillates»ﬁith'smail.amplitudevaboﬁt a stable

Ay
sc

fixed point. If decreases, the stable phase area around the

fixed point shrinks and eventually the configuration point is forced
onto the separatrix. The beam then oscillates with a larger amplitude

that can be read directly from Fig. 12, which shows the maximum beam -

Ay
sc

Ay

size for a point on the separatrix at the critical value of

Note from Fig. 12 that the resonant growth for either mode of the -

two-dimensional beam is less than the resonant growth of fhe.ohe—dimen-
. ' Av R .
sional beam for the same value of Z;E . This was to be expécted, since

the nonlineafity of the spaqe—dharge force is greater for the two-

dimensional beam than for the one-dimensional bean.

-
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"Pig. 12. .The maximum beam size for a point on the separatrix at

Ay :
is shown for either mode of

the critical value of

envelope oscillation for the cylindrical beam with a = b
and v, = v,. For comparison, the maximum beam size for

the one-dimensional beam is also shown (from Fig._9).’xi
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If both types of gradient error are present, as is true in
praétice;vbotﬁ resonances may be crossed. One might estimate the total
growth by adding the two séparate growfhs from Fig. 12f Howe@er,-an»
initially matched beam that crosses the first resonahce (Avsc = 2AV)
will no ldnger be matched when it crosses the second resonance. If
this_mismatch is large, the total growth may be considerably larger
than the sum of the two growths. On the other hand, we have soufar
neglected thé adiabatic damping of the beam size due tQ the incredse in
\ﬂg;ﬂ, which may be large, depending on the acceleration prograﬁ |
employédb

B. ' General Beam Configurations

In the remainder of this section, the envelope motion for other
v ‘ ' '

values of % and ;5 is briefly examined. Fortunately, the effect of
' Z . '

the nonlinéarity can'be largely separated from the linear effects,
i.e., the normal mbde solutions detérmined by the linearized envelépé
equations remain approximately valid in_the_nonlinear regime, the main
effect of the nonlinearity being to. cause the fréqﬁency of each normal
mbde to depend on its amplitude. Accordingly, wekfirst exaﬁine the -
normal -mode solutions of the linearized envelope equations for several
éaées, before including fhe effect of nonlinearity.

We write the linearized enveiope equations, omitting grédient

errors, in the form
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where M is the. two-by-two matrix

3 ’ : : o ]
b, 2 2ab + 30" 2 v° e
‘ oarw)® P (a +b)° P
* M =
: . b) (5'8)
| | as 2 h»2_2ab+5a2 2
— 3% v, 5w,
1(a +Db)" (a + b)

o : .
and where B =:<\X \ is related to x and 2z by

\s /

Z
® 2
- 1 b . P -
X = 1+ P v, + SX s
' : (3-9)
2 :
2 o
. z = L1+ 2 +b) v * 6Z
“ Z
S . h 6X ﬂb¢ - C
The normal-mode solutions have the form’ 6/=:(£):)e 7, where = - <
Z, .
VAN | -
™ -w ](6 > = 0 |, , . : -~ (3-10)
z :

18

and where  satisfies det(M - wz) = 0.
We have previously distinguished two limiting types of envelope
motion, tightly coupled motion for which the x and z amplitudes are

equal, B_ = +58

% 29 and loosely coupled motion for which one amplitude

P

approaches zero while the other remains finite. We find frog‘Eq. (3=7)

)
that tightly coupled motion results if v, TV, = a-Db

X a+b ' Ev or if
' ) : 2

w .
1 .
v, TV =2 = T s where vy = §(v + vZ). The former condltlop

a ~b e

s
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produces é symmetric mode with SX = SZ; the latter condition ?roduces
an antiéymmetrié mode with Sx = —Sz, and is identical to the condition
that the individual particle frquencies Vo~ évscx and v, - Avg .,
be equal. Both conditions are plotted in Fig. 13. As the parameters
Vs Voo g,.wpgl depart from the curves in Fig. 13, the envelope motion
approaches the one-dimensional case.

It 1is informative to examine a few special cases in detail. For

a circular beam with a = b, the eigenfrequencies for either mode of

envelope oscillation are

.2 2 2 2 2,2 1 u
w, o= v+ ?vz - %’&b i:fv&va - 2v, ) .+ 6 9 . (3‘11)

2 2

~and there are two limiting cases to consider. If |2y -'2vZ2| << %'wp ,
the eigenfrequencies and normal modes reduce to the tightly coupled |

case examined in (A), _ : .
. : : 1
w ’ ‘ B, < > B
+ . : : '

. A - 1
2 ) s \l
p . B 2/

1
=~
<

no

1
1]

N

Il

(3-12)

b

=
i
. F
. <
no
I
PO\
£

: 2 ' . . ) ‘ 1
where wp = thvsc. Thls case requires that lvx - Vzl << T &vgq

On the other hand if [vx - Vz' >> % v s the eigenfrequencies and

normal modes are
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13. The beam parameters are shown for which the x and "z
amplitudes of envelope oscillation are equal. The plus
curve is the condition for the symmetric mode, the minus

curve for the antisymmetric mode.
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il

- -

2 -2 2 . ‘
@, = hvx -%wp s B, (€>

(5-13).

. v ’ - ¢
2 . 2 . 2 :

Av
where € = EW:T—%¥%7—T << 1. For this case the frequency difference
: X . L

-

v, - vZ] is sufficient to-overcome the coupling due to the space-

X
charge force, and the normal modes are one-dimehsidnal. In pfactice

Avsc =~ % , so that the‘dividing line betﬁeen tightly éoupled motion and.
loosely coupled motion occurs for a frequéhcy difference of

lvx - vZ| ~ %3 - Thus, due to the weakness of the space-charge coupling,
a relatively small departure ffom the curves of Fig. 13 suffices to
produce one-dimensional motion. '\ |

Now consider thé limif -% — 0, but keeping abv chstant so that

the_charge~aensity remains constant. Thé.beam approaches a planar

configuration, and

| 2 -
o . 2 o 2 [ x D
o, = by a Oy o 8, = . s
: w
p
2 2 2 | -0 | - ()
(DZ = )'I'V = il)p ] 8Z = ( l >

In this case the SX mode can have either of the tightly coupled forms

( )or ( ]'> for suitable values of lv - v ] cand - o 2, in agreement
1 -1 X z . P '

RN
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with Fig. 13. However, as % approaches zero, larger and larger

intensities are required to excite this mode. i.e., to shift w to
b

“the integral frequency .n of the gradient error. In the limit 5 = o,

oniy the 5Z mode can be excited, and this mode is identical to the
one-dimensional mode examined in Section 2. In fact, the complete

nonlinear envelope equations reduce to the one-dimensional form

dex Vke
E;JE' + K (Px - = - o, (3-15)
2 2 -
32z ‘ Yz @y ' :
—¢2' Kz - =5 - =0, o (3-16) -
a Z : ‘

in this limit. .The space-charge forces affect only the =z motion, anq

if vy, is sufficiently far from a stopband that x = l,'Eq..(5-16)

reduces to the one-dimensional envelope equation (2-6).

We conclude from these examples that the envelope motion will be

oné-dimensional for a wide range of beam parameters; in fact, due to

the weakness of the space-charge coupling and because. of the‘changing

environment within the beam, the envelope motion is more likely to be

OneFdimensional than two-dimensional.
We now briefly examine the effect of the’nonlinearity. We
consider cases for which a is larger than or equal to b, and for

which v, is closer to a half-integer than Vs so that

&< 1. Then the resonant amplitudes are larger in the

L



\

-50- , UCRL-1845A

z direction than in the x direction, and this is usually the more
serious case.

We construct simplified response_diagrams for several values of

2 and A. The usual linearized response diagrams have a vertical
asymptote (the vy, =bvg, =0 curve) at each of the two resonant

intensities, and the .Avsxu#:o, Aysz 4:0 reéponse curves approach‘these
asymptotes as the beamvintenéity approaches the resonant vaiues; - The
main effect of the nonlinearity is to cause the frequenéy‘of eéch mode
of envelope oscillation toAdepend on its,amplitudé; which distorts these .
linear response .curves so thatvonly bounded éolutions are poséible.

For simplicity we consider only the distortion of the DV o = DV, = 0

asymptotes. We show in Appendix B that thesevcuses are. specified by

2 2

x- = V1 +A + A sin(ng + Q) ,
_ —_— . (B20)
z" = 1 +B° + Bsin(ng +qQ) ,
- where A and B are determined by the integral equations
. w.2 25 . AQ. -
o) b A+ V1 +A° sinu
A = T s du |,
, 2v_Av 25 x(ax + bz)
b’ <
] (B21)
X
. ) L Vit 52 sinu 2
T 2v_Av z(ax + bz) ’
zZ 2z
0
ey _ A _ _n _ . _n ' .
_where u = n¢ + Q, Avx =V, "~ % and sz = ?Z 5 Thgse equations

were solved numerically, and the solutions are shown in Fig. 1h.
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Fig.

XBLEBY - 3905

14. The Avsx ='A%sz = 0 asymptotes are shown for various.
. n

: Vo T2 b '
values of the parameters A = Y and k = 3 The
, o v YRR
ordinate is x or z___; the abscissa is

max “max .
Mses _ 1 AVsdx)
Av, N\ BN Avy
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Figure lba shows the familiar case of equal frequencies and
' Av '

equal emittances (the Z;E = 0 curves of Fig. 10). There are two
resonances, cqrresponding to the two modes of envelope oscillafioh,-

and for-each mede, the amplitude pf the x motion is equel to the ampli-
tude of the z motion. For the other cases, the two resonant-intensities
are further apart, and the amplitudes>of the x and 2z motions are no

Av b

longer equal. Because-of the choice of parameters -Z;E <1, _a-< 1,
X

the largest amplitude occurs for- the z direction and for the lower-
intehsity mode. As the frequencies become different, but a 1is kept
equal to b, Fig. 14 (b) and (e) result, and the solutions approach

the limiting one-dimensional modes 8, = (i) and 8 = (;) that

were found before. 1In the other limit, %_ approaches zero and the
solutions also approach the one-dimensional case. . In particular, the
curves of Fig. 1k (g), (h), and (i) are iﬁdistinguishable from the

Avs

Z;—'% O asymptote of the one-dimensional beam (Fig. 8). The inter-

mediate case of an aspect ratio 2 - % is shoWn”in Fig. 1k (a), (e),
aﬁd (f)f In this cese the iower—intensity mode is also' very similar to
that of the one-dimensional beam.:
Summary

We have investigated the énvelope motion for a unifermly charged
cylindrical beam. Because of its two degrees of.freedom, the envelope
has two modes of oscillation that can be excited by gradient errors.

The solutions for a beam with'_vX = v, and Ex = EZ were presented in

detail; it has a symmetric mode of oscillation that is excited near the

L
]
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intensity Awsé = 2Av,. and an antisymmetric mode that is excited near

Ay - = EYAV, For any type of beam, the process of resonance crossing

sc 3
is similar to that for the one-dimensional beam. If the resonances are

. Av
crossed in the direction of decreasing Aic’ the beam grows-a finite

amount, whereas if the resonance is crossed in the opposite direction,

increases. As =— or ——
a Avx

the beam continues to grow as

approaches zero, the resonances.become further separated and the envelope

motion becomes one-dimensional. In fact for an aspect ratio of _g = % 5
Av ) : » .
or for «Z;E < %, the resonance in the z direction dominates and the

. . 5
beam motion is essentially one-dimensional.



5l . UCRL-18L5L

4. Conclusion and Applications

We have considered the effect of gradient errors on a beam of
charged particles in an dlternating gradient synchrotron. Usually, -
gradient errors are assumed to limit the number of particles that can
be accélerated. Thisvlimit (fhé tranverse incoherent_space,charge
limit) is calculated by assuming that the beam size remains constant;
then the number of.particleé that can be acceléfafed is limited to that
number which just lowers the effective betatron frequenéy to an integer
or half-integer. Acfually, the'diameter'of'the beam depends on the
oscillation amplifudes of the indiviaual particles, and if a gradient
error causes thesevamplitudes to.groW5 the beam SiZe also grows.‘ Thus
the usual'caléulation is not self-consistent. , | -

In Séétion 1 self-consistent equations of motion for the beam
envelopé are derived fofvbeamé with one and tWQ'degfees of freedom. We
éééume that all tﬁévparticles Within the beaﬁ'havé the“séme:azimuthal |
Vélocity and:eXecute betatron'oscillations about ﬂhevsémé equilibrium
.orbit;'aﬁd that only. linear forces act on the individual particles.‘
The last assumption requires that the chérge'déﬁsity within the beam be
.uniform and that the nonlinear components ofvfhe image force be
neglected. The resulting envelope equations.ére nonlinégr because of

the noﬁlinear dependence of. the space charge force on the shape and

. . !
size of the beam.
These envelope equations were solved in Sections 2 and 5.' For -

small amplitude oscillations of the one dimensional (planar) beam, the ' :

beam oscillates with the frequency 2(v‘-1% Avsc), and resonance occurs
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for n =2(v - E-Avsc), i.e., for the beam intensity corresponding to

Avsc = % Av. However, for larger amplitudes of oscillation, the

frequency of oscillation depends on amplitude as well as on intensity;
for fixed intensity, the frequency increases with amplitude. 1In
consequence, a slow traversal of the resonance in the direction of

Av .
will cause the beam to grow arbitrarily large: near

increasing
the resonant condition n = oscillation frequency, the amplitude
ipcreases, which causes the oscillation frequency to increase until the
resonanticondition is no longer Fatisfied; a furthér inérease in Avsc,
or decrease in Av, lowers the oscillation frequency and restores.thg
resbﬁanée condition, which causes the beam amplitude to égain increase,

and so on. On the other hand, a slow traversal of the resonance in the
" Av ' - '

causes only a finite increase in beam.

direction of decreasing
' : Av

~size. The amount of beam'growth depends\only on the ratid Z;E andk

_ Ay
is less than 50% for ZEE”S 0.01.

The resonant behavior of the two dimensional (cylindrical) beam

‘is very similar. In this case two resonances are possible, although for

a wide range of beam parameters, including most practical configurations,

only one resonance occurs. An adiabatic resonance crossing in the
VaNY, '

causes an arbitrarily large increase in
. | _ » A
beam size, whereas a crossing in the direction of decreasing -

direction of increasing
. , v
sc
Av

causes only a finite beam growth, which is less than the-qne-dimensidnal

beam growth fbr the same value of —=

AV

We conclude that gradient errors will not limit'beam'intensity

or‘causerparticle loss, provided slow resonance crossings in the
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Av.
sc

YANY,

direction of increasing are avoided, and provided the ratio

Ay ‘ . . :
ZTE- is sufficiently small at the resonant intensity.
v ' :

Application to AGS

As an application of these results, we examine the two modes - -
_of envelope oscillation for the Brookhaven AGS. The relevant parameters

19

. are obtained from van Steenbergen,”” who has measured the vertical vhase
o . U .v‘. ‘ o
space emittance and density distribution in the energy range 50-hOQ eV,
First consider the situation immediately after the injection,
: 12 . e
~wnen 7.7 x 10 particles occupy most of the machine circumference
(B =~1). At this time, the betatron frequencies in the absence of space

charge are v _ = 8.35 and QZ-= 8.92 (as extrapolated from Fig. & of

van Steenvergen), and the vertical emittance is iEZ = 11.6 cm-nrad.
_ R _ .

=2.3cn (R = }28 m), and assuming an aspect ratio

& .2, we find Av = 0.1k and Av = 0.28 (from the equations

b scx Tscz _ , .
following 3-2). These are the space-charge-induced frecuency shifts
for the individual particles within the matched beam, with the constant
size a =4.6 cm and b-= 2.3 cm. Gradient errors cause the team to
oscillate, and for small amplitudes, the two modes of envelope oscilla-

tion are determined by Egs. (3-8) and (3-10). In this case, the modes

are nearly one-dimensional, and we find

SCX-
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scz

‘ 1 .
where € ~ 0.1. For the above parameters, %-wx = 8.26 and S, = 8.73,

and these frequencies are well removed from the

N
e
<

N
£
<

half-integral resonant values; an intensity of 17 x lO12 particles is

 required to shift %;wz to the nearest value, 8% . Therefore gradient

errors are not expected to cause pérticlerloss in this region. (These
results are strictly vaiid only for uniformly charged beams, whereasﬁy
the AGS beam has a Gaussian charge distfibutioﬁ. We find in Part iI
that the frequency shifts for the Gaussian beam are approximately 1/3
larger than those for the uniform beam, and thus the lowest résonént
intéhsity is more nearly 13 x 10 12 particles.go)

During the first few synchrotron décillations after injection

' (during the.capture process), about 60% of the injected beam is lost,

and smaller losses continue until 15 msec (By = 0.5). At this time,

1.9x lO12 particles remain, and these are assumed to occupy 1/4 of the

machine circumference. After this time, small particle loss occurs in

two regions: the first near 20 msec (By = 0.6) islassociated with a

- 20% increase in the normalized vertical emittance, while the second near
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30 msec (By = 0.8) 1is associated with a 10% incrédsé in the normalized
vertical emittance. Tﬁe frequénciésv'mx and w, have_beep calculated
: . : 12 ‘

for these times, using N = 1.9»x 10 P B = 0.25, and the measured
values of ‘ﬁEZ, and théy are included in Table I.

Becaﬁse the zéro'intensity betaﬁr@n freéuencies Vo and v,
change dgringvacceleration, the w, = 17  resonance is- crossed near
By = 0.8, in agreemeﬂt with the observed particle loss at 30 msec.
The resonanqe.créssing is approximdtgly'adiabatic since Avséxﬁgvx
changesvby 0.1 dufing £00 revéiutions,.and is in the directioﬁ of
decreasing Av_, /fw . The observed 10% increase in tﬁe nprmalizéd
vertical emittance is consistent with a.stopband-width_of Avy = 0.002;

Av ‘ :
s s : S . ; L . .
-in this case, = 0.0k, and the beam grows 100% in the x direction

and gbout 10% in the =z direction (using Fig. 3-3 and assuming that

the &_ mdde retains its one-dinmensional Torm in the nonlinear regime).

X

‘Further experiments are necessary to confirm this connection
between the_particlé loss at 30 msec énd ﬁhe w, = 17 resonance
crossing. For example, if the stopband is enlarged.by deliverately
exgitinﬂ a i?th hafmonic gradient érfor in the machine lattice, thé
beam growth should exceed the available hbrizontal aperture andvlargé

losses should occur ebout 30 msec after injection.



Table I.  AGS para.meters near injection
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8.58

By a(cxﬂ) | MVsez Va Vx % Px % Oy
0.50 5.8 0.18 8.88 8.4 8.76 8.1
0.60 3.2 0.16 8.86 8.50 8.75 87h5
0.70 2;8 0.15 8.8k  8.53 8.74  8.49

'0.80 , 2.6 0.13  8.83 8.55 8.75 8.51
0.90 2.k 0.10 8.85  8.57 B8.76  8.54
1.00 2.3 0.09 8.82 8.77




{60- |  UCRL-1845k

| PART II; .COLLECTIVE OSCILLATIONS OF ONE—DIMENSIONAL BEAMS
| CONFINED BY HARMONIC POTENTIALS
In Part I we considered only'one mode of collective oscillaﬁion
that occurs in only one type of bean, ﬁamely the quadrupble mode thét
is excited in uniformly chargéd beams by gradient érforsf ThésevréstriCQ
tibns enabled us to examine the largé—amplitude nonliﬁgar effécts'of
space charge. In this Part we examine the other modes of collective
oscillation that occur in both uniform and nonuniform beéms. wé restrict
our attention, howevér, to small-amplitude oScillations and féf simpli-
cify to one-dimensional beams. |
">In Section 1, we use the linearized Vlasov equation to find all
the normal modes and eigenfrequencies for the uﬁiformly chérged beam;
iﬁ Section 2, thé resulting mode structure is compéred with that found
by Ehrman6 for an approximately uniform beam, and with that found by
Weibelzl_for a neutraii%ed bgam'(plasma) with a Gauséian chargé
distribution. | SN
__Before proceeding to these cases, it is informative to consider
the seemingly trivial case in which the-Coulémb interactioﬁ is'turned
off. 1In the absence of space charge, the eqﬁatioﬁ of.motion_fof the
individual particles is
x , e

+ v
d¢2 0

where the symbol Vo will be used iﬁ the remainder of this paper to

deéignate the unperturbed betatron frequency. Any particle distribution'
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| dx . . N
rotates rigidly in the x - 1 space with the frequency v., and
. Y vod—SD' . 0

has the form f = f(r, vo¢ +0), where r and 6 are defined in

Flg. 15. The normal modes are found by a double decomp051tlon of £

1 dx
vy
r
e
\\\\‘ké'//y] X
Fig. 15. )
the second'argument_of f 1is expanded in a Fourier series ‘ ks "
ln(v ¢+Q) : o |
E: gn(r where for each n, gn(r) is an arbitrary function

of r ~and may in turn be expanded in a complete set of functions,

gn(r) = 2: gmh(r). ‘Thus there are a two-fold infinity of normal

modes'offthe form .
- | -ine  -iw_ 0
, fmn(r,9,¢) = _smn(r) e e
where the eigenfrequencies wmnhz nv, are harmonics of the unperturbed ’

bétatron‘frequency. Each éigenfrequency is infinitely degernierate.
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In the presence of space charge, but on the assumption that the
space-charge forces are small in comparison with the external focusing
forces, each eigenvalue is split into infinitely many different eigen-
values that are clustered near the value nvo, and the new eigenfunctions
are mixtures of the uhperturbed elgenfunctions. Since the'hnperturbed-
eigenfunctions and the form of the space—charge interaction (Maxwell's
equatibns> are known, the perturbed eigenvalues and eigenfunctions can

- be found by stationary perturbatioﬁ methods.22 However, the unperturbéd
~ eigenfunctions aré infinitely degenerate, so that aﬁ infinite-order

\ matrix must first be diagonalized. In any event thevform‘of the‘eigen—
\ Qalue spectrum is clear: the eigenvalues are discrete and occur in

R

' clusters near the value nvy-

“ . 1. Normal Modes for the Uniformly Charged Beam

\

t Formulation of the Problem

l
\

' The Vlasov and Poisson equations can be written in the form

| » o + v §£'+ [- 2
o FVe v

dx o . . .
where Vv = a@, and x measures distance from the median plane in units

of the half-width of the stationary beam, a. The distribution function
o ' 2.2 N

f(x, v, ) is normalized to unity, and the quantity w‘2 = E%E—B§¢- E%
~ 7 mv

(the plasma‘frequency) has previously been defined as »EVOAVQC'

[Eq. (2-8), Part I].
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" The stationary solution of (1-1) and (1-2) that has a uniform
charge denéity is

I . 1 - ; |
. fo(x,v); = , go(x) = x |,
i 2 ' :
| v 2nvif1 © - Y ’
. - -
2 (1-
v o)
where v = .' 02 - wpz; ~ vyt AV will be used in the remainder of

this paper to designate the effective betatron frequency for the individual
particles within the stationary distribution. In the x - % space, the.
particles move in circular orbits, and the stationary distribution

rotates rigidly with the frequency v.

v
v

//er

ra
-5

Fig. 16.

Oscillations éf this distribution are described by the perturbed
' distribution' £(x, v; @) g'fo(x,gv) +:fi(x, v,v¢),:ﬁhiéh‘gives rise to
a, perturbed velectr.';i'cv fie'ld, : £ (Ex, k)] .= Eo(x) + €l(>;, ¢) As in
Part‘I, we ﬁeglectﬁthé magnetic field components that aifgé ffdm the
- transverse pafticle velocitiés, “Thg evolutioh of fl(x, v, @¥) is

governed by -the Vlaéov equatiqn.(lél),vwhich WeilineariZe gbdut fo(x, v):
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df of Sf , ' of
R Il T R

The left-hand side of (1-4) is the total derivative of f; along an -
unperturbed orbit, and consequently we can invert (1-4) and write f»l"
in terms of an integral of the right4hand.side over an unperturbed

orbit.ezL We do this explictly by writing (l—h)_ in terms of the polai'

coordinates defined in Fig. 16:

v ’ ‘ o) ’
~of. of o : ar > -
1 1 . . 0 : '
33 " vVs% T -;S—- Sl(r cos 8, @) sin © = - (1-5)
For the normal mode solutions £, = f(r, e)e']‘bfq, 81 = E(r cos Q)e-l-w-'0 '
(1-5 ) JSecomes “'1‘~-\§\_\
. . \\v\:\ . |
-i‘;"e 4 i%le \ w2 o dfb‘ ,
{ e le f(r‘,» e),]/_/ = —g—- 'g(_r.covs 8) sin 6 = - (1-6)
S, o
Since“the function f(r, ©) must be periodic,ih, e,
f(r, 8) = f(r, 6 + 2x), the unique solution of (1-6) is
A 3@ .
e f af, elve _9' % S
f(r, &) =" g el _ f e” £ (r cos ©') sin 8' a8,
. ‘ N : . v
Wy 2ni=§ .
. 1 - e v 0=2x
(1-7)
2 SETES '.
T

. A R / . . .
provided %— is not an integer:' The case of integer values of % is
considered later. Equation (1-7) can be éitten in terms of the

Cartesian variables x and v 'as : A~

N
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. 2 21 .. :
_ of ) i=u '
. 1 770 ' Y
f(x, v) = S5 ; ii f e’ Ex) - du (1-8)
' U -1
W= ©'-0 1)y

N-
n

o v .
xcosu--sinu

(1-9) -

v' yX sin u + v cos u

|

Equation (1-8) specifies f(x, v) as an integral over the unperturbed
orbit.

‘The perturbed electric field 'Gj‘x, @) 1is related to
fl(x, v, ¢) by Poisson's Equation (1-2), or alternatively by Maxwell's

second equation,

28, o o
55 - -2 j vi(x, v, ¢) av /, ) (1-10)
| - ST ; o
which follows immediately from Poisson's equation and the _continuif’iv.,
equation for charge and current density: Using (1-8) and (1-10), we
obtain a éin_gle ini:engval equation'fér e(x) :

~

| - 2w 2 ® Bfo o’ iy v
in £ (x) = —E& dv 5= f eV Ex)Xau , (1-11)
T v . _ v
el .
e v -1 —® A0 ]
BN dorm
‘ : r c&w
where x' and v' are given by (1-9).
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General Soluti_on

We solve (1-11) by performing two integrations by parts.23 First

integrate‘over v so that

' N 2 00 21 .0
2w i=u
mg(x) - —P dv fO f eV
_2511%) J A
e -1 .

0%

e e I CED

v du
or . ' |
where the integrated terms are zero at the limits v = + «. Then
_integrate by parts over u to elimi_nat_e (%ui .:
us 2/v2 o 21 10, ‘
£(x) = —& f v fof e’ E£(x') sin u du-
et ) J .
e V-1 | | - (1-13).
N : : 1.2 2y  .2,-% o
We eliminate the function fo = é;[v _(l -x7) = v) from (1—13) by

v

replacing . v Dby4-v Vi - x2 " cos n, so that. .

: : 2, 2 2n 21 .
o /v i=u
1 ie] . v
(x) = Z———— cdn e
v 2% N
2ni= :
e -1

. Dok
x E(x cos u + V1 - x2___’sin u cos n)fNdu.

(1-14)

.
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Finally repldce X with cos &, so that

2 v 2 2 ST 2w W

w - v u
E(cos £E) = P 5" j; f dn f eV g(cos ¥) du ,
‘ 2rv 2ri= o o . N

: e V-1 . A | - (1-15)

where cos ¥ = cos € cos u + sin § sin u cos 7. The angle V¥ will be

recognized as the angle between two vectors with polar coordinates 1,

g and O, u ypépectively, as shown in Fig. 17.21‘L

i

‘It is now easy to show that the solutions to (1-15) are just
Legendre polynomials. We use the addition theorem for spherical
harmonices to write

Rleos v) = i SYRE, W Y0, (2216)

-
- where the integration over 1 in (1-15) insures that only the m = O
* term Pn(cos t) Pn(cos u) contributes to the sum. Thus, if"

8n+l(x) = P (x), Eq. (1-15) is satisfied identically provided
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| 2,2 or L. S oL
% IV Y ' N | | .

Kn#l(w) = —;:;5———— J[ e Pn(co§ p) sin wdu = 1, X ,-:.
e V-1 % S @ T

>

which specifies the eigenfrequencies . A few of the functions.'Kh(w) '
©are included-in Table.iI;-the rest may be'found-byvusing the recursion
_relation

w2 N ‘(n _ 5)2 V2

K@) = B K o) a8 o
. , ® -ny : _

The eigenfunctions for the pérturbed'electric field are therefore .
the Legendre polynomials

ghﬂx) v= Pm;i(X)';'>. for m ='l,é,33..;’ ;’ ' - (1-19)

and for. each vélue of m, the corresponding eigenfrequencies are deter-
mined- by  ‘

_Km(@h;) = 'l{ \Afor n o= mym-2jm-b, e ’(1-20).

In general, each eigenfunction E;m(x)f has more than one eigenfrequency:

N

as cén be seen from Table II,'there is one eigenfreguency each for

i

m=1 and m =2, but twq fq; m = 3,4 andlthree for -m = 5,6, and

so on. We label the various eigenfrequencies of (1-20) so that in the

limit of zero intensity, o - approaches ny. | L o :
The eigenfunctions fmn(r, 8) corresporiding to the eigen-

frejuencies w are determined by Eg. (1-7) to ve
N I .



Table IT.

-69- - UCRL-18454

The functions Kn(o.)) are listed for n < 7.
n Kn(o.))
w, ‘ 3 A
1 2 atz Vo
w - v
P ‘ ; 3
o “ Wt = WVI/“’*"E v
2 - N .
\,/ W - 22.\/2(\ B
w 2 2
3 P . )
2 2 2 2 2
w -3y w -V
B} w e \\ 2 2
b Y55 o
- 47y ®» =2 vg.
2 g
2
5 wp _ 22v we »
2 - 22 22 2 2
w -5v W™ =3 w = v
w 2 22 2 2
IS js) w =3 v, w -V
’ 2 2 2
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o w 2 - " R (I') w,
1, 0 mk ., mn . :
fmn(r, 8) = :%—- = E: - (1 — sin k6 - k cos ke) ,
o =
K2 - = (1-21)
v

where the sum over k is finite and involves only even or only odd
numbersl The radial functions Rmn(r) are polynomials in ré'and:e_
few are listed in Table IIT. For m > 2, the sum in (1—21) has more
than one term, and the simple n-fold rotational symmetry of the
unperturbed eigenfunctions is absent.

TLow Intensities

2
For (L)p << v 2

o’ these eigenfunctions and eigenvalues reduce

to the form predicted by perturbatlon theory. The eigenfrequencies
have. the form

P _ _ _
xmn are listed 1n Table IV. These eigenfrequencies are shown in

where v = v T = vd'e Av "and where a few of the constants

Fig. 18a for the intensity corresponding to >Ach = % , but the eigen-
frequencies with m>n + 2 ‘are clustered too near the'values _nu ter
be resolved. Figure 18b shows an enlarged region of the spectrum near

ny: all the eigenfrequencies (except are shifted down from

T vo) |
the unperturbed values nvo, and as the ‘radial mode number m increases,
the eigenfrequencies approach ny. It is also evident from Eq. (1-22)

or Fig. 18a that as the mode number n- increases, the:eigenfrequencies_

become more tightly clustered around the frequencies nv. .
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Table III. The radial functions Rmn(r) with

m< 7 are listed.

&’ 1 3 5
1 | r

E 2320 -x) L

s BGE2E2 ) BGE)

n :
N 2 b 6
e " %rg
1 b 2 L
L _H-Z—r -Br) %‘r
¢

| %({32 = l’_?lﬁ}"+ 31«2)__ LESE ") F° |



Table IV. The coefficients Kmn

- =7-

are listed for m < 7.

UCRL-18L454

in Eq. (1-22)

m 1 5
1 1
2
1 3
3 - = = -0.125 — = 1.125
o3 25 :
. 52; '2. . ’
5 - = ~ -0.0156 - e—Ji’z -0.350 . 2.1 1.365
| 20 | ol | o
2 L 6
-
2 1
1 5 L
N - = = -0.250 =1.25
52 2
5 7 ) 3.7
- ~ -0.039" - ~ =0.k4 2L ~ 1.4
_‘6 | 7 0 959 ;H 58 7 1.475
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Ty

= 6v

4v0-4- % - nvoA -
- o~
| | nA%c
L m=n
3”0"_—*_=4V
v =0
YoT m=n+2
ta) . (b)
| XBL689-3904

'Fig. 18. Eigenvalue spectrum for Avg, = % ; (b) is an enlarged

region near ny. The eigenvalues occur in clusters near
ny and, as n increases, the clusters become more tightly
grouped around ny.
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The low-intensity eigenfunctions ha&e the form

af .
0 =-ine 2
= € + O(a).p..) ;o (1’-25‘)

1
r d

+ becomes
mn

and therefore the complete distribution f = £y

' - 1 5 - ' 2y
£ = +O((DP)J

2nvﬂvgr-jr2 + eRmn(r) cos n(v{ + 9)

(1-2k4)

where the term proportional to wbg' involves mixtures 6f other zero-

order eigenfunctions. A few of the radial functions Rmn(r). are shown

in Fig. 19; note that the perturbation foi the modes with m=n is 4

the largest near theisurface r =1, ﬁhereas fhe other modes aréiclose
to éero there. For this reasbn,'the m ='n_ modes are referréd to as
surface. modes. They prqducé relativeiy iarge displacements of the beam
'surface, as opposéd to‘the m + ﬁ modes‘for-which-thé pertuibgdvmotion
is largely confined to the interior bf fhe distiibutionﬁ

The distribution (l—EM)‘rotétes in an apprékimately rigid

fashion in the x - % ‘space with the ffequenéy ny, and has an approxi-

mate n-fold symmetry of.rotatibn.and radial Variatiqn with = é}n nodes

in real space, the perturbed charge.density is proportional to

de—l(X) | _ . : D
—ax As m increases, the overall perturbed charge density tends I

to cancel with itself, and thus it is not surprising that the éigen-

frequencies for the modes with: large m approach nyj; perturbations
N a 3 - .
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1l r '
] Y
R, : ' R"y
. ! )

- XBL689-3903 .

- Fig. 19. The radial functions Rmn(r) are shown for even values .
of m and n. The vertical scale is not ihdicated, and

‘differs from figure to figure for clarity.
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that prbduce little net charge density will only slightly perturb the
stationary circular orbits, and coﬁSequently will be carried along
nearly intact with the freQuency‘ v of the‘stationary distribution.

The eigenfunctions 'fmn(f’ ©) - found so far do not for@ a
complete set.25 For example, among thé zero-intensity'eigenfunctions
(1-23), there are none with the form gmn(f):é-?ng where n %.O or,
in géneral, wheré n > m. Fdr'complefenéss; additibnal eigenfﬁnctions
aré required to fill in the blanks of Table III; as well aé an additional
column at n = O;:blt is' shown in Appendix'c that these additional
’éigénfuhctions'exist,and have the eigenvalues nv that were excluded by
the form of Eq. (1-7) and folloWingL The new eigenfrequencies do not
change the form of the spectrvum, but now the value ny is degenerate.

High Intensities

In the bpposite limit of very high’intensities; thebeigenfunctions
and eigenvalues also reduce to a characteristic form. The maximum

inténsity occurs for w and cérresponds to that Value of spéceé

p = Y0
charge force for which the repulsive self-force exactly cancels_the
external focusing force -- no net force acts on the statiOnary distribu-
tion.  In this case, the particles comprisihg the stationary distribution

have no velocity (the beam emittance»iSIZero), and f. 1is completely

0
characterized by its charge density end(x). Any perturbation can -
therefore be expanded in a single infinity of functions, rather than in
the two-fold infinity required before. Furthermore, any perturbation

of such a zero-temperature plasma (the external force is eguivalent to

a neutralizing background of immobile ions) must oscillate with the
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plasma frequency @p. ‘Thus,'in this limit, the eigenfunctions must
réduce_to'a single'infinity of functiohs, and their eigenfrequencies
mustréll have the same¢value w, = ab.
This is'indeéd:the case. A few of the eigenfrequencies ®n
arezélotted as a fuéétfon of intensity in fig. 205 as the intenéity
incregses to ité maximum value, the eigenffequencies Opm for the sur-
‘face'modes all approach the plasma frequency whereas the eigenfrequencies
for the otherhmodeé approach zero. The eigenfunctions for the electric
field f:(x) [or equivalently the charge density en(x) ] remain
Legendre polynomialé; and. since each eigenfunction E:nxx) now has only

one eigenfrequency, any perturbation is completely specified by the

single infinity of eigenfunctions em(x);

’.ThevDiPOIe and Quadrupole Modes
JThe dipolé mode with m =1 and n =1 is particuiarly simple.
The eigenfrequency w,, specified by Kll(w) =1 is found from

Table IT to be
w. '-. :" v o+ W = VO ) ' o (1-25)

so-that this_qué oscillates with the unperturbed betatron frequency

‘yd; independéﬁt of;intenéity. The perturbed electric field has the
R . o =iy . - -
form Elgg, ¢) =¢ce O_),»and the‘cqmplete particle distribution

is given to first order in € by
i R I
: f(_r:’ 9, ¢) = ; = -,

2Vl - rf 4 2er cos(vyf + 0) 2rv V1 - r12

(1-26) :




Fig.
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X8L689 - 3902

20. The eigenvalues specified by Km(wmn).= 1 are

shown for m = 9;7,5,-and 3. As the intensity increases
to the maximum value torresponding to ,wp = vy the
eigenvélues,for the m # n modes approaCh'zero; those

for the m =n modes approach ’w?.
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where the variablé r' is measured with respect to the moving
coordinates x = e_cos(vo¢ +©0) and _% =€ sin(vo¢ + ©), as shown in

Fig. 21. Therefore the entire distribution is displaced in the circular
v

/

4 l
\\\\Z/ *

'\'1'/

\
mil
/
B

Fig. 21.

péth indicated, and‘in regl space, the beam oscillates rigidly back and

forth at the frequency Vo

'In'addifion to this rigid dipole mode, there is an infinite

number of nonrigid dipole modes with n =1 and m = 3,5,7,-++ and
| . P . (x) .
with_a charge density proportional to ——Eai——— .  The charge density

for these modes oscillates in a nonrigid fashion, and the eigenfrequency

approaches VA - as .m increases.
Oy EPPYS : (VO AVsc) v

The quadrupole mode with m =2 and n =2 has the eigen-
freQuency

D 2 3 : |
Wy = vo oo ~12(v0 -5 Avsc) ;o (1-27)

which is the same frequency as was found for the small-amplitude :

oscillations of the one-dimensional beam examined in Part I. -In fact,
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it is straightforward to show that the complete distribution

f = fo + f is Jjust the small-amplitude 1imit of the uniform one-

22
dimensional distribution, Eq. (1-17) in Part 1.26 Thus, this is the =

"breathing mode" in which the beam expands and contracts, yet maintains

a uniform charge density. .

The quadrupole modes with n = 2 and m = 4,6,8,--+ have a
de—l(x)
Jdx

nonuniform charge dehsity proportional to , and theirveigen-

frequencies th approach Q(VO - Avsc) as m increases.

Excitation by External Forces

Machine imperfections excite the various.normal modes. In this

case, the linearized Vlasov equation has the form

of . of 2 .of afd
A"

LavE - AE - 0 ) v TP 2, (e

where E(x) e_lp¢ is the known external driving term and p is an
integer. The forced solutions of (1-28) oscillate with the fregquency

P, and can be found by the same methods tﬁ;%\wére used to find the

' normal mode solutions. In particular, the defining equation for E:(x)

is just Eq. (1-15), but & (cos W). on the right-hand side is replaced

by E(cos ¥) + E(cos ¥). The solution for the forced electric field is

)

| E(x) = Z ?.rl_;_.l. aﬂpﬂ-(x) o, h (1-29)

where the coefficients a are determined by
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, K@ | |
81 = T-K(®) J[ Pn_l(x) E(x) ax . (1-30)
" -1 |

'Thus an external driving term of the form E(x) = Pm_l(x) excites only

the € (x) modes, and resonances occur for p near any eigenfrequencies
m

an where n = m,m-2,m-b,---.
" A magnetic field error has the form E(x) = €, and excites only

the rigid dipole mode (m =1 and n = 1) with

‘ Ql(X) = =5 . (1-31)

A gradient error has the form E(x) = ex, and excites only the uniform

quadrupolé mode (m =2 and n =2) with

' , €w 2x ' -
ee(x) = ) P2 - ) . ’ : » (1-32)
_, = uvo + Bwp : _

in agreement with Part I. Nonlinear driving terms excite the higher-

order modes and»céuse resonances for integralvvaluee of On” 'Iﬂ the
neit sectiOn;-We‘eiamine.these resonanees in more detail and compare
them with the fesonant frequencies found by Ehrman for a'nonuniform
beem. | | |

We conclude this section with avfeW'general obéervatioﬁs. For

intensities of -interest in AG synchrotrons (Avsc << vo), the normal

modes £, for the‘particie density in x -'%r spaee have an approximate
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n-fold symmetry of rotation and radial variation with Z ; L2 nodes;
, | o e, (%)
in real space, the charge density is proporticnal to e

‘The distribution ofcillates with the frequency

@ = n(vo - Avsc) +— av . , which dlffers from t?e zero-intensity
. : : . ' mn
value nv, by the two frequen;y shifts navsc and - Avsc' The

first frequénéy shift is a purely geometric‘effect: a pertufbatibn that
produced no'electrié field Would rotate rigidiy with the freﬁﬁency v

of the Stationary distribution, giving rise to the eigenfreqﬁency'.ﬁv.
However, because the perturbation is chargéd; the Circulaf orbits of the
staﬁionary distribution areldisforted, andvthis’distortién gives riéé_ﬁo
thé‘sécond frequency shift. This frequency shift is'largeSt for the
lower-order, more coherent modes, and bécbmeé progressively smaller
(Table IV) fbr the higher-order modes, since the perturbed chérge
denéity teﬁﬁsvto cancel with itself:: the_moét coherent ﬁode is the
rigid dipole mode for which @ = (VO'- Avsc) + Avsc,.whéreas fqr fhe.
. uniform quadrupOlé mode  a,, = 2(vO - AVSC) + % Av,,, and for thé (3,3)
sextupole mode Wz = B(VO - Avsc)v+ % Aﬁéc. 'Eor the higherQOfder?
modes, espécially the nonsurface ﬁodes,vthe,eigenfréquencies‘are

shifted very little from the value n(vo - Avéé)‘

" Finally, because tﬁé eigenfrequenéies are real énd discrete,

there can be no Landau damping.27 This type of damping requires a
continuous spectrum and discontinuoﬁs eigenfunctions, so that any
initial perturbation that is analytic consists of an infinite number

of eigenfunctions, each infinitesimally excited; in the course of time




i -
.

-83- UCRL~18L54

the phase relgtionships between the various modes is destroyed and the
perturbation damps exponentially to zero.28 For any system of charged
particles that are confined by a harmonic potential, the eigenvalue

29

spectrum is discrete and the eigenfunctions are continuous; however,
a very localized perturbatioﬁ contains many modes and exhibits an
approximate exponential damping until the phases of the various modes '

become randomized.
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2. Extension to Nonuniform Beams

Resonant Frequencies for the Uniform Beam

We‘have séen in the préceding section that‘an.external driying
tefm of the form Pﬁ;l(x)_efip¢' exciteé resonances if the integer P
is near any of the eigenfrequencies ahnv Where ‘n = m,m-2,m-ﬁ,';-t For
loW'intehsities, W = 0V — Avsc; and therefofe fesonances occur

for p near my, (m~-2)v, (m -4)v, ..., as indicated below:

_The'exte;nal field causes resonances for p near
N ? 3 y
P 2y
P2 v 3v
P5 | ' 2v by
P, v Sv. Sv
P v ey
. (2-1)
‘Dipole modes a%e excited by P, P, ?g; i-f;_quadrﬁpéle modés by
Pl’ PB’ P, --fv,Asextupolebmodes by  P2’-Ph? F" s octupoie modes by
P3’ P5, ey, ete. ip-the limit of zero intensity, these résonances

reduce to those obtained from the single-particle approach; the equation

of motion for the individuval particles is

= vy x = ¢ Pm_l(x) cos pgd , o (2-2)
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and if.we consider only small departures ©8x fron the stationary orbits
= A cos(vo¢ + ), where A and O are constants,,resonance occure
for p = my, (m -2)vo, (m - h)vo, **+, as indicated in‘(2-l)7
However, if:nonlinear terms in &x are allowed in (2-2), the
resonant growth caused by the dr1v1ng term x° cos p¢ is usually .
serious only for m< 23 for larger values of m the amplitude
dependence of 2% which results from the nonlinearity of the driving
term, éenerally cauees’the resonant growth to be negligible.jo
Presumably.this'is elso true in the presence of space charge. Then,
since' X" can be expressed in terms of Legendre polynomials of order

less than or equal to m, only the driving terms P l(x) ‘and resonant

frequencies Won with m< 3 need be considered, namely aﬁl’ Wsn s

®310 Pz

Resonance occurs for integral values of these eigenfrequencies,

and from Table IV we find:

* Driving term - Resonant condition Mode (m,n)
P, . Vo = 1 o rigid dipole (1,1)
P, v =4 2 Av. uniform quadrupole (2,2)
1 . Vo T2 Ve g P ’
> v _n+2 AV nonrigid dipele " (3,1)
- 0 8 'se . ' 7=
P, 'bn7-" ,
Vo =3 g v, sextupole _(5{5)

(2-3)
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where n is any integer. These resonant values of are shown in

Vo .

. cps :
Fig. 22 for the beam intensity corresponding to Avsc =73 additional
resonances are also included, and the dipole, quadrupole, and sextupole
modes are drawn separately-fof clarity. The rigid dipole‘mode is

excited by Po at.integral values of Voo whereas the nonrigid dipole

modes are excited by Pg,,PL, +++  for Yo ‘near ‘n + v .- The uniform
guadrupole mode that was examined in Part I is excited by Pl at

Vo :,% + % TN whereas the quadrupole modes that do not maintain a.

uniform charge density are excited by PB’ P5, “ for vy near

% +:Avsc' The sextupole, octupole, and-higher-ofder modes are exclted

- n n . . X
for vo near i + Avsc’ where x are the zero-intensity subharmonic

frequen01es ' _ v

Comparlson w1th the Water- Bag Dlstrlbutlon

Ehrman and dePackh6 have examlned the oscillations of the
statlonary dlstrlbutlon that has a unlform partlcle den31ty in phase
space, the partlcles are conflned by an external harmonlc potential and

oscillate with the frequency in the absence .of space charge. Since

Yo
the volume occupied by any group of partlcles in phase space is incom-
pressible (neglecting collisions), this uniform particle distribution .
acts as an incompressible hOmogeneousvfluid, and hence the name water-

bag distribution.

a. The stationary distribution

We will examine the stationary distribution in more detail
before describing its small-amplitude oscillations. For low intensities,

the distribution has an approximately circular boundary in the o o~




-87- . | UCRL-18k454

'sc
|l |
I L
o) q 2 .
Dipole
1 ] 1 | 1 ] 1 ] 1 |
n n+% n+1
| 53 | 53
‘Quadrupole
_ | | L) 1 1 ] ] 1l L 1 J
n N+t N+
' 24 2 4 2 4
- Sextupole
S N R R Ll L I I |
n-. - N3 . n+i
Vo —

XBL689- 3901

Fig. 22. The resonant values of v, for the beam intensity
corresponding to Awsc = % .are shown for the dipole,
- quadrupole, and sexfupole modes excited by Pm(x) with

m < 5;
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1
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space, and a nonuniform charge density in real space. As
v
0 .

dx
d
the’intensity increases, the charge density becomes more and more uniform,
until at the limiting intensity for which the space-charge fofce exactly

balanées the focusing force (the plasma frequency equals vo), the charge
density is exactly uniform and thé particles within the stationary distri—

bution are motionless (the beam emittance is zero).
The zero-order distribution fo(r) = ;£; , 0<rg<l, is
. , e _
shown in Fig. 2%b, where r 1is the radius of the individﬁal particle
" dx . .

orbits in the x - L 3 space in the ébsence of space'chafge, and fo

v
0 . C ,
is normalized so that .ffodxdv =1 (v = %%). ‘For AG syhchrotrons the

space-charge forces are small in comparison with the external focusing

force, Avsc < vy ; so that the stationary distribution in the presence

0

of space charge differs from the zero-order distribution fo(r) by
Av ‘

terms of order For Ay - typically % and’ v
"VO'.‘- SC»

difference is approximately 2%, which is negligible.' The normalized

o~ 10, this
charge density pO(X) = ffo(r)dv = % Vl'e'x? for the zero-order
distribution is also shown. Since the charge density is not uniform,
“the self-forces are not linear, and the particles within the stationary
distribution oscillate with different frequencies. It is shown in

Appendix.D that the revolution frequencies for the individual particles

AVse

Yo

within the stationary distribution are given to first order in

by

-7
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Fig. 23. The uniformly charged beam. (a), water-bag beam (b), and
Gaussian beam (c) are shown: fd(r) is the zero-order:
stationary distribution, pd(x) is the normalized‘charge
\ density for fo(r), and v(r) = v, - Mv, g(r) is the
Co frequency of the individual particles within the stationary
. ‘ . .
Awsc

distribution to first order in "
. _ o
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where
21

J[ po(r sin w) 0082 waw |, (2-5)
o v : .

2

g(r) =

involves an integration over the unperturbed orbits: The quantity Avg,
has been defined before [Eq. (2-8), Part I]. It is proportional to the
average charge density within the beam, and is identical to the space-

charge-induced. frequency shift for a beam with uniform charge density,

Ci.e., for the normalized charge dénéity:_po(x) = constant = %3 Eqs. (2-k)
and (2-5) givé..v(r) = constant = vo = &v,. For comparison, the zero-
-order distribution for the uniformiy.charged beam (fo = =  é )

Eﬂvo 1 -.r
is also shown (Fig. 23%a), as well as the Gaussian distribution observed
in the Brookhaven AGS}g‘(Fig. 23c), namely fo = ?'2 é_g'grz’ with the

VOJT

. n . -2.
normalized charge density p,(x) = 2.2 gm2.2x

_ Note that the charge
e

- distribution for the water-bag beam is»intérmediafe between that of the
uniform beam and the Gaussian beam.

For the same total chargé N, and the same beam size a, the

1
Water-bag and Gaussian beahs have a higher central charge density‘than
the'uniforﬁ beam. As a result,‘the:space—charge-induced fféquency “
shifts Avség(r) are larger for the ggnuniform beé@s, sincé fhe' 

cos® w term in Eq. (2-5) weights the iﬁtegration over

Po(r‘31n W) in

the favor of small values of the argument r sin w.  For the water-bag

beam v(r) varies between v(0) = Vo " % Av, - and




“rotational symmetry in the x =~ 1 & space, and oscillate with the,
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_ L - 22 oy ) - . s )
v(1) = vo 3ﬂ2 Dv ., =V, ‘.1.08 Av,,; for the Gaussian peam it varies

between v(0) =~ Yo :v}767 bv,, and v(l) =~ vy - 1.09 av .

- b. Small-amplitudé oscillafions

Ehrman has found the small-amplitude oscillations that perturb

| the boundary of the stationary water-bag distribution while maintaining

the uniform particle density in phase space, namely the surface modes.b

Thése modes, for which the perturbation is large only near the beam

' boundary, are very similar to the m = n surface modes of the uniformly

charged beam. The additional nonsurface modes that perturb the uniform

partiCle density within the boundary were not found.

For low inténSities, the surface modes have an approximate n-fold

-~

d

. Yo
. 31 C
frequencies”™ _ v . - .

30 2 1%Yse | “ (2-6)
Tk o '

where n = 1,2,3,-++. For n =1, w = Vo?- and this is the rigia

dipole mode for which the beam oscillates rigidly back and forth at
the zero-intensity betatron frequency. TFor the first three surface

modes we find-
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Water-bag | Uniform beam _ -
(,L\l = VO ‘v (Dll = VO .
. L -
w, = 2v(1) + 0.hsk Avg, Wy = 2v + 5 A .
wB = 3y(1) + 0.291 Avs-c (1)33 = 3y + 5 Avsc o (2-7)

For larger values of n, the frequency shift from ny(l) is very nearly

, S b
, which has the same form as the frequency shift f%E’AvS

8 .
_%AVS

]

for
c

thé_uniform beam, where MNan is é number Oonrdér one thaﬁ increases
slowly with n (Table IV). Aé n approaches infinity, the eigen-
frequencies w, approach nv(i); ﬁhe perturbed charge density tends to.
cancel>with itself, and the perturbation is carried along neariy intact» | . ;.
at the frequency of fhe boﬁndary particles, v(l) =~ Vg 1.08_Aysc.

_As thevintensity increases fo ifs limitihg vélué,_correspohdiné
to a%vzvvo, thé éigenfre@uencies w, 'appfoach the plasma fréquenéy
Y in the same manner (Fig. B‘Of Ehrman6) aé'd5 the eigenfrequencies
for the surface modes of the uniform beam (Fig; 20). We conclude that
the éigenfrequéncies fér the surface médeé of bbth.distributions are .
Qeryféimilaf.

The low-intensity_fesQnant conditions qu the first three

surface modes of the two_diétributions are

i

,"b
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Water-bag ' Uniform beam
v =1 vy = 1
=240 853 A va ==+ 2 Av
Yo T 2 : Vse 072 "k Ve
Do _n,.7
vo =3¢ 0.983 MVse Vo =3 %8 Dse . (2-8)

The driving terms that excite these water-bag modes héve not been
determined, but it is reasonable to assume that they are similar to
those for the wniform beaﬁ. For example, we expect a gradient errof to
excite primarily the n =2 quadrupole mode, but also to excite.weakly
the additional nonsurface quadrupole modes. In the sémé spifit, we |

expect only the low-order water-bag resonances listed in (2-8), plus -

perhaps one or two nonsurface modes, to be detected in accelerators; .

the nonlinearity of the driving terms required to excite the higher-
order modes should prevent additional modes from being observed.

Gaussian Beam

The eigenfrequencies'for the Gaussian beam have not been found,
but’Wéibel21 has solved a very similar,problem. He considers a one-
dimensional system of electréns in ah external harmonic potential, and
finds the eigenfrequencies for the small-aﬁplitﬁde oscillatipné about a
stationary Gaussian.distribuﬁioﬁ. Howévér, he considers only the case
fof’which the chargé density of ﬁhé statiOnary.distributioﬁ‘is compietely

neutralized by a background of immobile positive ions so that all- the

“particles within the stationary distribution oscillate_with the same

frequency 'vo. In'cdntrast, the charge within an accelerator is not
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neutralized and the individual particle frequencies for the Gaussian

- distribution vary between v(0) ~ vy - 1.67 bv,, and

¢

v(1) = v, - 1.09 Avsc. In any event, the éigenfreQuencies found by

0

Weibel have a form very similar to those of the uniform beam and thé

waﬁer-bag beam.

For ﬁhe neutralized Gaussian distfibuﬁion f,(r) = %jf.e’Q.Er?,
Weibel finds’" |
"mll = Vo ¥ 1.?2 évsc ’ d?l = vo * 0’15; AVge 2
Wyp = 2vy + O.35§‘Aysc ; _ @, = 2v, + 0.089.Avsc';
®53 = Vo *io'ggé Mse r o (2-9)
and_it can be seen that ﬁhe>frequ§ncy;shifts from nv are very

0

 .similar to the frequency shifts from nv(l) for the water-bag beam

(Eq. 2-7)  and from n(vo

the frequency shifts for the surfacelmodes are:v

‘m=n Gaussian = Water bag " Uniform

1 1.22 A 1.08 Avg, ‘. v,
: 1
2 0'556 MVse Ofu5FbAvsc 2 Mse
_ : b
3 O'EQE”AVSC'_Y' 0.291 Mvee 8 Ve .. (2-10)

For the two nonsurface modes of (2-9),

- AVSC) for the uniform beam. In particular,
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LS\ -
(m,n) Gaussian ~ _Uniform

. | (3,1) 0.131 Avg, 0.125 Av_,

. (k,2) 0.089 v, - 0.125 Av,, - : (2-11)

These results for the neutralized beam can be extended to the
charged beam providéd the effectbof the frequency spread v(0) - v(1)
ﬁithin the charged beam can be neglected: we assume that all the parti-
cles within the stationary distribution oécillate with the same frequency

v and replace in (2-9) by the effective frequency V. The value

.VO‘

of -V 1is determined by the fequirement that the rigid dipole mode,

which in this case is obviously the m = l,v n =1 mode, oscillate with

aw ' ' the frequency Vo Then v =~ Vo T l.22 Av .3 this is near the mean
x frequency [v(r) fo(r) dxdv ~ vy - 1.28 Avg, within the stationary N
disﬁribution and is a reasonable extrapolation from the effective = .

frequencies v, - Adsc and. v. - 1.08 Avsc' for the uniform and water-

0] 0

bag beams. With this replacemeht in Egs. (2-9), the resdnant conditions

for‘the Gaussian beam become

VO . = n , VO = n + 1.09 AVSC "
v = =4 1.0h Ay - | v, o= =+ 1.07 Av
o " .2 se. ’ o - 2 - sec '’
241 1v '
. Vo = 3 + 1. 5-Avsc R (2-12)

‘which are reasonable extrapolations from the known resonant conditions

= : for the unifofm and water-bag beams (Eq. 2-8).°
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3. ‘Conclusion

We have inVestigated the small-amplitude oscillations of a one-
dimensional syétém of charged particles that interact with one another
by Coulomﬁ'forces and are held together by an external harmonic pbtential.
Because the large number of diécrete particles (approximately 1012),'
each with th degrees of freedom, has been feplaced‘by 5 continuous
distribution, the syétem has a twofold infinit& of degrees of freedom
and therefore a twofold infinity of normal modes and eigenfrequencieé.

In the limit of zero infensity, the éigenfrequenciéé.for any
stationary diétribution are Just hafﬁbnics‘”dfvfhe'Zero-intensity

betatron frequency , and each eigenfrequency is infinitely degenerate.

Yo

Resonénces_océur'for integral values of nv and thegse are just the

O’

'integrdl, half-integral, and subharmonic resonances that are familar from

single-particle theory. TFor intensities of interest in AG synchfotrons
(Avéé'<<,vo), the degeneracy is at least partially removed, and the
eigenfrequencies occur in éluStefs”near the unpeffurbed'eigenvalues

ny

o For larger intensities, the charge dénsity of the stationary_

distributions becomes more and more uniform until at the limiting
intensity, for which aﬁ = vos the charge.densify is eiactly uniform. .
Consequently, the eigenfrequencies.for the surface modes approach the
plasma, freqﬁency, while the'eigehfreqﬁencies for the noﬁsurfaée modes_
approach zero.

The eigenfrequencies‘and normal modés for the stationary
distribution that has a uniform charge density iﬁ real space have been

investigated in detail. The eigenfunctions for thé perturbed eleétric
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field are particularly simple, being just Legendre polynomials. For low
4 N
X as . X _ mn
1ntens1t1es, the elgenf?equenc1es gre W =DV Avsc’ whgre
vV =Vy T Avsc is the revolution frequency of the particles within the
_ N : . ‘ ;

stationary distribution and —EE-AVSC is the frequency shift induped by

the collective oscillation. In the x - %— gx space, the eigenfunctions

- have an approximate n-fold rotational symmetry and a radial variation

with = ; n nodes; in real space the perturbed charge density is
dp .
proportional to dﬁf The frequency shift from nv is relatively

large for the low-order, coherent modes, while it is very small for the

higher-order modes, for which the perturbed charge density tends to

_cancel with itself.

External driving terms of the form P, (x) cos pf excite the | ' .

¥

for W, near the integer p. However, the resonances with m > 4

will generally»be'supbreSsed by thé nonlinearity of the driving term
required to éxcite'theﬁ. Therefore, from the fwofold.infinity of
possible mOdes, only'foﬁr are likely to be serious for thé unifbrmly
charged beam: the rigid dipole mode (m ='l, n = 1), which is excited
by magnetic field errors for integral Valueé éf"vo; the quadrUpole-
mode (m = 2, h =:2), which.is eXcited.by gradient errors for

+ % Av,.3 the sextupole mode (m'= 3, n = 3), which is excited

N

VO=

0]

¥

by 'Pg(x) for v, = % + %-Aysc; and the nonrigid dipole mode (m = 3,

_ s s . N e 9
n = 1), which is excited by PE(*) for vy =n+ g v

Two beams with nonuniform charge density were also examined, a

Gaussian beam similar to that observed in the Brookhaven AGS and the’
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water-bag beam;, which\haé a charge'distributionihtermédiate”betweenv
that of.the.uniform -~ beam and the G@uSSian beam. Despite the relatively
different'charge‘distriﬁhtibns, the eigenfrequencies for the'sufface
modes of the water-bag and uniform bééms'haQe the Same form and very
similar numerical values. Théleigenfrequenciés for the Gaussian béam
were extrapoiated from the.known eigenfréquencies for a neutraiized
Gaussian distribution, and afe also very’simiiar in for@ and numerical
.content to those for the uniform and water-bag beams. Because of this
similarity, it is reasonable to assume that éorresponding modes in: the
three distributions.are.excited by the same driving terms; for example,
a gradient error.ié expectéd to excite primarily the n = 2 .surféce
modés, causing a resonance for Vg = % + %'Avsc in the uniform beam,
0

==+ 0.85% av,, in the water-bag beam, and for

for Vo 5

Vo = %.+ 1.04 Avsc in the Gaussian beam. In the same spirit, only the
first three surface modes and one or two nonsufface modes-are expected
‘to be observable in accelerators, in analogy with the uniform beam.

- For the future, it is possible that the exact eigenfreguencies

and normal modes for any distribution, at least to first order in

7 , can be found by stgtionary perturbation methods, i.e., the

methods that are used in quéﬁtum‘mechanics to cbmpute perturbed eigen-
vfunctions and'eﬁergy levels. Since only five or six modes need be .
examined; the perturbation approach should.conVerge without éxceséi&e ' T

calculation. Perturbation methods might also be applied to two- _ ' R

dimensional beams to examine the effects of space charge on sum and



-99- ( | UCRL-18454

difference resonances, and to three-dimensional beams to examine the

space-charge coupling between longitudinal and transverse motions. Since

relatively few modes' are involved, it might also be feasible to determine .

the 1arge-amplitude behavior of these modes. by énalytical methods..
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APPENDICES

A. The Nonexistence of Uniformly Charged

i Three-Dimensional Beams
We are given an ensemble of three-dimensional harmonic

oscillators with thé Hamiltonian

i

'.H(F,_?f)f=p2+q, OKHS1 .

% o - R ' : -101- | - 'UCRL-18k5L

Because of thé inequality, the accessible region in phase space is a

" six~dimensional unit sphere; in configuration space it is a 3-sphere.

Does there exist a.spherically symmetric distribution f(p2 +q

#

Maurice Neuman.

‘has a uniform projection onto thé 3-sphere? The following necessary

condition‘fornthe existence of such a distribution has been found by

Theorem: The spherically symmétric distribution f(p2 + q2) does not

exist if its projection_fp(qe) = ff(p2 + q?)d3p violates any of the

following inequalities:

oy 3/2
< '_2(%;) ) OSTg'[B[:
. . T .
o(T)
< &7, P<TSL .
=2

v ‘with a uniform projection, p(qe) = constant.

5_ , q__; The maximum permissible value of p(T), which corresponds to the equal
sign, is shown in Fig. (Al). An immediate consequence of this theorem

is the nonexistence of a spherically symmetric distribution f(p2 +q
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. T

Plnox

Fig. Al. The maximum value of p(7) from Eq. A2 .is shown -~

as -a function of .

e
o
- 1
o .
XBL68S-3915

Fig. A2. The function ' g+(t) specified by Eq. (A8) is

shown as a function of t.
0
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Proof of Theorem: f is normalized by

. } 1
' - 5 ’ .‘
jf(p2 1+ qe)d5pd5qr = {i— f f(t)‘t2 dt = 1
: 0
(43)
The mean of any funétionv g(t) 1is o E N
o 1
mean'g = 1~ g(t) £(t) t~ at , - (Ak)
. 0 ,
and the resulting number can neither exceed the largest nor fall
‘beneath the smallest value of g(t) (0<t<1):
inf g< mean g < swp g . : (A5)
The projection of f 'is
) , | .
‘ ‘ s 1
o0 = [o®+ D) - e [ oo P
o ' ' (46)
' or . ' 1 ' o , ;
o(T) = 2n [ £f(t) (¢ - 7)2 dat . (A7)

T

Consider the'function

~.> t2

: - 2
g (t) = G- for 0Tt

= 0 for t <7t , . (48)
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which is shown in Fig. A2. TIts mean value is proportional to p('r); -

2 | o
g olr) = mean g < suwpeg . - (89)
! ! L s3NE

’ But for 3T <1, swpg =mxg_-= gT(B—T-> = =z (% ) 2 y a}nd‘

T(l) =" 1-r E Q.E.D.

Ly ,
for_§T>l, SupgT=g

O
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B. The Amglitude-Phase Equations for Two-Dimensional Beams‘
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In the absence of space charge and gradient errors, the solu-

tiéns of the two-dimensional envelope Eqs. (3-1) and (3-2) can be

written in the form.

dz "

Z@v

“where A, B, a, and

B

2 R ;
Vi +A° +A sin (2vx¢ +a)
vy A cos(2vx¢ +a)

'Vl + B2 + B sin(2v2¢ +B8) |,

v, B cos(2vz¢ +B8) |,

are constant. When Eqs. (Bl) are inserted into

we obtain the follbwing first-order equations for A, B, Q B QZ:

dA
?15‘25

N< |’Ue
17

2 .
21 48P IX
‘J__—ﬁ

cos Q s

M, +_AVSZV1 + B° sin Q, + 2Bav, .,

‘\/——-—1
V cos Q s

(B1)

" the complete envelope equations with space_charge‘and gfadient érrors,

. (Bb)
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plus additional terms that vary with the frequencies 2vx, 2vz, hvx,

hvz,vetc. We have defined Q v, - n)g + a, Q, = (2vZ - n)¢ +'B;.
n n
BVe = Vx = 5 »AVZ TV T2 and
I - & £o5 T du with u =ng + Q
CTx T 2x ’ x(ax + bz : - "X ?
o | (36)
b + 1Jl + A sin u S -
My = 5; f ~ x(ax + bz) du o (B7)
0] : ’ '

with similar definitions for vIz and Mz. The quantities IX and IZ

are related by

" @AT_ +DBBI. = 0O . o o (B8)
X z - ‘

A. Equal Frequencies and Emittances
In general, Eqs. (B2) - (B5) are very difficult to solve;
however, for the special case of equal frequencies '(vx = vz) and equal

emittances - (a = b), analytic solutions exist with the forms

X = 1+ A° 4 A cos(ng + Q) ;

25 = 1+A +Acos(ng +q) , - (B9)
where the plus sign occurs for a symmetric gradient error (AVSX =’Avsz)
and the minus sign for an antlsymmetrlc gradient error (Avsx = ﬁAVSZ).

For either gradlent error, IX = IZ =0 and Mkf: MZ,' so that

Egs. (B2) - (B5) reduce to

e
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% = s V1+4% sinq , (B10)
aQ Y/ 2'
Aw = -'hA_vsc M, +Av V1 + A" cosQ+ 28 A (B11)
where I
Vi+a® -2
M, = 0 , for + in B9 " (Bl2a)
and {
' 1 2 K2
M = =1 -=-=K(k) , for - in B9 (B12b)
= 2k w2 :
and K(k) ‘is the complete elliptic integral of the first kind with
modulus k = - A e , » .
' 1 +4% ‘ o )
. The phase trajectories in A, Q space are found by dividing. -
(B10) by (Bll) and integrating the result:
Av M
constant = A cos Q + E%Z 1 +.A2> - L Avsc ‘{' —=— aA y
' 8. v 5 1+ AQ
(B13)
where e |
M_dA - -
f s = %En(l +V1+a®) (B1L)
1+ 4% '
“and
v
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1 +A
s . daA aq s
The fixed points -a = 0, = 0 satisfy
d ag ,
4 Av Av
Q =0, A~-,52L-AVS I ScMi
: (B16)
' o ‘ Av Av ’ : .
' 1 ""s 2 sc
Q_: Ty A:EA—V- .l+A + 2 A\_/ Mi >

and are shown in Fig. 10. TFor Avs = 0, these equations specify the‘
amﬁ;itude of the frée eh&elope oscillations that are periodic;

Because of the nonlinearity in the envéloée_eqUations;:a:
gradient error of one symmetrj élso éffectsithe normal mode SOlufions
6f opposite symmetry.‘ Thus the symmetric fixed'pointsléf (élé)'ére
modified by an-antiéymmetric gradient errdr; and vice versa. Tor
example, in the absence of all gfadient errors, thISymmetrié énveiopé

oscillation has the form.
5 o :
x- = z° = 1 +A7 +Acosnf |, _ (B17)

where
Av

sc . -
Av M+

A = 2

An antiéymmetric gradient error transforms these fixed points'into

[ - = - -é-[mzx-%/%ﬁdk] . | (:.Bl5)
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2 = 1+4° +4 cos(ng + Q)  ,
22 - Vi+ A% - cos(ng - Q) ,

where for = << li Egs. (B2) - (B5) become

P L
A cqs ¢‘ = X
A2 ‘_ AVsc
% T Ay
V14 A2 -1
' Ay

Ay

UCRL-18451

(p18)

(B19)

For small values of —— they approach very closely the form (BL7), as

-shown in Fig. 11. .The'éymmetric gradient error modifies the antisym=-

metric fixed points in an analogous manner.

B. -General Beam Configufations

The response curves for vx + v, and a 4 b can be obtained

from Egs. (B2) - (B5) by numerical methods. However, for simplicity,

we gonsider only the Awsx = 0, Avsz = 0 -asymptotes, in other words,

the free envelope oscillations that are periodic. Equations (B2) and

(B3) then require that Ix-ﬁ I,

if Qx - QZ = O,n,  so that

x2 = V1 + A2

o+

N
li
[
*
w
+

+ B sin(ng % Q)

Asin(g + Q)

0, and this condition is satisfied

(Beo)



The quantities A

2
< b
A = 542___.
vavx 21
2
w

6

—R __ .2
QVZAVZ 25
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and B are then determined by (BL) and (B5):

o YOS _
_'f A+V1+4° sina

- x(ax + bz)

0

du R

(B21)

Vl + B sin u

f

z(ax + bz)

These integral equations were solved numerically, and the solutions are

shown in Fig. 1hk.-

5
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C. Normal Mbdes‘that Oscillate with the Frequencies ny

The uniformly charged beam (Section 1, Part II) has normal-mode

solutions that oscillate with the frequencies. ny, where n is an

?02 - dbg . The electric field for these modes has

the form _E:m(x) = fﬁ_l(x), and the perturbed particle density is

integer and v =

determined by Eq. (1-6) to have the form
| -ino | |
f(r) 8) = fmn(r: 0) + e gmn(r) ) (c1)

where fﬁh(r, ©) 1is given by Eq. (1-21) with ahn = nv. The function
gmn(r) “is determined by the condition that f(r, ©)  produce the

required electric field, Pm_l(x):

AP (X | '
__Eé%S_ZI_= o J['f(r, o) av .. o (c2)

‘if (Cl) is inserted into (C2), we obtain the following condition for

g (T):
' 4
de_l(x) 1 cos né, gmn(r) :
[1-K (nv)] ——— = J[ : rdr (c3)
m dx : _
A | > o -
x| Vr= - x=
where cos 6 = %.‘ For_evénvvalues'of n, the right-hand side of (c3)

4 is an even function of x, and therefore m must be even; for odd values

of n, m must be odd.
There'is_an infinite number of solutions for n =0, 'i.e., an

infinite number of stationary distributions that‘differgfrom fo(r) oy

*

o
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Y ) v
an infinitesmal perturbation. Using Abel's theorem 0 to invert (CB),‘

we find

gxo(r) = 3|1 +th2 folr)
1%
gyo(r) = sl 25 (5 - 1) £(r)
: , 6ly v

, . ) : .

B = 21— ) et s e - 1) £(r)
g6o(r = T + 5 ( r + 1hr~ - (T Y

: l6'16y

(ck)
Consequently, for m = 2 and n =AO,.
_ LW z dfo : 1 w 2 o
f(r,8) = -2 —Zrcosawe+zl1+-L]r ,(c5)
» V2 o 2 uv2 0

and similarly for the higher values of m. Since these solutions all
have the same eigenvalue w = O, any combination will also be a

solution.

For n greater than zero, Km(nv) is infinite if m 3z n.

- Therefore the functions gmn(r) specified by,(03) exist only for m < n,"

and these values cofréspond exactly to the blanks in Table III. For -
example, for n =1 or n = 2 there are no solutions. For n :73

there is one solution, with the form

e

g

o

NS
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-i

f = flj(r’ 8) +e 3@ g,lj(r-)

{In this case the left-hand side of (C3) is zero, and it is more
convenient to determine. glE(r) by the equivalent relation
1
. . 1 . - $
1 - Km(nv)]-Pm_l(x) = - = J[- rdr sin n6 gmn(r) : (c6)
S | o
Equation (C3) is the derivative of (C6) with respect to x.} For n=214
there is also one solution, whereas for n = 5,6 there are two solutions,

and so on for the higher values of n.
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D. Frequency Spread’fbr Nonuniform Stationary Distributions

The Hamiltonian for the individual particles within g statiohary

distribution f(p, q) is

1, 2 2 0 2 ' o
B o= 300 +vya") va o) R (p1)
where
2 , | |
d (D Tt
= = - @ a , ~ (D2)
-dg o : : . ,

and where [ f(p, q) dp dg -~ 1. We have chosen the units of q so -
that the beam boundary is- g = tl,‘and héve defined qb as the plasma
frequencj‘fdr'the average charge density. |

The revolution frequency of the individuai particles 1is defer—
mined by (D1) and (D2).: For AG snychrotrons, abg << vog, and it

S v _ NS R _
suffices to find H to first order in <;E> , namely H ~H, + Hy, -

0 1
1,2 22 2 . U :
where Hj = E(p + vy 4 ) and H = @, ?O(g) with =
.d2®0 o o ; o
—s = T 2 f f(Ho) dp. = - 2 po<q) . . (DB)
da . ' . : o .

In terms of the action and angle variables J,w.’givén by

q = ;g sinw , = w = vo¢ + constant, (Dk)
o . . -

i

§
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the zero-order Hamiltohian is Ho = voJ; the transformed first order

e ~ Hamiltonian Hl(J) is just the average of Hi(p,-q) over the
.- 4 33

unperturbed orbit,

. » _ ‘ : w 2 2
Pl ;, . P j/%l in w)dw
L E' o Hl(J)i > jf % <T v sin ;> aw . (p5)
Lo S 0 .

The frequency of revolution of the individual particles is then -

W3) = vy + —5—9—[ <-\/_- s1nw> a . (06)

¢
. _ o _ o
w If the differentiation is performed, followed by an integration by
¥
parts, Eq. (D6) becomes -
- 2y . : .
vir) = vy - Av 2 “p(r sin w) cos® w aw (D7)
v "0 sCc 0 : ' T ? »
. o v ‘ v
= 27 .
where . r = o is the radius of the unperturbed orbits and
o .
-2
-
A‘VSC - 2vo ’
Y
'

K
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The proton-proton collision time [Equation 5-26 of Spitzer, Physics

of Fully Ionized Gases, 2nd Ed. (Interscience, N.Y., 1962)] for a

particle whose transverse velocity is Ald-S ¢ 1is approximately

107 ' 3

t = - where n 1is the number of particles per cm”. For n

3¢

o 10 seconds, whereas we are

" concerned with times of the order of milliseconds.

Whittaker and Watson, Modern Analysis, 4th Ed., (Cambridge Univer-

sity Press, 1958), p. 229.
Aimar S¢renssen,‘The Effect of Strong Longitudinal Space-Charge

Forces at Transition, CERN report MPS/Int. Mu/Ep 67-2, July 1967.

‘The constant in (1-20) is determined by the requirement

constant [ dv, dv, = [ f d&v = [ f Det Ddhx, = N, Det D
The integration over 'dvi dv2 is Jjust the area of a circle of unit
radius, and Det D = —e—;L———, so that
: VDetM _
} o N2
‘constant = ——————
: 5t et M

I. M. Kapéhinsky and V. V. Vladimirsky,'Limitations of Proton.Beanm

Current in a Strong Focusing Linear Accelerator Associated with the

Beam Space Charge, in Proceedings of the Conference on High Energy

Accelerators and Instrumentation, CERN, 1959, p. 27kh.
?hé envelope equation in_the-absénce of space charge and gradieﬁt
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2 2
9—>25+K(s)x-%=o B
ds_ : X

is - equivalent to the two "Cartesian" equations

2

&L 4 k(s)y = 0
ds
2 :
9—% + K(s)z = 0
ds :
where X2 = y2 + 22 and E = y‘%é - zr%% . Thus if v falls

within a étopband, both y and 2z and éonsequently‘ X grow
arbitrarily largé while E remains constant.

E. D. Courant and H. S. SnYder, Theofywof.the Alternating-Gradieﬁt
Synchrotron, Ann. Phys. 3, 1 (l958).v | |

It is easy to show that the resonance cannot occur for the intensity

AV o - Av. The equation of motion for the individual particle is
cx - 2vav
gp + K(s)x, - ——x_ = 0
d¢ P X P

where ,xp is the x coordinate of a particle, and the envelope

has the form

% vAv, cos nf

hvg -6vAv - - n
) scC

- 2,

-«
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plus free oscillations. Combining the two equations, one obtains

E 4 {vg - QVAVSC + 2vav_ cos ng - 2viw . ‘

X = 0 R

b

EMAVS cos nf
X
n

5—
4y™ - 6vAvsc -

where the nonresonant, free oscillations are neglected. For the

intensity Lv, = Dy, this equation becomes

Thus the envelope modulation produces an eiectric field that
exactly cancels the gradient perturbation for this intensiﬁy, and

Nno resonance occurs.

Jahnke and Emde, Tables of Functions, (Dover Pﬁblications, New York,

1943), p. 52.
’ v

The resonant intensities for all.values of % and ;5. have been

. calculated by W. Hardt On the Incoherent Space Charge Limit for

'Elllptlc Beams, CERN report ISR/Int 300 GS/66. 2 Jan. 1966

A. van Steenbergen, Effective Transverse Phase Space Dilution and
Beam Dens1ty Dlstrlbutlon in the AGS, Sixth International Conference
on High Energy Accelerators at Cambrldge 1967, p. L31,

We find in Part II (Equatlon 2 12) that the resonant condition for

a one dimensional Gaussian beam with a charge distribution similar
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to that in the AGS is % = vy - 1.0k Av_,. The resonant condition
v ‘ . . . n 3
for thevcorrespondlng unlform beam is 5=V " L Avg s and the

1.0h
O I

frequency shifts from vo are in the ratio =

\NH‘—’

Assumlng

that the same ratio applies to the two-dimenSional'resonant condi-

“tions (4-1) and (4-2), we conclude that the resonant conditions for

the'correspoﬁding Gaussian distributionrare approximatély

Erich §. Weibel, Oscillations of a Nonuniform Plasma, Phys. Fluids
3, 399 (1960).

For a similar appllcatlon see Leonard SChlff Quantum Mechanlcs,

2nd Ed., (McGraw-Hlll Book Company, Inc., New York 1955), P. 151
This derivation, whlch is con51derably more direct than my orlg;nal
derivation, was contributed by R. Gluckstern (University of

Massachusetts, Amherst), private communication.

See, for example, John David Jackson, Classicéi Electrodynamics,
(John Wiley and'Sons, Inc;, NeW York .1962va; 67.

Dlscuss1ons with Andrew Sessler were very helpful in clarlfylng
this p01nt | |

The uniform one-diménsioh.distribution isr(Part I; Eq; l—lf)

N,

271’;\/~2 - (xx' - X' x) (Ex)

f(XJ X'y, 8) . .=

-

ot b

& f
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For small amplitudes, X = fx/%_'+‘8Xe-la¢‘-where ¢ has been

used in place of 's. If the distribution is expanded to first

order in SX,.there'results‘_

| ST 2 - ENRE gt
f(x, v, ;25) - [l - x2 - Xé‘ + 2é'<x2 - i%) X - -v+2>_e 1w¢]

- o N - [E dx |
where now x 1is measured in units of 5 V= EZ’ and

BX This expression is identical with f = £, + £,

:\mu

where .
... €.°0 L. : -l
.f22 = S 55 r (lv sin 28 2 cos 25) e .

L. Landau, on the Vibrationstof the Eléctfonic Plasma, J. Phys.

| (U.s.'s.é‘;) 10, 25 (1946).

N. G. van Kampen, on the Theory of‘Stationary Waves in Plasmas,

Physica 21, 949 (1955); also K. M. Case, Plasma Oscillations, Ann.

Phys! 7, 349 (1939).

_For nonharmonic external potentials, there is a spread in zero

v‘ intensity betatron frgqﬁencies; the orbits,for‘thg individual

eigenvalue

parﬁicles in 3'4 Xf  spécé ére not éirculér, and the‘ffequency
of fevolution  v0(J) 'differs-for ¢aéhnorbit.: In terms of the
action'and angle variabies J;'w. defined for the individual
parficle Haﬁiltoniaj,'the zérd;iﬁtensity eigenfunctions and

-

are .

wn
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" where his- @ is the plasma freguency for the central charze
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o ' ~-inw e o - > v _ .
fpn(J, W? = € S(J - ), L Q%n - nvO(J) " : - o ‘{’q
. | | _ . ﬁ:
where 8(x) is the usual delta function and p 'is a continuous - "
o _ . ’ o o .
parameter that varies between zero and 'Jmax' The normal modes are Y
now discontinuous functions in analogy with the Van Kampen modes
(Ref. 28) for an infinite homogeneous medium, and the eigenvalue
spectrum is continuous in sections near nvO(O).
P. A. Sturxock,>N0nlinear'Effects in Alternating~Gradient Synchro-
trons, Ann. Phys. 3, 113 (1958). ,
e ' , . ; A
Ehrman writes the eigenfrequencies in the form i
- n 1 - E_ EE_:_i fE; :
CL)n - Yo 3= n2 R il 5 s
. E VO
 where his ab is the plasma frequency for the central chargé
density, which is % times the average chérgé density. In our
units,
-
16 n” -1 8 n
% = P <}o T T I v ) o= ()t gm v
5ﬁ n - E -n - H
Weibel_writeésthe eigenfrequencies in the‘form , ®°
' S ) ' ' i
N 2 o
®n = Vo - ab R

. SR 2.2 . . ' . .
dersity, which 'is 2\/——  times the averaze charze density. . -

n

-y
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s
our units,
1.67
w = nvy, + 2L JANY .

mn 0 n mn sc

The eigenfrequencies are not labeled according to Weibel's notation, .
but according to the notation for the uniform beam. The values of
X55 and %hE are obtained from Fig. 2 of Weibel:

H. C. Corben and Philip Stehle, Classical Mechanics, 2nd Ed.,

(John Wiley end Sons, Inc., lew York, 1950), p. 2Ls.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa- .
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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