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ABSTRACT 

The particl·es in an accelerator interact with one another by 

electromagnetic forces and are held together by external focusing 

:forces.. Such a many-body system has a large number of transverse modes 

of oscillation (plasma oscillations) that can be excited at character-

istic frequencies by errors in the external guide field. 

In Part I we examine one mode of oscillation in detail, namely 

the quadrupole mode that is excited in uniformly charged beams by 

gradient errors. We derive self-consistent equations of motion for the 

beam envelope and solve these equations for the case in which the space-

charge force is much less than the external focus ing force, i. e., for 

strong-focusing synchrotrons. We find that the resonance intensity is 

shifted from the value predicted by the usual transverse incoherent 

space-charge limit; moreover, because the space-charge force depends on 

the shape and size of the beam, the beam growth in always limited. For 

gradient errors of the magnitude normally present in strong-focusing 

s)'l1chrotrons, the increase in beam SiZE is small provided the beam 



"-

-vi-

parameters are properly chosen; otherwise the growth may be large. Thus 

gradient errors need not impose a limit on the number of particles that 

can be accelerated. 

In Part II we examine the other modes of collective oscillation 

that are excited by machine imperfections. For simplicity we consider 

only one-dimensional beams that are confined by harmonic potentials, and 

only small-amplitude oscillations. The linearized Vlasov and Poisson 

equations are used to find the twofold infinity of normal modes and 

eigenfrequencies for the stationary distribution that has uniform charge 

density in real space. In practice, only the low-order modes (the 

dipole, quadrupole, sextupole, and one or two additional modes) will be 

·serious, and the resonant conditions for these modes are located on a 

tune diagram. These results, which are valid for all beam intensities, 

are compared with the known eigenfrequencies for the stationary distri-

bution that has uniform particle density in phase space, and are 
; 

extrapolated to the Gaussian distribution observed in the Brookhaven'AGS. 
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INTRODUCTION 

The beam of particles .in an accelerator is a many-body system of 

charged particles interacting with one another by electromagnetic forces 

and held together by external focusing forces. Such a many-body system 

has a large number of modes of collective oscillations that can be 

excited by machine imperfections at characteristic frequencies. In the 

limit of low intensities, the interactions are negligible, and the 

collective modes and eigenfrequencies are easy to find. Consider, for 

example, a one-dimensional beam in an external harmonic potential; in 

the absence of space charge, the individual particles obey the equation 

+ 
2 

v x = o , 

and any distribution of particles rotates rigidly in the x -

phase space with the frequenc4y v. A distribution with circular 

symmetry (Fig. la) is stationary, while a distribution with circular 

(1) 

symmetry, but displaced from the origin (Fig. lb), oscillates with the 

x, ,,- x' x' 
v v v 

x x x 

I 
(a) (b) 

Fig. 1. 
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frequency v - in real space, the beam oscillates rigidly back and forth 

at the frequency v. In fact, there is an infinite number of modes with 

the circular form of Fig. Ib, each with a different radial dependence, 

but each oscillating at frequency v. Similarly, there is an infinite 

number of modes with the elliptical symmetry of Fig. lc; in real space, 

these modes expand and contract with frequency 2v. In general, there 

is an infinite number of modes with a given n-fold symmetry of rotation, 

and each mode oscillates with the frequency nv. Therefore, in the 

absence of space charge, the eigenfrequencies for any distribution are 

just harmonics of the unperturbed betatron frequency, and each eigen-

frequency is infinitely degenerate. 

Resonance can occur when an eigenfrequency is an integral 

multiple of the rotation frequency in the accelerator, i.e., when 

nv = m; this condition is of course identical with that obtained from 

the single-particle apprQach, which is equivalent to the many-body 

approach in the limit 9f zero intensity. Thus if a driving tern of the 

form xn cos k ¢ is added to Eq. (1), the various dipole modes (Fig. Ib) 

will be excited if v= k and n = 0,2,4,"'; the quadrupole modes 

(Fig. lc) are excited if k 
v ='2 and n = 1,3,5,'" ; the sextupole 

modes if k 
v = 3 and n = 2,4,6,"', and so on for the higher-order 

modes. 

Space-charge interactions modify these results. For intensities 

of interest in synchrotrons, ~d for small-amplitude oscillations, the 

eigenfrequencies are shifted by small amounts proportional to the beam 

intensity, and the degeneracy is removed so that the eigenfrequencies 

t 
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occur in clusters near the unperturbed, degenerate values nv. As a 

result, each of the forbidden lines on a tune diagram that would occur 

for an integer, half-integer, or subharmonic value of v in the absence 

of space charge is split into an infinite number of closely spaced 

lines. For example, the various dipole modes that are excited for the 

same frequency v = k in the absence of space charge are excited in the 

presence of space charge at different frequencies that are clustered 

below the value v = k: there is one mode for which the beam oscillates 

rigidly back and forth at the unperturbed frequency v, but there is 

also ,an infinite number of nonrigid modes whose eigenfrequencies are 

shifted below v = k by amounts proportional to the beam intensity. 

The above remarks apply only to small-amplitude oscillations. 

For larger-amplitude oscillations, space charge provides a very effective 

mechanism for limiting beam growth through the nonlinear dependence of 

the space-charge forces on the shape and size of the beam. A quantita-

tive study of this important effect is extremely difficult in the general 

1 2' 
case; however, it was shown by Lloyd Smi tli and by P. M. Lapostolle 

that the quadrupole mode excited by gradient errors in uniformly charged 

beams can be analyzed even in the nonlinear regions. 

In Part I of this paper we examine this case in detail. In 

section 1, self-consistent equations of motion for the beam boundary 

are derived for uniformly charged beams with one and two degrees of, 

freedom. The derivation, which is more general than we need, is 

applicable whenever the self-forces and external forces acting on the 

individual particles within the beam are linear. In Section 2, the 
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envelope equation for the one-dimensional (planar). beam is solved, and 

in Section 3, various two'-dimensional (cylindrical) beams are examined. 

For either case, the nonlinear character of the space-charge force 

causes the frequency of the quadrupole mode of oscillation to depend on 

its amplitude. Thus the beam growth caused by gradient errors is always 

bounded. We also investigate the process of resonance crossing that 

results from slow variations in external focusing or effective space-. 

charge force and find, for gradient errors of the magnitude normally 

encountered inAG synchrotrons, that resonances can be crossed in the 

direction of increasing frequency with only a small increase in beam 

size. However, if the resonance is crossed in the direction of decreasing 

frequency, a substantial increase in beam size can occur. For example, 

if the beam is caused to bunch in the synchrotron, the space-charge force 

increases, and the beam size can grow quite large near the intensity 

predicted by the bunched incoherent space-charge limit. However, a 

prebunched beam whose intensity is considerably larg'er than the incoherent 

space-charge limit may be sucGessfully accelerated. In this case, the 

resonance is crossed in the direction of decreasing space-charge force, 

and very little beam growth occurs. Thus, the incoherent space-charge 
, .j 

limit, 'as usually defined, need not impose a.limit on the beam intensity. 

Similar results have been derived by F. Sacherer,3 and by P. M. Lapostolle 

4' and L. Thorndahl. 

In Part II we investigate the other modes of collective oscilla-

tion that are excited by machine imperfections. For simplicity we 

restrict our attention to one-dimensional, planar beams, and consider 

~. 

I, 

:~ 

. 
.~. 
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. ' .;.. '-. 

~. 

• . 

-• 

',. 

"",.' 

.. 

. -5-

only small-amplitude oscillations. In this case the twofold infinity 

of nqrmal modes (plasma oscillations) and eigenfrequencies can be found 

by means of the linearized Vlasov equation and Maxwell's equations . 

Harker5 has given a general prescription for reducing these equations 

to an integral equation of the Fredholm type, but numerical methods are 

usually required to extract the eigenfunctions and eigenvalues. However, 

an important result of this paper is a direct method for finding all 

the normal modes and eigenfrequencies for the stationary distribution 

corresponding to a uniform charge distribution in real space .. 

In Section I of Part II, we find the eigenfunctions and eigen-

,values for this case, and determine which modes are excited by a given 

~xternal driving force. Then, since the complete eigenvalue spectrum 

is known, the resonant frequencies for the various dipole, quadrupole, 

'and higher-order modes can be located on a .tune diagram. Besides being 

useful in themselves, these results provide considerable insight into 

the more difficult normal mode problem for nonuniform beams. 

In Section 2, this mode structure is compared with that obtained 

6 by Ehrman for the stationary distribution that has a uniform particle 

distribution in phase space. In this case the 'charge density in real 

space is approximately uniform, and we find that the eigenvalue spectra 

for the two distributions are very similar. We als_Q, extend these 
[~ 

results to a distribution with Gaussian charge density similar to that 

measured for the Brookhaven AGS . 
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PART I. UNIFORMLY CHARGED BEAMS IN THE PRESENCE OF 

GRADIENT ERRORS 

1. Envelope Equations 

In this section we find self':"consiste:nt envelope equations for 

the case in which both external forces and self-forces acting on the 

particles in a beam are linear. The requirement of linear forces 

restricts us to uniformly charged. beams and to linear machine imper-

fections, namely gradient errors, but allows us to study the effects 

of space charge on large-arrrpl:i,tude oscillations of the beam. 

We first consider the simple case of a beam with only one 

degree of freedom, then extend the derivation to two degrees of free-

dom, and finally show that the derivation can not be extended to three 

degrees of freedom. 

The One-Dimensional Beam 

-In the absence of space-charge forces, we take the equation of 

motion for the individual particles to be 

+ K(s) x (1-1) 

where K(s) is the external focusing function, s measures distance 

along the equilibrium orbit, and all the particles are assumed to have 

ds 
the same velocity dt v • 

p 

The self~forces acting on a particle arise from the internal 

charges and currents within.the beam,7 as well as from the charges 

and currents induced in the vacuum chamber walls,S and also from 

· . 

;-

.. 
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collisions. between particles. Fortunately, the effect of collisions 

is negligible for the times of interest, and for the low particle densi­

ties typical in accelerators. 9 

We incorporate the image,force into the external focusing term 

K(s) x, and neglect its nonlinear components and its weak dependence on 

the beam size. Then the net effect of the image force is to shift the 

tune by an amount that depends on intensity and energy but not on the 

beam size,8 in contrast to the direct self-force. 

We also neglect the magnetic field component that results from 

the transverse particle velocities because dx 
dt is only a hundredth to 

ds a thousandth of the longitudinal velocity dt' The force from the 

2 v 
remaining magnetic field component is just ~ times the electric 

c 

force, and need not be calculated explicitly. The complete self-force 

is '1/-/ times the electric force. 7 

The electric field calculation is simplified by neglecting the 

curvature of the equilibrium orbit and by neglecting the variation of 

the beam cross section with s. Actually the beam is modulated around 

the' orbit circumference, but the modulation length is approximately half 

the betatron wavelength and is therefore negligible in comparison with 

the transverse dimensions of the beam. 

The beam geometry then has the rectilinear form shoWn in Fig. 2, 

and in order that the self-forces be linear, the charge density must be 

uniform between the boundary planes, x = ±x:(s). We assume for the 
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I -r 
Fig. 2. 

moment that the particles can be arranged in the dx 
x - ds phase space 

to produce the required uniform charge density, and that the charge 

density remains uniform as the system evolves under the~action of the 

assumed linear forces. Then the equation of motion for the individual 

particles is 

+ K(s)x o (1-2) 

where is the charge density and eNl · is the total charge per 

unit surface area. It is convenient to write (1-2) in the form of the 

two first-order equations 
',.,,;, 

: .-~. 

,-.-.. 

.. 
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dx 
ds = p , 

~ = 
ds [-K(S) Nl ] 

• 2X(s) x 
, 

and to define X =(;) so that Eqs. (i-3) can be written in the 

compact matrix form 

dX(s) 
ds F(s) Xes) 

We also introduce the transfer matrix T(s, sO) 

, 

:and note that the elements of T(s, sO) satisfy 

(1-4) 

(1-6) , 

Since we know the equations of motion for the individual particles, 

we can determine the evolution of any distribution of particles in phase 

space. In particular, if the distribution at any position So has the 

'" -1 elliptical boundary XM (sO)X = 1, where M(SO) is an arbitrary 

symmetric matrix, then the boundary remains elliptical at other values 

of s and has the form 

!\'1..-1 
NY! (s)X = 1 , (1-7) 
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where M(s) = T(s, sO) M(sO) T(s,s6)' We can use (1-6) to write the 

equation of motion for M(s) in the differential form 

"-

dM(s) F(s) M(s) + M(s) F(s) (1-8) ds , 

which depends only on the known quantities F(s). 

The relationship between the components of M and the boundary 

ellipse is shown in Fig. 3, where the area of the ellipse is rr...yDet M I , 

which we designate by rrE. We are primarily interested in the beam half-

p 

x 

Fig. 3. 

width Xes) 11 Mil(s)', and it is convenient to parameterize M(s) 

in the form 

X2 XP 

M = 
E2 

, (1-9) 

XP p2 + 
X2 

I, 

'--: 

'. ~ .-

-~, 

r" 
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~2 E2 
where "V P + "l- is the maximum extent of the distribution in the 

p-direction. Then the equations of motion for the quantities X( s) , 

pes), and E(s) follow immediately from (1-8): 

dP 
ds 

dE 
ds 

, 

, (1-10) 

For a Hamiltonian system, Fll + F22 = 0, and thus E is constant, 

which is just Liouville's theorem. When the form of F(s) corresponding 

to Eq. (1-3) is used, Eqs. (1-10) reduce to 

o , (1-11) 

for the beam half-width Xes). 

We now demonstrate the Eq. (1-11) is self-consistent, i.e., that 

the individual particles can be distributed in phase space to produce 

the assumed uniform charge density within x = ±X(s). We require that 

the particle density in x-p space at s = So have the form 

~ -1 
f(x, p, so) = f[XM (sO)XJ, where f(x, p, s)dxdpis the number of 

particles at s within the ranges (x, x + dx) and (p, p + dp). Then-
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at arbitrary s the distribution has the form f(x, p, s) 
~ -1 

f[XM (s)X], 

and the functional form of f is determined by the requirement 

OQ 

f ~ -1 
f[XM(s)X]dp 

-00 

We solve this equation by introducing the new variables 

v= ~::~ = D(s)X, where the matrix D(s) satisfies 

D(s) D(s) 
-1 = M (s) 

",·-1 Then the quadratic form XM (s)X is transformed into 

the elliptical distribution becomes circular, as shown in Fig. 4. 

P v2 J . . 2 

QD x vl 

I 
I 
I 

(a) (b) (c) 

Fig. 4. 

and 

vl 

Actually, the four components ofD(s) are not uniquely specified by 

(1-13) because M(s) depends on only three parameters; the ellipse is 

mapped into a circle but the orientation of. the circle is not specified. 

.., 

."\ 

. "f' 
~ 
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We fix the form of D(s) by requiring that the vertical lines 

x = constant be mapped into vertical lines in v (Fig. 4c). Then 

D12 = 0, and D(s) is determined by (1-13) to be 

1 
° X 

D = (1-14) 

p X 
E E 

This is a convenient choice for D(s) because it maps the integration 

over p in Eq. (1-12) into ari integration over v
2

, with ~ dV2 = E dp. 

The requirement of uniform charge density is then simply 

, (1-15 ) 

where the range of integration is restricted to v
1

2 + v
2

2 ~ 1. Note 

that (1-15) is independent of s. In terms of the radius 

r = \!v1
2 

+ v2
2
', Eq. (1-15) becomes 

/ 2 
fer )rdr 

-V 221 
r - v 

1 

(1-16) 

This integral equation can be inverted by Abel's theorem10 to give 

= 
... 1 '" -1 I 

2nE VI - XM X - 2n ~2 _ (Xx' _ X' x)2 _ (~x)24 
(1-17) 
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which is the unique solution of (1-12). This demonstrates that the 

particle distribution required to produce a uniform charge density does 

indeed exist. It occupies the interior of the boundary ellipse 

~ -1 
XM X = 1, and the particle density approaches infinity at the boundary. 

Equation (1-11) is then the envelope equation for this distribution. 

Actually, this method for finding self-consistent envelope 

equations is not restricted to uniformly charged beams, but is applic-

able whenever the external forces and self-forces are linear. For 

exarilple, it was used by H. G. Hereward and A. s~renssen to study longi­

tudinal beam effects1l where, due to the shielding of the vacuum 

chamber, a parabolic charge density is required to produce linear self-

forces. For any case, the envelope equations are just equations (1-10) 

where F(s) is specified by the equations of motion (1-4) for the indi­

vidual particles. The distribution f(5<M-1 X) that produces the 

required charge density p(x), 

00 

p(x) f f(5<M-
1

X)dp (1-18) 
.,..00 

can be found by the same procedure that was used for the case of 
X 

uniform charge density. The condition JC p(x)dx = Nl requires that 
-X 

p(x) have the form :~ g (~ ), and Eq. (1-18) can be transformed by 

D(s) into the circular form 

(1-19) ... 



" 
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which can be inverted by Abel's theorem provided . t' 10 
~s con ~nuous. 

Thus, the self-consistency of the envelope equations is guaranteed 

provided p(x) ,has a continuous first derivative. 

The Two-Dimensional Beam 

In principle this method can also be extended to beams with two 

and three degrees of freedom. The matrix equations remain formally 

valid when the vector Xes) is increased to four or six component, but 

now the constants of the motion ~-l(s)X describe hyperellipsoids in 

the four- or six-dimensional phase spaces. The required distribution 

function f(~-lX) that produces linear self-forces can be found by 

transforming the defining equation for f into the circular form 

analogous to (1-19), but now for four or six dimensions. 

Consider first the case of a beam with two degrees of freedom. 

We again assume that all the particles have the same velocity 

and for the purpose of calculating the electric field, that the beam is 

in the form of a cylinder with an infinite extent in the s direction. 

Then the condition of linear self-forces requires that the beam have an 

elliptical cross section and a uniform charge density. However, the 

axes of the elliptical cross section need not be aligned with the 

coordinate axes, and the external focusing force may include linear 

coupling between the two transverse directions. The evolution of the 

, 

distribution is then determined by a four-by-four matrix F(s) (Eq. 1-4), 

:;y..-lX and the constants of the motion N~ describe hyperellipsoids~nthe 

dx dz 
x, ds' z, ds phase space. 
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We can immediately write the defining equation for f in the 

form 

(1-20) 

2 2 22 
where the integrat.ion is restricted to vI + v2 . + v3 + v4 - ~ 1, and 

where the constant can be d,etermined by the normalization of f.12 This 

shortcut avoids the specification of D(s). With a change of varia:cles, 

Eq. (1-20) becomes 

rr
2

1./Det M 

1 

J f(q) dq 

o 

where N 
2 

is the nwnher of particles per unit length in the beam. 

required distribution function is the solut.ion of (1-2l): 

= 
~ -1 

5(1 - XM X) , 

(1-2l) 

The 

(1-22) 

"lhere o(x) is the usual delt.a function. The particles are distributed 

wi th uniform density on the surface of the four-dimensional hy-per-

ellipsoid "-- -1 
'X.M X = 1, "Those shape and orientation is specified by t.he 

ten independent parameters of the four-by-four matrix M(s). 

The self-forces are determined by the project.ion of this distri-

bution onto the physical x-z plane. This projection is uniform and 

has the boundary 

.' 
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+ , (1-23) 

which describes an ellipse of area n\fMllM)3 _ Ml3
21 

In terms of 

the major and minor axes and angle of rotation as shown in Fig. 5, 

I Z 

/' 
/ 

------~----~~~-+-----------

/ 

Fig. 5. 

these matrix elements are 

~l 
2 2A b2 . 2A a cos ~ + S1n ~ 

2 . 2A b2 2A a S1n ~ + cos ~ 

and the self-forces are easily determined . 

x 

, 

, 

The evolution of the distribution is then determined by 

(1-24) 
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dM(s) = F(s) M(s) + M(s) F(s) 
ds 

UCRL-18454 

, (1-25) 

where F(s) contains the known external forces as well as the self-forces, 

which depend on the matrix elements M:Ll' l\3' and ~3. In general. all 

ten equations of (1-25) are necessary to describe the evolution. of the 

system. However, if the equations of motion for the individual particles 

do not involve coupling between the two transverse planes, and if the 

hyperellipsoid is oriented so that the off-diagonal submatrix with 

elements is zero, then the hyperellipsoid will 

maintain this orientation and these matrix elements will remain zero. 

The remaining six equations (three for the x direction and three for the 

z direction) can be parameterized in the form analogous to (1-9) for the 

one-dimensional beam. The self-fields for this case are 

and e 
x X(X + z) x z z(X + z) z, and the envelope equations 

become 

+ K (s)X x 

E 2 2 
4e N2 1 x 0 

X3 y3mv 2 X + Z 
.p 

(1-26) 
2 E 2 4e N2 1 z 0 

Z3 y3mv 2 X + Z 
p 

+ K (s)Z 
z 

X(s) Z(s) where and are the beam half-widths, and E and E are x z 

the beam emittances in the dx and dz phase These x - ds z ds 
spaces. 

'-

.' 

c ri. 

- "} 
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self-consistent envelope equations, which describe a cylindrical beam· 

oriented with 9 = 0 in Fig. 5, were first obtained by 1. M. Kapchinsky 

and V. V. Vladimirsky.13 

The Three-Dimensional Beam 

Finally consider the case of a beam with three degrees of 

freedom. The condition of linear self-forces requires that the beam 

have an ellipsoidal shape in real space and a uniform charge density. 

Then Eq. (1-8) will specify the beam envelope provided a distribution 

of the form f(XM-1X) exists that produces the required uniform charge 

density. In this case the defining equation for f has the form· 

(1-27) 

This equation unfortunately has no solution that can be interpreted as 

a distribution function. The forms of the one- and two-dimensional 

distributions indeed suggest that the progression from 

~ -1 -.!. ~ -1 
f cc (1 - XM X) 2 in one dimension to f cc 0(1 - XM X) in two 

dimensions will have no extension to three or more dimensions. The 

actual proof, due to Maurice Neuman (private communication), is 

reproduced in Appendix A. 
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2. The One-Dimensional Beam 

We are now in a position to investigate the motion of the uni-

form one-dimensional beam in a self-consistent manner. We rewrite the 

envelope equation (1-11), 

+ K(s)X o , (2-1) , 

where Xes) is the beam half-width, rrE is the beam emittance, Nl 

is the number of particles per unit surface area of the beam, and v p 

is the particle velocity. The external focusing term K( s) . includes 

both the ideal focusing forces and gradient errors. The nonlinear 

emittance term arises from the conservation of the beam emittance, and 

has the same form as the centrifugal force term that results from the 

conservation of angular momentum in central force problems. It prevents 

a beam with finite emittance from becoming arbitrarily small,but in the 

. 14 
absence of space charge, it does not limit the large-amplitude growth. 

However, in the presence of space charge, the combination of the last 

two terms in (2-1) will limit the resonant groWth of the beam. 

We first eliminate the rapidly varying part of K(s) fromthe 

envelope equation by transforming to !!smooth!! variables. In the absence 

of space charge, the periodic solution of (2~1), x (s) = X (s + C), 
p P 

where C is the orbit circumference, can be found· by standard methods 

once K(s) is known. It is conventionally written in the form 

X (s) 
p (2-2) 

. 
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where (3(s) is the familiar amplitude function of Courant and Snyder.15 

Then if we transform to the dimensionless variables 

x 2Ci~)~ 
X;W , ¢ = J ~: , 

the unperturbed envelope equation (in the absence of space charge and 

gradient errors) becomes 

2 
v x = o , (2-4) 

where v is .the number of betatron oscillations per revolution and ¢ 

increases by 2n each revolution. The general solution of this equation 

is 

2 
x = -VI 2' 

+A + A sin(2v¢ + a) , 

where A and a are arbitrary constants. The matched solution is 

A = 0 and x = 1, and any other solution oscillates about this matched 

solution with the frequency 2v. Thus the dimensionless variable x 

measures the beam envelope in units of the unper.turbed matched envelope. 

In terms of the variables x. and ¢ the complete envelope 

equation becomes 

d2x 2 2 
(v 2vllv n¢)x v 2vllv 0 (2-6) 

d¢2 
+ + cos 

x3 = , 
S sc 

"0' • 
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where we have assumed an ~th-harmonic gradient error with stopband width 

6"S' and where the last term is. actually a function of s (or ¢), 

21le~1 
3 2 Y mv . 

p 

(2-7) 

In what follows, we replace ~(s) by its average value R and neglect 
v 

the high-frequency small-amplitude ripple components in the already 

small space-charge term. Then 6V
sc 

is independent of ¢ and has the 

form 

6V
SC 

, (2-8 ) 

where a = W . is the average amplitude of the unperturbed envelope. 

The quantity 6V is the space-charge-induced frequency shift fot a sc 

beam whose envelope is constrained to the constant value a; it is a 

convenient measure of the beam intensity and is in fact identical with 

the expression conventionally used for predicting a space-charge limit. 

Before solving the nonlinear envelope equation, it is informa-

tive to examine its small-amplitude solutions. In the absence of 

gradient errors, Eq. (2-6) has the· constant solution 
6V

SC 
x=l+--

2v 

and for oscillations of small amplitude 5 about this constant value, 

the equation becomes 

+ 
2 

(4v - 6V6V)5 sc -2v6v cos n¢ s 

.... -. 

:; 

_, J 
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Thus the envelope oscillates with the natural frequency 2(v - t 6vsc )' 

and resonance occurs for 2(v - t 6vsc ) = n. If v is larger than a 

half-integer by the amount· 6v, i. e. , 
n 

v = 2 + 6v, then resonance occurs 

at a beam intensity corresponding to the value 

6v
sC 

= 
4 
- 6v 
3 

, (2-10) 

which is one third larger than the value usually assumed. The fallacy 

in ~USUal procedure for predicting space-charge limits lies in the 

as~tion of a constant beam size: if the envelope modulation is 

neglected, resonance occurs when the individual particle frequency 

v - 6v falls .within the stopband at -.!2!·; in other words, for the sc 

intensity 6vsc = 6v. However, the modulation of the envelope causes 

the self-fields to exactly cancel the effect of the gradient error at 

this intensity,16 and the resonance is shifted to 
4 

6v = - 6v. sc 3 This 

shift in resonant intensity is not restricted to uniform beams; it 

occurs for any mode of collective oscillation and is discussed in detail 

in Part II. 

The amplitude of the periodic solutions of the linearized 

equation (2-9) are shown in the form of a response diagram for fixed 

6v 
in Fig. 6. The s 0 

6v = asymptote represents the free envelope 

4 
oscillations, which are periodic for the intensity 6vsc = 3'6v. The 

remairtder of this section is concerned with the distortion of these 
, 

curves in the large-amplitude region by the nonlinear terms in (2-6). 
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Fig. 6. Response diagram for the linearized envelope equation: 

x max 

.6vs 1 + where the quantity 
13.6vsc -.6v/' 

.6v 

.6vsc 
2v 

in 

the constant solution x = 1 + ~ has been neglected. 
. 2v 

_,I 

'. 

"' 

,j. 

... ..,., 
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General Solution of the Envelope Equation 

Both the space-charge term and the gradient-error term are" 
6v 

small for alternating-gradient synchrotrons--they are of order ~ 
v 

6vs and --- compared with the remaining terms. Consequently we treat 
v 

these terms as perturbations and use in place of rue 
x and 'd$ the 

variables A and a defined by 

2 ... 1 2 i 
x = Vl+A + A sin(2v¢ + a) , 

(2-11) 
rue x dW = vA cos (2v¢ + a) 

In the absence of perturbations, both A. and a are constant, while 

for small perturbations they change slowly in time, with small high-

frequency variations superimposed. If Eqs. (2-11) are inserted in the 

envelope equation (2-6), the following first-order equations for A 

and a result: 

, (2-12) 

!::"v .. 2rr ... 1 -2 i 
do: _I 2' [( )rI. ] .1(scJ A+Vl .. +A, sinu A ~ = b.v s V 1 + A sin 2v - n 'f' + a - . 

o ""1 + A2+ A sin u 

plus additional terms that vary with the frequencies 2v, 4v, etc., 

>vhich are neglected. 

Equations (2-12) arid (2-13) may" be combined and integrated to 

obtain the constant of the motion, 

, 

du , 
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6v .... r::-:-
8 ~ . ~ E(k) 

6v k 
, (2-14) 

where Q = (2v - n)¢ + a and E(k) is the complete elliptic integral of 

- 17 . the second kind with modulus 2A This equation 

specifies the phase trajectories in the A, Q space, or. alternatively 

by means of (2-11), in. the dx x -:w- phase space at any point along the 
.d)U 

orbit, i.e., for any azimuth ¢. In particular, Figs. (7a) and (7b) 

show typical trajectories for azimuth ¢ = 0 and for two values of the 

beam intensity, while Fig. (7C) shows the same trajectories as Fig. (7b), 

but for azimuth ¢ = ~ .. As expected, the phase trajectories are always 
n 

bounded and the beam size remains finite. 

Of special interest are the fixed points, which have constant 

values of A and Q. They are determined by Eqs. (2-12) and (2-13) to 

have Q, = ~ and 

A 
1 6v s ... 1 2' 6v sc 

+ 2" 6v V 1 + A + Tv"" 
1 
2J1 

which determines A as a function of 
6v sc and --
6v 

corresponding to these fixed points is described by 

2 ... 1 2' 
x = VI + A ± A cos n0 

sin u du 

sin u 

The beam motion 

(2-16) 
.. 'I 
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Fig. 7. Phase trajectories for. 6V
s = 0.04. Figure (a) shows the trajectories at azimuth 

6V 
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6v 

azimuth but for the larger intensity 6VSC ;" 1. 45. 
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which represents a beam oscillating with the periodicity of the gradient 

error. The amplitudes for these periodic oscillations or fixed points 

are shown in Fig. 8 for several values of the stopband width tw . s The 

response curves are distorted from the linearized diagram Fig. 6 because 

the nonlinearity causes the frequency of the envelope oscillations to 
tws 

depend on amplitude; the 6v - 0 curve shows directly the amplitude 

dependence of the periodic free envelope oscillations. As a result, the 

resonant amplitudes are always finite. Another consequence of this 

distortion is the existence of three 

the critical value (which depends on 

fixed points for 
6v 

6vsc 
6v 

greater than 

___ s) rather than the usual single 6v . 

fixed point. The two labeled S+ and S are stable whereas U+ is 

unstable; it can be seen from Fig. 7 that configuration points near S+ 

and S oscillate with small amplitude about these points whereas 

points near u+ may follow the separatrix and make much larger excur-
6vsc sions.As the quantity decreases, the phase trajectories of 
6v 

Fig. 7b are transformed smoothly into those of Fig .. 7a; the stable 

region around S+ shrinks down to a point and then disappears for 

6v
SC 

6v 
less than its critical value. 

In the absence of both space charge and gradient errors, the 

matched beam corresponds to the solution x 1. In the presence of 

space charge and gradient errors, the matched condition corresponds to 

the lowest fixed point of Fig. 8. This solution is periodic, so that 

the beam envelope remains stationary with respect to the accelerator, 
J 

but it is modulated n times around the orbit circumference, where n· 

. .,. 
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Fig. 8. Response diagram: ( -" 2' )1 = Vl+A +A 2. The 

curves to the left of correspond to the upper 

sign in Eqs. (2-15) and (2-16); those to the right 

correspond to the lower sign. The points where the 

slope is vertical (indicated by the dashed curve) are 

referred to as cri tica'l points. 
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is the periodicity of the gradient error. Any mismatcb will lead to slow 

oscillations in the envelope about this matched value just as in the more 

familiar' low-intensity case. The frequency of these oscillations depends 

on which phasetrajectcry of Fig. 7 the beam is on, but near stable· 

fixed points it is approximately 26v times per revolution. Note from 

Fig. 8 that the ma.tched condition for large intensitie's closely 

approaches the low-intensity matched value x = 1, provided the gradient 

errors are small and the intensity is not too near the resonant value 

6v sc 
4 . 

- 3" 6v. 

Resonance Crossing' 

The foregoing considerations apply only to a coasting beam 

whose parameters remain fixed. However, the parameters describing an 

accelerated beam change with time, and the beam may cross the 

'4 
6vsc = 36v resonance. We consider the worst case of a slow, adiabatic 

crossing. 

The envelope equations can be derived from a Hamiltonian with 

the canoniCal variables x and dx d9 ' and therefore Liouville's theorem 

applies to the dx x - dO phase space. Configuration points lying on 

closed contours continue to lie on closed contours as the parameters 

are varied adiabatically, and the area enclosed by these contours remains 

constant. However, the adiabatic assumptiori breaks down near the 

stagnation point u+, so that the area enclosed by the sepatrix changes. 

For example, the stable phase area around S+ becomes smaller 'as 

6v sc 
6v 

decreases. 

.' 

,..' 
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Consider first the case of a resonance crossing in the direction 
6.vsc of decreasing A beam whose intensity is larger than the resonant 

6.v 

value and whose envelope was adjusted before injection to the matched 

value x ~ 1 oscillates with small amplitude about S+ in Fig. 8, and 

corresponds to a point on one of the trajectories around S+ in Figs. 7b 
6.vsc and 7c. As the beam is accelerated, decreases and the stable 

6.v 

area around S+ shrinks until the configuration point is forced onto 

the sepatrix. At this point the beam suddenly. oscillates with a larger 

amplitude as its configuration point moves around the separatrix. The 

maximum beam size can be read directly from Fig. 9, which shows the 

maximum and minimum beam size for a point on the separatrix at the 
6.vsc critical value of ----------. If the vacuum chamber is large enough to 
6v 

accommodate this increase in beam size, then the resonance has been 
6.v 

safely passed and the oscillations become smaller as sc continues 
6.v 

to decrease. 

On the other hand, it is possible for a beam to cross the 

resonance in the opposite direction. For example, if the beam is 

bunched after injection, 6vsc increases. Also n 
6v = v - 2' may 

6.vsc 
6.v 

to increase.· In this case change during acceler.ation and cause 

a nearly matched beam that oscillates aroundS continues to lie on 

a contour enclosing S as 

size increases indefinitely as 

Summary 

increases, and therefore the beam 
6.vsc increases (Fig. 8). 

6.v 

This completes our analysis of the uniform one-dimensional beam. 

In the presence of gradient errors, the beam envelope oscillates, and 
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Fig. 9. The maximum and minimum beam sizes are sho"m for a 

b.v sc 
point on the se:paratrix at the critical value of --, 

.6v 

the value for which the stable area around S+ shrinks 

to a point. 
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resonance occurs for the beam intensity corresponding to 4 
6v = - 6v; sc 3 

this is one third larger than the usual space-charge limit, which 

assumes that the beam size is constant. Furthermore, because of the 

nonlinear dependence of the space-charge force on the beam size, the 

envelope is always bounded. The amount of beam growth caused by crossing 
6vsc the resonance in the direction of decreasing has been calculated 

6v 

for nearly matched beams (Fig. 9), and is less than fifty percent for 

stopband widths 6v ~ 0.01 6v. s 
This resonant growth is minimized for 

n small gradient errors and for large values of 6v = v - 2. On the 

other hand, adiabatic resonance crossing in the direction of increasing 

6v
sC 

6v . would produce very large resonant growths, and should be avoided . 

,. 
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3· Two-Dimensional Beams 

The envelope equations for the two-dimensional cylindrical beam 

can be written in terms of the dimensionless variables x and z as 

d2x 
2 

bru
2 

[vx 
2 

+ 2vx6v cos n~] 
Vx p 

0 (3-1) 
d(l 

+ - -- - ax +- bz 
, 

sx x3 

d2z, 
2 2 

2 v 8(1) 

[v +2v 6v cos nO] z p 
0 (3-2) -- + - , 

d(j2 z z sz ' z3 ax + bz 

where again the ripple components have been neglected. The quantities 
L 

Vx and v
z

are the betat~on frequencies in'the absence of space 

charge and gradient errors. 

the beam semi-axes measured 

As in the last s~eC~i~n, 

in units of a=:' v x 
, x 

x and z are 

and b =: ~~:R" 
respectively, where a and bare the semi-axes of the matched beam 

in the absence of gradient errors and space charge. The quantity 

2 
ill 

P 

2N rOR 1 
- -- --- where N is the number of particles in the beam, 
rrB ab 2 3 ' 

2 
e 
2 mc 

~ 1 

the classical electrostatic particle radius~ and B is the 

bunching factor (the fraction of the circumference occupied by particles). 

The space charge induced frequency shifts for a beam with the constant 
ill 2 

envelope x =: 1, z =: 1 are 6v =: __ b~~.-E- and 
scx a + b 2v 

6v scz 

2 
a . illp 

a + b 2v z 

with stopband widths 

x 

An nth-harmonic gradient error has been included 

6v sx and 6v sz 

,; 

... 
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The overall envelope motion described by (3-1) and (3-2) is 

very simple: the envelope has two modes of oscillation, corresponding 

to its two degrees of freedom, and the resonant growth of each mode is 

limited by the nonlinear space charge terms just as for the one-

dimensional beam. However, the mathematical details are more complicated 

now: whereas the motion of the one-dimensional beam depends on only 

the two parameters 
.6.v sc .6.v s 

and --- and can be represented by a config-
.6.v .6.v 

uration point moving on a trajectory in a two-dimensional phase space, 

the motion of the two-dimensional beam depends on six parameters and 

requires a four-dimensional phase space. 

Physically, the envelope motion can be characterized by the 

degree of coupling between the x and z directions, which arises 

from the space-charge terms in (3-1) and (3-2). Very loose coupling· 

occurs when the individual particle frequency Vx - .6.v is very scx 

different from Vz -.6.v . Then the envelope motion is nearly one­scz 

dimensional and the solutions are similar to those found in the last 

section. On the other hand, very tight coupling occurs when 

Vx - .6.vscx is approximately equal to Vz - .6.vscz ; in this case the 

x and z amplitudes of envelope oscillations are approximately equal 

and the envelope motion is two-dimensional. In the following we 

concentrate on a few special cases. In A the solution for the tightly 

coupled case. Vx = Vz and E = E x z is presented in detail; in B 

several cases leading to the one-dimensional limit are briefly examined. 

r 

• 
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A. Equal Frequencies and Emittances 

In this case the envelope equations without gradient- errors are 

d2x 2 2 4vb.v v sc 

dll 
+ v x 

x3 x + z 
o 

d2z 2 2 4vb.v 
v sc 

d¢2 
+ v z 

z3 x + z 
o (3-4) 

2 
ill 

where vx = vz=v and 6vscx=b.vscz=b.vsc' with b.Vsc=~ If 

we consider oscillations of small amplitude 
b.v 

5 , 
x 

5 
z 

about the constant 

solution x sc 
z =l+~, we find a symmetric mode with circular 

cross section (5 = 5) that oscillates with the. frequency x z 

2( I ) v - - b.v 2 sc' and an antisymroetric mode with elliptical cross section 

(5 = -5 ) x z that oscillates with the frequency 3 2(v - r. b.v ). 
'+ sc 

Therefore, in the presence of gradient errors of frequency n, reson-

ances occur for the beam intensities corresponding to b.vsc = 26v and 

to 4 
b.v = - b.v sc3 

where again n 
b.V= v - 2' Note that these resonant 

intensities differ from the usual space-charge limit b.v = b.v sc that 

is calculated for a static beam. Any collective mode of oscillation 

produces similar frequency shifts, as will be seen in Part II. 

We now examine these two modes in the nonlinear regime. The 

symmetric mode is driven by the symmetric gradient errOr b.v = b.v , sx sz 

and the antisymroetric mode is driven by the antisymmetric gradient error 

,"',v sx - b.v sz 
When either gradient error is included in (3-3) and 

'\ \ 

• 

-. 

, -
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(3-4), the equations can be solved by the same method that was used for 

the one-dimensional envelope equation. The results are presented here, 

while the calculations are outlined in Appendix B. 

For the symmetric gradient error, we find symmetric solutions 

of the form 

2 x = 
2 z = ;/1 2' 

+ A + A cos(n¢ + Q) , (3-5 ) 

where the slowly varying quantities A and QsatisfY the equation 

constant 
.6.vsc .... 1 2' 

2 -- .en (1 + V 1 + A ) 
.6.v s 

which specifies a trajectory in the two-dimensional A,Q space. The 

corresponding. trajectories in dx 
x - dW space or z -

dz 
<w space have the 

saine form as those found for the. one-dimensional beam (Fig. 7), but now 

the fixed points occur for Q = O,n and for values of A that satisfY 

A 
1 .6.vs "\ I 2' 

:;: - -- Vl + A 2 .6.v 

"\/ 2' 
.6.vsc Vl + A - 1 

+ -- A .6.v 
(B16) 

These fixed points describe a circular beam that oscillates with the 

periodicity of the gradient error. They are shown in the form of a 

response diagram in Fig. 10, which is again distorted from the linearized 

diagram so that only bounded solutions are possible. Note from (3-5) 

that the symmetric character of the normal mode solution (5 = 5 ) x z 

remains symmetric even in the nonlinear regime, the only effect of the 

nonlinearity being to limit its resonant amplitude. 

• 
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Fig. 10. The response curves for a symmetric gradient error, with 

resonance near 6v = 2.6.v, are superimposed on those for ari sc 

antisymmetric gradient error, with resonance near 

4 
6v = - 6v. sc 3 

x =z = (';1 + A 2 + A ) ~ .. 
max max . For either case, 
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For the case of an antisymroetric gradient error, there are 

antisymmetric solutions of the form 

2 
x 

2 
z 

til 2' 
+A 

... , -2 ' 
Vl + A 

+ A cos(n~ + Q) 

A cos(n¢ + Q) 

, 

, 

which describe an elliptical beam. Now A and Q satisfy 

(3-6) 

constant A cos Q + 2 ~v -Vl + A 
2 

Vs 
_ 2 6vsc [.en A - g jK(k) dk] 

6v s n k ' 

where ·K(k) is the complete elliptical integral of the first kind. 17 

The resulting trajectories in dx 
x - ~ or 

dz 
z - dO space again have the 

same form as those for the one-dimensional envelope, but now the fixed 

points occur for Q = O,n and for values of A that satisfy 

A 
1 6v " I 2' 6vsc 1 2 k2 

.:r- - _s V 1 + A + -- - [1 - - - K(k)] 
2 6v 6v k n A2 

, (B16) 

where k A 

_I 2 ' 
They describe a beam that oscillates antisym-

Vl + A 

metrically with the periodicity of the gradient error, i.e., x is 

largest when z is smallest and vice versa, and are also shown in 

Fig. 10. For either mode of envelope oscillation, the 6vs =0 curves 

represent the free envelope oscillations that are periodic . 

Note from (3-6) that the antisymroetric character of the normal-

mode solution (6 = ~5) is approximately maintained in: the nonlinear. x z 

.. 
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regime. Indeed, this is a general result: the character of the normal-

mode solutions determined by the linearized envelope equations (the 

o 
ratio ~) is approximately maintained in the nonlinear regime, the o . 

z 

main effect of the nonlinearity being to limit the resonant amplitudes 

of each mode. 

The nonlinearity also produces an additional effect that is not 

predicted by linear theory, namely, it produces a weak coupling between 

a gradient error of one symmetry and a mode of envelope oscillation of 

opposite sylnmetry. Thus the r'esponse curves for the symmetric mode of 

oscillation in .Fig .-10 are modified by the presence of an antisymmetric 

gradient error, and vice versa. Although this effect is small, it has 

been a source of confusion, so we briefly describe it here. We write 

'the fixed points in the form 

2 Vl 2' 
A cos(nO + Q,) x +A + 

(B18) 
2 \/1 + 

2' 
cos (n¢ - Q,) z A A , 

where for the symmetric fixed points, Q = O,rr, while for the anti-

symmetric fixed points, rr 
Q = 2' Figure 1113. shows the fixed-point 

solutions in the absence of gradient errors, in other words the 
6v s 

° 6v -

curves of Fig. 10. They specify the amplitude dependence of the free 

envelope oscillations that are periodic. If now anantisymmetric 

\ 

gradient error is present, the antisymmetric fixed points still occur 
6v 

in the Q = O,rr planes, but contrary to linear theory, the s = ° 
6v 

curves for the symmetric fixed points are modified,as indicated in 

\ 
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Fig. 11. The fixed points in the absence of gradient errors 

is shown in (a); the transition from a purely antisymmetric 

gradient error to a purely symmetric gradient error is 

shown in (b), (c), (d), (e), and (f). 
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Fig. llb. The analogous situation occurs for the symmetric gradient 

error (Fig. llf). This coupling between fixed points of one symmetry 

and gradient errors of opposite symmetry insures that the transition 

from a purely symmetric gradient error to a purely antisymmetric 

gradient error occurs in a continuous fashion, as indicated in Figs. 11 

(c), (d), and (e). However, only the small-amplitude fixed points are 

affected, and in the following we neglect this weak nonlinear effect and 

assume that a mode of a given symmetry·is affected only by driving terms 

of the same symmetry. 

Resonance Crossing 

If only one type of gradient error is present, the resonance 

crossing is similar to that for the one-dimensional beam.. A nearly .: 

matched beam with x "'" 1, z "'" 1 and whose intensity is larger than 

~ the resonant value oscillates with small amplitude about a stable 
lw 

fixed point. If sc decreases, the stable phase area around the --
6v 

fixed point shrinks and eventually the configuration point is forced 

onto the separatrix. The beam then oscillates with a larger amplitude 

that can be read directly from Fig. 12, which shows the maximum beam 
6v 

size for a point on the separatrix at the critical value of sc 
6v 

Note from Fig. 12 that the resonant growth for either mode of the 

two-dimensional beam is less than the resonant growth of the one-dimen-
6v s 
6v 

sional beam for the same value of This was to be expected, since 

the nonlinearity of the spac,e-charge force is greater for the two-

dimensional beam than for the one-dimensional beam. .. 

..' 
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Fig. 12. The maximum beam size for a point on the separatrix at 
6vsc 

6v 
the critical value of is shown for either mode of 

envelope oscillation for the cylindrical beam with a = b 

and v = v. For comparison, the maximum beam size for x z 

the one-dimensional beam is also shown (from Fig. 9). 

'.: 

'~ ~, . 



-44- UCRL-18454 

If both types of gradient error are present, as is true in 

practice, both resonances may be crossed.. One might estimate the total 

growth by adding the two separate growths from Fig. 12. However, an 

initially matched beam that crosses the first resonance (6v = 26v) sc 

will no longer be matched when it crosses the second resonance. If 

this mismatch is large, the total growth may be considerably larger 

than the sum of the two growths. On the other hand, we have so far 

neglected the adiabatic damping of the beam size .due to the increase in 

~, which may be large, depending on the acceleration program 

employed. 

B.' General Beam Configurations 

In the remainder of this section, the envelope motion for other 

values of a 
,1) and is briefly examined. Fortunately, the effect of 

the nonlinearity can be largely separated from the linear effects, 

i.e., the normal mode solutions determined by the linearized envelope 

equations remain approximately valid in the nonlinear regime, the main 

effect of the nonlinearity being to cause the frequency of each normal 

mode to depend on its amplitude. Accordingly, we first examine the 

normal-mode solutions of the linearized envelope equations for several 

cases, before including the effect of nonlinearity. 

We write the linearized envelope equations, omitting gradient 

errors, in the form 

+ Me o , 
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where M is the two-by-two matrix 

. 2 
4v 2 _ 2ab + 3b 2 

x (a + b) 2 (1)p 

M 

a
2 

2 
2(1) 

(a + b) p 

and where 5 =(x 1 is related to 
.. ' fl ) 

z 

b 
x 1 + 4(a + b) 

1 + 
a 

z 4(a + b) 

x and 

2 (1) 
-.E..... + fl 
v x 

x 

2 (1) 
--1L + fl 
V z z 

b
2 

2 
2 (1) 

(a + b) p 

1. 

z 

2ab + 3a
2 

2 J 2 (1) 
(a + b) p 

by 

, 

The normal-mode solutions have the form' fl/=(:X~eim¢, where 
z 

o , 

and where ill satisfies 
2 18 

det(M - (1) ) = o. 

(3-8) 

(3-9) 

(3-10 ) 

We ha.ve previously distinguished two limiting types of envelope 

motion, tightly coupled motion for which the x and z amplitudes are 

equat, flx = ± fl, and loosely coupled motion for which one amplitude 
z 

approaches zero while .the other remains finite. 

that tightly coupled motion results if Vz - vx 

2a - b 
a + b 

2 (1) 
p 

4v ' where 

We find from Eg. 2 . 
a - b SL 
a + b . 4V or if 

The former condition 
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produces a symmetric mode with Ox = 5z ; the latter condition produces 

an antisymmetric mode with 5 = -5 , and is identical to the condition x z 

tbat the individual particle frequencies Vx - 6v and Vz - 6v scx scz 

be equal. Both conditions are plotted in Fig. 13· As the parameters 

b 2 depart from the in Fig. 13, the envelope motion vx' v z' a' (.I) curves p 

approaches the one-dimensional case. 

It is informative to examine a few special cases in detail. For 

a circular beam with a = b, the eigenfrequencies for either mode of 

envelope oscillation are 

R l-~ 
2 2 + 2v 2 _ 2 (.I) 2 ±. (2v 2 _ 2v 2)2 + -:;'"71 (.I)p 

Vx . z ~ p . x . z ~o , (3-11) 

and there are two limiting cases to consider. If 

the eigenfrequencies and normal modes reduce to the tightly coupled 

case examined in (A), 

2 where (.I) 
p 

, 

2 (.I) , 

4v6v . This case requires that sc 

, 

(3-12) 

On the other hand if 1 
Ivx - vzl »~ 6vsc ' the eigenfrequencies and 

normal modes are 

I 
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Fig. 13. The beam parameters are shown for which the x and z 

amplitudes of envelope oscillation are equal. The plus 

curve is the condition for the symmetric mode, the minus 

curve for the antisymmetric mode. 
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= (1 ) , € 
(3-13) 

(€) , 
1 

where 
6vsc 

€ = 41 v - v 1« 1. For this case the frequency difference 
x z 

Ivx - vzl is sufficient to overcome the coupling due to the space­

charge force, and the normal modes are one-dimensional. In practice 

1 
6vsc ~ 4' so that the dividing line between tightly coupled motion and 

loosely coupled motion occurs for a frequency difference of 

1 Ivx - vzl ~ lb. Thus, due to the weakness of the space-charge coupling, 

a relatively small departure from the curves of Fig. 13 suffices to 

produce one-dimensional motion. 

Now consider the limit b ii ~ 0, but keeping ab constant so that 

the charge density remains constant. The beam approaches a planar' 

configuration, and 

2 

2 

2 4v 
x 

4v 2 
z 

2b 2 --(J) a p 

~2 
P 

" 

, 

(

4V2 _ 4v 2 + ~ 2) 
Ox = x zp , 

2 

° z 

(J)p 

(3-14) 

In this case the ° mode can have either of the tightly coupled forms x 

for suitable values of and 2 . t (J)p , ~n agreemen . 

,-
c 

(, 

.1.; .. ' 
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approaches zero, larger and larger 

intensities are required to excite this mode. i.e., to shift m to x 

the integral frequency .n of the gradient error. In the limit b 
a 

only the o mode can be excited, and this mode is identical to the 
z 

one-dimensional mode examined in Section 2. In fact, the complete 

nonlinear envelope equations reduce to the one-dimensional form 

2 
v 

0, 

+ K (¢)x x 
x 

° x3 
:::: (3-15) 

2 2 
v m z ....L ° J x , + K (¢)z z 

in this limit. The space-charge forces affect only the z motion, and 

if vx is sufficiently far from a stopband that x:::: 1, Eq. (3-16) 

reduces to the one-dimensional envelope equation (2-6). 

We conclude from these examples that the envelope motion will be 

one-dimensional for a wide range of beam parameters; in fact, due to 

the weakness of the space-charge coupling and because of the changing 

environment within the beam, the envelope motion is more likely to be 

one-dimensional than two-dimensional. 

We now briefly examine the effect of the nonlinearity. We 

consider cases for which a is larger than or equal to b, and for 

which is closer to a half-integer than vx ' so that 

n 
Vz -

2~ l. n~ Then the resonant amplitudes are larger in the 
Vx - 2 
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zdirection than in the x direction, and this is usually the more 

serious case. 

We construct simplified response diagrams for several values of 

b 
a and fl.. The usual linearized response diagrams have a vertical 

asymptote (the 6vsx =6vsz = 0 curve) at each of the two resonant 

intensities, and the 6 v ...J-0, sx T 
6v ...J-O sz T response curves approach these 

asymptotes as the beam intensity approaches the resonant values. The 

main effect of the nonlinearity is to cause the frequency of each mode 

of envelope oscillation to depend on its amplitude, which distorts these 

linear response curves so that only bounded solutions are possible. 

For simplicity we consider only the distortion of the 6vsx = 6vsz 0 

asymptotes. We show in Appendix B that these curves are specified by 

2 -Vl 2' 
A sin(n~ + Q) x + A + 

-Yl 
(B20) 

2 2' 
B sin(n¢ + Q) z = + B· ± 

where A and B are determined by the integral equations 

2 211 
"Vl 2' ill b J A+ A J2 + A sin u du 

2v 6v 211- xCax + bZ) , 
x x 0 

(B2l) 

2 211 
illp a 

~ 
B -V 2' sin u du B ±l + B 

= 2v 6v 211 z(ax + bZ) , 
z z 

where u = n¢ + Q, n and n These equations 6vx = v - 2' 6v = 11 2 x z z 

were solved numerically, and the solutions are shown in Fig. 14. r' 
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Fig. 14. The 6v sx =6vs z o asymptotes are shown for various. 

values of the par~meters and b The K - a 

ordinate is x or z . the abscissa is max max' 

'. -
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Figure 14a shows the familiar case of equal frequencies and 
6vs equal emittances (the --- - 0 curves of Fig. 10). There are two 6v -

resonances, corresponding to the two modes of envelope oscillation, 

and for each mode, the amplitude of the x motion is e~ual to the ampli-

tude of the z motion. For the other cases, the two resonant intensities 

are further apart, and the amplitudes of the x and z motions are no 
6v b 

longer equal. Because· of the choice of parameters . ___ z ~ 1, -< 1, 
6vx a 

the.largest amplitude occurs for the z direction and for the lower-

intensity mode. As the frequencies become different, but a is kept 

equal to b, Fig. 14 (b) and (c) result, and the solutions approach 

the limiting one-dimensional modes Ox = (~) and 0z = (~) that 

were found before. In the other limit, b 
a 

approaches zero and the 

solutions also approach the one-dimensional case. In particular, the 

curves of Fig. 14 (g), (h), and (i) are indistinguishable from the 

6vs 
6v = 0 asymptote of the one-dimensional beam (Fig. 8). The inter-

mediate case of an aspect ratio is shown in Fig. 14 (d), (e), 

and (f). In this case the lower-intensity mode is also very similar to 

that of the one-dimensional beam. 

Summary 

We have investigated the envelope motion for a uniformly charged 

cylindrical beam. Because of its two degrees of freedom, the envelope 

has two modes of oscillation that can be excited by gradient errors. 

The solutions for a beam with and E = E x z were presented in 

detail; it has a symmetric mode of oscillation that is excited near the 

'. -

- ill, 
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26v, and an antisymmetric mode that is excited near 

4 
6v =-6v. . sc 3 . For any type of beam, the process of resonance crossing 

is similar to that for the one-d.imensional beam. If·the resonances are 
6vsc crossed in the direction of decreasing ~, the beam grows a finite 

amount, whereas if the resonance is crossed in the opposite direction, 
6vsc b 6v z the beam continues to grow as increases. As or 
6v a 6vx 

approaches zero, the resonances become further separated and the envelope 

motion becomes one-dimensional. In fact for an aspect ratio of b 
a 

6vz 1 
or for .-- < -

6v 2' 
x 

the resonance in the z direction dominates and the 

beam motion is essentially bne-dimensional . 

1 

3" ' 
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4. Conclusion and Applications 

We have considered the effect of gradient errors on a beam of 

charged particles in an alternating gradient synchrotron. Usually, 

gradient errors are assumed to limit the number of particles that can 

be accelerated. This limit (the tranverse incoherent space .charge 

limit) is calculated by assuming that the beam size remains constant; 

then the number of particles that can be accelerated is limited to that 

number which just lowers the effective betatron frequency to an integer 

or half-integer. Actually, the diameter of the beam depends on the 

oscillation amplitudes of the individual particles, and if a gradient 

error causes these amplitudes to grow, the beam size also grows. Thus 

the usual calculation is not self-consisteht. 

In Section 1 self-consistent equations of motion for the beam 

envelope are derived for beams with one and two degrees of freedom. We 

assume that all the particles within the beam have the same azimuthal 

velocity and execute betatron oscillations about the same equilibrium 

orbi t, and that only linear forces act on the individual particles. 

The last assumption requires that the charge density within the beam be 

uniform and that the nonlinear components of the image force be 

neglected. The resulting envelope equations are nonlinear because of 

the nonlinear dependence of· the space charge force on the shape and 

size of the beam. 

These envelope equations were solved in Sections 2 and 3. For 

small amplitude oscillations of the one dimensional (planar) beam, the 

beam oscillates with the frequency 2(v -~ 6v ), and resonance occurs 
Lj. sc 

., 

• 

.-
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for n = 2(v - t 6Vsc )' i.e., for the beam intensity corresponding to 

4 
6Vsc 3 6V . However, for larger amplitudes of oscillation, the 

frequency of oscillation depends on amplitude as well as on intensity; 

for fixed intensity, the frequency increases with amplitude. In 

consequence, a slow traversal of the resonance in the direction of 
6Vsc increasing will cause the beam to grow arbitrarily large: near 

6V 

the resonant condition n = oscillation frequency, the amplitude 

i,ncreases, which causes the oscillation frequency to increase until the 

resonant condition is no longer ~atisfied; a further increase in 6Vsc ' 

or decrease in 6V, lowers the oscillation frequency and restores the 

resonance condition, which causes the beam amPlitude to again increase, , 

and so on. On the other a slow traversal of the resonance in the 

direction of decreasing causes only a finite increase in beam, 

size. The amount of beam growth depends 
6Vs 

6Vs only on the ratio and,:; 6V .,,; 

is less than 50% for -- ~ O.Ol. 
6V 

The resonant behavior of the two dimensional (cylindrical) beam 

is very similar. In this case two resonances are possible, although for 

a wide range of beam parameters, including most practical configurations, 

only one resonance occurs. An adiabatic resonance crossing in the 
6Vsc direction of increasing 

6V 
causes an arbitrarily large increase in 

6Vsc 
6V 

beam size, whereas a crossing in the direction of decreasing 

causes only a finite beam growth, 

beam growth for the same value of 

which is 
6v s .' 6V 

less than theone-dimensional 

We conclude that gradient errors will not limit beam intensity 

or cause particle loss,provided slow resonance crossings in the 
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direction of intreasing 
6.v sc 

6.v 
are avoided, and provided the ratio 

6.v s 
6.v 

is sufficiently small at the resonant intensity. 

Application to AGS 

As an application of these results, vTe examine the tvlO modes 

of envelope oscillation for the Brookhaven AGf3. The relevant parameters 

. 19 are obtained from van Steenbergen, who has measu.redthe vertical phase 
, 

space emittance and density distribution in the energy range 50-400 I,leV. 

First consider the situation irnmeo.iately after the injection, 

when 7.7 x 1012 particles occupy most of the machine circumference 

(B ~ 1). At this time, the betatron frequencies in the absence of space 

charge are v == 8.35 and v== 8.92 x z (as extrapolated from Fig. 6 of 

van Steenbergen), and the vertical emittance is -:-E . z == 11.6 cm-:!l1'ad. 

_~EzR Thus b == -- - 2.3 cm 
Vz 

(R == 728 m), and assuming an aspect ratio 

a . 
-b' == 2, we find 6.v = 0.14 and 6.v == 0.28 (from the equations scx scz 

follo-vTing 3-2). 'J'hese are the space-charge-induced freC!uency shifts 

for the individual particles vTithin the matched beam, vTi th the constant 

size a =4.6 cm and b= 2.3 cm. Gradient errors cause the beam to 

oscillat.e, and for small amplitudes, the blO modes of envelope oscilla-

tion are determined by Eqs. (3-8) and (3-10). In this case, the modes 

are nearly one-dimensional, and we find 

ill 
X 

2v 
x 

7 
7' 6.v 
o scx (4-1) 

.w 

-.. 
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4 
2v - - 6v z 3 scz 

, 5 z (4-2) 

where E ~ 0.1. For the above parameters, 

and these frequencies are well removed from the 

8.0 8·5 

8.26 

1 

1 
and 2' illz 

'2 illf",,::-, ___ --tv z 

~ I 

8·73, 

half-integral resonant values; an intensity of 17 x 1012 particles is 

required to shift to the nearest value, ~. Therefore gradi'ent 

errors are not expected to cause particle loss in this region. (These 

results are strictly valid only for uniformly charged beams, whereas":'; 

the AGS beam has a Gaussian charge distribution. We find in Part II 

that the frequency shifts for the Gaussian beam are approximately 1/3 

larger than those for the uniform beam, and thus the lowest resonant 

intensity is more nearly 13 x 10 12 particles. 20 ) 

During the first few synchrotron oscillations after injection 

(during the capture process), about 60% of the injected beam is lost, 

and smaller losses continue until 15 msec (BY = 0.5). At this time, 

1. 9 x 10
12 

particles remain, and these are assumed to occupy 1/4 of the 

,machine circumference. After this time, ,small particle loss occurs in 

two regions: the first near 20 msec (BY = 0.6) is assoc:lated with a 

20% increase in the normalized vertical emittance,while the second near 
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30 msec ($1 = 0.8) is associated with a 10% increase in the normalized 

vertical emittance. The frequencies(l) x 
and have been calculated 

12 
for these times, using N = 1.9 x 10 , B = 0.25, and the measured 

values of ;::E, and they are included in Table I. z 

Because the zero intensity betatron frequencies and 

change during acceleration, the (l) = 17 
x 

resonance is crossed near 

$1 = 0.8, in agreement with the observed particle loss at 30 msec. 

The resonance crossing is approximately adiabatic since 6v /6v scx x 

changes by 0.1 during 600 revolutions, and is in the direction of 

decreasing 6v /6.v. scx x The observed 10* increase in the normalized 

vertical emittance is consistent with a stopband width of 

in this case, 
.6. v s 
hv x 

0.04, and the oeam grovrs 100% in the 

6v = 0.002; s 

x direction 

and about 10) in the z direction (using Fig. 3-3 and assuming that 

the Bx m6de retains its one-dimensional form in the nonlinear regime) . 

. Further eX.geriments are necessary to confirm this cOl1nectL.:m 

betvleen the particle loss at 30 msec and the (l) = 17 x 
resonance 

crossing. For exataple, if the stopband is enlarged by deliberately 

exci t ing a 17th harm::mic gradient error in the machine lattice, the 

beam gro·~rth should exceed the available horizontal aperture and large 

losses should occur about 30 msec after injection. 

.. -. 
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Table I. AGS parameters near injection 

a(cm) . 1 1 
f3'Y .6.vscz v Vx -(1) -(1) 

Z 2 x 2 z 

0.50 3·8 0.18 8.88 8.46 8·76 8.41 

0.60 3·2 0.16 8.86 8·50 8·75 8.45 

0·70 2.8 0.15 8.84 8·53 8.74. 8.49 

0.80 2.6 0.13 8.83 8·55 8·75 8.51 

0.90 2.4 0.10 8.83 8.57 8·76 8.54 

1.00 2·3 0.09 8.82 8·58 8·77 8·55 

.. 
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PART II. COLLECTIVE OSCILLATIONS OF ONE-DIMENSIONAL BEAMS 

CONFINED BY HARMONIC POTENTIALS 

In Part I we considered only 0ne mode of collective oscillation 

that occurs in only one type of beam, namely the quadrupole mode that 

is excited in uniformly charged beams by ~radient errors. These restric-

tions enabled us to examine the large-amplitude nonlinear effects of 

space charge. In this Part we examine the other modes of collective 

oscillation. that occur in both uniform and nonuniform beams. We restrict 

our attention, however, to small-amplitude oscillations and for simpli-

city to one-dimensional beams. 

In Section 1, we use the linearized Vlasov equation to find all 

the normal modes and eigenfrequencies for the uniformly charged beam; 

in Section 2, the resulting mode structure is compared with that found 

by Ehrman6 for an approximately uniform beam, and with that found by 

Weibe1
2l 

for a neutralized beam (plasma) with a Gaussian charge 

distribution. 

Before proceeding to these cases, it is informative to consider 

the seemingly trivial case in which the Coulomb interaction is turned 

off. In the absence of space charge, the equation of motion for the 

individual particles is 

+ o , 

where the symbol Vo will be used in the remainder of this paper to 

designate the unperturbed betatron frequency. Any particle distribution 
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rotates rigidly in the 
1 dx 

x --~ v' d o 
space with the frequency 

has the form f = f(r, vo¢ + 9), where rand, 9 are defined in 
i 

and 

Fig. 15. The normal modes are found by a double decomposition of f: 

1 dx 

Vo CW 

Fig. 15. 

x 

the second argument of f is expanded in a Fourier series 

'. -in (v o¢+9 ) 
g (r)e n 

where for each n, ~(r) is an arbitrary function 

n 

of r and may in turn be expanded in a complete set of functions, 

gn(r) = L gmn (r). Thus there are a two-fold infinity of normal 

m 

modes of' the form 

f (r,9,¢) mn 
g (r) e mn 

-in9 -im ¢ mn e 

where the eigenfrequencies ffimn = nvO are harmonics of the unperturbed 

betatron frequency. Each eigenfrequency is infinitely degenerate. 

, . 
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In the presence of space charge, but on the assump.tion that the 

space-charge forces are small in comparison with the external focusing 

forces, each eigenvalue is split into infinitely many different eigen-

values that are clustered near the value rivO ' and the new eigenfunctions 

are. mixtures of the unperturbed eigenfunctions. Since the unperturbed 

eigenfunctions and the form of the space-charge interaction (Maxwell's 

equations) are known, the perturbed eigenvalues and eigenfunctions can. 

be found by stationary perturbation methods. 22 However, the unperturbed 

eigenfunctions are infinitely degenerate, so that an infinite-order 

matrix must first be diagonalized. In any event the form of the eigen-

value spectrum is clear: the eigenvalues are discrete and occur in 

clusters near the value nvo· 

1. Normal Modes for the. Uniformly Charged Beam 

I Formulation of the Problem 
I 

The Vlasov and Poisson equations can be written in the form 

df af 2 2 . df 
dW + v -.- + [-v x + illp C (x, ¢) ] av 0 

\ dx 0 (1-1) 
\ 

\ 

de 2 J f(x, v, ¢) dv dx == (1-2) 

where 
dx 
d¢"' and x measures distance from the median plane in units v == 

of the half-width of the stationa~y beam, a. The distribution function 

2 4rr e2R2 Nl 
f(x, v, ¢) i9 normalized to unity, and the quantity illp == 3 2 2a 

r mv p 

(the plasma frequency) has previously been defined as 2vO'(':,.vsc 

[Eq. (2-8), Part IJ. 
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The stationary solution of (l~l) and (1-2) that has a uniform 

charge density is 

where 

, 

i i 

2' 
-m p 

1 

2 
- x 

, x , 

(1-3) 

will be used in the remainder of 

this paper to designate the effective betatron frequency for the individual 

particles within the stationary distribution. In the v x - - space, the 
v 

particles move in circular orbits, and the stationary distribution 

rotates rigidly with the frequency v. 

v 
v 

Fig. 16. 

x 

Oscillations of this distribution are described by the perturbed 

distribution f(x, v; ¢) = fO(x,v) + fl (x, v, ¢), which gives rise to 

a, perturbed electric field,e (x, ¢) = eo(x) + €l (x, ~). As in 

Part I, we neglect the magnetic field components that arise from the 

transverse particle velocities. The evolution of fl(x, v, ¢) is 

governed by the Vlasov equation (1-1), which we linearize about fO(x, v): 
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(1-4) 

The left-hand side of (1-4) is the total derivative of fl along an . 

unperturbed orbit, and consequently we can invert (1-4) and write fl 

in terms of an integral of the right':'hand side over an unperturbed 

orbit.
21 

We do this explictly by writing (1-4) in terms of the polar 

coordinates defined in Fig. 16: 

2 
(I) ~E)f~l dfl £ dfO 

~- vre --L l(r cos 9, ¢) sin 9- (1-5) 
v dr 

For the normal mode solutions fl fer, 9)e -im~ 81 £(r .cos 9)e -imG , 
-_. -.-~-- ~-~'-

(1-5 ). ,he";~me s 
./ 

I 
! e (1-6) 

v 

Since-the:function fer, 9) must be periodic. in e, 

fer, 9) =f(r, 9 + 2rr), the unique solution of (1-6) is 

fer, 9) £ (r cos 9') sin e' d9', 

~·?'~·:~Il: .. 
provided ~ is not an integer;,; The case ol'integer values of ,~ is 

consideredVlater. Equation (1-7) can be Litten in terms of the

V 

Cartesian variables x and v as 

./ 

\ 

, 



.. 

," 

OfO 
2 2n: i~ 

1 
. ill 

! f(x, v) E e v = V ·CiV· 2 .ill n:l.-
- 1 e v 

"-.2 eJ_~ 

where u 9' - 9 and 

x' 
v . = x cos u - - Sl.n u 
v 

v' = vX sin u + v cos u 

e (x') 

\-~~ 

, 

v' 
- du , 
V 

(1-8) 

(1-9) . 

Equation (1-8) specifies f(x, v) as an integral over the unperturbed 

orbit. 

" The perturbed electric field £1 (x, ¢) is related to 

flex, v, ¢) by Poisson's Equation (1-2), or alternatively by Maxwell's 

second equation, 

otl 
00 

2 J vf(x, ¢) dv (1"';10) 
~ = - v , ., 

. : .. 
-00 

" 

which follows immediately from Poisson's equation and the continuity 

equation for charge and current density; usfng (1-8) and (1-10), we 

obtain a ~ingle integral equation for e (x): 

im £ (x) 

where x' 

= 

e 

2m
2 

. P 
00 

f 
-00 

of 2n: 
dv . 0 f 

dV .. ,.'0 

and v' are given by (1-9). 

i~u 
e v co v' c.. (x')- du 

v 
, (1-11) 
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General Solution 
.. ;' 

We solve (l-ll) by performing two integrations by parts.23 First 

integrate over v so that 

2m"£.2 
00 2:n: .(J) 

f ~ 
l.-U 

iru £ (x) dv fO e v 
2 .(J) . :n:l.-

v - 1 
-00 

e 
\:) .~ 

()~ 
where the integrated terms are zero at the limits v ± 00. Then 

,integrate by parts over u to eliminate 

2ru 2/ 2 ·00 

p v J £. (x) 'dv fO 
2:n:i~ 

v - 1 
-00 

e 
J 
0 

de 
du 

2:n: .(J) 
l.~U 

e v C (x') sin u du 

(1-13) 

We eliminate the function 122 
f = --[v (1 - x ) o 2:n: - v 2J""~ from (1';13) by 

replacing -v 2' v by.,.. v 1 - x 'cos 1], so that. 

2 2 
1 (J) /v 
--' p 
2:n: 2'.(1) :n:l.-

e v -1 

/ 

2:n: 

f 
o 

)C £(x cos u + \}l 2' 
- x sin u cos 

(1-14) 

, 

':-

, 
" 

• 
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Finally replace x with cos ~, so that 

2 211 2:rr .(1) 0'lM,1A (1) I i 1 J J 
l.-U 

£(cos ~) ..Po- ; dTJ V" £(cos 1jI) du = e 2 2 .(1) 
, 

2:rrv :rrl.-v - 1 0 0 (1-1'5 ) e / 

where cos 1jI = cos ~ cos u + sin ~ sin u cos TJ. The angle 1jI will be 

recognized as the angle between two vectors with polar coordinates TJ, 

/: d 0 't· 1 h' F' 1 24 s an, ,u respec l. ve y, as s own l.n l.g. 7. 
/ 

Fig. 17. 

It is now easy to show that the solutions to (1-15) are just 

Legendre polynomials. We use the addition theorem for spherical 

harmonices to write 

Pn(cos 1jI) = 2~:rr+ 1 Ly:n(s, TJ) Ymn(u, 0) 
m 

, (1-16) 

where the integration over TJ in (1-15) insures that only the m 0 

term P (cos ~) P (cos u) contributes to the sum. Thus, if n n 

£n+l (x) = Pn (x), Eq. (1-15) is satisfied identically provided 

'.~ .' 
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2 2 
(I) Iv 211 .(1) 

1-U 

~ K \ ((I)) P V P (cos u) sin u du 1, - e = n'tl 2 .(1) n 
::1:1-

v 1 (1-17) e 

which specifies the'eigenfrequencies (I). A few of the functions Kn((I)) 

are included in Table II; the rest may be found by using the recursion 

relation 

',2 2 
• (J) -en - 3) 

::: 222 
(I) -nv 

2 
v (1-18) 

The eigenfunctions for the perturbed electric field are therefore 

the Legendre polynomials 

for m 1,2,3:,' .. , (1-19) 

and for each value of m, the correspondingeigenfrequencies are deter-

mined'by 

\ for n = m,m-2;m-4,' . '. (1-20) 

In general, each eigenfunction £, (x) has more than one eigenfrequency: 
m 

as can be seen from Table II, there is one eigenfrequency each for 

m = 1 and m = 2, but two fO.r m = 3,4 and three for "m = 5,6, and 

so on. We label the various eigenfrequencies of (1-20) so that in the 

lir:1it of zero intensity, (l)mn approaches nv. 

The eigenfuflctions f (r, 9) 
mn 

corresponding to the eigen-

fre-::.uencies '" ""mn are determiried by Eq.(l-y) to be 

ii' 

-. 

-'.J .... 



Table II. 

n 

1 

2 

3 

'. 

4 

5 

6 

' .. -

"!" 
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The functions K (ro) are listed for n < 7. n 

ro 
2 

2 
roE 

ro 
p 

. 2 2 
- 5 v 

2 
ro 
E 

2 62 2 ro - v 

2 

2 

2 

2 2 
ro - v 

2 

2 

2 
ro 
22 

ro - v 

'\2 2 
• 'ro - v 

2 22 2 ro - v 

2 
ro - 22v2 

ro 
2 

3
2

v
2 2 2 

ro - ro - v 

2 
3

2
v
2 2 2 

ro - ro - v 
2 _ 42

v
2 2 _ 22v2 

ill ro 
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f (r, g) 
ron 

2 
(l) 1 <ifO ..12-._._ 

2 r dr 
v 

\.0,. 
Rmk(r) 

2: ill 

ill 
2(i 

rnn sin kg - k cos kg) 
v 

, 
k~\ 2 ron (1-21) -k ---

2 
v 

where the sum over k is finite and involves only even or only odd 

numbers. The radial functions R (r) mn are polynomials in r, and a 

few are listed in Table III. For m> 2, the sum in (1-21) has more 

than one term, and the simple n-fold rotational symmetry of the 

unperturbed eigenfunctions is absent. 

Low Intensities 

For 
2 2 

illp «vO" these eigenfunctions and eigenvalues reduce 

to the form predicted by perturbation theory. The eigenfrequencies 

have the form 

\un 
nv + -- 6.v 

n sc , (1-22) 

where v = -Jvo 
2 

- illp 
2 ~ Vo - 6.v sc and where a few of the constants 

"mn are listed in Table IV. These eigenfrequencies are shown in 

Fig. 18a for the intensity corresponding to 6.vsc 
1 
~, but the eigen-

frequencies with m > n + 2 are clustered too near the values nv to 

be resolved. Figure 18b shows an enlarged region of the spectrum near 

nv: all the eigenfrequencies (except illll = vO) are shifted down from 

the unperturbed values nvO' and as the radial mode number m increases, 

the eigenfrequencies approach nv. It is also evident from Eq. (1-22) 

or Fig. 18a that as the mode number n increases, theeigenfrequencies 

become more tightly clustered around the frequencies nv. 

'. 
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Table III. The radial functions R (r) with 
mn 

m < 7 are listed. 

1 3 5 

r 

1(3 3 ) 2' 4' r - r ~ r3 

g (5;/ r5 - 7- r3 + 3r) ~(~ r 5 _ r 3) ~5 .1 r 

2 4 6 

1 2 
2'r 

1(5 4 2) 5 4 
'4 2' r - 3r j])r 

f;-(~ r6 - 7r4 + 3r2) L(2 r6 _ 5r4) 
32 2 ~ 1'1 r 

6 
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Table IV. The coefficients Amn in ~q. (1-22) 

are listed for m < 7. 

1 

1 

1 
-0.125 - 23 = 

1 
- "]) "'" -0. 0156 

2 

2 

1 

1 - 2 = ,..0.250 
2 

- ~ ~ -0.039 j 
2 

3 

3
2 

"3 = 1. 125 
2 

3
2 

- L;(- ~ -0.350 . 
2 

4 

~ = 1. 25 
2 

5 

2 '9 ~ 1.365 
2 

6 

2 
3 ~ 7 "'" 1. 475 

2 

j 

.. 
--

I "'-
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771 
-~ ! i 

671 

-~ nllo 
571 

311o 
m=n 

n ~lIsc 
4v 

211o -~ 

nll 
~m=CO 3v 
'\ m=n+4 

m=n+2 

211 

II 

o 

( a ) ( b ) 

XBL689-3904 

Fig. 18. Eigenvalue spectrum for 6v = ~ ; (b) is an enlarged sc '+ 

region near nv. The eigenvalues occur in clusters near 

nv and,as n increases, the clusters become more tightly 

grouped around nv. 
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The low-intensity eigenfunctions have the form 

f (r, Q) 
mn 

n 1 dfO -in9 2 
-R (r) e +O(m), 
A. mn rdr p 

mn , 

and therefore the complete distribution f fO + fmn becomes 

f _::-;;=======1=' =======- + 0 (m 2) 
2rrv-Vl _r2 + ER (r) cos n(v¢ + 9) p 

mn 
(1-24) 

where the term proportional to m 2 involves mixtures of other zero­
p 

order eigenfunctions. A few of the radial functions R (r) are shown mn 

in Fig. 19; note that the perturbation for the modes with m = n is 

the largest near the surface r = 1, whereas the other modes are close 

to zero there. For this reason, the m = n modes are referred to as 

surface modes. They produce relatively large displacements of the beam 

surface, as opposed to the m 4= n modes for which the perturbed motion 

is largely confined to the interior of the distribution." 

The distribution (1-24) rotates in an approximately rigid 

fashion in the v 
x - - space with the frequency nv,and has an approxi­

v 

mate n-fold symmetry of rotation and radial variation with m - n 
2, 

in real space, the perturbed charge,deni3ity is proportional to 

nodes; 

dPm_l(x) 

dx 
As m increases, the overall perturbed charge density tends 

to cancel with itself, and thus it is not surprising that the eigen-

frequencies for the modes wi tl:t large m approach nv; perturbations 
'" 

..; '. 

. ' 

." 
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~~--...I...-,..r 

R42 R44 

r r 

R62 

~r r 

R82 . R84 

r r -. 

X BL 689- 3903 

. Fig. 19. The radial functions R (r) are shown for even values ron 

of m and n. The vertical scale is not indicated, and 

differs from figu.re to figure for clarity . 

··1 

r 
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that produce little net charge density will only slightly perturb the 

stationary circular orbits, and consequently will be carried along 

nearly intact with the frequency v of the stationary distribution. 

The eigenfunctions f (f, 9) '. found so far do not form a mn ( 

complete set. 25 For example, among the zero-intensity eigenfunctions 

(1-23), there are none with the form g (r) e-in9 where n = 0 mn or, 

in general, where n> m. For'completeness, additional eigenfunctions 

are required to fill in the blanks of Table III, as well as an additional 

column at n o. It is shown in Appendix C that these additional 

. eigenfunctionsexisl; ,and have the eigenvalues nv that were excluded by 

the form of Eq. (1-7) and following. The new eigenfrequenciesdo not 

change the form of the spectrum, but now the value nv is degenerate. 

High Intensities 

In the opposite limit of very high intensities, the eigenfunctions 

and eigenvalues also reduce to a characteristic form. The maximum 

intensity occurs for and corresponds to that value of space-

charge force for which the repulsive self-force exactly cancels the 

external focusing force -- no net force acts on the stationary distribu-

tion. In this case, the particles comprising the stationary distribution 

have no velocity (the beam emittance is zero), and fO is completely 

characterized by its charge density enO (x). Any perturbation' can 

therefore be ~xpanded in a single infinity of functions, rather than in 

the two-fold infinity required before. Furthermore, any perturbation 

of such a zero-temperature plasma (the external force is equivalent to 

a neutralizing background of immobile ions) must oscillate with the 

w' 
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plasma frequency ill. Thus, in this limit, the eigenfunctions must 
p 

reduce to a single infinity of functions, and their eigenfrequencies 

must all have the same value ill = ill . n p 

This is indeed the case . A few of the eigenfrequencies ill . mn 

are plotted as a function of intensity in Fig. 20; as the intensity 

increases to its maximum value, the eigenfrequencies illmm for the sur­

face modes all approach the plasma frequency whereas the eigenfrequencies 

for the other modes approach zero. The eigenfunctions for the electric 

field €. (x) [or equivalently the charge density en(x) ] remain 

Legendre polynomials, and since each eigenfunction £ (x) m now has only 

one eigenfrequency, any perturbation is completely specified by the 

single infinity of eigenfunctions £ (x). m 

The Dipole and Quadrupole Modes 

The dipole mode with m = 1 and n = 1 is particularly simp~e. 

The eigenfrequency illll specified by Kll(ill) = 1 is found from 

Table II to be 

+ ill 
P 

2' , (1-25) 

so that this mode oscillates with the unperturbed betatron frequency 

'Va' independent of intensity. 
-ivo¢ 

form el(x, ¢) = € e , 
The perturbed electric field has the 

and the complete particle distribution 

f = fO + £11 is given to first order in € by 

f'(r, 9,¢) = 1 1 , 

(1-26) 

I. 

.. 
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4 
m=5 

3 

2 2 

o 0.4 0.8 

C&.I ~ 17I~ 

XBL6e9 - 3902 

Fig. 20. The eigenvalues specified by K (w ) = 1 m rnn 
are 

shown for m = 9,7,5 ,and 3. As the intensity increases 

to the maximum value corresponding to "wp = v
O

' the 

eigenvalues for the ,m f. n modes approach zero; those 

for the m = n modes approach w • 
p 

, '. 

" 
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where the variable r' is measured with respect to the moving 

coordinates x = € cos(vo¢ + 9) and ~ = € sin(vo¢ + 9), as shown in 

Fig. 21. Therefore the entire distribution is displaced in the circular 

v 
v 

Fig. 21. 

x 

path indicated, and iri real space, the beam oscillates rigidly back and 

forth at the frequenCy vO' 

- In addition to this rigid dipole mode, there is an infinite 

number of nonrigid dipole modes with 

with a charge density proportional to 

n = 1 and 
dP l(x) m-

dx 

m = 3,5,7,'" and 

The charge density 

for these modes oscillates in a nonrigid fashion, and the eigenfrequency 

Wml approaches (vo - 6vsc ) as m increases. 

The quadrupole mode with m = 2 and n 

frequency 

2 
+w 

P 

2 has the eigen-

, 

which is the samefrequericy as was found for the small-amplitude 

oscillations of the one-dimensional beam examined in Part I. ·In fact, 

. -
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it is straightforward to show that the comp~ete distribution 

f = fO + f22 is just the small-amplitude limit of the uniform one­

dimensional distribution, Eq. (1-17) in Part r.26 Thus, this is the 

"breathing mode" in which the beam expands and contracts, yet maintains 

a uniform charge density. , 

The quadrupole modes with n = 2 

nonuniform charge density proportional to 

and m = 4,6,8,'" have a 
dP lex) , 
m~ , and their eigen-

frequencies illm2 approach 2(vO .. 6v ) as sc 

Excitation by External Forces 

m increases. 

Machine imperfections excite the various ' normal modes. In this 

case, the linearized Vlasov equation has the form 

I 
-----,," --'~"-l 

2 . }6 ClfO 
- ill [€(x,}6) + E(x) e -lP ] ~ 

p ·av , (1-28) 

where E(x) e-ip}6 is the known external driving term and p is an 

integer. The forced solutions of (1-28).osci-llate with the frequency 

p, and can be found by the same methods th~,were used to find the 

normal mode solutions. In particular, the defining equation for , £. (x) 

is just Eq. (1-15), but t:(cos w) on the right-hand side is replaced 

by ~ (cos w) + E (cos W). The solution for the forced electric field is 

t:.(x) 

n 

2n + 1 
-'--2- aP (x) n n . 

where the coefficients a are determined by 
n 

(1-29) 

',. 

i 

.,. ' 
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(1-30) 

Thus an external driving term of the form E(x) = Pm_lex) excites only 

the e (x) modes, and resonances occur for p near any eigenfrequencies 
m 

where n = m,m-2,m-4,···. 

A magnetic field error has the form E(x) = E, and excites only 

the rigid dipole mode (m = 1 and n = 1) with 

= 

E(J) 
P 

2 

(1-31) 

A gradient error has the form E(x) = EX, and excites only the uniform 

quadrupole mode (m = 2 and n = 2) with 

2 
E(J) X 

P 
2 _ 4v 2 

P 0 +.3w
2 

P 

, (i-32 ) 

in agreement with Part I. Nonlinear driving terms excite the higher-

order modes and cause resonances for integral values of (J) • In the 
mn 

next; section, we examine these resonances in more detail and compare 

them with the resonant frequencies found by Ehrman for a nonuniform 

beam. 

We conclude this section with a few general observations. For 

intensities of ,interest in AG synchrotrons 

modes f 
mn 

for the particle density in X -

(~v «vO)' the normal sc ' 
v space have an approximate 
v 
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n-fold symmetry of rotation and radial variation with m - n 
--2- nodes; 

in real space, the charge density is.proportional to 

The distribution oscillates with the frequency 

n(vO - 6v ) 
\nn which differs from (Jjmn = + -- 6v , sc n sc 

value nvO by the two frequency shifts n6vsc and 

dPm_l(x) 

dx 

the zero-intensity 

A'mn 
-- 6v The 

n sc 

first frequency shift is a purely geometric effect: a perturbation that 

produced no electric field would rotate rigidly with the frequency v 

of the stationary distribution, giving rise to the eigenfrequency nv. 
. .. 

However, because the perturbation is charged~ the circular orbits of the 

stationary distribut-ion are distorted, and this distorti6n gives rise to 

the second frequency shift. This frequency shift is largest for the 

lower-order, more coherent modes, and becomes progressively smaller 

(Table IV) for the higher-order modes, since the perturbed charge 

" density terlds to cancel with itself: the most coherent mode is the 

rigid dipole mode for which CiJ..l = (vO - 6v sc ) + 6vsc ' whereas for the 

1 
uniform quadrupole mode (Jj22 = 2(vO - 6v sc ) + '26vsc' and for the (3,3) 

sextupole mode ~3 = 3(vo - 6vsc ) + ~ 6v sc · For the higher';order 

modes, especially the nonsurface modes, the eigenfrequencies are 

shifted very little from the value n(vO - 6vsc ). 

Finally, because the eigenfrequencies are real and discrete, 

there can be no Landau damping. 27 This type of damping requires a 

continuous spectrum and discontinuous eigenfunctions, so that any 

initial perturbation that is analytic consists of an infinite number 

of eigenfunctions, each infinitesimally excited; in the course of time 

• 

-
.$>'. 

., 
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the phase relationships between the various modes is destroyed and the 

perturbation damps exponentially to zero. 28 For any system of charged 

particles that are confined by a harmonic potential, the eigenvalue 

spectrum is discrete. and the eigenfunctions are continuous;29 however, 

a very localized perturbation contains many modes and exhibits an 

approximate exponential damping until the phases of the various modes 

become randomized. 
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2. Extension to Nonuniform Beams , 

Resonant Frequencies for the Uniform Beam 

We have seen in the preceding section that an external driving 

term of the form P (x)e-ip,¢ excites resonances' if the integer m-l . p 

is near any of the eigenfrequencies ill 

\nn mn 
ill = nv + ----- 6v , and therefore resonances occur mn n sc 

where n = m,m-2,m-4,· ... For 

low intensities, 

for p near mv, (m-2)v, (m -4)v, ... , as indicated below: 

; ... ; 

Dipole modes are excited by PO' P 2' P4, '.~, quadrupole modes by 

Pl , Py P
5

, ... , sextupole modes by . P2, P4, , octupole modes by 

,etc. In the limit of zero intensity, these resonances 

reduce to those obtained from the single-particle approach; the equation 

of motion for the individual particles is 

(2-2) 

i 
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and if we consider only small departures ox from the stationary orbits 

x = A cos (vJ + a), where A and a are constants, resonance occurs 

for p = mvO' (m -2)vO' (m - 4)vO' ... , as indicated in (2-1)~ 

However, if,' nO,nlinear terms in ox are allowed in (2-2), the 

'm rI. resonant growth caused by the driving term x cos pj'-' is usually 

serious only for m~2; for larger values of m the amplitude 

dependence of vo' which results from the nonlinearity of the driving 

term, generally causes the resonant growth to be negligible. 30 

Presumably this is also true in the presence of space charge. Then, 

since m ' x can be expressed in terms of Legendre polynomials of order 

less than or equal to m, only the driving terms Pm_l(x) and resonant 

frequencies illmn with m~ 3 need be considered, namely ~l' ill22 , 

Resonance occurs for integral values of these eigenfrequencies, 

and from Table IV we find: 

Driving term Resonant condition Mode (m,n) 

rigid dipole (1,1) 

n 3 
vo = - + 1+ 6.v 2 sc uniform quadrupole (2,2) 

9 ' 

<~: 
= n +,- 6.v 8. sc 

n + 16.'; = -
3 8 sc 

nonrigid dipole (3,1) 

sextupole (3,3) 
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where n is any integer. These resonant values of are shown in 

Fig. 22 for the beam intensity corresponding to /:::"v sc 
1 
'4 ; additional 

resonances are also included, and the dipole, quadrupole, and sextupole 

modes are drawn separately for clarity. The rigid dipole mode is 

excited by Po at. integral values of vO' whereas the nonrigid dipole 

modes are excited by P 2;P4, ... _ for near n + /:::"v • sc The uniform 

quadrupole inode that was examined in Part I is excited by Pl at 

n 3 
vo =2" + '4/:::"vsc ' whereas the quadrupole modes that do not maintain a 

uniform charge density are excited by P
3

, P
5

, ... . for near 

n 
-2 + /:::"v sc 

The sextupole, octupole, and higher-order modes are excited 

for 
n n 

vo near k + /:::"v sc ' where k are the zero-intensity subharmonic 

frequencies. 

Comparison with the Water-Bag Distribution 

. 6 
Ehrman and dePackh have examined the oscillations of the 

stationary distribution that has a uniform particle density in phase 

space; the particles are confined by an external harmonic potential and 

oscillate with the frequency Vo in the absence of space charge. Since 

the volume occupied by any group of particles in phase space is incom-

pressible (neglecting collisions), this uniform particle distribution. 

acts as an incompressible homogeneous fluid, and hence the name water-

bag distribution. 

a. The stationary distribution 

We will examine the stationary distribution in more detail 

before describing its small-amplitude oscillations. For low intensities, 

the distribution has an approximately circular boundary in the 

• 

v 
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Fig. 22. The resonant values of Vo for the beam intensity 

corresponding to /:::"v = i=- are shown for the dipole, sc Lj. 

quadrupole, and sextupole modes excited by P (x) with , "m 

m':::; 5. 
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x - space, and a nonuniform cbarge density in real space. As 

the intensity increases, the charge density becomes more and more uniform, 

until at the limiting intensity for which the space-charge force exactly 

balances the focusing force (the plasma frequency equals vO)' the charge 

density is exactly uniform and the particles within the stationary distri­

bution are motionless (the beam emittance is zero ). 

1 
The zero-order distribution fo(r) = ~, 0 < r ~ 1, is 

o 
shown in Fig. 23b, where r is the radius of the individual particle 

1 dx ' orbits in the x - -- ~ space in the absence of space charge, and 
Vo d)" 
. dx 

is normalized so that !fOdxdv = 1 (v = ~). For AG syhchrot.rons the 

space-charge forces are small in comparison with the external focusing 

force, 6vsc « vO' so that the stationary distribution in the presence 

of space charge differs from the zero-order distribution by 

terms of order For 6v . 
sc 

1 
typically 4. and Vo "'" 10, this 

difference is approximately 2%, which is negligible. The normalized 

charge density po(x) = !fO(r)dv for the zero-order 

distribution is also shown. Since the charge density is not uniform, 

the self-forces are not linear, and the particles within the stationary 

distribution oscillate with different frequencies. it is shown in 

Appendix D that the revolution frequencies for the individual particles 

within the stationary distribution are given to first order in 
6v sc 

by 

v(r) , (2-4) 

, j 

.. 

.# 

'.j' 
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1.0 1I0to (r) 1.0 Po (X r 2.0 g ( r ) 

-! 
", ( a) 

'. 
0 r 1.0 0 

X 1.0 0 r 1,0 

1.0 1.0 2D 

( b) 

" 

0 1.0 0 1.0 0 1.0 .. r X r 

U " 

I~O 1.0 2,0 ,.' 

(c) 
~.~; 

0 1.0 0 1.0 r X r 

X B L 6,89 - 3900 

Fig. 23. The uniformly charged beam (a), water-bag beam (b), and 

Gaussian beam (c) are shown: fO(r) is the zero-order 

stationary Idistribution, po(x) is the normalized charge 

density for fo(r), and vCr) = vo - 6vsc g(r) is the 

frequency of the individual particles within the stationary 

distribution to first order in 
6vsc 
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where 

g(r) 
2 

po(r sin w) cos w dw , (2-5 ) 

involves an integration over the unperturbed orbits. The quantity 6vsc 

has been defined before [Eq. (2-8), Part rJ. It is proportional to the 

average charge density within the beam, and is identical to the space-

charge-induced frequency shift for a beam with uniform charge density, 

1 
i.e., for the normalized charge density Po (x) '" constant '" 2' Eqs. (2-4) 

and (2-5) give vCr) '" constant", Vo - 6v . sc For comparison, the zero-

order distribution for the uniformly charged beam 

is also shown (Fig. 23a), as well as the· Gaussian distribution observed 

in the Brookhaven AGS19 (Fig. 23c.), namely f O·'" 2.2 e-2 .
2r2

, with the 
VOn 

() 
~~ -2.2x2 

normalized charge density Po x '" V -;- e Note that the charge 

distribution for the water-bag beam is intermediate between that of the 

uniform beam and the Gaussian beam. 

For the same total charge Nl , and the same beam size a, the 

water-bag and Gaussian beams have a higher central charge density than 

the uniform beam. As a result, the space-charge-induced frequency 

shifts 6Vscg(r) are larger for the nonuniform beams, since the 

2 
cos w term in Eq. (2-5) weights the integration over PO(r sinw) in 

the favor of small values of the argument r sin w. For the water-bag 

beam vCr) varies between v(O) 4 
v . - - 6v and o n sc 

t 
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( ) 
32 . 

v 1 = Vo - ---2 6v c ~ Vo - 1.08 6v ; for the Gaussian beam it varies 
3rt s sc 

b. Small-amplitude oscillations 

Ehrman has found the small-amplitude oscillations that perturb 

the boundary of the stationary water-bag distribution while maintaining 

the uniform particle density in phase space, namely the surface modes. 

These modes, for which the perturbation is large only near the beam 

boundary, are very similar to the m = n surface modes of the uniformly 

charged beam. The additional nonsurface modes that perturb the uniform 

particle density within the boundary were not found. 

For low intensities, the surface modes have an approximate n-fold 

. rotational symmetry in the x - !.... ~ Vo d)" 
space, and oscillate with the, 

frequencies 31 

where n = 1,2,3,···. For n = 1, ~ = vo' and this is the rigid 

dipole mode for which the beam oscillates rigidly back and forth at 

the zero-intensity betatron frequency. For the first three surface 

modes we find 

(2-6) 
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Water-bag Uniform beam 

~ Vo ~l = Vo 

2v(1) + 0.454 6v 2v 
1 

ill2 (1)22 + - 6v sc 2 sc 

(1)3 = 3v(1) + 0.291 6v ' ~3 3v + ~ 6vsc (2-7) sc 

For larger values of n, the frequency shift from nv(l) is very nearly 

8 
--' 6v 3rrn sc' 

which has the same form as the frequency shift 
A.nn 
-, -6v n sc 

the uniform beam, where ~n is a number of order one that increases 

slowly with n (Table IV). As n approaches infinity, the eigen-

for 

frequencies illn approach nv(l); the perturbed charge density tends to 

cancel with itself, and the perturbation is carried along nearly intact 

at the frequency of the boundary particles, v(l) ~ Vo - 1.08 6v . sc 

As the intensity increases to its limiting value, corresponding 

to illp = vo' the eigenfrequencies an approach the plasma frequency 

6 (1)p in the same manner (Fig. 3 of Ehrman ) as do the eigenfrequencies 

for the surface modes of the uniform beam (Fig. ,20). We conclude that 

the eigenfrequencies for the surface modes of both distributions are 

very similar. 

The low-intensity resonant conditions for the first three 

surface modes of the two distributions are 

. , 
c 

'. 

, 1... 
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water-bag Uniform beam 

Vo n Vo n 

n 
+ 0.853 

n 3 Vo = .... l:Ivsc Vo = - + 4' l:Ivsc 2 2 

n 
Vo 3' + 0.983 l:Ivsc Vo 

n ll:1v - + (2-8) 3 8 sc 

The driving terms that excite these water-bag modes have not been 

determined, but it is reasonable to assume that they are similar to 

those for the uniform beam. For example, we expect a gradient error to 

excite primarily the n = 2 quadrupole mode, but also to excite weakly 

the additional nonsurface quadrupole modes. In the same spirit, we 

expect only the low-order water-bag resonances listed in (2-8), plus 

perhaps one or two nonsurface modes, to be detected in accelerators; 

the nonlinearity of the driving terms required to excite the higher-

order modes should prevent additional modes from being observed. 

Gaussian Beam 

The eigenfrequencies,for the Gaussian beam have not been found, 

but Weibe121 has solved a very similar problem. He considers a one-

dimensional system of electrons in an external harmonic potential, and 

finds the eigenfrequencies for the small-amplitude oscillations about a 

stationary Gaussian distribution. However, he considers only the case 

for which the charge density of the stationary distribution is completely 

neutralized by a background of immobile positive ions so that all the 

particles within the stationary distribution oscillate with the same 

frequency vO. In contrast, the charge within an accelerator is not 
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neutralized and the individual particle frequencies for the Gaussian 

distribution vary between v(o) ~ Vo - 1.67 6v sc and 

v(l) ~ Vo - 1.09 6v . In any event, the eigenfrequencies found by sc 

Weibel have a form very similar to those of the uniform beam and the 

water-bag beam. 

For the neutralized Gaussian distribution 

Weibel finds 32 

== Vo + 1.22 6v sc == 

2 -2.2r 
e 

== 2vo + 0.089 6v , sc 

(2-9) 

and it can be seen that the frequency shifts from nvO are very 

-similar to the frequency shifts from nV(l) for the water-bag beam 

(Eq. 2-7) and from n(vO - 6v' ) for the uniform beam. In particular, sc 

the frequency shifts fo:rthe surface modes are: 

m == n Gaussian Water bag Uniform 

1 1.22 6v 1.08 6v 6v sc sc sc 

2 0.356 6v 0.454 6v 
1 
- 6v sc sc 2 sc 

3 0.2226v . sc 0.291 6v sc 
3 6v . 
8 sc (2-10) 

For the two nOllsurface modes of (2-9), 

:,./ 

... 
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Gaussian Uniform 

0.13l'.6v sc 

0'.089 .6v sc 

0. 125 .6v sc 

(2-11) 

These results for the neutralized beam can be extended to the 

charged beam provided the effect of the frequency spread v{O) - v(l) 

within the charged beam can be neglected: we assume that all the parti-

cles within the stationary distribution oscillate with the same frequency 

V and replace Vo in (2-9) by the effective frequency V. The value 

of v is determined by the requirement that the rigid dipole mode, 

which in this case is obviously the m = 1, n = 1 mode, oscillate with 

the frequencyvO' Then v ~ Vo - 1.22.6v ; this is near the mean sc 

frequency Jv{r) fO{r) dxdv ~ Vo - 1.28 .6vsc within the stationary 

distribution and is a reasonable extrapolation from the effective 

frequencies and v - 1.08.6v . for the uniform and water-o sc 

bag beams . With this replacement in Eqs. (2-9), the resonant conditions 

for the Gaussian beam become 

Vo n Vo n + 1.09 .6v sc 

n 1. 04 .6v 
n 

Vo -+ Vo 2' + 1. 07 .6v 2 sc sc 

n· 
(2-12) Vo '3 + 1.15 .6vsc , 

which are reasonable extrapolations from the known resonant conditions 

for the uniform and water-bag beams (Eq. 2-8). 
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3. Conclusion 

We have investigated the small-amplitude oscillations of a one-

dimensional system of charged particles that interact with one another 

by Coulomb forces and are held together by an external harmonic potential. 

Because the large number of discrete particles (approximately 10
12

), 

each with two degrees of freedom, has been replaced by a continuous 

distribution, the system has a twofold infinity of degrees of freedom 

and therefore a twofold infinity of normal modes and eigenfrequencies. 

In the limit of zero intensity, the eigenfrequencies for any 

stationary distribution are just harmonics of the zero-intensity 

betatron frequency vo' and each eigenfrequency is infinitely degenerate. 

Resonances occur· for integral valtj.es of nv
O

' and these are just the 

integral, half-integral, and subharmonic resonances that are familar from 

single-particle theory. For intensities of interest in AG synchrotrons 

(6v .« vO), the degeneracy is at least partially removed, and the sc 

eigenfrequencies occur in clusters near the unperturbed eigenvalues 

nvo' For larger intensities, the charge density of the stationary 

distributions becomes more and more uniform until at the limiting 

intensity, for which (1)p:= vO' the charge density is exactly uniform. 

Consequently, the eigenfrequencies for the surface modes approach the 

plasma frequency, while theeigenfrequencies for the nonsurface modes 

approach zero. 

The eigenfrequencies and normal modes for the stationary 

distribution that has a uniform charge density in real space have been 

investigated in detail. The eigenfunctions for the perturbed electric 

.1 
} 
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field are particularly simple, being just Legendre polynomials. For low 
A.mn 

ffimn = nv + --- 6v where n sc' intensities, the eigenfrequencies are 

v = v - 6v is the revolution frequency 
. 0 sc 

of the particles within the 
A.mn stationary distribution and --- 6v 

n sc 
is the frequency shift induced by 

the collective oscillation. In the x - space, the eigenfunctions 

have an approximate n-fold rotational symmetry and a radial variation 

with m - n -2-

proportional 

nodes; in real space the perturbed charge density is 
dP

m
_
l to --a:x- The frequency shift from nv is relatively 

large for the low-order, coherent modes, while it is very small for the 

higher-order modes, for which the perturbed charge density tends to 

cancel with itself. 

External driving terms of the form Pk(x) cos p¢ excite the 

m =k + 1, n = k + 1, k - 1, k - 3, ... modes and cause resonances' 

for near the integer p. However, the resonances with m~4 

will generally be suppressed by the nonlinearity of the driving term 

required to excite them. Therefore, from the twofold infinity of 

possible modes, only four are likely to be serious for the uniformly 

charged beam: the rigid dipole mode (m = 1, n 1), which is excited 

by magnetic field errors for integral values of vO; the quadrupole 

mode (m = 2, n = 2), which is excited by gradient errors for 

vo = ~ + t 6vsc ; thesextupole mode (m = 3, n = 3), which is excited 

byP2(x) for. vo = % + ~6Vsc; and the 

n = 1), which is excited by P2(X) for 

nonrigid dipole mode (m = 3, 

Two beams with nonuniform charge density were also examined, a 

Gaussian beam similar to that observed in the Brookha.ven AGS and the; 
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water-bag beam, which has a charge distribution intermediate between 

that of the uniform beam and the Gaussian beam. Despite the relatively 

different' charge 'distributions, the eigenfrequencies for the surface 

modes of the water-bag and uniform beams' have the same form and very 

similar numerical values. The eigenfrequencies for the Gaussian beam 

were extrapolated from the known eigenfrequencies for a neutralized 

Gaussian distribution, and are also very similar in form and numerical 

content to those for the uniform and water-bag beams. Because of this 

similarity, it is reasonable to assume that corresponding modes in; the 

three distributions are excited by the same driving terms; forexanrple, 
,," 

a gradient error is expected to excite primarily the n = 2 surface 

.' modes, causing a resonance for n 3 Vo = 2' + 4' 6vsc in the uniform beam, .' 
n 

for Vo = 2 + 0.853 6vsc in the water-bag beam, and for 

n Vo = 2 + 1.04 6vsc in the Gaussian beam. In the same spirit, only the 

first three surface modes and one or two nonsurface modes are expected 

to be observable in accelerators, in analogy with the uniform beam. 

For the future, it is possible that the exact eigenfrequencies 

and normal modes for any distribution, at least to first order in 

, can be found by stationary perturbation methods, i. e., the 

methods that are used in quantum mechanics to compute perturbed eigen-

,functions and energy levels. Since only five or six modes need be 

examined, the perturbation apprOach should converge without exces,sive 

calculation. Perturbation methods might also be applied to two-

dimensional beams to examine the effects of space charge on sum and 
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difference resonances,and to three-dimensional beams to examine the 

space-charge coupling between longitudinal and transverse motions. Since 

relatively few modes are involved, it might also be .feasible to determine 

the large-amplitude behavior of these modes by analytical methods. 

• 



-100- UCRL-18454 

ACKNOWLEDGMENTS 

I am very. grateful to. Lloyd Smith for his guidance and coopera-

tion in this work, and also to Alper A. Garren, Philip L. Morton, 

L. Jackson Laslett, and David L. Judd for many helpful discussions. 

This work was done under auspices of the U.S. Atomic Energy 

Commission. 

• 

1., 

• 

, 
,"" 
.' \ 

. 
.. 



'. 
jilo' 

;"-

-101-

APPENDICES 

A. The Nonexistence of Uniformly Charged 

Three-Dimensional Beams 

We are given an ensemble of three-dimensional harmonic 

oscillators with the Hamiltonian 

2 2 
= P + q , (Al) 

Because of the inequality, the accessible region in phase space is a 

. six-dimensional unit sphere; in configuration space it is a 3-sphere. 

Does there exist a spherically symmetric distribution 2 2 f(p + q ) that 

has a uniform projection onto the 3-sphere? The following necessary 

condition for the existence of such a distribution has been found by 

Maurice Neuman. 

Theorem: The spherically symmetric distribution 2 2 f(p + q ) does not 

exist if its projection 2 
p(q ) 

2· 2 3 
Jf(p + q )d P violates any of the 

following inequalities: 

4 (3 ) 3/2 

~ 2" 4T ' 
1( 

peT) 

, 3 
4~T':;;;;1 (A2) 

The maximum permissible value of p ( T), which corresponds to the equal 

sign, is shown in Fig. (Al). An immediate consequence of this theorem 

is the nonexistence of a spherically symmetric distribution 

with a uniform projection, p(q2) = constant. 

2 2 f(p + q ) 

• 
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Fig. Al. The maximum value of p(T) from Eq. A2 is shown 

as·a function of T. 

0'1 

t 

XBL689-3915 

Fig. A2. The function g (t) specified by Eq. (A8) is 
T 

'shown as a function of t. 
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Proof of Theorem: f is normalized by 

The mean of any funytion g(t) is 

mean,g 

1 

1(3 1 = '4" g(t) f(t) 

o 
, (A4 ) 

and the resulting number can neither exceed the largest nor fall 

beneath the smallest value of get) (0 ~ t < 1): 

ihf g" mean g ~ sup g (A5 ) 

The projection of f is 

or 

2 
p(q ) 

Consider the function 

= 0 

T 

co 

J 2 1. 
= 21( f( t + q )t2 dt 

o (A6) 

1 

f(t) (t - T)2 dt 

for 0 ~ .T ~ t ~ 1 

for t < T , (AS) 

Ii 
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which is shown in Fig. A2. Its mean value is proportional to p(T), 

But for 
4 
-T<l 
3 ' 

for 4 T > 1 
3 ' 

= mean 

= g (1) 
T 

g .~ 

T "" 

1 
16 

Q.E.D. 

(A9) 

and 

.~ . 

'. 
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B. The Amplitude-Phase Equations for Two-Dimensional Beams 

In the absence of space charge and gradient errors, the solu-

tions of the two-dimensional envelope Eqs. (3-1) and (3-2) can be 

written in the form 

2 ... 1 2 I , 
X = Vl + A + A sin (2v~ + a) , 

dx, 
v A cos(2v ~ + a) x~ = , x .:x; 

"1 
2' 2 

+ B sin(2vz~ + ~) z = + B , 

., 
dz 
z~ = v B cos(2v ~ + S) , z z (Bl) 

where A, B, a, and ~ are constant. When Eqs. (Bl) are inserted into 

the complete envelope equations with space charge and gradient errors, 

we obtain the following first-order equations for A, B, Qx' Q,z: 

2 
dA 

ill 

Vl 
. 2 

- 6v ';1 + A2' 
~ 

= -L + A I cos Q (B2) 
Vx x sx x , 

2 
dB l~ 2' 

I - 6v 1/1 
2' 

(B3) ~ 
+ B + B cos Q, , v . z sz z z 

. d~ 
2 

ill 

+ 6v lf1 • 
Ad.W"" = -E.....M + A2 sin Q,x + 2Mv 

Vx x sx x (B4) 

dQ 2 
ill V1 2' z --LM sin + 2B6.v Bdf" + 6v + B Q,z v z. sz z z 

.. 
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plus additional terms that vary with the frequencies 

4v , etc. We have defined Q =: (2v - n)~ + a, Qz z x x 
n n and 6vx Vx - 2' 6v =: v z - 2' z 

2:n: 

T 
b 

~ 
cos u du with 

2:n: xCax + bZ) x 

2:n: 2' 
-Vl 

M 
b J A + + A sin u du 

x 2:n: x(ax + bz) 
0 

=: 

2v , 
x 

(2v 

u =: 

with similar definitions for I and M . The quantities z z 

are related by 

aAI + bBI 0 x z 

A. Equal Frequencies and Emittances 

z 

UCRL-18454 

2v , 
z 

- n)~ 

4v , x 

+ (3, 

n~ + Q,x 

(B6) 

(B7) 

I and I x z 

(B8) 

.In general,Eqs. (B2) - (B5) are very difficult to solve; 

however, for the special case of equal frequencies (vx == vz ) and equal 

emittances (a b), analytic solutions exist with the forms 

2 
x 

2 
z 

..... 1 2 ' Vl + A . + A cos(n~ + Q) 

111+ A2' ± A cos(n~ + Q) 

, 

, (B9) 

where the plus sign occurs for a symmetric gradient error (6v =: 6v z) sx s 

and the minus sign for .an antisymmetric gradient error (6v =: -6v ). sx sz 

For either gradient error, 

Eqs. (B2) - (B5) reduce to 

I x I=:O and M =: M ,'so that z x z 

. 

} 

, 

~ 

.~'.' 
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," 
V 2' 

= ~v 1 + A sin Q s . , (B10) 

'. A dQ 
~ 

, (Bll) 

where 

, for + in B9 (B12a) 

and 

. 1 [ 2 k
2 

] M. - - 1 - -. - K(k) 
-2k 1( A2 . 

, for in B9 (B12b) 

and K(k) is the complete elliptic integral of the first kind with ., 
modulus k = A 

" 1 + A2 

The phase trajectories in A, Q. space are found by dividing· 

(B10) by (Bll) and integrating the result: 

constant dA , 

(B13) 

where 

(B14) 

and 

., 
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(Bl5 ) 

The fixed points 0, 
dQ 
~ ° satisfy 

1 .6v s -VI + A2 
.6v 

Q 0, A + 2 ~M - 2' .6v .6v ± 

or (B16) 
1 .6v s -.J + A2 

.6v 
Q = rr, A = + 2 ---E..£ M -_. 1 , 2 .6v .6v ± 

and are shown in Fig. 10. For .6v = 0, these equations specify the s 

amplitude of the free envelope oscillations that are periodic. 

Because of the nonlinearity in the envelope, equations, a 

gradient error of one symmetry also affects· the normal mode solutions 

of opposite symmetry. Thus the symmetric fixed points of (Bl6) are 

modified by an antisymmetric gradient error, and vice versa. For 

example, in the absence of all gradient errors, the symmetric envelope 

oscillation has the form 

where 

2 
x 

A 

= 
2 

z -VI 2 
+ A + A cos ncjJ 

An antisymmetric gradient error·transforms these fixed points into 

(B17) 

.\..( . 
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2 x 111 + A2 + A cos(n¢ + Q) 

z2 = 1/1 + A2 - A cos(n¢ - Q) 

A cos¢ = 

- 1 

tw s 
6v 

become 

, 
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, 

, (B18) 

(B19) 

6v
s For small values of they approach very closely the form (B17),'as 

6v 

'shown in Fig. 11. The symmetric gradient error modifies the antisym'-

metric fixed points in an analogous manner. 

B. General Beam Configurations 

The response curves for Vx ~ Vz and a ~ b can be obtained 

from Eqs. (B2)- (B5) by numerical methods. However, for simplicity, 

we consider only the 6v = 0, sx asymptotes, in other words, 

the free envelope oscillations that are periodic. Equations (B2) and 

(B3) then require that I - I ~ 0, and this condition is satisfied x z 

if Qx - Qz = O,n, so that 

2 ~l + A2 +A sin(n¢ + Q) x , 

1/1 
(B20) 

2 2 
B sin(n¢ + Q) z + B" ± 

, '. 

,. . 

" 
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These integral equations were solved numerically, and the solutions are 

shown in Fig. 14. 
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C.Normal Modes that Oscillate with the Frequencies nv 

The uniformly charged beam (Section 1, Part II) has normal-mode 

solutions that oscillate with tpe frequencies nv, where n is an 

integer and v = ¥.o2 -(J.)p 
2 

The electric field for these modes has 

the form em(x) = Pm_l(x), and the perturbed particle density is 

determined by Eq. (1-6) to have the form 

f(r, 9) , (Cl) 

where f (r, 9) is given by Eq. (1-21) with (J.) = nv. The function mn' mn ' 

g (r) is determined by the condition that f(r, 9) produce the 
mn 

required electric field, Pm-l (x): 

dPm_l(X) 

dx = 2 J f(r, 9) dv , . (C2) 

If (Cl) is inserted into (C2), we obtain the following condition for 

g , (r): 
mn 

where x 
cos 90 = r 

= , 

For even values of n, the right-hand side of (C3) 

\ is an even function of x, and therefore m must be even; for odd values 

of n, m must be odd. 

There 'is an infinite number of solutions for n = 0, i.e., an 

infinite number of stationary distributions that differ from fO(r) by 
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an infinitesmal perturbation. Using Abel'stheorem
10 

to invert (C3), 

we find 

(1) ·4 2 .. ( 2 ) * 1 + P 2 (42r + 14r - 1) fo(r) 
16·16v 

Consequently, for m 2 and n 0, 

fer, 9) 

(c4) 

,( C5) 

and similarly for the higher values of m. Since these solutions all 

have the same eigenvalue (1) = 0, any combination will also be a 

solution. 

For n greater than zero, K (nv) m is infinite if m ~ n. 

Therefore the functions g (r) ron specified by (C3) exist only for IiJ. < n, 

and these values correspond exactly to the blanks in Table III. For 

example, for n = 1 or n = 2 there are no solutions. For n 3 

there is one solution, with the form 
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( -i39 () f = f13 r, 9) + e g13 r 

(In this case the left-hand side of (C3) is zero, and it is more 
: .. 

convenient to determine. g13(r) by the equivalent relation 

'~, 

[1 - K (n v) Jp 1 (x) m m- rdr sin n90 gmn (r) (c6) 

Equation (C3) is the derivative of (c6) with respect to x.} For n = 4 

there is also one solution, whereas for n = 5,6 there are two solutions, 

and so on for the higher values of n. 

"'- . .' 
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D. Frequency Spread for Nonuniform Stationary Distributions 

The Hamiltonian for the individual particles within a stationary 

distribution f(p, q) is 

H l( 2 2 2) 2 () 2' p + v 0 q + (l)p itl q . , (Dl) 

where 

- 2 J f(H) dp , (D2) 

and where J f(p, q) dp dq 1. We have chosen the units of q so 

that the beam boundary is q = ±l, and have defined (l) as the plasma 
p 

frequency for the average charge density. 

The revolution frequency of the individual particles i.s deter-

mined by (Dl) and (D2): For AG snychrotrons, 

suffices to find H to first order in (!)2, 

1 2 222 
where HO = 2'(p + vo q) and Hl = (l)p itlO(q) 

2« 2 d l· t (l)p Vo ' an 

namely H "'" HO + Hl , 

. with 

In terms of the action and angle variables J,w given by 

q .... {2J' sin w v-;; w vo¢ + constant, (D4) 

, 

\fJ 

'fi .. 
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the zero-order Hamiltonian is HO == vOJ; the transformed first order 

Hamiltonian Hl(J). is just the average of Hl(p, q) over the 

unperturbed orbit,33 , 

2 2:n: 

1 o 
sin W) dw 

The frequency of revolution of the individual particles is then 

v(J) == 

ill 2 2:n: ( 
+~dJ ~ ..... !2i Vo 2:n: dJ 0 V ~ 

o 
sin W) dw (D6) 

If the differentiation is performed, followed by an integration by 

parts, Eq. (D6) becomes 

2:n: 

v(r) g:n: J Vo - 6.v sc 
o 

2 
po(r sin w) cos w dw 

where r ==""\ r:;:;- is the radius of the unperturbed orbits and VV; 
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+ K(s)X o , 

is equivalent to the two ftCartesian ft equations 

where 

+ 

+ 

222 
X = Y + z 

K(s)y 

K(s)z 

and E 

o 

o 

, 

dz· dy 
Y·ds - z ds . Thus if 
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x 
.6vsc 2v.6v cos n¢ s 1 + ---

2v 4v2 - 6v.6v 2 
- n sc 

" 

.. 

" 
-". 
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,,! 
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For small amplitudes, X = ~ +oXe-iW¢ where ¢ has been 

" . . '. , , :iJ i 

used in place of s. If the distribution is expanded to first 

: ~ order in oX, there results 

• 
!~ 

J 
\; 

"t·' ! 
)t "I 1 

[1 ~ 2 2 
+ 2< (x2 _ 2) ~r f'(x, ¢) v .m v v ,-i 2 

v, = 2nv 
x -2 ~- x- - - e 

v v 2 
v , v 

where now is measured in units OfYf 
dx and x 

v ' 
v = ~' 

oX 
< = Vf This expression is identical with f = fO + f22' 

where 
df -

'~' d~O r ( i~ sin 29 - 2 cos 29) e -iW¢ 
'r 
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f (J, w) 
pn , 

-inw 
e' 6(J-p), ill pn 
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units, 

ill n 
16 n

2 
- 1 \ 

- '-;2 2 1 6vsc i 
311 n - 4 / 

32., Heibel writes the eigehfrequencies in the form 

2 
== , 

In our 

h •• w •• ere fllS (l) 
p 

is the plasma frec~uency for the central charge 

2V2; 2 times t[-.e average cnarge density. der.:.sit~r, which is 

~ 

", • 

",' 

'" . 
:ji 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa- , 
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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