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The computational multiphase flow community has grappled with mass loss in the level

set method for decades. Numerous solutions have been proposed, from fixing the reinitialization

step to combining the level set method with other conservative schemes. However, our work

reveals a more fundamental culprit: the smooth Heaviside and delta functions inherent to the

standard formulation. We propose a novel approach using variational analysis to incorporate

a mass conservation constraint. It introduces a Lagrange multiplier that enforces overall mass

balance. Notably, as the delta function sharpens, i.e., approaches the Dirac delta limit, the
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Lagrange multiplier approaches zero. However, the exact Lagrange multiplier method disrupts

the signed distance property of the level set function. This motivates us to develop an approximate

version of the Lagrange multiplier that preserves both overall mass and signed distance property

of the level set function. Our framework even recovers existing mass-conserving level set

methods, revealing some inconsistencies in prior analyses. We extend this approach to three-

phase flows for fluid-structure interaction (FSI) simulations. Rigorous test problems confirm that

the FSI dynamics produced by our simple, easy-to-implement immersed formulation with the

approximate Lagrange multiplier method are accurate and match state-of-the-art solvers.

Next, we develop a simulation infrastructure to perform fully resolved simulations of

wave energy converter (WEC) devices. We use the fictitious domain Brinkman penalization

(FD/BP) technique, which is computationally more efficient than the body-conforming grid

techniques. Simulating WEC devices involves complex fluid-structure interactions and, if done

accurately, can be used to test different types of controllers in a more realistic setting. We simulate

the dynamics of an inertial sea wave energy converter (ISWEC) device and a heaving vertical

cylinder point absorber device in a numerical wave tank (NWT) for regular and irregular waves.

We test various control strategies: proportional-derivative (PD) control, model predictive control

(MPC), and model-free reinforcement learning (RL) techniques to optimize the performance of

such devices. Results show that the fully resolved multiphase simulations are closer to reality

than the predominantly used boundary element method (BEM) based on linear potential flow

theory models that overpredict the WEC dynamics.
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Chapter 1

Introduction

Multiphase flows are ubiquitous in nature and industrial processes. Some examples

are gas bubbles rising in a liquid column, droplets falling on a liquid pool, flow of water

and/or oil with gas in a pipeline, and floating naval vessels at sea. Tracking the moving

interface between different phases is crucial when simulating multiphase flow problems. Many

interface tracking methods are developed like the volume of fluid method (VOF) [1, 2], level

set method (LSM) [3, 4], diffuse interface methods [5, 6, 7, 8], front tracking methods [9, 10],

and Lagrangian-Eulerian methods [11, 12]. Among all these methods, the level set method is

the most popular interface capturing method due to its ease of implementation, especially for

continuously changing interfaces that can break up and coalesce [4, 13, 14]. Also, it can perform

fast numerical computations of geometric properties like normal vector and surface curvature

[3]. In the standard level set method, a scalar field φ is initialized to a signed distance function.

At the interface, the value of φ is zero and has positive values in one of the fluids and negative

values in the other. To evolve the interface, the level set field is advected using the flow field,

which is easy to solve numerically.

With all its attractive features, the level set method has a drawback: it cannot conserve

the mass of the fluid exactly [4]. There has been extensive research on the mass loss issue

associated with the level set method. The main culprit has been identified as the level set

reinitialization equation, which restores the signed distance function (SDF) property. The SDF
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property is disrupted by the advection of the level set function. Many fixes have been proposed

in the literature to limit the motion of the interface (represented as the zero contour of the level

set) during reinitialization. Solomenko et al. [15] compares many of these fixes proposed in

the literature for the reinitialization equation on benchmarking problems. While some fixes

perform better than others, the level set method still loses a substantial amount of mass over time,

particularly as complex motions occur at the interface.

Some variations of the level set method have been developed to overcome the mass

loss issue. One such method is the coupled level set/volume of fluid method (CLSVOF) [16].

The CLSVOF method combines the advantages of both methods, i.e., ease of computation of

geometric properties using the level set and inherent mass conservation property of the VOF

method. Another method called the hybrid particle level set method [17] is used to simulate

problems where the fluid interface breaks into tiny fluid particles that escape off the surface of

the larger. If LSM alone is used in such problems, the escaped particles remain under-resolved,

and a very fine mesh needs to be used to resolve the tiny particles, which can get computationally

expensive. In the hybrid particle LSM, Lagrangian marker particles are used to rebuild the

under-resolved level set field. The hybrid moment of fluid–level set (HyMOFLS) method [18]

combines the moment of fluid (MOF) [19, 20, 21] and CLSVOF method to simulate primary

atomization of liquid fuel accurately. The idea behind the HyMOFLS method is to use the MOF

method in the computational domain only when necessary and use the CLSVOF method almost

all the time for interface reconstruction. All the hybrid methods complicate the implementation

and the solution procedure and increase the computational costs.

We revisit the root cause of mass loss in the level set method. While reinitialization

can contribute, our findings show that the primary culprit lies in the use of smooth Heaviside

and delta functions within the standard formulation. Even if reinitialization is done exactly, i.e.,

the zero contour interface remains stationary, the standard level set method violates the mass

conservation principle. Based on this insight, we propose a novel approach – incorporating

a mass conservation constraint into the level set equation using variational analysis. This
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approach introduces a Lagrange multiplier to enforce mass/volume conservation within the

two-phase level set framework. As the smooth delta function becomes sharper, the Lagrange

multiplier approaches zero. However, the exact Lagrange multiplier method disrupts the signed

distance property to conserve mass. This motivates us to develop an approximate Lagrange

multiplier method that preserves both properties. Although they are derived differently, exact and

approximate Lagrange multipliers are related. Furthermore, our framework can be used to derive

existing mass-conserving two-phase level set methods [22, 23], revealing some inconsistencies

in the previous analyses [22].

We extend our variational analysis to three-phase flows, enabling fluid-structure interac-

tion (FSI) simulations in two-fluid systems using the fictitious domain Brinkman penalization

(FD/BP) technique. We present variational equations for three-phase flows in both non-immersed

and immersed forms. As the diffuse body delta function in the immersed formulation sharpens,

it converges to the non-immersed form. In this case, both formulations lead to identical exact

and approximate Lagrange multipliers. To assess the immersed formulation’s practical perfor-

mance compared to the non-immersed one, we design rigorous test problems for three-phase

flows. The immersed formulation is tested using the FD/BP method, while the non-immersed

approach utilizes inherently mass-conserving techniques such as the geometric VOF technique

with moving unstructured grids and cut-cell methods, and particle-based hydrodynamics methods.

We demonstrate that our (simple to implement) immersed formulation in conjunction with the

(approximate) Lagrange multiplier method produces FSI dynamics that match very well with the

other state-of-the-art solvers. Further we demonstrate, if the computational domain size is large

compared to the rigid body dimensions, our mass preserving level set method redundant. Taking

this into account, we simulate applications related to ocean engineering–wave energy converter

(WEC) devices which is the focus of this work.

The thesis is structured as follows. Chapter 2 describes the continuous equations of

motion for incompressible fluid flows. It delves into the level set method and identifies the exact

reasons behind the mass loss issue with the standard level set method. Next, it presents our
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variational/constraint formulation for conserving mass for two and three phase flows. Chapter 3

discusses the discretization of the continuous equations on staggered Cartesian grids and describes

a solution procedure for the developed projection preconditioner for the fully coupled Brinkman

penalized Stokes system. We validate the efficacy of the preconditioner and the mass preserving

level set method by simulating stringent numerical test cases. Chapter 4 highlights the need

to transition to renewable wave energy technology. In this chapter we develop a robust and

computationally efficient wave energy converter (WEC) device simulation infrastructure. We

simulate the inertial sea wave energy converter (ISWEC) device with reactive control strategy

and conduct parametric analysis on it. We describe the numerical wave tank (NWT) setup

to simulate the WEC dynamics in a realistic setting. In Chapter 5, we implement an optimal

control strategy called the model predictive control (MPC) for a point absorber WEC device. We

justify the necessity of conducting CFD simulations for such devices by comparing our results

with the predominantly used linear potential theory (LPT) based solvers. Finally, Chapter 6

presents model-free reinforcement learning (RL) based control strategies for WECs. It gives

a background on RL and its implementation to optimize the performance of WEC devices in

regular and irregular sea states using the LPT based models. At the end of this chapter we

emphasize the need to conduct CFD simulations of WEC devices.
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Chapter 2

Continuous Equations of Motion for Multi-
phase Fluid Flows

In this chapter, we begin by stating the continuous equations of motion for the multiphase

flow system. This includes a continuous description of the level-set interface tracking method

and its reasons for mass loss in the context of two phase flows. Next, a new variational analysis

is presented, which introduces a Lagrange multiplier to impose mass/volume conservation

constraints with the level set method. Additionally, we extend the two phase variational analysis

to three phase flows, which allows us to simulate fluid structure interaction (FSI) in the presence

of two fluids using fictitious domain Brinkman penalization (FD/BP) technique. Variational

equations for three-phase flows are presented in non-immersed and immersed forms.

2.1 Continuous equations of motion

We use the single fluid formulation [24] for multiphase flows, which considers a single

viscous incompressible fluid with spatially and temporally varying density ρ(x, t) and viscosity

µ(x, t) in a fixed region of space Ω ⊂ Rd , where d = 3 represents a three-dimensional region

in space. The equations of motion for an incompressible fluid are given by the Navier-Stokes
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equations, which in conservative form read as

∂ρu(x, t)
∂ t

+∇ · (ρ u(x, t)⊗u(x, t))

=−∇p(x, t)+∇ · [µ (∇u(x, t)+∇u(x, t)ᵀ)]+ fst + fc +ρg, (2.1)

∇ ·u(x, t) = 0. (2.2)

Eq. (2.1) describes the momentum of the system and Eq. (2.2) expresses the incompressibility

of various phases present in the system. In the above equations, u(x, t) and p(x, t) denote the

Eulerian velocity and pressure fields, respectively, x = (x,y,z) ∈ R3, fst denotes the continuous

surface tension force along the gas-liquid interface, and fc is the Brinkman penalty term that

imposes a rigid body velocity in the solid domain [25, 26]. The FD/BP method is also used

for simulating elastic and deforming bodies in [27]. For two phase problems the fc term is

absent from Eq. (2.1). The specific forms of fst and fc will be provided later in Sec. 3.5.2 and

Sec. 2.5, respectively. The acceleration due to gravity is directed towards the negative z-direction,

g = (0,0,−g).

2.2 The standard level set interface tracking method

We use the level set method for capturing the interface between two fluids. The interface

∂ΩF(t) between two fluids is captured implicitly by the zero-contour of the level set function

φ(x, t), which denotes the distance of a fixed location x ∈Ω from the time-evolving interface

with a sign. At time t, fluid-1 and fluid-2 occupy non-overlapping regions Ω1(t) and Ω2(t),

respectively, such that Ω1(t)∪Ω2(t) = Ω; see Fig. 2.1. In our sign convection, φ > 0 in Ω1(t)

and φ < 0 in Ω2(t). In the absence of mass transfer across the interface, the interface moves with

the local fluid velocity u(x, t), which can be described by an advection equation of the form

∂φ

∂ t
+u ·∇φ = 0. (2.3)
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Figure 2.1. Schematic of the computational domain Ω for two phase flows depicting the time
evolving interface ∂ΩF(t). The variation of the two-fluid interface ∂ΩF is illustrated by the red

dashed line. For two phase flows Ω1(t)∪Ω2(t) = Ω.

The density and viscosity in the computational domain is set using the signed distance function

φ(x, t)

ρ(φ) = ρ1H(φ)+ρ2 (1−H(φ)) , (2.4)

µ(φ) = µ1H(φ)+µ2 (1−H(φ)) , (2.5)

in which, ρ1 and ρ2, and µ1 and µ2, are the density and viscosity of fluid-1 and fluid-2, re-

spectively. H(φ) is a smoothed Heaviside function, which allows material properties to vary

smoothly over ncells grid cells for numerical stability, see Eqs. (3.3) and (3.4). The derivative of

the smoothed Heaviside function produces a smoothed delta function δ (φ).

It is well known that the level set field does not maintain the signed distance property

after advection [4, 28]. Retaining the signed distance property is essential as the advected φ is

used to prescribe various material properties for the one-fluid model and calculate geometric

quantities like the interface curvature and surface normals. To regain the signed distance property

of φ , a reinitialization step is typically performed after the advection step. The reinitialization
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step involves time-advancing the Hamilton-Jacobi equation to steady state

∂φ

∂τ
+ sgn(φ̃)(|∇φ |−1) = 0. (2.6)

Here, φ̃ denotes the level set field before reinitialization and τ is the pseudo time used for

time-marching Eq. (2.6). It is widely believed that the reinitialization step leads to mass loss

because it artificially shifts the zero-contour or the two phase interface ∂ΩF. In the next section,

we show that is not entirely correct: the level set method would still lead to mass loss even if the

interface remains static during the reinitialization step.

2.3 Precise reason for mass loss with the standard level set
method

It is helpful to note down the Leibniz integral rule and Reynolds transport theorem (RTT)

for performing differentiation under the integral sign for a general integrand f before working

out the details of mass loss. We use both these rules several times in this and other sections. The

Leibniz integral rule reads as

Leibniz rule for a moving domain:

d
dt

∫
V (t)

f dV =
∫
V (t)

∂ f
∂ t

dV +
∫
A (t)

f (us ·n) dA , (2.7a)

Leibniz rule for a static domain:

d
dt

∫
V

f dV =
∫
V

∂ f
∂ t

dV , (2.7b)

in which, n and us are the outward unit normal vector and velocity of the surface A (t) enclosing

the time-varying domain V (t), respectively. When the domain is stationary V (t)≡ V , Eq. (2.7a)

becomes Eq. (2.7b). Note that the region V (t) is a geometric region that moves with a kinematic

velocity us, which in general is different from the fluid/material velocity u. The Leibniz integral
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rule should not be confused with the Reynolds transport theorem. The two are related, but

different because the latter uses a material control volume instead of a geometric one. A material

control volume is defined as the one whose surface moves with the fluid/material velocity u.

Thus, a material control volume is a special case of a geometric volume. It is more restrictive

because the amount of matter contained inside it cannot change over time as long as the fluid at

every point within the volume moves with material velocity u governed by the conservation laws

(mass and momentum). In general, a geometric control volume does not conserve the amount of

matter within itself. The two theorems/rules are related to each other as

RTT for a material volume:
d
dt

∫
V (t)

f dV =
∫
V (t)

∂ f
∂ t

dV +
∫
A (t)

f (u ·n) dA . (2.8)

Comparing Eq. (2.8) to (2.7a) it can be seen that the RTT is a Leibniz integral rule applied to a

material control volume (whose surface moves with the material velocity) to express the rate of

change of a conserved quantity. In this work, we leverage both the RTT and the Leibniz integral

rule to express the rate of change of conserved and non-conserved quantities, respectively. This

distinction clarifies the context and avoids potential confusion, as the terms RTT and Leibniz

integral rule are sometimes used interchangeably in the literature.

To see why the standard level set method leads to mass loss, consider the rate of change

of mass (which is a conserved quantity) contained within a closed domain Ω

d
dt

∫
Ω

ρ dV =
d
dt

∫
Ω

{
ρ1H(φ)+ρ2(1−H(φ))

}
dV, (2.9a)

= (ρ1−ρ2)
∫

Ω

δ (φ)
∂φ

∂ t
dV, (2.9b)

= (ρ1−ρ2)
∫

Ω

δ (φ)(−ŭ ·∇φ) dV, (2.9c)

in which we used the mixture model of density (Eq. (2.4)), RTT (Eq. (2.8)) with zero material

velocity at the domain boundary, and the level set advection equation (Eq. (2.3)) in arriving at

Eq. (2.9c). During the reinitialization process, the contours of the level set function surrounding
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(a) A closed interface (b) An open interface

Figure 2.2. Two possible configurations of a two-phase interface ∂ΩF in a closed domain Ω.

the interface ∂ΩF move with velocity ureinit = sgn(φ̃) ∇φ

|∇φ | and adjust themselves to satisfy the

Eikonal property |∇φ |= 1. Overall φ gets advected with a combination of u and ureinit, which is

denoted by ŭ in Eq. (2.9c).

To ensure mass conservation, the term on the right hand side (RHS) of Eq. (2.9c) must

equal zero. This is possible if and only if (i) δ (φ) is the Dirac/sharp delta function and (ii)

ureinit≡ 0 for ∂ΩF. In this case
∫

Ω
δ (φ)(ŭ ·∇φ) dV=

∫
∂ΩF u · |∇φ |n dS=

∫
∂ΩF u ·n dS represents

the net normal (advective) velocity of the interface. For a closed domain, this surface integral

is zero. We prove this identity at the end of this section. However, if δ is smooth, which is

almost always the case in numerical simulations, the RHS of Eq. (2.9c) is non-zero, even when

∂ΩF stays stationary during the reinitialization process. Thus, the smooth Heaviside and delta

functions are the “main culprits” that lead to spurious mass loss/gain in the level set method from

continuous equations point of view. This also explains why previous methods that have solely

aimed to “fix” the reinitialization equation have not yielded satisfactory results for curbing the

mass loss with the level set method.

Eq. (2.9c) helps explain why level set method continues to lose/gain mass over time. To

see this integrate Eq. (2.9c) over a time period ∆t = tf− ti. A straightforward integration shows

that the spurious mass ∆M gained/lost over a period ∆t is proportional to the interfacial region
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displacement:

∆M = (ρ1−ρ2)
∫

∆t

∫
Ω

δ (φ)(−ŭ ·∇φ) dV dt,

= (ρ1−ρ2)
∫

∆t

∫
Ω

δ (φ)(−ŭ · |∇φ |n) dV dt,

=−(ρ1−ρ2)
∫

∆t

∫
Ω

δ (φ) ŭn dV dt. (2.10)

In numerical experiments, it is commonly observed that problems with large interface motion

perform poorly in terms of mass conservation. The culprit is the smeared delta function that

picks up the “residual” displacement around ∂ΩF. In Sec. 3.5.2 we devise a special test problem

that verifies Eq. (2.10).

To prove that
∫

∂ΩF u ·n dS = 0 holds for a two-phase interface, consider Fig. 2.2, which

depicts two possible configurations of the interface ∂ΩF in a closed domain Ω. An application of

the Gauss-divergence theorem to a closed interface (shown in Fig. 2.2(a)) results in
∫

∂ΩF u ·n dS=∫
ΩF ∇ ·u dV. The identity is proved by the fact that velocity u is divergence-free. An open

interface is only possible if its two ends touch the domain boundary; see Fig. 2.2(b). Applying the

Gauss-divergence theorem to the integrand ∇ ·u defined over the domain and interface bounded

region ΩF proves the identity.

2.4 A variational/constraint formulation for conserving
mass for two phase flows with the standard level set
method

To conserve mass with the standard level set method we need to explicitly add in a

constraint to the level set advection equation. A variational approach is followed that introduces

a Lagrange multiplier that enforces mass conservation. The mass of fluid-1 and its rate of change
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can be computed from φ as

M1(t) =
∫

Ω

ρ1H(φ) dV, (2.11a)

dM1

dt
=

d
dt

∫
Ω

ρ1H(φ) dV =
∫

Ω

ρ1δ (φ)
∂φ

∂ t
dV. (2.11b)

Here, we made use of the RTT in deriving Eq. (2.11b). If the mass of fluid-1 is conserved then

M1(t)≡M0
1 ∀ t, in which M0

1 is the initial mass of fluid-1. For simplicity we have assumed that

the domain is closed and there is no inflow and outflow of the phases. Thus, conserving mass of

fluid-1 is equivalent to imposing a constraint on φ of the form

C (φ)
4
=
∫

Ω

(
ρ1H(φ)−

M0
1

V

)
dV = 0, (2.12)

in which, V =
∫

Ω
dV is the volume of the computational domain.

The dynamical equation of the level set function φ in strong and weak form reads as

Strong form:

S (φ)
4
=

Dφ

Dt
=

∂φ

∂ t
+ ŭ ·∇φ = 0, at ∀ x ∈Ω (2.13a)

Weak form:

W (φ , δ̂ φ)
4
=
∫

Ω

[
∂φ

∂ t
+ ŭ ·∇φ

]
δ̂ φ dV = 0, φ ∈ H1(Ω)3, ∀ δ̂ φ ∈ H1(Ω)3. (2.13b)

The strong form of the level set Eq. (2.13a) considers the motion of φ due to both advection and

reinitialization velocity fields (cf. Sec. 2.3). For the purposes of this derivation, it is convenient to

consider that ŭ is known a priori using which φ can be computed (Eq. (2.13a)). This assumption

is consistent with how incompressible multiphase flow simulations work in practice—level set (or

for that matter VOF) advection and reinitialization are decoupled from momentum and continuity

equations through operator splitting. The weak form of the equation is obtained by multiplying
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the strong form with variation1 in φ (also referred to as test function) and integrating it over the

domain. Neither the strong nor the weak form of the equation guarantees mass conservation. In

other words, ŭ is such that mass conservation is not guaranteed by the resulting φ field, which in

turn is used to determine the density field. However, overall mass conservation constraint can be

included through the use of a Lagrange multiplier λ1. Adding this constraint does not change ŭ

but it should modify the equation for φ . To derive the modified equation for φ , we define the

Lagrangian L of the constraint C (φ) and take its variation denoted by δ̂L

L (Λ1,φ)
4
= λ1

∫
Ω

(
ρ1H(φ)−

M0
1

V

)
dV, λ1 ∈ L2(Ω)3 (2.14a)

δ̂L (Λ1,φ)
4
= δ̂ λ1

∫
Ω

(
ρ1H(φ)−

M0
1

V

)
dV+λ1

∫
Ω

ρ1δ (φ)δ̂ φ dV, δ̂ λ1 ∈ L2(Ω)3. (2.14b)

Adding the variation of the Lagrangian of the constraint to the weak form of the level set

Eq. (2.13b) yields the overall weak form of the constrained level set function φ

T (δ̂ φ , δ̂ λ1)
4
=
∫

Ω

[
∂φ

∂ t
+ ŭ ·∇φ

]
δ̂ φ dV

+λ1

∫
Ω

ρ1δ (φ)δ̂ φ dV+ δ̂ λ1

∫
Ω

(
ρ1H(φ)−

M0
1

V

)
dV = 0,

∀ δ̂ φ ∈ H1(Ω)3, δ̂ λ1 ∈ L2(Ω)3. (2.15)

Collecting terms in δ̂ λ1 and δ̂ φ , and equating them to zero separately, yields the original

constraint (Eq. (2.12)) and a new constrained dynamical equation for φ that aims to conserve the

mass of fluid-1, respectively. The latter equation reads as

∂φ

∂ t
+ ŭ ·∇φ =−λ1ρ1δ (φ). (2.16)

The value of the Lagrange multiplier λ1 is obtained by substituting ∂φ

∂ t =−ŭ ·∇φ −λ1ρ1δ (φ)

1We use the symbol δ̂ to denote variation of a quantity and δ to denote the Dirac/smooth delta function in this
work.
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into Eq. (2.11b) and setting dM1
dt = 0. This yields

dM1

dt
=
∫

Ω

ρ1δ (φ)(−ŭ ·∇φ −λ1ρ1δ (φ)) dV = 0,

↪→λ1 =
−
∫

Ω
δ (φ)(ŭ ·∇φ)dV∫

Ω
ρ1δ 2(φ)dV

. (2.17)

Note that Eq. (2.17) is not an explicitly solvable equation for λ1. This is because the φ field used

on the right hand side of the equation depends on the value of λ1 itself as seen in Eq. (2.16).

Thus, a fully implicit numerical implementation would require iterations. Due to the decoupling

of level set advection from the incompressible Navier-Stokes equation, ŭ should remain fixed

while iterating for λ1. This means momentum, advection, and reinitialization equations are not

solved during iterations.

Proceeding analogously, one can conserve the mass of fluid-2 M2 =
∫

Ω
ρ2(1−H(φ)) dV

by imposing a constraint of the form C (φ)
4
=
∫

Ω
ρ2(1−H(φ))−M0

2/V dV = 0 with the help of

Lagrange multiplier λ2 ∈ L2(Ω)3. In this case the dynamical equation for the level set reads as

∂φ

∂ t
+ ŭ ·∇φ = λ2ρ2δ (φ). (2.18)

The Lagrange multiplier λ2 is obtained analogously as

λ2 =

∫
Ω

δ (φ)(ŭ ·∇φ) dV∫
Ω

ρ2δ 2(φ) dV
. (2.19)

From Eqs. (2.16)-(2.19), it is easy to verify that −λ1ρ1 = λ2ρ2. In light of this, we can

see that Eqs. (2.16) and (2.18) are essentially the same, which in expanded form reads as

∂φ

∂ t
+ ŭ ·∇φ = βδ (φ) =

∫
Ω

δ (φ)(ŭ ·∇φ) dV∫
Ω

δ 2(φ) dV
δ (φ). (2.20)

Physically speaking, for two phase flows, conserving the mass of phase-1 leads to mass conser-

vation for the other phase automatically. Thus, imposing a single constraint suffices.
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It is instructive to analyze Eq. (2.20) in, both, the continuous differential equation form

(with a sharp delta) and the discrete form. In the RHS of Eq. (2.20) β is a constant. When δ is

the Dirac/sharp delta function then β → 0. This is because β ’s numerator tends to zero, while

its denominator
∫

Ω
δ 2 dV→ ∞. As analyzed in Sec. 2.3, the integral term in the numerator of

β ,
∫

Ω
δ (φ)(ŭ ·∇φ) dV =

∫
∂ΩF u · |∇φ |n dS =

∫
∂ΩF u ·n dS represents the net normal (advective)

velocity of the interface. For a closed domain, this is zero. Thus, from a continuous point of

view (when δ is sharp) β , λ1, and λ2 are zero. However, the RHS of Eq. (2.20) is βδ (φ), which

has a zero times infinity form. It is seen from Eq. (2.20) that βδ (φ)∼ 0
δ (0)δ (0), implying that

βδ (φ) = 0. At the discrete level β is non-zero because neither its denominator nor its numerator

evaluate to zero due to the finite width of the smooth delta function.

It is also informative to see how the non-linear Eq. (2.20) would be implemented in

practice. The most natural way to implement a constrained equation is to employ some sort of

operator-splitting technique. For example, in the first step, the level set field is advected. In the

second step φ is reinitialized to restore its signed distance property, and in the final third step,

φ is corrected (for mass loss errors) by evaluating the RHS of Eq. (2.20). It is easy to see that

the third step essentially disrupts the signed distance property of φ near the interface because

the corrective term has a non-constant gradient magnitude, i.e., |∇(βδ (φ))| varies spatially. The

exact Lagrange multiplier destroys the signed distance property of φ at the cost of conserving

mass. This motivates the development of an approximate Lagrange multiplier that leads to both

mass-conservation and signed distance retention for φ . We discuss the approximate Lagrange

multiplier technique in Sec. 2.4.3.

2.4.1 Overall versus pointwise mass conservation

The Lagrange multiplier approach of Eq. (2.20) conserves mass in the domain discretely

(i.e., when delta function is smooth and ureinit 6= 0) in an integral sense. This can be proved as
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follows

d
dt

∫
Ω

ρ dV =
d
dt

∫
Ω

{
ρ1H(φ)+ρ2(1−H(φ))

}
dV

= (ρ1−ρ2)
∫

Ω

δ (φ)
∂φ

∂ t
dV

= (ρ1−ρ2)
∫

Ω

δ (φ)
{
−ŭ ·∇φ +δ (φ)

∫
Ω

δ (φ)(ŭ ·∇φ) dV∫
Ω

δ 2(φ) dV

}
dV

= (ρ1−ρ2)
(∫

Ω

−δ (φ)ŭ ·∇φ dV+
∫

Ω

δ (φ)ŭ ·∇φ dV
)

= 0. (2.21)

In proving Eq. (2.21) mass of both phases is used. This is different from the derivation of λ1 or

λ2 in the previous section which involved only one phase. Although Eq. (2.20) conserves mass

in an integral sense, it does not guarantee pointwise mass conservation. To demonstrate this

consider the pointwise conservation of mass equation

∂ρ

∂ t
+∇ · (uρ) =

∂ρ

∂ t
+u ·∇ρ

= (ρ1−ρ2)δ (φ)

(
∂φ

∂ t
+u ·∇φ

)
= (ρ1−ρ2)δ (φ)(−ŭ ·∇φ +βδ (φ)+u ·∇φ)

= (ρ1−ρ2)δ (φ)([u− ŭ] ·∇φ +βδ (φ)) . (2.22)

Eq. (2.22) can be analyzed for two cases – the continuous form (with sharp δ and an exact

reinitialization step for φ ) and the discrete form (with a smooth delta). In either case the RHS

of Eq. (2.22) is zero wherever δ is zero. Thus, only at the interfacial region (sharp or smooth)

needs to be checked.

If the reinitialization step is exact then the φ = 0 interface will not move in this step,

implying u = ŭ on the interface. Additionally, if δ is sharp then βδ (φ) = 0, as discussed above.

Furthermore to understand pointwise mass conservation at the interface in this case, integrate
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Eq. (2.22) over a pillbox at point on the φ = 0 contour. The integral of the RHS of Eq. (2.22)

over the pillbox will be zero because both u− ŭ and βδ (φ) are zero in this case. This implies

that the jump of ρu ·n across the interface is zero which confirms pointwise mass conservation

on the interface (note that integral of the time derivative term is zero since the volume of the

pillbox is zero).

In the smeared/smoothed interfacial region case Eq. (2.22) suggests that mass is gen-

erated/lost in the interfacial region due to: (i) the motion of level set contours at a velocity

different than the material velocity, i.e., ŭ 6= u; and (ii) the Lagrange multiplier. The latter term

counteracts the effects of reinitialization and the smooth delta function to conserve mass in an

average/integral sense, as shown in Eq. (2.21). Thus, Eq. (2.22) highlights the limitation of the

level set method to achieve pointwise or local mass conservation with a smooth δ function. This

is because there will always be errors associated with ŭ 6= u in the smeared interface. In other

words, a signed distance function based on level set reinitialization is fundamentally incompatible

with pointwise mass conservation in the discrete case. However, for many practical applications,

including those considered in this work, integral/global mass conservation is sufficient. For

problems requiring local mass conservation, a different interface tracking method (e.g., geometric

VOF) would be necessary. Another implication of the lack of pointwise mass conservation in the

level set method is that a fully coupled (fully implicit) system that arises from the discretization

of incompressible Navier-Stokes and level set equations will require future investigation to check

for solvability and consistency. The operator-splitting approach is more “forgiving.”

2.4.2 Conserving mass is the same as conserving volume for incompress-
ible flows

Though it appears obvious that conserving mass and volume are equivalent for an

incompressible fluid, a recent paper by Wen et al. [22] on a mass-preserving level set method

has claimed otherwise. Later in Sec. 2.4.4 we show where specifically the authors went wrong.

We demonstrate in this section that we will obtain the same dynamical equation for the level set
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method as we did in the previous section if we impose constraints on conserving the volume of

the two phases instead of mass.

Specially, consider V1 as the volume of fluid-1 (φ > 0 region) in the domain Ω that needs

to be conserved. V1 and its rate of change can be obtained from φ as

V1(t) =
∫

Ω

H(φ) dV, (2.23a)

dV1

dt
=

d
dt

∫
Ω

H(φ) dV =
∫

Ω

δ (φ)
∂φ

∂ t
dV. (2.23b)

We follow the same procedure outlined in Sec. 2.4 to derive the equations for conserving

the volume of fluid-1 by imposing a constraint of the form C (φ)
4
=
∫

Ω
H(φ) dV−V 0

1 = 0. Here,

V 0
1 is the initial volume of fluid-1 in the domain. The dynamical equation for φ in this case reads

as

∂φ

∂ t
+ ŭ ·∇φ =−λ3δ (φ), (2.24a)

λ3 =
−
∫

Ω
δ (φ)(ŭ ·∇φ) dV∫
Ω

δ 2(φ) dV
. (2.24b)

We could also impose a constraint of the form C (φ)
4
=
∫

Ω
(1−H(φ)) dV−V 0

2 = 0 to

conserve the volume of fluid-2 (φ < 0 region). In this case the dynamical equation for φ reads as

∂φ

∂ t
+ ŭ ·∇φ = λ4δ (φ), (2.25a)

λ4 =

∫
Ω

δ (φ)(ŭ ·∇φ) dV∫
Ω

δ 2(φ) dV
. (2.25b)

Comparing Eqs. (2.24a)-(2.25b), we can observe the relation−λ3 = λ4. This implies that

Eqs. (2.24a) and (2.25a) are the same. For two-phase flows, if we satisfy volume conservation

for one fluid, the other fluid’s volume is automatically conserved. Moreover, substituting λ3

in Eq. (2.24a) or λ4 in Eq. (2.25a), we obtain the same dynamical equation for φ as written in

Eq. (2.20).
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2.4.3 Towards an approximate Lagrange multiplier method to prevent
mass loss with the standard level set method

With the exact Lagrange multipliers λ1-λ4, mass can be conserved discretely, but there

are two “issues”:

1. Near the interface, the level set function does not remain a signed distance function. As

discussed near the end of Sec. 2.4, this is due to the RHS of Eq. (2.20), which is of

the form βδ (φ). As a corrective term, this disrupts the signed distance property of φ

derived from the reinitialization equation. As a result, the Lagrange multiplier “undoes”

the reinitialization equation.

2. Computing β , specifically its numerator
∫

Ω
−δ (φ)ŭ ·∇φ dV is not straightforward or

convenient.

Despite these challenges, implementing the exact Lagrange multiplier approach is still feasible.

With respect to the first issue, although the “quality” of the mixture model given by Eqs. (2.4)

and (2.5) gets deteriorated, it is unlikely that the effect will be significant because the Lagrange

multiplier magnitude will not be very large (mass loss per time step will be small especially

for resolved simulations). In other words, φ is unlikely to deviate too much from a signed

distance function. Nonetheless, when computing geometric quantities such as the normal to the

interface, care must be exercised: ∇φ must be explicitly normalized by its magnitude to obtain

the unit normal n to the interface. The second issue can be addressed by an indirect estimation

of β . This approach is suggested in Wen et al. [22], where a similar integral term also appears.

The dimension of this integral is rate of volume change—in Wen et al. the dimension is rate

of mass change. The authors in [22] approximated the integral as (M1(t)−M0
1)/∆t, in which

M1(t) represents the mass of fluid-1, which is estimated from the reinitialized level set function

at time t and ∆t is the current time step size. In Sec. 2.4.4 we critically analyze Wen et al’s

mass-conserving technique using our variational framework. Next, we present an alternative

method that circumvents both issues while conserving mass with the standard level set method.
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Consider the reinitialized level set function φ̂ that is obtained by solving the reinitializa-

tion Eq. (2.6) at time t. At this stage φ̂ is a signed distance function that does not satisfy the

mass constraint C (φ̂) of Eq. (2.12). We seek a spatially uniform correction ε for the reinitialized

level set φ̂ such that

C (φ̂ + ε) = f (ε) =
∫

Ω

ρ1H(φ̂ + ε) dV−M0
1 = 0. (2.26)

The spatially uniform correction ε guarantees that the corrected level set φ = φ̂ + ε is a mass-

conserving signed distance function. It will be seen below that the correction ε is proportional to

an approximate Lagrange multiplier that enforces mass conservation with the level set method

through a predictor-corrector type of a scheme

φ̂ −φ n

∆t
+ ŭ ·∇φ̂ = 0, [predictor step] (2.27a)

φ − φ̂

∆t
=

ε−0
∆t

=
∆ε

∆t
. [corrector step] (2.27b)

The equation set (2.27) can be thought of as a representation of a “continuous” equation of the

form
∂φ

∂ t
+ ŭ ·∇φ =

dε

dt
. (2.28)

To relate the informal Eq. (2.28) and the formal Eq. (2.20), we first consider an intuitive argument

and then present a mathematical derivation. Note that the “forcing” that induces a shift in the

contour levels of φ is the RHS of Eq. (2.28). This term is taken to be uniform in the entire

domain leading to the same correction to every contour level. The corresponding RHS of the

formal Eq. (2.20) is βδ (φ), where β is uniform everywhere. However, the δ (φ) term makes the

“forcing” in the formal equation non-uniform in the domain. If one picks a contour level, say

φ = 0, then the “forcing” does have the same value on that entire contour and this will lead to the

same correction to φ on that contour. Similarly, each contour level has its own constant value of
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correction to φ . This correction is maximum on φ = 0 contour and decreases away from it until

it is zero outside the smeared interfacial region where δ (φ) = 0. Since, in the formal method of

Eq. (2.20) each contour level is corrected by a different amount, the distance function property is

lost. The only way to preserve the distance function property of φ is to correct all contour levels

by the same amount. This is the assumption made in the informal approach of Eq. (2.28). Thus,

Eq. (2.28) would arise from Eq. (2.20) under the assumption that dε

dt = βδ (φm), which means

that the correction of an appropriately chosen φm contour in the formal approach is uniformly

applied in the entire domain to obtain the informal approach.

We now proceed with the mathematical derivation by obtaining an expression for the rate

of change of correction dε

dt . This can be obtained by differentiating Eq. (2.26) with respect to

time

d f (ε)
dt

=
∫

Ω

ρ1δ (φ̂ + ε)

(
∂ φ̂

∂ t
+

dε

dt

)
dV = 0, (2.29a)

↪→
∫

Ω

ρ1δ (φ̂ + ε)
∂ φ̂

∂ t
dV =−

∫
Ω

ρ1δ (φ̂ + ε)
dε

dt
dV, (2.29b)

↪→dε

dt
=

∫
Ω

δ (φ̂ + ε)(ŭ ·∇φ̂) dV∫
Ω

δ (φ̂ + ε) dV
=

∫
Ω

δ (φ̂ + ε)(ŭ ·∇(φ̂ + ε)) dV∫
Ω

δ (φ̂ + ε) dV
=

∫
Ω

δ (φ)(ŭ ·∇φ) dV∫
Ω

δ (φ) dV
.

(2.29c)

In Eq. (2.29a) we used the Leibniz rule to carry out the differentiation of the non-conserved

quantity f (ε) defined over the static region Ω. Eq. (2.29c) is arrived at by using the relations

∇φ̂ = ∇(φ̂ + ε) and φ = φ̂ + ε . Comparing the right hand sides of Eqs. (2.20) and (2.28), we

see that

dε

dt
=

∫
Ω

δ (φ)(ŭ ·∇φ) dV∫
Ω

δ (φ) dV
= δ (φm)

∫
Ω

δ (φ)(ŭ ·∇φ) dV
δ (φm)

∫
Ω

δ (φ) dV
= δ (φm)β̃ . (2.30)

Eqs. (2.20) and (2.28) are therefore similar with a slight difference in β and β̃ : the latter is an

approximation to β in which one of the smooth delta function terms (in the denominator) is
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evaluated at the mth contour. A uniform value is used with the approximate method to correct

all φ contours. This correction corresponds to the shift/correction in the mth contour of φ in the

exact case. We demonstrate this by taking a commonly used smooth delta function in the level

set literature

δ (φ) =
1

2∆
+

1
2∆

cos
(

πφ

∆

)
↪→
∫

∆

−∆

δ (x)dx = 1 and
∫

∆

−∆

δ
2(x)dx =

3
4∆

, (2.31)

in which ∆ denotes the half-width of the interfacial region. The mth contour of φ can be identified

as follows:

βδ (φm) =
dε

dt
= β̃ δ (φm) =⇒ β = β̃ (2.32a)

↪→
∫

Ω
δ (φ)(ŭ ·∇φ) dV∫

Ω
δ 2(φ) dV

=

∫
Ω

δ (φ)(ŭ ·∇φ) dV
δ (φm)

∫
Ω

δ (φ) dV
(2.32b)

↪→δ (φm) =

∫
Ω

δ 2(φ) dV∫
Ω

δ (φ) dV
(2.32c)

↪→ 1
2∆

+
1

2∆
cos
(

πφm

∆

)
=

3
4∆

(2.32d)

↪→φm =±∆

3
. (2.32e)

The uniform correction applied by the approximate Lagrange multiplier corresponds to the exact

correction at the contour ∆/3 distance away from the interface.

Computing ε that preserves mass for the level set method is a simple root-finding problem,

f (ε) = 0, for which we can use Newton’s method:

f (εk+1) = f (εk)+
d f
dε

∣∣∣∣∣
εk

(εk+1− εk). (2.33)

22



Setting f (εk+1) = 0 in the equation above yields

εk+1 = εk−
f (εk)

d f
dε

∣∣∣
εk

, (2.34a)

↪→∆εk+1 =−
∫

Ω
ρ1H(φ̂ + εk) dV−M0

1∫
Ω

ρ1δ (φ̂ + εk) dV

=−
∫

Ω
H(φ̂ + εk) dV−M0

1/ρ1∫
Ω

δ (φ̂ + εk) dV

=−
∫

Ω
H(φ̂ + εk) dV−V 0

1∫
Ω

δ (φ̂ + εk) dV
. (2.34b)

Here, k represents the (Newton) iteration counter. With k = 0, we start with a zero correction,

i.e., ε0 = 0 and iterate until mass is conserved to machine accuracy. The correction value ε will

remain the same even when we impose a volume conservation constraint. This can be seen in the

steps leading up to Eq. (2.34b).

Summary of exact vs. approximate Lagrange multiplier approaches: The inexact approach

overcomes the two problems of the exact Lagrange multiplier equation, but its main drawback

is that it is post-hoc in nature; Eq. (2.28) is formally not a continuous equation. The inexact

technique, however, closely mimics the exact Lagrange multiplier approach (implemented via

operator splitting). Another key difference between exact and approximate methods lies in how

they adjust the level set contours to achieve mass balance. The exact approach prioritizes the

zero-contour (interface), moving it the most. This movement gradually diminishes for contours

farther away from the interface, with those outside the interfacial region remaining entirely static.

In contrast, the approximate Lagrange multiplier approach applies a uniform adjustment across

all contours throughout the domain. This acts as a long-range correction mechanism.

2.4.4 Comparison with other level set methods that conserve mass

Although there are many techniques available in the literature for conserving mass using

the level set method, we highlight two studies that have applied continuous formulations in
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place of pure numerical ones (i.e., combining level set with volume of fluid/moment of fluid

methods, particle level set methods, etc.) to address mass loss problems. The conservative level

set (CLS) method [29] is a continuous formulation, but we exclude it from this discussion since,

despite its name, it also leads to mass loss—for example, see the dam break problem simulated

in Parameswaran and Mandal [30] with CLS wherein mass losses up to 50% are reported (refer

Fig. 22 of their work).

Mass preserving formulation of Wen et al.

A recent work by Wen et al. [22] describes a method of conserving mass with the standard

level set method by including an additional source term in the equation. The source term form

is selected ad-hoc with a free parameter η , whose value is determined through fluid-1’s mass

balance. In addition, the authors used a non-standard definition of mass in their derivation, which

results in several inconsistencies. In this section, we present Wen et al.’s mass-preserving level

set method based on the variational framework of Sec. 2.4. In our derivation, we will continue to

use their mass definition to obtain a similar level set equation as in [22]. Their equation reads as

∂φ

∂ t
+ ŭ ·∇φ = ηδ (φ)|∇φ |, (2.35a)

η =

∫
Ω

L(φ)µφ dV∫
Ω

L(φ)δ (φ)|∇φ | dV
. (2.35b)

Here, L(φ) = δ (φ) [2(ρ1−ρ2)H(φ)+ρ2] (see Eq. (26) in [22]) and µφ represents the “dis-

cretization error” in approximating −ŭ ·∇φ . Though the authors did not justify the form of the

RHS of Eq. (2.35a), it resembles the RHS of our Eq. (2.20). Note that for level set methods,

|∇φ | = 1 thanks to the reinitialization process. Therefore, the use of |∇φ | in Eqs. (2.35) is

redundant.

In [22], η is arrived at by defining mass of fluid-1 as

M1(φ) =
∫

Ω

ρ(φ)H(φ) dV, (2.36)
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which is different from the standard definition of mass used in Eq. (2.12). The implications of

defining M1 through Eq. (2.36) will be discussed later. For now we will continue using Eq. (2.36)

to derive Wen et al.’s Eq. (2.35a) utilizing our variational framework. The rate of change of mass

for fluid-1 can be computed using RTT as

dM1

dt
=

d
dt

∫
Ω

ρ(φ)H(φ) dV,

=
∫

Ω

[
H(φ)

∂ρ(φ)

∂ t
+ρ(φ)

∂H(φ)

∂ t

]
dV,

=
∫

Ω

[2(ρ1−ρ2)H(φ)+ρ2]δ (φ)
∂φ

∂ t
dV,

=
∫

Ω

L(φ)
∂φ

∂ t
dV. (2.37)

The strong and weak form of the level set equation remains the same as the equation set (2.13).

Based on the definition of mass of fluid-1, a constraint of the form

C (φ) =
∫

Ω

(
ρ(φ)H(φ)−

M0
1

V

)
dV = 0, (2.38)

is imposed with the help of the Lagrange multiplier Γ ∈ L2(Ω)3. Following the derivation steps

of Sec. 2.4 we obtain an equation for the mass-conserving level set field

∂φ

∂ t
+ ŭ ·∇φ =−ΓL(φ), (2.39a)

Γ =
−
∫

Ω
L(φ)(ŭ ·∇φ) dV∫
Ω

L2(φ) dV
. (2.39b)

The Lagrange multiplier Γ is obtained by substituting ∂φ/∂ t =−ΓL(φ)− ŭ ·∇φ from Eq. (2.39a)

into Eq. (2.37) and setting dM1
dt = 0. Overall, Eq. (2.39a) reads as

∂φ

∂ t
+ ŭ ·∇φ = L(φ)

∫
Ω

L(φ)(ŭ ·∇φ) dV∫
Ω

L2(φ) dV
. (2.40)

Aside from the (redundant) |∇φ | terms, Eq. (2.40) is similar, but not the same as Eq. (2.35a).
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Accordingly, Wen et al.’s Eq. (2.35a) does not follow the constraint formulation. Additionally,

the discretization error µφ has not been quantified in [22]. If µφ = 0 for some advective scheme,

then η = 0. In this case Eq. (2.35a) reverts back to the standard level set equation, which does

not conserve mass. The interpretation of µφ as a discretization error is therefore not correct.

Furthermore, the use of a non-standard definition of mass also leads to several inconsistencies.

The inconsistencies can best be described by determining the constrained level equation that aims

to conserve the mass of fluid-2 M2(φ) =
∫

Ω
ρ(φ)[1−H(φ)] dV. Following the same procedure

as above, we can derive fluid-2’s mass-conserving equation, which reads as

∂φ

∂ t
+ ŭ ·∇φ = L∗(φ)

∫
Ω

L∗(φ)(ŭ ·∇φ) dV∫
Ω

L2
∗(φ) dV

. (2.41)

Here, L∗(φ) = [(ρ1−2ρ2)+2(ρ2−ρ1)H(φ)]δ (φ). Note that Eq. (2.41) differs from Eq. (2.40).

Each fluid has its own governing equation. As part of their numerical experiments, Wen et al.

(arbitrarily) chose the level set equation to preserve fluid-1’s mass. The only way to conserve

both fluids’ masses simultaneously with this approach is to have L(φ) = L∗(φ). This condition

simplifies to yield 4(ρ1−ρ2)H(φ) = ρ1−3ρ2. Considering that the RHS is constant, and the

LHS varies spatially, this is a contradiction. There is also an unphysical condition ρ1 =−ρ2 at

the interface where φ = 0 and H(φ = 0) = 1/2.

While Wen et al’s method is inconsistent, their numerical results for two-phase flows

match well with existing literature. We attribute this fortunate match to the fact that for well-

resolved simulations, η (or the Lagrange multipliers) do not cause a substantial change in

φ .

Mass preserving formulation of Kees et al.

Next, we describe the mass-conserving level set approach of Kees et al. [23] that can be

considered an extension of the approximate Lagrange multiplier approach of Sec. 2.4.3. Their

approach uses an advected volume fraction field Ĥ as a target field to modify the reinitialized
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level set function φ̂ directly to correct for spurious mass loss/gain. Their mass-preserving level

set approach can be described by the following equations:

volume fraction advection:
∂ Ĥ
∂ t

+∇ · (uĤ) = 0, (2.42a)

level set advection:
∂ φ̃

∂ t
+u ·∇φ̃ = 0, (2.42b)

level set reinitialization:
∂ φ̂

∂τ
+ sgn(φ̃)

(
|∇φ̂ |−1

)
= 0, (2.42c)

level set mass correction: γ∇
2
ε(x) = H(φ̂ + ε(x))− Ĥ with ∇ε(x) ·n = 0 on ∂Ω.

(2.42d)

Assuming no numerical diffusion errors, advecting fluid-1’s volume fraction Ĥ in a closed

domain yields
∫

Ω
Ĥ(t) dV =V 0

1 . The main idea behind the mass conserving approach of Kees et

al. [23] is to solve (the nonlinear reaction-diffusion) Eq. (2.42d) with homogenous Neumann

boundary conditions for a spatially varying level set correction field ε(x). Integrating Eq. (2.42d)

over the computational domain Ω reveals the constraint that Eq. (2.42d) imposes

∫
Ω

H(φ̂ + ε(x)) dV−
∫

Ω

Ĥ dV = γ

∫
Ω

∇
2
ε(x) dV,

↪→
∫

Ω

H(φ̂ + ε(x)) dV−
∫

Ω

Ĥ dV = γ

∫
∂Ω

∇ε(x) ·n dS = 0,

↪→
∫

Ω

H(φ̂ + ε(x)) dV =
∫

Ω

Ĥ dV =V 0
1 . (2.43)

Eq. (2.43) defines essentially the same constraint as Eq. (2.26) with the difference that the

corrective field ε is allowed to vary spatially. In their work, Kees et al. mention “γ is a parameter

that penalizes the deviation of ε(x) from a global constant. ” In their numerical experiments, the

authors take a large value of the penalty parameter γ . According to their results (see Figs. 5 and

6, and Table 1), ε remains essentially constant throughout the domain. In practice, Kees et al.’s

approach is the same as the approximate Lagrange multiplier approach introduced in Sec. 2.4.3.

The approximate Lagrange multiplier method is computationally more efficient than Kees et
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al.’s approach because it does not require maintaining an additional advective field Ĥ. It also

avoids inverting a large system of equations. The need for the latter arises due to the presence of

a Laplacian operator in Eq. (2.42d).

2.5 Extension to three phase flows - FD/BP method

In this section, we extend mass conserving level set techniques for two-phase flows, i.e.,

exact and approximate Lagrange multiplier methods, to three-phase flows, by including a (mov-

ing) solid phase in the domain; see Fig. 2.3(a). Fluid-structure interactions are modeled using

the fictitious domain Brinkman Penalization (FD/BP) method, which is an immersed boundary

method. The FD/BP method solves a single momentum equation in the entire computational

domain Ω, including the immersed solid region Ω3(t)⊂Ω. The momentum of the solid body is

accounted for by the penalty term fc(x, t) in the momentum Eq. (2.1), whose form reads as

fc(x, t) =
χ(x, t)

κ
(ub(x, t)−u(x, t)) . (2.44)

The penalty term fc ensures that the velocity inside the structure region Ω3(t) is a rigid body

velocity ub(x, t). ub is determined by hydrodynamic and gravity forces acting on the body [31].

An indicator function χ(x, t) tracks the location of a solid body within Ω. χ is non-zero only

within Ω3(t). The Brinkman penalization method treats the solid body as a porous region with

vanishing permeability κ� 1. At the fluid-solid interface, the penalty force fc can also be treated

differently in the normal and tangential directions. This possibility is explored in Sec. 3.5.4.

The interface ∂ΩS(t) between fluid and solid domains is tracked by a level set function

ζ (x, t): ζ > 0 in ΩF(t), ζ < 0 in Ω3(t), and ζ = 0 on ∂ΩS(t). The solid level set is advected

using
∂ζ

∂ t
+u ·∇ζ = 0. (2.45)

In what follows next, we assume that the solid domain does not loose mass/volume due
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(a) Non-immersed formulation (b) Immersed formulation

Figure 2.3. Schematic of the computational domain Ω for three phase flows considered in (a)
non-immersed and (b) immersed formulations. The variation of the two-fluid interface ∂ΩF is

illustrated by the red dashed line.

to the motion/advection of ζ (x, t) within Ω, and all mass/volume issues stem from the level set

function φ(x, t) which defines the interface ∂ΩF(t) between the two fluid phases.

2.5.1 Conservation of mass/volume for non-immersed bodies

Exact Lagrange multiplier approach: We first present the non-immersed formulation, in

which the level set function φ(x, t) does not exist within the structure region. φ(x, t) is as-

sumed to satisfy appropriate boundary conditions on ∂Ω and ∂ΩS(t). The non-immersed

scenario is akin to a deforming/moving mesh that has a hole (to represents the body) inside it.

We aim to conserve volume V1 of fluid-1, which can be expressed in terms of φ as

V1 =
∫

ΩF(t)
H(φ) dV. (2.46)

The rate change of volume V1 (a conserved quantity) can be expressed using the RTT Eq. (2.8)

as
dV1

dt
=
∫

ΩF(t)
δ (φ)

∂φ

∂ t
dV+

∫
∂ΩS(t)

H(φ)(us ·n) dS, (2.47)
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In Eq. (2.47) n represents a unit normal vector to the fluid-solid interface that points away

from the fluid and into the solid. The no-slip condition on fluid-structure interface implies

u = us = ub(∂ΩS(t), t).

The strong and weak form of the dynamical equation for φ(x, t), S (φ) and W (φ),

respectively, the volume constraint C (φ), the Lagrangian of the constraint and its variation,

L (Λ1,φ) and δ̂L (Λ1,φ). respectively, in the time-varying fluid domain ΩF(t) read as

S (φ)
4
=

∂φ

∂ t
+ ŭ ·∇φ = 0, at ∀ x ∈Ω

F(t), (2.48a)

W (φ , δ̂ φ)
4
=
∫

ΩF(t)

[
∂φ

∂ t
+ ŭ ·∇φ

]
δ̂ φ dV, φ ∈ H1(ΩF(t))3, ∀ δ̂ φ ∈ H1(ΩF(t))3, (2.48b)

C (φ)
4
=
∫

ΩF(t)

(
H(φ)−

V 0
1

V

)
dV = 0, (2.48c)

L (Λ1,φ)
4
= Λ1

∫
ΩF(t)

(
H(φ)−

V 0
1

V

)
dV, Λ1 ∈ L2(ΩF(t))3, (2.48d)

δ̂L (Λ1,φ)
4
= δ̂Λ1

∫
ΩF(t)

(
H(φ)−

V 0
1

V

)
dV

+Λ1

∫
ΩF(t)

δ (φ)δ̂ φ dV, δ̂Λ1 ∈ L2(ΩF(t))3. (2.48e)

Note that in Eq. (2.48e) the variation in the movement of the fluid domain ΩF(t) is not included.

This is because the solid interface moves with the material velocity field. As noted earlier we are

assuming that the velocity field is known (operator splitting with an explicit level set approach).

The effect of domain variation would have to be probed if the velocity field was also an unknown.

In that case, probing the effect of variation in the velocity field would cause variation in the

movement of the fluid domain which in turn would lead to an extra term in the variation of the

Lagrangian of the volume conservation constraint. The total variation, including the effect of

variation in the domain movement on the Lagrangian of the constraint, would be:

δ̂
totalL (Λ1,φ) = δ̂L (Λ1,φ)+Λ1

∫
∂ΩS(t)

(
H(φ)−

V 0
1

V

)
(vsdt ·n) dS,
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in which vs is the variation in velocity. The last term in the equation above arises due to variation

in velocity (and the corresponding variation in domain movement) and is similar to that in the

Leibniz theorem. If it is assumed that the velocity field is known a priori when solving for φ ,

then the last term is dropped because vs is zero.

Adding variation of the Lagrangian δ̂L (Λ1,φ) to the weak form W (φ , δ̂ φ), collecting

terms in δ̂Λ1 and δ̂ φ , and equating them to zero separately, yields the original constraint

(Eq. (2.48c)) and a new dynamical equation for φ that reads as

∂φ

∂ t
+ ŭ ·∇φ =−Λ1δ (φ), (2.49a)

Λ1 =
−
∫

ΩF(t) δ (φ)(ŭ ·∇φ) dV+
∫

∂ΩS(t)H(φ)(us ·n) dS∫
ΩF(t) δ 2(φ) dV

. (2.49b)

The value of the Lagrange multiplier Λ1 is obtained by substituting ∂φ

∂ t =−ŭ ·∇φ −Λ1δ (φ) into

Eq. (2.47) and setting dV1
dt = 0.

Proceeding analogously, we can conserve the volume of fluid-2 V2 =
∫

ΩF(t)(1−H(φ)) dV

by imposing a constraint of the form C (φ)
4
=
∫

ΩF(t)(1−H(φ))−V 0
2 /V dV = 0 with the help of

Lagrange multiplier Λ2 ∈ L2(Ω)3. In this case the dynamical equation for the level set reads as

∂φ

∂ t
+ ŭ ·∇φ = Λ2δ (φ), (2.50a)

Λ2 =

∫
ΩF(t) δ (φ)(ŭ ·∇φ) dV−

∫
∂ΩS(t)H(φ)(us ·n) dS∫

ΩF(t) δ 2(φ) dV
. (2.50b)

In arriving at the RHS of Eq. (2.50b), we used dV2
dt = 0 and the relation

∫
∂ΩS(t)(us ·n) dS =∫

Ω3
∇ ·ub dV = 0. The latter holds because ub is a volume-preserving rigid body velocity field.

Comparing the two level set equation sets (2.49) and (2.50), we observe the relation

−Λ1 = Λ2. Therefore, Eqs. (2.49a) and (2.50a) are the same, given by

∂φ

∂ t
+ ŭ ·∇φ = αδ (φ) =

∫
ΩF(t) δ (φ)(ŭ ·∇φ) dV−

∫
∂ΩS(t)H(φ)(us ·n) dS∫

ΩF(t) δ 2(φ) dV
δ (φ). (2.51)
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Thus, conserving volume of fluid-1 automatically conserves the volume of fluid-2, even in the

moving domain ΩF(t). Furthermore, it is straightforward to show that the equation for φ remains

the same (as Eq. (2.51)), if we impose mass conservation constraints instead of volume ones. We

omit the derivation steps for brevity.

Approximate Lagrange multiplier approach: Here we follow the derivation procedure of

Sec. 2.4.3 to derive an approximate Lagrange multiplier to conserve mass/volume of the two

fluid phases in the moving domain ∂ΩF(t). Consider the reinitialized level set function φ̂ at time

t that is a signed distance function, but it does not satisfy the constraint Eq. (2.48c) yet. We

seek a spatially uniform correction ε that corrects φ̂ to φ = φ̂ + ε while maintaining its signed

distance property |∇φ |= |∇(φ̂ + ε)|= 1. This is achieved by finding the root of the nonlinear

equation

C (φ̂ + ε) = f (ε) =
∫

ΩF(t)
H(φ̂ + ε) dV−V 0

1 = 0, (2.52)

using Newton’s method. The correction at the kth Newton iteration becomes

εk+1 = εk−
f (εk)

d f
dε

∣∣∣
εk

, (2.53a)

↪→∆εk+1 =−
∫

ΩF(t)H(φ̂ + εk) dV−V 0
1∫

ΩF(t) δ (φ̂ + εk) dV
, (2.53b)

which is iterated till the relative error (∆ = f (εk)/V 0
1 ) drops to machine accuracy. To show the

similarity between the exact and approximate Lagrange multiplier approaches for three phase

flows, we need an expression for level set correction per unit time dε

dt instead of the total one:

ε . This can obtained by differentiating f (ε), which is a non conserved quantity defined over a
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moving domain, with respect to time using the Leibniz integral rule

d f (ε)
dt

=
∫

ΩF(t)
δ (φ̂ + ε)

(
∂ φ̂

∂ t
+

dε

dt

)
dV+

∫
∂ΩS(t)

H(φ̂ + ε)(us ·n) dS = 0, (2.54a)

↪→dε

dt
=

∫
ΩF(t) δ (φ̂ + ε)(ŭ ·∇(φ̂ + ε)) dV−

∫
∂ΩS(t)H(φ̂ + ε)(us ·n) dS∫

ΩF(t) δ (φ̂ + ε) dV
, (2.54b)

↪→dε

dt
=

∫
ΩF(t) δ (φ)(ŭ ·∇φ) dV−

∫
∂ΩS(t)H(φ)(us ·n)dS

δ (φm)
∫

ΩF(t) δ (φ) dV
δ (φm) = α̃ δ (φm). (2.54c)

Here, again it can be seen that the RHS of Eq. (2.51) is similar to dε

dt with a slight difference in

α and α̃: the latter is an approximation to α in which one of the smooth delta function terms

(in the denominator) is evaluated at the mth contour. Overall, there is no spatial variation in the

correction and φ retains its signed distance property. Moreover, the root finding technique avoids

calculating the numerator of α or α̃ .

2.5.2 Conservation of mass/volume for immersed bodies

For non-immersed formulations with Cartesian grids, significant bookkeeping and stencil

modifications are required to avoid solving the level set equation inside the (moving) structure

domain Ω3. With unstructured grids, when a solid body moves, the mesh can deform significantly,

causing several problems. An alternate approach is to use an immersed formulation and allow the

two-fluid interface to pass through the solid body as shown in Fig 2.3(b). The implementation of

the level set method is greatly simplified as a result. Because the two phases existing inside the

solid body are fictitious, care must be taken when imposing constraints. To calculate the actual

volume (or mass) of the three phases, we introduce a second level set function ζ (outlined in
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Sec. 2.5), which can be expressed as follows:

V1 =
∫

Ω

H(φ)H(ζ ) dV, (2.55a)

V2 =
∫

Ω

(1−H(φ))H(ζ ) dV, (2.55b)

V3 =
∫

Ω

(1−H(ζ )) dV. (2.55c)

In Eqs. (2.55a) and (2.55b) the inclusion of H(ζ ) term ensures that the fluid volume is considered

only outside the body. We will assume that the solid volume V3 remains conserved, and the issue

of mass/volume loss pertains to only fluids 1 and 2.

Using the RTT (Eq. (2.8)), the time derivatives of V1 and V2 (conserved quantities) in the

closed and stationary computational domain Ω are obtained as:

dV1

dt
=
∫

Ω

[
δ (φ)H(ζ )

∂φ

∂ t
+H(φ)δ (ζ )

∂ζ

∂ t

]
dV, (2.56a)

dV2

dt
=
∫

Ω

[
−δ (φ)H(ζ )

∂φ

∂ t
+(1−H(φ))δ (ζ )

∂ζ

∂ t

]
dV. (2.56b)

The strong and weak form of the level set equation remains the same as Eq. (2.48a) and

Eq. (2.48b), respectively, with the difference that they are now defined over the entire (static)

domain Ω. That is φ ∈ H1(Ω)3 and δ̂ φ ∈ H1(Ω)3. Working with the constraint of conserving

fluid-1 volume, the Lagrangian of the constraint and its variation reads as

L (Λ3,φ)
4
= Λ3

∫
Ω

(
H(φ)H(ζ )−

V 0
1

V

)
dV, Λ3 ∈ L2(Ω)3, (2.57a)

δ̂L (Λ3,φ)
4
= δ̂Λ3

∫
Ω

(
H(φ)H(ζ )−

V 0
1

V

)
dV

+Λ3

∫
Ω

δ (φ)H(ζ )δ̂ φ dV, δ̂Λ3 ∈ L2(Ω)3. (2.57b)

Adding variation of the Lagrangian to the weak form, collecting terms in δ̂Λ3 and δ̂ φ , and

equating them to zero separately, yield the original constraint and a new dynamical equation for
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φ that reads as

∂φ

∂ t
+ ŭ ·∇φ =−Λ3δ (φ)H(ζ ), (2.58a)

Λ3 =
−
∫

Ω
δ (φ)H(ζ )(ŭ ·∇φ) dV−

∫
Ω

H(φ)δ (ζ )(u ·∇ζ ) dV∫
Ω

δ 2(φ)H2(ζ ) dV
, (2.58b)

↪→Λ3 =
−
∫

Ω
δ (φ)H(ζ )(ŭ ·∇φ) dV+

∫
∂ΩS(t)H(φ)(us ·n) dS∫

Ω
δ 2(φ)H2(ζ ) dV

. (2.58c)

The value of the Lagrange multiplier Λ3 in Eq. (2.58b) is obtained by substituting ∂φ

∂ t = −ŭ ·

∇φ −Λ3δ (φ)H(ζ ) from Eq. (2.58a) and ∂ζ/∂ t = −u ·∇ζ from Eq. (2.45) into Eq. (2.56a)

and setting dV1
dt = 0. If the body delta function δ (ζ ) is sharp, then the expression for Λ3 in

Eq. (2.58b) can be further simplified to Eq. (2.58c) by using the relation
∫

Ω
H(φ)δ (ζ )(u ·∇ζ ) =∫

∂ΩS(t)H(φ)(us ·∇ζ ) dS =
∫

∂ΩS(t)H(φ)(us ·ns) dS =−
∫

∂ΩS(t)H(φ)(us ·n) dS. Here, ns =−n

is the outward unit normal to the solid surface, which can be obtained from the signed distance

function ζ as ns = ∇ζ/|∇ζ |= ∇ζ .

Proceeding analogously, we can conserve the volume of fluid-2 with the help of the

Lagrange multiplier Λ4 ∈ L2(Ω)3. In this case the level set equation and the value of the Lagrange

multiplier reads as

∂φ

∂ t
+ ŭ ·∇φ = Λ4δ (φ)H(ζ ), (2.59a)

Λ4 =

∫
Ω

δ (φ)H(ζ )(ŭ ·∇φ) dV−
∫

Ω
(1−H(φ))δ (ζ )(u ·∇ζ ) dV∫

Ω
δ 2(φ)H2(ζ ) dV

, (2.59b)

↪→Λ4 =

∫
Ω

δ (φ)H(ζ )(ŭ ·∇φ) dV−
∫

∂ΩS(t)H(φ)(us ·n) dS∫
Ω

δ 2(φ)H2(ζ ) dV
. (2.59c)

Comparing equations sets (2.58) and (2.59), we observe the relation −Λ4 = Λ3. Therefore, the

level set equations (2.58a) and (2.59a) are the same. More importantly, the immersed formulation

of the mass/volume conserving level set equation converges to the non-immersed one as the

smeared body delta function δ (ζ ) becomes sharp. This can be observed by comparing equation

sets (2.49) and (2.50), and equation sets (2.58) and (2.59). Outside the solid region where
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H(ζ ) = 1, these equations are exactly the same. The equations remain the same if we impose

mass conservation constraints instead of volume ones. The derivation steps are omitted for

brevity.

Approximate Lagrange multiplier approach: Here we derive an approximate Lagrange mul-

tiplier to conserve mass/volume of the two fluid phases in an immersed sense. The nonlinear

equation to solve for the spatially uniform correction ε in this case is

C (φ̂ + ε) = f (ε) =
∫

Ω

H(φ̂ + ε)H(ζ ) dV−V 0
1 = 0 (2.60)

Eq. (2.60) can be solved to machine accuracy using Newton’s method. As done before, the

connection between the approximate and exact Lagrange multipliers emerges through dε

dt . Differ-

entiating the non-conserved quantity f (ε) defined over a static domain Ω with respect to time

(using the Leibniz integral rule) yields

dε

dt
=

∫
Ω

δ (φ̂ + ε)H(ζ )(ŭ ·∇(φ̂ + ε)) dV+
∫

Ω
H(φ̂ + ε)δ (ζ )(us ·∇ζ )dV∫

Ω
δ (φ̂ + ε)H(ζ ) dV

, (2.61a)

↪→dε

dt
= Λ̃δ (φm)H(ζn) =

[∫
Ω

δ (φ)H(ζ )(ŭ ·∇φ) dV−
∫

∂ΩS(t)H(φ)(us ·n) dS
]

δ (φm)H(ζn)
∫

Ω
δ (φ)H(ζ ) dV

δ (φm)H(ζn).

(2.61b)

Comparing Eqs. (2.59c) and (2.61b), it can be seen that Λ̃ is approximately equal to the exact

Lagrange multiplier Λ4: the former is obtained by evaluating one of the smooth delta function

terms and one of the smooth Heaviside function terms (in the denominator) at the mth and nth

contour, respectively. Overall, there is no spatial variation in the correction and φ retains its

signed distance property.

Enforcing the constraint defined by Eq. (2.60) using Newton’s method ensures that

the volume of phase-1 (defined by Eq. (2.55a)) is preserved to machine accuracy. Since the

sum of the volumes for all three phases (Eqs. (2.55a) - (2.55c)) equals the total volume of the
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domain, this constraint guarantees a key property for closed domains: if the volume of phase-1

is conserved to machine precision, the combined volumes of phase-2 and phase-3 will also

be conserved to machine precision irrespective of the smeared body Heaviside function. The

numerical simulations of Sec. 5.11 confirm this property.

Contact angle conditions

Material triple points are the points (or lines in 3D) where the two-fluid interface ∂ΩF

intersects the solid surface ∂ΩS. Under equilibrium/static conditions, ∂ΩF pins at ∂ΩS at an

angle θs according to the Young-Laplace equation. A dynamic contact angle θd condition is

better suited for transient conditions. For problems at the capillary length scale, the contact angle

condition is relevant. The capillary length scale2 in an air-water system is about 2.7 mm. The

contact angle condition is not necessary for many fluid-structure problems in ocean engineering,

since the relevant length scales are much larger than capillary ones.

If a specific contact angle θ needs to be imposed at the triple points, an equation similar

to the reinitialization equation Eq. (2.6) can be used. This idea is proposed by Jettestuen et

al. [32] who suggest using an equation of the form

∂φ

∂τ
+ sgn(ζ )(∇ζ ·∇φ − cos(θ)|∇φ ||∇ζ |) = 0. (2.62)

As with the reinitialization equation, the contact angle Eq. (2.62) is also solved till steady state

to obtain the desired geometric relation between the fluid and solid level sets at the triple points

∇ζ

|∇ζ |
· ∇φ

|∇φ |
= cos(θ). (2.63)

2The capillary length scale can be estimated as lc ∝

√
σ

(ρl−ρg)g
.
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Eq. (2.62) implies that the level set function φ moves with a velocity

ucont = sgn(ζ )
(

∇ζ − cos(θ)
∇φ

|∇φ |

)
3. (2.64)

Overall φ moves with a combination of fluid velocity u, reinitialization velocity ureinit and contact

angle imposing velocity ucont. If we denote the overall velocity by ˘̆u, then the analysis presented

in Sec. 2.5.1 still applies. The terms involving ŭ are replaced by ˘̆u. Additionally, it can be seen

that Λ3 and Λ4 will disrupt the signed distance property of φ , as well as change the contact angle

at the triple points. In contrast, the approximate Lagrange multiplier approach will respect the

contact angle condition since the shifted contours of φ retain their original geometric shape.

Due to the length scales of FSI problems consider in this work, we do not consider the

contact angle condition.

2.6 Conclusions

In this chapter, we presented the continuous equations of motion for two phase fluid flows.

The critically analyzed the reasons for mass loss with the standard level set method. It is primarily

due to the use of smooth Heaviside and delta functions. However, level set reinitialization errors

can still contribute to mass loss, and existing methods available in literature address these

issues but cannot completely eliminate them. To prevent mass loss with the standard level set

method, we propose a novel variational approach that introduces a Lagrange multiplier within

the standard level set method. This variational analysis is applied to two-phase and three-phase

(non-immersed body and immersed body) flows. The exact Lagrange multiplier ensures mass

conservation but disrupts the signed distance property of the level set function. Hence, we

developed an approximate Lagrange multiplier method that achieves mass conservation as well

as signed distance property. We also show that mass conservation of an incompressible fluid in

the domain is same as volume conservation.
3This additional motion also relaxes the no-slip condition on the fluid-solid interface.
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Chapter 3

Discretization and Solution Methodology

This chapter details the discretization of the conservative form of the governing equations

presented in Chapter 2. Next, the solution methodology to solve the coupled velocity-pressure

system is introduced with developed projection preconditioner which includes the Brinkman

penalty term in the pressure Poisson equation (PPE). This crucial detail leads to robust conver-

gence of the velocity-pressure solver which is demonstrated solving a method of manufactured

solutions. Further, two phase and stringent three phase FSI problems are simulated to demon-

strate the effectiveness of the developed mass conserving level set method. Mass conservation

up to machine accuracy is achieved. Finally, differential treatment of the Brinkman penalization

factor with different amounts of slip in the normal and tangential directions leads to incorrect

FSI dynamics is presented.

3.1 Spatial discretization

The continuous equations of motion governing an incompressible fluid given by Eqs. (2.1)

and (2.2) are discretized on a locally refined staggered Cartesian grid. The coarsest grid level

covers the domain Ω with Nx×Ny×Nz rectangular cells of grid spacing in three spatial di-

rections are ∆x, ∆y, and ∆z, respectively. Unless stated, a uniform grid spacing ∆x = ∆y =

∆z = h is used for all simulations in this work. Without any loss of generality, the lower

left corner of the domain is taken as the origin (0,0,0). The cell center of the grid has a
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position xi, j,k =
(
(i+ 1

2)∆x,( j+ 1
2)∆y,(k+ 1

2)∆z
)

for i = 0, . . . ,Nx− 1, j = 0, . . . ,Ny− 1, and

k = 0, . . . ,Nz−1. The cell face location that is half a grid cell away from xi, j,k in the x-direction

is at xi− 1
2 , j,k

=
(
i∆x,( j+ 1

2)∆y,(k+ 1
2)∆z

)
. Similarly, for the location of a cell face that is

half a grid cell away from xi, j,k in the y-directions is xi, j− 1
2 ,k

=
(
(i+ 1

2)∆x, j∆y,(k+ 1
2)∆z

)
and in the z-direction it is xi, j,k− 1

2
=
(
(i+ 1

2)∆x,( j+ 1
2)∆y,k∆z

)
. See Fig. 3.1(a). The simula-

tion time at time step n is denoted by tn. The scalar quantities: level set functions, pressure,

and the material properties (density and viscosity) are all approximated at cell centers and

are denoted φ n
i, j,k ≈ φ

(
xi, j,k, tn), ζ n

i, j,k ≈ ζ
(
xi, j,k, tn), pn

i, j,k ≈ p
(
xi, j,k, tn), ρn

i, j,k ≈ ρ
(
xi, j,k, tn)

and µn
i, j,k ≈ µ

(
xi, j,k, tn), respectively. See Fig. 3.1(b). Scalar quantities are interpolated

onto the required degrees of freedom as and when required, see Nangia et al. [33] for fur-

ther details. The vector velocity is approximated on the cell face as un
i− 1

2 , j,k
≈ u

(
xi− 1

2 , j,k
, tn
)

,

vn
i, j− 1

2 ,k
≈ v
(

xi, j− 1
2 ,k
, tn
)

, wn
i, j,k− 1

2
≈ w

(
xi, j,k− 1

2
, tn
)

. The body force terms in the momentum

equation are also approximated at the cell faces. Second-order finite differences are used

for all spatial derivatives. All simulations performed in this paper use uniform grid spacing

∆x = ∆y = ∆z = h unless stated otherwise. For the ease of readability, the discretized version

of the differential operators are denoted with a h subscript, e.g., ∇≈ ∇h. For further details on

the spatial discretization and boundary conditions for uniform grids on a hierarchy of adaptively

refined meshes, refer [33, 34, 35, 36].

3.1.1 Density and viscosity specification

We use a smooth Heaviside function varying over ncells grid cells on either side of the air-

water interface Γ(t) and the fluid-solid interface ∂ΩF(t) to smoothly vary the material properties

in the transition region. For a given material property ℑ, say density or viscosity, is set in the

computational domain by first calculating the flowing phase (i.e., air and water) property as

ℑ
flow
i, j,k = ℑl +(ℑg−ℑl)H̃flow

i, j,k , (3.1)
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(a) Staggered Cartesian grid (b) Single grid cell

Figure 3.1. Schematic representation of a 2D staggered Cartesian grid. (a) Shows the coordinate
system for the staggered grid. (b) shows a single grid cell with velocity components u and v

approximated at the cell faces (→) and scalar level set variable φ approximated at the cell center
(•) at nth time step.

and later correcting ℑflow to account for the solid body by

ℑ
full
i, j,k = ℑs +(ℑflow

i, j,k−ℑs)H̃
body
i, j,k . (3.2)

where, ℑfull is the final scalar material property (density or viscosity) field throughout Ω. The

transitions specified by Eqs. (3.1) and (3.2), the standard numerical Heaviside functions are used:

H̃flow
i, j,k =


0, φi, j,k <−ncells h,

1
2

(
1+ 1

ncells hφi, j,k +
1
π

sin
(

π

ncells hφi, j,k

))
, |φi, j,k| ≤ ncells h,

1, otherwise.

(3.3)

H̃body
i, j,k =


0, ζi, j,k <−ncells h,

1
2

(
1+ 1

ncells hζi, j,k +
1
π

sin
(

π

ncells hζi, j,k

))
, |ζi, j,k| ≤ ncells h,

1, otherwise.

(3.4)

In all simulations performed in this work, the number of transition cells ncells = 1 for two
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phase cases and ncells = 2 for FSI cases, for both air-water and fluid-solid interfaces are used.

3.2 Temporal discretization

We employ a fixed-point iteration time stepping with ncycles cycles per time step to evolve

quantities from time level tn to time level tn+1 = tn +∆t. The superscript k is used to denote the

cycle number for the fixed-point iteration. At the beginning of every time step, the solutions

from the previous time step are used to initialize cycle k = 0: un+1,0 = un, pn+ 1
2 ,0 = pn− 1

2 ,

φ n+1,0 = φ n, and ζ n+1,0 = ζ n. Initial conditions are prescribed for the physical quantities at the

initial time n = 0. A larger number of cycles in the simulation allows a larger, more stable time

step size. In this work, we limit ncycles = 2 for 2D cases and ncycles = 1 for 3D cases to reduce

computationally expensive linear solves per time step. For more details on the time-stepping

algorithm, refer [33].

3.2.1 Level set advection

We evolve the two level set/signed distance functions φ and ζ using a standard explicit

advection scheme as follows

φ n+1,k+1−φ n

∆t
+Q

(
un+ 1

2 ,k,φ n+ 1
2 ,k
)
= 0, (3.5)

ζ n+1,k+1−ζ n

∆t
+Q

(
un+ 1

2 ,k,ζ n+ 1
2 ,k
)
= 0, (3.6)

in which Q(·, ·) represents an cubic upwind interpolation (CUI) approximation to the linear

advection terms on cell centers. Let φ denote the level set function after an advection procedure

which is not guaranteed to retain sign distance property after time stepping through the interval

[tn, tn+1]. We reinitialize the level set field solving the Hamilton-Jacobi Eq. (2.6) to steady state

which reconstructs the signed distance property. The Hamilton-Jacobi equation is discretized

using high-order essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes [37].
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3.2.2 Multiphase incompressible Navier-Stokes

The multiphase incompressible Navier-Stokes Eqs. (2.1) and (2.2) in conservative form

with the Brinkman penalization term fc included in the momentum equation are discretized as,

ρ̆
n+1,k+1un+1,k+1−ρnun

∆t
+Cn+1,k =−∇h pn+ 1

2 ,k+1 +
(
Lµu

)n+ 1
2 ,k+1

+℘
n+1,k+1g+ fn+1,k+1

c ,

(3.7)

∇h ·un+1,k+1 = 0, (3.8)

where, Cn+1,k is the discretized version of the convective term ∇ · (ρ u⊗u) and a consistent

mass/momentum transport scheme is used to compute the density approximation ρ̆
n+1,k+1 which

ensures numerical stability of cases that involve high density contrast between various phases.

See Nangia et al. [33] and Bhalla et al. [38] for details of the consistent mass/momentum transport

scheme employed in this work. The viscous strain rate in Eq. (3.7) is calculated using the Crank-

Nicolson approximation:
(
Lµu

)n+ 1
2 ,k+1

= 1
2

[(
Lµu

)n+1,k+1
+
(
Lµu

)n
]
, in which

(
Lµ

)n+1
=

∇h ·
[
µn+1 (∇u+∇uT)n+1

]
. The newest approximation to the viscosity µn+1,k+1 is obtained

using the two-stage process described by Eqs. (3.1) and (3.2). To avoid the spurious currents

generated due to large density variations near the fluid-solid interface [39], the gravitational body

force term ℘g = ρflowg is calculated using the flow density field.

3.2.3 Fluid-structure coupling

The Brinkman penalization term fc given by Eq. (2.44) is treated implicitly in the

discretized version of the momentum Eq. (3.7) and calculated as,

fn+1,k+1
c =

χ̃

κ

(
un+1,k+1

b −un+1,k+1
)
, (3.9)

where, the discretized indicator function χ̃ is defined using the body Heaviside function given in

Eq. (3.4) as χ̃ = 1− H̃body with χ̃ = 1 inside the solid body region. The rigid body velocity ub
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is expressed as the sum of translational Ur and rotational Wr velocities:

ub = Ur +Wr× (x−Xcom) , (3.10)

in which Xcom is the position of the center of mass of the body. The rigid body velocity can be

obtained by integrating Newton’s second law of motion.

Mb
Un+1,k+1

r −Un
r

∆t
= F n+1,k +Mbg, (3.11)

Ib
Wn+1,k+1

r −Wn
r

∆t
= M n+1,k (3.12)

in which Mb is the mass, Ib is the moment of inertia, F is the net hydrodynamic force, M is the

net hydrodynamic torque and Mbg is the net gravitational force acting on the body. Eqs. (3.11)

and (3.12) are integrated using a forward-Euler scheme to compute Un+1,k+1
r , Wn+1,k+1

r and

Xn+1,k+1
com .

3.3 Solution methodology: Projection preconditioner for
fully coupled Brinkman penalized Stokes system

To solve for un+1,k+1 and pn+ 1
2 ,k+1 in Eqs. (3.7) and (3.8), the solution to the following

block linear system is required.

M x = b, A G

−D· 0


 xu

xp

=

 bu

bp

 , (3.13)

in which M denotes the Stokes-BP operator, A = 1
∆t ρ̆

n+1,k+1+ 1
κ

χ̃
n+1,k+1− 1

2Lµ
n+1,k+1 denotes

the discretization of the temporal, Brinkman penalty and viscous operator, xu and xp denote the
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velocity un+1,k+1 and pressure pn+1,k+1 degrees of freedom, bp = 0, and bu is,

bu =

(
1
∆t

ρ
n +

1
2

Lµ
n
)

un +

(
χ̃

κ

)n+1,k+1

un+1,k+1
b −Cn+1,k + f

n+ 1
2

c . (3.14)

For matrix A in Eq. (3.13), ρ̆
n+1,k+1 and χ̃

n+1,k+1 = 1− H̃
body

are diagonal matrices of face-

centered densities and body characteristic function corresponding to each velocity degree of

freedom, respectively. The operator on the left-hand side of Eq. (3.13) is the time-dependent,

incompressible staggered Stokes operator with an additional Brinkman penalty term in the (1,1)

block. It is called the Brinkman penalized Stokes operator or Stokes-BP operator for short [40].

We use the projection method as a preconditioner to solve the coupled velocity-pressure

system given in Eq. (3.13). Several advantages to using the projection method as a preconditioner

rather than as a solver are listed in [40, 34, 35]. We also include the Brinkman penalty term χ̃/κ

in the pressure Poisson equation (PPE) of the projection algorithm. Including the penalty term in

the projection algorithm ensures robust convergence of the monolithic fluid solver, particularly

when κ values are small. Formally, the projection method can be derived by approximating the

inverse of the Schur complement of the saddle-point system Eq. (3.13) [40].

Algorithmically, in the first step of the projection method, an intermediate approximation

to u is computed by solving

Ax̂u = bu. (3.15)

Note that this approximation does not in general satisfy the discrete continuity equation i.e.,

−D · x̂u 6= bp. This condition can be satisfied by introducing an auxiliary scalar field Φ and

writing out a fractional timestep

(
ρ̆

∆t
+

χ̃

κ

)
(xu− x̂u) =−GΦ, (3.16)

−D ·xu = bp. (3.17)
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Multiplying Eq. (3.16) by

ρ
−1
χ =

(
ρ̆ +

χ̃∆t
κ

)−1

, (3.18)

taking the discrete divergence D·, and substituting in Eq. (3.16) yields the density and Brinkman

penalty-weighted Poisson problem

−(D ·ρ−1
χ G)Φ =−Lρχ

Φ =− 1
∆t

(bp +D · x̂u) . (3.19)

The updated velocity solution can be computed as

xu = x̂u−∆tρ−1
χ GΦ, (3.20)

and that of pressure can be computed as

xp = Φ. (3.21)

The main difference between our projection method and that of Bergmann and Iolla [41]

and Sharaborin et al. [42] is that we include the stiff Brinkman penalty term χ̃/κ in the pressure

Poisson Eq. (3.19) and the velocity update Eq. (3.20). This is a small but a crucial detail that

leads to robust convergence of the monolithic velocity-pressure solver, particularly when κ is

small. In Sec. 3.5.1, we careful study the effect of the Brinkman penalty term on the solver

convergence rate. For more details on the implementation see [40].

3.4 Software implementation

The Brinkman penalization multiphase fluid flow solver described in this work is imple-

mented within the open-source C++ software called the IBAMR library [43], enabling simulation

of immersed boundary-like methods with adaptive mesh refinement. The code is hosted on

GitHub at https://github.com/IBAMR/IBAMR. IBAMR relies on SAMRAI [44, 45] for Cartesian
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grid management and the AMR framework. Solver support in IBAMR is provided by the PETSc

library [46, 47, 48].

All solvers and preconditioners have been implemented are matrix-free to improve

computational efficiency, especially on dynamically adaptive grids. In this work, we use locally

refined grids but not adaptive grids.

3.5 Numerical examples

In this section, first we consider a test problems to demonstrate the efficacy of the

projection preconditioner to solve the coupled velocity-pressure system written in Eq. (3.13). In

this problem, a uniform density and viscosity flow is considered in a complex domain. Using the

method of manufactured solutions, we compute the spatial order of accuracy of the solution (u

and p), and monitor the number of iterations the outer FGMRES solver takes to converge with

decreasing values of κ .

In the test, the outer FGMRES solver is deemed to be converged if a value of 10−9 or

below is reached for the norm of the relative residual

R =
||r||
||b||

=
||b−Mx||
||b||

. (3.22)

Next, several two-phase and three-phase flow problems are simulated to demonstrate the ef-

fectiveness of the approximate Lagrange multiplier technique. We selected the approximate

Lagrange multiplier approach (henceforth called the mass loss fix) because of its simplicity, its

ability to retain the signed distance property of the level set function.

For three phase flows, two stringent test problems are devised to demonstrate that (i)

imposing the mass conservation constraint is essential for the level set method to obtain correct

dynamics; and (ii) the immersed formulation of the level set equation produces dynamics that

agree very well with non-immersed and conservative methods such as moving unstructured grid-

based methods, cut-cell methods, and particle-based methods. Next, we explore the possibility,
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if we impose different amounts of slip in the normal and tangential directions by splitting κ . For

example, no slip in the normal direction and some slip in the tangential direction.

3.5.1 Uniform density and viscosity flow in a complex domain

Consider a computational domain Ω∈ [0,2π]2 which embeds a circular cylinder of radius

R = 1.5 at its center (π,π) as shown in Fig. 3.2. A steady state manufactured solution for velocity

u and pressure p

uexact(x, t→ ∞) = sin(x)cos(y), (3.23)

vexact(x, t→ ∞) =−cos(x)sin(y), (3.24)

pexact(x, t→ ∞) = sin(x)sin(y), (3.25)

is used to drive a constant density ρ(x, t) ≡ 1 and viscosity µ(x, t) ≡ 1 flow in the domain.

Specifically, Eqs. (3.23)-(3.25) are plugged into the momentum Eq. (2.1) to determine the body

force f that drives the flow. The manufactured solution is also used to impose boundary conditions

on ∂Ω and inside the fictitious cylinder Ωb. On the left and right ends of the domain, we impose

velocity boundary conditions u = uexact and v = vexact. On the top and bottom boundaries a

combination of normal traction n ·τ ·n = g =−p+2µ
∂v
∂y = sin(x)sin(y)−2µ cos(x)cos(y) and

tangential velocity u = uexact condition is imposed. Here, τ =−pI+µ (∇u+∇uᵀ) denotes the

hydrodynamic stress tensor. The velocity inside the cylinder is prescribed to be ub = uexact. The

initial conditions for velocity and pressure are taken to be zero.

Five grid sizes N×N = {642,1282,2562,5122,10242} are used to run the simulations

starting from t = 0 till steady state is reached. ncells = 1 is used in Eq. (3.4) to smear the fluid-solid

interface. A constant time step size of ∆t = 1×10−3 is used in all simulations, which maintains

convective CFL number below 0.35 for all grid sizes N. The permeability coefficient κ should be

kept small, but not too small to avoid the plateauing of spatial discretization errors [25, 42]. To

study the effect of κ on the spatial order of accuracy of u and p solutions, as well as on the solver
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Figure 3.2. Schematic of the computational domain. Normal traction is imposed on yhe top and
bottom boundary given by, g =−p+2µ

∂v
∂y = sin(x)sin(y)−2cos(x)cos(y). For the top

boundary n = (0,1) and for the bottom boundary n = (0,−1).

convergence rate, we consider three different values for κ = {∆t/ρ, ∆t/100ρ, ∆t/10000ρ} in

the numerical experiments. Note that ∆t/ρ is the maximum value which κ can or should take

as per the inertial scale χ/κ ∼ ρ/∆t. Another possibility is to select κ based on the viscous

scale χ/κ ∼ µ/h2, in which h is the uniform cell size. Here, our strategy is to start with the

maximum value of κ based on the inertial scale, and then reduce it progressively till no further

improvement in the solution is observed.

We first present the spatial order of accuracy of the Brinkman penalized u and p so-

lutions. The error between steady state numerical and analytical solutions is denoted E . As

can be observed in Fig. 3.3, second-order pointwise (L∞-norm) convergence rate is obtained

for both velocity and pressure errors when κ = ∆t/ρ, ∆t/100ρ . For a very small value of

κ = ∆t/10000ρ = 1× 10−7, the error in velocity and pressure saturates after a certain grid

size (N = 128 in Fig. 3.3(c)). To understand this trend, we compare the magnitudes of the

Brinkman penalty coefficient χ/κ and the discrete inertial and viscous scales, by plotting the

latter two as a function of grid size N in Fig. 3.4. The discrete inertial scale ρ/∆t remains

constant (because of the constant time step size ∆t), whereas the discrete viscous scale varies
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quadratically (linearly on a log scale) with N. The magnitude of the inertial scale is larger than

the viscous scale for the first two grids, and vice versa for the remaining grids. For the largest

value of κ = ∆t/ρ , although the penalty coefficient χ/κ = ρ/∆t is not always larger than the

viscous scale, second-order convergence is still observed. When κ = ∆t/100ρ , the Brinkman

penalty coefficient is significantly larger than the inertial scale and comparable with the viscous

scale. Second-order pointwise convergence is obtained for this κ value as well. However, when

κ is decreased further to ∆t/10000ρ , the Brinkman penalty becomes four orders larger than the

inertial scale and two orders larger than the viscous scale. This large penalty value causes the

errors to saturate. Note that in this problem we imposed spatially-varying traction boundary

condition on the top and bottom boundaries of ∂Ω, and obtained second-order convergence rates

for velocity and pressure solutions. This is not possible to achieve if pressure and velocity are

solved in a split manner using projection method as a solver.

Next, we study the impact of κ on the convergence rate of the preconditioned FGMRES

solver. For this problem, the first time step poses the most difficultly for the (iterative) Krylov

solver as the initial zero guess for velocity and pressure is far-off from the true solution at t = ∆t.

Therefore, it suffices to monitor the solver performance at the first time step only to evaluate the

efficacy of the preconditioner. We run this test case with and without the Brinkman penalty term

χ̃/κ in the projection preconditioner. In practice, we re-define ρ−1
χ with the help of a boolean

parameter θ

ρ
−1
χ =

(
ρ̆ +θ

χ̃∆t
κ

)−1

, (3.26)

so that by setting θ = 1 in ρ−1
χ we obtain the new projection method and by setting θ = 0 we

revert to the projection methods of Bergmann and Iolla [41] and Sharaborin et al. [42].

Fig. 3.5 compares the convergence rate of the projection method preconditioned FGMRES

solver for different κ values. The grid size is taken to be N = 256. When the Brinkman penalty

is excluded from the projection step (i.e., θ = 0 in Eq. (3.26)), we note from Fig. 3.5(a) that

the number of iterations required to convergence to a relative residual of R = 10−9 increases
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(a) κ = ∆t/ρ (b) κ = ∆t/100ρ

(c) κ = ∆t/10000ρ

Figure 3.3. Spatial order of convergence of the volume penalized Navier-Stokes system using
manufactured solutions and different values of κ .

Figure 3.4. Discrete inertial and viscous scales as a function of grid size N.
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(a) Relative residual when θ = 0 (b) Relative residual when θ = 1

Figure 3.5. Convergence rate of the preconditioned FGMRES solver during the first time step of
the simulation (a) without and (b) with the Brinkman penalty term in the projection

preconditioner. The grid size is N = 256.

approximately by a factor of 10 with decreasing values of κ . However, with the proposed

projection method (i.e., θ = 1 in Eq. (3.26)) the convergence of the FGMRES solver remains

robust. This can be observed in Fig. 3.5(b) where the solver converges with approximately

10 iterations for all three κ values. This clearly demonstrates the importance of including the

Brinkman term in the projection method. In fact, with decreasing κ (or increasing penalty)

values, the convergence rate of the solver actually improves. This can be attributed to A matrix

of Eq. (3.15) which becomes diagonally dominant when the penalty coefficient is larger than the

viscous scale. This in turn makes the velocity subdomain problem “easier” to solve.

To present a more complete picture of the solver performance as the simulation progresses,

Fig. 3.6 presents the number of iterations to converge for the first 200 time steps. The grid

size is taken to be N = 256 and the same three κ values are considered. It is clearly seen that

with decreasing κ values or conversely with increasing penalty values, the average number of

iterations to converge decreases.

Thus far in this section, we demonstrated the efficacy of the new projection precondi-

tioner on a single grid N = 256. To demonstrate that the proposed preconditioner is scalable,

Fig. 3.7 reports the convergence rate of the preconditioned FGMRES solver on three grids:
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Figure 3.6. Performance of the preconditioned (θ = 1) FGMRES solver during the first 200
time steps of the simulations. The average number of iterations required to converge for

κ = ∆t/ρ , κ = ∆t/100ρ , and κ = ∆t/10000ρ are 6, 4 and 2, respectively. The grid size is
N = 256.

Figure 3.7. Convergence rate of the preconditioned (θ = 1) FGMRES solver during the first
time step of the simulation on three grids: N = 256,512,1024. The permeability parameter is

taken to be κ = ∆t/100ρ .
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N = 256,512,1024. The permeability parameter is taken to be κ = ∆t/100ρ , which is larger

than both inertial and viscous scales as discussed earlier. In Fig. 3.7 it can be observed that the

solver’s convergence rate remains approximately the same, even when the degrees of freedom,

xu and xp, increase substantially with increasing grid size.

Based on the results presented in this section we conclude that: (1) the proposed projec-

tion method is a scalable preconditioner for the volume penalized incompressible Navier-Stokes

system; (2) it is possible to achieve pointwise second-order accuracy in velocity and pressure so-

lutions with nontrivial traction boundary conditions without sacrificing computational efficiency;

and (3) a reasonable starting value for the permeability parameter is κ = ∆t/ρ .

3.5.2 Two-phase flows

Vortex test

Vortex in a box is a standard two-phase flow problem used in the literature [49] to test

interface tracking and capturing methods’ ability to resolve thin filaments. In this problem, a

circular interface is stretched over time due to an imposed velocity field of the form

u =−2sin2(πx)sin(πy)cos(πy),

v = 2sin(πx)cos(πx)sin2(πy).

The computational domain consists of a unit square with extents Ω ∈ [0,1]2. A circular interface

with a radius of 0.15 has its initial centroid at (0.5, 0.75). The origin is taken to be the lower

left corner. The circular interface gets stretched into a very long and thin filament due to the

imposed velocity field, which over time wraps around itself. Fig. 3.8 compares the interfacial

dynamics with and without the mass loss fix at time instances t = 4 , 6 , and 8. The domain

is discretized into N×N = 128×128 grid cells and a uniform time-step size of ∆t = h/10 is

employed, where ∆x = ∆y = h. As can be observed in the figure, a significant amount of mass is

lost by the standard level set method compared to the mass loss fix method.
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Figure 3.8. Time evolution of the interface for the vortex in a box problem using a 128×128
uniform mesh.

Figs. 3.9(a), 3.9(c) and 3.9(e) show the normalized value of the uniform correction ε/h

as a function of time. The normalized correction values are in the order of 10−2, which means

that the contours of the level set field φ̂ are shifted at a sub-grid level. To quantify the amount

of fluid lost/gained over time, we plot the relative change in the volume of fluid enclosed by

the interface, ∆V/V0 = V (t)/V0− 1. Figs. 3.9(b), 3.9(d) and 3.9(f) show the relative volume

change for grid sizes 32×32, 64×64, and 128×128. For all grids, the relative change in volume

is close to machine precision. In order to solve f (ε) = 0 to machine precision, it usually takes

2-3 Newton iterations.

Next, we will examine a somewhat different but closely related problem known as the

reverse vortex test problem [49, 50]. After rotating counterclockwise for t = 4, the initially

circular interface stretches into a thin filament before rotating clockwise to return to its original

shape at t = T = 8. In this case, velocity is a function of time, and is written as

u =−2sin2(πx)sin(πy)cos(πy)cos
(

πt
T

)
, (3.27a)

v = 2sin(πx)cos(πx)sin2(πy)cos
(

πt
T

)
. (3.27b)
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(a) Normalized correction for 32×32 grid (b) Relative error in volume for 32×32 grid

(c) Normalized correction for 64×64 grid (d) Relative error in volume for 64×64 grid

(e) Normalized correction for 128×128 grid (f) Relative error in volume for 128×128 grid

Figure 3.9. Vortex in a box problem simulated using different grid sizes. The normalized
correction (ε/h) as a function of time is shown in (a), (c) and (e). The relative error in volume

(∆V/V0) as a function of time is shown in (b), (d) and (f).
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(a) 32×32 (b) 64×64 (c) 128×128

Figure 3.10. Results for the reverse vortex test problem. Comparison of the final interface shape
with the exact solution using standard level set method and level set method with mass loss fix.

Three grid sizes are considered: (a) 32×32, (b) 64×64, and (c) 128×128.

Fig. 3.10 compares the final shape of the interface at t = T for different grid sizes, with finer

grids performing better. For the coarse mesh resolution (32×32) considered here, the mass loss

fix method yields a “full” circle than the standard approach, which shrinks the interface. The

latter occurs because of the substantial volume loss with the standard level set method. In order

to compare the two methods quantitatively, we estimate the geometric and volume errors as Eg

and Ev, respectively, at the end of the process:

Eg =

∫
Ω
|H(φ , t = T )−H(φ , t = 0)| dV∫

Ω
H(φ , t = 0) dV

, (3.28)

Ev =
|
∫

Ω
H(φ , t = T ) dV−

∫
Ω

H(φ , t = 0) dV|∫
Ω

H(φ , t = 0) dV
. (3.29)

Table 3.1 compares relative geometric and volume errors at different grids with and without mass

loss fix. The circular interface recovers well for grids 64× 64 and 128× 128, and geometric

errors are comparable between the two approaches. Significant differences are observed in

relative volumes, however. The mass loss fix method conserves the volume enclosed by the

interface to machine precision.

Finally, we simulate the reverse vortex case using the standard level set method (without

mass loss fix) for a reduced time period of T = 4. The grid size is 256× 256. The interface
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Table 3.1. Comparison of relative geometric Eg and volume Ev errors at the final time instant
using standard level set method (no mass loss fix) and level set method with mass loss fix for the

reverse vortex problem. Three grid sizes are considered.

Errors Method 32×32 64×64 128×128 256×256

Eg
no fix 5.6274×10−1 1.9812×10−1 6.5218×10−2 9.1636×10−3

fix 4.7861×10−1 2.0243×10−1 6.3858×10−2 9.6954×10−3

Ev
no fix 4.8166×10−1 2.3117×10−2 2.9920×10−2 1.0634×10−3

fix <×10−16 2×10−16 <×10−16 2×10−16

Figure 3.11. Error in relative volume for the reverse vortex test with T = 4 s for the no mass
loss fix.
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rotates counterclockwise until t = 2, at which point it reverses motion. By reducing the time

period, the interface does not thin out excessively and break. During the second half of the period,

the interface follows a “reversible” path. Fig. 3.11 illustrates the relative volume change of the

fluid enclosed by the interface over time. As can be seen from the figure, the level set method

exhibits a very low volume error at t = T = 4 (specifically ∆V/V0 = 2.04×10−5). Based on this,

we can confirm Eq. (2.10). It is generally not possible to find time intervals ∆t where mass loss

errors are low with the standard level set method. Many practical problems have a two-phase

interface that breaks, making it impossible to follow a reversible path to achieve a net normal

displacement.

Bubble rise

In this section, we simulate the rise of a two-dimensional bubble in water due to buoyancy,

which tests the coupling between the level set method and the flow solver. The density and

viscosity of air (bubble) are ρa = 1 kg/m3 and µa = 0.1 Pa·s. Water density and viscosity are ρw

= 1000 kg/m3 and µw = 10 Pa·s, respectively. At t = 0 s, the bubble’s center is located at (0.5,

0.5) m and its diameter is D = 0.5 m; see Fig. 3.12. There are two important non-dimensional

numbers for this problem, the Reynolds number and the Eötvös number, which are defined as

Re =
ρwg1/2D3/2

µw
and Eo =

ρwgD2

σ
(3.30)

Here, g is the acceleration due to gravity and σ is the surface tension coefficient. The values

for non-dimensional numbers are Re = 35 and Eo = 125. We use the continuum surface tension

model of Brackbill et al. [51] also used in [33] to define the volumetric surface tension force in

terms of the level set field.

fs = σκc∇C̃ (3.31)
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in which σ is the uniform surface tension coefficient, κc is the curvature of the interface computed

from the signed distance function as

κc =−∇ ·n =−∇ · ∇φ

||∇φ ||
(3.32)

n is the unit normal to the surface, and C̃ is a mollified version of the Heaviside function H̃ that

ensures the surface tension force is applied only near the zero level set [52]. The computational

domain is discretized with uniform grid size of 256× 512. A uniform time-step size of ∆t =

10−3 s is used.

Figure 3.12. Schematic of the bubble rise test case.

Fig. 3.13, compares the evolution of the bubble interface shape at time instances T = 1, 2,

3, 4, and 5 for the without and with mass loss fix method. The time is non-dimensionalized as

T = D/Ug, where, Ug =
√

gD is the gravitational velocity. At time T = 1, the bubble starts rising

and forms a rounded lower end. This rounded lower end grows as the bubble moves upwards.

Further due to large deformation of the bubble, it starts to break off from the lower ends into

small bubbles. Clearly, these small bubbles are seen to vanish over time in the no mass loss fix
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case, and lose mass significantly. However, with the mass loss fix case, the small bubbles break

off from the large bubble and do not vanish as the simulation progresses in time.

Figure 3.13. Comparison of evolution of bubble interface shape at different time instances for
the no mass loss fix and with mass loss fix cases. The time instances are at T = 1, 2, 3, 4, and 5.

Next, in Fig. 3.14, we compare the present mass loss fix method contour of the bubble at

T = 3 with the benchmark solution of Aland and Voigt [8]. Furthermore, the temporal evolution

of the vertical coordinate of the center of mass of the bubble, calculated using Eq. (3.33), is

shown in Fig. 3.15. The comparison is done between the no mass loss fix, the mass loss fix

and Hysing et al. [53]. The results are in good agreement and prove that the dynamics are not

affected with the implementation of our mass preserving method.

ycom =

∫
Ω

yH(−φ)dΩ∫
Ω

H(−φ)dΩ
(3.33)

The Figs. 3.16(a) shows the normalized value of the shift ε in the level set applied after

each time-step to adjust for the mass that is lost after the reinitialization step. The normalized
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Figure 3.14. Comparison of the bubble shape for present mass loss fix method, and benchmark
solution of Aland and Voigt et al. [8] at T = 3.

Figure 3.15. Temporal evolution of the Vertical center of mass position of the bubble.

values are of the order of 10−3. Also, Fig. 3.16(b) shows the relative error in the bubble volume

over time are seen to be of the order of 10−15. This clearly demonstrates that for a very small

shift in the level-set contours, our mass preserving method can conserve mass upto machine

precision without losing on momentum conservation.

3.5.3 Three-phase flows: FSI

We test the performance of the approximate Lagrange multiplier method on problems

involving rigid bodies interacting with two-fluid interfaces in this section. The FSI problems

discussed here are relevant to ocean engineering. To accurately account for buoyancy forces
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(a) Normalized shift in the level set (b) Relative error in volume

Figure 3.16. (a) Temporal evolution of the normalized shift in the level set contours and (b)
relative error in volume of the bubble.

in these FSI problems, we conserve the heavier fluid volume. The volume of the union of

complementary phases (light fluid and solid) is also conserved.

Floating rectangular block problem

Ocean engineering problems in the literature typically consider wider domains when

studying fluid-structure interactions [31, 39, 54, 55]. There is little change in the mean water

level when a solid body interacts with the air-water interface in these large domains. Thus,

spurious mass/volume losses do not significantly affect FSI dynamics. To exaggerate the effects

of mass loss errors, we consider a relatively large rectangular block interacting with water inside

a relatively small tank. The solid’s density is half that of water and it is released from a small

distance above the air-water interface. Fig. 3.17 shows the problem setup schematic. Since the

domain is narrow, the water level rises appreciably at equilibrium. The rectangular block will be

half submerged at equilibrium if the domain is very wide. With narrow domains, this is not the

case. Using conservation of mass and Archimedes’ principles, the exact equilibrium position

of the rectangular block and air-water interface can be found analytically. Appendix Sec. A.1

provides the derivation.

Consider a 2D domain as shown in Fig. 3.17 with a rectangular block of height H =
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0.075 m and width W = 2H. This rectangular block is located with its center at (1.4H, 1.8H)

in the 2D domain of size 2.8H×2.8H. The origin O of the domain is at the lower left corner.

The initial water level is at 1.2H where, H = 0.075 m. The density of water is ρw = 1000

kg/m3 and viscosity is µw = 10−3 Pa·s and for air these values are ρa = 1 m3 and viscosity is

µa = 1.8× 10−5 Pa·s. The rectangular block has a density of ρs = 500 kg/m3 and fictitious

viscosity of µs equal to that of water. Only the vertical degree of freedom of the rectangular

block is free while others are locked. We simulate this problem on different softwares. We

compare the results obtained from our mass preserving level-set method with softwares that use

the inherently mass preserving volume of fluid (VOF) and smooth particle hydrodynamics (SPH)

method. The problem is simulated on four different codes: 1) our FD/BP solver that uses the

level-set method with mass preserving technique [43], 2) CONVERGE CFD software which uses

the VOF with the cut-cell method [56], 3) the ANSYS Fluent software which uses the VOF with

dynamic meshing [57], and 4) the DualSPHysics software which is a fully Lagrangian mesh-free

technique [58]. Our fictitious domain approach differs from the other numerical techniques in

that we allow the air-water interface to pass through the immersed solid, whereas the others do

not. The FD/BP approach in conjunction with the approximate Lagrange multiplier approach is

much easier to implement than the Cartesian cut-cells and/or moving meshes.

Figure 3.17. Schematic of the floating rectangular block problem.

To obtain respective converged FSI solutions, a grid convergence study is conducted with
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Table 3.2. Grid convergence test parameters ∆x in m, and ∆t in s for the half submerged
rectangle case.

Solver Parameters
Grid

Coarse Medium Fine

Present
h 7.5×10−4 5×10−4 3.75×10−4

∆tmax 7.5×10−5 5×10−5 3.75×10−5

CONVERGE CFD
h 10−3 7.5×10−4 5×10−4

∆tmax 10−4 10−5 10−4

ANSYS Fluent
h 10−3 7.5×10−4 5×10−4

∆tmax 10−3 10−2 7.5×10−3

DualSPHysics
h 2×10−3 10−3 5×10−4

∆tmax 10−2 10−2 10−2

each of the four numerical codes. In all four codes, adaptive time-stepping is used. Table 3.2

lists the grid cell size h and the maximum time step size ∆tmax which is also the maximum

allowable time-step during the simulation. The time-step size of the simulation is adjusted as

the rectangular block hits the water surface to keep the simulations stable. Fig. 3.18 shows the

block’s center of mass position over time as a function of grid size. Fig. 3.19 shows a comparison

of the converged results from the four solvers. The FD/BP method produces very similar heaving

dynamics as the other three solvers. An overly damped motion is predicted by DualSPHysics

at a later time, which is different from the predictions from the other three methods. Table 3.3

compares the equilibrium vertical center of mass position of the block with the analytical solution.

As can be observed, all codes predict the block’s equilibrium position correctly.

Table 3.3. Vertical center of mass position of the rectangle at equilibrium for various grid sizes
for present solver, CONVERGE CFD, ANSYS Fluent, and DualSPHysics software compared

with analytically calculated value.

Grid Present CONVERGE CFD ANSYS Fluent DualSPHysics Analytical
Coarse 0.1166 0.1168 0.1169 0.1208

0.1167Medium 0.1167 0.1167 0.1168 0.1199
Fine 0.1167 0.1168 0.1169 0.1184

The Fig. 3.20 presents the rectangle block for the present solver which shows the fictituous

air-water interface passing through the body, which means fluid is allowed to enter the solid
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body region. The air-water interface starts entering the solid body region around t = 4.5 s and

is seen to completely penetrate at much later time of t = 25 s. Fig. 3.20 contrasts sharply with

Fig. 3.41, which prevents the interface from entering the body. κ ≈ ∆t/ρs, and Kn = Kt = 1

are used to obtain physically correct dynamics. These penalty parameters are also proposed

in [40, 38, 59, 60].

Fig. 3.21 shows the fluid-structure interaction and the mesh around the bottom right

corner of the rectangle block at simulation time t = 0.06 s and t = 0.15 s for various softwares.

All the present solver simulations done in the grid convergence test are performed with the mass

loss fix method. In contrast to other predictions, DualSPHysics predicts an “inverted” wave near

the block at t = 0.06 s. This potentially unphysical behavior might be attributed to artificial

gaps arising from SPH kernel interactions between the water and solid material points of the

rectangular block and tank walls (as illustrated in Fig. 3.21). The DualSPHysics simulation was

configured based on accompanying online examples and guidelines provided in the software’s

user guide for ocean engineering problems.

Next, we examine the importance of conserving water mass/volume for this problem

using the FD/BP method. Fig. 3.22 shows how the block heaves with and without the mass los fix

(using medium grid resolution). Without the mass loss fix method, the rectangular block settles

in a different location. Fig. 3.23 shows the equilibrium position of the rectangular block achieved

after a very long period of time. Under static equilibrium conditions, the submerged portion of

the rectangular block without the mass loss fix method measures Y = 0.03757 m, while with

the mass loss fix method, it is Y = 0.03753 m. These values closely align with the analytically

calculated value of 0.03749 m (see Section A.1). The original level set method without the mass

loss fix must conserve (under grid refinement) the sum total of water volume outside and inside

the solid body. In this case, see Fig. 3.23(a) there is significant amount of mass of water that is

lost which can be seen by the decrease in water level. This loss occurs due to insufficient grid

refinement to accurately capture splashed water.

Without a volume conservation constraint, there is no distinction between real and ficti-
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(a) Grid convergence test for present solver (b) Grid convergence test for CONVERGE
CFD software

(c) Grid convergence test for ANSYS Fluent
software

(d) Grid convergence test for DualSPHysics
software

Figure 3.18. Vertical center of mass position of the rectangle vs time for various grid sizes for
(a) present solver, (b) CONVERGE CFD, (c) ANSYS Fluent, and (d) DualSPHysics software.

Figure 3.19. Comparison of dynamics of the rectangle block obtained from various softwares.

tious fluids. By imposing a volume conservation constraint on the actual fluid, the approximate

Lagrange multiplier method corrects the level set field at each time step. This can be observed

from Fig. 3.24(a), which shows the normalized value of the correction as a function of time.

Normalized correction values are in the order of 10−3, which is considerably smaller than the

68



(a) t = 4.5 s (b) t = 25 s

Figure 3.20. FSI of the rectangle block for the present solver showing air-water interface
passing through the solid body at (a) t = 4.5 s, and (b) t = 25 s.

cell size h = 0.0005 m. FSI dynamics are not affected by this subgrid level shift.

Fig. 3.24(b) shows the relative volume change for air, water and solid phases over time

when the mass loss fix method is applied. The target fluid volume, in this case water, is conserved

to machine precision. In addition, the sum of volumes of the remaining phases, i.e., air and block,

is also conserved to machine accuracy. From the results of the floating rectangular block we

conclude that our mass preserving level set method conserves mass with correct dynamics even

for problems with rigid bodies in the domain.

Half submerged cylinder

In this section, we simulate a similar case as done in Sec. 3.5.3 but the object dropped in

water here is a cylinder of radius R = 0.06 m. The reason for selection of the cylinder as an object

is that it has a non-linear relationship between the submerged volume and the rise in the water

level unlike the rectangular block considered in the previous section. The rise in water level for

this problem is solved analytically in the appendix Sec. A.2. This example tests the accuracy of

the approximate Lagrange multiplier method when dealing with complex geometries.

Fig. 3.25 shows the schematic of the problem setup. The center of the cylinder is located
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Figure 3.21. Fluid-structure interaction of the rectangle block at time t = 0.06 s and t = 0.15 s
for the present solver which uses the fully Eulerian approach with level set method on uniform
Cartesian grid, CONVERGE CFD which uses the VOF with the cut-cell method, ANSYS Fluent
uses VOF with dynamic meshing, and DualSPHysics which uses the fully Lagrangian mesh-free

technique.

Figure 3.22. Temporal evolution of the vertical center of mass of the rectangle block with and
without mass loss fix.
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(a) Without mass loss fix method, Y =
0.03757 m

(b) Mass loss fix method, Y = 0.03753 m

Figure 3.23. Static equilibrium position of the rectangular block after a very long time for (a)
without the mass loss fix method, and (b) the mass loss fix method.

at (1.75R,2R) in a box of size (3.5R,4R). The initial level of water is 1.5R. The cylinder is

allowed to move only in the vertical direction while the other degrees of freedom of the cylinder

are locked. First we do a grid converge study with three uniform grid sizes of 280×320 (Coarse),

420×480 (Medium), and 560×640 (Fine) which is equal to ∆x = 10−3 m, 7.5×10−4 m and

5×10−4 m, respectively, and the initial time steps for the present solver are the same as used

for floating rectangle case in Table 3.3. All simulations are performed with the mass loss fix

method. Fig. 3.26(a) shows the comparison of the temporal evolution of the vertical center of

mass position of the cylinder for the three grids. From the result we conclude that the medium

grid resolution is good enough for further studies. Next, we validate our dynamics, Fig. 3.26(b)

compares the dynamics of the medium grid with the dynamics obtained by CONVERGE CFD

software. The CONVERGE CFD simulation is conducted on a grid size of ∆x = 0.00075 m and

initial time step of 10−5 s. Table 3.4 shows the final equilibrium positions of the cylinder and

compares it with the analytically calculated value. Under grid refinement, the present solver’s

final equilibrium position approaches the analytical value. Also, the cut-cells are complex for

complex shaped objects like the cylinder for the CONVERGE CFD solver, hence the reason for

equilibrium values being off from the analytical value. The dynamics obtained using the present
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(a) Normalized shift in the level set (b) Relative error in volume

Figure 3.24. (a) Normalized shift in the level set after every time step, and (b) relative error in
volume of the various phases involved in the half submerged rectangle block problem.

solver are now validated with that obtained from CONVERGE CFD software. Fig. 3.27 shows

the fluid-structure interaction of the cylinder block at simulation time t = 0.01 s, t = 0.32 s, and

t = 1 s for the present solver.

Figure 3.25. Schematic of half submerged cylinder in water test case.

Table 3.4. Vertical center of mass position of the cylinder at equilibrium for various grid sizes
for the present solver, and medium grid for CONVERGE CFD compared with analytically

calculated value.

Grid Present CONVERGE CFD Analytical
Coarse 0.1179 -

0.1169Medium 0.1178 0.1162
Fine 0.1175 -
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(a) Grid convergence test (b) Dynamics compared for present solver and
CONVERGE CFD software.

Figure 3.26. (a) Temporal evolution of the vertical center of mass position of the cylinder. (b)
Comparison of the vertical center of mass position vs time for the present solver and

CONVERGE CFD simulations.

Figure 3.27. Fluid-structure interaction of the cylinder at time t = 0.1 s, t = 0.32 s, and t = 1 s
for the present solver.

Next, we compare the dynamics of the cylinder with and without the mass loss fix method

in Fig. 3.28. The dynamics without the mass loss fix method are highly irregular and the cylinder

settles in the wrong equilibrium position. Next, Fig. 3.29(a) shows the normalized value of the

shift applied to the level set field after every time step and is seen to be of the order of 10−3

which is at a subgrid level. The Fig. 3.29(b) shows the error in the relative volume of various

phases present in the domain vs time. The relative volume error for water is found to be of

zero. Also, it is seen if the volume of water is conserved, the volume of the remaining phases

present in the domain I.e. (Air + Cylinder) is also conserved. From the results presented above,

we conclude that the mass preserving method conserves mass of the target fluid with correct
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dynamics for complex shaped geometries in the computational domain.

Figure 3.28. Temporal evolution of the vertical center of mass of the cylinder with and without
mass loss fix.

(a) Normalized shift in the level set (b) Relative error in volume

Figure 3.29. (a) Normalized shift in the level set after every time step, and (b) relative error in
volume of the various phases involved in the half submerged cylinder problem.

Free fall of a 2D Wedge

We simulate the standard case of free fall of a 2D wedge dropping on air-water inter-

face [61, 62, 39] which is a standard benchmark problem in the ocean engineering literature.

The problem schematic is shown in Fig. 3.30. The size of the computational domain is taken to

be Ω = [0,10L]× [0,2.5L], where L = 1.2 m is the largest side of the wedge. The wedge angle

is θ = 25◦. the wedge is oriented in such a way that one of its vertex points downwards, see
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Fig. 3.30. The initial water depth is d = 1 m. The lower most vertex of the wedge is located at

(L/2,2.3) m. The density of water is ρw 1000 kg/m3 and viscosity is µw = 10−3 Pa·s. For air

these values are ρa = 1.2 kg/m3 and µa = 1.8×10−5 Pa·s. For the wedge density is ρs = 466.6

kg/m3 and its fictitious viscosity is set to that of water. The wedge is allowed to move only in the

vertical direction while its other degrees of freedom are constrained. This is a challenging test

case as large forces are generated when the wedge impacts the water surface which can cause

instabilities and incorrect dynamics [39, 54]. We simulate this problem to validate our mass loss

fix method for large domains that include rigid bodies.

Figure 3.30. Schematic of the 2D wedge problem.

First, we conduct a grid convergence test on the problem. We consider three uniform grid

sizes as shown in Table 3.5 with corresponding time-steps used. The Fig. 3.31(a) and 3.31(b)

compares the vertical center of mass position and the vertical velocity of the wedge, respectively

for the three grids resolutions. As can be seen from the plots, the medium grid size and the

corresponding time step size used are adequate to resolve the FSI dynamics of the freely falling

2D wedge. Next, we compare the medium grid resolution results with the 3D volume of fluid

simulations of Pathak et al. [61] and experimental results of Yettou et al. [62], in Fig. 3.32.

Fig. 3.32(a) compares the vertical center of mass position of the wedge as it falls from a certain

height and impacts on the free surface of water. Fig. 3.32(b) compares the vertical velocity of

the wedge. The magnitude of the vertical velocity component increases as the wedge falls freely

and reduces drastically once it hits the water surface. The dynamics are in good agreement with

the inherently mass preserving volume of fluid method simulations of Pathak et al. [61] and also
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with the experimental results of Yettou et al. [62]. Additionally, Fig. 3.33 presents the FSI when

the wedge impacts the air-water interface and the vorticies generated.

Table 3.5. Grid convergence test parameters for the free fall of 2D wedge on air-water interface.

Grid ∆x (m) ∆tmax (s)
Coarse 0.01 6.25×10−5

Medium 0.005 3.125×10−5

Fine 0.0025 1.5652×10−5

(a) Vertical displacement (b) Vertical velocity

Figure 3.31. Results for the grid convergence test for (a) vertical center of mass position, and
(b) vertical velocity of the 2D wedge.

(a) Vertical displacement (b) Vertical velocity

Figure 3.32. Comparison of (a) vertical center of mass position and (b) vertical velocity with
3D volume of fluid simulation of Pathak et al. [61] and Experimental results of Yettou et al. [62].
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(a) t = 0.8125 s (b) t = 0.8125 s

(c) t = 1 s (d) t = 1 s

Figure 3.33. FSI of the free falling 2D wedge impacting the air-water interface: (left) density
and (right) vorticity generated in the range -100 to 100 s−1.

Given the large computational domain used for this benchmark problem, we hypothesize

that maintaining a constant water volume is not essential for capturing the correct fluid-structure

interaction dynamics of the wedge impact. This is because the water level rise is expected to

be negligible, even at equilibrium. To verify this, we compare the wedge’s heave motion with

and without the mass loss fix method. As shown in Fig. 3.34, the dynamics remain identical.

Consequently, mass-conservative schemes, such as cut-cell methods or geometric volume of

fluid (which are also more challenging to implement), offer less advantage for these types of

problems. Their strengths are more evident in problems like those discussed before. Finally,

Figs. 3.35(a) and 3.35(b) illustrate the normalized correction and relative volume change for

different phases, respectively, when the mass-loss fix is applied. The normalized shifts are of

the order of 10−5 compared to the grid size and the relative error in volume for water is found

to be of the order of 10−16 which is machine precision. We also show that if the volume of the

water is conserved using our mass loss fix method, the volume of the remaining phase .I.e (Air +

77



Wedge) is automatically conserved and can be seen in Fig. 3.35(b).

(a) Vertical displacement (b) Vertical velocity

Figure 3.34. Comparison of (a) vertical center of mass position and (b) vertical velocity for
simulations results of no mass loss fix and with mass loss fix technique implementation.

(a) Normalized shift (b)

Figure 3.35. (a) Normalized shift vs time, and (b) relative error in volume of various phases
involved in the free fall of 2d wedge problem.

3D Vertical cylinder heaving at air-water interface

In this section, we show the capability of our FSI solver to simulate 3D problems with

adaptive mesh refinement and presented mass loss fix method. We simulate the dynamics of

a 1:20 scaled down version of a wave energy converter (WEC) device [63] which is a highly

potential renewable energy technology under continuous development [64]. We considered a
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vertical cylinder type point absorber device heaving on an air-water interface. The device heaves

due to interactions with the incoming sea waves simulated in a high-fidelity numerical wave

tank (NWT). The device absorbs the wave energy and converts it into electrical energy. For

optimization of the WEC device performance different control strategies can be implemented.

In our study, we do not consider the control system setup and just simulate the dynamics of the

device on regular sea waves which is the main idea of this problem. All boundaries of the tank

are modeled as stationary walls, except for the top boundary which is considered to be open

(zero pressure boundary condition). The schematic of the wave tank with the device is depicted

in Fig. 3.36. We refer this figure later in Chapter 5.

Figure 3.36. Schematic of the 3D vertical cylinder heaving at air-water interface.

The 3D computational domain is of size Ω= [0,3.145λ ]× [0,2.2d]× [0,12Rcyl] m where,

λ is the wavelength of the incoming sea wave, d = 2 m is the depth of water when no waves are

present and Rcyl = 0.25 m is the radius of the cylinder. The cylinder has a length of Lcyl = 0.8

m. The cylinder is considered to be half submergible in equilibrium position. The size of the

domain is selected based on authors experience on conducting studies on wave energy convertor

devices, see [55, 59, 60]. The origin O of the domain is located at the lower left corner. First

order Stokes waves [65, 66] also called regular water waves with wave height H = 0.1 m and

time period Tp = 1.5652 s are generated in the wave generation zone. These waves have a period

(or wavelength) to water depth ratio that classifies them as deep water waves. The Stokes waves
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satisfy the dispersion relation, which reads as

ω
2 = gκw tanh(κwd) (3.34)

where, ω = 2π/Tp is the wave frequency in rad/s, g = 9.81 m/s the acceleration due to gravity,

and κw = 2π/λ the wave number in rad/m. The water waves travel in the positive x direction and

are smoothly damped out at the right side of the tank in the wave damping zone after interacting

with the body, see Fig. 3.36. The wave generation zone is provided so that the waves reflected

from the device do not interact with the left boundary and cause instabilities in the simulation.

The wave damping zone on the right of the domain is provided to avoid the waves reflected from

the right boundary to travel in the negative x direction and affect the dynamics of the device

causing unphysical dynamics. The width of the wave generation zone is λ and that of the wave

damping zone is 1.5λ . The relaxation method [67] is used to smoothly generate and absorb

waves in the wave generation and damping zones. A vorticity damping zone is also provided

at the top boundary domain to damp out the vortices generated by the device that interact with

the top boundary. To implement the vorticity damping zone a damping force is added to the

momentum equation,

fd =−g(ȳ)u (3.35)

where, g(ȳ) = ρa(cos(π ȳ)+1)/(4∆t) is the smoothed damping coefficient, ρa = 1.225 kg/m3 is

the density of air, ∆t is the time step size of the solver, ȳ = (y− ymax)/∆d is the normalized y

coordinate, with ymax = 2.2d and ∆d = 4∆xcoarsest is the vorticity damping zone width. Initially,

the center of mass position of the vertical cylinder is at (λ +5Rcyl,d,6Rcyl). The density of water

is ρw = 1025 kg/m3, viscosity of water is µw = 10−3 Pa·s, and viscosity of air is µa = 1.8×10−5

Pa·s. For more details on the NWT implementation and wave generation, see [59, 60].

First, we perform a grid convergence study to determine the optimal grid spacing to

accurately resolve the dynamics of the device. Three grid sizes are considered to perform the
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grid convergence test: coarse, medium, fine, as listed in Table 3.6. The computational grid is

made up of a heirarchy of ` grid levels. The coarsest level has grid size of Nx×Ny×Nz cells

on the entire computational domain Ω. A sub-region on the coarsest grid level is then locally

refined (`−1) times by an integer refinement ratio of nref. The refining is done in such a way

that the regions of interest: the air-water interface and the WEC device are on the finest grid level

throughout the simulation. The grid spacing on the finest level is calculated as ∆x = ∆x0/n`−1
ref ,

∆y = ∆y0/n`−1
ref , and ∆z = ∆z0/n`−1

ref , where the ∆x0,∆y0, and ∆z0 are the grid spacing on the

coarsest levels. Fig. 3.37(a) shows the locally refined Cartesian grid with two grid levels with the

finest grid encompassing the air-water interface region and the 3D vertical cylinder. Fig. 3.37(b)

shows the wave structure interaction (WSI) at simulation time t = 12.9 s on regular water waves.

First order water waves are generated in the wave generation zone on the left side and travel

towards the right side. When the waves hit the cylinder it starts heaving. The temporal evolution

of the vertical displacement of the cylinder for the three grids is compared in Fig. 3.38(a) and the

vertical velocity is compared in Fig. 3.38(b) with the Boundary element method (BEM) results.

For more details on the BEM solver, see [60]. A medium grid resolution is seen to be good

enough to resolve the WSI accurately. We will use the medium grid resolution for further studies.

Table 3.6. Grid refinement parameters used for the grid convergence test for the vertical heaving
cylinder.

Parameters Coarse Medium Fine
nref 4 4 4
` 2 2 2

Nx 60 120 180
Ny 15 30 45
Nz 22 44 66

∆x0 = ∆y0 = ∆z0 (m) 0.2 0.1 0.0667
∆x = ∆y = ∆z (m) 0.05 0.025 0.0166

∆tmax (s) 5×10−3 2.5×10−3 1.5×10−3

Because the domain is large, we anticipate that the mass loss fix method is not crucial to

obtaining the correct WSI dynamics for the WEC device in this problem as well. Figs. 3.39(a)
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(a) Locally refined Cartesian grid (b) Vertical cylinder heaving under the action of regu-
lar water waves

Figure 3.37. (a) Locally refined grid for two grid levels for the 3D NWT, and (b) WSI of 3D
vertical cylinder on regular water waves in NWT at t = 12.9 s.

(a) Vertical dispacement vs time (b) Vertical velocity vs time

Figure 3.38. Temporal evolution of (a) vertical displacement and (b) vertical velocity of the
cylinder for three grid sizes: Coarse, Medium, and Fine on first order water waves of H = 0.1

m and Tp = 1.5652 s compared with the BEM simulation results.

and 3.39(b) compare the vertical center of mass position and velocity of the cylinder over time

with and without the mass fix. The results confirm that WEC dynamics remain the same with or

without the fix. Also, Fig. 3.40(a) shows the normalized shift in the level set field applied after

every time step. The normalization is done with respect to ∆x = 0.025 m, which is the finest grid

size for the medium grid resolution. The normalized values are of the order of 10−3 which is at a

subgrid level. Fig. 3.40(b) shows the relative error in volume for the various phases involved.
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The order of relative error in volume for the water phase is of the order 10−16. Also, the error in

the remaining phase .I.e (Air + cylinder) is of the order of 10−16. From the results it is concluded

that a small shift in the level set field which obeys the signed distance property, the mass of the

target fluid is conserved upto machine precision without the loss in accuracy in the dynamics.

(a) Vertical dispacement vs time (b) Vertical velocity vs time

Figure 3.39. Temporal evolution of (a) vertical displacement and (b) vertical velocity of the
cylinder comparison of without mass loss fix and with mass loss fix method implemented.

(a) Relative error in volume vs time (b) Normalized shift vs time

Figure 3.40. Temporal evolution of (b) relative error in volume of the various phases involved in
the domain and (a) the normalized shift in the level set applied at every time step.
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3.5.4 Brinkman penalty factor split into normal and tangential compo-
nents

In the Brinkman penalty method the permeability of the body needs to be low κ � 1 to

represent a non-porous body. In practice, while κ value is small, it does not approach machine

zero. This implies that the no-slip condition on the fluid-solid interface is only partially enforced.

The approach of κ to machine zero poses two issues:

1. the system of equations become stiff to solve; and

2. a no-slip condition in the tangential direction implies a stress singularity at the material

triple points.

Our recent paper describes a preconditioning strategy that overcomes the numerical

stiffness issue of the Brinkman penalization method: the fluid solver converges rapidly regardless

of κ . Therefore, issue #1 is not a concern with our implementation. The second issue is

unavoidable, and one must allow for tangential slip at the triple points. This is necessary for

the solid to move across/pierce the two fluid interfaces. The classical no-slip condition at the

material triple point breaks down as discussed in Huh and Scriven [68]. A question naturally

arises in light of issue #2 for the Brinkman penalization method: is it possible to impose different

amounts of slip in the normal and tangential directions? For example, no slip in the normal

direction and some slip in the tangential direction. Using numerical experiments, this section

explores this possibility.

A three phase FSI problem is simulated in which a rectangular block is released from a

small height above the air-water interface. Detailed information on the problem setup is provided

in the floating rectangular block case in Sec. 3.5.3, where we focus on the mass loss issues with

the level set method. We focus here on the dynamics of the block and the air-water interface

as a function of differential slip. This case is studied by splitting the Brinkman penalty force,
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(a) t = 0 s (b) t = 0.13679 s

(c) t = 0.136794 s (d) t = 0.13717 s

Figure 3.41. Three phase fluid-structure interaction of a rectangular block when the air-water
interface is not allowed to enter the solid body (Kn = 50,Kt = 1).
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described in Eq. (2.44) into normal and tangential components as

fc(x, t) =
χ(x, t)

κ
[Kn(ub(x, t)−u(x, t)) · (ns⊗ns)+Kt(ub(x, t)−u(x, t)) · (I− (ns⊗ns))] ,

(3.36)

in which, Kn and Kt are the normal and tangential penalty factors, respectively, and ns is the

unit normal to the solid surface. The splitting of the Brinkman force into normal and tangential

components is done in the fluid-solid interfacial zone. Inside the body, the penalty force reverts

to its original form. When Kn = 1 and Kt = 1, Eq. (3.36) reverts back to Eq. (2.44). We impose

a no-normal penetration condition by increasing the normal penalty factor to Kn = 50. The

tangential penalty factor is kept at Kt = 1. The large value of the normal penalty factor restricts

the air-water interface within the solid body. Fig. 3.41 displays very unphysical FSI dynamics

in this case, where the block appears to “ride the waves”. After being released, the rectangular

block bounces to a higher elevation and continues to rise.

Fig. 3.21 shows physically correct dynamics when both Kn and Kt are set to 1. The

air-water interface is thus allowed to enter the rectangle block. As long as the mass/volume

conservation constraint (of the actual fluid) is maintained, it is not a problem for the fluid to

penetrate into the solid region. It corresponds to the immersed formulation of the mass-preserving

level set method.

3.6 Conclusions

In this chapter, we presented the spatial and temporal discretization of the continuous

equations described in Chapter 2. We presented the fluid-structure coupling that uses the FD/BP

method. Next, we present the solution methodology that uses the projection preconditioner for

the monolithic solution of the volume penalized incompressible Navier-Stokes equations. The

preconditioner uses a projection algorithm that correctly accounts for the Brinkman penalty term

in pressure and velocity updates. Using the method of manufactured solutions, it is demonstrated

that the proposed preconditioner is scalable, second order spatially accurate, and a reasonable
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starting value for the permeability parameter is κ = ∆t/ρ is proposed.

Next, we simulate two-phase and three-phase stringent FSI problems and demonstrate

the effectiveness of the approximate Lagrange multiplier technique. We present relative error in

the volume of the target fluid for all the numerical test cases and show that mass is conserved

to machine precision. Further, we simulate a test case of a floating rectangular block and allow

the differential treatment of the Brinkman penalization factor. We demonstrate that this leads to

incorrect FSI dynamics, where the solid surface artificially repels the two-fluid interface. Our

technique is globally mass-preserving and not point-wise mass preserving. However, for the

study of ocean engineering applications, which is the aim of this work, average mass conservation

is sufficient for problems that involve small computational domain and no mass conservation is

required for problems with large computational domain.
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Chapter 4

Reactive Control Strategy for Inertial Sea
Wave Energy Converter (ISWEC) Device

In this chapter, we investigate the dynamics of the inertial sea wave energy converter

(ISWEC) device using fully-resolved computational fluid dynamics (CFD) simulations. Orig-

inally prototyped by the Polytechnic University of Turin, the device consists of a floating,

boat-shaped hull that is slack-moored to the sea bed. Internally, a gyroscopic power take-off

(PTO) unit converts the wave-induced pitch motion of the hull into electrical energy. The CFD

model is based on the incompressible Navier–Stokes equations and utilizes the fictitious domain

Brinkman penalization (FD/BP) technique to couple the device physics and water wave dynamics

which is presented in Chapter 2 and 3. A numerical wave tank is used to generate both regular

waves based on fifth-order Stokes theory and irregular waves based on the JONSWAP spectrum to

emulate realistic sea operating conditions. A Froude scaling analysis is performed to enable two-

and three-dimensional simulations for a scaled-down (1:20) ISWEC model. It is demonstrated

that the scaled-down 2D model is sufficient to accurately simulate the hull’s pitching motion and

to predict the power generation capability of the converter. A systematic parameter study of the

ISWEC is conducted, and its optimal performance in terms of power generation is determined

based on the hull and gyroscope control parameters. It is demonstrated that the device achieves

peak performance when the gyroscope specifications are chosen based on the reactive control

theory. It is shown that a proportional control of the PTO control torque is required to generate
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continuous gyroscopic precession effects, without which the device generates no power. In an

inertial reference frame, it is demonstrated that the yaw and pitch torques acting on the hull are

of the same order of magnitude, informing future design investigations of the ISWEC technology.

Further, an energy transfer pathway from the water waves to the hull, the hull to the gyroscope,

and the gyroscope to the PTO unit is analytically described and numerically verified. Additional

parametric analysis demonstrates that a hull length to wavelength ratio between one-half and

one-third yields high conversion efficiency (ratio of power absorbed by the PTO unit to wave

power per unit crest width). Finally, device protection during inclement weather conditions is

emulated by gradually reducing the gyroscope flywheel speed to zero, and the resulting dynamics

are investigated.

4.1 Introduction

Global warming is on the rise and is likely to breach the 1.5◦C limit in the coming

decades. It is imperative to switch to clean renewable energy, including hydro, solar, and wind,

in order to mitigate the effects of climate change and meet the growing energy demands. For

perspective, the United States generated 3.7 TWy (terawatt years 1) worth of energy in 2013,

making up about 20% of the world’s total energy production. Of this amount, only about 9%

or 0.33 TWy was generated from renewable sources. It is estimated that the US will produce

approximately 8.65 TWy by 2050 [69]. There is an ever-increasing need to invest in renewable

energy harvesting techniques in order to accelerate economic growth while maintaining a safe

and healthy planet Earth. This can be achieved, in part, through ocean energy, which remains a

largely untapped energy resource.

Ocean waves are a substantial source of renewable energy, with an estimated 2.11±0.05

TW available globally [70]. It is estimated that about 230 TWh/year of wave energy can be

extracted from the East Coast and about 590 TWh/year from the West Coast of the United States

alone. In spite of this abundantly available energy source, there is currently no commercial-
11 TWy = 8.76×1012 kWh.
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scale wave power operation that exists today. There are several unique challenges specific to

wave energy extraction processes, including hostile ocean environments, saltwater corrosion,

stochasticity of ocean and sea waves, and costly offshore wave farm setup. Nevertheless steady

progress is being made both in the design and engineering analyses of wave energy extraction

devices, which are known as wave energy converters (WECs). The testing of expensive WEC

devices, power take-off units (PTO) and control strategies to optimize their performance in

physical wave tanks is another challenge. Consequently, several WEC designs have been

proposed over the years after gaining popularity following the 1970s oil crisis. However unlike

wind turbines, an ultimate WEC architecture has not yet been identified by researchers.

(a) (b)

(c) (d)

Figure 4.1. The inertial sea wave energy converter (ISWEC) device developed by the Mattiazzo
Group at Polytechnic University of Turin. (a) ISWEC device freely floating in relatively calm sea
conditions. (b) Gyroscope casing mounted on the power take off (PTO) axis. The PTO system is
housed inside the hull. (c) Front and (d) side views of the ISWEC exhibiting pitching motion
during operation. Image courtesy of the Mattiazzo Group and Wave for Energy S.R.L., Turin.
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Numerical modeling of WECs is an efficient way to compare different designs and

control strategies. A widely popular modeling approach in WEC research is the boundary

element method (BEM) or its time-domain variant, the Cummins equation [71] based on the

linear potential theory (LPT) [65, 66] due to its simplicity, low computational cost, and flexibility

in simulating the wave structure interaction (WSI) of a variety of WEC devices and control

strategies. The linear models, which were created originally to model large sea vessels, ships, and

similar seakeeping applications, assume small body motion with respect to the wave amplitudes

and lengths. Additionally, inviscid, irrotational, and incompressible flows are assumed. The BEM

solvers perform exceptionally well for relatively calm sea states with small wave amplitudes.

Nevertheless, the assumptions upon which linear methods are based are severely challenged in

conditions of agitated seas or aggressive control. Additionally, BEM solvers use low-dimensional

dynamical models that do not provide insights into fluid dynamics resulting from fluid-structure

interaction (FSI), such as vortex shedding, wave breaking, and wave overtopping.

In recent years, models based on the non-linear potential flow theory (NLPT) have

been proposed [72, 73]. By simulating the actual free water surface and including large body

displacements, these models provide more accurate power estimates of the device than LPT-based

models. The NLPT-based models are computationally expensive and are not easily applicable

to the model-based control of WECs. An acceptable compromise, which is also sufficiently

accurate, is the partially non-linear BEM model, which accurately resolves the hydrodynamical

interactions between waves and devices [74, 75, 76, 77]. This can be accomplished by modifying

the wave excitation force in the linear time-domain Cummins equation. In particular, the wave

excitation or Froude-Krylov (FK) force is computed by integrating the incident wave pressure

force over an instantaneous wetted surface area instead of assuming it is stationary at its mean

equilibrium position. The Cummins equation-based WSI solver employing the non-linear Froude-

Krylov (NLFK) method is referred to as the BEM-NLFK solver, and its linear counterpart as the

BEM-LFK solver.

Although the NLPT-based models are more accurate than those based on LPT, they still
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do not account for the viscous phenomenon or other major hydrodynamical non-linearities,

such as wave-breaking and vortex shedding. Computational fluid dynamics (CFD) provides the

most accurate description of WSI of WECs [55, 59, 73, 78, 79, 80]. Some groups have recently

begun performing control-integrated CFD simulations of WEC devices. These studies, however,

are mostly limited to classical control laws, such as reactive control (also called proportional-

derivative control) or latching control (also called phase control or bang-bang control); see for

example [78, 81, 82, 83]. Agamloh et al. [78] performed CFD simulations of a cylindrical buoy,

in which the PTO was modeled as an ideal linear damper to generate a control force proportional

to the device velocity, that is, the derivative control law. In [78], the optimal damping coefficient

was estimated offline and kept constant throughout the simulation. To accurately capture the

motion of the body, their CFD technique remeshed the domain at every time step. Giorgi et

al. [82] used the latching control strategy for a 2D heaving cylinder subject to regular waves

and compared BEM-LFK and CFD solvers. This is the first paper to implement a latching

control for a WEC device within a CFD framework. The authors computed the optimal latching

period offline using a combination of analytical techniques and free decay tests of the WEC

device in the CFD-based numerical wave tank (NWT). According to Giorgi et al. [82], the

BEM-LFK solver overestimates heave amplitude (and therefore power production) compared to

the CFD solver. Recently, Windt et al. [83] compared the performance of a heaving WEC using

BEM-LFK and CFD solvers. The predictions for three controllers were compared: (1) classical

resistive (derivative) control; (2) classical reactive (proportional-derivative) control; and (3)

moment-matching optimal control [84]. As for the resistive and reactive controllers, their optimal

coefficients/gains were computed offline and kept constant throughout the simulation, while

the moment-matching controller used a pre-computed/offline optimal control force sequence.

Similarly to Giorgi et al., Windt et al. also found that the BEM-LFK solver over-predicts power

absorption of the WEC device (for all three controllers).

This chapter and the next, we primarily focus on the development of WEC simulation

infrastructure and test various control strategies. In this work, first we perform a comprehensive
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study of the inertial sea wave energy converter (ISWEC) device prototyped by Polytechnic

University of Turin [85, 86, 87] using high-fedility simulations using our developed CFD solver

based on the multiphase fictitious domain Brinkman penalization (FD/BP) technique as described

in Chapter 2. In comparison with body conforming grid techniques that have previously been used

to simulate WEC dynamics, the FD/BP method is computationally efficient, since it eliminates

the need to remesh the domain to account for body motion. To accurately resolve the wave and

WEC dynamics in the specific regions of interest, we also make use of locally refined Cartesian

grids. As a result, the computation costs of 3D simulations are low. We consider a more realistic

operating conditions for the WEC device by using a numerical wave tank (NWT) to generate

both regular and irregular water waves which was not done in previous studies [82, 88].

4.2 Wave dynamics

This section describes the types of waves, both regular and irregular generated in the

NWT to simulate the WEC device dynamics.

4.2.1 Regular sea waves

First order waves

First-order Stokes waves, or regular waves, are simple harmonic waves of height H , time

period T , and wavelength λ [65, 66]. Assuming that the waves travel in the positive x-direction,

the wave elevation η(x, t) from the still water surface at a depth of d above the sea floor is

η(x, t) =
H

2
cos(κwx−ωt), (4.1)

in which κw = 2π/λ is the wavenumber and ω = 2π/T is the angular wave frequency. The

first-order Stokes wave satisfies the dispersion relation given by

ω
2 = gκw tanh(κwd), (4.2)

93



which relates the wave frequency ω to wavenumber κw and water depth d. Eq. (4.2) is a

transcendental equation that requires an iterative procedure to calculate κw for given ω , or vice

versa. Instead, we use an explicit relationship between these quantities that is accurate enough

for practical purposes at all water depths [89]:

κwd ≈ Γ+β 2 (coshβ )−2

tanhβ +β (coshβ )−2 , (4.3)

in which β = Γ(tanhΓ)−
1
2 and Γ = ω2d/g.

As the waves travel along the ocean or sea surface, they carry kinetic and potential

energy—this energy is partially absorbed by the WEC device. The time-averaged wave power

per unit crest width carried by the regular waves in the direction of propagation is given by [65]

Pwave =
1
8

ρwgH 2cg, (4.4)

in which cg is the group velocity of the waves, i.e., the velocity with which wave energy is

transported and it is given by the relation

cg =
1
2

λ

T

(
1+

2κwd
sinh(2κwd)

)
. (4.5)

In the deep water limit, where d > λ/2 and κwd→ ∞, Eqs. (4.2) and (4.5) become

ω
2 = gκw or λ =

gT 2

2π
and cg =

λ

2T
. (deep water limit) (4.6)

Substituting Eq. (4.6) into Eq. (4.4), the wave power per unit crest width in the deep water limit

is expressed as

Pwave =
ρwg2H 2T

32π
≈H 2T kW/m, (deep water limit) (4.7)
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in which the constant numerical factor ρwg2/32π ≈ 103 when all quantities are evaluated in SI

units.

Fifth order waves

We use Fenton’s fifth-order wave theory [90] to generate regular waves of height H ,

time period T , and wavelength λ . According to fifth-order Stokes theory and assuming that the

waves propagate in the positive x-direction, the wave elevation η(x, t) from a still water surface

at depth d above the sea floor is

η(x, t) = sη1(x, t)+ s2
η2(x, t)+ s3

η3(x, t)+ s4
η4(x, t)+ s5

η5(x, t), (4.8)

in which, s = κwH /2 is the wave steepness, η1 = κ−1
w cos(ωt−κwx) is the basic harmonic

component, κw = 2π/λ is the wavenumber, and ω = 2π/T is the wave frequency. The remain-

ing terms in Eq. (4.8) are higher-order corrections to linear wave theory, whose details are given

in [90]. The velocity and pressure solutions to the fifth-order Stokes wave can also be found in

Fenton [90].

The (fifth-order) Stokes waves also satisfy the dispersion relationship given by Eq. (4.2).

To calculate κw given ω , or vice versa, the explicit equation (4.3) can be used with sufficient

accuracy in all water depth regimes [89].

4.2.2 Irregular sea waves

A realistic sea state consists of irregular waves. Mathematically, an irregular wave can be

described as a linear superposition of a large number of (first-order) regular wave components.

Using the superposition principle, the sea surface elevation can be expressed as

η(x, t) =
Nw

∑
i=1

ai cos(κwix−ωit +θi), (4.9)
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in which Nw is the number of (regular) wave components. Each wave component has its own

amplitude ai = Hi/2, angular frequency ωi, wavenumber κwi, and a random phase θi. Each

component also satisfies the dispersion relation between κwi and ωi given by Eq. (4.2). The

random phase θi follows the uniform distribution in the interval [0,2π].

The linear superposition of first-order waves implies that the total energy carried by the

irregular wave is the sum of wave energy carried by the individual wave components. To describe

the energy content of irregular waves, a continuous wave spectral density function S(ω) is used,

wherein the number of wave components Nw tend to infinity and an infinitesimal small frequency

bandwidth dω separates the wave components. The area under the S(ω) versus ω curve gives

the total energy of the irregular wave, modulo the factor ρwg. Discretely, the wave frequencies

are chosen at an equal interval of ∆ω and the wave spectral density function S(ω) approaches

zero for frequencies outside the narrow bandwidth. In this work, we consider only singly-peaked

wave spectra with S(ω) peaking at a particular frequency ωp. Each wave component of an

irregular wave has a wave amplitude that is related to the spectral density function by

ai =
√

2 ·S(ωi) ·∆ω . (4.10)

We consider the Joint North Sea Wave Project (JONSWAP) wave spectrum and two-parameter

Bretschneider spectrum [65], which is suited for open seas where our WEC device is considered

to be located. The JONSWAP wave spectrum is given by the relation

S(ω) =
320 ·H 2

s
T 4

p
·ω−5 · exp

(
−1950
T 4

p
·ω−4

)
· γA, (4.11)

in which Hs is the significant wave height, and Tp is the peak time period, i.e., the time period
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(a) The JONSWAP wave spectrum (b) The Bretschneider wave spectrum

Figure 4.2. Wave spectrum generated for (a) JONSWAP for wave with Hs = 0.1 m, and Tp = 1
s (ωp = 2π rad/s) and (b) Bretschneider for wave with Hs = 0.15 m and Tp = 1.7475 s

(ωp = 2π/Tp = 3.5955 rad/s.

with the highest spectral peak (see Fig. 4.2(a)). The remaining parameters in Eq. (4.11) are:

γ = 3.3 (peakedness factor) (4.12)

A = exp

−( ω

ωp
−1

σ
√

2

)2


ωp =
2π

Tp
(angular frequency at spectral peak) (4.13)

σ =

0.07 if ω ≤ ωp

0.09 if ω > ωp

(4.14)

The Bretschneider spectrum S(ω) is based on the significant wave height Hs and the

peak wave time period Tp and it reads as

S(ω) =
173 ·H 2

s
T 4

p
·ω−5 · exp

(
−692
T 4

p
·ω−4

)
. (4.15)

The peak wave time period Tp is the time period with the highest spectral density in the spectrum

(see Fig. 4.2(b)).
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For irregular waves the mean wave power per unit crest width is calculated as

Pwave = ρwg
(∫

∞

0
S(ω) dω

)
cg ≈ ρwg

(
Nw

∑
i=1

1
2

a2
i

)
cg (4.16)

in which the group velocity cg is calculated from Eq. (4.5) using the significant wavelength and

peak time period of the spectrum. In the deep water limit, Eq. (4.16) becomes

Pwave ≈ 0.49H 2
s Tp kW/m. (deep water limit) (4.17)

4.2.3 Wave steepness

The wave steepness (s) defined in Eq. (4.8), which gives a relation between the wave

height H and wavelength λ . Consider the incoming wave as a regular (simple harmonic) wave

with elevation η(x, t) given by

η(x, t) = a · cos(κwx−ωt), (4.18)

where a = H /2, is the wave amplitude. Differentiating the above equation with respect to x, we

obtain
dη(x, t)

dx
= a · (−κw sin(κwx−ωt)). (4.19)

The maximum wave steepness (i.e. the slope) is obtained when sin(κwx−ωt) =−1,

(
dη(x, t)

dx

)
max

= κw ·
H

2
= s. (4.20)

Finally, the maximum wave steepness angle is then given by

δs = tan−1
(

κwH

2

)
= tan−1

(
πH

λ

)
(4.21)
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4.3 Numerical wave tank (NWT)

The wave-structure interaction of the WEC device is simulated in a numerical wave tank

(NWT) as shown in Fig. 5.4. Water waves are generated at the left boundary of the domain using

Dirichlet boundary conditions for the velocity components. The waves traveling in the positive

x-direction are reflected back towards the inlet side from the device surface and also from the

right boundary of the domain. This results in wave distortion and wave interference phenomena,

which reduces the “quality” of waves reaching the device to study its performance. Several

techniques have been proposed in the literature [91, 92, 93] to mitigate these effects, including

the relaxation zone method [67], the active wave absorption method [94, 95, 96], the momentum

damping method [97, 98], the viscous beach method [99], the porous media method [100, 101],

and the mass-balance PDE method [102]. In this work, we use the relaxation zone method

at inlet and outlet boundaries. The purpose of the relaxation zone near the channel inlet (the

wave generation zone) is to smoothly extend the Dirichlet velocity boundary conditions into

the wave tank up to a distance of one wavelength, so that the reflected waves coming from the

ISWEC device do not interfere with the left boundary. In contrast, the relaxation zone near the

right boundary (the wave damping zone) smoothly damps out the waves reaching the domain

outlet near the right end. The wave damping zone is taken to be two wavelengths wide in our

simulations. More details on the implementation of the relaxation zone method and level set

based NWT can be found in [103].

We impose zero-pressure boundary condition at the channel top boundary, zmax = 2.75d.

To mitigate the interaction between shed vortices (due to the device motion) and the top boundary

of the channel, we use a vorticity damping zone to dissipate the vortex structures reaching the

boundary; see Fig. 5.4. The vorticity damping zone is implemented in terms of a damping force

fd in the momentum equation

fd =−g(ỹ)u, (4.22)
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Figure 4.3. Numerical wave tank (NWT) schematic showing wave generation, wave damping,
and vorticity damping zones. The ISWEC device is placed in the working zone of length 7λ .

in which, g(ỹ) = ρair (cos(π ỹ)+1)/(4∆t) is the smoothed damping coefficient, ρair is the density

of the air phase, ∆t is the time step size, ỹ = (y− ymax)/∆d is the normalized y coordinate, and

∆d is the vorticity damping zone width, which is taken to be six cells wide in our simulations.

4.4 ISWEC device technology

The ISWEC device consists of a floating, boat-shaped hull that is slack-moored to the

seabed, which internally houses a gyroscopic power take off unit (PTO); see Fig. 4.1. The

ISWEC can be classified as a pitching point-absorber whose dimensions are shorter than the

length of the water waves. The device utilizes precession effects produced from the spinning

gyroscope and pitching hull to drive a sealed electric generator/PTO. The rotational velocity of

the spinning gyroscope and the PTO control torque act as sea-state tuning parameters that can

be optimized/controlled (in real-time or via remote human-machine interfaces) to enhance the

conversion efficiency of the device. Since all crucial electro-mechanical parts are sealed within

the hull, the ISWEC is a robust and cost-effective wave energy conversion technology. Due to its

simple design, devices can be produced by retrofitting abandoned ships, which can potentially

reduce manufacturing costs and lead to easy adoption of the technology. Moreover, such devices

could be lined up end-to-end just offshore, which would not only ensure maximal wave energy

absorption but also protection of the coastline.

Although ISWEC devices have only recently been prototyped since their inception in
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2011 by Bracco et al. [85, 104, 105, 106, 107], their design and performance has been of much

interest to the greater research community in the past few years. Medeiros and Brizzolara [108]

used the boundary element method (BEM) based on linear potential flow equations to simulate

the ISWEC and evaluate its power generation capabilities as a function of flywheel speed and

derivative control of the PTO torque. They also demonstrated that the spinning gyroscopes

can induce yaw torque on the hull. Faedo et al. [84] used an alternative moment-matching-

based approach to model the radiation force convolution integral, thereby overcoming the

computational and representational drawbacks of simulating ISWEC devices using the BEM-

based Cummins equation [84]. Although these lower fidelity methods are able to simulate

ISWEC dynamics at low computational costs, they are unable to resolve highly nonlinear

phenomena often seen during practical operation such as wave-breaking and wave-overtopping.

Unsurprisingly, the Turin group has extensively used carefully calibrated (with respect to wave

tank experiments) BEM models to refine and optimize their preliminary designs [109, 110, 111,

112]. In contrast, simulations based on the incompressible Navier-Stokes (INS) equations are

able to resolve the wave-structure interaction (WSI) quite accurately and without making small

motion approximations employed by low-fidelity BEM models [113, 114]. However, fully-

resolved INS simulations are computationally expensive and typically require high performance

computing (HPC) frameworks. In a preliminary study, Bergmann et al. enabled fully-resolved

simulation of the ISWEC’s wave-structure interaction by making use of an INS-based flow

solver coupled to an immersed boundary method [88]. The wave propagation in their channel

followed the canonical “dam-break” problem setup [103] — a column of water is released from

one end of the channel, which is then reflected from the opposite end, and so-forth. Although

such simple wave propagation models are not suitable to study the device performance at a real

site of operation, Bergmann et al. were nevertheless able to capture key device dynamics in their

simulations. In addition to these research efforts, industry has become interested in piloting and

manufacturing these devices. Recently, the multinational oil and gas corporation Eni installed an
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ISWEC device off the coast of Ravenna 2 near their offshore assets. It is clear that there is a need

to further investigate ISWEC dynamics and explore the design space to enable rapid adoption of

this technology, possibly through an industry-academic partnership.

In this section, we perform a comprehensive study of the ISWEC device using high

fidelity simulations from the developed fictitious domain Brinkman penalization (FD/BP) method

based on the incompressible Navier-Stokes equations [38] described in Chpater 2. Although the

methodology is similar to the work of Bergmann et al., we consider more realistic operating

conditions by using a numerical wave tank (NWT) to generate both regular and irregular water

waves. We conduct a systematic variation of control parameters (i.e. PTO control torque,

flywheel moment of inertia and speed, hull length) to determine the optimal performance of the

device (in term of power generation) and study its dynamics as a function of these parameters. We

also provide a theoretical basis to obtain the optimal control parameters for the device’s design

at a specific installation site. Moreover, we analytically describe an energy transfer pathway

from water waves to the hull, the hull to the gyroscope, and the gyroscope to the power take

off (PTO) unit, and verify that it is numerically satisfied by our simulations. A Froude scaling

analysis is performed to reduce the computational cost of simulating a full-scale ISWEC device,

which is used to define the geometry and flow conditions for both two- and three-dimensional

simulations of a scaled down 1:20 ISWEC device. Additionally, we verify that the 2D ISWEC

model produced similar dynamics to the 3D model, thereby allowing us to obtain accurate results

at reduced simulation cycle times. We also simulate a possible device protection strategy during

inclement weather conditions and study the resulting dynamics.

4.4.1 ISWEC dynamics

Externally, the ISWEC device appears as a monolithic hull that is slack-moored to the

seabed. Internally, the device houses a spinning gyroscopic system that drives a sealed electric

generator. The pitching velocity of the hull is mainly responsible for converting the wave motion

2https://www.eni.com/en-IT/operations/iswec-eni.html
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(b)

Figure 4.4. (a) ISWEC device schematic and the main rotational velocities of the system: hull’s
pitch velocity δ̇ , gyroscope’s angular velocity φ̇ , and the induced precession velocity of the PTO

shaft ε̇ . (b) Hull and gyroscope reference frames.

into electrical output. To simplify the model and discussion, the other remaining degrees of

freedom of the hull are not considered in this study. As the device operates, the combination

of wave induced pitching velocity δ̇ and spinning gyroscope/flywheel velocity φ̇ induces a

precession torque in the ε coordinate direction 3. The wave energy conversion is made possible

by damping the motion along the ε-direction by the electric generator, which is commonly

referred to as the power take-off (PTO) unit. Fig. 4.4(a) shows the schematic of the ISWEC

device, including the external hull, ballast, gyroscope, and PTO unit.

To derive the three-way coupling between the waves, hull, and gyroscopic system we

consider an inertial reference frame xyz attached to the hull and a rotating non-inertial reference

frame x1y1z1 attached to the gyroscope as shown in Fig. 4.4(b). The gyroscope reference frame

is obtained from the hull reference frame by two subsequent finite rotations δ and ε . The origin

of both reference frames is taken to be the center of gravity of the device.

In the absence of waves, δ = 0 and ε = 0, and the flywheel rotates with a constant angular

velocity φ̇ along the vertical z1-axis. This configuration is taken to be the initial position of the

device, in which the two reference frames also coincide. When the first wave reaches the hull
3Here, the definitions of δ , φ , and ε are different from that mentioned in Chapters 2 and 3
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location, it tilts the device by an angle δ and the hull attains a pitching velocity δ̇ along the

x-axis. The gyroscope structure rotates by the same angle δ about the x- (or the x1-) axis. The

rotated configuration of the x1y1z1 reference frame is shown by dashed lines in Fig. 4.4(b). As

the hull begins to pitch, the gyroscope is subject to two angular velocities: δ̇ along x1-axis and φ̇

along z1-axis. This velocity combination produces a precession torque in the third orthogonal

direction y1. This induced torque precesses the gyroscope by an angle ε about the y1-axis. As a

result of the two subsequent rotations, the gyroscope frame attains an orientation shown by bold

red lines in Fig. 4.4(b).

The evolution of the gyroscope’s dynamics results in a gyroscopic torque M G =

(Mx1,My1,Mz1), which can be related to the rotational kinematic variables using conservation

of angular momentum. The angular velocity ΩΩΩ1 of the gyroscope reference frame and the angular

velocity ΩΩΩG of the gyroscope are both written in the x1y1z1 coordinate system and their evolution

can be expressed in terms of δ , ε , and φ̇ as

Ω1 = δ̇ cosε î1 + ε̇ ĵ1 + δ̇ sinε k̂1, (4.23)

ΩG = δ̇ cosε î1 + ε̇ ĵ1 +(δ̇ sinε + φ̇) k̂1, (4.24)

in which î1, ĵ1, and k̂1 are the unit vectors along x1-, y1-, and z1-directions, respectively. The rate

of change of the gyroscope’s angular momentum with respect to time is related to the gyroscopic

torque M G by

M G =
dHG

dt
, (4.25)

in which HG = IGΩG is the angular momentum of the gyroscope and IG is the inertia matrix of
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the gyroscope. In the x1y1z1 reference frame, IG reads as

IG =


Ix1x1 0 0

0 Iy1y1 0

0 0 Iz1z1

≈


I 0 0

0 I 0

0 0 J

 . (4.26)

The flywheel structure, including its support brackets etc., is typically designed such that

Ix1x1 ≈ Iy1y1 = I and Iz1z1 = J ' I. Using Eqs. (4.24) and (4.26), the angular momentum of the

flywheel is given by

HG = Iδ̇ cosε î1 + Iε̇ ĵ1 + J(δ̇ sinε + φ̇) k̂1. (4.27)

Differentiating Eq. (4.27) with respect to time in the inertial reference frame involves computing

time derivatives of the unit vectors î1, ĵ1, and k̂1:

dî1
dt

= Ω1 × î1 =−ε̇ k̂1 + δ̇ sinε ĵ1, (4.28)

d ĵ1
dt

= Ω1 × ĵ1 = δ̇ cosε k̂1− δ̇ sinε î1, (4.29)

dk̂1

dt
= Ω1 × k̂1 =−δ̇ cosε ĵ1 + ε̇ î1. (4.30)

Finally after some algebraic simplification, a component-wise expression for the gyroscopic

torque M G is obtained

M G =


Mx1

My1

Mz1

=


Iδ̈ cosε +(J−2I) δ̇ ε̇ sinε + Jφ̇ ε̇

Iε̈ +(I− J)δ̇ 2 sinε cosε− Jφ̇ δ̇ cosε

Jδ̈ sinε + Jδ̇ ε̇ cosε + Jφ̈

 . (4.31)

The precession velocity ε̇ of the generator shaft is damped using a proportional derivative

(PD) control law implemented in the PTO unit. The PD control torque can be modeled as a
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spring-damper system with the following form

Mε = M G · ĵ1 =−kε− cε̇. (4.32)

Here, k is a spring-like stiffness parameter and c is a damper-like dissipation parameter that can

be adjusted in real-time (usually through feedback) to enhance the conversion efficiency of the

device when the incoming waves change their characteristics. The wave power absorbed by the

PTO unit (as a function of time) is

PPTO = cε̇
2. (4.33)

Therefore, the precession component of the gyroscopic torque is balanced by the PD control

torque, My1 = Mε , which is also responsible for extracting the wave energy. The other compo-

nents Mx1 and Mz1 of the gyroscopic torque are balanced/sustained by the hydrodynamic torques

acting on the hull and the subsequent hull-gyroscope interactions. To understand this balance,

we consider the hydrodynamic torque and motion of the hull about the pitch (x-direction) as

observed from the inertial reference frame xyz

Mhydro = IH
dδ̇

dt
+Mδ , (4.34)

in which Mhydro is the hydrodynamic torque acting on the hull, IH is the moment of inertia of

the hull, and Mδ is the projection of the gyroscopic torque on the x-axis:

Mδ = M G · î

= M G · (î1 cosε + k̂1 sinε)

= (J sin 2
ε + I cos 2

ε)δ̈ + Jφ̇ ε̇ cosε +2(J− I)δ̇ ε̇ sinε cosε + Jφ̈ sinε. (4.35)

From Eq. (4.34) it can be seen that the gyroscopic reaction Mδ acting on the hull opposes the

wave induced pitching motion. Similarly, a second reaction torque Mφ acts on the hull along the
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z-direction and opposes its wave induced yaw motion:

Mφ = M G · k̂

= M G ·
[
(k̂1 cosε− î1 sinε)cosδ + ĵ1 sinδ

]
=
[
(J− I)δ̈ sinε cosε + δ̇ ε̇[J(cos2

ε− sin2
ε)+2I sin2

ε]− Jφ̇ ε̇ sinε + Jφ̈ cosε

]
cosδ

+
[
Iε̈ +(I− J)δ̇ 2 sinε cosε− Jφ̇ δ̇ cosε

]
sinδ (4.36)

In Sec. ??, we show that this yaw torque is the same order of magnitude as the pitch torque Mδ .

In practice, however, its contribution is partially cancelled out by the mooring system of the

device. Moreover, using an even number of gyroscopic units will cancel the yaw component

of the gyroscopic torque acting on the hull if each flywheel pair spins with equal and opposite

velocity, as described by Raffero [115]. Therefore, we do not consider the effect of Mφ on the

ISWEC dynamics in our (3D) model.

4.4.2 Power transfer from waves to PTO

To understand the power transfer from waves to the hull and from the hull to the PTO unit,

we derive the time-averaged kinetic energy equations of the ISWEC system. These equations

highlight the coupled terms that are responsible for wave energy conversion through the ISWEC

device.

First, we consider the rotation of the gyroscope around the PTO axis. The equation of

motion in the ε coordinate direction, as derived in the previous section is re-written below

Iε̈ +(I− J)δ̇ 2 sinε cosε− Jφ̇ δ̇ cosε = Mε =−kε− cε̇. (4.37)

Rearranging Eq. (4.37) with the approximation I ≈ J simplifies the equation to

Iε̈ + cε̇ + kε = Jφ̇ δ̇ cosε. (4.38)
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From the above equation, it can be seen that the product of the hull’s pitch velocity δ̇ and the

gyroscope’s angular velocity φ̇ yields a forcing term that drives the PTO motion. Multiplying

Eq. (4.38) by the precession velocity ε̇ and rearranging some terms, we obtain the kinetic energy

equation for the PTO dynamics

I
d
dt

(
ε̇2

2

)
+ cε̇

2 + k
d
dt

(
ε2

2

)
= Jφ̇ δ̇ ε̇ cosε. (4.39)

Taking the time-average of Eq. (4.39) over one wave period, the first and third terms on the left

hand side of the equation evaluate to zero. The remaining terms describe the transfer of power

from the hull to the PTO unit:

〈cε̇
2〉= 〈Jφ̇ δ̇ ε̇ cosε〉, (4.40)

in which 〈·〉 = 1
T

∫ t+T
t (.)dt represents the time-average of a quantity over one wave period

T 4. Here, 〈cε̇2〉 is the average power absorbed by the PTO, denoted P̄PTO, and 〈Jφ̇ δ̇ ε̇ cosε〉 is

the average power generated due to the gyroscopic motion through its interaction with the hull,

denoted P̄gyro. Similarly, the kinetic energy equation of the hull can be derived by multiplying

hull dynamics Eq. (4.34) by the pitch velocity δ̇

Mhydroδ̇ = IHδ̈ δ̇ +Mδ δ̇ . (4.41)

Under the assumptions I ≈ J and a constant gyroscope spinning speed, Mδ in Eq. (4.35)

simplifies to

Mδ = Jδ̈ + Jφ̇ ε̇ cosε. (4.42)

Using Eqs. (4.41) and (4.42), and rearranging some terms, we obtain

Mhydroδ̇ = IH
d
dt

(
δ̇ 2

2

)
+ J

d
dt

(
δ̇ 2

2

)
+ Jφ̇ δ̇ ε̇ cosε. (4.43)

4For irregular waves the time-average could be defined over one significant wave period.
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Taking the time-average of Eq. (4.43) over one wave period, the first and second terms on the

right hand side evaluate to zero, and the expression reads

〈Mhydroδ̇ 〉= 〈Jφ̇ δ̇ ε̇ cosε〉. (4.44)

Here, 〈Mhydroδ̇ 〉 is power transferred from the waves to the hull, denoted P̄hull, and 〈Jφ̇ δ̇ ε̇ cosε〉

is the same expression on the right side of Eq. (4.40). Hence, combining Eqs. (4.40) and (4.44),

we obtain an equation describing the pathway of energy transfer from waves to the PTO:

〈Mhydroδ̇ 〉︸ ︷︷ ︸
waves→hull

= 〈Jφ̇ δ̇ ε̇ cosε〉︸ ︷︷ ︸
hull→gyroscope

= 〈cε̇
2〉︸ ︷︷ ︸

gyroscope→PTO

, (4.45)

which is written succinctly as P̄hull = P̄gyro = P̄PTO. Eq. (4.45) is quantitatively verified for the

ISWEC model under both regular and irregular wave environments in Sec. 5.11.

4.4.3 PTO and gyroscope parameters

The energy transfer equation can be used to select the PTO and gyroscope parameters

that achieve a rated power of the installed device P̄R. From Eq. (4.45)

c =
P̄R

〈ε̇2〉
=

2P̄R

ε̇2
0
, (4.46)

in which ε̇0 is the amplitude of the precession velocity, expressed in terms of the amplitude of

the precession angle ε0 as ε̇0 = ε0ω . Here, we assume that all of the ISWEC components are

excited at the external wave frequency ω = 2π/T to achieve optimal performance. Based on

experimental data of real ISWEC devices [86, 87], we prescribe ε0 in the range 40◦ ≤ ε0 ≤ 80◦

to obtain the damping parameter c from Eq. (4.46). To prescribe the rest of the gyroscope

parameters, we make use of Eq. (4.40). Since this expression is nonlinear, we linearize it about

ε = 0◦ (a reasonable approximation for relatively calm conditions) to estimate the gyroscope
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angular momentum as

Jφ̇ =
cε0

δ0
, (4.47)

in which the amplitude of the hull pitch velocity δ̇0 = δ0ω , expressed in terms of the amplitude

of the hull pitch angle δ0, is used. Again based on the experimental data, we prescribe δ0 in the

range 2◦ ≤ δ0 ≤ 20◦, and φ̇ in the range 250 ≤ φ̇ ≤ 1000 RPM 5 to obtain the J value of the

gyroscope from Eq. (4.47). The I value of the gyroscope is set as a scaled value of J, i.e. I = γJ

where γ ≤ 1. We study the effect of varying γ in Sec. 4.7.2.

The only remaining free parameter is the PTO stiffness k used in the control torque. We

make use of reactive control theory [69] and prescribe k as

k = ω
2I, (4.48)

ensuring that the gyroscopic system oscillates at the wave frequency around the PTO axis. Using

the linearized version of Eq. (4.38), it can be shown that if the gyroscope oscillates with the

external wave forcing frequency, a resonance condition is achieved along the PTO axis and the

output power is maximized [69]. In this state, both the hull and gyroscopic systems oscillate at

the external wave frequency and their coupling is maximized.

4.4.4 Hull shape

The ISWEC’s external hull is a boat-shaped vessel, which we idealize by a half-cylinder

of length L, height H, and width W . For the actual device, a part of the outer periphery is

flattened out to ease the installation of mechanical and electrical parts near the bottom-center

location (see Fig. 4.5(b)). We neglect these geometric details in our model shown in Fig. 4.5(a).

The inside of the device is mostly hollow and the buoyancy-countering ballast is placed around

the outer periphery.

5This range of φ̇ is for the full-scale ISWEC device, which can be scaled by an appropriate factor for the
scaled-down model. See Sec. ?? for scaling analyses.
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The hull length L is a function of λ , the wavelength of the “design” wave at device

installation site. As analyzed by Cagninei et al. [86], the optimal hull length is between λ/3≤

L≤ λ/2 for an ISWEC device that is mainly excited in the pitch direction. The hull width W is

decided based on the rated power of the installed device P̄R, relative capture width (RCW) of the

device (or the device conversion efficiency) η , and wave power per unit crest width P̄wave. These

quantities are related through the expressions

W =
P̄R

η · P̄wave
and η = P̄PTO/P̄wave, (4.49)

in which P̄ denotes time-averaged power. Sec. ?? provides closed-form expressions of P̄wave for

both regular and irregular waves. For the 2D ISWEC model we use W = 1, which corresponds

to a unit crest width of the wave.

(a) Idealized ISWEC hull geometry (b) Experimental ISWEC hull geometry

Figure 4.5. ISWEC hull shapes.

4.4.5 Scaled ISWEC model and scaled hull parameters

Scaled ISWEC model

In order to reduce the computational cost of simulating a full-scale ISWEC device

operating in high Reynolds number (Re) regimes, we use Froude scaling [65] to scale the model

problem down by a 1:20 ratio. The Froude number (Fr) measures the resistance of a partially

submerged object moving through water and is defined as

Fr =
characteristic velocity

gravitational wave velocity
=

Uc√
gLc

, (4.50)
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in which Uc is the characteristic velocity, Lc is the characteristic length, and g is the gravitational

acceleration constant. In offshore marine hydromechanics, Froude scaling allows us to compare

the dynamics of two vessels even if their sizes are different (since they produce a similar wake).

Two vessels having the same Froude number may not be operating in the same Reynolds number

regime. In the present study, the scaled-down model operates in lower Re conditions and it does

not capture fine scale details such as extreme wave breaking and spray dynamics that occur

at higher Reynolds numbers. These small scale features are mostly dictated by viscous and

surface tension effects, and a very fine computational mesh is needed to adequately resolve them.

However, the main quantities of interest such as power generated for the full-scale device can be

inferred from scaled-down simulations by using appropriate scaling factors, some of which we

derive next.

• Length scaling: The geometric parameters such as length, width or height are simply

scaled by a factor of α6. In the present study, we use α = 20. An exception to this length

scaling is hull width in 2D, which is taken to be unity in the scaled model. Therefore in

2D, the scaling factor for hull width is W rather than α .

• Acceleration scaling: The full-scale and scaled-down models operate under the same

gravitational force field. Therefore, the gravitational constant g (or any other acceleration)

remains unchanged.

• Density scaling: Density is an intrinsic material property, and thus it remains the same for

both the full-scale and scaled-down models.

• Volume scaling: Since volume is proportional to the length cubed, it is scaled by α3.

• Mass scaling: Mass can be expressed as a product of density ρ and volume, and its scaling

6The definition of α here is different from the one used in Chapter 2
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for 2D and 3D ISWEC models are obtained as

Mmodel

Mfull-scale
=

ρ (L×H×W )
∣∣
model

ρ (L×H×W )
∣∣
full-scale

=
Wmodel

α2 ·Wfull-scale
. (4.51)

• Velocity scaling: Velocity scaling is obtained by equating the Froude numbers

Uc√
gLc

∣∣∣∣∣
model

=
Uc√
gLc

∣∣∣∣∣
full-scale

(4.52)

⇒
Uc,model

Uc,full-scale
=

√
Lc,model

Lc,full-scale
= 1/α

1
2 . (4.53)

• Time scaling: Letting tc represent a characteristic time, time scaling can be obtained from

the length and velocity scalings as

Uc,model

Uc,full-scale
=

Lc/tc
∣∣∣
model

Lc/tc
∣∣∣
full-scale

(4.54)

⇒
tc,model

tc,full-scale
= 1/α

1
2 . (4.55)

Similarly, scaling factors of other quantities of interest such as force and power can be obtained

in terms of α , and are enumerted in Table 4.1 for both two and three spatial dimensions. Full-

scale (scaled-down) quantities should be divided (multiplied) by factors in the third and fourth

columns to obtain the scaled-down (full-scale) quantities, in three and two spatial dimensions,

respectively.

Scaled hull parameters

We use the Froude scaling to derive the scaled-down hull parameters required for our

simulations. The scaled-down parameters of the gyroscope will be presented in Sec. 5.11, where

they are systematically varied to study their effect on device performance. The hull properties of

the full-scale ISWEC device are taken from an experimental campaign [86, 87] conducted at the
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Table 4.1. Froude scaling of various quantities for the 3D and 2D ISWEC models. Dimensional
units for the quantities used in this work are shown in column 2.

Quantity Units Scaled 3D model Scaled 2D model
Length m α α

Area m2 α2 α2

Volume m3 α3 −
Time s α

1
2 α

1
2

Velocity m/s α
1
2 α

1
2

Acceleration m/s2 1 1
Frequency s−1 α−

1
2 α−

1
2

Angular velocity s−1 α−
1
2 α−

1
2

Mass kg α3 α2 ·W
Density kg/m3 1 1
Force kg · m/s2 α3 α2 ·W

Moment of inertia kg · m2 α5 α4 ·W
Torque kg · m2/s2 α4 α3 ·W
Power kg · m2/s3 α

7
2 α

5
2 ·W

Pantelleria test site in the Mediterranean Sea.
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ZGC
<latexit sha1_base64="FbEaslYpHLc4rlSE7Yqmenxe0Q4=">AAAB8nicbVBNSwMxEM36WetX1aOXYBE8ld0q6LHYgx4r2A/cLiWbZtvQbLIks2JZ+jO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8MBHcgOt+Oyura+sbm4Wt4vbO7t5+6eCwZVSqKWtSJZTuhMQwwSVrAgfBOolmJA4Fa4ej+tRvPzJtuJL3ME5YEJOB5BGnBKzkP/S6wJ4gu6lPeqWyW3FnwMvEy0kZ5Wj0Sl/dvqJpzCRQQYzxPTeBICMaOBVsUuymhiWEjsiA+ZZKEjMTZLOTJ/jUKn0cKW1LAp6pvycyEhszjkPbGRMYmkVvKv7n+SlEV0HGZZICk3S+KEoFBoWn/+M+14yCGFtCqOb2VkyHRBMKNqWiDcFbfHmZtKoV77xSvbso167zOAroGJ2gM+ShS1RDt6iBmogihZ7RK3pzwHlx3p2PeeuKk88coT9wPn8AVICRSA==</latexit>

ZCG
<latexit sha1_base64="0jW28AM+6mdYFM3PVKrvGVAh+CU=">AAAB8nicbVBNSwMxEM36WetX1aOXYBE8ld0q6LHYgx4r2A/cLiWbZtvQbLIks2JZ+jO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8MBHcgOt+Oyura+sbm4Wt4vbO7t5+6eCwZVSqKWtSJZTuhMQwwSVrAgfBOolmJA4Fa4ej+tRvPzJtuJL3ME5YEJOB5BGnBKzkP/S6wJ4gq99MeqWyW3FnwMvEy0kZ5Wj0Sl/dvqJpzCRQQYzxPTeBICMaOBVsUuymhiWEjsiA+ZZKEjMTZLOTJ/jUKn0cKW1LAp6pvycyEhszjkPbGRMYmkVvKv7n+SlEV0HGZZICk3S+KEoFBoWn/+M+14yCGFtCqOb2VkyHRBMKNqWiDcFbfHmZtKoV77xSvbso167zOAroGJ2gM+ShS1RDt6iBmogihZ7RK3pzwHlx3p2PeeuKk88coT9wPn8AVHyRSA==</latexit>

ZCB
<latexit sha1_base64="bS1H184nBV3ytMrdcO2N5Akdau4=">AAAB8nicbVBNSwMxEM36WetX1aOXYBE8ld0q6LG0F48V7Adul5JNs21oNlmSWbEs/RlePCji1V/jzX9j2u5BWx8MPN6bYWZemAhuwHW/nbX1jc2t7cJOcXdv/+CwdHTcNirVlLWoEkp3Q2KY4JK1gINg3UQzEoeCdcJxY+Z3Hpk2XMl7mCQsiMlQ8ohTAlbyH/o9YE+QNerTfqnsVtw58CrxclJGOZr90ldvoGgaMwlUEGN8z00gyIgGTgWbFnupYQmhYzJkvqWSxMwE2fzkKT63ygBHStuSgOfq74mMxMZM4tB2xgRGZtmbif95fgrRTZBxmaTAJF0silKBQeHZ/3jANaMgJpYQqrm9FdMR0YSCTaloQ/CWX14l7WrFu6xU767KtXoeRwGdojN0gTx0jWroFjVRC1Gk0DN6RW8OOC/Ou/OxaF1z8pkT9AfO5w9M45FD</latexit>

FB<latexit sha1_base64="IwWFMQPmKybT4tYngazPCnX7uEM=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DFEEI8RzEOSJcxOOsmQ2dllplcMS77CiwdFvPo53vwbJ8keNLGgoajqprsriKUw6Lrfzsrq2vrGZm4rv72zu7dfODhsmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxhdT/3mI2gjInWP4xj8kA2U6AvO0EoPHYQnTG+qk26h6JbcGegy8TJSJBlq3cJXpxfxJASFXDJj2p4bo58yjYJLmOQ7iYGY8REbQNtSxUIwfjo7eEJPrdKj/UjbUkhn6u+JlIXGjMPAdoYMh2bRm4r/ee0E+1d+KlScICg+X9RPJMWITr+nPaGBoxxbwrgW9lbKh0wzjjajvA3BW3x5mTTKJe+8VL67KFaqWRw5ckxOyBnxyCWpkFtSI3XCSUieySt5c7Tz4rw7H/PWFSebOSJ/4Hz+AOgukHk=</latexit>

Figure 4.6. Hull geometry with properties: L = 0.7665 m, H = 0.225 m, R = 0.4389 m and ξ =
60.83◦.

The scaled-down (1:20) values of the hull properties are tabulated in Table 4.2. To

verify that the scaled-down values correlate well to the model geometry, we perform geometric

estimation of the hull properties by assuming the hull to be a filled sector of a circle in two spatial

dimensions. The geometric center (GC) and the center of buoyancy (CB) of the submerged sector
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Table 4.2. ISWEC hull full-scale and scaled-down parameters. Freeboard (FB) is the distance
between the hull top surface and the still waterline, which is found experimentally.

Hull property Notation Units Full-scale
Scaled-down

3D model 2D model
Length L m 15.33 0.7665 0.7665
Height H m 4.5 0.225 0.225
Width W m 8 0.4 1

Freeboard FB m 1.52 0.076 0.076
Center of gravity ZCG m 0.57 0.0285 0.0285

Mass MH kg 288000 36 90
Pitch moment

of inertia IH kg · m2 7.712×106 2.41 6.025

can be calculated geometrically, and are found to be located at a distance ZGC = 0.0163 m and

ZCB = 0.0605 m below the still waterline, respectively (see Fig. 4.6). From Table 4.2, the scaled

distance between the center of gravity of the device and waterline is ZCG = 0.0285 m. It can be

seen that the CB lies below the CG and GC, satisfying the stability condition for floating bodies.

Additionally CG lies below GC because in the real device, more mass is distributed towards the

lower half portion.

Similarly, the scaled-down moment of inertia of the hull IH can be argued geometrically.

We first estimate the density of the hull from the scaled mass (90 kg) and the area of the sector

(0.1225 m2) to be ρestimate = 734.69 kg/m3. Then we use ρestimate to calculate the moment

of inertia of the filled sector about its geometric center as IGC = 3.1768 kg · m2. In the real

device, most of the mass is concentrated along the outer periphery, resembling a ring rather

than a filled sector. Since, the moment of inertia of a ring is twice as that of a filled circle,

Iestimate ≈ 2IGC = 6.3536 kg · m2, which is close to what we obtain from Table 4.2.

4.4.6 Coupling ISWEC dynamics to the FSI solver

We simplify the treatment of the FSI coupling by only considering immersed bodies with

a single unlocked rotational degree of freedom (DOF); a more general approach is described

in Bhalla et al. [38]. The Brinkman penalization term is treated implicitly and computed as
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(rewriting Eq. (3.9))

fn+1,k+1
c =

χ̃

κ

(
un+1,k+1

b −un+1,k+1
)
, (4.56)

A permeability value of κ ∼ O(10−8) has been shown to be sufficiently small enough to

effectively enforce the rigidity constraint [40, 38, 116]. For the ease of reading, rewriting the

solid body velocity Eq. (5.35).

un+1,k+1
b = Un+1,k+1

r +Wn+1,k+1
r ×

(
x−Xn+1,k+1

com

)
(4.57)

For the pitching ISWEC device, Ur = 0.

un+1,k+1
b = Wn+1,k+1

r ×
(

x−Xn+1,k+1
com

)
. (4.58)

Moreover, two of the rotational DOFs are locked, i.e. they are constrained to zero. Hence, the

expression for Wr can be simplified even further,

Wn+1,k+1
r =

(
δ̇

n+1,k+1,0,0
)
, (4.59)

in which δ̇ is the rotational velocity of the structure about its pitch axis.

The rigid body velocity can be computed by integrating Newton’s second law of motion

for the pitch axis rotational velocity:

IH
δ̇ n+1,k+1− δ̇ n

∆t
= M n+1,k

hydro −M n+1,k
δ

, (4.60)

in which IH is the moment of inertia of the hull, Mhydro is the net hydrodynamic torque, and

M n+1,k
δ

is the projection of the gyroscopic torque about the x-axis. The net hydrodynamic torque

is computed by summing the contributions from pressure and viscous forces acting on the hull
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and taking the pitch component

Mhydro = î ·

[
∑

f

(
x−Xn+1,k

com

)
×
(
−pn+1,knf +µf

(
∇hun+1,k +

(
∇hun+1,k

)T
)
·nf

)
∆Af

]
.

(4.61)

The hydrodynamic traction in the above equation is evaluated on Cartesian grid faces near the

hull that define a stair-step representation of the body on the Eulerian mesh [38], with nf and

∆Af representing the unit normal vector and the area of a given cell face, respectively. The

computation of the gyroscopic action Mδ is described in the following section.

The ISWEC is allowed to freely rotate about its pitch axis and its motion depends on

the hydrodynamic and external torques acting on it. The external torque Mδ generated by

the gyroscopic action is unloaded on the hull and opposes the wave induced pitching motion.

Therefore, Mδ appears with negative sign on the right side of Eq. (4.60). The analytical

expression for this pitch torque is given by Eq. (4.35), while its discretization is written as

M n+1,k
δ

=
(

J sin 2
ε

n+1,k + I cos 2
ε

n+1,k
)

δ̈
n+1,k + Jφ̇ ε̇

n+1,k cosε
n+1,k

+2(J− I) δ̇
n+1,k

ε̇
n+1,k sinε

n+1,k cosε
n+1,k + Jφ̈ sinε

n+1,k, (4.62)

in which the pitch acceleration term δ̈ n+1,k is calculated using a standard finite difference (explicit

forward Euler) of the hull’s pitch velocity:

δ̈
n+1,k =



δ̇ n+1,k−δ̇ n

∆t , k > 0,

δ̇ n−δ̇ n−1

∆t , k = 0.

(4.63)

We set δ n+1,0 = δ n, εn+1,0 = εn, δ̇ n+1,0 = δ̇ n, and ε̇n+1,0 = ε̇n for cycle k = 0.
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The precession acceleration ε̈ is given analytically by Eq. (4.37), which in discretized

form reads

ε̈
n+1,k =

1
I

[
−kε

n+1,k−1− cε̇
n+1,k−1− (I− J)

(
δ̇

n+1,k
)2

sinε
n+1,k−1 cosε

n+1,k−1
]

+
J
I

φ̇ δ̇
n+1,k cosε

n+1,k−1. (4.64)

This newest approximation to the precession acceleration ε̈n+1,k is explicitly calculated using only

the prior cycle’s values of precession velocity ε̇n+1,k−1 and angle εn+1,k−1. New approximations

to ε̇ and ε at cycle k are computed using the Newmark-β method [117] as follows:

ε̇
n+1,k = ε̇

n +
∆t
2

(
ε̈

n + ε̈
n+1,k

)
(4.65)

ε
n+1,k = ε

n +∆t ε̇n +
∆t2

4

(
ε̈

n + ε̈
n+1,k

)
(4.66)

As described in Sec. 4.4, the PTO stiffness k and damping c parameters in the control torque and

the gyroscope’s angular velocity φ̇ , acceleration φ̈ = 0, and moments of inertia I and J are known

a priori and do not represent additional unknowns in the calculation of M n+1,k
δ

. Hence the

procedure outlined by Eqs. (4.62) to (4.66) enables the calculation of the external pitch torque

shown on the right-hand side of Eq. (4.60), thus coupling the ISWEC dynamics to the FD/BP

methodology.

4.5 FSI validation

To validate our implementation of the method described in the Sec. 4.4.6, we simulate

the vortex induced vibration of a rectangular plate undergoing galloping motion. This single

rotational degree of freedom case has been widely used as a benchmark problem for FSI

algorithms in prior literature. It also mimics the ISWEC model well, which primarily oscillates
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Table 4.3. Comparison of maximum pitch angle ϑmax and galloping frequency fϑ with prior
numerical studies.

Study ϑmax fϑ

Robertson et al. [118] 15◦ 0.0191
Yang & Stern [119] 15.7◦ 0.0198
Yang & Stern [120] 16.1◦ 0.0197

Kolahdouz et al. [121] 15◦ 0.0198
Present 15.2◦ 0.0197

in the pitch direction. The governing equation for the spring-mass-damper plate model reads as

Iϑ ϑ̈ +Cϑ ϑ̇ +Kϑ ϑ = Mhydro, (4.67)

in which ϑ is the pitch angle of the plate measured from the horizontal axis, Iϑ is the pitch

moment of inertia about the center of mass, Cϑ is the torsional damping constant, Kϑ is the

torsional spring constant, and Mhydro is the hydrodynamic moment acting on the plate due to the

external fluid flow.

To compare of our results with prior simulations, we consider a plate with a width-to-

thickness ratio of Λ∗ = Lp/Hp = 4, a non-dimensional moment of inertia of I∗
ϑ
= Iϑ/(ρsH4

p ) =

400, a non-dimensional damping ratio of ζ ∗
ϑ
=Cϑ/

(
2
√

Kϑ Iϑ

)
= 0.25, and a reduced velocity

of U∗ = U∞/( fϑ Hp) = 40. Here, U∞ is the free stream velocity and fϑ =
√

Kϑ/Iϑ/2π is the

natural frequency of the spring-mass-damper system. The rectangular plate is centered at the

origin with an initial non-zero pitch of ϑ = 1◦. The computational domain is taken to be

Ω = [−32cm,96cm]× [−32cm,32cm], a rectangular domain of size Lx×Ly = 128 cm × 64

cm. Five grid levels are used to discretize the domain, with the structure embedded on the finest

grid level. A coarse grid spacing of hcoarsest = Ly/32 is used on the coarsest level. The finest

level is refined with a refinement ratio of nref = 2, whereas the rest of the finer levels are refined

using a refinement ratio of nref = 4 from their next coarser level. A uniform inflow velocity

U = (U∞ = 1cm/s,0cm/s) is imposed on the left boundary (x = -32 cm), whereas zero normal

traction and zero tangential velocity boundary conditions are imposed on the right boundary (x =
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(a)

(b) (c)

(d) (e)

Figure 4.7. Galloping motion of a rectangular plate with Λ∗ = 4, I∗ = 400, ζ ∗
ϑ
= 0.25 and

U∗ = 40.(a) Temporal evolution of pitch angle ϑ ; (b)—(d) Vorticity (1/s) plots at three
representative time instants t = 221.25 s, t = 309 s, and t = 349.5 s, respectively. (e) Dynamic

mesh/patch distribution in the domain at a representative time instant t = 352.5 s.
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96 cm). The bottom (y = -32 cm) and top (y = 32 cm) boundaries satisfy zero normal velocity

and zero tangential traction boundary conditions. The Reynolds number of the flow based on the

inlet velocity is set to Re = ρfU∞Hp/µf = 250. A constant time step size of ∆t = 0.048hfinest is

used for the simulation. After the initial transients, a vortex shedding state is established, which

results in a periodic galloping of the rectangular plate. Fig. 4.7(a) shows the pitch angle of the

plate as a function of time. Figs. 4.7(b)-4.7(d) show three representative snapshots of the FSI

dynamics and the vortex shedding pattern. Fig. 4.7(e) shows a typical AMR patch distribution

in the domain due to the evolving structural and vortical dynamics. Table 4.3 compares the

maximum pitch angle ϑmax and galloping frequency of the plate fϑ with values obtained from

previous numerical studies; an excellent agreement with prior studies is obtained for both these

rotational quantities.

4.6 Grid convergence study

In this section, we perform a grid convergence study on the 2D ISWEC model in a NWT

with regular waves using three different spatial resolutions. We also conduct a temporal resolution

study to determine a time step size ∆t that is able to adequately resolve the high-frequency wave

components of irregular waves. Although our implementation is capable of adaptive mesh

refinement, we use static grids for all cases presented in this section. As mentioned in Sec. 4.4.6,

we lock all the translational degrees of freedom of the hull and only consider its pitching motion.

The size of the computational domain is Ω = [0,10λ ]× [0, 2.75d] with the origin located

at the bottom left corner (see Fig. 5.4). The hull parameters for the 2D model are given in

Table 4.2, and the CG of the hull is located at (5λ ,d− ZCG). The quiescent water depth is

d = 0.65 m, acceleration due to gravity is g = 9.81 m/s (directed in negative z-direction), density

of water is ρw = 1025 kg/m3, density of air is ρair = 1.2 kg/m3, viscosity of water µw = 10−3

Pa·s and viscosity of air is µair = 1.8×10−5 Pa·s. Surface tension effects are neglected for all

cases as they do not affect the wave and converter dynamics at the scale of these problems.
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4.6.1 Spatial resolution study

To ensure the wave-structure interaction dynamics are accurately resolved, we conduct a

grid convergence study to determine an adequate mesh spacing. The dynamics of the ISWEC

hull interacting with regular water waves are simulated on three meshes: coarse, medium, and

fine. Each mesh consists of a hierarchy of ` grids; the computational domain is discretized by

a coarsest grid of size Ny×Nz and then locally refined (`−1) times by an integer refinement

ratio nref ensuring that the ISWEC device and air-water interface are covered by the finest

grid level. The grid spacing on the finest level are calculated using the following expressions:

∆ymin =∆y0/n`−1
ref and ∆zmin =∆z0/n`−1

ref , where ∆y0 and ∆z0 are the grid spacings on the coarsest

level. The time step size ∆t is chosen to ensure the maximum Courant-Friedrichs-Levy (CFL)

number = 0.12 for each grid resolution. The mesh parameters and time step sizes considered

here are shown in Table 5.2.

Regular water waves, generated based on the fifth-order wave theory presented in

Sec. 4.2.1, enter the left side of the domain and interact with the ISWEC hull. Temporal

evolution of the hull’s pitch angle δ and the gyroscope’s precession angle ε are the primary

outputs used to evaluate mesh convergence. The results and the specification of the wave, ISWEC,

and gyroscope parameters are shown in Fig. 5.9.

Fig. 4.9(a) shows a close-up of the medium resolution grid and the 2D ISWEC model.

A minimum of 8 grid cells vertically span the height of the wave, indicating that the wave

elevation is adequately resolved; for the coarse (fine) grid resolution, approximately 4 (15) grid

cells span the wave height (results not shown). Additionally, the number of cells covering the

ISWEC hull length is approximately 30, 60, and 119 for the coarse, medium, and fine grid

resolutions, respectively. Fig. 4.9(b) shows well-resolved vortical structures produced by the

interaction of the ISWEC device and air-water interface on the medium resolution grid. From

the quantitative and qualitative results shown in Fig. 5.9 and Fig. 4.9, we conclude that the

medium grid resolution can capture the WSI dynamics with reasonable accuracy. Therefore for
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Table 4.4. Refinement parameters used for the 2D ISWEC dynamics grid convergence study.

Parameters Coarse Medium Fine

nref 2 2 4
` 2 2 2

Ny 300 600 600
Nz 34 68 68

∆t (s) 2×10−3 1×10−3 5×10−4

the remaining cases studied here, we make use of the medium grid resolution.

(a) Hull pitch angle (b) Gyroscope precession angle

Figure 4.8. Temporal evolution of (a) hull pitch angle δ and (b) gyroscope precession angle ε ,
for coarse (—–, black), medium (—–, red) and fine (—–, green) grid resolutions. Fifth-order
regular water waves are generated with H = 0.1 m, T = 1 s and λ = 1.5456 m, satisfying the
dispersion relation given by Eq. (4.2). A maximum ISWEC pitch angle δ0 = 5◦ and a maximum
gyroscope precession angle of ε0 = 70◦ are used to calculate the rest of the parameters following

the procedure described in Sec. 4.4.3: PTO damping coefficient c = 0.3473 N·m·s/rad,
gyroscope moment of inertia J = 0.0116 kg·m2 and PTO stiffness coefficient k = 0.4303

N·m/rad. The speed of the flywheel is φ̇ = 4000 RPM, and I = 0.94× J = 0.0109 kg ·m2.

4.6.2 Temporal resolution study

Next, we conduct a temporal resolution study to ensure that WSI dynamics of irregular

waves and the ISWEC device are adequately resolved. As described in Sec. 4.2.2, irregular

water waves are modeled as a superposition of N harmonic wave components. The energy

carried by each wave component is related to its frequency ωi (see Eq. (4.11) and Fig. 4.2(a)).

Moreover as shown in Fig. 4.2(a), high frequency waves with ωi in the range of 10 rad/s to 20
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(a) Locally refined Cartesian grid (medium grid resolution)

(b) Vorticity (medium grid resolution)

Figure 4.9. Wave-structure interaction of the 2D ISWEC model at t = 27 s using the medium
grid resolution: (a) locally refined mesh with two levels (`= 2) and (b) representative vortical

and air-water interfacial dynamics resulting from the WSI.

rad/s carry considerable amounts of energy. Hence, the time step ∆t should be chosen such that

these high frequency (small wave period Ti) components are well-resolved since they contribute

significantly to the power absorbed by the device.

The dynamics of the ISWEC hull interacting with irregular water waves are simulated

using three different time step sizes: ∆t = 10−3 s, 5× 10−4 s and 2.5× 10−4 s. For all three

cases, we use a medium resolution grid with refinement parameters given by Table 5.2. Temporal

evolution of the hull’s pitch angle δ and the power absorbed by the PTO unit PPTO are the primary

outputs used to evaluate temporal convergence. The results and the specification of the irregular

wave, ISWEC, and gyroscope parameters are shown in Fig. 5.11. It is observed that the hull’s

pitching motion is relatively insensitive to the chosen time step size ∆t. Since its dynamics are

governed mainly by those waves carrying the largest energy, we can conclude that the higher

frequency wave components are adequately resolved. The difference between the three temporal
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resolutions is more apparent in Fig. 4.10(b), in which we calculate the average power absorbed

by the PTO unit P̄PTO over the interval t = 10 s and t = 20 s. For ∆t = 10−3 s, 5×10−4 s and

2.5× 10−4 s, the power absorbed is P̄PTO = 1.7656 W, 1.8859 W and 1.9484 W, respectively.

It is seen that smaller time step sizes allow for the resolution of higher-frequency wave peaks,

which directly increases the absorbed power.

(a) Hull pitch angle (b) Power absorbed by PTO

Figure 4.10. Temporal evolution of (a) hull pitching dynamics and (b) power absorbed by PTO,
for three different time step sizes: ∆t = 10−3 s (—–, black), ∆t = 5×10−4 s (—–, red) and

∆t = 2.5×10−4 s (—–, green). Irregular water waves (satisfying the dispersion relation
Eq. (4.2)) are generated with Hs = 0.1 m, Tp = 1 s and N = 50 wave components, with

frequencies in the range 3.8 rad/s to 20 rad/s distributed at equal ∆ω intervals. A maximum
ISWEC pitch angle δ0 = 5◦ and a maximum gyroscope precession angle of ε0 = 70◦ are used to

calculate the rest of the parameters following the procedure described in Sec. 4.4.3: PTO
damping coefficient c = 0.1724 N·m·s/rad, gyroscope moment of inertia J = 0.0057 kg·m2 and
PTO stiffness coefficient k = 0.2138 N·m/rad. The speed of the flywheel is φ̇ = 4000 RPM, and
I = 0.94×J = 0.0054 kg·m2. The mean wave power per unit crest width carried by the irregular

waves calculated by Eq. (4.16) is P̄wave = 5.0798 W.

Based on these results, we hereafter use the medium grid spatial resolution, and time

step sizes of ∆t = 1× 10−3 s and ∆t = 5× 10−4 s for regular and irregular wave WSI cases,

respectively.

4.7 ISWEC numerical examples

In this section, we investigate several aspects of the dynamics of the inertial sea wave

energy converter device:
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• First, we compare the PTO power predictions by the 3D and 2D ISWEC models under

identical wave conditions. Utilizing the scaling factors presented in Table 4.1, we show

that the power predicted by the 3D model can be inferred from the power predicted by the

2D model reasonably well.

• Next, we study the effect of the maximum hull pitch angle parameter δ0 and make

recommendations on how to select it based on the maximum wave steepness δs. We

consider different “sea states” characterized by regular waves of different heights H , and

consequently of different steepnesses.

• Thereafter, a parametric analysis for the 2D ISWEC model is performed using both regular

and irregular water waves to study its dynamics. We vary the following parameters to

recommend “design” conditions for the device: PTO damping coefficient c, flywheel speed

φ̇ , moment of inertia J and I, and PTO stiffness coefficient k.

• Afterwards, the effect of varying hull length to wavelength ratios is studied.

• Finally, we simulate a possible device protection strategy during inclement weather condi-

tions and study the resulting dynamics.

All the 2D simulations are conducted in a NWT with computational domain size Ω =

[0,10λ ] × [0, 2.75d] as shown in Fig. 5.4. For 3D cases the computational domain size is same

as in 2D, with the additional dimension having length 5W ; W is the width of 3D model of the

hull. The domain sizes are large enough to ensure that the ISWEC dynamics are undisturbed by

boundary effects. The origin of the NWT is taken to be the bottom left corner of the domain and

shown by the point O in Fig. 5.4. The CG of the ISWEC hull is located at (2.5W,5λ ,d−ZCG)

for 3D cases and (5λ ,d−ZCG) for the 2D cases. The rest of the hull parameters are presented in

Table 4.2. The water and air material properties are the same as those described in Sec. 4.6.1.
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Table 4.5. The PTO and gyroscope parameters for various regular wave heights H and δ0
values, as calculated by the procedure described in Sec. 4.4.3. The rated power of the device P̄R
is taken to be the available wave power P̄wave for these calculations. The prescribed gyroscope

parameters are ε0 = 70◦, φ̇ = 4000 RPM, and I = 0.94× J. The parameter units for c are
N·m·s/rad, J and I are kg·m2, and k are N·m/rad.

Regular wave
properties

Parameters
Prescribed hull pitch angle δ0

2◦ 5◦ 10◦ 15◦ 20◦ δs

H = 0.025 m
T = 1 s

c 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217
J 0.0018 0.00072 0.00036 0.00024 0.00018 0.0012
k 0.0673 0.0269 0.0134 0.0089 0.0067 0.0464

H = 0.05 m
T = 1 s

c 0.0868 0.0868 0.0868 0.0868 0.0868 0.0868
J 0.0072 0.0029 0.0014 0.00090 0.00072 0.0025
k 0.2692 0.1076 0.0538 0.0358 0.0269 0.0928

H = 0.1 m
T = 1 s

c 0.3473 0.3473 0.3473 0.3473 0.3473 0.3473
J 0.0290 0.0116 0.0058 0.0039 0.0029 0.0050
k 1.0777 0.4303 0.2171 0.1421 0.1065 0.1876

H = 0.125 m
T = 1 s

c 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427
J 0.0453 0.0181 0.0090 0.0060 0.0045 0.0063
k 1.6827 0.6731 0.3365 0.2243 0.1682 0.2361

4.7.1 3D and 2D ISWEC model simulations

In this section, we investigate the dynamics of the 2D and 3D ISWEC models interacting

with regular and irregular water waves. We compare the motion of the hull and the power

absorption capabilities of each model. The 2D model is simulated on a medium grid resolution

and the 3D model on a coarse grid resolution using the refinement parameters specified in

Table 5.2. The third dimension is discretized with Nx = 38 grid cells for 3D cases. Fig. 4.11(a)

shows the configuration of the locally refined mesh (`= 2), along with visualizations of regular

and irregular waves for the three-dimensional NWT.

First, we consider two different prescribed maximum pitch angles δ0 = 5◦ and 20◦ for

each model. Regular waves are generated with properties H = 0.1 m and T = 1 s. The values for

the gyroscope and PTO parameters for this choice of δ0 are given in Table 4.5. The rated power

of the device P̄R is taken to be the available wave power P̄wave for calculating the parameters

reported in Table 4.5. The hull undergoes pitching motion as the regular waves impact the device,
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(a) Locally refined Cartesian mesh (b) Regular waves

(c) Irregular waves

Figure 4.11. (a) Locally refined Cartesian mesh with two levels of mesh refinement used for the
3D NWT. Representative WSI of the 3D ISWEC model at t = 28.8 s: (b) regular waves, and (c)

irregular waves.
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as shown in Fig. 4.11(b). The temporal evolution of the hull pitch angle δ for the 2D and the 3D

ISWEC models are shown in Figs. 4.12(a) and 4.12(b). From these results, it is observed that

the dynamics for the 2D case match well with the 3D case after the initial transients. The power

transferred to the hull from the waves Phull, the power generated through the hull-gyroscope

interaction Pgyro, and the power absorbed by the PTO unit PPTO at δ0 = 5◦ (δ0 = 20◦) for the 2D

and 3D models are shown in Figs. 4.12(c) and 4.12(d) (Figs. 4.12(e)and 4.12(f)), respectively.

The time-averaged powers P̄PTO, P̄gyro and P̄hull over the time interval t = 10 s and t = 20 s

(after the hull’s motion achieved a periodic steady state) are also shown in Figs. 4.12(c)-4.12(f).

From these results, it is seen that the energy transfer pathway Eq. (4.45) is numerically verified.

Furthermore, the power absorbed by the PTO unit for the full-scale device can be calculated by

multiplying the power absorbed by the 2D model by the Froude scaling given in Table 4.1

P̄full-scale = α
5
2 ·W · P̄2D, (PTO unit). (4.68)

Similarly for the 3D model,

P̄full-scale = α
7
2 · P̄3D, (PTO unit). (4.69)

Finally, combining the two expressions above yields

P̄3D =
Wfull-scale

α
· P̄2D = 0.4× P̄2D, (PTO unit), (4.70)

in which Wfull-scale = 8 m is the width of the full-scale model and α = 20 is the length scaling

factor. For the 2D cases, the average power absorbed by the PTO unit is P̄2D = 1.6972 W for

δ0 = 5◦, and P̄2D = 1.1694 W for δ0 = 20◦. For the 3D cases, the average powers absorbed

by the PTO unit are 0.8535 W and 0.5155 W for δ0 = 5◦ and δ0 = 20◦, respectively, which

are close to the expected values of 0.6788 W and 0.4677 W predicted by Eq. (4.70). Note that

better agreement between the simulated and expected average powers in 3D can be obtained by
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increasing the spatial and temporal resolutions. Nevertheless, we are confident that the dynamics

are reasonably resolved for the chosen grid spacing and time step size.

Next, we perform a similar scaling analysis for 2D and 3D ISWEC models in irregular

wave conditions. Irregular water waves are generated with properties Hs = 0.1 m, Tp = 1 s and

50 wave components with frequencies ωi in the range 3.8 rad/s to 20 rad/s (see Fig. 4.11(c)).

Through empirical testing, fifty wave components were found to be sufficient to represent the

energy of the JONSWAP spectrum. We consider a maximum pitch angle of δ0 = 5◦ for the

device. The evolution of δ for the two models are compared in Fig. 4.13(a). Similar to the regular

wave case presented above, the dynamics of the 2D and 3D models numerically agree and the

energy transfer pathway Eq. (4.45) is nearly satisfied. Moreover, the average power absorbed by

the PTO unit for the 2D model is P̄2D = 1.8859 W, yielding an expected 3D power of 0.7543

W according to Eq. (4.70); this is close to the power value of 0.5810 W obtained by the 3D

simulation. Based on these results, we ultimately conclude that the 2D model is sufficient to

accurately simulate ISWEC dynamics and to predict the power generation/absorption capability

of the converter.

Next, we perform a fast Fourier transform of the power signal obtained at the PTO

(PPTO(t)) shown in Fig. 4.12(c) and 4.13(b). The transformed signal identifies the main frequency

components present in the signal. The transformed signal is seen with spikes when plotted as

a function of frequency, see Fig. 4.14. Fig. 4.14(a) is obtained for the 2D ISWEC model in

regular waves with condition H = 0.1 m and T = 1 s. The frequency responsible for power

generation is observed to be at 2 Hz. A similar analysis is done for the 2D ISWEC model in

irregular waves with condition Hs = 0.1 m and Tp = 1 s, see Fig. 4.14(b). The irregular wave is

composed of number of wave components with frequencies in the range 0.6 Hz (3.8 rad/s) to 3.18

Hz (20 rad/s). From this the main frequency is found to be at 2 Hz which is responsible for large

power generation. These main frequencies obtained from the Fourier analysis corresponds to

the frequency of square of the precession velocity of the gyroscope (ε̇2), as per Eq (4.33). Since

the device operates in resonance with the incoming wave, the wave frequency 1/T for regular
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(a) Hull motion for δ0 = 5◦ (b) Hull motion for δ0 = 20◦

(c) Powers for δ0 = 5◦ (2D model) (d) Powers for δ0 = 5◦ (3D model)

(e) Powers for δ0 = 20◦ (2D model) (f) Powers for δ0 = 20◦ (3D model)

Figure 4.12. WSI of the 2D and 3D ISWEC models in regular water wave conditions (H = 0.1
m and T = 1 s). Temporal evolution of the hull pitch angle (δ ) for the 2D and 3D ISWEC
models for (a) δ0 = 5◦ and (b) δ0 = 20◦. Power absorbed by the PTO unit PPTO (—–, black),

power generated through the hull-gyroscope interaction Pgyro (—–, red) and power transferred to
the hull from the regular water waves Phull (—–, green) for the (c) 2D model with δ0 = 5◦, (d)

3D model with δ0 = 5◦, (e) 2D model with δ0 = 20◦ and (f) 3D model with δ0 = 20◦. Averaged
power over the time period t = 10 s and t = 20 s are shown in the legends.
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(a) Hull motion for δ0 = 5◦

(b) Powers for δ0 = 5◦ (2D model) (c) Powers for δ0 = 5◦ (3D model)

Figure 4.13. WSI of the 2D and 3D ISWEC models with δ0 = 5◦ in irregular water wave
conditions (Hs = 0.1 m and Tp = 1 s, N = 50, and ωi in the range 3.8 rad/s to 20 rad/s). (a)
Temporal evolution of the hull pitch angle (δ ) for the 2D and 3D ISWEC models. Power
absorbed by the PTO unit PPTO (—–, black), power generated through the hull-gyroscope

interaction Pgyro (—–, red) and power transferred to the hull from the irregular water waves Phull
(—–, green) for the (b) 2D and (c) 3D models.
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(a) Regular waves (b) Irregular waves

Figure 4.14. Power spectrum as a function of frequency obtained from fast Fourier transform of
(a) Fig. 4.12(c), and (b) Fig. 4.13(b).

waves (1/Tp for irregular waves) and the frequency of ε̇ is same, which is 1 Hz. The frequency

of ε̇2 is twice of ε̇ , which is 2 Hz. So, theoretically both the waves have main frequency at 2 Hz.

This aligns with the value of main frequency obtained from the Fourier analysis.

In the next section, we focus on further investigating dynamics and parameter choices for

the 2D model.

4.7.2 Parametric analyses of hull and gyroscope parameters

In this section, we first investigate the relationship between the prescribed hull pitch

angle parameter δ0, the maximum pitch angle actually attained by the hull δmax through WSI,

and the maximum wave steepness of the incoming waves δs.

Next, we conduct a parameter sweep around the energy-maximizing PTO and gyroscope

parameters estimated by the theory presented in Sec. 4.4.3. We test the theory’s predictive

capability and describe the effect of these parameters on the converter’s performance and

dynamics. In each of the following subsections, only a single parameter is varied at a time.

Simulations are conducted using both regular water waves with H = 0.1 m and T = 1 s,

and irregular waves with Hs = 0.1 m, Tp = 1 s and 50 wave components with frequencies ωi in

the range 3.8 rad/s to 20 rad/s. These wave conditions serve as device “design” conditions at its
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installation site. For regular waves, the prescribed pitch angle is taken to be δ0 = 10◦, and the

PTO and gyroscope parameters are given in Table 4.5. For irregular waves, the prescribed pitch

angle δ0 = 5◦ is used. The PTO and gyroscope parameters remain the same as those used in the

temporal resolution study (see Sec.4.6.2). These particular values of δ0 were found to maximize

the RCW of the converter at design conditions; for an example, see Fig. 4.15 for regular waves

with H = 0.1 m and T = 1 s.

Selection of prescribed hull pitch angle δ0

The maximum wave steepness is calculated in Sec. 4.2.3 by approximating the fifth-order

wave as a linear harmonic wave. We consider the ISWEC dynamics on four regular water waves

with same time period T = 1 s (i.e. λ = 1.5456 m) but varying wave heights: H = 0.025 m,

0.05 m, 0.1 m and 0.125 m, each having maximum wave steepness δs = 2.9◦, 5.8◦, 11.48◦ and

14.25◦, respectively (see Eq (4.21)). The prescribed PTO and gyroscope system parameters for

each sea state and six maximum pitch angle values δ0 = 2◦, 5◦, 10◦, 15◦, 20◦ and δs are shown

in Table 4.5. Additionally, δ0 = 1◦ and 30◦ cases are also simulated, but the parameter values

are not tabulated for brevity.

The results of this parameter study are shown in Fig. 4.15. It is observed that when

δ0 < δs, δmax increases linearly with δ0 (Fig. 4.15(a)), illustrating that the hull’s maximum

oscillation amplitude correlates well with δ0. When the prescribed δ0 is greater than δs, it is

seen that δmax no longer increases; rather it maintains a constant value with respect to δ0. This

indicates that further increasing δ0 will not lead to larger pitch oscillations, i.e. the δmax attained

by the hull is the largest value permitted by the slopes of the wave. In Figs. 4.15(b) and 4.15(c),

we show trends in the maximum precession angle attained by the gyroscope εmax and the relative

capture width (RCW) η , which measures the device efficiency as a ratio of the average power

absorbed by the PTO unit to the average wave power per unit crest width (see Eq. (4.49)).

Maximization of both these quantities is achieved when δ0 is set close to δs. As the hull achieves

the maximum pitch angle physically permitted by the slopes of the wave, further increasing
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(a) Maximum attained hull pitch angle (b) Maximum attained gyroscope precession angle

(c) Relative capture width (RCW)

Figure 4.15. (a) Maximum hull pitch angle δmax, (b) maximum gyroscope precession angle
εmax, and (c) relative capture width η of the ISWEC device for various regular wave sea states
and prescribed pitch angles δ0: H = 0.025 m (—–, black), H = 0.05 m (—–, red), H = 0.1 m
(—–, green), and H = 0.125 m (—–, blue). RCW is calculated from time-averaged powers over

the interval t = 10 s to t = 20 s
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δ0 amounts to reducing Jφ̇ (Eq. (4.47)) or the hull-gyroscope coupling, which explains the

reduction in both maximum precession and device efficiency. Hereafter, we prescribe δ0 based

on the value maximizing η as we conduct further parametric analyses of the 2D ISWEC model.

PTO damping coefficient c

We first consider the PTO unit damping coefficient c, which directly impacts the power

absorption capability of the device. We prescribe four different values, c = 0.05, 0.3473, 1.0

and 2.0 N·m·s/rad, to evaluate its impact on ISWEC dynamics. The optimal damping coefficient

value of c = 0.3473 is predicted by the theory. Results for the hull interacting with regular waves

are shown in Fig. 4.16. As expected for smaller damping coefficients, the gyroscope is able to

attain larger precession angles ε and velocities ε̇ , as seen in Fig. 4.16(b). Higher precession

velocities yield larger pitch torque Mδ values (see Eq. (4.42)), which opposes the motion of

the hull and restrict its maximum pitch oscillation; this is consistent with the dynamics shown

in Figs. 4.16(a) and 4.16(c). Moreover the hull’s pitch velocity δ̇ is reduced with decreasing

c, leading to a smaller (in magnitude) precession torque Mε acting on the PTO shaft (see

Eq. (4.37)); our simulations show this behavior as observed in Fig. 4.16(d).

In Fig. 4.16(e), we compare the time-averaged powers P̄hull, P̄gyro, and P̄PTO as a function

of varying PTO damping coefficient. It can be seen that these three powers are in reasonable

agreement with each other, indicating that the energy transfer pathway Eq. (4.45) is approximately

satisfied. In terms of power generation, it is observed that the device achieves peak performance

when a PTO damping coefficient c = 0.3473 is prescribed, which validates the theoretical

procedure. The reason for an optimum value of c is as follows: as the damping coefficient

increases, the precession velocity decreases. The power absorbed by the PTO unit is the product

of c and ε̇2 (Eq. (4.33)), and therefore these competing factors must be balanced in order to

achieve maximum power generation.

Finally in Fig. 4.16(f), we show the evolution of the the yaw torque Mφ acting on the

hull for c = 0.3473, noting that its magnitude is approximately one-fifth of the pitch torque
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Mδ . Although this is not insignificant, we do not consider the effect of Mφ for the 3D ISWEC

model (see Sec. 4.4.1) since its contribution will be cancelled out 1) by using an even number

of gyroscopic units (if each flywheel pair spins with equal and opposite velocities) [115], and

2) partially by the mooring system. Discounting Mφ during the ISWEC design phase would

misalign the converter with respect to the main wave direction, which will reduce its performance.

It is also interesting to note that the yaw torque in the gyroscopic frame of reference Mz1 is

at least two orders of magnitude lower than the yaw torque in the inertial reference frame, as

evidenced by the inset of Fig. 4.16(f).

Similar dynamics are observed when the ISWEC model is simulated in irregular wave

conditions for four different values, c = 0.05, 0.1724, 1.0 and 2.0 N·m·s/rad. The optimal

damping coefficient value of c = 0.1724 is obtained from the theory. The results are compared

in Fig. 4.17 and the theoretically predicted optimum c is verified. The response of the hull and

gyroscope to irregular waves can be seen in Figs. 4.17(a) and 4.17(b), respectively. The pitch

torque and the precession torque are shown in Figs. 4.17(c) and 4.17(d), respectively. From

Fig. 4.17(e), it is verified that the energy transfer pathway given by Eq. (4.45) is satisfied. We

note that the device efficiency is higher in irregular wave conditions as compared to regular wave

conditions. This can be seen by comparing the maximum value of relative capture width for

H = 0.1 m in Figs. 4.15(c) and 4.17(f): ηmax = 24.36% vs. ηmax = 37.61%, respectively. The

power carried by irregular waves is approximately half that of regular waves when they have the

same significant height and time period. Therefore for the prescribed device dimensions, the

converter is more efficient in less energetic wave conditions.

Flywheel speed φ̇

Next, we conduct a parameter sweep of the flywheel speed φ̇ and investigate its effects on

ISWEC dynamics. The speed of the flywheel affects not only the amount of angular momentum

Jφ̇ generated in the gyroscope, but also the magnitude of the gyroscopic torques produced as

seen in Eqs. (4.37) and (4.42). We consider four different flywheel speeds: φ̇ = 100 RPM, 1000
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque on the PTO axis

(e) Time-averaged powers in the system (f) Yaw torque

Figure 4.16. Dynamics of the 2D ISWEC model for four different values of PTO damping
coefficient c, with regular wave properties H = 0.1 m and T = 1 s. Temporal evolution of (a)
hull pitch angle δ , (b) gyroscope precession angle ε , (c) pitch torque Mδ , and (d) precession

torque Mε for c = 0.05 N·m·s/rad (—–, black), c = 0.3473 N·m·s/rad (—–, red), c = 1.0
N·m·s/rad (—–, green), and c = 2.0 N·m·s/rad (—–, blue); (e) comparison of time-averaged

powers from the interval t = 10 s to t = 20 s for each value of c; (f) yaw torques Mφ and Mz1

produced in the inertial reference frame and gyroscope reference frame (inset), respectively.
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque on the PTO axis

(e) Time-averaged powers in the system (f) Relative capture width (RCW)

Figure 4.17. Dynamics of the 2D ISWEC model for four different values of PTO damping
coefficient c, with irregular wave properties Hs = 0.1 m and Tp = 1 s and 50 wave components
with frequencies ωi in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle
δ , (b) gyroscope precession angle ε , (c) pitch torque Mδ , and (d) precession torque Mε for c =
0.05 N·m·s/rad (—–, black), c = 0.1724 N·m·s/rad (—–, red), c = 1.0 N·m·s/rad (—–, green),
and c = 2.0 N·m·s/rad (—–, blue); (e) comparison of time-averaged powers from the interval

t = 10 s to t = 20 s for each value of c; (f) relative capture width η for each value of c.
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RPM, 4000 RPM, and 8000 RPM, with δ0 = 10◦ and the remaining gyroscope parameter are

prescribed based on Table 4.5. Recall that these values were obtained for φ̇ = 4000 RPM in

Table 4.5.

The results for a hull interacting with regular waves are shown in Fig. 4.18. It is seen

that the maximum pitch angle decreases with increasing φ̇ (Fig. 4.18(a)), while a non-monotonic

relationship is seen between the maximum precession angle and φ̇ (Fig. 4.18(b)). Time-averaged

powers are shown in Fig. 4.18(c), which again shows that Eq. (4.45) is approximately satisfied.

Power absorption is maximized at a flywheel speed of φ̇ = 4000 RPM, which can be physically

explained as follows. As Jφ̇ increases, the gyroscopic system is able to generate significant

precession torque which, increases the absorption capacity of the PTO unit. However, this

increased angular momentum also increases the pitch torque opposing the hull, thereby limiting

its pitching motion and reducing the power absorbed from the waves. These two competing

factors leads to an optimum value of φ̇ .

Similar dynamics are obtained when the ISWEC interacts with irregular waves for varying

values of φ̇ . The results are shown in Fig. 4.19. The comparison of pitch angle for various φ̇

values is shown in Fig. 4.19(a) and of precession angle is shown in Fig. 4.19(b). Eq. (4.45) is

again satisfied as seen from the time-averaged powers in Fig. 4.19(c). In this case, the power

maximizing flywheel speed is φ = 3500 RPM.

Flywheel moment of inertia J and I

The angular momentum Jφ̇ generated in the gyroscope can also be modified by varying

the flywheel size via its moment of inertia components J and I. First, we consider three different

values J = 0.0005 kg ·m2, 0.0058 kg·m2 and 0.5 kg·m2, which correspond to light, medium,

and heavy weight gyroscopes, respectively. The J = 0.0058 value is obtained from theoretical

estimates based on the prescribed δ0 and ε0 values. A value of I = 0.94× J is set for each case,

and the remaining gyroscope parameters are prescribed based on Table 4.5.

The results for a hull interacting with regular waves are shown in Fig. 4.20. It is seen
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Powers

Figure 4.18. Dynamics of the 2D ISWEC model for four different values of flywheel speed φ̇ .
The regular wave properties are H = 0.1 m and T = 1 s. Temporal evolution of (a) hull pitch
angle δ , and (b) gyroscope precession angle ε for φ̇ = 100 RPM (—–, black), φ̇ = 1000 RPM
(—–, red), φ̇ = 4000 RPM (—–, green), and φ̇ = 8000 RPM (—– , blue); (c) comparison of

time-averaged powers from the interval t = 10 s to t = 20 s for each value of φ̇ .
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Powers

Figure 4.19. Dynamics of the 2D ISWEC model for four different values of flywheel speed φ̇ .
The irregular wave properties are Hs = 0.1 m and Tp = 1 s and 50 wave components with

frequencies ωi in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle δ ,
and (b) gyroscope precession angle ε for φ̇ = 100 RPM (—–, black), φ̇ = 1000 RPM (—–, red),
φ̇ = 4000 RPM (—–, green), and φ̇ = 8000 RPM (—– , blue); (c) comparison of time-averaged

powers from the interval t = 10 s to t = 20 s for each value of φ̇ .
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque on the PTO axis

Figure 4.20. Dynamics of 2D ISWEC model for three different values of flywheel moment of
inertia J. The regular wave properties are H = 0.1 m and T = 1 s. Temporal evolution of (a)
hull pitch angle δ , (b) gyroscope precession angle ε , (c) pitch torque Mδ , and (d) precession
torque Mε for J = 0.0005 kg·m2 (—–, black), J = 0.0058 kg·m2 (—–, red), and J = 0.5 kg·m2

(—–, green). For all cases, I = 0.94× J.

that the light gyroscope produces insignificant precession angles and torques due to the lack

of angular momentum generated by the flywheel. Moreover, the heavy gyroscope produces

even smaller Mε torque as it slowly drifts around the PTO axis; the proportional component

of the control torque (kε) is not strong enough to return the gyroscope to its mean position of

ε = 0◦. Additionally, the light (heavy) weight gyroscope produces small (large) pitch torques

Mδ opposing the hull, which explains the large (small) pitch amplitudes exhibited by the device.

Finally, it is seen that the medium weight gyroscope, with J = 0.0058 kg·m2 calculated from the

procedure described in Sec. 4.4.3, produces the largest precession amplitudes ε and velocities ε̇ ,

leading to high power absorption by the PTO unit.
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Powers

Figure 4.21. Dynamics of 2D ISWEC model for four different values of I. The regular wave
properties are H = 0.1 m and T = 1 s. Temporal evolution of (a) hull pitch angle δ , and (b)

gyroscope precession angle ε for I = 0.5× J (—–, black), I = 0.75× J (—–, red), I = 0.94× J
(—–, green), and I = 1.0× J (—– , blue). (c) Comparison of time-averaged powers from the

interval t = 10 s to t = 20 s for each value of I. For all cases, J = 0.0058 kg·m2.

We also study the effect of varying I while keeping J = 0.0058 kg·m2 fixed. We consider

four different values I = 0.5× J, I = 0.75× J, I = 0.94× J and I = 1.0× J, and the results for a

device interacting with regular waves are shown in Fig. 4.21. It is seen that the dynamics of the

hull and gyroscope and the system powers are not significantly affected by the choice of I.

Similarly, ISWEC dynamics with irregular waves are studied for three different values of

J. Results for varying J values are compared in Fig. 4.22, which are qualitatively similar to the

results obtained with regular waves. The effect of varying I with respect to J is also simulated,

and the results are shown in Fig. 4.23. It is seen that the hull pitch and the gyroscope precession

angles are relatively insensitive to variations in I. It is seen that the powers are relatively constant
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque produced by the gyroscope

Figure 4.22. Dynamics of 2D ISWEC model for three different values of flywheel moment of
inertia J. The irregular wave properties are Hs = 0.1 m and Tp = 1 s and 50 wave components
with frequencies ωi in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle
δ , (b) gyroscope precession angle ε , (c) pitch torque Mδ , and (d) precession torque Mε for J =
0.0005 kg·m2 (—–, black), J = 0.0058 kg·m2 (—–, red), and J = 0.5 kg·m2 (—–, green). For all

cases, I = 0.94× J.
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Powers

Figure 4.23. Dynamics of 2D ISWEC model for four different values of I. The irregular wave
properties are Hs = 0.1 m and Tp = 1 s and 50 wave components with frequencies ωi in the
range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle δ , and (b) gyroscope
precession angle ε for I = 0.5× J (—–, black), I = 0.75× J (—–, red), I = 0.94× J (—–,

green), and I = 1.0× J (—– , blue). (c) Comparison of time-averaged powers from the interval
t = 10 s to t = 20 s for each value of I. For all cases, J = 0.0058 kg·m2.
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across different I values under irregular wave conditions as well.

PTO stiffness coefficient k

Finally, we study the effect of varying the PTO stiffness coefficient k on the dynamics of

the ISWEC device. This term appears as a restoring torque kε in the precession angle Eq. (4.38)

and acts to drive the gyroscope’s oscillation about its mean position ε = 0◦. The oscillation

frequency is directly influenced by k and can be chosen to ensure a resonant condition is attained

between the gyroscope and the incoming waves, thus maximizing the power absorbed by the

system.

We consider four different values of k = 0.0 N·m/rad, 0.2171 N·m/rad, 1.0 N·m/rad,

and 5.0 N·m/rad, with the remaining gyroscope parameter chosen according to Table 4.5. The

k = 0.2171 value is obtained from theoretical considerations provided in Sec. ??. The results

for a hull interacting with regular waves are shown in Fig. 4.24. As k increases, the maximum

precession angle ε and velocity ε̇ decreases leading to decreased power absorption by the device.

The increased PTO stiffness value tends to keep the gyroscope close to its zero-mean position,

which reduces the hull-gyroscope coupling. This can be observed from the lowered values of

Mδ torques in Fig. 4.24(c). As a consequence, the hull pitching motion increases, as seen in

Fig. 4.24(a).

The k = 0 case warrants additional discussion. When the PTO stiffness is zero, the

gyroscope attains a larger maximum precession amplitude and generates more power than the

k > 0 cases over the time period t = 10 s and t = 20 s. However, Fig. 4.25 shows the long-term

dynamics for k = 0; it is seen that the gyroscope is unable to sustain its precession oscillation as

it eventually falls to one side (ε =−90◦) and remains there. At this configuration, the gyroscope

yaw axis and the hull pitch axis are aligned, and the precession effect is lost. As these gyroscopic

oscillations vanish, the torques tend towards zero, the hull exhibits unrestrained pitch oscillation,

and no power is generated.

Next, we simulate ISWEC dynamics with irregular waves using four different values
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque produced by the gyroscope

(e) Powers

Figure 4.24. Dynamics of 2D ISWEC model for four different values of PTO stiffness k. The
regular wave properties are H = 0.1 m and T = 1 s. Temporal evolution of (a) hull pitch angle
δ , (b) gyroscope precession angle ε , (c) pitch torque Mδ , and (d) precession torque Mε for k =
0 N·m/rad (—–, black), k = 0.2171 N·m/rad (—–, red), k = 1.0 N·m/rad (—–, green), and k =
5.0 N·m/rad (—–, blue); (e) comparison of time-averaged powers from the interval t = 10 s to

t = 20 s for each value of k.
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque produced by the gyroscope

Figure 4.25. Long-term dynamics of the 2D ISWEC model for k = 0 PTO stiffness: (a) hull
pitch angle δ , (b) gyroscope precession angle ε , (c) pitch torque Mδ , and (d) precession torque

Mε . The regular wave properties are H = 0.1 m and T = 1 s.
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque produced by the gyroscope

(e) Powers

Figure 4.26. Dynamics of 2D ISWEC model for four different values of PTO stiffness k. The
irregular wave properties are Hs = 0.1 m and Tp = 1 s and 50 wave components with

frequencies ωi in the range 3.8 rad/s to 20 rad/s. Temporal evolution of (a) hull pitch angle δ , (b)
gyroscope precession angle ε , (c) pitch torque Mδ , and (d) precession torque Mε for k = 0

N·m/rad (—–, black), k = 0.2138 N·m/rad (—–, red), k = 1.0 N·m/rad (—–, green), and k = 5.0
N·m/rad (—–, blue); (e) comparison of time-averaged powers from the interval t = 10 s to

t = 20 s for each value of k.
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Table 4.6. Calculated values of PTO and gyroscope parameters for different L/λ ratios using L
= 0.7665 m, δ0 = 10◦, ε0 = 70◦, and φ̇ = 4000 RPM. I = 0.94× J for all cases. Regular water

waves with H = 0.1 m are simulated. The rated power of the device P̄R is taken to be the
available wave power P̄wave for these calculations. Units: λ is in m, c is in N·m·s/rad, J and I are

in kg·m2 and k is in N·m/rad.

L/λ λ
PTO and gyroscope parameters

c J k
0.25 3.0659 1.3491 0.0225 0.3705
0.5 1.5456 0.3473 0.0058 0.2171

0.75 1.0219 0.1773 0.0029 0.1679

of k = 0 N·m/rad, 0.2138 N·m/rad, 1.0 N·m/rad, and 5.0 N·m/rad. The results are compared in

Fig. 4.26, and are qualitatively similar to the those obtained with regular waves. Similar behavior

of the ISWEC with k = 0 is observed — the gyroscope is unable to oscillate and falls to one

side (ε =−90◦) and produces vanishing precession effects. However, with irregular waves the

precession effects are lost much sooner compared to the regular waves case.

4.7.3 Hull length to wavelength (L/λ ) variation

In this section, we study the effect of hull length to wavelength ratio (L/λ ) on ISWEC

dynamics. We select three ratios L/λ = 0.25, 0.5 and 0.75 for this analysis. The length of the hull

is kept constant at L = 0.7665 m, and the wavelength of the regular water waves is varied. The

PTO and gyroscope parameters used in the three simulations are presented in Table 4.6. Results

consist of temporal evolution of the hull pitch and gyroscope precession angles in Figs. 4.27(a)

and 4.27(b), respectively. It is observed that the hull pitch is maximum when λ/3≤ L≤ λ/2, as

discussed in Sec. 4.4.4. As a consequence, the gyroscope precesses more and the conversion

efficiency of the device increases (see Fig. 4.27(c)).

4.7.4 Device protection during inclement weather conditions

The ISWEC hull houses costly electro-mechanical components that need to be protected

during harsh, stormy weather conditions. During inclement weather, the hull and gyroscope

dynamics can be chaotic, which may damage the system components. To protect the housed
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) RCW

Figure 4.27. Dynamics of 2D ISWEC model for three different hull length to wavelength ratios
L/λ . The regular wave height is H = 0.1 m, while its period T is calculated based on the

dispersion relation given by Eq. (4.3) as wavelength λ is varied. Temporal evolution of (a) hull
pitch angle δ and (b) gyroscope precession angle ε for L/λ = 0.25 (—–, black), L/λ = 0.5 (—–,
red), and L/λ = 0.75 (—–, green); (c) RCW η computed using time-averaged powers from the

interval t = 10 s to t = 20 s for each value of L/λ .
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components, the gyroscope needs to be turned off. This can be done by reducing the flywheel

speed to zero using remote human-machine interfaces. The combined hull-gyroscope system

then behaves like a single floating entity. In this section, we simulate the dynamics of the

ISWEC device as the flywheel speed is reduced to zero amidst steady operation. We simulate

this scenario with regular water waves of H = 0.1 m and T = 1 s. To reduce the flywheel speed

from 4000 RPM to 0 RPM, we use the following relation

φ̇(t) = 4000 · (1− f (t))/2, (4.71)

in which f (t) is a function that smoothly transitions from -1 to 1 in the transition time interval

∆T . The function f is given by

f = tanh
(

2π(t−Thalf)

∆T

)
, (4.72)

in which Thalf = Tstart + ∆T /2. In our simulation, we set Tstart = 15 s and ∆T = 5 s. Fig. 4.28(e)

shows the smooth transition of the flywheel speed towards zero in 5 s. When the gyroscope

is turned off, the precession effects cease and the system attains a mean zero position, thus

protecting the device. This is seen in Figs. 4.28(b), 4.28(c), and 4.28(d), which show that ε , Mδ ,

and Mε are reduced to zero, respectively. As the gyroscopic effects vanish, the hull is observed

to be oscillating with greater pitch amplitude (Fig. 4.28(a)).

4.7.5 Two degrees of freedom ISWEC mode

We compare the hull and gyroscope dynamics obtained using two degrees of freedom

(pitch and heave) and one degree of freedom (pitch only) ISWEC models. The same case

from Sec. 4.6.1 is simulated using the two models on a medium grid resolution. Figs. 4.29(a)

and 4.29(b) show the comparison of hull pitch angle δ and gyroscope precession angle ε ,

respectively. As can be seen in Fig. 4.29, including an additional heave degree of freedom
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(a) Hull pitch angle (b) Gyroscope precession angle

(c) Pitch torque unloaded on the hull (d) Precession torque on PTO axis

(e) Flywheel speed

Figure 4.28. Dynamics of 2D ISWEC model as the flywheel speed φ̇ is reduced from 4000
RPM to 0 RPM amidst steady operation. The regular wave properties are H = 0.1 m and T = 1

s. Temporal evolution of (a) hull pitch angle δ ; (b) gyroscope precession angle ε; (c) pitch
torque Mδ ; (d) precession torque Mε ; and (e) temporal variation of flywheel speed.

only marginally affects the rotational motion of the hull and gyroscope, and consequently the

power output of the device. Fig. 4.29(c) shows the heave dynamics of the hull about its mean

z-location. The heave amplitude is approximately one-tenth of the hull height for the prescribed
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(a) Hull pitch (b) Gyroscope precession

(c) Hull heave (d) Powers in the system (2-DOF model)

Figure 4.29. Comparison of 2-DOF (pitch and heave) and 1-DOF (pitch only) ISWEC models
for (a) hull pitch angle δ , and (b) gyroscope precession angle ε . (c) Hull heave displacement,
and (d) power at various levels for the 2-DOF ISWEC model. Fifth-order regular water waves
are generated with H = 0.1 m, T = 1 s and λ = 1.5456 m, satisfying the dispersion relation

given by Eq. (4.2). A maximum ISWEC pitch angle δ0 = 5◦ and a maximum gyroscope
precession angle of ε0 = 70◦ are used. The gyroscope parameters are: damping coefficient c =
0.3473 N·m·s/rad, moment of inertia J = 0.0116 kg·m2, and PTO stiffness k = 0.4303 N·m/rad.

The speed of the flywheel is φ̇ = 4000 RPM, and I = 0.94× J = 0.0109 kg ·m2.

wave characteristics. Although the heave motion is not negligible in this case, it nonetheless does

not significantly affect the rotational dynamics. In contrast to heave, the surge degree of freedom

can affect the relative phase between the wave excitation forces and the body motion, which can

lead to a different set of optimal parameters of the device than those found without considering

the surge motion. However, the surge motion of the ISWEC device is assumed to be negligible,

because of the motion constraints imposed by the mooring system. Finally, Fig. 4.29(d) shows

that the power transfer equation is satisfied even for the 2-DOF ISWEC model.
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4.8 Conclusions

In this study, we systematically investigated the wave-structure interaction dynamics of

the inertial sea wave energy converter (ISWEC) device implemented with a reactive control

strategy. Our computational model is based on the incompressible Navier-Stokes equations

and employs a fictitious domain Brinkman penalization (FD/BP) approach to handle the fluid-

structure coupling. The dynamics of the ISWEC hull and gyroscope system were coupled to

this CFD solver to enable fully-resolved 1-DOF simulations of the device. To emulate realistic

operating conditions of the device, a numerical wave tank was used to generate both regular

waves based on fifth-order Stokes theory and irregular waves based on the JONSWAP spectrum.

We performed Froude scaling analysis of the full-scale ISWEC model to determine the required

parameters for our 1:20 scaled-down two- and three-dimensional simulations.

Our numerical investigation demonstrated that the 2D model was sufficient to accurately

simulate the hull’s pitching motion, and to predict the power generation/absorption capability

of the converter. We showed that setting the prescribed hull pitch angle parameter δ0 close to

the maximum wave steepness will maximize the device’s relative capture width (i.e. power

generation efficiency). A comprehensive parameter sweep demonstrated that the device achieves

peak performance when the gyroscope specifications are chosen based on the reactive control

theory described in Sec. 4.4.3. It was also shown that a proportional control of the PTO control

torque is required to generate continuous precession effects of the gyroscope, without which

the gyroscope tends to align with the hull pitch axis. Under this scenario, the device does not

generate any power. We also showed that although the yaw torque in the gyroscope reference

frame is small, it is of the same order of magnitude as the pitch torque induced on the hull in

an inertial reference frame. Therefore, the yaw torque on the hull should be considered in the

design phase of these devices to avoid any misalignment of the converter from the main wave

direction. Our simulations also verify that the hull length to wavelength ratio should be between

one-half and one-third to achieve high conversion efficiency. Throughout our parameter study,
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we numerically verify the theoretical power transfer pathway between the water waves and the

hull, the hull and the gyroscope, and the gyroscope to the PTO unit for both regular and irregular

wave environments. Although the power transfer is derived for ISWEC devices in this work,

an analogous relationship could be derived for heaving or surging point absorbers. Finally, we

investigated the dynamics of the ISWEC system as the flywheel speed is reduced to zero to

emulate device protection during inclement weather conditions.

By making use of high performance computing, our work demonstrates that it is feasible

to use fully-resolved simulations to interrogate the device physics and dynamics of wave energy

converters. They can also be used as a design tool to explore the parametric space for further

optimization of such devices.

One of the primary drawbacks of the reactive control strategy is its reliance on drawing

power from the grid (resulting in negative power), thereby reducing the overall generated power.

Additionally, the stiffness of the system must be adjusted to accommodate changes in sea state so

that the device resonants with the frequency of the incoming waves. In the subsequent chapter, we

introduce an optimal control strategy known as model predictive control (MPC) and implement

it for a point absorber WEC device. Our objective is to optimize power absorption and mitigate

the need for power flow from the grid to the device eliminating the drawbacks of the reactive

control strategy.
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Chapter 5

Model Predictive Control Strategy for
Wave Energy Converter Devices

In this chapter, we present a novel MPC-integrated multiphase IB framework that can

compute the optimal energy-maximizing control force “on-the-fly” by dynamically interacting

with a high-fidelity numerical wave tank (NWT). The computational model closely mimics

the working setup of the device at its site of operation. Due to the requirement of solving a

constrained optimization problem at each time step of the IB simulation, the MPC algorithm

utilizes a low-dimensional dynamical model of the device that is based on the linear potential

theory (LPT). The multiphase IB solver, on the other hand, is based on the high-dimensional

fictitious domain Brinkman penalization (FD/BP) method presented in Chapter 2 and 3, which

fully-resolves the hydrodynamic non-linearities associated with the wave–structure interaction

(WSI). A time-series forecasting auto-regressive model is implemented that predicts wave heights

(from the past NWT data) to estimate the future wave excitation/Froude–Krylov forces for the

MPC algorithm. Moreover, we also experiment with non-linear Froude–Krylov (NLFK) forces

for the first time in an MPC formulation. The NLFK forces are computed efficiently using a

static Cartesian grid, in which the WEC geometry is implicitly represented by a signed distance

function. Under varying sea conditions, the predictions of the MPC-integrated multiphase IB

solver are compared to the widely popular LPT-based solvers. In agitated sea conditions and/or

under aggressive control, the LPT-based WSI solvers produce too optimistic (and misleading)
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power output values. Overall, six WSI/MPC solver combinations are compared for a heaving

vertical cylinder to determine the reasons for discrepancies between high- and low-fidelity

predictions. We also determine the pathway of energy transfer from the waves to the power

take-off (PTO) system and verify the relationships using IB simulations. Additionally, three

different sea states are simulated within the IB simulation to test the adaptive capability of

MPC for WECs. MPC is demonstrated to adapt to changing sea conditions and find the optimal

solution for each sea state.

The interaction between the distributed-memory parallel multiphase IB solver (written

in C++) and the serial MPC solver (written in MATLAB) is fully described to facilitate repro-

ducibility. A bespoke communication layer between the two solvers is developed, which can

be easily modified by the WEC community to experiment with other optimal controllers and

computational fluid dynamics (CFD) solvers. All codes for this work are made open-source for

pedagogical and research purposes.

5.1 Introduction

Unlike previous control-integrated CFD studies mentioned in the Sec. 5.1 that used

pre-computed controller gains or optimal control force sequences, this work uses the model

predictive control (MPC) algorithm to compute the optimal energy-maximizing control force

online. Due to its ability to handle many types of device and PTO topologies, model predictive

control of WECs has been dubbed the “Tesla” of controllers [122]. In our modeling approach,

the MPC interacts with the CFD-based NWT that sends the wave elevation and device dynamics

data to the controller, which then solves a constrained optimization problem to find the optimal

control force sequence. In the NWT, both regular and irregular sea conditions are modeled. The

predictions of the MPC-integrated CFD solver are compared to the MPC-integrated boundary

element method (BEM) solvers under varying sea conditions. The current study is the first of its

kind and comprehensively examines the reasons for prediction discrepancies between different
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Figure 5.1. Schematic representation of a 1 DOF heaving cylindrical wave energy converter
device.

solvers.

5.2 Linear potential theory based WEC dynamical model

The WEC device considered in this study is a one degree of freedom (DOF) cylindrical

point absorber1 that heaves on the air-water interface. A schematic representation of the device is

shown in Fig. 5.1. Axisymmetric point absorbers are among the most common WEC-types that

mainly absorb wave energy due to their heaving motion. Therefore, for such devices, motion in

the other DOFs can be neglected (or is constrained). If the amplitude of the motion of the device

is significantly smaller than the wave height, then according to the LPT, the total force acting on

the body is a linear sum of the hydrostatic restoring force Fh, radiation force Fr, wave excitation

(including wave diffraction) force Fexc, and the viscous drag force Fv. The wave-induced motion

of the device is retarded by the controller to extract the electrical energy. The WEC controller is

typically embedded within a power take-off unit, which exerts the actuator/control force FPTO on

the device.

Using the Newton’s second law of motion, the dynamics of the device in the heave

1Point absorber is a WEC device whose characteristic dimensions are much smaller than the sea/ocean wave-
length.
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direction (z) can be written as

mz̈(t) = Fh(t)+Fr(t)+Fexc(t)+Fv(t)+FPTO(t), (5.1)

in which m is the mass of the cylinder, z(t), ż(t), and z̈(t) are the displacement (from the mean

equilibrium position), velocity, and acceleration of the device in the heave direction, respectively.

The hydrostatic restoring force due to buoyancy is given by

Fh(t) =−kstiff · z(t), (5.2)

in which kstiff is the hydrostatic stiffness coefficient. For a cylindrical shaped body, the hydrostatic

stiffness coefficient is given by kstiff = ρwgπR2
cyl, in which ρw is the density of water, g is the

acceleration due to gravity, and Rcyl is the radius of the cylinder. The length of the vertical

cylinder is Lcyl. For a vertical heaving cylinder, kstiff does not change with time because the

water plane area of the body does not change. A possible means of modeling nonlinear buoyancy

forces for floating bodies whose water plane areas differ is discussed in Sec. 5.4.2. In addition,

Giorgi et al. [76, 77] describe an analytical approach to model nonlinear buoyancy forces.

The radiation force Fr(t) in Eq. (5.1) is written as

Fr(t) =−m∞z̈(t)−
∫ t

0
Kr(t− τ)ż(τ) dτ. (5.3)

Here, m∞ is the added mass 2 at infinite frequency. The radiation force in Eq. (5.3) also includes

a convolution integral of the radiation impulse response function (RIRF) Kr(t) with the velocity

of the body. Physically, RIRF explains how kinetic energy is dissipated by the water waves

produced by the oscillation of the body, which began its motion at time t = 0 and continues to

do so until current time t.

Excitation forces due to incident/incoming waves can be computed on either a mean or

2The added mass represents the additional inertia of the system due to the motion of the surrounding fluid.
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instantaneous wetted surface of the device. In the former case, excitation forces can be expressed

as a convolution integral between the wave impulse response function (WIRF) Ke(t) and the

undisturbed wave surface elevation ηwave(t;xB) at the device location xB:

Fexc(t) = Ke ∗ηwave =
∫

∞

−∞

Ke(τ)ηwave(t− τ;xB) dτ. (5.4)

From Eq. (5.4) it can be seen that Fexc(t) is non-causal because future surface elevations affect

the current motion of the body. The non-causality of WIRF has practical implications when it

comes to the implementation of MPC of WECs, since the wave elevations at the device location

must be forecasted. Discussion of wave prediction is deferred to Sec. 5.4.1. In Sec. 5.4.2, we

discuss the evaluation of wave excitation forces using the instantaneous wetted surface.

Lastly, the viscous drag force acting on the body can be written using the non-linear

Morison equation [123] as

Fv(t) =−
1
2

ρwCdπR2
cyl|ż(t)|ż(t), (5.5)

in which Cd is the coefficient of drag. Estimating an accurate value of Cd for Eq. (5.5) is a

non-trivial task. This work estimates Cd by equating the work done
(∫ T

0 Fvż dτ

)
by viscous

forces on a freely decaying cylinder that heaves on an air-water interface in a NWT with the work

done by viscous forces defined according to Eq. ((5.5)). We chose one period of the damped

oscillation for the integral.

Putting all terms together, the governing equation for the 1 DOF heaving WEC reads as

z̈(t)+
1

m+m∞

∫ t

0
Kr(t− τ)ż(τ)dτ +

1
m+m∞

kstiff · z(t) = u(t)+ v(t)+
Fv(t)

m+m∞

, (5.6)

in which

u(t) =
FPTO(t)
m+m∞

, v(t) =
Fexc(t)
m+m∞

.
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To obtain Ke(t) and m∞, we use the boundary element method software ANSYS AQWA [124].

The radiation convolution integral given by Eq. (5.3) is approximated in a state-space form [125]

with velocity of the device ż(t) as input and the approximated convolution integral as output.

The state-space representation offers both computational efficiency [126] and representational

convenience for matrix-based MPC control. Following Yu and Falnes [125], the state-space

representation of the radiation convolution integral reads as

ẋxxrrr(t) = Arrrxxxrrr(t)+Brrr ż(t)∫ t

0
Kr(t− τ)ż(τ)dτ ≈ Crrrxxxrrr(t), (5.7)

in which xxxrrr ∈ Rnr×1, Arrr ∈ Rnr×nr , Brrr ∈ Rnr×1, Crrr ∈ R1×nr , and nr = 3 is the approximation

order of the radiation force used in this work. The viscous drag force acting on the cylinder is

linearized around the current velocity of the cylinder ż0(t) and is approximated as

Fv(t)≈−β |ż0| ż0 +2β |ż0| ż, (5.8)

in which β 3 = −1
2ρwCdπR2

cyl. Using Eqs. ((5.6))-((5.8)), a continuous-time, linear state-space

form governing the dynamics of the WEC device is obtained as

Ẋccc(t) = AcccXccc(t)+Bccc (uc(t)+ vc(t)−β |ż0| ż0) , (5.9)

Zccc(t) = CcccXccc(t), (5.10)

3The definition of β here is different from the one in Chapter 2 and 4
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in which the subscript c denotes the continuous-time quantities and

Accc =


0 1 0

− kstiff
(m+m∞)

2β |ż0(t)|
(m+m∞)

− Crrr
(m+m∞)

0 Brrr Arrr

 ∈ R(nr+2)×(nr+2), Bccc =


0

1

0

 ∈ R(nr+2)×1,

Cccc =

1 0 0

0 1 0

 ∈ R2×(nr+2), Xccc(t) =


z(t)

ż(t)

xxxrrr(t)

 ∈ R(nr+2)×1, Zccc(t) =

z(t)

ż(t)

 ∈ R2×1.

Let us note that except for the linearized drag coefficient, all entries of matrices Accc and Bccc are

time invariant. Therefore, the dynamical system described by Eqs. (5.9) and (5.10) is quasi linear

time invariant (QLTI). The dynamical system is reduced to an LTI one if the drag coefficient is

linearized around a fixed point, e.g., around the mean equilibrium position of the device.

5.3 Model predictive control of WECs

Having discussed the control-oriented dynamical model of the WEC device, we now focus

our attention on model predictive control for WECs. Its basic principles are straightforward. For

each control sequence, the controller uses the dynamical model of the plant to predict the plant’s

future trajectory over a prediction horizon (time period) of Th. Out of a large set of possible

outcomes, MPC selects the control sequence which extremizes (maximizes or minimizes) a

predefined objective function. The extremization of the objective function is typically achieved

by solving an optimization problem numerically. The first part/signal of the optimal control

sequence is used to control the plant, while the rest is discarded. This process is repeated again

and again by receding/moving the prediction horizon forward. With WECs, the control objective

is to maximize the device’s energy output. Thus, to implement MPC for WECs, we require:

1. A discrete-time dynamical model of the device to predict the future dynamics over a

finite time horizon Th. In this work we use the first order hold (FOH) method of Cretel
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et al. [127] to obtain the discrete-time model [128] from the continuous-time Eqs. (5.9)

and (5.10). More specifically, if ∆t denotes the discrete time step size and k ∈ N denotes

the (discrete) time index, then the current state Xddd(k) is advanced to the next time level

Xddd(k+1) as

Xddd(k+1) = AdddXddd(k)+Bddd∆ud(k+1)+Fddd∆vd(k+1), (5.11)

Zddd(k) = CdddXddd(k), (5.12)

in which the subscript d denotes the discrete-time quantities and

Addd =


φ(∆t) ϒ ϒ

0 1 0

0 0 1

 ∈ R(nr+4)×(nr+4), Bddd =


Λ

1

0

 ∈ R(nr+4)×1,

Fddd =


Λ

0

1

 ∈ R(nr+4)×1, Cddd =


1 0 0 ... 0 0 0

0 1 0 ... 0 0 0

0 0 0 ... 0 1 0

 ∈ R3×(nr+4),

Xddd(k) =


Xccc(k∆t)

ud(k)

vd(k)

 ∈ R(nr+4)×1, Zddd(k) =

Zccc(k∆t)

ud(k)

 ∈ R3×1. (5.13)

Here, Xccc and Zccc denote the possibility of initializing data from a continuous-time solver

at the beginning of the time step k. For example, in many cases presented in this work, we

use the continuous-time multiphase IB solver that sends the device state Xccc(k∆t) to the
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MPC algorithm. In the matrices defined above, the following definitions are used:

φ(∆t) = e∆tAccc ∈ R(nr+2)×(nr+2),

ϒ = A−1
ccc (φ(∆t)− I)Bccc and Λ =

1
∆t

A−1
ccc (ϒ−∆tBccc) ∈ R(nr+2)×1,

uc(t) = ud(k)+
(

t− k∆t
∆t

)
∆ud(k+1), vc(t) = vd(k)+

(
t− k∆t

∆t

)
∆vd(k+1),

∆ud(k+1) = ud(k+1)−ud(k), ∆vd(k+1) = vd(k+1)− vd(k). (5.14)

2. A receding strategy in which only the first part/signal of the optimal control sequence

is used for actuating the device, and the prediction horizon is moved forward in time to

compute the next optimal control sequence (by taking into account the latest device state

and wave measurements). We use a prediction horizon of one wave period in this work,

unless stated otherwise.

Assuming that a Np-step prediction horizon is employed, i.e., Th = Np ·∆tp, the output

vector, Zddd(k), is obtained from the discrete-time model by time marching Eqs. (5.11)

and (5.12) through the prediction horizon as [127, 128]

Zddd(k) = PXddd(k)+J uuu ∆ud(k)+J vvv ∆vd(k). (5.15)
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In the equation above

Zddd(k) =



Zddd(k+1|k)

Zddd(k+2|k)

.

.

Zddd(k+Np|k)


∈ R(3Np×1),

J uuu =



CdddBddd 0 ... 0

CdddAdddBddd CdddBddd ... 0

. . . .

. . . .

CdddA(Np−1)
ddd Bddd CdddA(Np−2)

ddd Bddd ... CdddBddd


∈ R3Np×Np ,

P =



CdddAddd

CdddA2
ddd

.

.

CdddANp
ddd


∈ R3Np×(nr+4),

J vvv =



CdddFddd 0 ... 0

CdddAdddFddd CdddFddd ... 0

. . . .

. . . .

CdddA(Np−1)
ddd Fddd CdddA(Np−2)

ddd Fddd ... CdddFddd


∈ R3Np×Np (5.16)

Sec. 5.4 describes the methods for obtaining the future wave excitation force values stored

in the vector ∆vd(k). Note that the (WSI) solver time step size ∆t is generally different

from the MPC time step size ∆tp. In many of the examples presented in this work, we

employ a continuous-time CFD solver with a much smaller time step of ∆t than ∆tp in
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order to accommodate the convective Courant-Friedrichs-Levy (CFL) number restriction.

3. An objective function to determine the optimal control sequence over the prediction

horizon. Here, the goal is to maximize the amount of energy absorbed by the WEC device,

which can be expressed by the relation

J0 =−(m+m∞)
∫ t+Th

t
u(τ) · ż(τ)dτ. (5.17)

The negative sign in the objective function indicates the flow of energy from the device to

the power grid. Using the trapezoidal rule to evaluate the definite integral of Eq. (5.17),

we obtain

J0 =−(m+m∞)∆tp

(
1
2

ud(k)ż(k)+
k+Np−1

∑
i=k+1

ud(i|k)ż(i|k)+
1
2

ud(k+Np|k)ż(k+Np|k)

)
(5.18)

For purposes of extremization of J0, we can remove the constant pre-factor and the known

term at time level k (ud(k)ż(k)) from the discrete summation and redefine the objective

function to be

J1(k) =
k+Np−1

∑
i=k+1

ud(i|k)ż(i|k)+
1
2

ud(k+Np|k)ż(k+Np|k) (5.19)

Since the (constant) negative pre-factor −(m+m∞)∆tp has been dropped from J0 to obtain

J1, the initial maximization problem is now a minimization problem. Moreover, the

objective function can be expressed in terms of the output vector as follows:

J1(k) =
1
2

ZT
ddd (k) Q Zddd(k), (5.20)
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in which

Q =



M
.. .

M

1
2M


∈ R3Np×3Np and M =


0 0 0

0 0 1

0 1 0

 ∈ R3×3

By substituting Eq. (5.15) into Eq. (5.20) and expanding the terms, we get

J1 =
1
2

∆ud
T J T

uuu QJ uuu∆ud +∆ud
T J T

uuu Q(PXddd +J vvv∆vd)

+
1
2
(PXddd +J vvv∆vd)

T Q(PXddd +J vvv∆vd) (5.21)

The minimization of J1 with respect to the unknown control sequence ∆ud yields the opti-

mal control ∆ud
? for the entire prediction horizon. Observe that the last term of Eq. (5.21)

does not contribute to the evaluation of ∆ud
? and can be safely dropped. Therefore, the

objective or in this case the cost function to minimize reads as

J1 =
1
2

∆ud
T J T

uuu QJ uuu∆ud +∆ud
T J T

uuu Q(PXddd +J vvv∆vd). (5.22)

The cost function J1 is quadratic in ∆ud and is assumed to be positive semi-definite. We

use the quadratic programming (QP) methods available in MATLAB [129] to obtain the

optimal control sequence ∆ud
?. The objective functions J0 and J1 assume that the PTO is

ideal with no mechanical to electrical conversion losses. Thus, the conversion efficiency ε

is taken to be 100%, i.e., ε = 1. Readers are referred to Tona et al. [130], who formulated

a MPC problem with ε < 1 and investigated how a non-ideal PTO affects device dynamics

and absorbed power 4.
4Although we have taken ε = 1 for all the cases in this work, our code (available at https://github.com/IBAMR/

cfd-mpc-wecs) can also simulate the controlled dynamics of the WEC device with ε < 1. The non-ideal PTO
problem is handled separately because it requires a sequential quadratic programming solver.
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5.3.1 Device/Path constraints

In general, if the cost function J1 is minimized as is, the device displacement, velocity, or

actuator force will exceed the physical limits. An unconstrained control force could, for instance,

cause the device to overshoot the free surface and slam into water with large impact forces. This

can be avoided by using the following path/device constraints in MPC [127, 131, 132]:

zmin ≤ z(k) ≤ zmax,

żmin ≤ ż(k) ≤ żmax,

umin ≤ u(k) ≤ umax. (5.23)

Constraints written in Eq. (5.23) are first expressed in the form Zmin
ddd ≤Zddd ≤Zmax

ddd , which

is then recast as Zmin
ddd ≤PXddd(k)+J uuu ∆ud(k)+J vvv ∆vd(k)≤ Zmax

ddd using Eq. (5.15). As both

Xddd(k) and ∆vd(k) are known inputs to the quadratic program, the latter form of the inequality

allows extraction of the constraint relationship for the variable of interest ∆ud .

5.3.2 Regularizing the MPC objective function

The cost function J1 of Eq. (5.22) is further modified by adding two additional quadratic

penalty terms:

J2(k) = J1(k)+λ1‖∆ud‖2
2, (5.24)

J3(k) = J2(k)+λ2‖uuu‖2
2. (5.25)

Adding the λ1‖∆ud‖2
2 term to J1 reduces the aggressiveness of the controller, i.e., J2

results in smoother control force variation over time than the original cost function J1 [127]. The

non-negative parameter λ1 in Eq. (5.24) has the dimensions of time. It is important to keep λ1

positive in order to maintain or enhance J1’s convexity. A smaller magnitude of λ1 ensures that

J1 and J2 are not too far apart.
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J2 is further modified to J3 by adding the quadratic penalty term λ2‖uuu‖2
2 (Eq. (5.25)). The

objective is to reduce the flow of power from the grid to the device, referred to as reactive power

in wave energy literature [132, 133]. Even though reactive power aligns the device velocity with

wave excitation forces to provide a higher overall energy output, it can lead to large instantaneous

positive and negative powers in the PTO unit [133]. The two-way power flow complicates the

design of a PTO system and increases its cost. The goal of J3 is to enforce the one-way power

flow condition in the PTO machinery [127]. As with λ1, λ2 should also be positive, smaller in

magnitude, and has the dimensions of time.

5.4 Linear potential theory-based wave excitation/Froude-
Krylov forces

The wave excitation forces acting on the body according to the LPT are the sum of effects

coming from undisturbed incident waves (assuming that the body is removed from the path of

the waves) and diffracted waves (which assumes the body is held stationary at its mean position).

Wave excitation forces are also known as Froude-Krylov (FK) forces. FK forces can be computed

using the undisturbed flow and diffracted wave potentials, φI and φD, respectively, as

FFK(t) = FI(t)+FD(t) =−
∫

Sb

(pI(t)+ pD(t)) n dSb, (5.26)

in which Sb is the wetted surface area of the body, n is the unit outward normal to the surface,

pI = −ρw
∂φI
∂ t is the pressure due to incident waves, and pD = −ρw

∂φD
∂ t is the pressure due

to diffracted waves. It should be noted that the hydrostatic pressure pH(t) = −ρwgz(t) and

the radiation pressure pR(t) = ρw
∂φR
∂ t are accounted for in the calculations of Fh(t) and Fr(t),

respectively in Eq. (5.1). Additionally, in Eq. (5.1), Fexc is the z-component of FFK.
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Figure 5.2. Wave impulse response function (WIRF) for a vertical cylindrical in heave motion.
The original WIRF Ke(t) is shown in black and the right shifted WIRF Kes(t) is shown in red.
The dashed part of the curves represents the truncated region where the WIRF is close to zero.

5.4.1 Linear Froude-Krylov (LFK) forces: Up-wave measurements and
future wave predictions

If the pressure integral of Eq. (5.26) is evaluated while the body is stationary at its

mean equilibrium position, the Froude-Krylov forces are linear with respect to free surface

elevation and are called linear Froude-Krylov forces (LFK). The LFK forces can be computed

more efficiently as a convolution integral between the wave impulse response function (WIRF)

and water surface elevation at the device location xB: Fexc(t) =
∫

∞

−∞
Ke(τ)ηwave(t − τ;xB)dτ

(repeated from Eq. (5.4) for convenience). Assuming that the sea surface is calm prior to the start

of the simulation at t = 0, i.e., ηwave(t < 0;∀x) = 0, the upper limit of the convolution integral

Ke ∗ηwave can be terminated at the current time t.

In Fig. 5.2 we show the non-causal WIRF Ke(t) as a black line. WIRF is the inverse

Fourier transform of the frequency-domain excitation force F̂(ω) = F̂I(ω)+ F̂D(ω) that we

obtain using ANSYS AQWA software:

Ke(t) =
1

2π

∫
∞

−∞

F̂(ω)e(iωt) dω. (5.27)

In practice, the incident wave forces F̂I and the diffracted wave forces F̂D can only be computed
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for discrete frequencies {ωi}, and a suitable numerical interpolation is required to evaluate the

inverse Fourier transform. From Fig. 5.2, it can be seen that when t > t f 1 or t <−|t f 2|, Ke(t)→ 0.

Truncated Ke(t) is shown as a dashed line in Fig. 5.2. The finite positive time interval where

Ke(t) 6= 0 requires ηwave data only until t− t f 1 in the past to determine the convolution integral.

Also, the finite negative time interval where Ke(t) 6= 0 implies that ηwave data is only required

up to t + |t f 2| into the future. The convolution integral of Eq. (5.4) can therefore be performed

efficiently as

Fexc(t) =
∫ t f

−t f

Ke(τ)ηwave(t− τ;xB) dτ, (5.28)

in which t f = max
[
t f 1, |t f 2|

]
. It follows that (with reasonable accuracy) Fexc at the current time t

can be computed if the wave surface elevation data at the device location is available from t− t f

to t + t f .

It is unrealistic to measure the undisturbed wave elevation at the device location since the

incident waves cannot pass through the device. Furthermore, the waves near the body are altered

by FSI and do not remain undisturbed in reality. Therefore, we need to find another way to

estimate ηwave at the device location xB. We can take advantage of the fact that wave propagation

is a hyperbolic phenomenon, which means that waves passing an up-wave location xA will arrive

at the device at a later time. In order to locate a convenient up-wave location, we change the

variable τ to τ ′− t f in Eq. (5.28):

Fexc(t) =
∫ t f

−t f

Ke(τ)ηwave(t− τ;xB) dτ

=
∫ 2t f

0
Ke(τ

′− t f )ηwave(t + t f − τ
′;xB) dτ

′

=
∫ 2t f

0
Kes(τ

′)ηwave(t− τ
′;xA) dτ

′.

Here, Kes is the shifted WIRF obtained by shifting the original WIRF to the right side on

the time-axis by an amount t f . Symbolically, the time shift can be expressed by the relation

Kes(t) = Ke(t − t f ). The shifted WIRF is shown as a red line in Fig. 5.2. For the integral
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transformation above, we defined the up-wave location xA so that the waves leaving this location

reach the device after an additional time of t f . Therefore, the water surface elevation at the

device location at the present time t is related to the up-wave elevation at the previous time t− t f ,

i.e., η(t + t f ;xB) = η(t;xA). The distance of the up-wave point from the device is calculated by

using the wave velocity (ω/κw) as

d f =
ω

κw
· t f , (5.29)

in which ω is the wave frequency and κw is the wave number. In our CFD model, xA is chosen to

be a point in the wave generation zone. See Fig. 5.4 for a visual representation. In summary, the

convolution integral of Eq. (5.28) is equivalent to

Fexc(t) =
∫ 2t f

0
Kes(τ)ηwave(t− τ;xA) dτ. (5.30)

It can be seen from Eq. (5.30) that the wave excitation forces acting on the device at

the present instant t can be calculated from the ηwave data recorded at the up-wave location

between the period [t−2t f , t] for which no prediction or time-series estimation is needed. Wave

forecasting is still necessary for MPC even if all the surface elevation data is obtained/measured

at a nearby up-wave location. The reason is that for a prediction horizon of Th, FK forces acting

on the device are necessary between the period [t, t +Th] (to fill the entries of the vector ∆vd

in Eq. (5.15) or Eq. (5.22)). Accordingly, at the up-wave location xA, ηwave data is required

in the interval [t−2t f , t +Th]. In this study, we use the auto-regressive (AR) model for time

series forecasting, one of the many techniques available to predict the future behavior of a

time-series based on its past behavior. Detailed information about the implementation of an

AR model for wave forecasting can be found in the thesis by Gieske [134]. A typical AR

model is calibrated for a particular sea state and requires (manual) re-tuning to make accurate

predictions in a different sea state. Sec. 5.11.4 describes the capability of MPC to adapt to

changing sea states in which different AR models are used for different sea states. Considering
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(a) (b)

Figure 5.3. NLFK force calculation using implicit signed distance functions σ and ψ . (a) A 3D
schematic showing the instantaneous wetted surface area Sb(t) of a vertical heaving cylinder

interacting with the undulatory water surface. (b) A 2D schematic showing the stair-step
representation of the immersed body on the Cartesian grid and the identification of the grid faces

for evaluating the pressure integral using the body SDF ψ .

the importance of wave excitation force prediction, other methods of prediction are also described

in the literature, including the recursive least squares filter [135], the Kalman and extended

Kalman filters [136, 137, 138, 139, 140], and neural networks [136, 139, 141]. In practice, some

of these techniques may be easier to implement than AR.

5.4.2 Non-linear Froude-Krylov (NLFK) forces: A novel static grid
approach based on implicit surfaces

A significant amount of modeling accuracy can be achieved by considering the FK forces

to be non-linear. The NLFK force is calculated by integrating the incident wave pressure pI(t)

over the instantaneous wetted surface area Sb(t) of the body; see Eq. (5.26) and Fig. 5.3(a).

The computation of NLFK forces for practical control of WECs is considered prohibitively

expensive in the wave energy literature. It is because such forces are typically computed using

dynamic meshes, in which the computational domain is re-meshed to account for the relative

motion between the body and the waves. Nevertheless, computationally-efficient approaches

have recently been developed for calculating NLFK forces. In [77], Giorgi et al. presented an

analytical method for evaluating the pressure integral for axisymmetric WECs. Though the
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method described in [77] is computationally attractive, it can only be applied to WEC devices that

are geometrically solids of revolution. An alternative approach is presented in this section based

upon the level set/signed distance function (SDF) that can effectively model the instantaneous

wave-structure interaction of WECs on a static Cartesian grid. Moreover, the proposed technique

can be applied to arbitrarily complex-shaped bodies because the SDF can be computed using

efficient computational geometry algorithms within a narrow band of grid cells [142]. Further,

the level-set methodology is an embarrassingly parallel algorithm that is amenable to both

distributed- and shared-memory parallelism.

First, we define a rectangular box region R = Rw(t)∪Ra(t) around the WEC, which is

discretized on a static Cartesian grid with rectangular cells. The grid cells are enumerated using

the integer tuple (i, j,k). The static region R should be a minimal one, covering only the wave

amplitude and maximum displacement of the body expected in the simulation for computational

efficiency. Next, define two level set functions ψ(x, t) and σ(x, t) over the entire box x ∈R

that describe the signed distance to the WEC surface and the undulatory air-water interface,

respectively. We take ψ to be negative (positive) inside (outside) the body and σ to be negative

(positive) inside the water region Rw(t) (air region Ra(t)). Zero-contours of ψ and σ implicitly

define the WEC-fluid and the air-water interface, respectively. Sec. 2.2 provides more details on

level set methodology, where we describe our multiphase CFD solver that is also based on the

level set technique. The motion of the waves and the device is captured by redefining SDFs on

the static grid 5, which completely eliminates the need to re-mesh the computational domain R.

The wave incident pressure pI is defined on the cell centers xi, j,k of the static Cartesian grid in

5SDF of a vertical cylinder can be prescribed analytically using constructive solid geometry operators, such as
min/max acting on SDFs of primitive shapes. SDF of the air-water interface can also be prescribed analytically
from the known surface elevation function ηwave(x, t).
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order to compute the NLFK force as

pI(xi, j,k, t) = 0, σ(x, t)> 0,

pI(xi, j,k, t) = ρwg
H

2
cosh(κw(d +σ)) · cos(κwx−ωt)

cosh(κwd)
, σ(x, t)≤ 0, (5.31)

in which H is the wave height, κw is the wavenumber, d is the depth of water above the sea

floor, and ω is the wave frequency. The integral of pI over the wetted surface can be performed

numerically as

FI(t) = ∑
f
−pI(x f , t)n f ∆A f . (5.32)

The discrete summation in Eq. (5.32) is carried over the Cartesian grid faces that provide a

stair-step representation of the body on the Cartesian grid. This is shown in Fig. 5.3(b). The set

of the Cartesian grid faces f can be easily identified by examining the sign change of σ . The

n f and ∆A f variables in the equation above represent the unit normal vector and the area of the

cell face, respectively. The incident wave pressure pI(x f , t) on the cell face (where σ is taken

to be zero) is the weighted average of the neighboring cell center pressures, where the distance

to the WEC surface |σ(xi, j,k, t)| is used as the weights. In the heave direction, calculating FI(t)

requires summing only over z-faces.

The diffraction component of NLFK forces remains linear. This is due to the assumption

that the body is stationary when computing the diffraction forces. Similarly to LFK forces, the

z-component of FD(t) can be computed as a convolution integral between the diffraction impulse

response function (DIRF) Kd(t) in the heave direction and the water surface elevation as

FD(t) = Kd ∗ηwave =
∫

∞

−∞

Kd(τ)ηwave(t− τ) dτ =
∫ t f

−t f

Kd(τ)ηwave(t− τ;xB) dτ. (5.33)

DIRF is the inverse Fourier transform of frequency-domain diffraction force data F̂D(ω) that we
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Figure 5.4. Numerical wave tank (NWT) schematic showing wave generation, wave damping,
and vorticity damping zones. The WEC device is placed in the working zone of length 3.145λ .

obtain using ANSYS AQWA.

We remark that the technique described in this section can be easily modified to model

nonlinear buoyancy forces for varying cross-sectional WEC devices. This is achieved by

replacing pI by pH =−ρwgz(t) in Eq. (5.32).

5.5 NWT and FSI coupling

The fully-resolved and control-informed WSI of the device is simulated using a NWT,

depicted in Fig. 5.4. In the tank, the converter is located at position xB. The wave generation,

wave damping, vorticity damping zone, and boundary conditions are implemented as described

in Sec. 4.3. The wave generation zone reduces the interaction of the reflected waves (from the

device) with the inlet boundary. The wave generation zone being relatively free of reflected

waves, the up-wave point xA is also placed inside this zone, which accurately records the wave

elevation data ηwave(t;xA) and sends it to the MPC. Also sent to the controller are the device’s

displacement and velocity, z and ż, computed from the fully-resolved WSI.

For the ease of reading, we rewrite the Brinkman penalization term fc given by Eq. (3.9)

below. It is treated implicitly in the discretized version of the momentum Eq. (3.7) and computed

as

fn+1,k+1
c =

χ̃

κ

(
un+1,k+1

b −un+1,k+1
)
, (5.34)
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in which the discretized indicator function is defined using the body Heaviside function (see

Eq. (3.4)) as χ̃ = 1− H̃body; χ̃ = 1 inside the solid region. A sufficiently small value of

the permeability coefficient κ ∼ O(10−8) is shown to be effective in enforcing the rigidity

constraint [38, 116].

Rewriting the rigid body velocity ub given in Eq. (3.9). It can be expressed as the sum of

translational Ur and rotational Wr velocities:

ub = Ur +Wr× (x−Xcom) , (5.35)

in which Xcom is the position of the center of mass of the body. In this study, the WEC device

is allowed to move only in the heave direction. Hence, Ur = (0,0, ż(t)) and Wr = 0. The rigid

body velocity is simplified to

un+1,k+1
b = żn+1,k+1 ẑ. (5.36)

The heave velocity ż resulting from the WSI can be computed using Newton’s second law of

motion as

m
dż
dt

= m
żn+1,k+1− żn

∆t
= F n+1,k

hydro −mg+Fn+1,k+1
PTO , (5.37)

in which Fhydro is the net hydrodynamic force (pressure and viscous) in the heave direction and

m is the mass of the cylinder (same as the one used in Eq. (5.1)). The method that was previously

described in Sec. 5.4.2 to compute NLFK forces using the SDF ψ (see Eq. (5.32) can be easily

extended to include both pressure and viscous force contributions. Following the SDF approach,

the net hydrodynamic force acting on the body is computed as

F n+1,k
hydro = ∑

f

(
−pn+1,kn f +µf

(
∇h un+1,k +

(
∇h un+1,k

)T
)
·n f

)
∆A f . (5.38)

We remark that whereas Eq. (5.32) is evaluated using a simple and a minimal box region R
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surrounding the device and the waves near it, Eq. (5.38) is evaluated using the actual CFD grid

that is distributed across multiple processors. Lastly, the FPTO term of Eq. (5.37) is computed by

the MPC algorithm as discussed in Sec. 5.3.

5.6 Power transfer from waves to the PTO

Here, we mathematically describe the pathway of power transfer from the sea waves to

the PTO system. The relationships derived in this section can also be used to quickly verify

the accuracy of the CFD simulations. To begin, multiply the dynamical Eq. (5.37) by the heave

velocity ż and rearrange the terms to obtain:

m
d
dt

(
ż(t)2

2

)
= Fhydro(t)ż(t)−mgż(t)+FPTO(t)ż(t). (5.39)

Taking the time average of the above equation over one wave period T and rearranging terms,

we get

〈Fhydro(t)ż(t)〉= 〈m
ż(t)2

2
〉+ 〈mgż(t)〉−〈FPTO(t)ż(t)〉, (5.40)

in which 〈(·)〉=
∫ t+T

t (·)dτ represents the time-averaging operator. For regular waves, contri-

butions from the inertial and the gravity terms are zero due to the time periodicity of the heave

velocity. Hence, we have:

〈Fhydro(t)ż(t)〉=−〈FPTO(t)ż(t)〉. (5.41)

The term 〈Fhydro(t)ż(t)〉 describes the mechanical work done by the waves to oscillate the

converter and the term -〈FPTO(t)ż(t)〉 describes the power absorbed by the device. For irregular

waves, the inertial and gravity terms may not equal zero when averaged over an exact wave

period. Nevertheless, Eq. (5.40) remains valid. The power transfer relationships are verified in

Sec. 5.11.3.
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Table 5.1. Various WSI/MPC solver combinations considered in this work.

Solver MPC
1 BEM-LFK LFK
2 BEM-LFK NLFK
3 BEM-NLFK LFK
4 BEM-NLFK NLFK
5 CFD LFK
6 CFD NLFK

5.7 WSI and MPC solvers

Secs. 5.2 describe methods naturally suited to different types of WSI and MPC solvers.

There are two types of WSI solvers that can be derived from Sec. 5.2: (1) BEM-LFK and (2)

BEM-NLFK. Here, BEM implies a WSI solver that solves Eq. (5.6), LFK implies the excitation

force is calculated using Eq. (5.28) (or Eq. (5.30)), and NLFK implies the excitation force is

calculated using Eqs. (5.32) and (5.33). MPC solvers can also be divided into two types: (1)

MPC-LFK and (2) MPC-NLFK., where the excitation force vector ∆vd is computed linearly

and non-linearly, respectively. Lastly, based upon Chapter 2 and Sec 5.5, we have a multiphase

IB/CFD solver that solves Eqs. (2.1)-(2.2). Table 5.1 shows six possible WSI/MPC combinations.

Note that it is computationally unfeasible (if not impossible) to implement MPC using a CFD-

based solver. Moreover, results of Sec. 5.11.1 suggest that a higher fidelity hydrodynamical

model within MPC does not necessarily improve accuracy.

5.8 Communication layer between the CFD and MPC
solvers

In this section, we present the custom communication layer between the CFD and

MPC solvers. The “glue code” is written using PETSc [48], which provides a high-level

communication channel between IBAMR [43] and MATLAB [129]. As discussed in Sec. 5.3,

MPC requires quadratic programming (QP) and autoregressive models (AR). Although there

are several compiled language implementations of QP (e.g., QuadProg++ [143]) and AR (e.g.,
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Figure 5.5. Schematic representation of the dynamic interaction between the MPC algorithm
and multiphase IB solver.

Cronos [144]) techniques, we implement the MPC algorithm in MATLAB, which has built-in

support for QP and AR techniques. MATLAB is probably the most widely used programming

environment for dynamical systems modeling and control in academia and industry, so our

current implementation can easily be adapted to integrate other optimal control strategies for

WECs into a different CFD code of choice, e.g., OpenFOAM.

In the following, we describe the interaction between the CFD and MPC solver codes

as a three-part algorithm. Fig. 5.5 shows this interaction pictorially. Communication between

the CFD and MPC codes is handled by the PETScMatlabEngine object provided by the PETSc

library. Details on the PETSc functions and objects can be found in its user manual [47].

1. Accessing the MATLAB workspace: Algorithm 1 is called towards the beginning

of the driver code to create the PETScMatlabEngine object ‘mengine’ on MPI (Mes-

sage Passing Interface) rank 0. Next, line 2 of the algorithm calls the PETSc function

PetscMatlabEngineCreate(), in which ‘PETSC COMM SELF’ is the MPI commu-

nicator containing the single MPI rank 0. Next, the MATLAB workspace is cleared

for any data already present and the path to the ‘MPC matlab code’ directory is added

182



to MATLAB’s standard search path. The directory ‘MPC matlab code’ contains all

the MPC code scripts and related functions. The PETSc function to achieve this is

called on line 3 of Algorithm 1. Then, various wave (H , Tp, ω , κw, d) and device

parameters (m, Rcyl, Lcyl) are loaded into the workspace by calling the PETSc function

PetscMatlabEngineEvaluate() on line 4, wherein a MATLAB variable ‘var’ is created

with the numerical value of var value. Next, the BEM data is read and loaded into the

workspace by executing the MATLAB script ‘load mpc parameters.m’. This includes the

added mass of the cylinder m∞ and the impulse response functions Ke(t) and Kd(t). The

script also sets various MPC parameters (∆tp, Th, Np, nr, t f ), device constraints (zmin/max,

żmin/max, umin/max), wave type (regular or irregular), and the method of wave excitation

force calculation (LFK or NLFK). The coefficients of the quadratic penalty terms λ1 and

λ2 and the MPC solver options (maximum iterations, solver tolerance, etc.) are also set

by the same script ‘load mpc parameters.m’. Since the CFD solver sends the device and

wave elevation data to the MPC code, it needs to know the MPC time step size ∆tp and

the next time to synchronize data with the controller tnext-sync. The values from the MAT-

LAB workspace are obtained by calling the function PetscMatlabEngineGetArray().

Finally, the remaining CFD parameters and variable values (∆t, Xcom, xB, and xA) that

could not be added to the workspace earlier (on line 4) are loaded to the workspace on

line 8.

2. The main time loop: Algorithm 2 describes the time-loop interaction between the CFD

and MPC solvers. First, the MPI rank 0 updates the MATLAB workspace with the CFD

solver time tCFD = tn+1 and the device displacement and velocity data, as shown on line 4

of the algorithm. Next, the algorithm checks if the CFD solver time is greater than or equal

to the controller synchronization time tnext-sync. If the statement evaluates to true, then

a new set of MPC matrices P , J uuu, and J vvv are calculated and the radiation damping

vector xxxrrr is advanced in time using the MATLAB scripts ‘calculate mpc matrices.m’
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Algorithm 1: Creating and initializing the MATLAB workspace.
1 if (MPI rank == 0) then
2 PetscMatlabEngineCreate(PETSC COMM SELF, NULL, &(mengine));

// Create a MATLAB engine on MPI rank 0.

3 PetscMatlabEngineEvaluate(mengine, “clc; clear all; close all;
addpath(‘./MPC matlab code’)”); // Execute MATLAB commands and add the

MPC code directory path to the standard search path.

4 PetscMatlabEngineEvaluate(mengine,“var = %f”, var value); // Load the

wave and device parameters into the MATLAB workspace.

5 PetscMatlabEngineEvaluate(mengine, “load mpc parameters”); // Execute

the script to read and load the BEM data and MPC parameters into the

MATLAB workspace.

6 PetscMatlabEngineGetArray(mengine, ...); // Load the values of the

MATLAB variables into the CFD code.

7 . . . . . . . . . // Code to do CFD related setup and calculations.

8 PetscMatlabEngineEvaluate(mengine, ...); // Load the remaining CFD

variables into the workspace that were not available/calculated

earlier.

9 end

and ‘calculate radiation damping xr.m’, respectively. To enable the calculation of wave

excitation forces over a prediction horizon of Th, the CFD solver sends the past up-wave

surface elevation data (from the NWT) to the MATLAB workspace. Using the updated

matrices, vectors, and FK forces, the MPC solver predicts the optimal control sequence for

the entire prediction horizon on line 9. The first signal of the optimal control sequence is

sent to the CFD solver, which is then interpolated to time tCFD using Eq. (5.14). Note that

since the CFD solver time step size ∆t is typically smaller than the MPC solver time step

size ∆p, line 13 of Algorithm 2 ensures that FPTO is computed at the correct time level in

the case the if block is not executed. Lastly, both tnext-sync and tCFD are updated and the

time level is moved to n+2.

3. The MPC routine: Algorithm 3 describes the AR predictions and the LFK and NLFK

force calculations required by the MPC to compute an optimal control force sequence.

This algorithm is executed by the MATLAB script ‘calculate control force.m’. First, line
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Algorithm 2: Time-loop interaction between the CFD and MPC solvers.
1 Initialize the MATLAB workspace and load the BEM data and MPC parameters.

// See Algorithm 1.

2 while (tCFD ≤ tend) do
3 if (MPI rank == 0) then
4 PetscMatlabEngineEvaluate (mengine, “tCFD = % f ; ∆t = % f ; z = % f ;

ż = % f ;” , tCFD, ∆t, z, ż); // Send the latest CFD and device data to

MATLAB workspace.

5 if (tCFD ≥ tnext-sync) then
6 PetscMatlabEngineEvaluate(mengine, “calculate mpc matrices;

calculate radiation damping xr;”); // Execute the MATLAB scripts

to update the discrete-time dynamical matrices.

// Send the past up-wave surface elevation data to the MATLAB

workspace.

7 PetscMatlabEnginePutArray(mengine, tpast.size(), 1,
&(tpast[0]),“tpast”);

8 PetscMatlabEnginePutArray(mengine, ηA.size(), 1,
&(ηA[0]),“ηApast”);

9 PetscMatlabEngineEvaluate(mengine, “calculate control force;”);
// Compute the optimal control sequence using Algorithm 3.

10 PetscMatlabEngineGetArray(mengine, 1, 1, &(u),“u”); // Get the

first signal of the optimal control sequence from MPC for the

CFD solver.

11 tnext-sync← tnext-sync + ∆tp // Update the synchronization time.

12 end
13 Interpolate FPTO← (m+m∞)u to tCFD using Eq. (5.14).
14 end
15 MPI Bcast(FPTO); // Broadcast the value of the PTO force to all

processors.

16 Solve the FSI problem using the multiphase IB solver.
17 tCFD← tCFD +∆t
18 end
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1 calculates the discrete time instants over the prediction horizon at a uniform interval ∆t p.

Next, the algorithm checks if AR predictions are to be used or not. If the value of the

variable AR start time is set to a large number (larger than the simulation end time), then

the if condition on line 2 always evaluates to true. In this case, the algorithm computes

the LFK or the NLFK force based on the analytical expression of the wave elevation. In

the case AR start time is set to the controller/MPC start time, the if condition on line 2

evaluates to false when tCFD becomes equal or larger than the MPC start time. In that case,

the wave elevation data over the prediction horizon is calculated using AR predictions; see

line 16. The wave excitation force is computed using the convolution integral given by

Eq. (5.30) based on the AR predictions of wave elevation. Next, other necessary terms

like the viscous force, the state vector Xddd , etc., are calculated on lines 19-21. Finally, the

QP functionality of MATLAB is used to compute the optimal control force sequence ∆ud

considering the necessary device constraints and penalty terms.

5.9 Validation of the BEM and MPC solvers and motivation
behind this work

While MPC has been used in the process industries (chemical plants and oil refineries)

since the 1980s, its formulation for the wave energy conversion application was first suggested by

Gieske [134] in 2007. The study involved optimizing the control of the Archimedes wave swing

(AWS) device modeled as a second-order linear system. In 2010, Cretel et al. [63] implemented

a zero-order hold (ZOH) method based MPC for a half-submerged heaving vertical cylinder A

later study published by Cretel et al. [127] suggested using the first-order hold (FOH) method,

which yielded better results than ZOH-based MPC. The BEM-LFK solver was used in all the

aforementioned studies.

In order to validate our (FOH-based) BEM-LFK solver and MPC implementations, we

consider the same half-submerged vertical cylinder case as Cretel et al. [127]. The cylinder has a

186



Algorithm 3: MATLAB-based MPC routine.
1 time horizon = tCFD + (0:Np) ×∆t p; // Calculate the discrete time horizon.

2 if (tCFD ≤ AR start time) then
3 if (strcmp(Fexc-type, ‘LINEAR FK’)) then
4 Fexc← calculate excitation force(time horizon); // Calculate Fexc

using Eq. (5.28). ηwave is calculated using Eq. (4.1) for regular and

Eq. (4.9) for irregular waves.

5 else
6 zpredicted← AR prediction(zpast, tpast, Np, AR order, ∆t p); // Predict the

device displacement using the AR model based on past data.

7 FD← calculate diffraction force(time horizon); // Calculate the

wave diffraction force using Eq. (5.33). ηwave is calculated using

Eq. (4.1) for regular and Eq. (4.9) for irregular waves.

8 for (m = 1 to (Np +1)) do
9 ψ ← calculate level set for cylinder(zpredicted(m), Rcyl, Lcyl);

// Compute the level set for the cylinder on a static grid

region R.

10 σ ← calculate level set for wave(time horizon(m)); // Compute

the level set for the undulatory air-wave interface.

11 FI(m)← calculate NLFK force(ψ , σ , time horizon(m));
// Calculate the incident wave force using Eq. (5.32).

12 end
13 Fexc← FD +FI // Compute Fexc for ∀t ∈ time horizon.

14 end
15 else
16 ηApredicted ← AR prediction(ηApast , tpast, Np, AR order, ∆t p);
17 Calculate the future Np values of Fexc for ∀t ∈ time horizon using Eq (5.30).
18 end
19 Calculate the first term in the linearized form of the viscous force Fv given in

Eq. (5.8).
20 Calculate the vectors Xd and ∆vd .
21 Calculate J T

uuu QJ uuu and J T
uuu Q(PXddd +J vvv∆vd) terms of Eq. (5.21).

22 Minimize the cost function J3 (with constraints) using the QP functionality of
MATLAB to obtain the optimal control sequence ∆ud .
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(a) Heave velocity (b) Wave excitation force

Figure 5.6. Temporal evolution of (a) the heave velocity and (b) wave excitation forces acting
on the heaving vertical cylinder. Results are compared against Cretel et al. [127] for first-order
regular waves of height H = 2 m and time period T = 7 s. The MPC parameters are ∆tp = 0.1

s, Th = 6 s, λ1 = 2 s, and λ2 = 0 s.

radius of Rcyl = 5 m and an upright length of Lcyl = 16 m. Regular waves of height H = 2 m

and time period T = 7 s are used. This corresponds to a small have height case and the BEM

solvers are expected to be accurate in this wave regime. The BEM parameters m∞ and Ke(t)

are obtained using ANSYS AQWA by performing frequency domain WSI simulations. The

MPC parameters are taken to be ∆tp = 0.1 s, Np = 60 (and consequently a prediction horizon of

Th = 6 s), λ1 = 2 s, and λ2 = 0 s. There are no device constraints included, and J2 cost function

is used in the MPC to match Cretel et al.’s setup. Fig. 5.6 shows the temporal evolution of the

heave velocity and excitation forces and compares it against the steady-state results of Cretel et

al. [127]. Both studies agree very well. The steady-state time-averaged power PPTO absorbed by

the device is 353.5301 kW, which is also close to the value of 395.08 kW reported in [127]. We

conclude from these results that our BEM-LFK solver and MPC implementations are correct.

Next, we compare the predictions of the BEM and CFD solvers for a 1:20 scaled-down

version of the device (using Froude scaling). We do this to reduce the computational cost of

CFD simulations, as the full-scale WEC device requires a larger computational domain and a

higher mesh resolution to resolve the high Reynolds number flow. For further details on the

Froude scaling of the device and wave characteristics (H and T ), the readers are referred to
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Khedkar et al. [59]. The size of the domain, grid resolution, and time step size of the CFD

simulation are determined by the spatial-temporal simulation performed in the next Sec. ??.

Both solvers use regular waves of height H = 0.1 m and time period T = 1.5652 s and the

MPC parameters are Np = 60, ∆tp = 0.0223 s, Th = 1.3415 s, λ1 = 2 s, and λ2 = 0 s. Fig. 5.7

compares the predictions of the two solvers. Fig. 5.7(a) clearly shows that the wave excitation

force of the CFD simulation is much larger than that of the BEM-LFK simulation. A similar

discrepancy is observed using the BEM-NLFK solver whose results are closer to the BEM-LFK

solver. Since this is a low wave amplitude case, we attribute the discrepancy between the CFD

and BEM solvers to the non-linear WSI caused by the controller. To confirm this hypothesis

an additional CFD simulation is conducted, in which hydrodynamic loads are calculated on a

vertical cylinder that has the same dimensions, but is fixed at equilibrium. The case is represented

by the green curve in Fig. 5.7(a). It is clear that both solvers (CFD and BEM-LFK) estimate the

same hydrodynamic force on the stationary cylinder. Furthermore, an uncontrolled dynamics

case is simulated in the next Sec. ??, where the BEM and CFD solvers’ predictions match for

the same wave conditions of this section. These additional tests confirm our hypothesis that even

in calm sea conditions, the controller can cause a mismatch between the solvers’ predictions.

Figs. 5.7(b) and 5.7(c) compare the MPC control force and the instantaneous power

absorbed by the heaving device (respectively) using the BEM-LFK and CFD solvers. The

comparison shows that, while the BEM-LFK solver estimates the power produced by the device

at 10.6 W 6 during its steady-state operation, the CFD solver predicts a large withdrawal of

power from the grid (-43.8 W). The power results of the BEM-NLFK solver are close to those

of the BEM-LFK solver. There was only a small effect of changing the penalty term λ1 on the

power results of the two solvers. The results presented in this section, therefore, suggest that

the BEM solvers may not always provide a reliable estimate of the power production capability

of the WEC device under certain operating/controlled conditions. Furthermore, it can also be

6Using Froude scaling, this value corresponds to 10.6× (20)
7
2 = 379.2 kW for the full-scale device, which is

close what is predicted earlier in this section.
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(a) Wave excitation force (b) Control force

(c) Instantaneous and steady-state powers

Figure 5.7. Temporal evolution of (a) wave excitation force, (b) control force, and (c)
instantaneous power absorbed for vertical cylinder WEC device heaving on the sea surface for
first order regular wave of H = 0.1 m and T = 1.5652 s. The MPC parameters are Np = 60,

∆tp = 0.0223 s, Th = 1.3415 s, λ1 = 2 s, and λ2 = 0 s.

appreciated that it is necessary to include the λ2 term in the objective function to eliminate

or mitigate the large negative powers. This section summarizes the motivation for the work

conducted in this chapter, which is to investigate why the performance of various types of solvers

differs and to compare them under different operating conditions. Due to the reasons noted

above, we compare the performance of various solvers using J3 instead of J2 in the results and

discussion Sec. 5.11. The case of this section is also repeated (Case 2 of Table 5.3) using the J3

cost function because it is more suitable for the model predictive control of WECs.

Before proceeding to the main results Sec. 5.11, we first perform a grid convergence

study for the CFD solver in the next section.
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5.10 Grid convergence study

In this section, we perform a grid convergence study on the heaving WEC device using

the CFD solver. Convergence tests are performed without the MPC. In WSI simulations, both

regular and irregular waves are considered. The spatial resolution study is based on three spatial

resolutions listed in Table 5.2, while the temporal resolution study is based on three values of the

time step size ∆t for irregular waves. In all tests, the maximum Courant-Friedrichs-Levy (CFL)

number is less than or equal to 0.5. Simulations are performed on locally refined grids in order

to reduce computational costs.

The computational domain for regular waves is Ω = [0, 3.145λ ] × [0, 12Rcyl] × [0,

2.2d], whereas for irregular waves it is Ω = [0, 3.176λ ] × [0, 12Rcyl] × [0, 2.2d]. The domain

size is large enough to eliminate boundary effects. This is based on our previous experience

modeling WSI of WEC devices [55, 59]. The origin of the domain is located at the bottom left

corner; see Fig. 5.4. The initial center of mass of the device is located at Xcom = (λ +5Rcyl, 6Rcyl,

d). Rcyl = 0.25 m and Lcyl = 0.8 m, which is a 1:20 scaled-down version of the one presented

in [127]. The cylinder is half-submerged in its equilibrium position.The quiescent water depth

is d = 2 m, acceleration due to gravity is g = 9.81 m/s2 (directed in the negative z-direction),

density of water is ρw = 1025 kg/m3, density of air is ρa = 1.225 kg/m3, viscosity of water is

µw = 10−3 Pa·s, and viscosity of air is µa = 1.8×10−5 Pa·s. At this scale, surface tension at

the air-water interface has no effect on WEC dynamics and is therefore ignored. All of the CFD

simulations in this work, including those of the previous Sec. 5.9 use the same material properties

and computational domain setup. Fig. 5.8 shows the grid layout and typical wave-structure

interactions of the device in the NWT.

5.10.1 Spatial resolution study

Here, a grid convergence study is performed to determine the optimal mesh spacing for

the CFD simulations. Three grid sizes are used to conduct the grid convergence test: coarse,

191



(a) Locally refined Cartesian mesh (b) Regular waves

(c) Irregular waves

Figure 5.8. (a) Locally refined Cartesian mesh with two levels of mesh refinement for the 3D
NWT. Representative WSI of the 3D WEC model at t = 37.5 s: (b) for regular waves and (c) for

irregular waves.

192



medium, and fine (see also Table 5.2). The coarse mesh size corresponds to 5 cells per radius of

the cylinder (CPR), the medium mesh size is 10 CPR, and the fine mesh size is 15 CPR. The

computational mesh consists of a hierarchy of ` grid levels. The coarsest grid level is discretized

into Nx×Ny×Nz grid cells and covers the entire computational domain Ω. A sub-region of the

coarsest level is then locally refined (`− 1) times by an integer refinement ratio of nref. The

local refining is done in such a way that the device and the air-water interface remains embedded

on the finest grid level throughout the simulation. The grid spacing on the finest grid level is

calculated as: ∆x = ∆x0/n`−1
ref , ∆y = ∆y0/n`−1

ref , and ∆z = ∆z0/n`−1
ref , in which ∆x0, ∆y0, and ∆z0

are the grid spacings on the coarsest grid level.

First-order regular waves of height H = 0.1 m and time period T = 1.5652 s enter

from the left side of the domain and interact with the 3D vertical cylinder. The temporal

evolution of the device displacement and velocity using three mesh resolutions are shown in

Figs. 5.9(a) and 5.9(b), respectively. The average percentage change in the peak values of the

heave displacement between two consecutive grid resolutions is calculated from t = 20 s to 30 s.

The average percentage change between the coarse and medium grids is 6 %, and between the

medium and fine grids is 2.7 %. For heave velocity these values are 3.6 % and 2.5 %, respectively.

Fig. 5.10 shows the air-water interface and the vortical structures arising from the WSI using the

medium grid (CPR10) resolution. It can be observed that both these fluid dynamical quantities

are adequately resolved by the CPR10 grid. From Figs. 5.9 and 5.10, it can be concluded that the

medium grid resolution is able to capture the WSI dynamics with good accuracy and hence is

used for the rest of the CFD simulations.

The device dynamics are also simulated using the BEM-LFK solver, which solves

Eqs. (5.9)-(5.10) of Sec. 5.2. Since the present test simulates the WSI without MPC, the device

undergoes a small motion from its mean equilibrium position under the action of first-order

Stokes waves. Therefore, the CFD results are expected to match the BEM results in this situation.

Indeed, this can be confirmed from the results of Figs. 5.9(a) and 5.9(b).
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Table 5.2. Grid refinement parameters used for the grid convergence study.

Parameters Coarse Medium Fine
nref 4 4 4
` 2 2 2

Nx 60 120 180
Ny 15 30 45
Nz 22 44 66

∆x0 = ∆y0 = ∆z0 (m) 0.2 0.1 0.0667
∆x = ∆y = ∆z (m) 0.05 0.025 0.0166

∆t (s) 5×10−3 2.5×10−3 1.5×10−3

(a) Heave displacement (b) Heave velocity

Figure 5.9. Temporal evolution of the heave (a) displacement and (b) velocity of the
uncontrolled WEC device using BEM-LFK (—–, black) and CFD solvers. Three grid resolutions
of CPR5 (—–, red), CPR10 (—–, green), and CPR15 (—–, yellow) are used for the CFD solver.
The first-order regular wave characteristics are: H = 0.1 m, T = 1.5652 s, and λ = 3.8144 m.
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Figure 5.10. Wave-structure interaction of the 3D vertical cylinder WEC device (here shown in
the x− z plane) at t = 22 s using the medium grid resolution (CPR10). A locally refined mesh

with `= 2 and nref = 4 is used. The air-water interface and the vortical structures resulting from
the WSI are plotted.

5.10.2 Temporal resolution study

In this section, we conduct a time step size study to find the step size ∆t that ade-

quately resolves the energy content of irregular waves. Specifically, ∆t should be such that the

high-frequency wave components that carry a considerable amount of energy are adequately

represented in the simulation. Irregular waves of height H = 0.15 m, peak time period Tp =

1.7475 s, and N = 50 wave components are generated at the left end of the NWT. We use three

different time step sizes for the temporal convergence study: ∆t = 2.5× 10−3 s, 1.25× 10−3

s, and 7× 10−4 s. The medium grid resolution (CPR10) of the previous section is used here.

The temporal evolution of the heave displacement and velocity of the device are compared in

Fig. 5.11. With smaller ∆t values, we are able to resolve the amplitudes of the heave displace-

ment and velocity more accurately, as seen in Fig. 5.11(a) and Fig. 5.11(b), respectively. The

average percentage change in the peak values of the heave displacement and velocity between

two consecutive time step sizes is calculated from t = 20 s to 40 s. The average percentage

change for the heave displacement between ∆t = 2.5×10−3 s and ∆t = 1.25×10−3 s is 15.06
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% and betwen ∆t = 1.25×10−3 s and ∆t = 7×10−4 s is 9.89 %. For velocity, the percentage

changes are 14.68 % and 5.45 %, respectively. According to these results, ∆t = 1.25×10−3 s is

sufficient to model WSI with irregular waves.

Based on the tests of this section, we hereafter use the medium grid spatial resolution

with ∆t = 2.5×10−3 s for regular waves and ∆t = 1.25×10−3 s for irregular waves.

(a) Heave displacement (b) Heave velocity

Figure 5.11. Temporal evolution of (a) the heave displacement and (b) heave velocity for three
different time step sizes: ∆t = 2.5×10−3 s (—–, black), ∆t = 1.25×10−3 s (—–, red), and
∆t = 7×10−4 s (—–, green). Irregular water waves are generated with Hs = 0.15 m, Tp =

1.7475 s, and N = 50 wave components, with wave component frequencies in the range 1.6 rad/s
to 20 rad/s distributed uniformly.

5.11 Point absorber WEC with MPC numerical examples

Sec. 5.9 motivates us to investigate the following questions:

1. At various sea states, how do the predictions of different WSI and MPC solvers compare?

2. In the case of the predictions of the solvers differing widely, what is the main reason for

this?

3. How do AR predictions affect MPC performance?

4. By using CFD simulations, can the wave-to-PTO power transfer relationships be adequately

captured?
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5. How well does the MPC adapt to changing sea states?

We perform MPC-integrated WSI simulations of the cylindrical WEC device operating in

different sea states to answer these questions. CFD simulations are conducted in a computational

domain described in Sec. 5.10. The following MPC parameters are used in all simulations, unless

stated otherwise: ∆tp = 0.05 s, Th = T (or Tp), Np = dTh
∆tp
e, λ1 = 2 s, and λ2 = 0.2 s. Here, d·e

is the nearest-integer/ceil function. The controller is activated at t = 10 T (or 10 Tp), i.e., when

the device starts oscillating steadily. We do this to avoid the possibility of creating a large PTO

force at the start of the simulation, which could destabilize it.

5.11.1 Comparing the predictions of different solvers

This section compares the predictions of various WSI and MPC solvers listed in Table 5.1.

The results presented here are not based on the AR model, but on analytical expressions to

predict the wave elevation data. We discuss the effect of AR predictions on MPC performance

separately in Sec. 5.11.2. Table 5.3 lists the sea states and the PTO force limits. In order to

simplify the discussion, constraints on the device displacement and velocity are not included in

the MPC. Furthermore, preliminary testing showed that adding the displacement and velocity

constraints (along with the PTO force constraint) did not significantly alter the results of this

section.

Table 5.3. Cases considered for comparing results for various solvers and MPC methodologies.

Case Wave type Wave height (m) Control force (FPTO) constraint (N)
1 First-order regular 0.1 ± 25
2 First-order regular 0.1 ± 100
3 First-order regular 0.5 ± 25
4 First-order regular 0.5 ± 100
5 First-order regular 0.5 ± 300
6 Irregular 0.15 ± 25
7 Irregular 0.15 ± 100
8 Irregular 0.3 ± 25
9 Irregular 0.3 ± 100
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Table 5.4. Time-averaged power output using different WSI and MPC solvers for Cases 2, 5, 7,
and 9 of Table 5.3.

Solver MPC
Time-averaged power (W)

Case 2 Case 5 Case 7 Case 9
1 BEM-LFK LFK 5.4458 138.9282 3.9463 12.6718
2 BEM-LFK NLFK 5.674 142.7581 3.8786 12.1793
3 BEM-NLFK LFK 5.4766 40.9436 3.726 13.0561
4 BEM-NLFK NLFK 5.5401 36.9532 3.7235 12.8456
5 CFD LFK 3.7216 34.2936 2.4871 7.9284
6 CFD NLFK 3.7407 34.4263 2.7513 9.0553

Comparing the predictions with regular waves

Here, the controlled heave dynamics of the WEC device operating in regular sea con-

ditions are compared. As listed in Table 5.3, Cases 1 and 2 consider regular waves of small

height H = 0.1 m and time period T = 1.5652 s, with control force limits of ±25 N and ±100

N, respectively. Cases 3, 4, and 5 consider regular waves of large height H = 0.5 m and (the

same) time period T = 1.5652 s, with control force limits of ±25 N, ±100 N, and ±300 N,

respectively. Allowing a larger control force in MPC leads to a higher heave amplitude of the

device. However, this puts more strain on the actuator system, which can damage the hardware

or negatively impact the actuator efficiency (actuator efficiency is not considered in this work).

Figs. 5.12(a) and 5.12(b) compare the heave displacement, 5.12(c) and 5.12(d) compare

the optimal control force, and 5.12(e) and 5.12(f) compare the instantaneous power absorbed

by the device using different WSI and MPC solvers for Case 2 and 5, respectively. The time-

averaged power of the device for Cases 2 and 5 is listed in Table 5.4. The time-averaged power is

calculated between t = 30 s to 40 s when the device dynamics become steady. Other simulations

produce similar trends, which for brevity are not shown. Instead, the time-averaged powers are

shown in Fig. 5.14(a).

From the results presented in Fig. 5.12 and Table 5.4, it is observed that for the small wave

height Case 2, the BEM-LFK solver results are close to those of BEM-NLFK and CFD solvers.

In contrast, for the large wave height Case 5, the dynamics and the power absorbed by the WEC
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device are largely over-predicted. Another important observation from Table 5.4 and Fig. 5.14(a)

is that the MPC-LFK and MPC-NLFK solvers produce almost the same time-averaged powers,

when used either with the BEM or the CFD solver. It can also be observed that the BEM-NLFK

and CFD solver results are in good agreement.

The results of this section provide two meaningful insights: (1) the main cause of

discrepancy between the BEM-LFK and the CFD (or the BEM-NLFK) solver is the manner in

which wave excitation forces are computed; and (2) there is a little advantage to increasing the

complexity of the hydrodynamical model within MPC. The latter also implies that the simpler

and computationally faster LFK model is sufficiently acurate for the model predictive control of

WECs. .

One can also note that by using λ2 = 0.2 s, the negative part of the power cycle is largely

eliminated for all WSI solvers. This can be verified from the instantaneous power curves of

Figs. 5.12(e) and 5.12(f).

Comparing the predictions with irregular waves

Next, the controlled heave dynamics of the WEC device operating in irregular sea

conditions are compared. Cases 6 and 7 in Table 5.3 are of irregular waves of small significant

wave height Hs = 0.15 m and peak time period Tp = 1.7475 s, with control force limits of ±25

N, and ±100 N, respectively. Cases 8 and 9 concern irregular waves of moderate significant

wave height Hs = 0.3 m and (the same) peak time period Tp = 1.7475 s, with control force

limits of ±25 N and ±100 N, respectively.

Fig. 5.13 presents the WEC dynamics for Cases 7 and 9. Results for Cases 6 and 8 are

not presented for brevity, as they show similar trends. Figs. 5.13(a) and 5.13(b) compare the

heave dynamics, 5.13(c) and 5.13(d) compare the optimal control force, and 5.13(e) and 5.13(f)

compare the instantaneous power absorbed by the device using different WSI and MPC solvers

for Case 7 and 9, respectively. The time-averaged power of the device is listed in Table 5.4 and

is calculated between t = 30 s to 40 s when the device dynamics become steady. Simulations of
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the other cases produce similar trends and are not shown for brevity. Instead, the time-averaged

powers are plotted in Fig. 5.14(b).

As shown in Fig. 5.13 and Table 5.4, all WSI and MPC solvers perform almost the

same, though the CFD solver predicts slightly lower power for Case 9 than the BEM-LFK and

BEM-NLFK solvers. This is not surprising since the wave heights considered in this section are

relatively low. At larger (significant) wave heights, we expect the differences between BEM-LFK

and CFD (or BEM-NLFK) solvers to increase; this is confirmed in the next section. Waves with

large significant wave heights are not considered here, since the CFD solver requires very small

time steps to maintain the numerical stability. As a result, the 3D simulation will take very long

to run, which is something we cannot afford at the moment.

The results of Secs. 5.11.1 and 5.11.1 suggest that the BEM-LFK solver may give too

optimistic results, especially when the hydrodynamic nonlinearities increase. Conversely, the

CFD solver can resolve hydrodynamical non-linearities with high-fidelity, albeit at an increased

computational cost, and provides more realistic results. Between these two extremes is the

BEM-NLFK solver, which yields somewhat optimistic power values, but not quite as large as the

BEM-LFK solver. In addition, either MPC-LFK or MPC-NLFK is equally effective for a specific

WSI solver since they give very close results. Since the MPC-LFK technique is computationally

faster than MPC-NLFK, it is better suited for practical control of WEC devices.

Comparing the predictions with varying wave periods

This section compares the predictions of the BEM-LFK and BEM-NLFK solvers for

varying wave periods. Regular and irregular sea conditions are considered. For the two WSI

solvers, MPC-LFK is used. Due to the high computational cost associated with simulating waves

of longer durations and wavelengths, CFD simulations are not performed here.

Results compare the time-averaged power absorbed by the WEC device for regular waves

in Fig. 5.15(a) and for irregular waves in Fig. 5.15(b). The regular waves have wave heights of

H = 0.1 m, 0.3 m, and 0.5 m, with time periods varying from 1.2 s to 4.6 s. The irregular waves
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considered here have significant wave heights of Hs = 0.1 m, 0.3 m, 0.5 m, and 1 m, with peak

time periods varying from 1.2 s to 3.4 s.

The results show that the BEM-LFK solver over-predicts the time-averaged power

absorbed by the device for large waves; for regular waves, H = 0.5 m and for irregular waves,

Hs = 1 m. Further, for both regular and irregular waves, the difference between the two solvers’

predictions is greater at smaller time periods than at larger time periods. This is because the

natural period of oscillation of the device is 1.54 s, which falls in the small time period region,

where the device oscillates with large amplitude due to the waves and actuator induced resonance.

The BEM-LFK solver inherently violates the small motion assumption used in its formulation

near or at resonance, and therefore provides inaccurate power estimates.

5.11.2 CFD simulations with AR-enabled wave predictions

In this section, we examine the effect of AR predictions on MPC performance. In this

test, we use the MPC-LFK and CFD solvers with regular waves of height H = 0.5 m and time

period T = 1.5652 s, and with irregular waves of significant wave height Hs = 0.3 and peak

time period Tp = 1.7475 s. We set AR start time equal to MPC start time: t = 10T (or 10Tp).

Therefore, the controller and the AR predictions will begin once the device exhibits steady-state

oscillations under the influence of incoming waves. MPC and NWT interaction is schematically

represented in Fig. 5.5. In particular, wave elevation data at an up-wave probe point A (ηA) for

the past two wave periods is collected and sent to the AR model to allow for wave elevation

prediction over one wave period into the future (at the same location A). For predicting regular

and irregular waves, we use AR models of order 3 and 5, respectively. Figs. 5.16(a) and 5.16(b)

illustrate that the chosen AR models are sufficiently accurate for predicting regular and irregular

waves, respectively. Based on the past and predicted wave data, the wave excitation force Fexc

acting on the device is calculated using Eq. (5.30).

As a test of the accuracy of the AR-integrated MPC solver, the results are compared

with those obtained using analytical forcing, which was also used in Sec. 5.11.1. As for regular
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waves, Figs. 5.17(a), 5.17(c), and 5.17(e) compare the heave displacement, control force, and

the instantaneous power absorbed by the device, respectively. Figs. 5.17(b), 5.17(d), and 5.17(f)

compare these quantities for irregular waves. The results show that the device dynamics are very

close with or without the AR predictions. The time-averaged power absorbed by the WEC device

subject to regular waves is 40.5546 W when the AR model is enabled. The value of 41.0097 W

obtained by analytical forcing agrees well with this result. In the case of irregular waves, these

values are 9.9799 W and 7.9284 W, which also match fairly well. Further improvements can be

obtained for the irregular wave case by using a better method of time-series forecasting or by

fine-tuning the AR model.

We conclude from the results of this section that our technique of collecting wave

elevation data from an up-wave location in the NWT and predicting future waves based on it

(through an AR model) works well with the CFD/MPC-LFK solver combination.

5.11.3 Power transfer from waves to the PTO system: Verifying the
relationships with CFD simulations

We re-analyze the AR-enabled CFD simulations of the previous section to verify the

power transfer relations in Sec. 5.6. In the case of regular waves of height H = 0.5 m and time

period T = 1.5652 s, the power transferred by the waves to the device (or the work done by the

hydrodynamic forces) is Pwaves→ cyl = 38 W and that absorbed by the PTO unit is PPTO = 39 W.

A time average is taken from t = 30 s to 31.5652 s, i.e., for one wave period. Based on these

power values, we conclude that the power transfer Eq. (5.41) is verified in the case of regular

waves. In the case of irregular waves, we calculate the left and right sides of Eq. (5.40) separately.

t = 30 s to 40 s is chosen as the time interval for time-averaging the terms of the equation.

Accordingly, the two sides of the equation evaluate to 72.06 W and 71.47 W, respectively, which

also match reasonably well.

Based on the results of this section, we conclude that our CFD simulations satisfy the

power transfer relationships of Sec. 5.6.
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5.11.4 MPC adaptivity

To test the adaptive capability of MPC for WEC devices, we simulate the dynamics of

the 3D vertical cylinder subject to changing sea states. Specifically, three consecutive sea states

are considered within a single CFD simulation: sea state 1 consisting of first-order regular waves

of height H = 0.1 m and time period T = 1.5652 s between t1 = 0 s to t2 = 40 s, sea state 2

consisting of first-order regular waves of height H = 0.2 m and time period T = 2 s between

t2 = 40 s to t3 = 60 s, and sea state 3 consisting of first-order regular waves of height H = 0.15

m and time period T = 1.7475 s between t3 = 60 s to t4 = 120 s. The wave elevation is smoothly

varied from one sea state to the other using the following expression:

ηi,i+1(t) = ηi(t)+(ηi+1(t)−ηi(t)) · (1+ tanh(t− (ti+1− thalf-interval))/2, (5.42)

in which ηi(t) = (Hi/2)cos(κwix−ωit) and thalf-interval = 5 s is the transition time between sea

state i to i+ 1. AR predictions are also enabled for the CFD simulation. For MPC, each sea

state uses a pre-configured AR model that is optimized offline. While this is inconvenient, it is

necessary to allow accurate predictions of wave excitation forces.

Fig. 5.18 shows the temporal evolution of the heave displacement and velocity. We

compare the CFD results with three separate BEM-LFK simulations for different sea states.

Because all three sea states have small amplitude waves, the BEM-LFK solver is expected to be

accurate. Indeed, it is observed that the adaptive CFD simulation agrees well with the BEM-LFK

solver results, which indicates that the MPC algorithm is able to adapt according to the current

sea state and produces an optimal solution in each case.

5.12 Conclusions

In this study, we simulated the controlled dynamics of a heaving 3D vertical cylinder

WEC device using BEM and multiphase IB solvers. A MPC strategy was used to maximize the
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energy absorption capacity of the WEC device under regular and irregular sea conditions.

We validated our BEM-LFK and MPC-LFK implementations by simulating a benchmark-

ing case from Cretel et al. [127] in Sec. 5.9. The scaled-down version of the same device was then

simulated using the multiphase IB solver, and its wave excitation forces were significantly greater

than those predicted by the BEM solvers. A more surprising result was that the WEC device drew

a large amount of power from the grid instead of producing energy, as predicted by the BEM

solvers. Moreover, it was observed that J3 is a better choice for the model predictive control of

WECs compared to J2, as the latter can provide misleading power output. To understand the main

cause of the discrepancy, we examined six different combinations of the WSI and MPC solvers

using J3 as the cost function. It is found that when the sea state is calm and the wave height is

small, the BEM solvers’ predictions match well with the CFD solver’s. However, in agitated

sea conditions, the BEM solvers over-predict the device performance, which can be misleading

to the device designer. On the other hand, the CFD solver provides realistic results both in

calm and agitated sea conditions. It is evident that resolving the hydrodynamic non-linearities

associated with the WSI is essential to obtaining realistic estimates of the device’s power. It

is further confirmed by the results of the BEM-NLFK solver, which are closer to those of the

multiphase IB solver. Therefore, we recommend using the BEM-NLFK solver to study the con-

trolled dynamics of WECs when computational resources are limited to employing a CFD solver.

In addition, it is straightforward to switch to the BEM-NLFK solver by using the static grid

technique described in Sec. 5.4.2. Additionally, we found that the choice between MPC-LFK or

MPC-NLFK is irrelevant, as both algorithms give very similar results. Nevertheless, MPC-LFK

solver is computationally-efficient and is proposed as a practical model-based control for WECs.

We also compared the performance of MPC-LFK with and without AR predictions in

Sec. 5.11.1. We found that the AR prediction strategy worked well in both regular and irregular

waves. The AR model can be tuned further or a different time-series forecasting algorithm can

be used for further improvements. The pathway of energy transfer from waves to the PTO unit

for the heaving WEC device was also derived and confirmed. By simulating three different sea
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states consecutively within a single CFD simulation, we tested the adaptive capabilities of MPC

of WECs. The MPC is shown to adapt to different sea states and find the optimal solution for

each situation, thus living up to its reputation as the “Tesla” of control approaches.

One significant challenge inherent in model-based control strategies arises from the

necessity to adjust the dynamical model to accommodate shifting system dynamics which

happen over a period of time, such as those influenced by marine growth and sub-system

failures. Also, modeling errors can negatively affect the performance of the device, particularly

in highly energetic waves where the non-linear effects are significant. Failure to update the

model accordingly results in the adoption of sub-optimal control strategies. This motivates us to

explore model-free control strategies, particularly those grounded in reinforcement learning. By

continuously adapting to evolving system dynamics, these approaches circumvent the limitations

associated with model-based controllers.
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(a) Heave displacement for Case 2 (b) Heave displacement for Case 5

(c) Control force for Case 2 (d) Control force for Case 5

(e) Power for Case 2 (f) Power for Case 5

Figure 5.12. Comparison of the controlled heave dynamics of the 3D vertical cylinder WEC
device with regular waves. Case 2 and Case 5 of Table 5.3 are considered here. The WSI and

MPC solver combinations are: BEM-LFK and MPC-LFK (—–, black); BEM-LFK and
MPC-NLFK (—–, red), BEM-NLFK and MPC-LFK (—–, green), BEM-NLFK and

MPC-NLFK (—–, mustard), CFD and MPC-LFK (—–, blue), and CFD and MPC-NLFK (—–,
orange).
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(a) Heave displacement for Case 7 (b) Heave displacement for Case 9

(c) Control force for Case 7 (d) Control force for Case 9

(e) Power for Case 7 (f) Power for Case 9

Figure 5.13. Comparison of the controlled heave dynamics of the 3D vertical cylinder WEC
device with irregular waves. Case 7 and Case 9 of Table 5.3 are considered here. The WSI and

MPC solver combinations are: BEM-LFK and MPC-LFK (—–, black), BEM-LFK and
MPC-NLFK (—–, red), BEM-NLFK and MPC-LFK (—–, green), BEM-NLFK and

MPC-NLFK (—–, mustard), CFD and MPC-LFK (—–, blue), and CFD and MPC-NLFK (—–,
orange).
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(a) Regular waves (b) Irregular waves

Figure 5.14. Comparison of time-averaged powers for cases given in Table 5.3

(a) Regular waves (b) Irregular waves

Figure 5.15. Comparison of time-averaged power absorbed by the WEC device operating in (a)
regular and (b) irregular sea conditions with varying wave periods and heights. The BEM-LFK

(BEM-NLFK) solver results are shown with solid (dashed) lines.

(a) AR model prediction for regular waves (b) AR model prediction for irregular waves

Figure 5.16. AR model predictions (—–, green) of (a) regular and (b) irregular waves for one
wave period into the future using the past two wave period elevation data (—–, red).
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(a) Heave displacement (regular waves) (b) Heave displacement (irregular waves)

(c) Control force (regular waves) (d) Control force (irregular waves)

(e) Power (regular waves) (f) Power (irregular waves)

Figure 5.17. Comparison of the controlled heave dynamics of the 3D vertical cylinder with and
without AR predictions. The WEC dynamics are simulated using the CFD and MPC-LFK solver.

For regular water waves of height H = 0.5 m and time period T = 1.5652 s results are
compared for (a) heave displacement, (c) control force, and (e) instantaneous power. For

irregular water waves of significant wave height Hs = 0.3 m and peak time period Tp = 1.7475 s
results are compared for (b) heave displacement, (d) control force, and (f) instantaneous power.

In all cases the control force limits are set to ± 100 N.
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(a) Heave displacement (b) Heave velocity

Figure 5.18. Comparison of the (a) heave displacement and (b) velocity of the device subject to
changing sea states using CFD and BEM-LFK solvers. The BEM-LFK solver solves the three

sea states separately, whereas the CFD solver considers them consecutively.
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Chapter 6

Reinforcement Learning Based Control
Strategy for Wave Energy Converter De-
vices

Several critical challenges in ocean wave energy harvesting can be addressed by designing

a robust controller to optimize the wave energy converter (WEC) performance under changing

sea states and WEC dynamics in its lifespan. In contrast to the renowned model-based controllers,

this can be done using model-free reinforcement learning (RL) techniques. In this chapter, we

employ deep Q-network (DQN) and double DQN (DDQN) RL algorithms to obtain the optimal

damping and stiffness PTO coefficients for a vertical cylindrical shaped point absorber WEC

device as described in Chapter 5. These RL algorithms train an agent (a deep neural network)

to output optimal actions taking the current sea state as an input. Basically, the trained agent

serves as a function approximator, generating optimal actions to maximize the reward function

.i.e. to absorb maximum wave power. Initially, we implement this framework on our LPT

based WEC model described in Chapter 5 and demonstrate the trained agent drives the device

towards optimal performance. Subsequently, we deploy the trained agent within our CFD based

WEC simulation environment, showcasing its efficacy in driving the device towards optimal

performance in a more realistic setting.

211



6.1 Introduction

In the past decade the field of reinforcement learning (RL) has demonstrated exceptional

performance across various domains: from predicting the traffic flow [145], forecasting the

inside air temperature of a pillar cooler [146], marine hydrodynamic prediction [147] of scour

of breakwaters using the genetic programming and artificial neural networks, control of reser-

voir flooding [148] using bang-bang control, and playing Atari games attaining human level

performance [149, 150, 151].

Recent works have explored model-free adaptive algorithms rooted in RL techniques

[152]. These algorithms are capable of dynamically tuning the control parameters as a function

of the sea state and system functioning conditions for WEC devices [153, 154]. Li et al. [141]

applied artificial neural network to optimize the latching control of a heaving buoy by collecting

real-time wave elevation data and predicting wave forces. Anderlini et al. [154] implemented

RL to obtain optimal control of a two-body point absorber device. The controller’s damping

and stiffness coefficients are varied in steps according to varying sea states and the associated

reward is observed. Furthermore, Bruzzone et al. [155] implemented the Q-learning method to

dynamically adjust the generator speed-torque ratio as a function of the sea state to optimize the

power absorption of an onshore oscillating arm WEC device. In all these RL based methods,

the idea is to implement an artificial neural network as a function approximator to calculate the

optimal control force to simulate the dynamics of the device thus eliminating the use of explicit

dynamic models.

6.2 Background on reinforcement learning

In RL, a controller (also referred as an agent or decision maker) interacts with a dynamic

process (the environment), through three signals: a state signal describing the current state

of the process, an action signal allowing the controller to influence the process, and a scalar

reward signal offering immediate performance feedback to the controller. At each discrete
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Figure 6.1. Schematic representation of the RL elements and their flow of interaction.

time step, the controller observes the current state, selects and executes an action, causing the

process to transition to a new state. A reward is then computed, evaluating the efficacy of this

transition. Subsequently, the controller receives feedback on the new state, initiating the cycle

again. This interactive flow is illustrated in Figure 6.1. For further insights into RL, refer the

books: [152, 156, 157].

6.2.1 RL as a Markov decision process

Consider, a transition function responsible to move an environment from one state to

another. In RL, transition functions are formulated as a Markov decision process (MDP) which

provides a mathematical framework that models sequential decision making. The theory of this

section is taken from [157]. Consider, a general formulation shown by

st+1 ∼ P(st+1|(s0,a0),(s1,a1), .....,(st ,at)), (6.1)

where, P is the probability distribution. Eq. (6.1) means the next state st+1 at time step t is

sampled from the probability distribution P conditioned on the entire history of states and actions.

This means the probability of transitioning from state st to st+1 depends on all of the preceding

states s and actions a that have occurred so far. Modeling such transition function becomes

challenging as it needs to account for vast combination of effects that have occurred in the
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past. To make the environment transition more practical, we turn it into a MDP by adding the

assumption that transition to the next state st+1 only depends on the previous state st and the

action at . This is known as the Markov property. The new transition function becomes

st+1 ∼ P(st+1|st ,at). (6.2)

The Markov property implies that the current state s and action a at time step t provide sufficient

information to fully determine the transition probability for the next state st+1.

A MDP is defined by a tuple S ,A ,P(·),R(·), where S is the set of states, A is the set

of actions, P(st+1|st ,at) is the state transition function of the environment, and R(st ,at ,st+1) is

the reward function of the environment. The objective of the agent is to maximize the cumulative

reward. The return R(τ) using a trajectory from an episode, τ = (s0,a0,r0), .....,(sT ,aT ,rT ) is

defined as

R(τ) = r0 + γr1 + γ
2r2 + .....+ γ

T rT =
T

∑
t=0

γ
trt , (6.3)

where, γ ∈ [0,1] is the discount factor and the return is a discounted sum of the rewards in a

trajectory. The objective J(τ) is simply the expectation of the returns over many trajectories

J(τ) = Eτ∼π [R(τ)] = Eτ [
T

∑
t=0

γ
trt ] (6.4)

The return R(τ) is the sum of discounted rewards γ trt over all time steps t = 0, .....,T . The

objective J(τ) averages the return over many episodes. The expectation accounts for the

stochasticity in actions and the environment. Maximizing the objective is the same as maximizing

the return. The discount factor is an important variable which changes the way future rewards are

valued. A smaller value of γ means less weight is given to rewards in future time steps, making

it ”short sighted”. For γ = 0, the objective considers the initial reward r0 only. Large value of

γ means more weight is given to rewards in future time steps and the objective becomes more

”farsighted”. For γ = 1, all rewards are weighted equally.
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We have established the reinforcement learning as a MDP and the objective function, we

now express the reinforcement learning control loop from Fig. 6.1 as an MDP control loop in

Algorithm 4

Algorithm 4: MDP control loop.
1 Given an environment env and an agent.
2 for episode = 0, .....,episodemax do
3 state = env.reset()

4 agent.reset()

5 for t = 0, .....,T do
6 action = agent.act(state)

7 state, reward = env.step(action)

8 agent.update(action, state, reward)

9 f lag = env.done()

10 if flag then
11 break
12 end
13 end
14 end

Algorithm 4 outlines the interaction between an agent and an environment over multiple

episodes and time steps. At the start of each episode, the environment and the agent are reset

(line 3-4). This produces produces an initial state for the environment. Next, the agent produces

an action given the state (line 6). This action transitions the environment to the next state and a

reward (line 7) by stepping into the next time step. The agent is then updated (trained) based on

the generated experience (action, state, reward). This iterative process continues till time

step T is reached or when the environment terminates. Over multiple time steps and episodes

this algorithm generates experiences and trains the agent to maximize the objective. Here, the

command agent.update() calls the agent’s learning algorithm which is discussed in Sec. 6.2.2.

6.2.2 Learnable functions in RL

Fundamental question that arises is how the agent should learn? The agent can learn an

action producing function known as policy. However, there are other properties of an environment
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that can be helpful for the agent in the learning process. In particular, there are three primary

functions to learn in RL.

1. a policy π , which maps state to action, a∼ π(s),

2. a value function, V π(s) or Qπ(s,a), to estimate the expected return Eτ [R(τ)],

3. the environment model, P(s′|s,a)1.

We consider the value function Qπ(s,a). The value function gives information about

the objective and helps the agent understand how good states and available actions are in terms

of expected future return. The Q-value function Qπ measures the expected return from taking

action a in state s assuming that the agent continues to act according to its current policy, π . It

serves as a forward looking measure, disregarding all rewards received before state s.

Qπ(s,a) = Es0=s,a0=a,τ∼π

[
T

∑
t=0

γ
trt

]
(6.5)

6.2.3 Exploration strategy

When the agent solely prioritizes maximizing the reward function, it is called as ex-

ploitation. This makes the agent stick with usual states and potentially missing out on higher

rewards available in unexplored regions on the environment. This issue is known as exploration

versus exploitation. Hence, it is beneficial to adopt an approach that ensures some exploration

at the expense of exploitation to avoid the suboptimal actions and get stuck in a local minima,

particularly in the initial episodes. Once the simulation has progressed, the balance may be

shifted towards exploitation.

The most famous techniques are the ε-greedy, and Boltzmann exploration. Given the

1To make the notations more compact, the next state st+1 will now be written as s’.
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current state s, an ε-greedy policy selects the action at the start of each step of the algorithm

a =


arg max
a′∈A (s)

Q(s,a′) with probability (1− ε),

random action with probability ε,

(6.6)

where ε is the exploration rate. This means the greedy action is selected with probability (1− ε),

i.e. the exploitative action that maximizes the value function and thus the expected total future

reward; otherwise an exploitative action is chosen instead. In order to ensure greater exploration

at the start of reinforcement learning control, the focus is on explorative actions as learning

progresses.

The ε-greedy policy strikes a balance between exploration and exploitation by gradually

reducing the probability ε of taking random actions as training progresses which makes the

exploration strategy naive. The agents explore randomly and do not use any learned knowledge

about the environment. A good policy should strike a balance between exploring the state-

action space and exploiting the knowledge learned by an agent. The Boltzmann policy in an

improvement over random exploration by selecting actions using their relative Q-values. The Q-

value maximizing action a in state s will be selected most often, but other actions with relatively

high Q-values will also have a high probbability of being chosen. This focusses the exploration

on more promising actions off the Q-value maximizing path instead of selecting all actions with

equal probability. To produce a Boltzmann policy, a probability distribution over the Q-values

for all actions a in state s is derived by applying the softmax function. The softmax function

is further parameterised by a temperature parameter τ ∈ (0,∞), which controls how uniform

or concentrated the resulting probability distribution is. High values of τ push the distribution

to become more uniform, low values of τ push the distribution to become more concentrated.
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Actions are then sampled according to this distribution.

pso f tmax(a|s) =
eQ(s,a)

∑a′ eQ(s,a′)
(6.7)

pBoltzmann(a|s) =
eQ(s,a)/τ

∑a′ eQ(s,a′)/τ
(6.8)

The advantage of such policy is that it explores the environment less randomly.

6.2.4 Experience replay

To train the agent, we need the experiences which is the set (s,a,s′,r), i.e. state, action,

new-state and the reward. These experiences are generated over many time steps and episodes.

An experience replay memory stores the k most recent experiences an agent has generated

interacting with the environment. If the memory is full, the oldest experience is discarded to

make space for the latest one. Each time an agent trains, one or more batches of data are sampled

randomly with uniform probability from the experience replay memory. Each of these batches

are used in turn to update the parameters of the Q-function network. The value of k is large,

between 104 to 106, where as the number of elements in a training batch is much smaller between

32 to 2048. The size of the memory should be large enough to contain the experiences generated

from many episodes. Each batch will contain experiences from different episodes and different

policies which de-correlate the experiences used to train an agent. The memory should be small

enough so that each experience is likely to be sampled more than once before being discarded

from the experience replay, which makes the learning more efficient.

6.2.5 Deep Q-Network (DQN) algorithm

The pseudocode for DQN is given in Algorithm 5. First we initialize various parameters

(line 1 to 7): learning rate α , temperature parameter τ to be used for Boltzmann policy, number

of batches per training step B, number of updates per batch U , batch size N, size of experience

replay memory K, and the randomly initialized neural network parameters θ . Next, we gather
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experiences (si,ai,ri,s′i) generated using the Boltzmann policy with Q-values generated from

current Qπθ and store in the experience replay memory (line 9). The experiences can also

be generated using the ε-greedy policy. The agent is now trained by sampling B batches of

experiences from the experience replay memory (line 9 to 10). For each of these batch of data,

we complete U parameter updates by first calculating the target Q-values for each element in the

batch (line 14). Then we calculate the loss (line 16) using the mean squared error (MSE). Finally,

we update the network parameters θ by calculating the gradient of the loss (line 17). When the

trainig step is completed, we update the parameter τ (line 20).

Algorithm 5: DQN.
1 Initialize learning rate, α .
2 Initialize τ .
3 Initialize number of batches per training step, B.
4 Initialize number of updates per batch, U .
5 Initialize batch size, N.
6 Initialize experience replay memory with max size K.
7 Randomly initialize the network parameters θ .
8 for m = 1, .....,MAXST EPS do
9 Gather and store m experiences (si,ai,ri,s′i) using the current policy.

10 for b = 1, .....,B do
11 Sample a batch b of experiences from the experience replay memory.
12 for u = 1, .....,U do
13 for i = 1, .....,N do
14 yi = ri +δs′i

γmax
a′i

Qπθ (s′i,a
′
i); // Calculate target Q-values. Here,

δs′i
= 0 if s′i is terminal, 1 otherwise.

15 end
16 L(θ) = 1

N ∑i(yi−Qπθ (si,ai))
2; // Calculate the loss using MSE.

17 θ = θ −α∇θ L(θ); // Update the network’s parameters.

18 end
19 end
20 Decay τ .
21 end

The time taken for training the DQN given by Algorithm 5 can be improved significantly

by using one more network called the target network Qπφ [157, 158]. In the original DQN

Algorithm 5, the target Q-values given by yi are constantly changing (”moving target”) as they
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depend on Qπθ (s,a). Hence, it is difficult to minimize the difference between yi and Qπθ (si,ai)

due to the continuously updating Q-network parameters θ . To reduce the changes in yi between

training steps, we use a target network Qπφ (s,a) which is a second network with parameters φ .

This network is a lagged copy of the Q-network Qπθ (s,a). The target network Qπφ is used to

calculate the yi values as shown in Algorithm 6 (line 16) which stops the target from moving.

The target network parameters φ are periodically updated with update frequency F . This is

called the replacement update (line 24). Another way to update the target network parameters φ

is using a weighted average of φ and θ known as the Polyak update. Here, φ is changed each

time step , but more slowly than the training network θ .

φ ← βφ +(1−β )θ (6.9)

where, β is a hyper-parameter that control the speed at which φ changes. A large value of beta

means more slowly the φ network will change. The hyper-parameter needs to be tuned to find a

good balance between stability and training speed.

6.2.6 Double deep Q-Network (DDQN) based control strategy

The original DQN Algorithm 5 overestimates the Q-values [159]. In DQN, we calculate

the target value Qπ
t ar(s,a) by selecting the maximum Q-value in state s′.

Qπθ

tar(s,a) = r+ γmax
a′i

Qπθ (s′,a′)

= r+max
(
Qπθ (s′,a′1),Q

πθ (s′,a′2), .....,Q
πθ (s′,a′n)

)
(6.10)

If Qπθ (s′,a′) contains any errors, then max
a′i

Qπθ (s′,a′) will be positively biased and the resulting

Q-values are overestimated. Function approximation using neural networks is not perfect as an

agent may not fully explore the environment and the environment can itself be noisy. The double

DQN algorithm reduces the overestimation problem of Q-values by learning two Q-function

220



Algorithm 6: DQN with target network.
1 Initialize learning rate, α .
2 Initialize τ .
3 Initialize number of batches per training step, B.
4 Initialize number of updates per batch, U .
5 Initialize batch size, N.
6 Initialize experience replay memory with max size K.
7 Initialize target network update frequency F .
8 Randomly initialize the network parameters θ .
9 Initialize the target network parameters φ = θ .

10 for m = 1, .....,MAXST EPS do
11 Gather and store m experiences (si,ai,ri,s′i) using the current policy.
12 for b = 1, .....,B do
13 Sample a batch b of experiences from the experience replay memory.
14 for u = 1, .....,U do
15 for i = 1, .....,N do
16 yi = ri +δs′i

γmax
a′i

Qπφ (s′i,a
′
i); // Calculate target Q-values. Here,

δs′i
= 0 if s′i is terminal, 1 otherwise.

17 end
18 L(θ) = 1

N ∑i(yi−Qπθ (si,ai))
2; // Calculate the loss using MSE.

19 θ = θ −α∇θ L(θ); // Update the network’s parameters.

20 end
21 end
22 Decay τ .
23 if m mod F == 0 then
24 φ = θ ; // Update the target network.

25 end
26 end
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estimates using different experiences. The first estimate selects the Q-maximizing action a′

and the Q-value that is used to calculate the target value Qπ
t ar(s,a) is generated by the second

estimate using the action a selected by the first estimate. The second estimate of the Q-function

which is trained using different experiences removes the positive bias in the estimation. The

expression to calculate the target value using the DDQN algorithm is

Qπ
tar(s,a) = r+ γQπφ

(
s′,max

a′
Qπθ (s′,a′)

)
(6.11)

The DDQN algorithm with target network is given by Algorithm 7. The training network θ is

used to select the action (line 16) and the target network φ is used to evaluate that action. If

φ = θ then DDQN becomes the DQN algorithm.

6.3 RL applied to reactive control of WEC

Figure 6.2. Schematic representation of the RL applied to optimal control of WEC using
reactive control strategy.

The schematic illustrating the application of RL algorithms described in Sec. 6.2.5 and

6.2.6, to optimize the performance of a point absorber WEC device described in Chapter 5 is
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Algorithm 7: DDQN with target network.
1 Initialize learning rate, α .
2 Initialize τ .
3 Initialize number of batches per training step, B.
4 Initialize number of updates per batch, U .
5 Initialize batch size, N.
6 Initialize experience replay memory with max size K.
7 Initialize target network update frequency F .
8 Randomly initialize the network parameters θ .
9 Initialize the target network parameters φ = θ .

10 for m = 1, .....,MAXST EPS do
11 Gather and store m experiences (si,ai,ri,s′i) using the current policy.
12 for b = 1, .....,B do
13 Sample a batch b of experiences from the experience replay memory.
14 for u = 1, .....,U do
15 for i = 1, .....,N do

16 yi = ri +δs′i
γQπφ

(
s′i,max

a′i
Qπθ (s′i,a

′
i)

)
; // Calculate target

Q-values. Here, δs′i
= 0 if s′i is terminal, 1 otherwise.

17 end
18 L(θ) = 1

N ∑i(yi−Qπθ (si,ai))
2; // Calculate the loss using MSE.

19 θ = θ −α∇θ L(θ); // Update the network’s parameters.

20 end
21 end
22 Decay τ .
23 if m mod F == 0 then
24 φ = θ ; // Update the target network.

25 end
26 end
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shown in Fig. 6.2. The dynamical model of WEC is based on the LPT described in Sec. 5.2

serves as the environment which the agent interacts with. The agent is implemented as a deep

neural network (DNN) trained using DQN/DDQN algorithms to output the step changes in the

PTO damping coefficient (∆CPTO) and the spring stiffness coefficient (∆KPTO) for a reactive

control strategy. The input to the agent is the sea state (Hwave,Tp), current PTO coefficients

CPTO and KPTO and the reward which is the average power absorbed P by the device over a

specified time interval. The PTO coefficients are used to calculate the control force FPTO as

FPTO =−CPTO · ż−KPTO · z (6.12)

The average power absorbed by the device is calculated using

P =
1

(t f − ti)

∫ t f

ti
CPTO · ż2dt (6.13)

where, ti and t f are the initial and final times used for averaging the instantaneous power. The

state-space S , action-space A , reward function r are given by

S =



i = 1 : I

s|si, j,m,n =
[
Hi, T j, CPTO,m, KPTO,n

]
, j = 1 : J

m = 1 : M

n = 1 : N


, (6.14)

A = {a = [(−∆CPTO,0), (0,−∆KPTO), (0,0), (∆CPTO,0), (0,∆KPTO)]} , (6.15)

r =
P

H 2
i

=
1

H 2
i

1
(t f − ti)

∫ t f

ti
CPTO,m · ż2dt. (6.16)

where, H is the wave height, Tp is the time period of the wave, CPTO is the PTO damping

coefficient, and KPTO is the spring stiffness coefficient. Here, I is the total number of wave

heights simulated, J is the total number of time periods of waves simulated, M is the possible
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number of damping coefficient values, and N is the possible number of spring stiffness coef-

ficient values. The action space consists of a combination to either increase, decrease or not

change the PTO coefficient values. We prefer to vary only one coefficient at a time in order

to limit the action-space and hence the state-action value function. This improves the learning

rate. Also, states corresponding to the minimum or maximum coefficient values, i.e. CPTO,1,

KPTO,1, CPTO,M, andKPTO,N cannot take some of the actions from the action-space as the new

coefficient values can exceed the defined state-space boundary. For example, for CPTO,1, the

action (−∆CPTO,0) is invalid. The average power is calculated from ti and onwards till t f time

is reached. Here, ti is chosen such that device’s oscillations (dynamics) have stabilized from

application of the new control force FPTO. Additionally, the average power is also normalized by

H 2
i to make the magnitude of rewards for different wave heights comparable, as the absorbed

power is proportional to wave height. To avoid the device enter unstable regions like complete

submergence or emergence the CPTO. and KPTO values that generate such experiences are given

a penalty. The displacement of the device in such cases is large and a limit of zmax is set which if

exceeded sets a penalty value or a negative value to the reward r.

6.3.1 Software implementation

The WEC model based on LPT, the DQN and DDQN algorithms, are implemented using

the Python programming language by making use of the PyTorch module for reinforcement

learning and deep neural network generation, management, and training. Training the agent

requires substantial number of experiences. To expedite this process, we employ parallel

computing using mpi4py module available in Python. In this setup, a master or host processor

initiates multiple independent WEC simulations each with actions which are generated using the

current policy and are uncorrelated. The WEC simulations are initiated on worker processors.

See Fig. 6.4. Once the simulations are completed, the master processor collects the generated

experiences and proceeds to train the neural network.
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Figure 6.3. Flowchart of the RL algorithm for reactive control of a WEC device.

6.4 WEC numerical examples

In this section, first we train the agent to maximize the power absorption from regular

sea waves for a reactive controlled vertical cylinder shaped point absorber device. Next, we

train the agent to maximize the power absorption from irregular sea waves. Following this, we

deploy the trained agent on our CFD based WEC simulation environment demonstrating its

efficacy in driving the device to optimal performance in a more realistic setting. This required
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Figure 6.4. Schematic showing the generation of experiences in parallel making use of multiple
WEC simulation environments.

the development of a novel communication algorithm for Python-C++ codes.

The agent trains a neural network (NN) of size 4× 24× 24× 5. The first layer of the

NN comprises 4 nodes representing 4 inputs of the state-space s defined in Eq. (6.14). The final

layer (fourth layer) of the NN corresponds to Q-values each associated with an action a taken

from A in Eq. (6.15). The experience replay memory, used to store experiences, has a capacity

of 105 and a training batch size of 64 is employed for regular wave case and 128 for irregular

waves case. Each training step involves 3 batches with each batch going through 3 updates. The

maximum number of episodes are set to 1000 and each episode simulates 100 steps, i.e. 100

states s. For average power calculations, ti = 5×Tp and t f = 20×Tp is used. A penalty of

-100 is imposed if the displacement constraint of zmax = 0.9× (Lcyl/2) is violated. The learning

rate is set to α = 0.001 and the discount factor γ = 0.9. The initial value for the temperature

parameter for the Boltzmann policy is τ = 20 with a decay rate of 0.05 and minimum value of 1.

A solver time step of ∆t = 0.001 s is used in all simulations. Experiences are generated with 4
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worker processors.

The wave energy absorption of a WEC device is maximum when the device oscillates in

resonance with the incoming sea waves. According to reactive control theory, this can be made

possible by adjusting the damping and spring stiffness coefficients of the PTO system [55, 160].

For a wave with wave frequency of ω , the optimal damping coefficient is given by

COPT = B(ω) (6.17)

and the optimal spring stiffness coefficient is given by

KOPT = ω
2(m+m(ω)) (6.18)

The details on obtaining the values for B(ω) and m(ω) using ANSYS AQWA [124] simulations

is given in Sec. 5.2. The optimal power in each case is calculated by simulating the dynamics

of the WEC device for optimal PTO coefficients. All the geometric dimensions and material

properties of the device are same as used in Chapter 5.

6.4.1 Training agent for WEC device on regular waves

Here, we train the agent to optimize the performance of a WEC device simulated on

regular waves of wave height H = 0.1 m and time period of Tp = 1.3757 s. DQN algorithm

is used to train the agent with an objective to maximize the energy absorption from waves by

driving the set of coefficients (CPTO,KPTO) towards optimal values: COPT = 15.592 Ns/m and

KOPT = 297.83 N/m. Initially, as a starting point, the coefficient values are randomly selected in

the range CPTO = 8 Ns/m to 36 Ns/m with ∆CPTO = 4 Ns/m and KPTO = 240 N/m to 360 N/m with

∆KPTO = 20 N/m. The training progress is illustrated in Fig. 6.5(a). The episode reward is the

cumulative sum of the r obtained in each step in that episode. The average reward is calculated

based on the rewards of the past 10 episodes. We consider the agent is adequately trained once the
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average reward stabilizes close to the maximum value (episode = 25). In Fig. 6.5(b), at episode

= 1 (—, black curves), the agent explores the state-action space. As the training progresses and

the agent is said to be trained, see episode = 25 ( —,green curves), it drives the coefficients to

optimal values, maximizing the reward.

(a) Reward vs episodes

(b) PTO coefficients approaching optimal values as training progresses

Figure 6.5. DQN algorithm used to train DNN of size 4×24×24×5 for a WEC device on
regular waves of H = 0.1 m and Tp = 1.3657 s implemented with a reactive control strategy.
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6.4.2 Training agent for WEC device on irregular waves

In this section, we train the agent to optimize the performance of a WEC device on

irregular waves with significant wave height H = 0.15 m and time period of Tp = 1.7475 s.

DDQN algorithm is used to train the agent to drive the set of coefficients (CPTO,KPTO) to optimal

values of COPT = 14 Ns/m and KOPT = −830 N/m. To start as an initial point the coefficient

values are randomly selected in the range CPTO = 6 Ns/m to 30 Ns/m with ∆CPTO = 4 Ns/m and

KPTO = -900 N/m to -400 N/m with ∆KPTO = 20 N/m. Fig. 6.6(a) shows the training progression.

The agent is said to be adequately trained at episode = 126. In Fig. 6.6(b), at episode = 1 (—,

black curves), the agent explores the state-action space. At a later stage when the agent is said

to be trained, see episode = 126 ( —,green curves), the agent drives the coefficients to optimal

values where the reward is maximum.

6.4.3 Deploying trained agent on CFD solver

In this section, we deploy the trained agent from Sec. 6.4.1 in our CFD based 3D WEC

simulation environment. We simulate the device dynamics under the influence of regular waves

described in Sec. 6.4.1. The 3D WEC device setup is described in Sec. 5.10. Fig. 6.7 shows

the agent driving the PTO damping and spring stiffness coefficients to optimal values. It is

observed that the coefficient values remain in close proximity to the optimal values through the

simulation. However, it is observed that the power absorbed in this simulation is much smaller

than that obtained in the LPT based simulations. This significant discrepancy arises from several

key factors. Firstly, the wave excitation force in CFD simulations is much larger than that in

the LPT based simulations, see Sec. 5.9. Additionally, the CFD simulations accurately capture

the non-linear WSI effects caused by the controller, which is not reflected in the LPT based

simulations. Consequently, to accurately evaluate and refine the RL-based controllers in a more

realistic setting, training the agent within CFD based WEC environments is essential. This

requires an extensive amount of computational resources.
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(a) Reward vs episodes

(b) PTO coefficients approaching optimal values as training progresses

Figure 6.6. DDQN algorithm used to train DNN of size 4×24×24×5 for a WEC device on
irregular waves of Hs = 0.15 m and Tp = 1.7475 s implemented with a reactive control

strategy.

6.5 Conclusions

In this chapter, we introduced the theory behind RL and its application to optimizing the

WEC device performance with reactive control strategy. We discussed the DQN and the DDQN

algorithms with discrete states and actions, and outlined their implementation to optimize the

performance of a reactive controlled vertical cylinder shaped point absorber device. Next, we
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Figure 6.7. PTO coefficients approaching optimal values in a CFD based 3D WEC simulation
environment.

trained the agent (controller) to maximize the power absorption of a WEC device under regular

and irregular sea waves conditions. The trained agent successfully adjusted the PTO coefficients

to optimal values, thereby maximizing the power absorption from sea waves.

Finally, we deployed the trained agent within a CFD based 3D WEC simulation envi-

ronment and observed its capability to drives the PTO coefficients to optimal values. However,

despite successful coefficient adjustment, the power absorbed by the device was notably lower

compared to the LPT based simulation. We attribute this discrepancy to the differing capabilities

of the CFD and the LPT based solvers in capturing the non-linear WSI effects. To further investi-

gate this phenomenon, it is important to train the agent using CFD based WEC environments

rather than replying on LPT based models. Such an approach will provide a more accurate

representation of real-world dynamics, facilitating better insights for analysis and improving the

RL-based controllers for WEC applications.
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Chapter 7

Future direction

Some future directions to continue the research on WEC technology:

1. It has been observed that BEM-based models tend to over-predict WEC device dynamics

and power absorption capabilities, especially when the device resonates with incoming

sea waves or operates under highly energetic sea states. Consequently, relying solely on

BEM-based solvers for simulating WEC dynamics may not be entirely reliable. However,

they can still be useful for testing various control strategies on WEC devices under calm

sea conditions. To gain a better understanding of WEC dynamics, it is advised to utilize

CFD-based solvers, which offer more realistic performance.

2. For Model-based control strategies such as the model predictive controller presented in

this work, a more effective and fast approach is needed to predict wave excitation forces.

Various methods, ranging from estimators to neural networks, can be explored, and the

most efficient and rapid method can be adopted.

3. To train the model-free RL-based agents on high quality experiences, it is advisable to

train them on CFD-based WEC environments rather than relying solely on LPT-based

models. This approach provides a more accurate representation of real-world dynamics,

facilitating better insights for analysis and improving RL-based controllers, albeit at a

higher computational cost. Constraints on damping and stiffness coefficients can be im-

posed to prevent the device from entering unstable regions, such as complete submergence
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or emergence from the water surface. An MPC-based controller can also be employed to

predict unstable regions in advance and prevent the RL agent from taking such actions.

4. Fully resolved CFD simulations can be conducted for an array of WEC devices in a NWT

to determine the optimal spacing between them. RL techniques can also be applied to

optimize the spacing between WEC devices.

5. Implementing a latching or bang-bang controller, whose optimal latching time is deter-

mined using RL techniques, can be beneficial.
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Appendix A

Analytical calculations

A.1 Analytical calculations for rise in water level for half
submerged rectangle block

Consider a rectangular block of dimensions W×H = 2H×H released from a small height

above the air-water interface as depicted in Fig. 3.17. In equilibrium (hydrostatic conditions)

the block settles as shown in Fig. A.1. The water level rises by an amount of ∆ from its initial

level. The amount of displaced water is shown by hashed lines in the figure. Its volume (2V2) is

equal to the volume of the submerged part of the block (V1) below the initial water level, which

is shown by the dashed line in Fig. A.1.

Equating these volumes gives a relation

V1 = 2×V2

W ×αH = 2×∆×W0,

∆ =
αH×W

2W0
. (A.1)

At equilibrium the weight of the rectangle is balanced by the buoyancy force, which yields the
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Figure A.1. Equilibrium conditions for the floating rectangular block problem.

condition

ρs×W ×H×g = ρw× (∆+αH)×W ×g,

α =
ρs×H−ρw×∆

ρw×H
. (A.2)

Substituting Eq. (A.1) into Eq. (A.2) and rearranging the terms, we get

α =
ρs

ρw

(
1+ W

2W0

) . (A.3)

For a very wide domain, i.e., when W0→ ∞, we get the well-known result α∞ = ρs
ρw

.

Substituting problem specific parameters of Sec. ??, we get α = 0.1428 and ∆ = 0.02678

m. The position of the new water level from the bottom of the container is r = ∆+1.2H = 0.1167

m.

A.2 Analytical calculations for the floating cylinder problem

Consider a cylinder of radius R released from a small height above the air-water interface

as depicted in Fig. 3.25. In equilibrium (hydrostatic conditions) the cylinder settles as shown
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Figure A.2. Equilibrium conditions for the floating cylinder problem.

Figure A.3. Sub-geometries derived from Fig. A.2 for the analytical calculation of rise in the
water level for the floating cylinder problem.
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in Fig. A.2. To compute the amount of water level rise δ we first use the volume conservation

principle to equate

V3 = 2(V1 +V2), (A.4)

in which, V3 is the volume of the submerged part of the cylinder below the initial water level

(horizontal dotted line) as illustrated in Fig. A.2. At equilibrium, the weight of the cylinder is

balanced by the buoyancy force, which gives the condition

ρs×πR2×g =

[(
θ2

2π

)
×πR2− R2

2
× sinθ2

]
×ρwg

θ2− sinθ2 =
2πρs

ρw
. (A.5)

The following geometric relations are derived using Fig. A.3, which are used to calculate

volume V3,

CG = R× sin
(

θ1

2

)
,

PG = R× cos
(

θ1

2

)
,

V3 =
θ1

2π
×πR2− 1

2
× (2×CG)×PG

=
R2

2
(θ1− sinθ1) , (A.6)

volume V1

AJ = Rsin
(

θ2

2

)
,

V1 =

(
W −Rsin

(
θ2

2

))
δ , (A.7)
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and volume V2

V4 =
R2

2
× sinθ3, (A.8)

V5 =
1
2
×∆×EC, (A.9)

EC =

(
W −Rsin

(
θ1

2

))
−
(

W −Rsin
(

θ2

2

))
= R

(
sin
(

θ2

2

)
− sin

(
θ1

2

))
, (A.10)

θ3 =
1
2
(θ2−θ1), (A.11)

V2 =V4 +V5−
(

θ3

2π

)
×πR2

=
R2

2
× sinθ3 +

1
2
×∆×EC− θ3R2

2
. (A.12)

The rise in the water level can be expressed in terms of the angles θ1 and θ2 as

∆ = Rcos
(

θ1

2

)
−Rcos

(
θ2

2

)
. (A.13)

Finally, Eq. (A.4) simplifies to yield

V3 = 2(V1 +V2)

R2

2
(θ1− sinθ1) = 2

[(
W −Rsin

(
θ2

2

))
∆+

R2

2
sinθ3 +

∆×EC
2
− θ3R2

2

]
. (A.14)

Substituting (A.5), (A.10), (A.11) and (A.13) into Eq. (A.14) along with the problem

specific parameters of Sec. 3.5.3, we get θ1 = 126.66◦, ∆ = 0.02692 m and r = 0.1169 m.
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Appendix B

ISWEC dynamics

B.1 Effect of domain width in 3D simulations

Here we simulate the ISWEC dynamics by taking three different tank widths to select

a sufficiently wide tank that reduces the interference caused by the lateral walls on the device

dynamics. The 3D regular wave case with a prescribed pitch angle of δ0 = 5◦, as discussed in

Sec. 4.7.1 is considered. The selected widths for the wave tank are 3W , 5W , and 7W , in which

W is the hull width of the 3D ISWEC model. Among the considered widths, the 7W tank width

case has the ISWEC device located farthest away from the lateral walls, and is therefore expected

to be least affected from the wall interference effects. The temporal evolution of hull pitch angle

is compared for three wave tank widths, and the results are shown in Fig. B.1. From the plots,

it is observed that there is not much difference in the pitch dynamics of the device. However,

taking a closer look at the inset plot reveals that the results obtained using a tank width of 5W is

closer to those obtained using a width of 7W . Hence, we take the tank width to be 5W in our 3D

simulations, which has a lower computational cost compared to the 7W case.
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Figure B.1. Comparison of ISWEC pitch dynamics for three different computational domain
widths 3W , 5W , and 7W . Fifth-order regular water waves are generated with H = 0.1 m, T = 1

s and λ = 1.5456 m. A maximum ISWEC pitch angle δ0 = 5◦ and a maximum gyroscope
precession angle of ε0 = 70◦ are used. The gyroscope parameters are: damping coefficient c =
0.1389 N·m·s/rad, moment of inertia J = 0.0046 kg·m2, and PTO stiffness k = 0.1697 N·m/rad.

The speed of the flywheel is φ̇ = 4000 RPM, and I = 0.94× J = 0.0043 kg ·m2.
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