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Abstract

Multiscale Crystal Defect Dynamics: A Crystal Plasticity Theory Based on Dislocation
Pattern Dynamics

by

Dandan Lyu

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Shaofan Li, Chair

Understanding the mechanism of plasticity is of great significance in material science, struc-
ture design as well as manufacture. For example, the mechanism of fatigue, one critical origin
for mechanical failures, is governed by plastic deformation. In terms of simulating plasticity,
multiscale methods have drawn a lot of attention by bridging simulations at different scales
and yielding high-quality atomistic properties at affordable computational resources. The
main limitation of some multiscale methods is that the accuracy in much of the continuum
region is inherently limited to the accuracy of the coarse-scale model, even though much effort
has been made to improve the existing multiscale models by developing adaptive refinement
models. It is known that crystal defects play an important role in determining material prop-
erties at macroscale. Crystal defects have microstructure, and this microstructure should be
related to the microstructure of the original crystal. Hence each type of crystals may have
similar defects due to the same failure mechanism originated from the same microstructure,
if they are under the same loading conditions. In this dissertation, a multiscale crystal defect
dynamics (MCDD) model is proposed that modelling defects by considering their intrinsic
microstructure derived from the microstructure or dislocation patterns of the original perfect
crystal. The main novelties of present work are: (1) the discrete exterior calculus and alge-
braic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for
crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher
order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed
constitutive relations for various defect process zones, and (3) an hierarchical strain gradient
theory based finite element formulation is developed to support an hierarchical multiscale
process zone model for various defects in a unified formulation. The efficiency of MCDD
computational algorithm allows us to simulate dynamic defect evolution at large scale while
taking into account atomistic interaction. The MCDD model has been validated by compar-
ing the results of MCDD simulations with that of molecular dynamics (MD) in the cases of
nanoindentation, uniaxial tension and simple shear. Numerical simulations have shown that
MCDD can capture not only material failure but also inelastic deformation in a multiscale
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continuum simulation by considering the atomistic interaction. In addition, simulation of
anisotropy demonstrates that MCDD is capable of capturing the influence of loading axis
orientation and the loading directionality on dislocation nucleation.
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Chapter 1

Introduction

1.1 Motivation and Background

A metal spoon will keep its original shape under normal conditions of use. But when scooping
hard ice cream as shown in Fig. 1.1(a), the spoon may be deformed too far to recover[1],
which is called plasticity. The metal spoon consists of many crystalline grains and atoms are
arranged in a regular array inside each grain. In order to bend the spoon permanently, atomic
slip planes must slide past each other shown in Fig. 1.1(b). Strategies for understanding
and modelling the plastic deformation are the topics of this dissertation.

(a) (b)

Figure 1.1: (a) Spoon bent when scooping hard ice cream and (b) plastic deformation.

Many books and articles suggeste that 50% to 90% of mechanical failures are caused by
fatigue(e.g. [2]), whose mechanism is governed by plastic deformation. Hence, in order to
design better fatigue resistant materials and structures, we need to understand the mecha-
nism of plasticity. In addition, both bulk-forming and sheet forming in the manufacturing
processes involve plastic deformation[3]. Therefore, plasticity needs to be understood in the
manufacturing processes design.
In terms of simulating plasticity, the most accurate method would be first principle-based
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methods [4, 5, 6, 7] or molecular dynamics [8, 9, 10], because they can yield high-quality
atomistic properties of a material without fitting parameters. However, they are way too
expensive even if the most powerful computers available today are used. Another possible
approach is to use the multiscale method (Fig. 1.2), which can bridge simulation at different
scales and overcome the problem of lacking computation resources[11, 12, 13, 14, 15].

Figure 1.2: Different scales in plasticity modelling.

In general, multiscale method may be classified into two categories: sequential and concur-
rent. Sequential multiscale methods treat fine-scale simulations as a pre-processing step to
the coarse-scale model. Then parameters or description from fine-scale simulation are passed
to coarse-scale model. Such approaches usually use the fine-scale to derive the special form
of the governing equations at the coarse-scale and lead to deep physical insight into the
coarse-scale behaviors [16, 17, 18]. On the contrary, concurrent multiscale methods couple
models at two or more scales simultaneously. Usually the physical problem is divided into
two or more contiguous regions and each region is modelled at one distinct scale. There are
several concurrent multiscale methods for modelling plasticity that employ domain decom-
position, such as the coupled atomistic and discrete dislocation [19, 20, 21, 22, 23]. A critical
issue in these domain decomposition methods is how to exchange information between the
domains across an interface. In particular, it has been a challenge to pass the dislocation
lines in the fine scale region across the multiscale interface to the continuum region in 3D
simulations. On the other hand, the main shortcoming of some of the multiscale methods
mentioned above is that the accuracy in much of the continuum region is inherently limited
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to the accuracy of the coarse-scale model, even though much effort has been made to improve
the existing multiscale models by developing adaptive refinement models.
Crystal defects play an important role in determining material properties at macroscale. For
example, dislocations are the origin of metal plasticity; voids can pin down dislocations,
and thus play a vital role in work-hardening plastic deformation. The macro-scale material
behaviors are essentially determined by the microstructure of the material itself as well as
the corresponding microstructure of the defects. To predict the overall material behaviors
through the simulation of aggregated defect motion or evolution has been a long-standing
challenge in mechanics of materials and materials science. In crystalline solid, there are a
few types of lattice defects, namely dislocation, void, disclination, crystal slip(Fig. 1.3), and
cracks.

(a) (b) (c)

Figure 1.3: Slip planes for different types of crystal: (a) {111} slip plane in FCC crystal, (b)
{110} slip plane in BCC crystal, and (c){0001} slip plane in HCP crystal.

Conventionally, various lower dimension geometric models, such as idealized surface(2D),
line(1D), and vertex(0D) models are adopted to represent defects in crystalline solids. Dis-
crete dislocation dynamics [24, 25] are examples of such approach. A recent example is the
discrete mechanics of crystal lattice developed in [26], in which the defects are again treated
as lower dimensional objects of lattice complex. For example the void is idealized as the point
defect (0-cell), dislocation is idealized as the line defect (1-cell), and crystal slip is idealized
as surface defect (2-cell)[27]. However, the inherent disadvantages in the lower dimensional
idealization are: (1) it may unintentionally neglect the three-dimensional microstructure of
the defects, which is crucial for defect interactions; (2) the lower dimensional defect model is
valid only at atomistic scale so that the model has the limitation in scalability; (3) the related
defect model has no length scale and thus fails to provide statistical insights and relevance
to the original physical problems, and (4) most importantly, it needs ad-hoc and prescribed
failure criteria such as interface cohesive law or dislocation mobility law to simulate defect
evolutions, which may not be consistent with first-principle atomistic theory.
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1.2 Overview of the Dissertation

The aim of this work is to construct a coarse-grained defect model for crystalline materials.
Therefore, instead of using differential topology to analyze perfect crystal lattice complex,
we are using the differential calculus to analyze the dual lattice, or more precisely, a non-
Bravais super lattice, which may represent the microstructure of the defects. By doing
so, we have developed a framework of hierarchical multiscale method in defect mechanics,
where the term defect refers to disorder or damage state of lattice structure, such as voids,
dislocations, slip planes or faults, and cracks. The theoretical formulation of the proposed
method follows the construction of a multiscale process zone model developed by the present
authors [28, 29, 30, 31, 27, 32, 33]. In present work, by extending the discrete crystal
lattice developed in [26] into a non-Bravais super lattice, we have demonstrated how to
systematically and rigorously construct a scalable multiscale defect mechanics model based
on the microstructure of the original perfect crystal lattice, and it provides the mathematical
and physical foundation for crystal defect dynamics.
Chapter 1 is the motivation and background of the dissertation. The phenomenon of plastic
deformation is introduced with its significance in fatigue and manufacturing process. Then
the limitations of numerical models both at single scale and multiscale are discussed. In
order to address these problems, a different approach, multiscale crystal defect dynamics,
is proposed to predict the overall material behaviors through the simulation of aggregated
defect motion.
Chapter 2 gives a basic description of experimental observation and dislocation microstruc-
ture simulation, especially focuses on the mechanism towards plastic deformation, which lay
the theoretical foundation for the proposal of multiscale crystal defect dynamic model.
In chapter 3, we shall first briefly outline the basic theory of discrete differential calculus that
is needed to describe crystal lattices, and then we discuss how to construct the super lattice
or the discrete crystal defect model via discrete exterior calculus formulation. The process
of how to build the discrete crystal defect model for BCC and FCC crystals are discussed in
detail.
An atomistic-informed strain gradient theory for different orders of process zones to model
different types of defects in crystals are present in chapter 4. Specifically, the concepts of
higher-order Cauchy-Born rules are discussed and different stress measures are derived based
on embedded atom method(EAM) potential.
In chapter 5, the formulation and implementation of the multiscale finite element formulation
based on the proposed multiscale crystal defect dynamics (MCDD) theory are discussed. In
particular, the shape functions of third order process zone element, rhombic dodecahedron
are formulated. In addition, one critical parameter in MCDD modelling, the scale factor for
super lattice complex and the size of the third-order process zone element is investigated by
simulating 1D wave propagation in a long thin plate.
Numerical investigations of MCDD are performed in chapter 6. First, MCDD model is
validated by comparing with the results of molecular dynamics (MD) for 3D nanoindentation,
uniaxial loading and simple shear of single crystal copper. Meanwhile, MCDD is employed
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to simulate dislocation motion and crystal slip around a void in a copper specimen. To
demonstrate that MCDD is an atomistically-determinant crystal plasticity theory, MCDD is
employed to simulate anisotropic plasticity at grain scale, and use it to study the influence of
crystal orientation on dislocation nucleation and slip system activation. Last, the formulation
of shear band in a copper specimen is simulated.
Chapter 7 summarizes the work in this dissertation with discussions. Comments and per-
spectives of MCDD model are also given.
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Chapter 2

Dislocation Pattern Dynamics

This chapter gives a basic description of experimental observation and dislocation microstruc-
ture simulation, especially focuses on the mechanism towards plastic deformation, which lays
the theoretical foundation for the proposal of multiscale crystal defect dynamic model.
Due to its significance in numerous technological problems, including issues in aerospace
industry, the development of plasticity theory in terms of dislocation mechanics has attracted
a lot of attention in materials science [34]. Dislocations produced in a deformed metal tend
to aggregate into different types of dense formations separated by relatively dislocation free
regions [35], which have significant influences in work hardening and localization of plastic
deformation, and finally are linked to properties in macroscopic response. For example, work
hardening in plastic deformation of a crystal is related to important changes in dislocation
microstructure. The spontaneous emergence of areas with low dislocation density and those
with high dislocation density is generally associated with the increase in dislocation density
[36]. These metastable structures are called dislocation patterns, which tend to occur in
single crystals, polycrystals, pure metals and alloys.
Understanding the mechanism of dislocation patterns is not only an interest in condensed
matter solid state physics, but also has important applications in materials science and
engineering. In general, relatively uniform dislocation occurs at the beginning of plastic de-
formation; Then the original distribution tends to be unstable as the increase of deformation.
Finally 3D dislocation patterns can be aggregated into clusters [35]. This pattern may be
unstable again and further transformed into more complicated restabilized state. Each of
these stages are connected to one or more characteristic dislocation patterns.
A lot of research efforts have been focused to investigate the formation of dislocation patters
[37, 38, 39, 40, 41, 42, 43, 44, 45, 46] during the past several decades. Both Experimental
observation and theoretical modelling, ranging from molecular dynamics simulation, dislo-
cation dynamics, to continuum and phase-field models are performed.
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2.1 Experimental Observation of Dislocation Patterns

Dislocation patterns are highly ordered spatial structures associated with dislocation reac-
tions and rearrangements[47, 48]. While they demonstrate various kinds of patterns, their
common characristic is the spatial periodically ordered structure with the alternate appear-
ance of dislocation-intensive and dislocation-free regions [47, 48]. Depending on the slip
geometry, external loading and temperature, various patterns form (e.g. veins [49], persis-
tent slip bands (PSB) [50], cells structures [51, 48], labyrinth as well as surface extrusions
and intrusions [50]) emerge [52].
The crystal orientation has become one of the most important effects on dislocation patterns
of crystalline materials. Current research has shown that for single crystals, such as copper,
nickel or silver, as shown in Fig. 2.1, the dislocation patterns can be divided into three
regions in the stereographic triangle(see Fig. 2.1(a)): the [011] region, the [001] region and
the [1̄11] region [53]. The common feature in the [011] region are the formation of PSB-
wall structures. The common feature in the [001] region is that it tends to form labyrinth
structure. While in the region of [1̄11], the vein structure with low strain and the cell or
wall structure with high strain are regarded as the most common dislocation patterns [54].
In addition, Fig. 2.2 shows the formation mechanism of three types of dislocation patterns,
which are corresponding to the dislocation structures at different orientations. In general,
the formation of dislocation patterns significantly relies on the active slip systems. The
labyrinth structure is more likely to be observed on the condition that the critical secondary
slip system is easier to operate. The cell structure is more easier to be seen with activating
the coplanar secondary slip system. While the wall structure is more prone to appear without
activating secondary slip system [55].

Figure 2.1: Schematic demonstration of the relation between axial orientation and dislocation
pattern structure after deformation at (a) 5× 10−4 and (b)5× 10−3[56]. (Reuse permission
by Elsevier: License Number 4321590270613)
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Figure 2.2: Formation illustration of various wall structures: (a)(b) DB-wall, (c)(d)
labyrinth-wall, and (e)(f) cell-wall[55]. (Reuse permission by Elsevier: License Number
4321590556083)

2.2 Molecular Dynamics Simulation of Dislocation

Patterns

Understanding the mechanisms and parameters of dislocation motion is key for the analysis
of dislocation patterns and designing materials with improved properties [57, 58, 59]. Bulatov
et al. [60, 61, 62, 63] adopted molecular dynamics to simulate dislocation mobility and the
formation of dislocation network. Fig. 2.3 shows the comparison of junction network in TEM
observation and dislocation dynamics simulation, as formed by the following dislocations:

1

2
[111] +

1

2
[1̄1̄1] = [001] (2.1)
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Figure 2.3: (a)TEM picture of junction network at their intersections [59] and (b)a similar
junction network by atomistic simulation[63]. (Reuse permission by APS: License Number
RNP/18/APR/002932)

Figure 2.4: Dislocation patterns in (a) the Cu-Ni interface, (b) the twisted Cu-Ni interface,
(c) the strained Cu-Ag interface, and (d)Cu-Ag interface[64]. (Reuse permission by Elsevier:
License Number 4321601337651)

Shao et al. [65, 64, 66, 67] discussed the relaxation mechanisms, structure, and properties
of semi-coherent interfaces based on atomistic simulations and dislocation theory, which
can locate two stable structures and a high-energy structure by computing the generalized
staking fault energy(GSFE) profile of the interface. Fig. 2.4 shows the misfit dislocation
structures in the interface of Cu-Ni and Cu-Ag.
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2.3 Dislocation Dynamics Simulation of Dislocation

Patterns

Dislocation Dynamics (DD) is another popular direct approach that attempts to simulate the
aggregate behavior of large dislocation ensembles at mesoscale by decomposing dislocation
lines of arbitrary curvature and character into piecewise segments[68, 69, 70, 71, 72, 73, 74].
Kubin et al. [69] simulated the behaviours of collective dislocation structures by dislocation
dynamics and can describe idealized situations in two dimensions, which may be useful in
testing the effects on patterning of various properties or mechanism. Rhee et al. [75] devel-
oped a 3D dislocation dynamics model for short-range interactions, cross slip and long-range
interactions of dislocation segments, which is capable of predicting macroscopic properties.
Madec et al. [76] investigated the formation of patterned microstructures due to multiple
slip in FCC crystals using dislocation dynamics, where cross-slip and short-range interac-
tions have critical influences on the formation of dislocation patterns. Fig. 2.5 shows the
simulated dislocation patterns in (1 1 1) foils of thickness 5 µm.

Figure 2.5: (a)Dislocation patterns from the Edge-Screw model, (b) resistive internal shear
stresses in active slip plane, and (c) positive internal stresses on the same slip plane[76].
(Reuse permission by Elsevier: License Number 4323801067330)

However, the main limitation lies in that the characteristic length scale of dislocation patterns
is an order of magnitude larger than the dislocation spacing [77, 68]. Therefore, quite large
number of dislocation lines is needed in order to capture dislocation patterns in dislocation
dynamics simulations, which is a rather hard task especially in 3D.
This chapter briefly summaries the dislocation patterns observed in experiments and mod-
elled by molecular dynamics and dislocation dynamics, which gives the foundation for the
proposed multiscale crystal defect dynamics model. In addition, the dislocation patterns
provides evidence for the discrete calculus in the following chapters.
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Chapter 3

Discrete Exterior Calculus and
Non-Bravais Super Lattice

To make a consistent and self-contained presentation, in this chapter we first briefly intro-
duce the basic definitions and notations of discrete exterior calculus notation, the elementary
theory of chain complex of crystal lattice, and the concept of super lattice. The general topol-
ogy structure of a lattice structure includes connections and connectivity among different
geometric objects, such as edges, vertices, surfaces, and different order bulk elements may
be described by using discrete differential topology. We shall mainly follow the notation and
nomenclature of [78, 79, 80], and readers may consult them for further details. Since the
application of discrete differential calculus to mechanics of materials is still at the stage of
beginning, there is not a set of consented mathematical notations that are agreeable to both
fields, in this dissertation we use the standard notations in both fields for convenience.

3.1 Cell Complexes of a Crystal Lattice

We first consider a set of k + 1 linearly independent points, {v0, v1, · · · , vk} ∈ Rn, n > k,
that are called as vertices. The convex hull of these k + 1 vertices

σk =

{
x ∈ Rn

∣∣∣ x =
k∑
i=0

µivi, with µi ≥ 0 and
k∑
i=0

µi = 1

}
, (3.1)

is defined as a k -simplex. We denote the boundary of σk as Bd(σk), and the interior σk

as Int(σk) = σk \ Bd(σk). If σj is a proper face of σk, we write σj ≺ σk. For example, a
tetrahedron is a 3-simplex, a triangle is a 2-simplex, a line segment is a 1-simplex, a point is
a 0-simplex, and the empty set is the unique (-1)-simplex. A face of a simplex is the convex
hull of a subset of its vertices; in particular, a facet of a k-simplex is the convex hull of all
but one of its vertices. Thus, every k-simplex has exactly k + 1 facets and exactly 2k faces.
Every face of a simplex is a simplex.



CHAPTER 3. DISCRETE EXTERIOR CALCULUS AND NON-BRAVAIS SUPER
LATTICE 12

We then define the Geometric Simplicial Complex, or simplicial complex for short, as a set
K of simplices in the Euclidean space Rn, satisfying the following two conditions:
(1) Every face of a simplex of K is in K, and (2) The intersection of any two simplices of K
is either a face of both of them, or it is empty.
The simplices in K are called the cells.
In this work, we are interested in the so-called Polytopal Complex. Polytopal complexes
(also called polyhedral complexes), which is a natural generalization of geometric simplicial
complexes. Similar to the simplicial complex, a polyhedral complex is a set E of polytopes
in the Euclidean space Rn, n > 0, satisfying two conditions: (1) every face of a polytope in
E is also in E, and (2) the intersection of any two polytopes in E is a face of both. The
polytopes in E are called its cells. For example, the set of all faces of any convex polytope
define a polytopal complex.
In general, both geometric simplicial complex and polytopal complex belong to a larger class
of complexes — the CW complex. Roughly speaking, a CW complex is a Hausdorff space
that can be partitioned into many open cells. The C stands for “closure-finite”, and the W
for “weak topology”. In a CW complex, an open simplex, σk is homeomorphic to Bk,

Bk =
{

x ∈ Rk
∣∣∣ ‖x‖2 ≤ 1} .

}
. (3.2)

Therefore we may also define a k-cell as:

Definition 3.1.1 A k-cell, σk, is a topological space that is homeomorphic to the open k-unit
ball i.e. int(Bp).

In this work, we mainly consider polytopal cells in polytopal complex, which may be or may
not be (geometrically) simplicial.
Before proceed further, we define the following operators

Definition 3.1.2 The boundary operator is a homomorphism ∂k : Ck(K;Z)→ Ck−1(K;Z),
which is defined as follows,

∂kσ
k = ∂k([v0, · · · , vk]) =

k∑
i=0

(−1)i[v0, · · · , v̂i, · · · vk] (3.3)

where σk = [v0, · · · vk] is a k-simplex, and [v0, · · · , v̂i, · · · vk] is a (k-1)-simplex by omitting
the vertex vi.

Based on this definition, we have

∂kσ
k =

∑
σk−1≺σk

±σk−1, (3.4)

where the sign is chosen as +(or -) if the orientation of σk−1 coincides with or is the opposite
to that induced by σk.
The above definition of boundary operator is for simplicial complexes. For polytopal com-
plexes, some modifications may be needed.
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Definition 3.1.3 Consider a k-dimensional polytope P and V (P ) is the vertex set of of P .
Let ε :

(
V (P )
k+1

)
→ {−1, 0, 1} be an orientation of P if the following subsequent conditions are

satisfied:

1. ε(v0, · · · , vk) = 0 if and only of v0, · · · , vk are affinely dependent;

2. ε(v0, · · · , v′i, · · · , vk) = ε(v0, · · · , vi, · · · .vk) if v′i and vi are in the same open half-space
of Rk delimited the hyperplane v0, · · · , v̂i, · · · vk0 and ε(v0, · · · , v′i, · · · , vk) = −ε(v0, · · · , vi, · · · .vk)
if not (the hat means a missing element);

3. ε(v0, · · · , vk) = sign(π)ε(vπ(0), · · · , vπ(k)) for every permutation π.

For every k-face σ of a polytopal complex P , an orientation ε of σ is an orientation of the
associated polytope. We say then that (σ, ε) is an oriented face of P . When ]tau is a facet
of σ, we defines the induced orientation of an orientation ε of σ as

ε
∣∣∣
τ

(v0, · · · , vk−1) := ε(v0, · · · , vk−1, vk) .

Based on above definitions, we can then define the boundary operator for the polytopal
complex as

∂(σk, ε) =
∑

τ facets of σ

(
τ, ε

∣∣∣
τ

)
.

For detailed discussions, readers may consult [81].
We may also define the coboundary operator for simplicial complexes as,

Definition 3.1.4 The coboundary operator is the duality operator,

δk : Ck[K]→ Ck+1[K]

to the boundary operator, ∂k, with respect to the bilinear form between discrete forms and
chains, i.e

< δkαk, ck+1 >=< αk, ∂k+1ck+1 > → δk(αk) = αk ◦ ∂k+1, (3.5)

where αk ∈ Ωk
d(K) is a discrete k-form, and ck+1 ∈ Ck+1(K,Z) is a chain.

Therefore, the coboundary operator may be also given by specifying δkσk on each oriented
k-cell σk, namely

δkσk =
∑

σk+1�σk

±σk+1, (3.6)

where the sign is chosen as +(or -), if the orientation of σk coincides with or is opposite to
that induced by σk+1.
To be able to apply the concept of k-cell to study lattice dynamics, we require the collection of
all k-cells to be translation and symmetric invariant. In this work, we define an n-dimensional
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lattice complex to be a polytopal complex such that:
(I) The underlying space is all of Rn, n = 2, 3.
(II) The set of all lattice points defines an n-dimensional lattice.
(III) The cell set is translational symmetric.
The formulation of crystal lattice is processed as follows: First, we use the simplicial complex
to describe or define the lattice that we are interested. Second we exam for its dual lattice
complex as a polytopal complex or a CW complex, and last we scale the dual-lattice complex
to create a disjoined cover or a super lattice (with different set of lattice points) to cover the
entire crystal physical space.

3.2 Dual Lattice Complex

A very important concept of the discrete exterior calculus is the dual cell and dual complex.
To define dual cell of a lattice complex, we first define the circumcenter of a k-cell σk, which
is given by the center of the related k-sphere that has all k + 1 vertices of σk on its surface,
and it is denoted as c(σp). A cell is said to be well-centered if c(σk) ∈ Int(σk).

Definition 3.2.1 Let K be a well-centered primal mesh of dimension n and let σk be the
k-cell in K. The circumcentric dual cell of σk is defined as,

D(σk) :=
n−k⋃
r=0

⋃
σk≺σ1···≺σr

Int
(
c(σk)c(σ1) · · · c(σr)

)
. (3.7)

Note that the subscripts here are not the numbers of space dimension, but unspecified
sequence numbers. The closure of the dual cell of σk is denoted D̄(σk) and called the closed
dual cell. We will also use the notation ? to indicate dual cells, i.e.

?σk := D̄(σk) .

Each (n-k)-simplex on the points c(σp); c(σ1) · · · c(σr) is called an elementary dual simplex
of σk. The collection of dual cells is called the dual cell decomposition of K and denoted
?K. In this work, we are particularly interested in a special form of Eq. (3.7) i.e.

D(σ0) =
(

Int
(
c(σ0)

))
∪
⋃

σ0≺σ1

Int
(
c(σ0)c(σ1)

)
∪ · · · ∪

⋃
σ0≺σ1···≺σn

Int
(
c(σ0)c(σ1) · · · c(σn)

)
.

We would like to point out the fact that the collection of the dual cells at a given lattice point
σ0(l) is a polytope, and it is in fact a CW complex, if the primal lattice domain (space) K is
a CW complex. We denote it as ?(σ0(l), K). Dual lattice complexes are defined relative to
their corresponding primal lattice complexes or mesh. While they represent the same subset
of Rn as their associated primal mesh, they create different lattice structures for the same
geometrical information. For examples, both BCC and FCC lattices are Bravais lattices,
while both dual lattices are Bravais lattice structure.
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Unlike the discrete lattice mechanics proposed in [26], in which lower dimensional lattice
simplexes σp, p = 0, 1, 2 are employed to build defect models, in this work we are interested
in a different defect model. First, all the defect models are built on lattice complexes (not
necessarily simplexes), and second the proposed defect theory is based on a non-Bravais
lattice complex formulation. To construct the non-Bravais lattice complex, we first examine
the dual lattice complex ?(σ0, K) of the primal lattice mesh K.
In physical modelling, there are two types of dual cells: Voronoi dual cell and Barycentric
dual cell. In this work, the term dual cell is exclusively referred to as the Voronoi dual cell.
Without loss of generality, we may assume that the dual lattice complex is simplicial complex.
Hence, we can treat the dual lattice complex the same as the original lattice complex, and
employ the algebraic topology approach to analyze them. For simplicity and convenience,
in the rest of the paper, without further explanation and complication, we also treat all
the dual p-cells ?σp as the regular lattice complex or CW complex. Since a regular crystal
lattice simplexes are physical objects, they consist of either atom or ion sites (σ0), atomistic
bonds (σ1), packing planes (σ2), and bulk space inside a lattice net (σ3), e.g. Thompson
Tetrahedron. On the other hand, the dual-lattice complex is a topological or geometrical
object. To distinguish two, we denote the p dimensional lattice complex as τ p. For example,
τ 3(l) ∼ ?σ0(l).

Figure 3.1: (a) Lattice complex of hexagonal (triangle) lattices, (b) its corresponding dual
lattice complex, (c) the non-Bravais super lattice complex, and (d) the scaled lattice complex.
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3.3 Discrete Crystal Defect Model–a Non-Bravais

Super Lattice

In this work, we construct a non-Bravais super lattice, which is a lattice structure constructed
based on D̄(σ0(l)) and the coarse graining procedure, where l = (li), l ∈ Rn, n = 2, 3 is an
integer position vector of the vertex σ0(l), if the primal lattice coordinate at l is expressed
as

x(l) = liai, i = 1, · · · , n; n = 2, 3

where ai are lattice basis vectors, if we only consider the Bravais lattice.
For easy reference, in this dissertation, we follow the convention of lattice complex theory
proposed in [26] without rehashing unless the content is new or it is worthy emphasizing.
Without loss of generality, We may assume that a prime unit cell of a given crystal lattice as
a CW lattice complex. If it has k-vertices, we may denote them as σ0(l+ εi), i = 1, 2, · · · , k
where i is the index of the coordination number of σ0(l), and εi is the integer coordinate of
lattice point i relative to the lattice site l. It may be noted that the primal mesh of some
crystals may involve part of the second nearest neighbors such as BCC crystals.
It should be noted that most crystals with non-Bravais dual lattices in three-dimensional
space have Bravais lattices, For examples, the dual lattice of the FCC crystal is a BCC lattice
(not crystal); while the dual lattice of the BCC crystal is a FCC lattice. However, for the
discrete crystal defect model proposed in this work, all the super lattices are non-Bravais
lattice.
To construct the non-Bravais super lattice, we select every vertex of the dual cell (closure)
?σ0(l) := D̄(σ0(l)) together with σ0(l) as the basis at the lattice site l of the primal lattice
mesh. To construct a super lattice, we need to scale both the primal lattice mesh as well
as the non-Bravais basis, which is the dual-lattice cell. To scale the primal lattice mesh, we
scale the primal lattice basis vectors as

(a1, a2, a3) → (b1, b2, b3) = β1(a1, a2, a3), β1 > 0 .

To scale the dual lattice cell, we scale the dual lattice constant r0 i.e. the distance between
the two close neighboring dual lattice points as

r = β2r0 , β2 > 0

where r0 is the dual-lattice constant corresponding to the original lattice constant.
Since the dual cell is scaled, the distance between two lattice points in the dual cell may be
much larger than that of the atomic bond distance in the primal lattice mesh. For a given
coarse-grain defect model, one need to adjust the scale parameters, β1 and β2, to fix size of
the super lattice constants (see Fig. 3.1). Moreover, a scaled dual cell may contain many
atoms or ions, depending on the length scale of the coarse-graining model, i.e. β1 and β2.
This is the reason why we do not call the proposed lattice defect model as the dual lattice,
but as the super lattice denoted as S ? (σ0).
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Note that when β1 >> β2 β1 and β2 may be chosen independently, this is because that β1

is the scaling factor of the primal lattice mesh, whereas β2 is the scaling factor of the dual
lattice mesh. However, when β1 and β2 are comparable, certain constrain conditions may
have to be imposed so that the distance between two dual lattice points (or sublattice points)
must be less than the distance of two scaled (primal) lattice sites. By doing so, we create a
non-Bravais lattice upon the primal lattice mesh with all the vertices of the dual lattice cell
?e0(l) as the basis for each lattice site. Assume that the dual lattice cell has k vertices. Now
we have a super lattice in which an arbitrary lattice position vector may be expressed as

x(l, j) = liai + rj, l ∈ Rn, n = 2, 3 and j = 1, 2, · · · , k . (3.8)

The coarse-grain parameters, β1 and β2, are the intrinsic embedding length scales of the
multiscale formulation besides the original primal lattice constant, which is the length scale
at fine scale or atomistic scale.

Remark 3.3.1 1. In this work, we only consider the cases that the primal lattice is the
Bravais lattice. By construction, comparing with the primal lattice, the corresponding super
lattice is a non-Bravais lattice. We choose a scaled dual cell of the primal lattice complex as
the basis or motif of the non-Bravais lattice.
2. The super lattice may be considered as a remesh of the primal lattice mesh. As β1 → 1
and β2 → 0, it recovers the primal lattice mesh.
3. As a remesh and coarsening of the primal lattice mesh, the super lattice points may not
be the atom or ion sites.

Now we demonstrate how to construct a super lattice by using dual lattice complex or
polytopal cell complex for a give primal crystal lattice. To illustrate concepts, we first
consider a two-dimensional example of triangle lattice. Fig. 3.1 shows a two-dimensional
hexagonal (triangle) lattice. As shown in Fig. 3.1, the lattice basis ai, i = 1, 2, are given as,

a1 = d0e1 and a2 = d0

(
cos

π

3
e1 + sin

π

3
e2

)
,

where d0 is the primal lattice constant. To scale the lattice basis pair, we let

b1 = β1a1 and b2 = β2a2, β1 > 0 .

The integer coordinates of the nearest neighbors of lattice site l is given in Fig. 3.1.
In this case, the non-Bravais dual-lattice basis is in R2, and they are expressed as,

εi = r0

(
cos

(2i− 1)π

6
e1 + sin

(2i− 1)π

6
e2

)
, i = 1, 2, · · · , 6

where r0 is the dual lattice constant.
To scale the dual-cell, we let

ri = β2εi, i = 1, 2, · · · , 6 .
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As can be seen in Fig. 3.1(c), the super lattice mesh decomposes or partitions the lattice
space into three different two-dimensional polytope cells τ 2

j , j = 1, 2, 3. We label the blue
triangle cell as the first 2D polytope (j = 1) element, the yellow rectangular cell as the second
2D polytope (j = 2) element, and the green hexagonal cell i.e. the dual cell as the third
2D polytope (j = 3) element. We interpret the triangle element as the bulk crystal element;
the rectangular element as the interphase process zone element that may be associated with
defects such as dislocation lines and cracks, and the green hexagonal element as the second
order process zone element that might be associated to defects such as voids or cavities. At
this stage, we have not inserted defects into a perfect crystal, but embedded possible defect
modes, or defected DNAs if you will, into a perfect crystal lattice space or material. The
atomistic potential in three different elements are exactly the same, and how defects will be
developed in those process zone region will be discussed in Chapter 5.

Remark 3.3.2 1. The three different polytopal complex cells τ 2
j , j = 1, 2, 3 correspond to

three lattice simplicial simplexes with different dimension σj, j = 0, 1, 2. When β1 → 1 and
β2 → 0, τ 2

3 → σ0 τ 2
2 → σ1 and τ 2

1 → σ2. This is the mathematical or physical foundation
that we use τ 2

1 and τ 2
2 to model crystal defects. Using a more material science related term,

we call them process zones or cohesive zones.
2. We would like to note that in [26] the exterior differential calculus approach is used to
study the lattice complex as simplicial complex, whereas in this work we use the exterior
differential calculus approach to study dual lattice complex, because the dual cell collection,
?(σ0(l), K), is a polytopal complex or CW complex in general.

3.4 Discrete Crystal Defect Model for FCC and BCC

crystals

To show that it is a universal truth that we can always mesh a given physical crystal space into
a unique polytopal or polyhedral lattice complex mesh, and it is the intrinsic microstructure
that is associated with every crystal lattices, in this section, we shall show how to create the
super lattice mesh for both FCC and BCC crystals by using the discrete exterior calculus
approach, and use them to create a multiscale process zone model to model various crystal
defects.

The body-centered cubic (BCC) dual lattice

In this section, we shall create a non-Bravais super lattice mesh for a body-centered cu-
bic(BCC) lattice. First, we are looking for the dual lattice complex for a given BCC lattice
point l = (l1, l2, l3). The dual lattice cell complex for a given BCC lattice site is the so-called
Wigner-Seitz cell (see Fig. 3.2 (b)), and the non-Bravais basis at each super lattice site is
attached to a circumcentric dual cell of the BCC lattice. The primal lattice basis vectors
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(a) (b) (c)

Figure 3.2: Lattice complex representation of BCC lattice and indexing scheme: (a) the
primal BCC lattice basis, (b) the Wigner-Seitz cell of BCC crystal lattice–a truncated octa-
hedron cell at the lattice site l, and (c)the formation of non-Bravais motif at sites of a super
BCC lattice site.

(see Fig. 3.2(a)) are,

a1 = (−a
2
,
a

2
,
a

2
), a2 = (

a

2
,−a

2
,
a

2
), and a3 = (

a

2
,
a

2
,−a

2
) .

First, we stretch the basis of BCC lattice uniformly,

bi = β1ai, i = 1, 2, 3 , β1 > 1

to form lattice sites for the super lattice as shown in Fig. 3.2(c). Second, we choose the
dual cell of BCC lattice as the non-Bravais motif or basis at each super lattice site. The
Wigner-Seitz cell vertices of BCC lattice at the lattice site may be expressed as

ε1 = a(1/2, 0, 1), ε2 = a(0, 1/2, 1), ε3 = a(−1/2, 0, 1), ε4 = a(1, 0, 1/2), ε5 = a(0, 1, 1/2),

ε6 = a(−1, 0, 1/2), ε7 = a(0,−1, 1/2), · · · , ε23 = a(−1/2, 0,−1), ε24 = a(0,−1/2,−1) .

To scale the Wigner-Seitz cell, we can let ri = β2εi, β2 > 0. Now we can express the
non-Bravais super lattice sites as

x(l) = ljbj, and x(l, εi) = ljbj + ri, i = 1, 2, · · · , 24 (3.9)

Since each super lattice site is attached with a truncated octahedron element, around the
super lattice site l there are 14 adjacent truncated octahedron cells, which we also call as the
3rd order process zone (for reason explained later). For the 15 truncated octahedron cells,
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Figure 3.3: BCC super lattice mesh and polytopal elements.

we use the index system l, l + ε1, l − ε1, l + ε2, ..., l − ε7 label them as shown in Fig. 3.2(c)
where

ε1 = (1, 0, 0), ε2 = (0, 1, 0), ε3 = (0, 0, 1), ε4 = (1, 1, 1), ε5 = (0, 1, 1)

ε6 = (1, 0, 1), ε7 = (1, 1, 0) . (3.10)

We denote the center of the middle octahedron as c(τ 3(l)) = σ0(l). This is because that the
dual cell of the BCC lattice is a well-centered circumentric cell.
As a non-Bravais lattice, each lattice site of BCC super lattice is attached to a stretched
dual cell, which has 24 vertices. By connecting these 24 vertices with the vertices of the
adjacent lattice site, it will form a partition mesh or decomposition of the entire super
lattice space (see Fig. 3.3). This mesh only contains four types of non-overlapped 3D
polytopal elements or complexes. We label them as τ 3

0 (l(`), τ 3
1 (l(`)), τ 3

2 (l(`)), and τ 3
3 (l(`)), or

τ 3
j (l(`)), j = 0, 1, 2, 3, where the superscript i is the dimension of the polytope complex, and

the subscript j is the type of polytopal element. Since for a given type of polytopal element
j there can be more than one elements associated with a given super lattice site, we use the
symbol l(`) to distinguish them. In specific, we call τ 3

0 (l(`)) as bulk crystal elements, and
there are 14 of them at each super lattice site, i.e. τ 3

0 (l(`)), ` = 1, 2, · · · 24; we call τ 3
1 as the

wedge elements or 1st order process zones, and there are 36 of them at each lattice site, i.e.
τ 3

1 (l(`)), ` = 1, 2, · · · 36; we call τ 3
2 as the prism elements or the 2nd order process zones, and

there are 14 of them at each lattice site, i.e. τ 3
2 (l(`)), ` = 1, 2, · · · 12, and last we call τ 3

3 as
the void element or the 3nd order process zones, there is only one at each lattice site, i.e.
τ 3

3 (l) := τ 3
3 (l(`)), ` = 1. It is in fact a scale-up dual cell or the Wigner-Seitz cell.

The closure of each 3D polytopal element is a union of many polytopal cells. In this paper, we
introduce the following local cell index system to label them. We use the symbol, τ ij(l(`),m),
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(a) (b)

Figure 3.4: Lattice complex representation of the BCC lattice and indexing scheme: (a) 2nd

order process zone elements and (b)prism element 5.

to label different polytope cells of different dimensions in the 3D polytopal element τ 3
j (l(`)).

Here the superscript i represents the dimension of the polytopal cell, subscript j denotes
which type of 3D polytopal element that the cell is associated with, argument l(`) denotes
the number sequence of the 3D polytopal element at the lattice site l, and m is the number
sequence of the polytopal complex indicated within the polytopal element τ 3

j (l(`)). Simply
speaking, for a given polytopal element τ 3

j (l(`)), we use the symbol τ 3
j (l(`),m) to index its

nodal points, edge lines, surface facets, and its volume. For example, we can define the local
index for every vertices on as τ 3

3 (l), i.e. τ 0
3 (l,m),m = 1, 2, · · · 24, and then we can define

the local index for every segment and facet cells on τ 3
3 (l), i.e. τ 1

3 (l,m),m = 1, 2, · · · 36, and
τ 2

3 (l,m),m = 1, · · · , 14). Similarly, we can define the local index for every vertices on prism
elements τ 3

2 (l(`)), ` = 1, 2, · · · 14, i.e. τ 0
3 (l(`),m),m = 1, · · · , 8), if the section of the prism

element is square, or τ 0
3 (l(`),m),m = 1, · · · , 12, if the section of the prism is hexagonal.

Moreover, if the prism element has a square section, we can label the segment cell index as
τ 2

1 (l(`),m),m = 1, 2, · · · , 12, and the facet cell index as τ 2
2 (l(`),m),m = 1, 2, · · · , 6; if the

prism element has a hexagonal section, we can label the segment cell index as τ 2
1 (l(`),m),m =

1, 2, · · · , 16, and the facet cell index as τ 2
2 (l(`),m),m = 1, 2, · · · , 8. We can continue this

process to define cell indices for wedge elements and bulk elements, until we have defined
every local cell index for every 3D polytopal elements for a given lattice site l.
In passing, we note that this index system is redundant, and each cell complex will have
multiple local indices with respect to different 3D polytopal elements. The array to map
these local indices to the global indices is called the connectivity map, which is extensively
used in the finite element method. Since we have not set up the global index for polytopal
cells yet, for a convenient presentation, we use the following priority set of the local cell index
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to represent the global cell index in the rest of the paper, which is based on the sequential
order when the local cell index is defined. We define the local index for each polytopal cells
on every 3D polytopal elements based on the sequence order of τ̄ 3

3 (l(`)), τ̄ 3
2 (l(`)), τ̄ 3

1 (l(`)),
and τ̄ 3

0 (l(`). For each polytopal cell, we choose the first defined local index to represent the
global index.

(a) (b) (c) (d)

Figure 3.5: Polytopal lattice complex representation of wedge elements.

Since each truncated octahedron cell has 24 vertices, 36 edges, and 14 faces. For the dual
cell at the lattice site l, we label the 24 vertices as τ 0

3 (l,m), j = 1, 2 · · · , 24, the 36 edges as
τ 1

3 (l,m),m = 1, 2 · · · , 36, and the 14 facets as τ 2
3 (l,m),m = 1, 2, · · · , 12. These constitute

the well-know Euler polyhedra formula,

χ = V − E + F = 2 ← 24− 36 + 14 = 2

in algebraic topology. Furthermore, one may note that the numbers of different types of
process zone elements are also linked to the Euler characteristic.
Using boundary operator, we may represent the elementary segment and elementary area.
For example, for the center dual cell, τ 3

3 (l), we have,

∂τ 1
3 (l, 1) = τ 0

3 (l, 5)− τ 0
3 (l, 1), (3.11)

∂τ 2
3 (l, 1) = τ 1

3 (l, 1) + τ 1
3 (l, 5) + τ 1

3 (l, 6) + τ 1
3 (l, 4),−τ 1

3 (l, 2)− τ 1
3 (l, 3) (3.12)

and in particular,

∂τ 3
3 (l, 1) = τ 2

3 (l, 1) + τ 2
3 (l, 2) + τ 2

3 (l, 3) + τ 2
3 (l, 4) + τ 2

3 (l, 5)

+ τ 2
3 (l, 6) + τ 2

3 (l, 7)− τ 2
3 (l, 8)− τ 2

3 (l, 9)− τ 2
3 (l, 10)

− τ 2
3 (l, 11)− τ 2

3 (l, 12)− τ 2
3 (l, 13)− τ 2

3 (l, 14) .

(3.13)

Similar expressions may be derived for other types of 3D polytope cells. Considering the 14
polytope cells τ 3

2 (l(i)), i = 1, 2, · · · 14 connecting to the lattice site l or the dual cell τ 3
3 (l).
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we call it as the prism element (see: Fig. 3.4). Its vertices, boundary edges, and boundary
surfaces can be connected through boundary operators. For example, there are seven facets
for the 5 prims element, i.e. ∂τ 1

2 (l(5), j), j = 1, 2, · · · 7. We express them analytically by
using the boundary operator,

∂τ 1
2 (l(5), 1) = −τ 0

3 (l − ε3, 9) + τ 0
3 (l, 4), (3.14)

∂τ 1
2 (l(5), 2) = −τ 0

3 (l − ε3, 10) + τ 0
3 (l, 3), (3.15)

where the notation τ 0
3 (l − εi, j) denote that this is the j-th vertex (j = 1, 2, · · · , 24) of on

the l ± εi, i = 1, 2, · · · 7 polytopal cell, because we have 14 prism polytopal cells connecting
to lattice site l or τ 3

3 (l) as illustrated in Fig. 3.4.
Moreover, we have

∂τ 2
2 (l(5), 1) = τ 1

2 (l(5), 1)− τ 1
2 (l(5), 2) + τ 1

3 (l, 7)− τ 1
3 (l − ε3, 6), (3.16)

∂τ 3
2 (l, 5) = τ 2

2 (l(5), 1)− τ 2
2 (l(5), 2) + τ 2

2 (l(5), 3)

+τ 2
2 (l(5), 4)− τ 2

2 (l(5), 5)− τ 2
3 (l, 4)− τ 2

3 (l − ε3, 10) . (3.17)

Furthermore, we may consider the polytope complex cell, τ 3
1 (l,m),m = 1, 2, · · · 36, which we

refer to as the wedge elements (see Figs. 3.5 and 3.6) or the 1st order process zone. For
small thickness of the wedge, it resemble fault plane or slip plane.

(a) (b)

Figure 3.6: Lattice complex representation of the BCC lattice and indexing scheme: (a)1st

order process zone elements and (b) wedge element 1.

The boundary of the wedge polytopal cells may be expressed by the boundary operator as
follows,
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∂τ 1
1 (l(1), 1) = τ 0

3 (l − ε3, 9)− τ 0
3 (l + ε2, 19), (3.18)

∂τ 1
1 (l(1), 2) = −τ 0

3 (l − ε3, 14) + τ 0
3 (l + ε2, 23), (3.19)

∂τ 2
1 (l(1), 1) = −τ 1

2 (l(5), 1) + τ 1
2 (l(4), 1)− τ 1

1 (l(1), 1), (3.20)

∂τ 2
1 (l(1), 2) = −τ 1

2 (l(5), 2) + τ 1
2 (l(4), 2) + τ 1

1 (l(1), 2), (3.21)

∂τ 2
1 (l(1), 3) = τ 1

1 (l(1), 1)− τ 1
3 (l(5), 10)− τ 1

1 (l(1), 2) + τ 1
3 (l(4), 12), (3.22)

∂τ 3
1 (l, 1) = −τ 2

2 (l(5), 1)− τ 2
1 (l(1), 1) + τ 2

2 (l(4), 1) + τ 2
1 (l(1), 2) + τ 2

1 (l(1), 3).(3.23)

(a) (b)

Figure 3.7: Lattice complex representation of the BCC lattice and indexing scheme: 0th

order process zone elements.

(a) (b) (c) (d)

Figure 3.8: Lattice complex representation of the BCC lattice and indexing scheme for the
bulk element.
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The last type of 3D polytope cells is the bulk element(Figs. 3.7 and 3.8), and BCC bulk
polytopal cell is a tetrahedron, which is a simplicial simplex. For a given dual cell complex,
it has 24 vertices, which corresponds to 24 bulk elements, i.e. τ 3

0 (l,m),m = 1, 2, · · · 24.

∂τ 1
0 (l(2), 1) = τ 0

3 (l − ε1, 14)− τ 0
3 (l + ε4, 13) (3.24)

∂τ 1
0 (l(2), 2) = τ 0

3 (l + ε1, 14)− τ 0
3 (l + ε7, 21) (3.25)

∂τ 1
0 (l(2), 3) = τ 0

3 (l + ε4, 13)− τ 0
3 (l + ε7, 21) (3.26)

∂τ 2
0 (l(2), 1) = τ 1

0 (l(2), 1)− τ 1
0 (l(2), 2) + τ 1

0 (l(2), 3) (3.27)

∂τ 3
0 (l, 2) = τ 2

0 (l(2), 1) + τ 2
0 (l(2), 2)− τ 2

0 (l(2), 3)− τ 2
0 (l(2), 4) (3.28)

where the notation τ 2
1 (l(i), j), i = 1, 2, · · · , 36, j = 1, 2, 3, 4 indicate that there are total 36

wedge elements (τ 3
1 (l, i), i = 1, 2, · · · , 36) connecting to at the lattice site l, and there are

four facets: j = 1, 2, 3, 4 in each of these polytopal cells.

Remark 3.4.1 The four different 3D polytope complex cells τ 3
j , j = 1, 2, 3, 4 correspond to

four lattice simplicial simplexes. When β1 → 1 and β2 → 0, τ 3
0 → σ3, τ 3

1 → σ2, and
τ 3

2 → σ1, and τ 3
3 → σ0. This is the mathematical or physical foundation that we use τ 3

1 , τ 3
2 ,

and τ 3
3 as crystal defect models or material defect process zones or cohesive zones.

The non-Bravais super lattice for face-centered cubic (FCC)
lattice

In this section, we now construct the non-Bravais super lattice for FCC crystal lattices. The
primal FCC Bravais lattice structure may be generated by the basis,

a1 = (0,
a

2
,
a

2
), a2 = (

a

2
, 0,

a

2
), and a3 = (

a

2
,
a

2
, 0)

as shown in Fig. 3.9(a). To form the FCC super lattice, we stretch the FCC lattice basis as

bi = β1ai, i = 1, 2, 3 .
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(a) (b) (c)

Figure 3.9: Lattice complex representation of the FCC lattice and indexing scheme: (a) FCC
lattice basis vectors, (b) dual cell complex of σ0(l) (3rd order process zone element), and (c)
non-Bravais basis of FCC super lattice.

To construct the non-Bravais FCC super lattice, we select the all the vertices of the dual cell
complex of σ0(l) i.e. τ(l) = ?(σ0(l), K) and σ0(l) of the primal FCC lattice as the motif or
the non-Bravais basis of the FCC super lattice. The dual cell complex of FCC is a rhombic
dodecahedron as shown in Fig. 3.9(b), and it has 14 vertices. Among the fourteen vertices,
the eight vertices where three faces meet at their obtuse angles have Cartesian coordinates,

ε1 = (1, 1, 1), ε2 = (1, 1,−1), ε3 = (1,−1, 1), ε4 = (1,−1,−1)

ε5 = (−1, 1, 1), ε6 = (−1, 1,−1), ε7 = (−1,−1, 1), and ε8 = (−1,−1,−1) .

To stretch the dual lattice cell, we let

ri = β2r0εi, i = 1, 2, · · · 14, β2 > 0

where r0 = a/
√

3, so that the non-Bravais super lattice may be expressed as

x(l, εi) = ljbj + ri, i = 0, 1, 2, · · · 14 . (3.29)

In FCC lattice, there are twelve nearest neighbors for a given lattice site l, which can be
located at the following relative position vectors: l, l ± ε1, , l ± ε2, · · · , l ± ε6 where

±ε1 = ±(1, 0, 0),±ε2 = ±(0, 1, 0),±ε3 = ±(0, 0, 1)

±ε4 = ±(−1, 1, 0),±ε5 = ±(−1, 0, 1),±ε6 = ±(0,−1, 1) .

For FCC super lattice site l, there are 14 nearest neighbor sites, and we assign each neigh-
boring super lattice site with a rhombic dodecahedron-shaped motif, which we also call as
the 3rd order process zone as shown in Fig. 3.9(c).
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(a) (b)

Figure 3.10: Lattice complex representation of the FCC lattice and indexing scheme: (a)2nd

order process zone elements and (b)prism element 11.

Each rhombic dodecahedron element has 14 vertices, for the center dodecahedron l and their
positions can be located as x(l, j) = ljbj + rj, j = 1, 2, ..., 14. Each rhombic dodecahedron
element has 24 edges, i.e. τ 1

3 (l,m),m = 1, 2, · · · 24; it has 12 faces, i.e. τ 2
3 (l,m),m =

1, 2, · · · 12. Both elementary segment and elementary area can be represented by lower
dimension polytopal cells by using boundary operator, e.g.

∂τ 1
3 (l, 1) = τ 0

3 (l, 6)− τ 0
3 (l, 1) (3.30)

∂τ 2
3 (l, 1) = τ 1

3 (l, 1) + τ 1
3 (l, 4)− τ 1

3 (l, 2)− τ 1
3 (l, 3) (3.31)

where for symbol τ ij in boundary construction, subscript i represents the dimension of object
and superscript j denotes the jth order process (cohesive) zone element.

∂τ 3
3 (l, 1) = τ 2

3 (l, 1) + τ 2
3 (l, 2) + τ 2

3 (l, 3) + τ 2
3 (l, 4) + τ 2

3 (l, 5) + τ 2
3 (l, 6)

− τ 2
3 (l, 7)− τ 2

3 (l, 8)− τ 2
3 (l, 9)− τ 2

3 (l, 10)− τ 2
3 (l, 11)− τ 2

3 (l, 12) .
(3.32)
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(a) (b)

Figure 3.11: Lattice complex representation of the FCC lattice and indexing scheme: (a)1st

order process zone elements and (b)wedge element 1.

By using the coboundary operator, we may further discover the connectivity structure of the
polytopal mesh,

δτ 0
3 (l, 6) = τ 1

3 (l, 1)− τ 1
3 (l, 4)− τ 1

3 (l, 5)− τ 1
2 (1 + ε1, 2)− τ 1

2 (1 + ε2, 4)− τ 1
2 (1 + ε3, 1)(3.33)

δτ 1
3 (l, 4) = τ 2

3 (l, 1)− τ 2
3 (l, 2)− τ 2

2 (1 + ε1, 2) + τ 2
2 (1 + ε3, 4) (3.34)

δτ 2
3 (l, 1) = τ 3

3 (l)− τ 3
2 (l(2)) , (3.35)

which are useful in finite element mesh generation and FEM connectivity array set-up.
The polytopal cells on the prism element τ 3

2 (l(11) (Fig. 3.10) may be constructed as following:

∂τ 1
2 (l(11), 1) = −τ 0

3 (l − ε6, 14) + τ 0
3 (l, 3), (3.36)

∂τ 1
2 (l(11), 2) = −τ 0

3 (l − ε6, 9) + τ 0
3 (l, 1), (3.37)

and

∂τ 2
2 (l(11), 1) = τ 1

2 (l(11), 1)− τ 1
2 (l(11), 2) + τ 1

3 (l, 5)− τ 1
3 (l − ε6, 10) (3.38)

∂τ 3
2 (l, 11) = τ 2

2 (l(11), 1)− τ 2
2 (l(11), 2) + τ 2

2 (l(11), 3)

+τ 2
2 (l(11), 4))− τ 2

3 (l, 4)− τ 2
3 (l − ε6, 9) . (3.39)

Similarly, we can construct the wedge element(Fig. 3.11) τ 3
1 (l(1) by using the boundary

operator,
∂τ 1

1 (l(1), 1) = τ 0
3 (l − ε6, 9)− τ 0

3 (l + ε2, 8), (3.40)

∂τ 1
1 (l(1), 2) = −τ 0

3 (l − ε6, 14) + τ 0
3 (l + ε2, 12), (3.41)
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(a) (b) (c) (d)

Figure 3.12: Lattice complex representation of the FCC lattice and indexing scheme for the
wedge element.

∂τ 2
1 (l(1), 1) = −τ 1

2 (l(11), 1) + τ 1
2 (l(4), 1)− τ 1

1 (l(1), 1), (3.42)

∂τ 2
1 (l(1), 2) = −τ 1

2 (l(11), 2) + τ 1
2 (l(4), 2) + τ 1

1 (l(1), 2), (3.43)

∂τ 2
1 (l(1), 3) = τ 1

1 (l(1), 1)− τ 1
3 (l(11), 10)− τ 1

1 (l(1), 2) + τ 1
3 (l(4), 12), (3.44)

and

∂τ 3
1 (l, 1) = −τ 2

2 (l(11), 1)− τ 2
1 (l(1), 1) + τ 2

2 (l(4), 1) + τ 2
1 (l(1), 2) + τ 2

1 (l(1), 3) . (3.45)

Fig. 3.12 shows the indexing scheme for the wedge element.
For the bulk element number 2(Fig. 3.13), i.e. τ 3

0 (l(2)), we can construct its edges and
surfaces by using the following boundary operators,

∂τ 1
0 (l(2), 1) = τ 0

3 (l − ε5, 10)− τ 0
3 (l + ε1, 7) (3.46)

∂τ 1
0 (l(2), 2) = τ 0

3 (l + ε1, 7)− τ 0
3 (l + ε2, 8) (3.47)
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(a) (b)

Figure 3.13: Lattice complex representation of the FCC lattice and indexing scheme: 0th

order process zone elements.

∂τ 1
0 (l(2), 3) = τ 0

3 (l − ε6, 9)− τ 0
3 (l − ε5, 10) (3.48)

∂τ 1
0 (l(2), 4) = τ 0

3 (l − ε6, 9)− τ 0
3 (l + ε2, 8) (3.49)

(a) (b) (c) (d) (e)

Figure 3.14: Lattice complex representation of the FCC lattice and indexing scheme for the
bulk element.

and

∂τ 2
0 (l(2), 1) = τ 1

0 (l(2), 2) + τ 1
0 (l(2), 1)− τ 1

0 (l(2), 3)− τ 1
0 (l(2), 4) (3.50)

∂τ 3
0 (l, 2) = τ 2

0 (l(2), 2)− τ 2
0 (l(2), 3)− τ 2

0 (l(2), 4) + τ 2
0 (l(2), 5) + τ 2

0 (l(2), 1) . (3.51)

Fig. 3.14 shows the indexing scheme for the bulk element.
Gluing all four types of polytopal elements together, we can have a non-Bravais FCC super
lattice mesh as shown in Fig. 3.15. Again, for FCC super lattice, at each lattice site the
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numbers of process zone elements, i.e. τ 3
0 (l(v), v = 1, 2 · · · , 14, τ 3

1 (l(f), e = 1, 2, · · · 24), and
τ 3

2 (l(f), f = 1, 2, · · · , 12) satisfy the Euler characteristic formula,

χ = V − E + F = 2 ← 14− 24 + 12 = 2 !

Fig. 3.15 illustrates the process of how to construct the mesh in terms of FCC lattice.
For one representative atom, there are 12 nearest neighbors(Fig. 3.15(a)), each of which is
shrinked to one rhombic dodecahedron. Such that there will be 13 rhombic dodecahedrons in
total(Fig. 3.15(b)). Since a rhombic dodecahedron has 12 faces, so that we connect rhombic
dodecahedron with 12 prism elements(Fig. 3.15(c)). Then a rhombic dodecahedron has 24
edges, and can connect to 24 wedge elements, which forms 4 (111) slip plane(Fig. 3.15(e)).
Finally the gaps are filled with tetrahedron elements (Fig. 3.15(f)).

Figure 3.15: Construction process of FCC mesh.
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Chapter 4

Dislocation Patterns of BCC and
FCC Crystals

The main assumption in MCDD model is that material defects are related to its intrinsic
microstructure derived from the microstructure of the original perfect crystal. This chapter
simulate the dislocation patterns with molecular dynamics and compare the mesh embedded
in MCDD with experimental observation.

4.1 Comparison of Dislocation Patterns in Relaxation

System

To prove this assumption, dislocation patterns are simulated by direct atomistic simulation
for both FCC and BCC crystals. Dislocation patterns are plotted by Atomeye[82]. For the
dislocation patterns of Mo(Fig. 4.1(b)), a dipole of junction is generated by juxtaposition
of four dislocation dipoles introduced along[112] and [112̄] with Burgers vectors 1

2
[111] and

1
2
[111̄] respectively. The supercell is defined by its repeat vectors, 16[112̄]×19[11̄0]×16[112].

The dislocation pattern is produced after relaxation[62, 63]. Similarly, the dislocation pat-
terns of Cu (Fig. 4.1(a))is generated by juxtaposition of four dislocation dipoles introduced
along[101̄] and [12̄1] with Burgers vectors 1

2
[11̄0] and 1

2
[011̄] respectively. The supercell is de-

fined by its repeat vectors, 18[12̄1]×14[11̄1]×28[101̄]. The dislocation patterns are produced
after relaxation and are regarded as statble structures. Fig. 4.1(c) and 4.1(d) demonstrate
the corresponding mesh in MCDD model, which prove that the dislocation patterns are
actually embedded in the discrete mesh of MCDD model.
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(a) (b)

(c) (d)

Figure 4.1: Dislocation patterns of (a) FCC Cu and (b) BCC Mo, the colorbar is based on co-
ordinate number and perfectly coordinated atoms are removed. (c) and (d)the corresponding
mesh of MCDD.

4.2 Comparison of Dislocation Patterns with

Experiments

As shown in chapter 2, the formation of dislocation patterns significantly relies on the ac-
tive slip systems[55]. Fig. 4.3 shows the formation mechanism of three types of dislocation
patterns that are present in MCDD mesh, which are corresponding to the dislocation struc-
tures of different orientations as shown in Fig. 4.2. In addition, Fig. 4.3(a) shows the
cell structure in experimental observation and the similar patterns in MCDD mesh in [1̄11]
plane. Similarly, labyrinth structures can be observed in [001] plane both in experiments and
MCDD mesh. While wall structures tend to seen in [011] plane(Fig. 4.3). This comparison
demonstrates that MCDD model embeds all possible dislocation patterns into its mesh and
these patterns will automatically emerge in the condition of plastic deformation.
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(a) (b)

Figure 4.2: Comparison of formation mechanisms of different dislocation patterns in different
orientations[56, 49].

(a)

(b)

(c)

Figure 4.3: Comparison of formation mechanisms of different wall structures in different
orientations[55].
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Chapter 5

Multiscale Constitutive Modelling

In this chapter, we discuss how to derive the constitutive equation inside the bulk and process
zone by using the higher-order Cauchy-Born rule. Before deriving stress-strain relation, we
first explain what is Cauchy-Born rule.

5.1 Higher-order Cauchy-Born Rules

In the following, we first lay out the hierarchical higher order Cauchy-Born rules up to the
fourth order.

Figure 5.1: FCC super lattice mesh.
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5.1.1 The 1st order Cauchy-Born rule in the 0th order process
zone (bulk element)

In a crystalline bulk element, say element e, which usually is a part of single crystal or a
single grain, we assume that the deformation is uniform, and thus the deformation gradient
inside the whole element is the same, i.e.

Fe(X) =
∂x

∂X

∣∣∣
x
= const., ∀X ∈ Ωe

Note that in the entire solid domain we have Fe, e = 1, 2, · · ·nbelem, where nbelem is the total
number of bulk (superscript) elements (Fig. 5.1).
Then based on the first order Cauchy-Born rule, an arbitrary deformed chemical bond ri
between two atoms inside the element can be related to the original undeformed bond Ri as

ri = Fe ·Ri, i = 1, · · ·nb (5.1)

where index i denotes a chemical bond inside element e and nb represents the total number
of bonds the element. In practice, chemical bonds in a representative unit inside Ωe.
With these definitions, the strain energy density in the bulk element e can be written as

W0e =
1

2Ω0

nb∑
i=1

φ(ri) =
1

2Ω0

nb∑
i=1

φ(Fe ·Ri) = W (Fe), (5.2)

where nb again indicates the number of neighbouring bonds in a representative unit cell; Ω0

is the volume of the unit cell in the referential configuration; φ(ri) is the atomistic potential,
and ri = |ri| is the current length of bond ri in the unit cell. The energy density expression
(5.2) is formulated based on the first order Cauchy-Born rule (see Eq. (5.1)), and the first
Piola-Kirchhoff stress tensor inside the bulk crystal element can be found by

P =
∂W0e

∂F

∣∣∣
Fe

.

5.1.2 The 2nd order Cauchy-Born rule in the 1st order process
zone

For the first-order process zone element, which is usually a wedge element between two
adjacent bulk crystal elements (Fig. 5.1), the second order Cauchy-Born rule is employed
to establish the constitutive relation in it. The so-called second order Cauchy-Born rule
assumes that in a representative 1st order process zone element e, a deformed chemical bond
between two atoms may be expressed by the following expression,

ri = Fe ·Ri +
1

2
Ge : (Ri ⊗Ri), (5.3)



CHAPTER 5. MULTISCALE CONSTITUTIVE MODELLING 37

where

Ge =
∂2x

∂X⊗ ∂X
=
∂Fe

∂X
= const. ∀X ∈ Ωe

Note that in this case, Fe 6= const.
Taking into account the 1st order strain gradient effect on strain energy density, we may
write the strain energy density in the 1st order process zone element e as

W1e =
1

2Ω0

nb∑
i=1

φ(ri) =
1

2Ω0

nb∑
i=1

φ

(∣∣∣∣Fe ·Ri +
1

2
Ge : (Ri ⊗Ri)

∣∣∣∣) = W (Fe,Ge) , (5.4)

which is based on the second order Cauchy-Born rule (see Eq. (5.3). Subsequently, the
constitutive relation inside the 1st order process zone can be expressed as,

P =
∂W1e

∂F

∣∣∣
Fe,Ge

and Q =
∂W1e

∂G

∣∣∣
Fe,Ge

.

5.1.3 The 3rd order Cauchy-Born rule in the 2nd order process
zone

For the second-order process zone element, which is a prism element (Fig. 5.1), the third-
order Cauchy-Born rule is employed to derive its constitutive relation. In the third-order
Cauchy-Born rule, a chemical bond can be expressed as

ri = Fe ·Ri +
1

2!
Ge : (Ri ⊗Ri) +

1

3!
He

...(Ri ⊗Ri ⊗Ri), (5.5)

where i = 1, · · ·nb is the index of number of bonds in a unit cell, and

He =
∂3x

∂X⊗ ∂X⊗ ∂X
=

∂2F

∂X⊗ ∂X
=
∂G

∂X
= const. ∀X ∈ Ωe .

Following the similar argument mentioned above, we can show that the strain energy density
in the second-order process zone element e may be generally expressed in the form

W2e = W (Fe,Ge,He) .

Note that in this case Fe 6= const. and Ge 6= const..
By taking into account the first and second order strain gradients, we can derive the consti-
tutive relations in the 2nd order process zone as

P =
∂W2e

∂F

∣∣∣
Fe,Ge,He

, Q =
∂W2e

∂G

∣∣∣
Fe,Ge,He

and U =
∂W2e

∂H

∣∣∣
Fe,Ge,He

.
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5.1.4 The 4th order Cauchy-Born rule in the 3rd order process
zone

For the third-order process zone element, which is a rhombic dodecahedron (Fig. 5.1), the
fourth-order Cauchy-Born rule is employed to derive its constitutive relation. By using the
fourth-order Cauchy-Born rule, a chemical bond can be expressed as

ri = Fe ·Ri +
1

2!
Ge : (Ri⊗Ri) +

1

3!
He

...(Ri⊗Ri⊗Ri) +
1

4!
Ke :: (Ri⊗Ri⊗Ri⊗Ri), (5.6)

where i = 1, · · ·nb is the index of number of bonds in a unit cell, and

Ke =
∂4x

∂X⊗ ∂X⊗ ∂X⊗ ∂X
=

∂3F

∂X⊗ ∂X⊗ ∂X
=

∂2G

∂X⊗ ∂X
=
∂H

∂X
= const. ∀X ∈ Ωe .

Note that the dot product operation defined in this paper has the following equivalent indicial
notation,

F ·Ri = FmnRnem, G : (Ri ⊗Ri) = G`mnRmRne`, and

H
...(Ri ⊗Ri ⊗Ri) = H`mnoRmRnRoe`, and

K :: (Ri ⊗Ri ⊗Ri ⊗Ri) = K`mnopRmRnRoRpe`, `,m, n, o, p = 1, 2, 3

where e`, ` = 1, 2, 3 are the unit base vectors of the Cartesian coordinates.
Following the similar argument mentioned above, we can show that the strain energy density
in the third-order process zone element e may be generally expressed in the form

W3e = W (Fe,Ge,He,Ke) .

Note that in this case Fe 6= const. and Ge 6= const. and He 6= const. By taking into account
the first and second order strain gradients, we can derive the constitutive relations in the
3rd order process zone as

P =
∂W3e

∂F

∣∣∣
Fe,Ge,He,Ke

, Q =
∂W3e

∂G

∣∣∣
Fe,Ge,He,Ke

,

U =
∂W3e

∂H

∣∣∣
Fe,Ge,He,Ke

, V =
∂W3e

∂K

∣∣∣
Fe,Ge,He,Ke

.

5.2 Multiscale Constitutive Models

For metallic materials, we can use the atomistic potential based on the embedded atom
method (EAM) to construct the free energy density function for the crystal solid under
consideration,

W =
1

Ω0

nb∑
i=1

(
F (ρ̄i) +

1

2

∑
j 6=i

φ(rij)

)
, rij =| rj − ri | . (5.7)
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where i, j = 1, 2, · · · , nb is the bond number of pair potential in a unit cell. φ(rij) is the
pairwise interaction function. Since φ(rij) is always shared by two atoms, there is a coefficient
of 1

2
for the pairwise interaction function. F (ρ̄i) is the embedded energy function and the

host electron density ρ̄ is a function of the electron density

ρ̄ =
∑
j 6=i

ρ(rij).

Since in this dissertation we only consider the Bravais type of primal crystal lattices, the
potential energy density inside a unit cell can be further simplified as

W =
1

Ω0

(
F (ρ̄) +

1

2

∑
j

φ(rj)

)
, ρ̄ =

∑
j

ρ(rj) , (5.8)

where i, j = 1, 2, ..., nb is the bond number of pair potential in a unit cell. With the above
free energy density, the first Piola-Kichhoff stress can be obtained as

P =
∂W

∂F
=

1

Ω0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)
rj ⊗Rj

rj
. (5.9)

Other useful formulas for stresses, such as the second Piola-Kirchhoff stress (Eq. 5.10) and
Cauchy Stress (Eq. 5.11), as well as high order stress couples can also be derived as,

S =
1

Ω0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)
Rj ⊗Rj

rj
, (5.10)

σ =
1

Ω

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)
rj ⊗ rj
rj

, (5.11)

Q =
∂W

∂G
=

1

2Ω0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)
rj ⊗Rj ⊗Rj

rj
, (5.12)

U =
∂W

∂H
=

1

6Ω0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)
rj ⊗Rj ⊗Rj ⊗Rj

rj
. (5.13)

V =
∂W

∂K
=

1

24Ω0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

rj
. (5.14)

One may find that the stress tensor calculated based on the above Cauchy-Born rule depends
on each grain’s lattice orientation.
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Remark 5.2.1 We believe that the above discovered four intrinsic length scales in both FCC
and BCC crystals exist in all other crystal solids. They not only have clearly physical mean-
ings but also mathematical relevance in multiscale modeling. This multiscale structure reg-
ularize the first order Cauchy-Born rule based continuum formulations e.g. [83], in which
the multiscale potential energy has multiple local minimum configurations at a local region.
Thus the solution may not be unique, whereas the proposed MCDD model can stabilize the
computation.
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Chapter 6

Finite Element Formulation

In this chapter, we discuss the formulation and implementation of the multiscale finite ele-
ment formulation based on the proposed multiscale crystal defect dynamics (MCDD) theory.

6.1 Multiscale Finite Element Formulation

Let u(X, t) and u̇(X, t) as the displacement and the velocity fields in the crystal continuum.
We define the kinetic energy of the crystalline solid as,

T =

∫
V

1

2
ρu̇ · u̇dV

where ρ is the mass density. We also denote the internal free-energy of crystal continuum as

Wint :=

∫
V

W (F,G,H,K)dV

where W (·) is the strain and strain gradient energy density. The Hamilton principle may
then be written in terms of displacement variation for the fixed time interval between t0 and
t1,

δ

∫ t1

t0

(T −Wint)dt+

∫ t1

t0

δWextdt = 0 (6.1)

where Wext is the external potential energy. The variation of kinetic energy is,

δT =

∫
V

ρu̇ · δu̇dV

and the internal virtual work is,

δWint =

∫
V

{
∂W

∂F
: δF +

∂W

∂G

...δG +
∂W

∂H
:: δH +

∂W

∂K
:

...δK

}
dV (6.2)
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By successive integration by parts of the above equation, one may obtain the following
expression,

δWint = −
∫
V

∇X ·
{

P−∇X ·
[
Q−∇X ·

(
U−∇XV

)]}
· δϕdV

+

∫
∂V

{
N ·

[
P−∇X ·

(
Q−∇X · (U−∇X ·V)

)]}
· δϕdS

+

∫
∂V

{
N ·

(
Q−∇X · (U−∇X ·V)

)}
: δFdS

+

∫
∂V

(
N · (U−∇X ·V)

)...δGdS

+

∫
∂V

(
(N ·V

)
:: δHdS, (6.3)

which implies to the following form of natural boundary conditions,

T̄1 = N ·
{

P−∇X ·
(
Q−∇X · (U−∇X ·V)

)}
, ∀ X ∈ ∂Vt (6.4)

T̄2 = N · {Q−∇X · (U−∇X ·V)} , ∀ X ∈ ∂Vt (6.5)

T̄3 = N · {U−∇X ·V} , ∀ X ∈ ∂Vt (6.6)

T̄4 = N ·V, ∀ X ∈ ∂Vt , (6.7)

where N is the out-normal of the boundary ∂Vt.
Without lose of generality, for simplicity, we assume that on the boundary of the crystalline
solid the higher order traction couple may be negligible, so that we may simplify the high
order boundary conditions as,

T̄1 = N ·
{

P−∇X ·
(
Q−∇X · (U−∇X ·V)

)}
, ∀ X ∈ ∂Vt (6.8)

T̄2 ≈ 0, T̄3 ≈ 0, and T̄4 ≈ 0, a.e. ∀X ∈ ∂Vt (6.9)

By doing so, the last three terms of the internal work may be neglected. Note that ∂V =
∂Vt

⋃
∂Vu and δϕ = 0, ∀X ∈ ∂Vu.

Noting that the external virtual work of the system may be expressed as follows,

δWext =

∫
V

b · δudV +

∫
∂Vt

T̄ · δudS

where b is the body force, and T̄ is the traction vector on ∂Vt, one can derive the dynamics
equations for the quasi continuous lattice system based on the Hamiltonian principle Eq.(6.1),

∇X ·
(
P−∇X · [Q−∇X · (U−∇X ·V)]

)
+ b = ρü, ∀X ∈ V, (6.10)

with the boundary conditions: Eqs. (6.8) and (6.9).
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Based on the strong form of the crystal defect dynamics equations (Eq. (6.10)), the Galerkin
weak form of the MCDD may be written as∫

Ω

[
ρü · δu + P : δF + Q

...δG + U :: δH + V :
...δK

]
dV

=

∫
Ω

b · δudV +

∫
∂Ωt

T̄ · δudS (6.11)

The above expression is an generic form for every point in the domain. However, some of the
higher order stresses and strain gradients are set to zero in the bulk elements or lower order
process zone elements. Moreover, to avoid imposing higher order stress boundary condition,
we either let them vanish at the boundary or simply avoid the higher order process element
overlap with traction boundary ∂tΩ0.
To take into account these factors, we rewrite Eq. (6.11) into the form of element Galerkin
weak formulation,

n
p0
elem∑
e=1

{∫
Ωe

p0

ρ0ü
h · δuhdV +

∫
Ωe

p0

P : δFhdV

}

+

n
p1
elem∑
e=1

{∫
Ωe

p1

ρ0ü
h · δuhdV +

∫
Ωe

p1

(
P : δFhdV + Q

...δGh
)
dV

}

+

n
p2
elem∑
e=1

{∫
Ωe

p2

ρ0ü
h · δuhdV +

∫
Ωe

p2

(
P : δFh + Q

...δGh + U :: δHh
)
dV

}

+

n
p3
elem∑
e=1

{∫
Ωe

p3

ρ0ü
h · δuhdV +

∫
Ωe

p3

(
P : δFh + Q

...δGh + U :: δHh + V :
...δKh

)
dV

}

=
3∑
i=0

n
pi
elem∑
ei=1

{∫
Ω

ei
pi

ρ0b · δϕhdV

}
+

n
p0
elem∑
e0=1

∫
∂tΩ

e0
p0

T̄ · δϕhdS (6.12)

where b is the body force, Ωei
pi

is the ei element in the p-th process zone, ∂tΩ
ei
pi

is the
interception between the traction boundary and the boundary of the ei-th element in the
i-th process zone Ωpi .
In the computer implementation, we choose the following local finite element interpolation
scheme in an element of the i-th order process zone,

uh(X, t) =

ndi∑
Ii=1

NIi(ζ)dIi(t), i = 0, 1, 2, 3 (6.13)

where ndi is total number of nodes in the process zone element, and i = 0, 1, 2, 3 indicates
the order of the process zone. Here we call the bulk crystal element as the 0th order process
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zone, the thin plate elements as the 1st order process zone, the prism elements as the 2nd

order process zone, and the Wigner-Seitz vertex element as the 3rd process zone. Note that
all kinematic fields with the superscript ‘h’ are the fields derived from the FEA interpolation
field rather than the exact value.
Substituting FE interpolation Eq. (6.13) into the weak forms Eqs. (6.11) and (6.12), one
may derive the following discrete algebraic equations,

Md̈ + fint(d) = fext (6.14)

where

M =
nelem

A
e=1

∫
Be

0

ρ0N
eTNedV

fint =
nelem

A
e=1

{∫
Be

0

BeTPe(d)dV +

∫
Ce

0

[
CeTQe(d) + DeTUe(d) + EeTVe(d)

]
dV

}

fext =
nelem

A
e=1

{∫
Be

0

NeTbedV +

∫
∂tBe

0

NeT T̄
e
dS

}

in which A is the element assembly operator (see [84]), Ne is the element shape function
matrix, Be is the element strain-displacement matrix, Ce,De,Ee is defined as following:

Ce :=
∂2Ne

∂X⊗ ∂X
, (6.15)

De :=
∂3Ne

∂X⊗ ∂X⊗ ∂X
, (6.16)

Ee :=
∂4Ne

∂X⊗ ∂X⊗ ∂X⊗ ∂X
. (6.17)

The above FEM discretization is a generic form for every element. In this way, we can use
a unified weak formulation for all elements. In actual numerical computations, we can set
the higher order stress couples or strain gradients to zero inside the lower order process zone
elements by letting Ce = 0,De = 0 and Ee = 0 (see [27]).
On the other hand, in order to have non-zero valued Ce,De and Ee matrices in the higher
order process zone elements. The boundary integration, bubble mode, and p-version of finite
element techniques are employed in the computer implementation. For detailed information,
the readers may consult [32, 33, 85].
The explicit time integration is used to obtain the nodal velocities and displacements, which
is based on the Newmark-β method with β = 0 and γ = 0.5 [86].
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6.2 Implementation of Third Order Process Zone

Element: Rhombic Dodecahedron

(a)

(b)

Figure 6.1: FEM shape function of rhombic dodecahedron element with mean value coordi-
nates: (a)overall view and (b)representation of tetrahedron.

In this section, we discuss the process of constructing finite element shape function for the
dual cell of FCC lattice, which may provide a defect model for micro-voids and vacancies.
Previously, we have used three-dimensional tetrahedron, pentahedron, and hexahedron el-
ements to represent the bulk element (0th order), 1st and 2nd order process zone elements.
While the construction finite element interpolation function for the 3rd order process zone
element, which is a rhombic dodecahedron volume, is non-trivial.
In FEM implementation, we adopt the mean value coordinates[87] to construct the shape
function for the 14-node rhombic dodecahedron. Considering a rhombic dodecahedron called
Ω, we can pick a triangle T on the boundary of Ω (see: Fig. 6.1(a)). For any v ∈ Ω, each
oriented triangle [vi,vj,vk] ∈ T defines a tetrahedron [v,vi,vj,vk] with positive volume.
The shape function λi is then expressed as,

λi =
wi∑14
j=1 wj

, (6.18)

where the weight function wi is given by

wi =
1

ri

∑
T3vi

µi,T , (6.19)

in which µi,T is defined as

µi,T =
βjk + βijnij · njk + βkinki · njk

2ei · njk
, (6.20)
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where the unit vector ei = (vi − v)/ri, ri =‖ vi − v ‖; βik ∈ (0, π) is the angle between the
two line segments [v,vi]and [v,vk]; and nij denotes the unit normal to the face [v,vi,vk],
i.e. nij = (ei×ej)/ ‖ ei×ej ‖, which is pointing into the tetrahedron [v,vi,vj,vk] as shown
in Fig. 6.1(b). For detailed derivations of above equations, interested readers are referred to
Appendix C or [88, 87].

6.3 Size of Dodecahedron Element

Figure 6.2: Setup of 1D wave propagation model.

One critical parameter in MCDD simulation is the scale factor for super lattice complex
and the size of the third-order process zone element, which essentially determine the sizes
of all process zone elements. The scale parameters β1 and β2 are shown in Fig. 3.1. In this
dissertation, the ratio of β1/β2 is set as 10 and the size of dodecahedron element is varying.
Considering the third-order process zone element is rhombic dodecahedron, so that the size
depends on the edge length of each dodecahedron element. In order to find optimal size of
the third-order process zone element, simulation of 1D wave propagation in a long thin plate
(see Fig. 6.2). The boundary at the right side is fixed, and the left boundary is subjected a
prescribed longitudinal displacement condition. The initial displacement u(x, 0) is expressed
by Gaussian wave as:

u(x, 0) = ug exp
(−x2

2σ2
g

)
, (6.21)

where the values of ug and σg are set as 0.2 and 10 nm, respectively.
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Figure 6.3: Wave shape before reflection at fixed boundary.

Figure 6.4: Wave shape after reflection after fixed boundary.

As shown in Fig. 6.3 and Fig. 6.4, the edge length of d = 0.5 nm causes much oscillations
before and after the wave reflection at the fixed boundary. When d increases to 1 nm, the
displacement becomes smooth. However, several sharp turning points occur if d is increased
to 1.5 nm. Therefore, for the edge length of each dodecahedron element we may choose its
edge length in the order of 1 nm.
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Chapter 7

Numerical Analysis

In order to validate the proposed MCDD method, in this chapter we present several numerical
examples of MCDD simulations and compare the results of MCDD simulations with that of
molecular dynamics simulation.

7.1 Crack Propagation

In the first example, we present a study of three-scale process zone modelling and simulation
of crack propagation in a 2D plate of single crystal copper. The bulk crystal element is
treated as the zero-th order process zone, i.e. a non-defect identity; The interphase zone
is modeled as the first order process zone, and the potential void zone as the second order
process zone. The simulation specimen and its boundary condition are shown in Fig. 7.1.

Figure 7.1: Schematic illustration of 2D plate and multiscale process zone mesh.
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Figure 7.2: The process of process zone tiling: (1) yellow region: the 0-th order process zone,
(2) blue region: the 1st process zone, and (3) green region: the 2nd process zone.

To validate MCDD method, the simulation results are compared with that of corresponding
molecular dynamics simulation [89]. Since the (111) plane is the most susceptible slip plane
in the FCC single crystal, so that the material on (111) plane must be weaker than that of
bulk crystals. Therefore we would like to study the crack propagation within the (111) plane.
As shown in Fig. 7.1, a high strain rate boundary condition is prescribed to initiate mode-I
fracture. The finite element mesh contains the 0th (triangular element), 1st (rectangular
element) and 2nd (honeycomb element) order process zone elements, which are shown in
the zoomed region of Fig. 7.1. Details of process zone mesh are provided in Fig. 7.2. At
each vertex, there is one triangle, two rectangles and one hexagon. In this example, it is
assumed that bulk elements only contain uniform deformations, which are described by the
first-order Cauchy-Born rule. The rectangular and honeycomb elements can support non-
uniform deformations, which are modeled by the second-order and third-order Cauchy-born
rules.

7.1.1 Embedded atom method (EAM) potential

In this example, an analytical EAM potential is adopted to describe material constitutive
relation in the fracture simulation [89]. The EAM potential is explicitly given as,

W =
1

Ω0

nb∑
i=1

[(1− χ)F (ρ̄i) +
1

2
χ
∑
j 6=i

φ(rij)], ρ̄i =
∑
j 6=i

ρ(rij), (7.1)
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where χ is a weighting parameter between zero and one; the parameter χ = 1
3

is set based
on the embedded atom method [90]; F (ρ̄) is the embedded energy function; and φ(r) is the
pairwise interaction function, whose expression can be written as follows:

F (ρ̄) = ε
d(d+ 1)

2
eρ̄ ln ρ̄ (7.2)

and

φ(r) =



χψ(r), r < rspl

χ

{
ψ(rspl) +

∂ψ

∂r
(rspl)(r − rspl)−

1

6
A(r − rmax)3

}
, rspl ≤ r < rmax

0, rmax ≤ r

(7.3)

where rspl is the reflection point in the potential; rmax is the cutoff distance; and the potential
function can be of different types based on specific problems. In this example, we choose

ψ(r) = ε

[(r0

r

)12

− 2
(r0

r

)6
]
, (7.4)

and the constant A in Eq. (7.3) is defined as

A =
8(∂ψ

∂r
(rspl))

3

9(ψ(rspl))2
(7.5)

where ε is the depth of the potential well, and r0 is the equilibrium distance. The inflection
point rspl can be obtained by solving the following equation

∂2ψ

∂r2
(rspl) = 0 . (7.6)

A solution of rspl may be found as rspl = 1.244455r0. The cutoff distance is given by

rmax = rspl −
3ψ(rspl)

2∂ψ
∂r

(rspl)
. (7.7)

A practical value of rmax in numerical computation is found as rmax = 1.547537r0. The
electron density function is given by

ρ(r) =


ρ̄0

d(d+ 1)
(
r2
max − r2

r2
max − 1

)2 0 < r < rmax

0 rmax ≤ r
(7.8)
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where ρ̄ =
∑

j ρ(rj); ρ̄0 = 1/e, and d is the dimensionality.

For easy reference, the material parameters used in this example, the depth of the potential
well ε and the equilibrium distance r0 for copper, are listed in Table. 7.1, in which a
comparison between the numerical value and the experimental measured value [91] is made.

Table 7.1: Material parameters for copper

Parameter Experiment EAM-Holian

C1111 [GPa] 169 168.2
C1122 [GPa] 122 117.5
C1212 [GPa] 75.3 83.2
ε [eV ] — 0.43894774
r0 [Å] — 2.57110688

7.1.2 Barycentric finite element method and its quadrature rule

For finite element implementation, linear triangular shape functions are adopted for the bulk
element, bilinear quadrilateral shape functions with bubble mode are selected for the first-
order process zone element, and the shape functions for the hexagonal elements are employed
in the second-order process zone. Implementing the hexagonal element and calculating the
strain gradient field inside is not a trivial task.

Figure 7.3: The Washspress shape function for the honeycomb element.



CHAPTER 7. NUMERICAL ANALYSIS 52

Figure 7.4: Schematic illustration of the quadrature rule for the regular hexagonal element.

In this work, the 6-point honeycomb Wachspress element [92] is used to model the second-
order process zone. The local finite element interpolation field is as follows:

u(X, Y, t) =
6∑
I=1

NI(ξ, η)uI(t) (7.9)

Let Ωe denote the regular hexagonal domain (see Fig. 7.3). The shape function Ni, corre-
sponding to node i is given by:

Ni(ξ, η) = ci
λi+2(ξ, η)λi+3(ξ, η)λi+4(ξ, η)λi+5(ξ, η)

q(ξ, η)
, i = 1, 2, 3, 4, 5, 6 (7.10)

where λi+1(ξ, η) = 0 represents the line segment connecting i and i + 1. A circumference
circle

q(ξ, η) = ξ2 + η2 −R2 = 0 (7.11)

encompasses the points of intersection of the extensions of the edge. The normalizing factor
is defined as:

ci =
q(ξi, ηi)

λi+2(ξi, ηi)λi+3(ξi, ηi)λi+4(ξi, ηi)λi+5(ξi, ηi)
(7.12)

For the numerical integration of hexagonal element, the symmetric quadrature rules are
adopted, which are proposed by Lyness and Monegato [93]. As illustrated in Fig. 7.4,
the quadrature rule is invariant under 60◦ rotation due to the hexagonal symmetry of the
integration region, which can be expressed:∫

Ωe

fdΩ = ω0f(0, 0) +
N∑
j=1

6∑
i=1

ωjf(rj, αj +
πi

3
) (7.13)

where ωj denotes the weight corresponding to the Gauss point at distance rj from the center
of the hexagon and angle αj + πi

3
from the horizonal axis for 1 6 i 6 6. In this work, N = 1
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is chosen, which has 7 quadrature points including the point in the center, as shown in Fig.
7.4.
The simulation domain is discretized into 82,212 nodes, 27,404 bulk elements, 40,873 first-
order process zone elements, and 13,470 second-order process zone elements. Comparing
with the full molecular dynamics simulation, the reduction ratio in the number of degrees
of freedom is about 1-to-4. A pre-notched crack is set in the specimen, which has an initial
length 30 in the reduced unit. The time increment of time integration is 0.0033 ps, and the
constant velocity applied at top and bottom is 0.03r0/t, which is consistent with the strain
rate of 1.12× 10−4 in [89]. Fig. 7.5 shows the simulation results of stress distribution during
crack propagation.

(a) (b) (c)

(d) (e) (f)

Figure 7.5: Stress distributions in a crack propagation sequence.

It is not difficult to find that at beginning the crack propagates horizontally and then it
bifurcates due to the perturbation of acoustic wave reflected from the boundary. It can be
noticed that the crack demonstrates unsymmetry between the bottom and top portion, which
may be caused by high nonlinearity and instability of the simulated example. Moreover,
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Fig. 7.6 compares the crack speed history in this present work with that obtained in a
MD simulation[89]. The agreement is very good except that process zone model predicts
a slightly late crack growth. The crack speed can be compared with the speed of shear
wave or Rayleigh wave in this specimen. Considering the material constants given in Table.
7.1, the shear wave and Rayleigh wave speed are 2895 m/s and 2666 m/s, respectively[94].
The ratio of peak crack speed to Rayleigh wave speed is about 0.4, which is comparatively
low compared to the ratio of 0.8 in Linder and Armero [95, 96] and 1.0 in Falk et al.[97].
One of the reasons lies in that the work of [95, 96] considers the materials as isotropic,
which may result in certain difference with the materials described by EAM potential in this
dissertation.

Figure 7.6: Crack speed comparison between MCDD model and molecular dynamics.

7.2 Uniaxial Deformation and Simple Shear

To verify the effectiveness of MCDD method, a simple benchmark test was conducted by
comparing the stress-strain relation of uniaxial deformation with MD simulation. The length
of simulation cubic is 10nm, which includes 280 bulk elements, 256 wedge elements(first-order
process zone), 78 prism elements (second-order process zone) and 13 rhombic dodecahedron
elements(third-order process zone). The edge length of MD model is 10nm, which comprises
about 88 thousands atoms. Constant velocity boundary conditions are applied at the top
and bottom boundary with strain rate 10−2/ps, as shown in Fig. 7.7.
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(a) (b)

Figure 7.7: A simple benchmark test of uniaxial stretch: (a) finite element mesh of MCDD
specimen and (b) initial atom configuration of the MD cell.

The comparison of stress-strain relation in uniaxial loading and unloading with MD simu-
lation is shown in Fig. 7.8(a). In this figure, the constitutive relations of bulk element are
always simulated by the first-order Cauchy-Born rule. ‘1st order’ means the constitutive
relations of process zone element are simulated by first-order Cauchy-Born rule, while ‘2nd
order’ represents process zone element are simulated by the second-order Cauchy-Born rule
and ‘3rd order’ represents the second and third order process zone element are simulated by
using the third-order Cauchy-Born rule.

(a) (b)

Figure 7.8: (a) Comparison of the simulated stress-strain relations obtained from MCDD
and MD under the uniaxial loading and unloading condition and (b) stress-strain relations
at different strain rates from MCDD.

Fig. 7.8(a) shows that the yield stress value obtained by using the first-order Cauchy-Born
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based stress-strain relation is the highest, that obtained from the stress-strain relation based
on the second-order Cauchy-Born rule is second highest, and that obtained from the stress-
strain relation based on the third-order Cauchy-Born rule is the lowest. This implies that
the third order process zone element will always fail first. This tendency is consistent with
the benchmark test reported in [27]. In addition, permanent strain can be observed in the
unloading part of the stress-strain relation, which proves that MCDD method has the abil-
ity to simulate inelastic deformation as MD does. To the best of the authors’ knowledge,
it may be the first time that we can use the Cauchy-Born rule based multiscale method to
simulate inelastic deformation without any empirical constitutive data. Fig. 7.8(b) shows
stress-strain relations at different strain rates obtained by using MCDD, which implies the
yield stress increases with the increase of the strain rate.

(a) (b)

(c) (d)

Figure 7.9: Comparison of the simulated stress-strain relations obtained from MCDD and
MD under the uniaxial loading and different unloading strain: (a) unloading at 10 % relative
strain, (b) unloading at 12 % relative strain, (c) unloading at 15 % relative strain, and (d)
unloading at 18 % relative strain.
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Fig. 7.9 also shows stress-strain hysteresis relation at different unloading strain levels, which
are obtained by using the second order Cauchy-Born rule. These results clearly indicate
that MCDD method is able to capture mesoscale plastic deformation and history-dependent
constitutive behaviors.

(a)
(b)

Figure 7.10: A benchmark test of simple shear: (a) finite element mesh of MCDD specimen
and (b) initial atom configuration of the MD cell.

(a) (b)

Figure 7.11: (a) Comparison of strain-stress curve of shear with MD and MCDD and(b)
strain-stress curve of shear loop.

Fig. 7.10 shows the boundary conditions of simple shear model, where horizonal velocity is
applied at the top boundary. The comparison of stress-strain relation with MD simulation
are shown in Fig. 7.11(a), which shows good agreement with MD simulation. Fig. 7.11(b)
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shows the difference of stress-strain relation for the first and second loop, which indicates
that MCDD may be able to simulate the mechanism of fatigue. Clearly the numerical results
have demonstrated that MCDD method can be used to simulate inelastic deformation and
may be capable of simulating fatigue deformation.

7.3 Nanoindentation in Copper

(a)
(b)

Figure 7.12: MCDD nanoindentation simulation: (a) MCDD simulation set-up and (b)
configuration of the MD simulation.

In this numerical example, MCDD is employed to simulate a three-dimensional nanoindenta-
tion of single crystal copper, which had been carefully studied in the numerical simulations
by using both molecular dynamics as well as interatomic potential finite element method
(FEM) [98, 99]. In order to compare with the numerical results obtained in a molecular
dynamics simulation [98], we use the same EAM Mishin potential for copper (see: [100]) in
the MCDD simulation. The pair part of the EAM Mishin potential is given as,

φ(r) = [E1M(r, r
(1)
0 , α1) + E2M(r, r

(2)
0 , α1) + δ]ψ(

r − rc
h

)

−
3∑

n=1

H(r(n)
s − r)Sn(r(n)

s − r)4
(7.14)

where
M(r, r0, α) = exp[−2α(r − r0)]− 2 exp[−α(r − r0)]
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is the Morse function,H(·) is the Heaviside function and the cut-off function for the pair
potential is defined as,

ψ(x) =

0 x ≥ 0
x4

(1 + x4)
x < 0

(7.15)

The last term in Eq.(7.14) is used to control the strength of pairwise repulsion between

atoms at short distances. Here, E1, E2, r
(1)
0 , r

(2)
0 , α1, α2, δ, rc, h, r

(1)
s , r

(2)
s , r

(3)
s , S1, S2 and S3 are

the material parameters. The electron density function is given in the form

ρ(r) = [a exp(−β1(r − r(3)
0 )2) + exp(−β2(r − r(4)

0 )2)]ψ(
r − rc
h

) (7.16)

where a, r
(3)
0 , r

(4)
0 , β1 and β2 are additional material parameters. The embedding function for

the EAM-Mishin potential is given as follows,

F (ρ̄) =


F 0 + 1

2
F 2(ρ̄− 1)2 +

∑4
n=1 qn(ρ̄− 1)n+2 ρ̄ < 0

F 0 + 1
2
F 2(ρ̄− 1)2 + q1(ρ̄− 1)3 +Q1(ρ̄− 1)4

1 +Q2(ρ̄− 1)3
ρ̄ > 1

(7.17)

where F (0), F (2), q1, q2, q3, q4, Q1 and Q2 are the additional materials parameters. For clarity,
the values of the twenty eight material parameters are shown in Table 7.2.

In this numerical example, 3D simulations of nanoindentation by a rigid spherical indenter
is performed for the purpose to demonstrate the capacity of MCDD to capture and quantify
the critical state of dislocation nucleation as a direct numerical simulation (DNS). The set-
up of the numerical experiment is shown as in Fig. 7.12. The simulation-based prediction
is given as to when and where the dislocation will nucleate within the crystal, and which
oriented crystal slip and stacking fault will take place. In simulations, the spherical indenter
is modeled as a frictionless and analytic rigid sphere, and the rigid spherical indenter is
pressed onto the (111), (110) and (100) surfaces of single crystal copper. The size of the
substrate of copper is 20nm × 20nm × 40nm, and the radius of the rigid indenter is 9nm.
The following boundary conditions are imposed to the copper specimen: the displacements
at the bottom of the specimen are constrained to be zero, while the displacements of lateral
surfaces are constrained in the normal directions. The coarse grained contact model [101]is
adopted to simulate the contact between the indenter and the substrate.

Coarse grained contact model

This section gives a brief description of how to derive the equations in coarse grained con-
tact model, which is employed to capture the macroscopic interaction between deformable
solids considering the microscopic interactions between individual atoms or molecules in ad-
jacent bodies[102]. As shown in Fig. 7.13, there are two bodies, Ω1 and Ω2 occupying the
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Table 7.2: Material parameters of EAM-Mishin for copper[100]

Parameter Value Parameter Value

rc[Å] 5.50679 S3[eV/Å
4
] 1.15000× 103

h[Å] 0.50037 a 3.80362

E1[eV ] 2.01458× 102 r
(3)
0 [Å] -2.19885

E2[eV ] 6.59288× 10−3 r
(4)
0 [Å] −2.61984× 102

r
(1)
0 [Å] 0.83591 β1[Å

−1
] 0.17394

r
(2)
0 [Å] 4.46867 β2[Å

−1
] 5.35661× 102

α1[Å
−1

] 2.97758 F0[eV ] -2.28235

α1[Å
−1

] 1.54927 F2[eV ] 1.35535
δ[eV ] 0.86225× 10−2 q1[eV ] -1.27775

r
(1)
s [Å] 2.24000 q2[eV ] -0.86074

r
(2)
s [Å] 1.80000 q3[eV ] 1.78804

r
(3)
s [Å] 1.20000 q4[eV ] 2.97571

S1[eV/Å
4
] 4.00000 Q1 0.40000

S2[eV/Å
4
] 40.00000 Q1 0.30000

physical domains. The 12-6 Lennard-Jones potential is used to represent inter-body particle
interaction in this dissertation as follows:

φ(r) = ε
[
(
σ0

r
)2 − 2(

σ0

r
)6
]

(7.18)

where ε is the potential well and σ0 is the equilibrium distance. Then the overall interaction
potential energy summing up all the particles in these two bodies can be expressed as:

Πc =

∫
Ω1

∫
Ω2

β1β2φ(r)dv1dv2 (7.19)

where β1 and β1 denote the particle densities for arbitrary points x1 ∈ Ω1 and x2 ∈ Ω2. The
contact force between two infinitesimal volume dv1 and dv2 can be expressed as

df = −β1β2
∂φ(r)

∂x1

dv1dv2 = β1β2
∂φ(r)

∂x2

dv1dv2 (7.20)

where x1 and x2 are position vectors of arbitrary particles in body Ω1 and Ω2, respectively.
The total contact force between Ω1 and Ω2 requires the double volume integration. Then it
is not difficult to notice that the interaction force density in Ω2 due to Ω1 can be expressed
as:

b̂2 =

∫
Ω1

df

dv2

dv1 =

∫
Ω1

β1β2
∂φ(r)

∂x2

dv1 (7.21)
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Figure 7.13: Schematic of the coarse-grained contact model between rigid sphere and de-
formable domain.

In this work, Ω1 is a rigid sphere, the analytic solution by integrating over Ω1 can be derived
as follows.

b̂2 =

∫
Ω1

β1β2
∂φ(r)

∂x2

dv1

=

∫ 2π

0

∫ π

0

β1β2R
2sinψφ(r)n1dψdθ

= 8β1β2R
3πar0

6ε
[−5(a2 −R2)6 + 2(a2 +R2)(5a4 + 22a2R2 + 5R4)r0

6]

5(a2 −R2)10
r̄

(7.22)

where R is the radius of rigid body Ω1, a is the distance between the sphere center of Ω1

and arbitrary particle in Ω2. r0 is the equilibrium distance of inter-body particle interaction.
r̄ is the unit vector that connect the sphere center to the any point in Ω2. It will reduce
the double volume integration to only one-layer volume integration and save computational
resources.
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(a) (b) (c)

(d) (e) (f)

Figure 7.14: MCDD simulation results: dislocation loop (blue) and stacking fault (green)
formation in the copper substrate during the indentation.

The substrate mesh comprises 5952 bulk elements (0th-order process zone), 4096 wedge
elements(first-order process zone), 3264 prism elements (second-order process zone) and 612
rhombic dodecahedron elements(third-order process zone). The indenter is moved down in
displacement control at a very low rate. Fig. 7.14 shows the 3D dislocation loop and slip
planes during the indentation process. The dislocation loops are in red and the correspond-
ing slip planes are in green, which follow the direction of the effective strain.
Molecular Dynamics(MD) simulation of nanoindentation in copper is conducted using LAMMPS
[103] to compare the results with that of MCDD. The dimension of copper substrate is
20nm× 20nm× 40nm, which comprises about 1.4 million atoms. The loading rate is 0.05 Å
/ps and the indentation depth is 20 Å. The simulation temperature is 10K and the time step
is 0.002ps. In this work,we have exploited the fact that a centrosymmetric material (such
as FCC crystals) will remain centrosymmetric under homogeneous elastic deformation[104].
In a centrosymmetric material, each atom has pairs of equal and opposite bonds to its near-
est neighbors. As the material is distorted, these bonds will change direction and length,
but they will remain equal and opposite. When a defect appears nearby, this equal and
opposite relation no longer holds for all of the nearest-neighbor pairs. Thus we can define
a centrosymmetry parameter which is zero for a centrosymmetric material under any homo-
geneous elastic deformation but nonzero for any plastic deformation of the material. The
centrosymmetry parameter for each atom is defined as follows [103]:

CS =

N/2∑
i=1

| Ri + Ri+N/2 |2 (7.23)
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where N is the number of nearest neighbours, Ri and Ri+N/2 are vectors from the central
atom to a particular pair of nearest neighbors. For an atom on a lattice site, surrounded by
atoms on a perfect lattice, the centrosymmetry parameter will be 0. It will be near 0 for
small thermal perturbations of a perfect lattice. If a point defect exists, the symmetry is
broken, and the parameter will be a larger positive value. An atom at a surface will have
a large positive parameter. Fig. 7.12 (b) displays the indentation shape and dislocation
distribution in the single crystal of copper. As can be seen from Fig. 7.12 (b), indentation
shape of the 9nm radius spherical indenter is shown by green line and edge dislocation by a
blue line.

(a) (b) (c)

(d) (e) (f)

Figure 7.15: Formation and movement of dislocation loops and crystal slips beneath the
indenter.

In Fig. 7.15, the process for the formation and movement of the dislocations beneath the
indenter is shown by using the software Atomeye [82]. In this figure, only the atoms for
which the number of neighbors does not correspond to that of a perfect FCC crystal are
plotted. The atoms are colored according to the value of the centrosymmetry parameter
with range 0.040 ∼ 0.74. After an elastic deformation of the volume (Fig. 7.15 (a) and(b)),
defects appear beneath the indenter (Fig. 7.15 (c)). This structure is unstable and rapidly
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transforms into intrinsic defects (see: Fig. 7.15 (d)) finally becomes several distinct loops of
dislocations (see: Fig. 7.15 (e) and(f)).
In Fig. 7.16, the load displacement curves for nanoindentation in single crystal copper is
compared with that of molecular dynamics. Sudden drops in load value can be attributed
to the nucleation of dislocation. The comparison curve shows a good agreement in general,
which reveals that MCDD can predict dislocation nucleation induced elastic instability just
as MD simulations. It is noticed that several other factors will also have influences on the
dislocation nucleation of nanoindentation [98], such as surface orientation effects, indentation
depth and initial density effects, which will be investigated in the following work.

Figure 7.16: Comparison of load-displacement curves obtained from MCDD and MD simu-
lations of nanoindentation in copper.

7.4 Crystal Slip and Dislocation Nucleation around a

Void

In this numerical example, the MCDD method is employed to simulate the three-dimensional
dislocation motion and crystal slip around a void in a copper specimen.
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(a)

(b)

Figure 7.17: Schematic of single crystal copper specimen: (a)the view of uniaxial tension
and (b) half mesh with a rhombohedral void.

Fig. 7.17 presents the MCDD models of single crystal copper specimens with a rhombohedral
void initially introduced in the interior. The dimension of copper is 50nm×50nm×50nm in
copper, which contains about 43 million atoms. The dimension of the void is 13nm×13nm×
9nm. The FEM mesh comprises 54468 bulk elements(0th-order process zone), 30118 wedge
elements(first-order process zone), 25603 prism elements (second-order process zone), and
4797 rhombic dodecahedron elements(third-order process zone). The EAM Mishin potential
[100] is adopted for modelling copper, which is the same potential used in the indentation
example of this chapter. The view of this model with the displacement controlled boundary
conditions applied at the bottom and top boundary is shown in Fig. 7.17(a). The dis-
placement is applied at a constant velocity of 100m/s. Fig. 7.18 shows the dislocation and
stacking fault of copper in MCDD simulations, which has similar dislocation shape as shown
in [105]. Fig. 7.19 shows the load displacement curve of uniaxial tension in copper. This
curve has obvious linear elastic range, yielding stage, and work-harding range, which shows
the characteristics of ductile material.
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(a) (b)

Figure 7.18: MCDD simulation results: (a) slip planes and (b) dislocation loops in the copper
specimen.

Figure 7.19: Load-displacement curve of uniaxial tension of a copper specimen with an inside
void.
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7.5 Crystal Orientation Effects on Dislocation

Nucleation at Grain Scale

Figure 7.20: Stereographic triangle showing the 29 crystallographic orientations. Each di-
rection represents the uniaxial loading axis for single crystal deformation simulation.

To demonstrate MCDD is an atomistically-determinant crystal plasticity theory, MCDD is
employed to simulate anisotropic plasticity at grain scale and to study the influence of crystal
orientation on dislocation nucleation and slip system activation.
Crystal plasticity is a theory of anisotropic inelastic deformation theory, and crystal material
behaviors depend on crystal microstructure and hence external load axis orientation. In
the classical Taylor crystal plasticity, dislocation motion in single crystals is thought to be
governed by the critical resolved shear stress (CRSS) via Schmids law [106]. However, Taylor
crystal plasticity theory may still be considered as a phenomenological theory because the
value of CRSS is either given on an empirical base, or taken from the fine scale first principle
simulation, and it is not within the framework of crystal plasticity itself. Moreover, the
classical plasticity may not be able to capture some fundamental aspects of the physical
phenomenon, i.e. the non-Schimid stress.
In this work, 3D computational model is used to investigate crystal plasticity and dislocation
nucleation in single crystal copper under uniaxial tension and compression(Fig. 7.20). A
constant strain rate of 109/s is applied in the loading direction. The dimensions are chose
with a minimum length of 16nm to reduce the effects of boundary conditions [107, 108, 109].
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(a)
(b)

Figure 7.21: Comparison of contour plots of tensile stress, compressive stress and the ratio of
compressive stress and tensile stress: (a)results of MCDD and (b) MD results[107]. (Reuse
permission by AIP Publishing LLC: License Number 4324321505819)
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Fig. 7.21(a) displays the results of molecular dynamics simulations of crystal plasticity, in
which the yield stress and ratio of compression with tension over different crystal orientations
under tensile/compression loadings are plotted, which are related to the tensile and compres-
sion stress required for homogeneous dislocation nucleation at different loading orientations.
Fig. 7.21(b) displays the MD simulation of the crystallographic orientation [107], which
shows good agreement with that of MCDD. This example shows that MCDD is capable of
simulating atomistically-determinant crystal plasticity.

7.6 Shear Band Formulation with Uniaxial Loading

To simulate the formulation of shear band, a copper specimen with size 16nm×16nm×40nm
is investigated. A constant velocity (corresponding to a strain rate on the order of 1010/s)is
applied at the top and bottom boundary along the [001] direction Fig. 7.22(a).Strain is
defined as a nominal quantity based on the overall imposed specimen displacement and
comparison is conducted with full MD simulation. As shown in Fig. 7.22(b), both MCDD
and MD simulation shows that dislocation nucleation occurs at around strain 12% and stress
10GPa. In addition, Fig. 7.23 shows the formulation of shear band in (111) plane, which
is the corresponding slip plane for FCC crystal. This example shows that MCDD has the
ability to simulate dislocation nucleation and shear band formulation.

(a) (b)

Figure 7.22: (a)Mesh of column and (b)strain-stress curve with uniaxial loading.
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(a) (b) (c)

Figure 7.23: Formulation process of shear band in (111) plane with strain (a) 2%, (b)15%,
(c)15%, and (d)25%.
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Chapter 8

Conclusions and Outlook

In this dissertation, a novel multiscale crystal defect dynamics (MCDD) model is proposed.
The MCDD model can directly link atomistic information with long-range order disloca-
tion pattern dynamics, so that it allows us to establish an atomistically-determined crystal
plasticity theory based on microstructures and dislocation pattern dynamics of the original
perfect crystal.
The multiscale crystal defect dynamics (MCDD) model only considers the motions of all the
geometrically admissible defects in a given crystal based on its microstructure. This is a
much focused, exclusive, and disruptive approach. The philosophy of MCDD model is that
not every defect will present in a given crystal, and we only need to study a few types of
defects that are related to the microstructure of the crystal. More precisely speaking, for a
given crystal, it is only prone to a few types of defects that are related to their microstructure,
and if we embed those few types of defect modes as defect process zones into a multiscale
finite element model, we may predict material responses based on multiscale simulations.
Moreover, there are a few advantages of MCDD method over some other defect mechanics
models, e.g. dislocation dynamics. For instance, formation of voids is a well known con-
sequence of radiation damage in materials, and these voids can pin down the motion of
dislocations. Thus interaction between voids and dislocation plays a vital role in dictat-
ing the mechanical behaviour of crystalline solids (e.g. [110]). On the other hand, work
hardening during plastic deformation of a crystal is associated with significant changes in
dislocation microstructure. The increase in dislocation density on the specimen is accom-
panied by the spontaneous emergence of regions of low dislocation density and clusters of
high dislocation density which to a large extent persist upon unloading. These metastable
structures are denoted as dislocation patterns. The fundamental hypothesis of MCDD is
that these dislocation microstructure depend on the original crystal microstructure, and one
may identify possible defect pattern regions by geometrical analysis of the original crystal
lattice.
The use of discrete exterior calculus and algebraic topology to study crystal defects is not new
[26, 111]. One of the motives of the previous discrete lattice mechanics is to utilize lattice
complex cell structure to provide the lower order defect models, i.e. 0-cell (void), 1-cell
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(dislocation), and 2-cell (slip plane). In this work, we take a completely different approach,
and we view all defects as three-dimensional objects. Nevertheless, we employ the discrete
exterior calculus and algebraic topology to study the super lattice of the original crystal
structure to classify all the admissible three-dimensional defects. The most dual lattices of
the 3D Bravais lattice structure are Bravais lattices, but the coarse-grained super lattice
proposed in this work is not a Bravais lattice, because it uses the vertices of the dual cell
as the motif to form a non-Bravais lattice. We believed that the non-Bravais super lattice
structure may represent the physical microstructure of the defects in real crystal lattice.
Since the microstructure of the dual-lattice depends on the microstructure of the original
perfect lattice, there are only a limited types of defects that are geometrically admissible to
a given crystal. From this perspective, we may view the microstructure of the non-Bravais
super lattice as the possible defected “genes” for a given crystalline material. If we can
model the evolution of these “genetic” defects, we can then predict the material properties
of the crystal at macroscale. In fact, as the coarse-graining parameters β1 → 1 and β2 → 0,
the present lattice defect model will degenerate to that proposed in [26, 111].
MCDD can relate the size-dependent plastic deformation to fundamental physics of defects,
i.e. nucleation, multiplication, annihilation, interactions and transport of dislocations and
vacancies. It is an atomistically-determined formulation while preserving the continuum
character. MCDD model transcends length scale directly from nano meter scale to millimeter
scale, which does not need any hierarchical modeling and computations.
As an atomistic-informed continuum formulation, MCDD preserves the well-possed math-
ematical structure of continuum physics by describing the problem as a rigorous initial-
boundary value problem in terms of partial differential equations. Moreover, MCDD multi-
scale formulation minimizes ad-hoc assumptions and free parameters as used extensively in
strain-gradient and other scale-dependent plasticity theories
The spontaneous emergence of heterogeneous dislocation patterns is a conspicuous feature of
plastic deformation and strain hardening of crystalline solids. Currently, almost all disloca-
tion pattern theories are empirical continuum theory. The proposed multiscale crystal defect
dynamics theory is derived based on atomistic molecular dynamics through systematic coarse
graining procedures, and hence its physical modeling fidelity is significantly improved over
other dislocation pattern models as well as discrete dislocation dynamics, while retaining
almost the same or even less computation cost.
Last, we would like to stress that the proposed MCCD theory is a coarse graining defect
model, which is formulated in a non-Bravais super lattice. However, the underline crystal
(physical) lattice is still Bravais, as we have studied so far. One can easily extend the pro-
posed MCDD formulation to non-Bravais physical lattices by employing the corresponding
Cauchy-Born rule for the non-Bravais lattice [112, 113].
Of course, there are a few aspects that need further investigation. The first one is the
modelling of thermally-activated plastic flow. It is directly related to plasticity dissipation
mechanism, high temperature creep fatigue mechanism, which has broader applications in
high temperature materials and material failure under high strain rates. In order to couple
the mechanical field with temperature, the harmonic approximation based thermal mechani-
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cal Cauchy-Born rule may be adopted [114]. In addition, the proposed MCDD model can be
extended to model polycrystalline solids, which requires the consideration of grain bound-
ary. In each single grain, we shall use the standard MCDD formulation outlined in previous
section, in which the high-order Cauchy-Born rules are used to evaluated stresses in different
process zones. What is new in this case is the grain boundary element. In these elements, the
Cauchy-Born rules can be applied to evaluate stresses. However, the underline lattice cell
will not be the original crystal lattice, but a quasi-crystal lattice structure that can accom-
modate the perfect crystal at both sides of the grain boundary, which usually have different
orientations. Experimental and theoretical evidences have suggested that the structures of
many grain boundaries are quasicrystals, consisting of an aperiodic sequence of structural
units which have a deflation symmetry[115]. The Cauchy-Born rule can be extended to
quasicrystal or non-crystalline amorphous solids to model the grain boundary [116, 85].
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Appendix A

Derivatives of the Six-node
Honeycomb Wachspress Shape
Function

In this appendix, the third order derivatives of the six-node honeycomb Wachspress shape
function are provided. For the first order and second order derivatives of the six-node
honeycomb Wachspress shape function, the readers may consult [117].
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= −h(ξ, η)[(8η(−3 + 2η)(3 + 2η)(3 + 2η)ξ(−3 + η2 − ξ2)]

∂3N2

∂ξ2η
=− 2h(ξ, η)(3 + 2η)[2η5 + η4(7− 16ξ2)− 4η3(3 + ξ2)

− 9(−3− 2ξ2 + ξ4)− 6η(−3− 2ξ2 + ξ4)

+ 2η2(−15 + 11ξ2 + 8ξ4)]

∂3N2

∂ξη2
=8h(ξ, η)ξ[2η5 + η3(21− 16ξ2) + η4(15− 8ξ2) + 8η2ξ2(−3 + ξ2)

− 3(−3 + ξ2)(−3 + ξ2) + 3η(−9− 3ξ2 + 2ξ4)]

∂3N2

∂η3
=− h(ξ, η)[(2(−3 + 4ξ2)(3η4 − 18η2(−3 + ξ2)− 8η3(−3 + ξ2)

+ 3(−3 + ξ2)(−3 + ξ2) + 8η(−3 + ξ2)(−3 + ξ2)]

∂3N3

∂ξ3
=2h(ξ, η)η(−9 + 4η2)[9

√
3 +
√

3η4 − 36ξ + 4η3ξ + 18
√

3ξ2

− 12ξ3 +
√

3ξ4 − 4ηξ(3 + ξ2)− 6η2(
√

3− 2ξ +
√

3ξ2)]

∂3N3

∂ξ2η
=− 2h(ξ, η)[4η4(−1 +

√
3ξ) + 2η5(−5 + 8ξ2) + 18η(−3− 2ξ2 + ξ4)

+ η2(54− 54
√

3ξ − 90ξ2 + 66
√

3ξ3 − 36ξ4 + 4
√

3ξ5)

− 3(−3 + ξ2)(−9 + 9
√

3ξ − 9ξ2 +
√

3ξ3)

+ η4(3− 3
√

3ξ + 56ξ2 − 24
√

3ξ3)− 16η3(−3 + ξ2 + ξ4)]

∂3N3

∂ξη2
=2h(ξ, η)[−16η2ξ3(−3 + ξ2) + 6ξ(−3 + ξ2)(−3 + ξ2)

+ η3(−6
√

3− 84ξ + 38
√

3ξ2 + 64ξ3 − 24
√

3ξ4)

+ η(−3 + ξ2)(−9
√

3− 36ξ + 27
√

3ξ2 − 24ξ3 + 4
√

3ξ4)

+ 2η4ξ(−15 + 8ξ2) + η5(−
√

3− 8ξ + 4
√

3ξ2)]

∂3N3

∂η3
=− 2h(ξ, η)(−3 + 4ξ2)[η4(−3 +

√
3ξ) + 4η3(−3 + ξ2)

− 4η(−3 + ξ2)(−3 + ξ2) + (−3 +
√

3ξ)(−3 + ξ2)(−3 + ξ2)

− 6η2(−3 +
√

3ξ)(−3 + ξ2)]

∂3N4

∂ξ3
=− 2h(ξ, η)η(−9 + 4η2)[9

√
3 +
√

3η4 − 36ξ − 4η3ξ + 18
√

3ξ2

− 12ξ3 +
√

3ξ4 + 4ηξ(3 + ξ2)− 6η2(
√

3− 2ξ +
√

3ξ2)]
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∂3N4

∂ξ2η
=2h(ξ, η)(4η4[−1 +

√
3ξ)− 2η5(−5 + 8ξ2)− 18η(−3− 2ξ2 + ξ4)

− 3(−3 + ξ2)(−9 + 9
√

3ξ − 9ξ2 +
√

3ξ3) + 16η3(−3 + ξ2 + ξ4)

+ η2(54− 54
√

3ξ − 90ξ2 + 66
√

3ξ3 − 36ξ4 + 4
√

3ξ5)

+ η4(3− 3
√

3ξ + 56ξ2 − 24
√

3ξ3)]

∂3N4

∂ξη2
=− 2h(ξ, η)[−16η2ξ3(−3 + ξ2)− 6ξ(−3 + ξ2)(−3 + ξ2)

+ η4(30ξ − 16ξ3) + η3(−6
√

3− 84ξ + 38
√

3ξ2 + 64ξ3 − 24
√

3ξ4)

+ η(−3 + ξ2)(−9
√

3− 36ξ + 27
√

3ξ2 − 24ξ3 + 4
√

3ξ4)

+ η5(−
√

3− 8ξ + 4
√

3ξ2)]

∂3N4

∂η3
=2h(ξ, η)(−3 + 4ξ2)[η4(−3 +

√
3ξ)− 4η3(−3 + ξ2)

+ 4η(−3 + ξ2)(−3 + ξ2) + (−3 +
√

3ξ)(−3 + ξ2)(−3 + ξ2)

− 6η2(−3 +
√

3ξ)(−3 + ξ2)]

∂3N5

∂ξ3
= −h(ξ, η)[(8(3− 2η)(3− 2η)η(3 + 2η)ξ(−3 + η2 − ξ2)]

∂3N5

∂ξ2η
=2h(ξ, η)(−3 + 2η)[2η5 − 4η3(3 + ξ2) + η4(−7 + 16ξ2)

− 6η(−3− 2ξ2 + ξ4)− 2η2(−15 + 11ξ2 + 8ξ4)

+ 9(−3− 2ξ2 + ξ4)]

∂3N5

∂ξη2
=8h(ξ, η)ξ[−2η5 + η4(15− 8ξ2)− 3(−3 + ξ2)(−3 + ξ2)

+ η3(−21 + 16ξ2) + η(27 + 9ξ2 − 6ξ4)

+ 8η2ξ2(−3 + ξ2)]

∂3N5

∂η3
=2h(ξ, η)[(−3 + 4ξ2)(3η4 − 18η2(−3 + ξ2) + 8η3(−3 + ξ2)

+ 3(−3 + ξ2)(−3 + ξ2)− 8η(−3 + ξ2)(−3 + ξ2)]

∂3N6

∂ξ3
=2h(ξ, η)η(−9 + 4η2)[9

√
3 +
√

3η + 36ξ + 4η3ξ + 18
√

3ξ2

− 4ηξ(3 + ξ2)− 6η2(
√

3 + 2ξ +
√

3ξ2) + 12ξ3 +
√

3ξ4]
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∂3N6

∂ξ2η
=− 2h(ξ, η)[4η4(1 +

√
3ξ) + 2η5(−5 + 8ξ2) + 36ξ4 + 4

√
3ξ5)

− η4(3 + 3
√

3ξ + 56ξ2 + 24
√

3ξ3) + 18η(−3− 2ξ2 + ξ4)

− 16η3(−3 + ξ2 + ξ4)− 3(−3 + ξ2)(9 + 9
√

3ξ + 9ξ2 +
√

3ξ3)

+ η2(−54− 54
√

3ξ + 90ξ2 + 66
√

3ξ3]

∂3N6

∂ξη2
=2h(ξ, η)[−16η2ξ3(−3 + ξ2) + 6ξ(−3 + ξ2)(−3 + ξ2) + 4

√
3ξ2)

+ η3(−6
√

3 + 84ξ + 38
√

3ξ2 − 64ξ3 − 24
√

3ξ4)

+ η(−3 + ξ2)(−9
√

3 + 36ξ + 27
√

3ξ2 + 24ξ3 + 4
√

3ξ4)

+ η5(−
√

3 + 8ξ + 2η4ξ(−15 + 8ξ2)]

∂3N6

∂η3
=− 2h(ξ, η)(−3 + 4ξ2)[η4(3 +

√
3ξ) + 4η3(−3 + ξ2)

− 4η(−3 + ξ2)(−3 + ξ2) + (3 +
√

3ξ)(−3 + ξ2)(−3 + ξ2)

− 6η2(3 +
√

3ξ)(−3 + ξ2)],

where h(ξ, η) = 1
3
(ξ2 + η2 − 3)−4 .
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Appendix B

Derivatives of Shape Functions

In this appendix, the higher order Cauchy-Born rule in the Finite Element Method is dis-
cussed. The first, second and third order derivative of shape functions are derived.

B.1 The First Order Derivative of Shape Functions

By using the chain rule, the first order derivative of shape functions with respect to the
natural coordinates ξ in index notation can be written as

∂NI

∂ξi
=
∂NI

∂Xj

∂Xj

∂ξi
(B.1)

Thus
∂NI

∂Xj

=
∂NI

∂ξi

∂ξi
∂Xj

(B.2)

where
∂ξi
∂Xj

= J−1
ji (B.3)

and the Jacobian matrix J is

Jij =
nnode∑
J

∂NJ

∂ξj
XJ
i (B.4)

B.2 The Second Order Derivative of Shape Functions

Similarly, the second order derivative of shape functions with respect to the natural coordi-
nates ξ can be expressed as

∂2NI

∂ξi∂ξj
=

∂2NI

∂Xm∂Xk

∂Xm

∂ξi

∂Xk

∂ξj
+
∂NI

∂Xl

∂2Xl

∂ξi∂ξj
(B.5)
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Thus
∂2NI

∂Xm∂Xk

= (
∂2NI

∂ξi∂ξj
− ∂NI

∂Xl

∂2Xl

∂ξi∂ξj
)
∂ξi
∂Xm

∂ξj
∂Xk

(B.6)

where
∂2Xl

∂ξi∂ξj
=

nnode∑
J

∂2NJ

∂ξi∂ξj
XJ
l (B.7)

B.3 The Third Order Derivative of Shape Functions

Similarly, the third order derivative of shape functions with respect to the natural coordinates
ξ can be expressed as

∂3NI

∂ξi∂ξj∂ξk
=

∂3NI

∂Xn∂Xm∂Xl

∂Xn

∂ξi

∂Xm

∂ξj

∂Xk

∂ξk
+

∂2NI

∂Xm∂Xl

∂2Xm

∂ξi∂ξj

∂Xl

∂ξk
+

∂2N I

∂Xm∂Xl

∂Xm

∂ξj

∂2Xl

∂ξi∂ξk

+
∂2N I

∂Xn∂Xm

∂Xn

∂ξi

∂2Xm

∂ξj∂ξk
+
∂N I

∂Xm

∂3Xm

∂ξi∂ξj∂ξk
(B.8)

Thus

∂3NI

∂Xi∂Xj∂Xk

=
∂3NI

∂ξi∂ξj∂ξk

∂ξn
∂Xi

∂ξm
∂Xj

∂ξl
∂Xk

− ∂2NI

∂ξl∂ξk

∂2Xl

∂ξnξm

∂ξn
∂Xi

∂ξm
∂Xj

− ∂2NI

∂ξj∂ξm

∂2Xm

∂ξnξl

∂ξn
∂Xi

∂ξl
∂Xk

− ∂2NI

∂ξi∂ξn

∂2Xn

∂ξmξl

∂ξm
∂Xj

∂ξl
∂Xk

− ∂NI

∂Xo

∂3Xo

∂ξnξmξl

∂ξn
∂Xi

∂ξm
∂Xj

∂ξl
∂Xk

(B.9)

where
∂3Xo

∂ξn∂ξm∂ξl
=

nnode∑
J

∂3NJ

∂ξn∂ξm∂ξl
XJ
o (B.10)
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Appendix C

Finite Element Interpolation
Functions for Rhombic Dodecahedron

In this appendix, the shape functions of the 14-node rhombic dodecahedron are provided.
The shape function λi for node i is defied by

λi =
wi∑14
j=1wj

where the weight function wi is given by

wi =
1

ri

∑
T3vi

µi,T ,

in which µi,T is defined as

µi,T =
βjk + βijnij · njk + βkinki · njk

2ei · njk

The coordinates of 14 nodes in the reference coordinates are given in Table C.1
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Table C.1: Coordinates of 14 nodes in the reference coordinates

Node ξ η ζ

1 0.25 0.25 0.25
2 -0.25 0.25 0.25
3 0.25 -0.25 0.25
4 -0.25 -0.25 0.25
5 0.25 0.25 -0.25
6 -0.25 0.25 -0.25
7 0.25 -0.25 -0.25
8 -0.25 -0.25 -0.25
9 0.0 0.0 0.5
10 0.0 0.0 -0.5
11 0.0 0.5 0.0
12 0.0 -0.5 0.0
13 0.5 0.0 0.5
14 -0.5 0.0 0.5

The vector between the ith node with the Gaussian point (ξ, η, ζ) is given by

ri = [ξi − ξ, ηi − η, ζi − ζ]

with
ri =

√
(ξi − ξ)2 + (ηi − η)2 + (ζi − ζ)2

where ξi, ηi, ζi denote the coordinates of ith node as shown in Table C.1.

βij = arccos

[
(ξi − ξ)(ξj − ξ) + (ηi − η)(ηj − η) + (ζi − ζ)(ζj − ζ)

ri · rj

]

βjk = arccos

[
(ξj − ξ)(ξk − ξ) + (ηj − η)(ηk − η) + (ζj − ζ)(ζk − ζ)

rj · rk

]
βki = arccos

[
(ξk − ξ)(ξi − ξ) + (ηk − η)(ηi − η) + (ζk − ζ)(ζi − ζ)

rk · ri

]

ei =
[ξi − ξ, ηi − η, ζi − ζ]

ri

nij = [− ηiζ + ηjζ + ηζi − ηjζi − ηζj + ηiζj,

ξiζ − ξjζ − ξζi + ξjζi + ξζj − ξiζj,
− ξiη + ξjη + ξηi − ξjηi − ξηj + ξiηj]/Lij
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with

Lij =
√

((−ξiη + ξjη + ξηi − ξjηi − ξηj + ξiηj)
2

+ (ξiζ − ξjζ − ξζi + ξjζi + ξζj − ξiζj)2

+ (−ηiζ + ηjζ + ηζi − ηjζi − ηζj + ηiζj)
2)

Similarly,

njk = [− ηjζ + ηkζ + ηζj − ηkζj − ηζk + ηjζk,

ξjζ − ξkζ − ξζj + ξkζj + ξζk − ξjζk,
− ξjη + ξkη + ξηj − ξkηj − ξηk + ξjηk]/Ljk

with

Ljk =
√

((−ξjη + ξkη + ξηj − ξkηj − ξηk + ξjηk)
2

+ (ξjζ − ξkζ − ξζj + ξkζj + ξζk − ξjζk)2

+ (−ηjζ + ηkζ + ηζj − ηkζj − ηζk + ηjζk)
2)

nki = [− ηkζ + ηiζ + ηζk − ηiζk − ηζi + ηkζi,

ξkζ − ξiζ − ξζk + ξiζk + ξζi − ξkζi,
− ξkη + ξiη + ξηk − ξiηk − ξηi + ξkηi]/Lki,

with

Lki =
√

((−ξkη + ξiη + ξηk − ξiηk − ξηi + ξkηi)
2

+ (ξkζ − ξiζ − ξζk + ξiζk + ξζi − ξkζi)2

+ (−ηkζ + ηiζ + ηζk − ηiζk − ηζi + ηkζi)
2) .




