
UC Irvine
ICS Technical Reports

Title
A hardware-software partitioning algorithm for minimizing hardware

Permalink
https://escholarship.org/uc/item/11z0r4mc

Authors
Vahid, Frank
Gong, Jie
Gajski, Daniel D.

Publication Date
1993-09-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11z0r4mc
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protected
by Copyright Law
(Title 17U.S.C.)

A Hardware-Software Partitioning Algorithm
for Minimizing Hardware

Frank Vahid

Jie.Gong
Daniel D. Gajski

Technical Report ICS-93-38
September 18, 1993

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
(714) 856-8059

vahid@ics.uci.edu

jgong@ics.uci.edu

Abstract

Partitioning a system's functionality among interacting hardware and soft
ware components is an important part of system design. We introduce a new
partitioning algorithm that caters to the main objective of the hardware/software
partitioning pro6/em, i.e. minimizing hardware for given performance constraints.
We demonstrate results superior to those of previously published algorithms in
tended for hardware/software partitioning.

Contents

1 Introduction

2 Problem Definition

Solving the hardware/software partitioning problem
3.1 Greedy algorithms
3.2 Hill-climbing algorithms
3.3 A new algorithm based on constramt-search

3.3.1 Foundation

3.3.2 Algorithm
3.3.3 Reducing runtime in practice
3.3.4 Complexity

4 Experimental results

5 Conclusion

List of Figures

Basics parts of a hw/sw partitioning system
An example cost sequence
Performance constraints imposed on different examples
Hardware required for given performance constraints
Results of Hardware-software Partition

1 Introduction

Combined hardware/software implementations are common in embedded systems. Software

running on an existing processor is cheaper, more modifiable, and more quickly designable

than an equivalent application-specific hardware implementation. However, hardware may

provide better performance. A system designer's goal is to implement a system using the
minimal amount of application-specific hardware, if any at all, to achieve the performance

required by the system's environment. In other words, the designer attempts to implement

as much functionality as possible in software.

Deficiencies of the much practiced ad hoc approach to partitioning have led to research

into more formal, algorithmic approaches. In the ad hoc approach, a designer starts with an

informal functional description of the desired system, such as an English description. Based

on previous experience and mental estimations, the designer partitions the functionality

among hardware and software components, and the components are then designed and

integrated. This approach has two key limitations. First, due to limited time, the designer

can only consider a small number of possible partitionings, so many good solutions will

never be considered. Second, the effects that partitioning has on performance are far too

complex for a designer to accurately estimate mentally. As a result of these limitations,

designers often use more hardware than necessary to ensure performance constraints are

In formal approaches, one starts with a. functional description of the system in a machine-

readable language, such as VHDL. After verifying, usually through simulation, that the

description is correct, the functionality is decomposed into functional portions of some

granularity. These portions, along with additional information such as data shared between

portions, make up an internal model of the system. Each portion is mapped to either

hardware or software by partitioning algorithms that search large numbers of solutions.

Such algorithms are guided by automated estimators that evaluate cost functions for each

partitioning. The output is a set of functional portions to be mapped to software and

another set to be mapped to hardware. Simulation of the designed hardware and compiled

software can then be performed to observe the effects of partitioning. Figure 1 shows a

typical configuration of a hardware/software partitioning system.

The partitioning algorithm is a crucial part of the formal approach because it is the

algorithm that actually minimizes the expensive hardware. However, current research into

algorithms for hardware/software partitioning is at an early stage. In [1], the essential
criteria to consider during partitioning are described, but no particular algorithm is given.

Functional
description

User interface

Partitioning
Algorithms

Cost
function

Estimators

- Partrtioned
descrir^ion

Figure 1. Basics parts of a hw/sw partitioning system

In [2], certain partitioning issues are also described but no algorithm is given. In [3], an
algorithm is described which starts with most functionality in hardware, and which then
moves portions into software as long as such a move improves the design. The algorithm
uses agreedy control strategy which, while simple to implement and fast, is unable to escape
local minimums so will Ukely result in more hardware than necessary. In [4], an approach
is described which starts with all functionality in software, and which then moves portions
into hardware using a hiU-cUmbing algorithm such as simulated annealing. The authors
hypothesize that starting with an all-software partitioning will result in less final hardware
than starting with aU-hardware partitioning (our results support this hypothesis). However,
the partitioning algorithm does not actuaUy attempt to minimize hardware; in fact, the
designer must preselect aset of hardware functional units. In [5], simulated anneaUng is also
used. The focus is on placing highly utilized functional portions in hardware. However, there
IS no direct performance measurement and no specific techniques described for hardware
minimization.

In summary, the common shortcoming of previous approaches is the lack of advanced
methods to mimmize hardware. We propose anew algorithm which specifically addresses
the unique characteristics of hardware/software partitioning, namely that hardware size
should be minimized while performance constraints are met. The algorithm separates to a
degree the problem of selecting ahardware size from the problem of partitioning to meet
size and performance constraints. By incorporating existing hill-climbing algorithms rather
than developing acustom control strategy, we are able to build on the sophisticated control
techniques already developed to escape local minimums.

The paper is organized as follows. Section 2 gives a precise definition of the hard

ware/software partitioning problem. Section 3 describes previous hardware/software parti

tioning algorithms, an extension we have made to one previous algorithm to reduce hard

ware, and our new hardware-minimizing algorithm based on constraint-search. Section 4

summarizes our experimental results.

2 Problem Definition

While the partitioning subproblem interacts with other subproblems in hardware/software

codesign, it is distinct, i.e. it is orthogonal to the choice of specification language, the level
of granularity of functional decomposition, and the specific estimation models employed.

We are given a set of functions F = /i, /2,/n which compose the functionality of the

system under design. The functions may be at any of various levels of granularity, such

as tasks (e.g. processes, procedures or code groupings) or arithmetic operations. We are

also given a set of performance constraints C = {Ci, C2,Cm}, where Ct = {C^, K}, Gi C
F^Vi G Real. Vi is a constraint on the maximum execution-time of the all functions in

group Gi. It is simple to extend the problem to allow other performance constraints such

as those on bitrates or inter-operation delays, but we have not included such constraints in

order to simplify the notation.

A hardware/software partitioning is defined as a partition P = {if, 5}, H C F,

S C F, H\JS = F and iffl'S' = 0- This definition does not prevent further partition

of hardware or software. Hardware can be partitioned into several chips while software

can be executed on more than one processor. The hardware size of fl is defined as

the size (e.g. transistors) of the hardware needed to implement the functions in H. The

performance of Gi is defined as the total execution time for the group of functions in

Gi for a given partitioning P. A performance satisfying partitioning is one for which

Performance{Gi) < for all t = 1.. .m.

Definition 1: Given F and C, the Hardware/Software Partitioning Problem

is to find a performance satisfying partitioning P such that HardwareSize{H) is minimal.

In other words, the problem is to map all the functions to either hardware or software in

such a way that we find the minimal hardware for which all performance constraints can

still be met. Note that the hardware/software partitioning problem, like other partitioning

problems, is NP-complete.

The all-hardware size of F is defined as the size of an all-hardware partitioning,

i.e. HardwareSizelF). Note that if an all-hardware partitioning does not satisfy perfor
mance constraints, no solution exists.

To compare any two partitionings, a cost function is required. A cost function is a

function Cost{P,C^I) which returns a natural number that summarizes the overall good

ness of a given partitioning, the smaller the better. I contains any additional information

that is not contained in P or C. We define an iterative improvement partitioning

algorithm as a procedure PartAlg{P,C^I,Cost{)) which returns a partitioning P' such

that Cost{P'< Cost(P,C,/). Examples of such algorithms include group migration

[6] and simulated annealing [7].

Since it is not feasible to implement the hardware and software components in order to

determine a cost for each possible partitioning generated by an algorithm, we assume that

fast estimators are available [8, 9, 10].

3 Solving the hardware/software partitioning problem

3,1 Greedy algorithms

One simple and fast algorithm starts with an initial partition, and moves objects as long as

improvement occurs. Such an algorithm is shown below. It uses a procedure Move(Py fi)
which returns a new partitioning P' obtained by moving fi to 5 if it is currently in or

to H if it is currently in 5.

Algorithm 3.1 Greedyl

Create initial partitioning P

repeat

for each /,• € F

if Co3t{Move{P,fi),C,l) < Co$t{P,CJ)

P = Move{PJi)

until no moves improve cost

The greedy algorithm presented in [3], due to Gupta and DeMicheli, can be viewed as an
extension of this algorithm which ensures performance constraints are met. The algorithm

uses a procedure SuccessoTs(fi) which returns a set of functions that succeed fi in the

internal model of the system's functionality.

Algorithm 3.2 Gupta/DeMicheli algorithm

Create initial partitioning P = 0}

repeat

for each fi € H

AttemptMove{P, fi).

until no moves improve cost

procedure AttemptMove{P, fi)

if Mov€{P,fi) is performance satisfying and Co8t{Move{P,fi)^C,I) < Cost{P,C,I)
P —Move{P, fi)

for each fj € Successors{fi)
AttemptMove{P^ fj)

The algorithm starts by creating an all-hardware partitioning, thus guaranteeing that a

performance satisfying partitioning is found if it exists (actually, certain functions which are

considered unconstrainable are initially placed in software). To move a function requires not

only cost improvement but also that all performance constraints still be satisfied (actually
they require that maximum interfacing constraints between partitions be satisfied). Once a

function is moved, the algorithm tries to move closely related functions before trying others.

Both of the greedy algorithms suffer from the limitation that they are easily trapped in

a local minimum. As a simple example, consider an initial partitioning that is performance

satisfying, in which two heavily communicating functions /i and /2 are initially in hardware.

Suppose that moving either /i or /2 to software results in performance violations, but

moving both fi and /2 results in a performance satisfying partitioning. Neither of the above

algorithms can find the latter solution because doing so requires accepting an intermediate,

seemingly negative move of a single function.

3.2 Hill-climbing algorithms

To overcome the limitation of greedy algorithms, others have proposed using an existing hill-

climbing algorithm such as simulated annealing. Such an algorithm accepts some number

of negative moves in a manner that overcomes many local minimums. One simply creates

an initial partitioning and applies the algorithm.

In [4], an approach is described by Ernst and Henkel that uses an all-software solution
for the initial partitioning. AhiU-climbing partitioning algorithm is then used to extract
functions from software tohardware in order to meet performance. The authors reason that
such extraction should result in less hardware than the Gupta/DeMicheli approach where
functions are extracted in the other direction, i.e. from hardware to software.

Cost function

We now consider devising a cost function to be used by the hill-climbing partitioning
algorithm. The difficultly lies in trying to balance the performance satisfiability and hard
ware minimization goals. The Gupta/DeMicheli approach avoids the problem by removing
performance satisfiability from the cost function. The cost function is only used to evaluate
partitionings that already satisfy the performance constraints. The algorithm simply rejects
all partitionings that are not performance satisfying. We saw that this approach is easily
trapped in a local minimum. The Ernst/Henkel approach avoids the problem by removing
hardware size from the cost function, fixing it apriori. This approach has the lirmtation
of requiring the designer to manually try numerous hardware sizes, reapplymg partition
ing for each, to try to find the smallest hardware size that yields aperformance satisfying
partition. (In fact, in their approach the designer actuaUy must select the functional units
apriori, which is very difficult without knowing which functions are to be implemented).

We propose athird solution. We use acost function with two terms, one indicating the
sum of aU performance violations, the other the hardware size. The performance term is
weighed very heavily to ensure that a performance satisfying solution is found, i.e. mini
mizing hardware is a secondary consideration. The cost function is:

m

Cost{P,C) = fcpe,/ y.Y.Vzolation(Ci) +k„e^ XHardwareSizel^H)

where

Violation{Ci) = PeTformance{Gi) - Vi

if the difference is greater than 0, else Violation{Ci) = 0. Also, feper/ >> ^area, hut fcper/
should not be infinity, since then the algorithm could not distinguish a partitioning which
almost meets constraints from one which greatly violates those constraints.

We refer to this solution as the PWHC (performance-weighted hiU-cUmbing) algorithm.
We shall see that it gives excellent results as compared to the Gupta/DeMicheli algorithm,
but there is still room for improvement.

3.3 A new algorithm based on constraint-search

While incorporating performance and hardware size considerations in the same cost func

tion, as in PWHC, tends to gives much better results than previous approaches, we have

determined a superior approach for minimizing hardware. Our approach involves decou

pling to a degree the problem of satisfying performance from the problem of minimizing

hardware.

3.3.1 Foundation

The hrst step is to relax the cost function goal. Rather than minimizing size, we just wish

to find any size below a given constraint Caize-
m

Cost{P,C, Caize) = kperf X^ Violation{Ci) karea XViolation[HaTdwaT€Size(H)yCaize)

It is no longer required that kperf » karea- We set kperf = karea = 1.

Hardware minimization can thus be stated as a problem which is distinct from the

partitioning problem.

Definition 2: Given F, C, PartAlgQ and Cost{), the Minimal Hardware-Constraint

Problem is to determine the smallest Caize such that Cost(PartAlg(P, C, Caize, CostQ), C,

Caize) = 0.

In other words, we must choose the smallest size constraint for which a performance

satisfiable solution can be found.

Theorem 1: Let PartAlgQ be such that it always finds a zero-cost solution if one ex

ists. Then Cost(PaTtAlg{P^C, Caize,CostQ)^C^Caize) ~ 0 implies that Cost{PaTtAlg{P,C,

Caize + I»G'0Si()),C, Catze + 1) = 0.

Proof: we can create a (hypothetical) algorithm which subtracts 1 from its hardware-

size constraint if a zero-cost solution is not found. Given Cgize + 1 as the constraint, then if

a zero-cost is not found, the algorithm will try Cgize the constraint. Thus the algorithm

can always find a zero-cost solution for Caize + 1 if one exists for Caize-

The above theorem states that if a zero-cost solution is found for a given Caize, then

zero-cost solutions will be found for all larger values of Caize aiso. From this theorem we see

that the sequence of cost numbers obtained for Caize = 0,1, AllHardwareSize consists

of X non-zero numbers followed by Caize - ^ zero's, where x € {O.-AllHardwareSize}.

Let CostSequence equal this sequence of cost numbers. Figure 2 depicts an example of a

CostSequence graphically. We can now restate the minimal hardware-constraint problem

as a search problem:

first zero

Cost 500 200 300 350 50 0 0 ... 0 0

constraint 0 1 2 3 4 5 6 AIIHardwareSize

Figure 2: An example cost sequence

Definition 3: Given F, C, PartAlg{) and CosiQ the Minimal Hardware-Constraint

Search Problem is to find the first zero in CostSequence.

Given this definition, we see that the problem can be easily mapped to the well-known

problem of Sorted-army search, i.e. finding the first occurrence of a key in an ordered array

of items. The main difference between the two problems is that whereas in sorted-array

search the items exist in the array beforehand, in our constraint-search problem an item is

added (i.e. partitioning applied and a cost determined) only if the array location is visited

during search. In either case, we wish to visit as few array items as possible, so the difference

does not affect the solution. A second difference is that the first x items in CostSequence

are not necessarily in increasing or decreasing order. Since we are looking for a zero cost

solution, we don't care what those non-zero values are, so we can convert CostSequence to

an ordered sequence by mapping each non-zero cost to 1.

The constraint corresponding to the first zero cost represents the minimal hardware, or

optimal solution to the partitioning problem. Due to the NP-completeness of partitioning,

it should come as no surprise that we can not actually guarantee an optimal solution. Note

that we assumed in the above theorem that PartAlgQ finds a zero-cost solution if one

exists for the given size constraint. Since partitioning is NP-complete, such an algorithm

is impractical. Thus PartAlgQ) may not find a zero-cost solution although one may exist

for a given size constraint. The result is that the first zero in CostSequence may be

for a constraint which is larger than the optimal, or that non-zero costs may appear for

constraints larger than that yielding the first zero cost, i.e. the sequence of zeros contains

spikes. However, the first zero cost should correspond to a constraint near the optimal if a

good algorithm is used. In addition, any spikes that occur should also only appear near the

optimal. Thus the algorithm should yield near optimal results, but of course this can not

be guaranteed.

It is well-known that binary-search is a good solution to thesorted-array search problem,
since it's worst case behavior is log{N) for an array of N items. We therefore incorporate
binary-search into our algorithm.

3.3.2 Algorithm

We now describe our hardware-minimizing partitioning algorithm based on binary-search of
the sequence of costs for the range of possible hardware constraints, which we refer to as the
BCS (binary constraint-search) algorithm. The algorithm uses variables low and high which
indicate the current window ofpossible constraints in which a zero-cost constraint lies, and
variable mid which represents the middle of that window. Another variable, Pzero^ stores
the zero-cost partitioning which has the smallest hardware constraint so far encountered.

Algorithm 3.3 Binary constraint-search (BCS) hw/sw partitioning
low = 0, high = AllHardwareSize

while low < high

mid=

P' = PaTtAlg{P^C,mid^Cost())
if Cosi{P'^ C, mid) = 0

high = mid —1

P — P'* zero —

else

low = mid

return Pzero

The algorithm performs a binary search through the range of possible constraints, ap
plying partitioning and then the cost function as each constraint is ''visited". The algorithm
looks very much like a standard binary-search algorithm with two modifications. First, mid
is used as a hardware constraint for partitioning whose result is then used to determine a
cost, in contrast to using mid as an index to an array item. Second, the cost is compared
to 0, in contrast to an array item being compared to a key.

3.3.3 Reducing runtime in practice

After experimentation, we developed a simple modification of the constraint-search algo
rithm to reduce its runtime in practice. Let sizeb^st be the smallest zero-cost hardware

constraint. If aC„„ constraint much larger than size^,, is provided to PartAlgi), the a-
gorithm usually finds asolution very quickly. The functions causing aperformance violation
are simply moved to hardware. If a constraint much smaUer than siZdeat is provided,
the algorithm also stops fairly quickly, since it is unable to find asequence of moves that
improves the cost. However, if is slightly smaller or larger than sizet^u the algont m
usually makes alarge number of moves, gradually inching its way towards acost of zero.
This situation is very different from traditional binary-search where acomparison of the key
with an item takes the same time for any item. Near the end of binary-search the window of
possible constraint values is very small, with somewhere inside this window. Much
of the constraint-search algorithm's runtime is spent reducing the window size by minute
amounts and reapplying lengthy partitioning.

In practice, we need not find the smaUest hardware size to such adegree of accuracy.
We thus terminate the binary-search when the window size (i.e. high - low) is less than
acertain percentage of AUHardwareSize. This percentage is called an accuracy factor.
We have found that an accuracy factor of 1% achieves a speedup of roughly 2.5. In our
implementation, the user can select alarger or smaller accuracy factor to tradeoff runtime
with accuracy.

3.3.4 Complexity

The worst-case runtime complexity of the constraint-search algorithm equals the complex
ity of the chosen partitioning algorithm PartAlgQ multipUed by the complexity of our
binary constraint-search. While the complexity of the binary search of asequence with
AUHardwareSize items is log2{ AUHardwareSize), the accuracy factor reduces this to a
constant.

Theorem 2: The complexity of the binary search of an N element CostSequence
with an accuracy factor a is /off2(J)-

Proof- We start with awindow size of N, and repeatedly divide the window size by 2
until the window size equals aXN. Let wbe the number of windows generated; wwill thus
give us the complexity. An equivalent value for wis obtained by starting with awindow size
of aXiV, and multiplying the size by 2until the size is N. Hence we obtain the foUowing
equation: (a XJV) X2"" =A. Solving for wyields w= ='off2(;)- The complexity
is therefore log2(^)-

We see that binary constraint-search partitioning with an accuracy factor has the same
theoretical complexity as the partitioning algorithm PartAlgQ. In practice, the binary

constraint-search contributes a small constant factor. For example, an accuracy factor of

1% results in a constant factor of Iog2{l00) = 7.

4 Experimental results

We briefly describe the environment in which we compared the various algorithms. It is
important to note that most environment issues are orthogonal to the issue of algorithm
design. Our algorithms should perform well in any of the environments discussed in other

work such as [1, 2, 3, 4]. It should also be noted that any partitioning algorithm can be
used within the BCS algorithm, not just simulated annealing.

We take a VHDL behavioral description as input. The description is decomposed to
the granularity of tasks, i.e. processes, procedures, and optionally to statement blocks such

as loops. Large data items (variables) are also treated as functions. Estimators of hard

ware size and behavior execution-time for both hardware and software are available [8, 9].
These estimators are especially designed to be used in conjunction with partitioning. In
psirticular, very fast and accurate estimations are made available through special techniques
to incrementally modify an estimate when a function is moved, rather than reestimating
entirely for the new partitioning. The briefness of our discussion on estimation does not

imply that it is trivial or simple, but instead that it is a different issue not discussed in this

paper.

We implemented three partitioning algorithms: the Gupta/DeMicheli algorithm in Sec
tion 3.1 (abbreviated as Gupta), the PWHC algorithm in Section 3.2,andthe BCS algorithm
in Section 3.3. The PartAlg{) used in PWHC and BCS is group migration [6]. The accu
racy factor used in BCS is 1%. We applied each algorithm to several examples: a real-time
medical system (Volume) for measuring the patient's urinary bladder volume [8], and three
industrial designs including a beam former system (Beam), a fuzzy logic control system
(Fuzzy), and a microwave transmitter system (Microwave). For each example, a variety
of performance constraints were input. Some examples have performance constraints on
one group of tasks in the system. Others have performance constraints on two groups of
tasks in the system. We tested each example using a set of performance constraints that
reside between time required for all-hardware partitioning and time required for all-software
partitioning.

The hardware area required for the four examples under different performance con
straints by the three partitioning algorithms is shown in Figure 4. The horizontal axis in

6000 aooo 10000r ^2000
2000 3000

3000 $000
^ I ,,000 .3000 ,
00 soo U0OO..OOO 00,3000 ,00.«»0 .000,3000 000.7000 2000,7000MIcrowavs oo. soo lOO. soo 200.1000 1000. soo

Volume 30.100 90, 100 70.300 ^0.300
S0.500 70,300 1 30,700 .0,000 ^O. 000 «•, 700

Figure 3; Performance constraints imposed on different examples

each graph represents different performance constraints (i.e. C1.. .C10). The
the performance constraints imposed on each example are shown mFigure 3. The u
us dfor performance is clock cycle. The vertical axis represents the hardware area required
L given performance constraints in the unit of micron^. The initial P—^jsed in
each trial by PWHC and BCS is an all-software partitioning. easo ran

starting with an all-software partitioning. _

Figure 5summarizes the experimental results. The run time includes the algorithrn s
computation time and time for building the estimation information. The percent hard
ware excess represents the difference in hardware obtained by an algorithm as compare^^
to the minimum hardware found for the given performance constraint. Resul sso
the Gupta algorithm is fast. The run time required for the BCS algorithm in ewor
case is about eight times longer than the Gupta algorithm. However, with alonger but
stiU practical run time, the BCS algorithm improves the partitioning results tremen on y.
F^ certl performance constraints, the partitions found by the Gupta algorithm requires
129 10 - 2739 45% more hardware than those found by the BCS algorithm, n epar
Sons found by the PWHC algorithm requires 0.0 - 1474.80% more hardware than hose
found by the BCS algorithm. For all performance constraints examined m
average hardware required by the partitions found by Gupta algorithm is 3. ^
more than that required by BCS algorithm. And the average hardware -Smred by th
partitions found by PWHC algorithm is 0.0 - 38.74% more than that required by

tII most important fact to note is that the BCS algorithm always found the smallest
hardware size among the three algorithms.

200000.0 1
Beam

200000.0 p
Fuzzy

tTsooao -

iooooo.opc^

123000.0 -

OBCS
«- -*PWHC

O-—^0>«sa

173000.0^

isoooo.oT

f 123000.0 -

O—OBce
•• -PPWHC
0--OQUP-

\

9
\

100000.0 '

73000.0 .

1

I

iSt.

1 100000.0 -

' 73000.0 -

\

\

90000.0 • 50000.0 • \
23000.0 • 'w \ 23000.0 -

C1C&C9C4C8GeC7CSCe C10

Performance constraims
cicsc3C4C8cec7caoe cio

Pertormance constraints

Figure 4: Hardware required for given performance constraints

Number of
spec, lines,
tasks, and
pert, constr.

492,49. 1

Fuzzy I 292, 70, 1

Microwave I 736, 29, 2

Volume

Algorithms
Average
run time
(in seconds)

Average
percent
hw. exec

30.16%

38.74%

170.21%

147.98%

18.41%

34.67%

Figure 5: Results of Hardware-software Partition

Maximum

129.10%

1474.80%

2739.45%

1258.33%

137.71%

137.21%

5 Conclusion

The constraint-search algorithm excels over previous hardware/software partitioning algo
rithms in its ability to find a minimal-hardware solution that satisfies performance con
straints. The computation time required by the algorithm is practical, and can be greatly
reduced if slightly less accuracy is required. The reduced hardware determined by our al
gorithm has the important benefits of reduced system cost, lower design time, and more
easily modifiable final designs.

References

[1] D. Thomas, J. Adams, and H. Schmit, "A Model and Methodology for Hard
ware/Software Codesign," in IEEE Design & Test of Computers, pp. 6-15, 1993.

[2] A. Kalavade and E. Lee, "A Hardware/Software Codesign Methodology for DSP Ap
plications," in IEEE Design & Test of Computers, 1993.

[3] R,. Gupta and G. D. Micheli, "System-level Synthesis using Re-programmable Com
ponents," in Proceedings of the European Conference on Design Automation, no 2-7
1992.

[4] R. Ernst and J. Henkel, "Hardware-Software Codesign of Embedded Controllers
Based on Hardware Extraction," in International Workshop on Hardware-Software
Co'Design, 1992.

[5] Z. Peng and K. Kuchcinski, "An Algorithm for Partitioning of Application Specific
Systems," in Proceedings of the European Conference on Design Automation, dd. 316-
321, 1993.

[6] B. Preas and M. Lorenzetti, Physical Design Automation of VLSI Systems. California:
Benjamin/Cummings, 1988.

[7] S. Kirkpatrick, C. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing,"
Science, vol. 220, no. 4598, pp. 671-680, 1983.

[8] J. Gong, D. Gajski, and S. Narayan, "Software Estimation from Executable Specifica
tions," in Journal of Computer and Software Engineering, to appear.

[9] S. Narayan and D. Gajski, "Area and Performance Estimation from System-Level
Specifications." UC Irvine, Dept. of ICS, Technical Report 92-16,1992.

[10] W. Ye, R. Ernst, T. Benner, and J. Henkel, "Fast Timing Analysis for Hardware-
Software Co-Synthesis," in Proceedings of the International Conference on Computer
Design, pp. 452-457, 1993.

