
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Temporal Dynamic Weighted Graph Convolution for Multi-agent Reinforcement Learning

Permalink
https://escholarship.org/uc/item/11z508nc

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Liu, Yuntao
Dou, Yong
Li, Yuan
et al.

Publication Date
2022

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/11z508nc
https://escholarship.org/uc/item/11z508nc#author
https://escholarship.org
http://www.cdlib.org/

Temporal Dynamic Weighted Graph Convolution for Multi-agent Reinforcement
Learning

Yuntao Liu (liuyuntao.me@gmail.com), Yong Dou (yongdou@nudt.edu.cn)
National University of Defense Technology

Hunan Changsha, China

Yuan Li, Xinhai Xu∗ ({yuan.li,xuxinhai}@nudt.edu.cn), Donghong Liu∗ (liudonghong@sina.com)
Academy of Military Sciences

Beijing, China

Abstract

In many real-world settings, it is crucially vital for agents to
learn to communicate and cooperate. Different cooperation
models have been proposed to represent cooperative relations
among agents. However, the intensity of the cooperative
relation has not received much attention. In particular, how it
varied with spatial-temporal information has not been studied
deeply. In this paper, we propose a temporal dynamic weighted
graph convolution based multi-agent reinforcement learning
framework (TWG-Q). We design a weighted graph convo-
lutional network to capture cooperative information among
agents. On top of that, a temporal weight learning mechanism
is introduced to characterize intensities of cooperations. We
design a novel temporal convolutional network in the temporal
dimension to extract effective features for the multi-agent
reinforcement learning. Extensive experiments show that
our method significantly improves the performance of multi-
agent reinforcement learning on the public benchmark of
micromanagement tasks in StarCraft II.
Keywords: multi-agent reinforcement learning; graph convo-
lutional network; temporal convolutional network

Introduction
Cooperation among agents performs an important role in
multi-agent reinforcement learning (MARL)(Foerster, As-
sael, De Freitas, & Whiteson, 2016; Kim et al., 2019;
Tung, Pujol, Kobus, & Gunduz, 2021; W. Z. Wang, Shih,
Xie, & Sadigh, 2022). Recently, value decomposition
MARL methods, i.e., Value Decomposition Network(VDN)
(Sunehag et al., 2018) and QMIX (Rashid et al., 2018) are
proposed for learning cooperation in MARL. Value decom-
position methods make agents cooperate with each other to
accumulate higher reward by maximizing the global Q-value
which is a combination of individual Q-values that condition
on partial observations and individual actions. However,
there is less cooperation modeling in value decomposition
MARL methods (OroojlooyJadid & Hajinezhad, 2019). The
value decomposition mechanism can only lead agents to act
in an individual way instead of a cooperative way (Jiang, Dun,
Huang, & Lu, 2020; Nguyen, Nguyen, & Nahavandi, 2020).

To address this problem, communication-based MARL
methods have been proposed to promote cooperations among
agents. Some early works (Sukhbaatar, Szlam, & Fergus,
2016; Peng et al., 2017; Kong, Xin, Liu, & Wang, 2017) con-
sider using the communication channel to share observations

This work was supported in part by the National Natural
Science Foundation of China under Grant 61902425

∗ Corresponding author

among all agents. In such cases, an agent could be flooded
by information as the number of agents grows. (Zambaldi
et al., 2018; Tacchetti et al., 2018; Mao et al., 2020) make
some restrictions that each agent only communicate with its
neighbors. However, it is normally hard to choose proper
neighborhoods of agents in many complex applications which
contain different roles. Moreover, those methods rely on
message transmitting to communicate, which lacks explicit
models for cooperative relations among agents.

In recent years, graph neural networks have been regarded
as a useful tool to model cooperations for multi-agent rein-
forcement learning. DGN (Jiang et al., 2020) introduces the
graph convolutional operation to reveal cooperative features
among agents. (Böhmer, Kurin, & Whiteson, 2020) intro-
duces the framework of multi-agent reinforcement learning
with a coordination graph (CG), which could factorize the
joint value function of all agents into payoffs between pairs
of agents. (Li, Gupta, Morales, Allen, & Kochenderfer, 2021)
proposes the deep implicit CG architecture, which generates
a dynamic CG based on a self-attention network. Similarly,
(Iqbal & Sha, 2019) introduces the self-attention mechanism
for the cooperative weight learning, which takes shared
observations and actions of all agents as inputs. (Liu et al.,
2020) designs a two-stage weight learning mechanism on the
graph to indicate the importance of the interaction between
two agents. The weight learning mechanism relies on features
extracted by the bi-direction LSTM module. However, these
methods only consider features at the current time step and
ignore features in the temporal dimension. Temporal features
are important for the cooperative weight learning because
numerous cooperative behaviors may last for a period. This
is the main starting point of our study.

In this paper, we propose a temporal cooperative weighted
graph convolution MARL method, called TWG-Q, to fit with
the drastic changing cooperation among agents in MARL
systems. Different with (Sukhbaatar et al., 2016), we
design a weight learning mechanism for valuable cooperative
information revealing. Our work is more similar to (Liu et
al., 2020), but we improve the weight learning mechanism
by introducing temporal cooperative features. Firstly, we
construct the multi-agent environment as a weighted graph
to model relations among agents. Nodes represent agents in
the environment and edges correspond to relationships among
agents. We introduce the weighted graph convolutional

743
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

1 2 j n

1

2

j

n

TC Weight Matrix

…

…

…

…

… …

… …

W
e

igh
t En

co
d

e
r

… …

𝒇𝟏
𝒊 𝒇𝟐

𝒊 𝒇𝒋
𝒊 𝒇𝒏

𝒊

Traj.
𝒐𝟐
𝒊

𝒐𝟏
𝒊

𝒐𝑻
𝒊

…

𝝉𝒊

TC
 Laye

r1

TC
 Laye

r2

TC
 Laye

r3

TC-Feature Block 𝝍𝒕𝒄𝒏

𝒏𝒅

𝒏𝒇 𝒏𝒇
𝒏𝒐𝒖𝒕

𝑶𝒃𝒔 𝟏~𝑻

…

𝒏𝒅

𝒐𝟐
𝒊

𝒐𝟏
𝒊

𝒐𝑻
𝒊

𝝉𝒊

Agent i

𝒇𝟏
𝟏 𝒇𝟐

𝟏

𝒇𝒋
𝟏 𝒇𝒏

𝟏

𝒇𝟏
𝒎 𝒇𝟐

𝒎

𝒇𝒋
𝒎 𝒇𝒏

𝒎

…

𝒘𝟏𝟐

𝒘𝟐𝒏

𝒘𝒋𝒏

𝒘𝟏𝒋
𝒘𝟏𝒏

𝒘𝟐𝒋

𝒇𝒊
𝟏

𝑶𝒃𝒔.Agent i

𝒉𝒊 𝒉𝒊′

𝑸𝒊

M
ixin

g M
o

d
u

le
WGCN Module

Q Net

GRU

Agent i

𝒇𝒊
𝒎

Temporal Cooperative Weight Learning Mechanism

Local Utility Network

Local Obs.
Encoder

𝑮𝑪𝑵𝟏 𝑮𝑪𝑵𝑴

Figure 1: The architecture of TWG-Q.

network (GCN) (Kipf & Welling, 2016) to implement the
feature interaction for cooperations. Then we design a
temporal cooperative weight learning mechanism to compute
weights on all edges in the graph. In the temporal dimension,
we introduce a Temporal Convolutional Network (TCN)
(Lea, Flynn, Vidal, Reiter, & Hager, 2017; Bai, Kolter, &
Koltun, 2018; Zatsarynna, Abu Farha, & Gall, 2021) to
extract features over a certain time range. The receptive
field technique in TCN improves the efficiency of temporal
feature extraction greatly. Finally, we compute accurate
weights based on the temporal cooperative weight learning
mechanism.

With TWG-Q, we could generate dynamical weights on
the graph based on the varying temporal information. The
generated weights could accurately character cooperative
relations among agents, which greatly improves the perfor-
mance of MARL methods. We make extensive experiments
on some challenging micromanagement tasks in StarCraft II.
The results show that TWG-Q performs much better than
other popular cooperation MARL methods, which makes a
significate step forward in graph convolution based MARL
methods.

Background
Markov Games
Multi-agent reinforcement learning (MARL) could be mod-
elled by a multi-agent extension of Markov Decision
Processes (Yang et al., 2020). It is represented by <
N,S,{Ai}N

i=1,{Ri}N
i=1,T >, where N is the number of agents.

S is the state space, Ai is the action of agent i(i = 1, · · · ,N),
Ri : S × A1 × ·· · × AN → R is the reward function of agent
i and T = S × A1 × ·· · × AN → [0,1] is the state transition
function. We are specially concerned with a partially
observable Markov game. Each agent i in the partially
observable Markov game gets a local observation oi and

learns a policy πi : oi → P(Ai), where P(Ai) is a distribution
of the action space. The policy maps the local observation
of each agent to a distribution of its action set. The goal of
each agent i is to maximize its reward Ri = ∑

T
t=0 γT rT

i , where
γ ∈ [0,1] is the discounted factor. In our work, we consider a
fully cooperative setting where each agent i receives a partial
observation oi. The action of each agent ai is computed with
its policy πi based on oi at time step t. A reward r is obtained
from the environment after the joint action of all agents is
executed. The reward is used to compute the total loss to
update the neural network.

Graph Convolutional Network
Graph Convolutional Networks (GCNs) introduce convolu-
tions on graphs. Each GCN layer applies message passing to
compute a node representation, where each node aggregates
feature vectors of neighboring nodes. Formally, a GCN
model consists of K-layers and the k-th layer is implemented
as Equation 1

X (k) = ReLU(AX (k−1)W (k)) (1)

where A is the adjacency matrix of the graph. X (k) ∈ RN×dk

is the hidden feature matrix at layer k. X (0) ∈ RN×d is the
input observation vector. The parameter matrix of layer k is
represented as W (k) ∈Rdk×dk . In the GCN model, features are
often fed into an activation function before they are forwarded
to the next layer.

In this paper, we model the communication model by the
GCN in the cooperative MARL approach. The graph is
undirected which is represented by G = (V,E). V is the
vertex set and each vertex vi ∈ V represents an agent entry
in the environment. Each edge ei j in the edge set E connects
two agents {ai,a j}, which reflects the cooperation relation
between agent ai and agent a j. For the GCN model, each
agent can communicate with each other by passing their

744

local observations, which could improve the performance of
MARL methods.

Methods
In this section, we propose a novel cooperative MARL
framework based on the temporal weighted graph convo-
lution network. In the following, we first describe the
overall architecture of our framework. Then we detail two
important components of our framework, i.e., the temporal
cooperative weight learning mechanism and the weighted
graph convolution model.

Overall Architecture
Our framework includes the local utility network, the tem-
poral cooperative weight learning module and the commu-
nication module. The local utility network consists of a
local observation encoder and an action generator. The local
observation encoder contains a Multilayer Perceptron (MLP)
ϕobs. It encodes the local observation ot

i to agent’s local
feature f t

i = ϕobs(ot
i). The communication module involves

a weighted graph convolutional network (WGCN) φgcn and
a temporal cooperative weight learning module ϕw. The
temporal cooperative weight learning module ϕw generates
weight wt

i for WGCN based on temporal cooperative features
extracted from the Temporal Convolutional Network (TCN)
model ψtcn. The WGCN model φgcn takes graph adjacent
matrix A, the temporal cooperative weight wt

i and the local
feature f t

i as inputs and computes the output features gt
i with

cooperative information. The action generator includes a
Gated Recurrent Unit (GRU) ψgru and a Q-value network
ϕq. It takes the local feature f t

i , the cooperative feature
gt

i and the historical information ht−1
i as inputs. Q-values

Qt
i(f t

i ,g
t
i,h

t−1
i ,ai) for all agents are computed based on

local observations and features with cooperative information
captured by the WGCN model. The introduction of the com-
munication model based on the temporal cooperative weight
learning mechanism is beneficial for the action selection.
The reason is that each agent can communicate with each
other to exchange temporal cooperative information. The
agent network architecture of all other agents is similar to
the above-mentioned architecture. During training, the action
is selected with the ε-greedy policy (Wunder, Littman, &
Babes, 2010). To generate the joint Q-value function Qtotal
for computation of loss objective, we introduce the mixing
network to mix up all individual Q-values Qt

i(f t
i ,g

t
i,h

t−1
i ,ai).

The architecture of the mixing network is similar to that
in QMIX (Rashid et al., 2018). It introduces the value
decomposition mechanism into our communication method,
which allows each agent to get the suitable reward based on
the joint reward to achieve better performance.

Temporal Cooperative Weight Learning Mechanism
To generate an accurate representation of cooperative rela-
tions among agents, we introduce a weight learning mecha-
nism into our WGCN module to generate weights over time
to deal with dynamic cooperative relations.

The designed TC weight learning mechanism models the
temporal cooperation based on historical trajectories. The
TC weight learning mechanism module takes the observation
trajectory τi for each agent i as input and outputs the weight
vector wi. Each element wt

i j represents the weight between
agent i and j at time step t. The weight of the cooperation
between any two agents is related to the temporal cooperative
features. The TCN model ψtcn is applied on the whole
trajectory τi to generate temporal cooperative features ftc i.
Then we forward the temporal cooperative features f t

tc i to the
weight network ϕw and compute the TC weight wt

i for agent
i at time step t.

Therefore, we introduce a weight learning mechanism into
the communication model to generate weights over time to
deal with dynamic cooperation relations among agents in
the environment. To generate an accurate representation
of cooperative relations, we consider dynamics cooperative
features.

Now we detail the vital component temporal cooperative
features extractor, namely the TCN model. In the temporal
dimension, the long-term behaviors of agents are critical
for cooperative multi-agent systems, which is often hidden
in trajectories of agents. RNN and its variants (Mikolov,
Karafiát, Burget, Cernockỳ, & Khudanpur, 2010) encode the
historical trajectory one by one in the temporal dimension,
and generate the hidden state to integrate history information.
However, the hidden state at time step t includes all historical
information before t, which makes it hard to extract valuable
features. Moreover, many cooperative behaviors only occur
in a period of time that is much smaller than the duration
of an entire episode. Therefore, for the temporal module,
it is crucial to concentrate on local temporal features over
a certain time range, which is hard to be disposed with
RNN models. Inspired by the receptive field technique
used in the CNN, we introduce the Temporal Convolutional
Network (TCN) as the temporal module. With convolutional
operations, the TCN model has flexible receptive field on
temporal features, which makes it suitable to encode the
cooperative information contained in local temporal features.

A TCN model consists of N temporal convolutional (TC)
layers, which can be described as ψtcn = {l1, l2, · · · , lN}.
Each TC layer consists of a dilated 1D convolutional filter
WFt : {0, · · · ,k−1}→R, the ReLU activation ReLU(·) and a
residual connection WFr : {0, · · · ,k− 1} → R. Formally, the
dilated convolutional operation F on xi, the i-th element of
the sequence feature x ∈ Rn, can be described as

F(i) = (x∗WFt)(i) =
k−1

∑
j=0

WFt(j) ·xi−d· j (2)

where d is the dilation factor, k is the filter size and i− d · j
represents the past features.

The input for each TC layer lk is the output from the former
TC layer lk−1. Particularly, the first TC layer takes agents’
historical trajectories as input features. The activations in
the k-th TC layer are given by HTCNk ∈ Rn f ×T , which can

745

��������������	�
 �������������

����	����	������������������������������������ !��"###$��%�$&#''(�������������������������� ���

))*+)*,)*-)*. / /*+ /*, /*- /*. +0123�45678)/)+)9),)
:)-);).)<)
/))

=6>�?@12�4A8
B=CDEFGHCFCIC+JI21HK55I21ELGMEN72O

(a) MMM2

��������������	�
 ����������������

����	����	����������������������� �!�!��������"#��$%%%&��'�&(%))*����������������������������� ���

+ +,- +,. +,/ +,0 1 1,- 1,. 1,/ 1,0 -2345�6789:+1+-+;+.+
<+/+=+0+>+
1++

?8@�AB34�6C:

D?EFGHIJEHEKE-LK43JM77K43GNIOG594P
(b) 27m vs 30m

��������������	�
 ������
�������

����	����	����������������������� �!�!��������"#��$%%%&��'�&(%))*�������������������
������� ���

+ +,- +,. +,/ +,0 1 1,- 1,. 1,/ 1,0 -2345�6789:+1+-+;+.+
<+/+=+0+>+
1++

?8@�AB34�6C:

D?EFGHIJEHEKE-LK43JM77K43GNIOG594P
(c) 6h vs 8z��������������	�
 ������������������

����	����	�������������������� �!"�#�#��������$%��&'''(��)�(*'++,������������������������������� ���

- -./ -.0 -.1 -.2 3 3./ 3.0 3.1 3.2 /4567�89:;<-3-/-=-0-
>-1-?-2-@-
3--

A:B�CD56�8E<

FAGHIJKLGJGMG/NM65LO99M65IPKQI7;6R
(d) 3s5z vs 3s6z

��������������	�
 ����������������

����	����	������������������������� � ��������!"��#$$$%��&�%'$(()����������������������������� ���

* *+, *+- *+. *+/ 0 0+, 0+- 0+. 0+/ ,1234�56789*0*,*:*-*
;*.*<*/*=*
0**

>7?�@A23�5B9
C>DEFGHIDGDJD,KJ32IL66J32FMHNFO83P

(e) 1m2h vs 8m

��������������	�
 ������������

����	����	������������������������������������ !��"###$��%�$&#''(������������������������� ���

))*+)*,)*-)*. / /*+ /*, /*- /*. +0123�45678)/)+)9),)
:)-);).)<)
/))

=6>�?@12�4A8

B=CDEFGHCFCIC+JI21HK55I21ELGMEN72O
(f) nuke vs cannon

Figure 2: Comparison of TWG-Q with popular MARL algorithms on six different maps.

be described as follows:

ĤTCN k = ReLU(WFt ∗HTCN k−1 +bt) (3)

HTCN k = HTCN k−1 +WFr ∗ ĤTCN k +br (4)

where ∗ denotes the convolutional operator. WFt ∈ R3×n f ×n f

are the weights of the dilated convolutional filters with kernel
3 and n f represents the number of those filters. WFr ∈
R1×n f ×n f are the weights of 1D convolution in the residual
connections. bt ,br ∈ Rn f are bias vectors. The receptive
field can be increased by dilated convolution and increasing
TC layers. Formally, the receptive field at the k-th TC layer
is related to the layer number, which can be determined as
Equation 5:

r f (k) = 3k+1 −1 (5)

Weighted Graph Convolutional Network
In this section we design a weighted graph convolutional
network (WGCN) to model cooperations among agents.

In our WGCN model, the TC weights are organized as an
adjacency matrix. Suppose A is the original adjacency matrix
of GCN. Notice that we construct a complete agent graph, so
all elements in A equal to 1. Each row in the adjacency matrix
B of the WGCN model could be computed by:

Bt
i = wt

i ◦At
i (6)

where wt
i is the TC weight computed in previous section

and ◦ represents the element-wise multiplication between two
vectors. Meanwhile, we add the identity matrix I to keep the
feature of the agent itself, inspired by the idea of self-looping
(Kipf & Welling, 2016).

We now detail the architecture of our WGCN module φ
j
gcn.

Here j ∈ {1, · · · ,m}, where m is the number of layers in

WGCN. Each φ
j
gcn takes the output feature H j−1

WGCN of the
former WGCN layer as input and outputs a vector H j

WGCN .
The main body of the model then computes:

H j
WGCN = σ(Ci(B+ I)H j−1

WGCNW) (7)

Particularly, the input H0
WGCN of the first WGCN layer is the

combination of local features of all agents:

H0
WGCN = { f0; f1; · · · ; fN} (8)

where Ci(·) is the clip function for the adjacency matrix,
Ho is the output of the local observation encoder, W is the
parameters of WGCN and σ is the non-linear ReLU function.

The WGCN model combines the cooperative information
with the local observation of agents and outputs high quality
features HWGCN for the follow-up training of our TWG-Q
model.

Experiments
In this section, we evaluate the performance of the proposed
Temporal Weighted Communication based MARL frame-
work (TWG-Q) in decentralized micromanagement tasks in
the StarCraft Multi-Agent Challenge (SMAC) environment
(Samvelyan et al., 2019), a public benchmark for testing
state-of-the-art MARL approaches. Maps in SMAC are
divided into three levels, i.e., easy, hard and super hard.
In our experiments, we choose four super hard scenarios,
i.e., (MMM2, 27m vs 30m, 6h vs 8z and 3s5z vs 3s6z).
To examine the performance of TWG-Q in the temporal
dimension, we design two special scenarios, 1m2h vs 8m
and nuke vs cannon, with significant temporal characters.
All experiments are conducted with 5 different random

746

��������� ���	
�����������

���	���������	����	�����	�	����������	������� !���"#$%&#��'�(#)*������+�	��	������	
�����	
����������� ���
, ,-. ,-/ ,-0 ,-1 2 2-. 2-/ 2-0 2-1 .3456�789:;,.,/,

0,1,2,,<9=�>?45�7@;
ABCD>E35:F�G44-

(a) 1m2h vs 8m

��������� ��	
��	������

���
��������	
����
����
�
�����������
�������� ��	!"#$%"��&�'"()������*�
�
����	
�����	
��	������ ���

+ +,- +,. +,/ +,0 1 1,- 1,. 1,/ 1,0 -2345�6789:+-+.+
/+0+1++;8<�=>34�6?:

@ABC=D249E�F33,

(b) nuke vs cannon

��������� ��	
������	

�� 	�!"#$%"��&�'"()�����	
�������*���+����	
������	 ���

,-./01203- 456701208944:4;;<.;<=;<>
;<3, ?@A=?@A3?@A,>?@AB.

(c) different rf s

Figure 3: Comparison of different temporal modules and receptive fields.

seeds. The number of training, evaluation episodes and
other hyper-parameters are kept the same as QMIX in SMAC
environment. Our TCN model consists of 3 TC layers and
WGCN model includes 2 WGCN layer.

Performance Evaluation
In this subsection, we compare TWG-Q with some state-of-
the-art communication based methods and the representative
value decomposition method. CommmNet (Sukhbaatar et al.,
2016) is a fundamental one in which MLP is used to deal with
features of all agents. DICG (Li et al., 2021) and DGN (Jiang
et al., 2020) use the coordination graph network and the
graph convolution network to model relations among agents
respectively. In G2ANet (Liu et al., 2020), weights are taken
into consideration, which are computed by a LSTM module.
For value decomposition method, we choose QMIX as the
baseline and a more powerful method, QPlex (J. Wang, Ren,
Liu, Yu, & Zhang, 2021), for comparison. Qplex implements
its value decomposition module based on the idea borrowed
from dueling Q-learning (Sewak, 2019) and achieve state-of-
the-art performance on SMAC environment.

Figure 2 shows the median win rate of different algorithms
across all aforementioned super-hard scenarios. As we
can see, TWG-Q achieves the best performance over all
algorithms. Traditional communication based approaches
perform very poor in such combat tasks, which is much
worse than TWG-Q. IN MMM2, the win rate of TWG-Q is
almost 90% while those of communication based methods
are smaller than 20%. The gap of the win rate between
TWG-Q and communication based methods is quite large
over all maps. Compared with QMIX and Qplex, TWG-Q
also performs better. For the first two super hard maps, i.e.,
MMM2 and 27m vs 30m, TWG-Q improves the win rate by
around 50% compared to QMIX. For the other two super hard
maps in which QMIX and Qplex do not work well, TWG-Q
still gets around a win rate of 50% and 20% respectively.

The scenario 1m2h vs 8m (1 Marauder and 2 Hellion vs
8 Marines) and nuke vs cannon (Ghost with Nuke vs Battle-
Cruise with Cannon) are specially designed with temporal
characteristics. In the scenario 1m2h vs 8m, the unit Hellion
has a high attack power but needs much longer cooldown
time than other attackers. In the scenario nuke vs cannon, the
weapon of the unit ghost is Nuke which can make damages

for enermies in a certain distance but takes a long time to be
recharged. As we can see, TWG-Q performs especially better
than other algorithms. Both value decomposition methods
and other communication based methods get no more than
20% win rate while TWG-Q gets 50% win rate in scenario
1m2h vs 8m. In scenario nuke vs cannon, TWG-Q could
get around 100%, which is 20% higher than QMIX. Other
methods do not work at all. It is also interesting to see that
TWG-Q learns some complicated cooperative behaviors for
the two maps. The unit Marauder draw the enemy’s fire while
two Hellions could find good positions to make large damage
for enemies.

Performance of Temporal Module
In this section, we conduct two experiments to evaluate the
impact of the TCN module on our framework. In the first
experiment, we compare the TCN module with two widely
used sequence modules, i.e., GRU (Chung, Gulcehre, Cho, &
Bengio, 2014) and the self-attention mechanism (Vaswani et
al., 2017). We apply these modules in the weight learning
mechanism to generate TC weight for the communication
model. Experiments are conducted on special scenarios
1m2h vs 8m and nuke vs cannon. Both these scenarios
require temporal cooperation between agents. Results are
shown in Figure 3. We can observe that self-attention mecha-
nism performs worst because it is not suitable to the dynamic
changing temporal cooperative features. The performance of
weight learning with GRU temporal module is better than that
of self-attention model. Actually, GRU records all historical
features and the large number of historical features may be
detrimental to its performance. The TCN module achieves
the best performance, which proves the effectiveness of our
framework.

The second experiment concentrates on the impact of
different sizes of receptive fields (rf s) on the weight learning
mechanism. We set the size of receptive field to 4, 8, 16 and
32 respectively, and then evaluate the performance on two
special scenarios, i.e., 1m2h vs 8m and nuke vs cannon. The
win rate results are shown in Figure 3(c).

As we can see the receptive fields of size 16 and 8 perform
the best in the two scenarios respectively. Thus it is not a
good strategy to set the receptive field to the largest value or
the smallest value. It is a hyper-parameter which depends on

747

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

t=4 t=22

t=35 t=61

2

6

1

9

7 10

5

8

4

3

2

6

1

9

7

10

5

4

8

2

6

1

9

10 5

4

8

2
6

9

10

5

4

8

(a) MMM2 Weighted Graphs.

��������� ��	
������	

��� 	��!"#$%"��&�'"()�����	
�����	
������	 ���

* +* ,* -* .* /* 0* 1* 2*3456**7,*7.*70
72+ 859:4; <=5>4�+<=5>4�,<=5>4�0<=5>4�2<=5>4�+

* +* ,* -* .* /* 0* 1* 2*3456**7,*7.*70
*72+ 8? <=5>4�-<=5>4�.<=5>4�/<=5>4�1<=5>4�@

(b) MMM2 Agent Health.

Figure 4: Results of weighted graph analysis.

concrete example. The best receptive field in the first scenario
is smaller than that of the second scenario. The main reason
is that the time interval of the attacking action for Hellion is
3 which is smaller than that of Nuke, i.e., 6. The two units
are the most important units which could cause the biggest
damage in the two scenarios respectively.

Analysis of Weighted Communications
We take one scenario MMM2 to analyse the variation
of weighted communications, as well as some interesting
cooperative behaviors. Figure 4(a) shows battle records at
some representative steps t = 4,23,35,61 respectively. In
each figure, the importance of relations among agents are
expressed in the form of heat map. Note that the relation
between two agents is not shown in the figure if its weight
is smaller than 0.3. A bigger weight on an edge represents
a higher cooperation among two agents. Figure 4(b) shows
the value of the health point (HP) for each agent. Medivac
(Agent 10) is a unit which could suffer more damage and
have the ability of healing others. The first important trick
learned by TWG-Q is that Medivac flies in the front to draw
the enemy’s fire and then retreat to heal other fighting units.
We can see that the health point of Medivac deceases quickly
at the beginning in Figure 4(b). At t = 4, the weight between
Medivac and the second Marauder (Agent 2) is the highest,
which indicates that the cooperation of the two agents is
important. This also explains the phenomenon that Medivac
flies back to the second Marauder after this time step to
complete the retreat. The second trick to win is to make the
first Marauder (Agent 1) and all Marines move into the front
to cause harm on enemies as much as possible, see records at
t = 22 and t = 35. However, the price of causing so much
damage is deaths of the first Marauder and some Marines
(Agent 3 and 7). As shown in Figure 4(b), their HPs reduce

to zero. At t = 62, the second Marauder leads all Marines
to fight with enemies and finally win the game. In summary,
weighted graphs show that the most important units in this
battle are the Medivac and the second Marauder, as they have
more connections than other units. The second Marauder
leads Marines to fight, so their weights are quite high at
t = 62. Further, if an unit needs to be healed, the weight
of its connection with Medivac usually becomes high. Some
high weights among Marines indicate that allied units can
communicate with each other to complete the retreat action.

Conclusion
This paper proposes TWG-Q, a novel MARL framework with
a weight learning mechanism based on temporal information.
The proposed TWG-Q models cooperative relationships
between agents as a complete graph, where all agents can
communicate with each other. To distinguish valuable
cooperative information, a temporal cooperative weight
learning mechanism is designed to generated weights on the
graph. Temporal cooperative features are used and dealt
with properly to compute weights as accurate as possible.
Especially for amounts of temporal cooperative features over
a certain time range, a TCN module with the receptive
field is designed to efficiently extract valuable temporal
cooperative information. With the agent graph and the
learned temporal cooperative weights, TWG-Q can perform
efficient cooperative policy learning. Empirical results show
that TWG-Q obtains the best performance on the challenging
SMAC benchmark over state-of-the-art communication based
MARL methods. Further, this study also provides an effective
tool to analyze multi-agent cooperative behaviors among
agents though the weighted cooperation graph. It would
be interesting to investigate cooperative behaviors in other
environments with our method.

748

References
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical

evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271.

Böhmer, W., Kurin, V., & Whiteson, S. (2020). Deep
coordination graphs. In International conference on
machine learning (pp. 980–991).

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014).
Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555.

Foerster, J. N., Assael, Y. M., De Freitas, N., & Whiteson,
S. (2016). Learning to communicate with deep multi-agent
reinforcement learning. arXiv preprint arXiv:1605.06676.

Iqbal, S., & Sha, F. (2019). Actor-attention-critic for multi-
agent reinforcement learning. In International conference
on machine learning (pp. 2961–2970).

Jiang, J., Dun, C., Huang, T., & Lu, Z. (2020). Graph
convolutional reinforcement learning. In International
conference on learning representations.

Kim, D., Moon, S., Hostallero, D., Kang, W. J., Lee, T., Son,
K., & Yi, Y. (2019). Learning to schedule communication
in multi-agent reinforcement learning. arXiv preprint
arXiv:1902.01554.

Kipf, T. N., & Welling, M. (2016). Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

Kong, X., Xin, B., Liu, F., & Wang, Y. (2017). Revisiting
the master-slave architecture in multi-agent deep reinforce-
ment learning. arXiv preprint arXiv:1712.07305.

Lea, C., Flynn, M. D., Vidal, R., Reiter, A., & Hager,
G. D. (2017). Temporal convolutional networks for action
segmentation and detection. In proceedings of the ieee
conference on computer vision and pattern recognition (pp.
156–165).

Li, S., Gupta, J. K., Morales, P., Allen, R., & Kochenderfer,
M. J. (2021). Deep implicit coordination graphs for
multi-agent reinforcement learning. In Proceedings of the
20th international conference on autonomous agents and
multiagent systems (pp. 764–772).

Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., & Gao, Y.
(2020). Multi-agent game abstraction via graph attention
neural network. In Proceedings of the aaai conference on
artificial intelligence (Vol. 34, pp. 7211–7218).

Mao, H., Liu, W., Hao, J., Luo, J., Li, D., Zhang, Z., . . .
Xiao, Z. (2020). Neighborhood cognition consistent multi-
agent reinforcement learning. In Proceedings of the aaai
conference on artificial intelligence (Vol. 34, pp. 7219–
7226).

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., &
Khudanpur, S. (2010). Recurrent neural network based
language model. In Interspeech (Vol. 2, pp. 1045–1048).

Nguyen, T. T., Nguyen, N. D., & Nahavandi, S. (2020). Deep
reinforcement learning for multiagent systems: A review of
challenges, solutions, and applications. IEEE transactions
on cybernetics, 50(9), 3826–3839.

OroojlooyJadid, A., & Hajinezhad, D. (2019). A review of
cooperative multi-agent deep reinforcement learning. arXiv
preprint arXiv:1908.03963.

Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long, H., &
Wang, J. (2017). Multiagent bidirectionally-coordinated
nets for learning to play starcraft combat games. arXiv
preprint arXiv:1703.10069, 2, 2.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Fo-
erster, J., & Whiteson, S. (2018). Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G., . . . Whiteson, S. (2019).
The starcraft multi-agent challenge. arXiv preprint
arXiv:1902.04043.

Sewak, M. (2019). Deep q network (dqn), double dqn, and
dueling dqn. In Deep reinforcement learning (pp. 95–108).
Springer.

Sukhbaatar, S., Szlam, A., & Fergus, R. (2016). Learning
multiagent communication with backpropagation. arXiv
preprint arXiv:1605.07736.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V. F., Jaderberg, M., . . . others (2018).
Value-decomposition networks for cooperative multi-agent
learning based on team reward. In Aamas (pp. 2085–2087).

Tacchetti, A., Song, H. F., Mediano, P. A., Zambaldi, V.,
Rabinowitz, N. C., Graepel, T., . . . Battaglia, P. W. (2018).
Relational forward models for multi-agent learning. arXiv
preprint arXiv:1809.11044.

Tung, T.-Y., Pujol, J. R., Kobus, S., & Gunduz, D. (2021).
A joint learning and communication framework for multi-
agent reinforcement learning over noisy channels. arXiv
preprint arXiv:2101.10369.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all
you need. arXiv preprint arXiv:1706.03762.

Wang, J., Ren, Z., Liu, T., Yu, Y., & Zhang, C. (2021). Qplex:
Duplex dueling multi-agent q-learning. In International
conference on learning representations.

Wang, W. Z., Shih, A., Xie, A., & Sadigh, D. (2022).
Influencing towards stable multi-agent interactions. In
Conference on robot learning (pp. 1132–1143).

Wunder, M., Littman, M. L., & Babes, M. (2010). Classes
of multiagent q-learning dynamics with epsilon-greedy
exploration. In Icml.

Yang, Y., Hao, J., Liao, B., Shao, K., Chen, G., Liu, W.,
& Tang, H. (2020). Qatten: A general framework
for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., . . . others (2018). Relational deep
reinforcement learning. arXiv preprint arXiv:1806.01830.

Zatsarynna, O., Abu Farha, Y., & Gall, J. (2021). Multi-
modal temporal convolutional network for anticipating
actions in egocentric videos. In Cvpr (pp. 2249–2258).

749

