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Abstract

Dicrotic Notch (DN), one of the most significant and indicative features of the arterial blood 

pressure (ABP) waveform, becomes less pronounced and thus harder to identify as a matter 

of aging and pathological vascular stiffness. Generalizable and automatic DN identification 

for such edge cases is even more challenging in the presence of unexpected ABP waveform 

deformations that happen due to internal and external noise sources or pathological conditions that 

cause hemodynamic instability. We propose a physics-aware approach, named Physiowise (PW), 

that first employs a cardiovascular model to augment the original ABP waveform and reduce 

unexpected deformations, then apply a set of predefined rules on the augmented signal to find 

DN locations. We have tested the proposed method on in-vivo data gathered from 14 pigs under 

hemorrhage and sepsis study. Our result indicates 52% overall mean error improvement with 16% 

higher detection accuracy within the lowest permitted error range of 30ms. An additional hybrid 

methodology is also proposed to allow combining augmentation with any application-specific 

user-defined rule set.
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1 INTRODUCTION

Arterial Blood Pressure (ABP) waveform carries critical information on both the 

cardiovascular system and its underlying control system [1]. Extraction of such information 

has been the target of research in a wide range of healthcare applications such as 

early hemodynamic impairment detection [2], hypotension prediction [3], and fluid 

responsiveness analysis in critical care [4]. Dicrotic Notch (DN) is a clinically significant 

feature of the ABP waveform that patterns a secondary up-rise in the pressure signal after 

the main maxima. The automatic DN detection becomes challenging as its morphology 

ranges from a clear-cut pressure up-rise to a diminished slope change. The problem is 

intensified under signal deformations due to the presence of many dynamic actors, such as 

internal and external noise sources or pathological conditions, affecting the ABP waveform.

Previously established DN detection methods, categorized as rule-based or model-based 

approaches, commonly target DN detection on normal ABP waveforms and ignore the 

edge cases. As these edge scenarios become more prevalent with aging and underlying 

conditions that increase the vascular beds’ stiffness or hemodynamic instability, automatic 

DN detection methods may fail to capture patterns that do not comply with their preset 

assumptions.

We propose a physics-aware approach, Physiowise (PW), that enhances generalizability 

under ABP waveform deformations. Figure 1 depicts the overall view of the proposed 

method. PW is a combination of modelbased and rule-based methods. The model-based data 

augmentation aims at synthesizing the deformed ABP waveforms closely while omitting 

unexpected patterns that do not comply with the model’s assumptions. This results in 

a much more controlled fluctuation on the augmented ABP waveform in comparison to 

the original ABP waveform. The proposed rule-based algorithm can generate the DN 

placements using this augmented waveform (Figure 1(a)). A user-defined rule-based method 

can also be integrated with our approach (Figure 1(b)). Such a rule-based method is applied 

to both original and augmented data to generate two sets of DN placement markers. A voting 

algorithm receives these identified DN placements and decides the final DN identification 

output.

We propose a novel parameter optimization technique that can highlight DN location under 

waveform deformations, a scenario that has not been covered by model-based methods 

before. To enhance the technique further, we have designed a rule-based algorithm that is 

tuned with the learned parameters from the optimizer. We have compared the performance 

of the proposed algorithm with two pre-existing rule-based algorithms when applied to the 

augmented data and passed through the voting algorithm.
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PW approach is tested on a real-world dataset annotated by a human expert for comparison 

purposes. The dataset time windows are randomly selected from 14 pigs undergoing sepsis 

and hemorrhage studies. The results show a 52% percent overall improvement in mean DN 

detection error and a 25% decrease in its standard deviation. The approach also gains a 16% 

accuracy improvement in the lowest permitted error range of 30ms.

2 PHYSIOLOGICAL BACKGROUND

DN, the transient increase in the ABP curve, is a clinically significant feature that indicates 

the complete closure of the left ventricle and the end of the systolic duration [5]. Left 

ventricle ejection time, defined as the interval between end-diastole and DN, is a primary 

indicative measure for many conditions such as aortic valve disease, left ventricle muscle 

failure [6], ischemic heart disease, heart failure, hypertension, and aortic stenosis [7]. Hence 

the automatic detection of the DN onset and contributing factors is of significance in blood 

pressure study and monitoring.

The DN is widely known to be caused by a brief aortic backflow at the end of ejection 

duration that fully closes the left ventricle [5]. This backflow is a fraction of the forward 

ejection flow reflected off the many-branched vasculature.

In their pioneering work on pulse waveform analysis, Dawber et al. [8–10] define four 

classes for the categorization of DN in the arterial pulse waves (Figure 2). Their study 

shows that DN morphology is closely related to arterial stiffness; Healthy young people 

show clear-cut Class-I DN morphology that may change towards Class-IV with age or 

pathological conditions that increase vascular stiffness.

As expected, the speed of the backflow wave increases as vascular beds become stiffer. 

More delayed arrival of backflow to the aorta in healthy young individuals causes a more 

pronounced DN. A rushed backward wave, however, reduces the phase difference between 

the forward and backward flows and, as a result, the DN prominence.

The cardiovascular system is a closed-loop network of multi-branched vessels continuously 

circulating a complex fluid, blood, using a pulsating pumping organ, the heart. This system 

is also affected by many concurrent internal/external dynamic actors (e.g., autonomic 

nervous system, environmental parameters such as temperature, and various noise sources). 

Hence, the patterns of local flow and pressure signals can be highly complicated and 

unexpected. Figure 3 shows a small selection of various waveforms that we commonly 

observe in our in-vivo dataset. Numerous fluctuations and/or vanishing DN morphology are 

noticeable in these examples. Such complexities must be considered when designing the DN 

detection approaches to achieve high performance and reliability in edge cases.

3 RELATED WORK

Rule-based and model-based approaches are two general methods previously discussed in 

the literature for automatic DN detection using ABP/PPG signals.

SAFFARPOUR et al. Page 3

ACM Trans Comput Healthc. Author manuscript; available in PMC 2024 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rule-based approaches utilize a set of expert-crafted rules to find the DN location. They 

are the dominant approach in real-time applications because of their speed and simplicity. 

Li et al. [11] define an empirical method for DN detection with the assumption that two 

inflation points are present in common blood pressure signals. Then, the first zero crossing 

following the second inflation point indicates the suggested DN location. Singh et al. [12] 

propose using a smoothed version of the first derivative to find the major maximum point 

and thus the DN location on the blood pressure waveform. Chakraborty et al. [13] utilize an 

empirical formula for DN detection using the first and second derivatives of the denoised 

PPG signal. They target DN detection in specific low-resource telemonitoring applications 

where speed and power are limited. To the best of our knowledge, this work is the only 

method with a PPG dataset including pathological conditions from cardiovascular patients. 

Balmer et al. [14] focus on locating the end-systolic point in notch-less ABP waveforms 

derived from distal blood pressure measurements. They use a probabilistic weighting of 

second derivative peaks to recognize the end of the systolic duration while considering the 

previous heartbeat results. As common in most derivative-based methods, the performance 

of rule-based methods is brittle and sensitive to noise and unexpected blood pressure 

deformations. Thus, a rule-based algorithm may fail to generalize in variant deformation 

occurrences where the DN detection can be challenging.

Model-based approaches, on the other hand, use the underlying differential equations 

governing the physiological system to explain the pressure signal and extract the main 

characteristics of the cardiovascular system including the DN location. The model-based 

approaches can potentially generalize under unexpected morphology variations as they 

analyze the underlying physiological system. However, their added complexity and 

non-convex structure make the optimization convergence sensitive to the optimization 

methodology and parameter initialization. As a result, their application for DN detection 

has been limited to close to normal blood-pressure curves where convergence is more easily 

achievable. Hoeksel et al. [15, 16] utilize a simple three-element Windkessel Model [17] to 

estimate the arterial blood flow from the input ABP signal. They locate DN to be where the 

first backflow occurs. Politi et al. [18] studies the effect of vascular resistance on DN shape 

and location using a numerical model of the vessels with viscoelastic walls. Myers et al. 

[19] use a four-compartment cardiovascular model and a four-stage optimization algorithm 

to characterize cardiovascular function. To enhance convergence and performance, their 

algorithm first prioritizes the five most sensitive parameters during the first two stages, 

learns the remaining parameters in the third stage, and refines the parameters manually for 

further improvement in the fourth stage.

In this work, we propose a physics-aware method, PW, that combines the strength of 

both model-based and rule-based approaches. Our proposed model-based augmentation 

methodology is designed to consider ABP waveform deformations that have not been 

covered before. It identifies the common local minima traps and guides the optimizer to 

convergence during two stages of optimization. The proposed rule-based algorithm is then 

fine-tuned with the estimated parameters from the model-based step and applied on both 

ABP and the augmented waveform for final DN placement. To allow application-specific 

modification, our model-based method can be combined with any user-defined set of rules 

using a hybrid voting method.
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This article is a modification and extension of our previous work [20], where we have 

proposed the voting DN detection approach (only with pre-existing rule-based algorithms) 

using a more complex cardiovascular model that has an extra inertance and compliance 

in the vascular section. The complex model can estimate the ABP patterns more closely 

and smoothly in comparison to a simple substitute that we use in this article. Thus, it 

improves the voting accuracy when using a pre-existing rule-based algorithm. Yet the 

higher complexity of the model makes the optimization less robust and the model prone 

to instability. In this work, we use a simpler and more stable model in combination with 

a proposed rule-based algorithm that can compensate for the lower smoothness of the 

augmented curves and achieve much better performance under waveform deformations.

4 PHYSICS-AWARE APPROACH TO PATTERN RECOGNITION: RATIONALE

When it comes to high-risk healthcare applications, the reliability standard is particularly 

strict. Any failure in such applications may cause lifelong damages or even lead to 

death. Real-world healthcare signals may carry various unexpected patterns due to many 

concurrent dynamic actors that are present inside the system and its environment. Pattern 

recognition algorithms must be able to account for such variations to achieve the high-

reliability standard of the clinical domain.

While rule-based pattern recognition methods commonly yield rigid and brittle algorithms 

with low reliability, they are popular in many healthcare applications due to their speed 

and simplicity. Such algorithms may fail to capture the complicated patterns that arise in 

a dynamic system. As a solution, the identification and elimination of patterns that do not 

comply with the rule-based assumptions tend to improve the efficacy of the rule-based 

pattern recognition algorithm. However, this is not a simple task. The natural concurrency of 

dynamic phenomena in the physical system imposes a wide range of possible patterns on the 

captured signal. Hence the level and type of required filtering tend to differ even for different 

parts of the same dataset from the same patient.

Focusing on the DN detection problem, the question that this article tries to answer is 

“whether one can adopt the well-established physiological knowledge in the field to identify 

and eliminate such waveform irregularities in a more generalizable way to enhance detection 

accuracy?”

physics-aware Approach to DN detection: The non-steady nature of the pulsating blood 

flow in addition to the intricate dynamics of the non-stationary multi-branched vascular 

network alongside the effect of many concurrent internal/external dynamic actors make 

the prediction of local flow and pressure signals highly complicated and thus unexpected. 

On the other hand, the DN gets less and less pronounced, the stiffer the vascular beds 

become as a matter of age or other underlying conditions. Given the complicated internal/

external dynamics and the vanishing DN morphology (Figure 2), filtration of irrelevant 

effects on pressure signal is not a simple task. As a result, the filtered signal may carry 

many unexpected deformations that often mislead the rule-based DN detection algorithm. To 

circumvent this problem, we aim at employing physiological prior knowledge in the field. 
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More specifically, we use a model-based method for data augmentation before rule-based 

DN detection.

Model-based learning approaches aim at estimating the parameters of an established 

physiological model of the cardiovascular system, so the estimations of system dynamics 

match the observed ABP data as closely as possible. The parameters optimizer can also 

access prior knowledge on parameters’ range and statistics. As limited as such knowledge 

might be, its incorporation in the learning process helps convergence probability and 

decreases the required learning time. The resulted model-based approach can identify 

the relevant simplified patterns and, thus, augment the input signal by eliminating its 

intractable dynamics. The estimated patterns would be restricted by the boundaries of the 

defining Ordinary Differential Equations (ODE) model. This way, the estimated signal is 

explainable and follows the expected behavior. As such a model considers the underlying 

mathematics that governs the system, the approach can achieve higher generalizability to 

deal with unexpected scenarios that may arise.

5 PHYSIOWISE: PHYSICS-AWARE DN IDENTIFICATION METHODOLOGY

The details of the proposed physics-aware approach are depicted in Figure 4. The 

proposed approach can be segmented into four key components, data preprocessing, data 

augmentation, PW rule-based algorithm, and voting. It is noteworthy that the last two 

components depict two separate DN estimation methodologies.

Data preprocessing is designed for basic noise reduction of the ABP signal. Then, the signal 

is divided into 3-heartbeat windows, each being passed to the data augmentation segment 

separately. During data augmentation, the physiological prior knowledge is employed for 

extracting the relevant signal patterns and eliminating unrecognized noise effects. Learning 

parameters of a simplified cardiovascular model (ODE model) to explain the 3-heartbeat 

input ABP signal, the secondary estimated ABP waveform (output of the ODE solver) would 

only carry effects that comply with the simplified model mathematics. Thus, the deformation 

effect is drastically reduced when augmented data is passed to the rule-based method. PW 

uses the rule-based algorithm proposed in this article. Yet the rules set can be replaced 

with any other user-defined rule-based DN detection algorithm if required for a specific 

application.

The preprocessing component (Figure 4) is designed to reduce the signal noise. We use the 

Savitzky–Golay (S-G) filter [21], a moving average filter to smooth the ABP signal. It was 

selected due to its advantage of sharpedge preservation [22]. However, as expected, it cannot 

fully eliminate the effect of many concurrent dynamics affecting the ABP signal.

5.1 Data Preprocessing

The Mayer waves effect (a cyclic change of ABP waveform [23]) is then assumed to be of 

the form sin 2πfMt + ABP t  where fM is the Mayer wave frequency. fM ≪ 1
T  holds for all 

the input signals in our dataset. We have identified fM by fitting a sine wave to diastolic 

minimum pressures and, then, omitted the effect of the Mayer wave on the signal. We 
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chose to use diastolic minimum points as they are less likely to show extra bumps and 

deformations while the systolic maximum points can commonly be deformed.

5.2 Cardiovascular Model

Our simplified cardiovascular model is composed of three single-input single-output 

compartments connected in a closed-loop (Figure 5(a)). These compartments, the left 
pulsating heart (LPH), arterial systemic compartment (ASC), and post-arterial 
systemic compartment (PASC), are illustrated in Figure 5. Figure 5(b) shows the ASC 

and PASC compartments circuitry.

In Ursino’s model, the heart’s pumping pulses are modeled as an output flow source with a 

single squared sinusoidal pulse during the left ventricular ejection time. We have extended 

the function of Fo, l, the ventricular output flow source, to include the DN activation function. 

As discussed in Section 2, the DN is caused by a brief aortic back-flow at the end of 

systole duration. The effect of aortic back-flow, Fbf, is modeled in Equation (1) as a flow 

source parallel to the Fo, l . V lv and F i, l are left ventricle’s blood volume and input blood flow, 

respectively (detailed equations can be found in Ursino et al. work [24]).

dV lv
dt = F i, l − Fo, l + Fbf .

(1)

Fbf in each heart beat duration is then modeled with a Sine-squared function with magnitude, 

A, duration, Td, and unset time, T u, as shown on Equation (2).

Fbf t = Asin2 π t − Tu
Td

for t ∈ Tu, Tu + Td

0 O . W .

(2)

The ASC and PASC compartments of the cardiovascular model (Figure 5(b)) can be 

explained with Equations (3) to (5). In these equations, V t is the total blood volume. 

Subscripts ex, sa, pa, and la denote left ventricle exit region, systemic arteries, post-arterial 

region, and left atrium, respectively.

dPex
dt = 1

Csa
⋅ Fo, l + Fbf − Fsa ,

(3)

Fsa = Psa − P la
Rsa + Rsp

,

(4)
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P la = 1
Cla

V t − CsaPex − V lv .

(5)

To use a gradient-based optimizer, the model needs to be differentiable. Hence, we 

must approximate and substitute the “unsmooth” components (components that are 

not differentiable) in the model. Among the different components, we identified two 

“unsmooth” groups: the components with a non-negativity constraint (i.e., hydraulic 

compliance, resistance, blood volume, backflow amplitude, and time components) and the 

components with piece-wise functions (Equation (2) and Fo, l and F i, l equations from baseline 

model [24]).

For the first group, we used the soft constraint method. In order to ensure the learned 

parameter P i  is non-negative, a secondary unconstrained parameter P̂ i  is created, where 

P i = exp P̂ i . This way, any function that uses P i remains smooth and due to the natural 

positive value of the exponential function exp P̂ i ∈ 0, ∞ , we are guaranteed to have a 

non-negative P i.

The second group of unsmooth components are piece-wise functions of the form presented 

in Equation (6); where f is a linear function of the numerical time step, tn, Z is a sine-

squared function of tn, and Zm is a constant value. To represent the backflow Equation (2) at 

the numerical time step n, we should set Z tn = Asin2 π tn − Tu
Td

, f tn = tn − t0
tu

, and Zm = 1.

G tn =
0 f tn < Zm

Z tn f tn ≥ Zm
.

(6)

To work with this group of components, we used the tanh function approximation. The 

approximation replaces the piece-wise function with Ĝ, according to Equation (7). α is a 

constant factor defining the slope of transition between −1 and 1 in the tanh function. For 

large values of α, the approximated implementation behaves almost similar to the original 

piece-wise function with a smoother differentiable transition between 0 and Z tn .

Ĝ tn = α
2 Z tn tanh f tn − Zm + 1 .

(7)

5.3 Optimization Methodology

The optimizer’s goal is to minimize the distance between the ODE solver’s output, i.e., 

estimated ABP waveform, and input signal, i.e., preprocessed ABP waveform, by tuning 
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ODE model parameters. It also aims for recognizing major signal features such as systolic 

and diastolic pressures, and DN placement.

The non-linear and non-convex structure of the differential equations governing the 

cardiovascular function (even in its simplified form) makes the parameter optimization step 

quite challenging. While convergence to global minima will not be guaranteed, the optimizer 

can get trapped in a local minima that prevents correct DN detection or does not generate 

a visible DN at all. The cost function, optimizer setting, and parameters’ initialization are 

major contributing factors that should be systematically tuned to mitigate the problem.

5.3.1 Bayesian Cost Function.—Optimization for a non-convex model can be guided 

through its cost function. More specifically, the cost function introduces the optimization 

priorities that can guide the gradient descent algorithm out of unfavorable local minima. 

We have utilized a Bayesian cost function to tackle the challenge of optimization in the 

non-linear and non-convex space under study. Such cost functions are designed to use the 

prior literature-driven knowledge on physiological parameter values to limit the search space 

of the parameter estimation and improve the convergence.

The proposed Bayesian cost function Equation (8) minimizes the sum of two separate 

weighted terms. They are the squared error of the estimated pressure and squared parameters 

displacement at each iteration step j.

Hj = ∥ W d
Pej − P‾ p

σp
∥

2
+ ∥ W e Y ej − Y m ∥2,

(8)

where Pe, P‾ p, σp, Y e, and Y m are estimated parameters vector, parameters average value vector, 

parameters standard deviation vector, estimated arterial pressure, and measured arterial 

pressure, respectively. W d and W e are the weight vectors of the displacement and error terms.

Squared error term: The error term calculates the weighted sum of the squared distance 

between the estimated output and the input signal. The optimizer will be penalized more if it 

misses the most indicative features, namely systolic and diastolic pressures, which have been 

proven to be of significance in prior literature. Before optimization starts the systolic and 

diastolic peaks are pinpointed on the measurement curve, and their indices are fed into the 

cost function’s weight generator ahead of the optimization initiation. To magnify the effect 

of the systolic and diastolic blood pressures in the cost function, W e is then increased for a 

small window around the peaks.

Squared parameter displacement term: The displacement term limits the parameters’ 

search space by considering the prior average value of the parameters, driven by literature, 

and an educated guess over the parameters’ standard deviation. The non-convex optimization 

is guided to convergence by penalizing the cost function with the squared distance between 

estimated and prior average values of the parameter vector. Similar to the squared error term, 

the squared parameter displacement term has the ability to highlight the significant parts of 
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its input by increasing their assigned weights. We use this ability to give more displacement 

freedom to parameters with a higher effect on the estimated signal in comparison to other 

parameters.

A parameter’s displacement freedom is higher if its standard deviation is higher and thus 

an overall lower weight is assigned to its displacement term in the cost function. In other 

words, the optimizer can distance the value of such a parameter from the average at a lower 

cost. Ideally, these weights must be set using the inverse of the covariance matrix driven 

by prior knowledge in the field. However, the values are not readily available in case of 

the cardiovascular modeling. Another solution is to utilize a global sensitivity analysis of 

the cost function with respect to every model parameter (prior to the estimation process) to 

find a rough estimation of the covariance matrix. However, the approach is data-driven and 

case-specific while lacking perspective over the expected physiological parameters’ spread. 

Also, the cardiovascular model stiffness leads to model instability during global sensitivity 

analysis under practically unacceptable parameter ranges which are not of concern during 

the optimization process. Instead, we use an educated guess about the standard deviation 

terms. The selected variances are provided later in the article.

5.3.2 Transient Response Influence.—As parameters vary, through the estimation 

process, the convergence from initial values of the state variables to their new steady-state 

values creates a transient response. In the presence of such a continually-changing transient 

response, the question is which section of the estimation signal, from initial values to the 

steady-state response, should be used to compute the cost function. Ideally, the algorithm 

can learn both the initial values of state variables and the parameters. But this methodology 

overwhelms the learning algorithm and hinders the convergence in our system. In this 

article, the estimation process aims to only fit the steady state response of the model to the 

data. For implementation, we allow a small extra simulation time until the forward ODE 

solver reaches the steady state. Then the steady state results are fed into the cost function as 

the estimated signal, Y ej.

5.3.3 Optimizer Setting.—The parameter estimator algorithms used in this article 

are all gradient descent methods. We calculate the gradient of the cost function H for 

each parameter value using a local sensitivity analysis algorithm. The continuous local 
sensitivity analysis (CSA) method [25] has been selected considering the relatively small 

number of parameters under optimization (less than 100) and its timing benefits.

The forward-mode of CSA calculates the model sensitivities by extending the ODE system 

to include Equation (9); where ∂f
∂u  is the Jacobian of the derivative function f with respect to 

the current state variable, u, and ∂f
∂pi

 is the gradient of the derivative function concerning the 

ith parameter.

d
dt

∂u
∂pi

= ∂f
∂u

∂u
∂pi

+ ∂f
∂pi

.
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(9)

Hence, the sensitivities are computed to the same error tolerance as the original ODE terms 

and only a single numerical ODE solver call is required [25].

5.3.4 Optimization Procedure.—To further advance the optimization strategy, we 

should study the optimization procedure and the effect of each parameter variation on the 

estimated signal. The optimization results show that the optimizer usually gets trapped in a 

local minima under various deformations. This is due to the fact that initialization plays a 

significant role in optimization convergence when dealing with non-convex structures.

To guide the optimizer out of local minima, two significant control knobs are available. 

Those are displacement freedom weights and initial parameter values. For an effective 

tuning of such control knobs, a deeper understanding of the optimization procedure and 

parameters variation effect on the estimated signal is required. We have observed that when 

initializing parameters with values that are driven from literature (Figure 8(a)), the estimated 

signal may be distanced far from the measured ABP. The optimizer would then focus on 

recognizing the outstanding patterns with the highest effect on the cost function, which are 

usually the main maximum and minimum peaks in the signal. In other words, systolic and 

diastolic pressures are the first target of the optimization procedure.

To explain the maximum shape and placement, the optimizer employs all tools at hand, 

including both the main forward pumping flow and the DN backflow. As a result, at the 

end of the optimization step, the backflow features become false contributing factors to the 

main systolic peak and, thus, more resistant to variation. During this stage, the common trap 

is when the optimizer syncs the phases of the forward and backward flows to achieve the 

highest rising maxima during the systolic peak. Due to unexpected deformations near the 

systolic peak, the optimizer may also bring the phases closer together to get higher maxima 

but tune the distance to explain an unwanted deformation near maxima.

First Stage Optimization:  The first stage optimization imitates the general positioning and 

morphology of the blood pressure curve. At the same time, the cost function displacement 

term keeps the parameters in the expected physiological range. Therefore, at the beginning 

of the first stage, the parameters are initialized to their average values P‾ p , derived from 

clinical literature [24]. For parameters with no prior expected values, we have picked the 

initial values based on the optimizer’s stability through several algorithms runs. Table 1 lists 

the initialization of the parameters for the first stage. Commonly there is no visible DN 

placement on the estimated ABP waveform at the end of the first optimization run. Since 

the initial placement and shape of the estimated signal are much distanced from the output 

signal, the optimizer tries to learn the pattern of outstanding features in the output signal, 

namely main peaks. To achieve that, it usually optimizes the parameters to get a similar 

phase on systolic and DN bumps or silences the DN bump in a far-off placement. Therefore, 

the optimizer is commonly trapped in a local minima at this point and cannot find a way 

out. To prevent backflow contribution to the systolic peak, we have manually silenced the 

DN parameters and restrained their variation freedom during this step. Thus, similar to the 

actual cardiovascular system behavior, the optimizer focuses on finding the systolic maxima 
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and diastolic minima only using the main pumping flow and other systemic parameters. The 

optimization results at the end of the first stage are depicted in the Results section, Figure 8, 

part (b).

Second Stage Optimization:  During the second stage initialization, the estimated 

parameters from the first stage optimization are altered to magnify the expected DN location 

in the estimated waveform. A high DN peak is imposed on the previously estimated 

arterial pressure in stage one using the expected average DN placement. The parameter 

displacement freedoms are also set to give freedom to changing backflow parameters while 

restraining all other parameters learned during the last stage. As a result, the optimizer is 

guided out of the local minima to focus on DN shape and location during the second-stage 

parameter estimation. The case-sensitive parameter alteration Equation (10) is applied to the 

backflow parameters to adjust the DN shape and location. The value of Csa is also divided by 

half to increase the downward diastolic slope. This slope is commonly excessively flattened 

during first stage optimization to compensate for dicrotic or other deformation bumps on the 

signal.

Tu
′ = 2

3Tℎb, Tdur
′ = 0 . 15, A′ = 70,

(10)

Csa
′ = Csa

2 ,

(11)

where Tℎb is the heart-beat time period.

The second stage initialization and optimization results are shown in the Results section in 

Figure 8 parts (c) and (d), respectively. The final estimated ABP waveform at the end of the 

second stage optimization visualizes a clear-cut DN identification.

5.4 Proposed Rule-based Algorithm

Our proposed rule-based algorithm extends Li et al. [26] proposed rule-based method to 

account for inputs from the model-based step. Li finds the DN placement by limiting the 

search window on the ABP waveform using some simple preset rules based on the distance 

from systolic and diastolic peaks. Within each search window, the algorithm looks for the 

first zero-crossing point on the first derivative curve. If no zero-crossing points exist in 

the search window, the algorithm finds the first empirical point as the DN placement. This 

method is highly dependent on the search window selection and the noise of the dataset. 

Zero-crossing points are pretty common in a deformed ABP waveform which has been 

misleading Li’s algorithm when applied to our dataset.

The fluctuation of model-based augmentation of the original ABP signal is much smoother 

under the limitations of defined ODEs. These fluctuation patterns meet the physiological 
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prior knowledge to highlight DN location on a deformed waveform. The learned parameters 

of the augmented model can approximate the expected range of DN placement on both 

ABP and its augmented curve. Such input can enhance the accuracy of DN placement while 

simplifying the required rules.

Instead of using distance from peaks, PW overwrites the search window using the learned 

parameters of the model-based augmentation. Also, it uses the augmented and thus smoother 

version of the waveform when finding DN placement. Equations (13) to (14) show the set 

of PW rules that overwrite the lower and upper limits of the search window, tul and tll, if 

overwrite condition Sow is met for heartbeat n . t0, tp, dt, and dm denote the pulse start time, 

systolic peak time, transmission time, and marginal time respectively.

Sow, n = tu, n < tp, n + 3
4 t0, n + 1 − tp, n and tu, n > tp, n + dm ,

(12)

tul, n
′ = min tu, n + dt, t0, n + 1 ,

(13)

tll, n
′ = max tu, n − dm, tp, n + dm .

(14)

5.5 Voting Procedure

The PW approach does not require voting if the proposed rule-based algorithm is used. 

However, if one wishes to use a hybrid modality with another rule-based method of 

choice for a specific application, voting can combine the proposed model-based technique 

in this article and the selected rule-based method to gain higher performance. In such a 

scenario, the proposed model-based approach is first applied to the ABP data to estimate 

the augmented version. Next, both the augmented curve and ABP curve are scanned by 

the selected rule-based algorithm for DN placement. The voting method then receives 

both result sets and compares the DN placements to identify the DN location. During the 

voting procedure, if both rule-based and hybrid algorithms have placed a DN location for a 

heartbeat, the average position is identified as the voting result. Otherwise, if one failed to 

find a DN location in a heartbeat under study, the result of the other algorithm decides the 

DN position.

6 RESULTS

We have implemented the cardiovascular model and the parameter estimator using the Julia 

Language [27–30].
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6.1 Dataset

We have analyzed ABP signals for 24 datasets randomly selected from 4 and 10 pigs 

undergoing sepsis and hemorrhage recovery studies, respectively, for our experimental 

demonstration. The studied pigs are all administered bolus therapy with a rate of 100ml/s 
in continuous ejection and rest time windows of 60s. For the sepsis experiments, the ABP 

was measured using a 5-French intra-arterial sheath placed into the carotid artery. For the 

hemorrhage animals, the ABP was measured using a 7-French catheter that was inserted into 

the carotid artery that was threaded into the proximal aorta. More details about the study can 

be found in [31]. Data acquisition is also done using the PowerLab device [32].

Each random dataset contains 27 heartbeats and there are 648 heartbeats in total. All the 

DNs are manually annotated by an expert physician. These annotations are the gold standard 

against which the performance will be compared. The dataset sampling frequency is 100 Hz. 

We went through the preprocessing method explained in Section 5.1 to remove noise and 

other artifacts from the raw signal as shown in Figure 6.

6.2 Evaluation Metrics

We define the error of DN detection in each heartbeat time-series, b, to be the absolute time 

difference between the gold-standard and detected DN location in each heartbeat Equation 

(15).

Errb = Tdetected − Tgold .

(15)

Using the aforementioned heartbeat-level definition of Err, Equation (16) presents the 

defined DN detection accuracy percentage, AccDi %, in a dataset, Di, containing a vector 

of heartbeats, Bi, under a maximum permitted error, EM.

AccDi % =
100 × card bi, j ∈ Di ∣ Errbi, j ≤ EM

card Di
,

(16)

where card Di  stands for the cardinality of set Di.

6.3 Hyperparameter Tuning

For the optimizer algorithm, we have selected the Adam optimizer [33] for its adaptive 

parameter tuning (with respect to each parameter’s past update history) and momentum 

consideration that can lead to a shorter run time.

We have preset the ADAM optimizer learning rate equal to 0.01 and the first and second 

decay of momentums equal to 0.9 and 0.999 consecutively.
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The results of the proposed optimization methodology demonstrate effective guidance of 

cost function outside unfavorable local minima. To support the choice of three heartbeats per 

optimization, we have included the failed optimization results of a single heartbeat window 

for an example of an ABP waveform (Figure 7). Figure 8 then shows how the proposed 

optimization algorithm can recognize the DN pattern in the same example when using a 

three heartbeat window.

Figures 7(a) and 8(a) each shows a snapshot of the first stage initialization with values 

summarized in Table 1. During this optimization stage, we have identified T sys, Csa, and Rsa as 

the most effective parameters for signal position and swing. Thus, we have assigned a lower 

displacement weight of 0.1 to them while all other parameters’ displacement weight is set 

to 10. To guide the optimizer to focus on systolic and diastolic pattern recognition, W e is 

set to 5 for indices with distance d ≤ 10ms from maximum and minimum and 1 for all other 

indices. The results of the first stage optimization (Figures 7(b) and 8(b)) depict a successful 

learning of systolic and diastolic pressures (maximum and minimum) using both window 

selections.

Then, initializing the parameters for the second stage optimization in Figures 7(c) and 

8(c) creates an exaggerated DN maxima. At this stage of optimization, the most effective 

parameters on DN shape and position are Td, T u, and A. These parameters’ displacement term 

is, thus, set to 10 while keeping other parameters constant. W e term is also reset to 1 for 

all indices including maximum and minimum range as their learning is not the attention of 

this stage of optimization. The final results show successful visual DN recognition in Figure 

8(d) for the three-heartbeat window, while the single-heartbeat window choice in Figure 7(d) 

shows no upstroke (no DN) on the descending part of the estimated wave and gets trapped in 

the local minima. Such behavior is commonplace based on many results we have gathered. 

Intuitively, having more heartbeats during optimization provides a better understanding of 

the parameters’ effect on the signal and reduces the chance of overfitting to a small and 

limited feature window.

6.4 DN Detection Statistics

We have first tested our hybrid approach with two pre-existing rule-based methods [26, 

34]. Alexander Laurin developed the rule-based DN detection algorithm using the technique 

of derivatives and thresholds described by Pan et al. in [34]. Li et al. [26] proposed an 

automatic delineator for the fiducial points of ABP waveforms, namely their onsets, systolic 

peaks, and DN. From this point forward we use the following acronyms for different 

combinations of methods. LRB and PRB are Li’s and Pan’s vanilla rule-based algorithms. 

LHyb and PHyb denote the hybrid method before voting where Li’s and Pan’s rule-based 

algorithms are applied to the augmented waveforms. LVot and PVot are the hybrid voting 

method using Li’s and Pan’s pre-existing rule-based algorithms. PW, as mentioned before, 

would be the PW physics-aware approach where the proposed rule-based algorithm is 

applied to the augmented data without voting.

We present the DN detection results on two datasets in Figure 9 as example plots. The 

depicted results compare the DN detected using pure rule-based, hybrid, voting, and PW 

SAFFARPOUR et al. Page 15

ACM Trans Comput Healthc. Author manuscript; available in PMC 2024 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approaches with expert-annotated golden DN locations. While the proposed method shows 

much more reliable results in many cases of ABP deformations, the rule-based algorithm 

fails to recognize the DN position on the augmented signal in some others. As derivative-

based rules are sensitive to noise and unexpected deformations, they might fail to capture the 

DN due to slight pattern modification. This issue is even worse with second derivatives. A 

voting mechanism improves the statistics of locating DN in such failed cases.

Table 2 provides statistics of DN detection quality under different methods. The results show 

that the hybrid approach with voting can improve the mean error by 17% while reducing its 

standard deviation by 25%. The Table provides the statistics of best and worst per dataset 

cases of DN detection where EM is set to be 30ms (the strict permitted error range), 50ms 

(typical permitted error range), and 70ms (tolerant permitted error range). Focusing on the 

typical error range setting, the results show up to 67% accuracy improvement in the best 

case with only a −14% decline in the worst case. The last row of Table 2 shows the PW 

results. As explained before, PW uses a model-based approach and the proposed rule-based 

algorithm (no voting step) to find the DN placement. We have also used dm = 0 . 05s and 

dt = 0 . 15s when implementing Equations (13) to (14). The results suggest 52% and 54% 

lower error and standard deviation in comparison to the best results of tested pre-existing 

rule-based methods. PW also shows 16% higher accuracy in the permitted error range of 

30ms.

6.5 Discussion

Figure 10 shows the Bland–Altman comparison of LRB algorithm with three methods. 

The comparison with LHyb is depicted in Figure 10(a). This plot shows a poor agreement 

between the rule-based and hybrid methods.

LVot method is compared with LRB method in Figure 10(b), where a slightly higher 

agreement is observable. This plot also suggests that LVot commonly estimates higher DN 

placement in the low-value segment of LRB results, while estimating lower DN placement 

for high-value results. Figure 10(c) shows the comparison with PW input method where PW 

is leaning towards estimating larger values than LRB algorithm with an average difference 

of 37ms. While the overall agreement is lower on this subplot, a stronger agreement than 

previous methods is observable for mid-range values.

We have done a similar Bland–Altman comparison for PRB algorithm and three methods 

on Figure 11. The PHyb approach shows much higher agreement with PRB method (Figure 

11(a)) in comparison to the first comparison in Figure 10(a). As expected, the agreement 

is boosted in Figure 11(b) when using PVot method. Based on these results, Pan’s method 

seems to generate larger DN placement estimates in comparison to Li’s method. Thus a 

slightly higher correlation is observable between PW approach and the PRB algorithms as 

shown in Figure 11(c).

In this article, we consider hard datasets for a specific rule-based algorithm to be the ones 

with an Acc % ≤ 50 % under EM = 50ms. In other words, a dataset is hard for a rule-based 

algorithm if the algorithm cannot find the DN location of more than 50% of its heartbeats 

with Errs ≤ 50ms.
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The DN detection evaluation of 24 datasets finds 10 and 3 hard cases for Li’s [26] and Pan’s 

[34]. We then select three hard cases for each rule-based algorithm and apply our proposed 

DN detection approaches to test the accuracy level for a varying EM. As shown in Figures 

12(a) and 13(a), PW and the hybrid voting methods can achieve superior performance on 

real-world ABP signals prone to noise and artifacts.

We also studied the three worst accuracy degradation cases (at EM = 50ms) when applying 

the voting method to Li’s and Pan’s algorithms. Figures 12(b) and 13(b) show the accuracy 

comparison of the methods applied to these cases for a varying maximum permitted error.

Our study on the hybrid approach shows that even when DN is visually detectable on 

the augmented waveform, the high sensitivity of pre-existing rule-based algorithms to 

unexpected changes might mislead the hybrid algorithm and lower the overall accuracy. 

We have proposed the voting method to mitigate the issue in cases where the pre-existing 

rule-based algorithm fails to correctly detect DN on the augmented signal but returns 

better results with the ABP waveform. Although voting improves the accuracy, fine-tuning 

the user-defined rule-based method to capture the patterns of the augmented signal seems 

essential.

Using the PW and its proposed rule-based algorithm, we can commonly find DN locations 

more accurately or closely comparable to the pre-existing rule-based algorithm. There are 

also a few cases of vanishing DN like dataset 6 on Figure 13(b) that PW does not show 

acceptable performance on. Although we see a comparable performance from PW on some 

data points with vanishing DN, there are some examples where the model-based algorithm 

fails to highlight the DN location correctly when DN is much less pronounced. There are a 

few cases of Class IV ABP waveforms (refer to Figure 2) in the dataset (less than 5% of the 

whole samples) where DN is not visible and the downward ABP shape is a smooth concave 

curve. Yet the authors do not claim better performance in such scenarios.

7 CONCLUSION

In this work, we have proposed a physics-aware methodology with a generalizable DN 

detection capability in the presence of many typical blood pressure curve deformations 

and mild cases of vanishing DN morphologies. The method has shown a 52% mean error 

improvement on real-world expert-annotated pig data undergoing sepsis and hemorrhage 

study. However, more study needs to be done on the possibility of fine-tuning the 

optimization technique or using other time-series measurements to locate DN in severe 

vanishing cases where DN is very subtle or invisible. Although it is out of the scope of 

this article, a more in-depth study of the speed limitations of model-based methods can help 

with extending their usage to also cover the time-constrained target applications where the 

restrictions can be met.
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CCS Concepts:

• Applied computing → Systems biology; • Theory of computation → Nonconvex 

optimization;
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Fig. 1. 
High-level explanation of the proposed approach. (a) PW methodology. (b) Hybrid voting 

method with a user-defined rule-based algorithm.
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Fig. 2. 
Various morphologies of the DN ([8–10]).
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Fig. 3. 
A few examples of ABP waveforms in the dataset and their expert-annotated DN placement.
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Fig. 4. 
Data preprocessing, data augmentation, and both PW and hybrid voting DN detection 

procedure block diagram.
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Fig. 5. 
(a) Three-compartment cardiovascular model overview. (b) Cardiovascular circuit model.

P: pressures, R: hydraulic resistances, C: compliances.
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Fig. 6. 
The ABP signal before and after preprocessing step.
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Fig. 7. 
Failed two-stage optimization algorithm progress in an example of ABP waveform when 

considering only a single heartbeat. (a) First stage initialization. (b) First stage optimization 

results. (c) Second stage initialization. (d) Second stage optimization results.
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Fig. 8. 
Successful two-stage optimization for the aforementioned example of ABP waveform. (a) 

First stage initialization. (b) First stage optimization results. (c) Second stage initialization. 

(d) Second stage optimization results.
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Fig. 9. 
A diverse example of augmentation and DN placement results. All augmented waveforms 

are estimated using three consecutive ABP pulses, yet only the first pulse is shown for 

simplicity.
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Fig. 10. 
Bland–Altman comparison of DN placements using input method 1, LRB, and (a) LHyb 

method as input method 2. (b) LVot method as input method 2. (c) PW as input method 2.
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Fig. 11. 
Bland-Altman comparison of DN placements using input method 1, PRB, and (a) PHyb 

method as input method 2. (b) PVot method as input method 2. (c) PW as input method 2.
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Fig. 12. 
Accuracy of the proposed DN detection approaches applied to 27 heartbeat datasets that (a) 

are hard cases for LRB method. (b) show the worst accuracy degradation at EM = 50ms in 

comparison to LRB method.
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Fig. 13. 
Accuracy of the proposed DN detection approaches applied to 27 heartbeat datasets that (a) 

are hard cases for PRB method. (b) show the worst accuracy degradation at EM = 50ms in 

comparison to PRB method.
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Table 1.

Stage I: Parameters Initialization

Average values driven from [24] and the assigned standard deviations

Compliance ml/mmHg , Hydraulic Resistance (mmHg . s . ml−1), Volume ml

Csa = 0 . 26 Rsa = 0 . 529
Rpa = 0 . 529

V t = 5, 300

σC = 0 . 5 σR = 0 . 5 σV t = 500

Problem-specific initial values and standard deviations

Pressure, mmHg Flow, ml . s−1 Volume, ml Time, s Amplitude

Psa, 0 = 60
Pex, 0 = 30

Fsa, 0 = 5 V lv, 0 = 225 Td = 0 . 02

T u = 0 . 1

A = 10

– – – σT = 0 . 1 σA = 10
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Table 2.

DN Detection Statistics under Different Methods

Overall Err 
statistics

Acc %, EM = 30ms Acc %, EM = 50ms Acc %,EM = 70ms

Method Mean, 
(ms)

SD, 
(ms)

Total Best Dset 
improv.

Worst 
Dset 

improv.

Total Best Dset 
improv.

Worst 
Dset 

improv.

Total Best Dset 
improv.

Worst 
Dset 

improv.

LRB [26] 49 37 41% – – 63% – – 78% – –

LHyb 50 46 40% 37% −55% 59% 48% −53% 76% 52% −46%

LVot 40 44 43% 19% −57% 67% 40% −23% 84% 33% 0%

PRB [34] 42 61 68% – – 86% – – 86% – –

PHyb 48 62 56% 55% −77% 72% 55% −55% 89% 74% −29%

PVot 35 46 66% 37% −59% 87% 67% −14% 91% 76% −7%

PW 20 28 82% – – 89% – – 90% – –
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