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ABSTRACT OF THE DISSERTATION 

 

Computational methods to elucidate post-transcriptional gene regulation  

using high-throughput sequencing data 

 

by 

 

Zijun Zhang 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2019 

Professor Yi Xing, Chair 

 

 

Post-transcriptional regulation plays a central role in the flow of information from 

genotypes to phenotypes in the cellular machinery. Disruptions of post-transcriptional 

regulatory mechanisms underlie many human diseases. As high-throughput sequencing 

technology becomes the standard protocol in studying post-transcriptional regulation, 

large-scale data in public domain provides an unprecedented resource to understand the 

complex regulatory networks of gene regulation, while also presents challenges for the 

development of computational methods to analyze and interpret empirical data into 

biological knowledge. In this dissertation, novel statistical models and computational 

frameworks were developed to elucidate post-transcriptional gene regulation using high-

throughput sequencing data. Utilizing these new tools, we demonstrated that we can 

robustly characterize the molecular signals and variations across diverse biological states, 

and more importantly, identify bona fide regulatory events that are inaccessible by 

conventional analyses. 
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The first part of the dissertation describes CLIP-seq Analysis of Multi-mapped 

reads (CLAM), a comprehensive computational pipeline for analyzing Crosslinking or 

RNA immunoprecipitation followed by sequencing (CLIP/RIP-seq) data. As CLIP-

seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped 

reads, while reads mapped to multiple loci are discarded. CLAM uses an expectation-

maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely 

and multi-mapped reads. CLAM recovered a large number of novel RNA regulatory sites 

inaccessible by uniquely mapped reads in datasets with different regulatory features, 

providing a useful tool to discover novel protein-RNA interactions and RNA modification 

sites from CLIP-seq and RIP-seq data. 

The second part of the dissertation presents Deep-learning Augmented RNA-seq 

analysis of Transcript Splicing (DARTS), a novel computational framework that integrates 

deep learning-based predictions with empirical RNA-seq datasets to infer differential 

alternative splicing between biological conditions. A major limitation of RNA sequencing 

(RNA-seq) analysis of alternative splicing is its reliance on high sequencing coverage. 

DARTS employs a deep neural network (DNN) that predicts differential alternative 

splicing using cis RNA sequence features and trans RNA binding protein levels. DARTS 

DNN trained on public RNA-seq displays a high prediction accuracy and generalizability. 

Incorporating DARTS DNN prediction as an informative prior significantly improves the 

inference of differential alternative splicing. DARTS leverages public RNA-seq big data to 

provide a knowledge base of splicing regulation via deep learning, thereby helping 

researchers better characterize alternative splicing using RNA-seq datasets even with 

modest coverage.  
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Chapter 1  Introduction 

 

Human transcriptomes consist of a versatile collection of RNA molecules. RNAs are 

transcribed from DNAs and subsequently translated into proteins, therefore play a central 

role in linking genotypes to molecular and phenotypical variations. Nascent RNAs 

undergo a variety of co-transcriptional and post-transcriptional processing steps to form 

the final mature RNA products. These steps involve 5'-capping, 3'-polyadenylation, RNA 

splicing, and RNA modifications including RNA editing and RNA base modifications. 

Understanding the molecular mechanisms in human transcriptomes is crucial for 

deciphering the regulatory basis of human cells, and ultimately for the therapeutics 

development for human diseases. 

Among the RNA processing steps, RNA alternative splicing is an essential 

biological process where introns in nascent RNAs are excised, and exons are selectively 

included or excluded, to form mature mRNA products. The vast majority of multi-exon 

human genes are alternatively spliced (1). Through alternative splicing, one gene is 

capable to produce multiple RNA isoforms with distinct exon structures, hence greatly 

diversifies the human transcriptome. Different isoforms of the same gene can have vastly 

different functional characteristics (2, 3). Splicing is a key factor in translating genotypes 

to phenotypical variations (4), and disruption of splicing regulation underlies many human 

diseases (5).  

Another emerging regulatory axis is RNA modifications. More than 140 types of 

chemical modifications have been found in RNA. N6-methyladenosine (m6A) is the most 
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prevalent type of reversible internal modification in eukaryotic mRNAs. m6A-modified 

transcripts enter a separate track of fast decay and fast translation mediated through m6A 

reader proteins (6). A set of reader proteins recognize the m6A-marked bases and affects 

the downstream metabolism of these RNAs. One reader protein, YTHDF2, promotes 

m6A-mediated mRNA decay (7), while another reader protein, YTHDF1, promotes mRNA 

translation (8). The functional consequence of m6A manifest particularly in fast-

proliferating cells, including normal cell differentiation and development, as well as 

disease conditions like cancers (9). Mis-regulation of m6A-associated processes leads to 

stalled cell differentiation and human diseases. 

The complex RNA processing landscape is orchestrated by regulatory networks of 

RNA-binding proteins (RBP) and cross-talks between multiple processing pathways (10). 

The development of high-throughput sequencing technologies has provided powerful 

approaches to study the regulatory network as well as the downstream RNA molecular 

variations at large scale and at fine resolution. RNA-sequencing (RNA-seq) of Illumina 

short reads as well as different long reads technologies have enabled the characterization 

of the global transcriptomic landscape at large scale. Consortium efforts have profiled 

publicly-available RNA-seq across diverse tissue/cell-lines as well as under diverse 

perturbations. To study and characterize the RBPs, crosslinking immunoprecipitation and 

RNA immunoprecipitation followed by high-throughput sequencing (CLIP-seq and RIP-

seq) has enabled transcriptome-wide discoveries of protein-RNA interactions as well as 

RNA modification sites.  

As efforts to elucidate the human transcriptome regulatory patterns, Chapters 2 & 

3 of this dissertation present two novel computational methods for analyzing high-
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throughput transcriptome sequencing data. In detail, Chapter 2 describes a novel 

computational method for analyzing CLIP/RIP-seq data, called CLIP-seq Analysis of 

Multi-mapped reads (CLAM)(11). CLAM uses an expectation-maximization algorithm to 

assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. 

To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-

seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. 

CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely 

mapped reads. The functional significance of these sites was demonstrated by consensus 

motif patterns and association with alternative splicing (splicing factors), transcript 

abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover 

novel protein–RNA interactions and RNA modification sites from CLIP-seq and RIP-seq 

data, and reveals the significant contribution of repetitive elements to the RNA regulatory 

landscape of the human transcriptome. 

Chapter 3 reports a novel computational and statistical framework for analyzing 

RNA alternative splicing events called Deep-learning Augmented RNA-seq analysis of 

Transcript Splicing (DARTS)(12). The rapid accumulation of RNA-seq data across diverse 

cell types and conditions provides an unprecedented resource for characterizing 

transcriptome complexity. However, the use of these large-scale data in routine RNA-seq 

studies to detect patterns of expression and thereby discover new regulatory events has 

been limited. DARTS integrates deep learning-based predictions with empirical evidence 

in specific RNA-seq datasets to infer differential alternative splicing between conditions. 

A core component of DARTS is a deep neural network (DNN) that predicts differential 

alternative splicing using cis RNA sequence features and trans RNA binding protein levels. 
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DARTS DNN trained on public RNA-seq datasets (ENCODE, Roadmap Epigenomics) 

displays a high prediction accuracy and generalizability. Incorporating DARTS DNN 

prediction as an informative prior significantly improves the inference of differential 

alternative splicing, especially from low-coverage RNA-seq datasets. In cellular models 

of the epithelial-mesenchymal transition, DARTS reliably predicted alternative splicing 

changes in lowly expressed genes, that were inaccessible by a conventional RNA-seq 

analysis even at a high sequencing depth. Thus, DARTS capitalizes on large-scale public 

RNA-seq resources to discover differential alternative splicing across diverse 

transcriptomes.  

With these new tools at hand, we can more comprehensively analyze and 

understand the experimental data from human transcriptomes, and more importantly, look 

at the transcriptomic regions and events that are inaccessible by conventional methods 

previously. Because of the natural expression variations in the human transcriptome, 

studies are inherently biased towards ‘visible’ fractions of highly-expressed genes and/or 

high mappability regions, where the experimental information is ample, and the 

measurement is robust. Meanwhile, a non-trivial fraction of the transcriptome is not so 

highly-expressed and/or in less definitive regions. These are the ‘dark matters’ in the 

human transcriptome. To study the dark matters, we need more sophisticated 

computational methods -- CLAM was developed to uncover protein-RNA interaction sites 

in repetitive elements, and DARTS was developed to characterize splicing alterations in 

lowly-expression genes. In the final Chapter of this dissertation, we summarize these 

methodology and data analysis results. The implications of CLAM and DARTS are 

delineated, and ongoing and future directions of CLAM and DARTS are discussed. 



5 
 

 

References 

1. Pan,Q., Shai,O., Lee,L.J., Frey,B.J. and Blencowe,B.J. (2008) Deep surveying of 

alternative splicing complexity in the human transcriptome by high-throughput 

sequencing. Nat. Genet., 40, 1413–1415. 

2. Ellis,J.D., Barrios-Rodiles,M., Çolak,R., Irimia,M., Kim,T., Calarco,J.A., Wang,X., 

Pan,Q., O’Hanlon,D., Kim,P.M., et al. (2012) Tissue-Specific Alternative Splicing 

Remodels Protein-Protein Interaction Networks. Mol. Cell, 46, 884–892. 

3. Yang,X., Coulombe-Huntington,J., Kang,S., Sheynkman,G.M., Hao,T., 

Richardson,A., Sun,S., Yang,F., Shen,Y.A., Murray,R.R., et al. (2016) Widespread 

Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell, 164, 

805–817. 

4. Li,Y.I., van de Geijn,B., Raj,A., Knowles,D.A., Petti,A.A., Golan,D., Gilad,Y. and 

Pritchard,J.K. (2016) RNA splicing is a primary link between genetic variation and 

disease. Science (80-. )., 352, 600–604. 

5. Park,E., Pan,Z., Zhang,Z., Lin,L. and Xing,Y. (2018) The Expanding Landscape of 

Alternative Splicing Variation in Human Populations. Am. J. Hum. Genet., 102, 11–

26. 

6. Zhang,Z., Park,E., Lin,L. and Xing,Y. (2018) A panoramic view of RNA modifications: 

exploring new frontiers. Genome Biol., 19, 11. 

7. Wang,X., Lu,Z., Gomez,A., Hon,G.C., Yue,Y., Han,D., Fu,Y., Parisien,M., Dai,Q., 



6 
 

Jia,G., et al. (2014) N6-methyladenosine-dependent regulation of messenger RNA 

stability. Nature, 505, 117–20. 

8. Wang,X., Zhao,B.S., Roundtree,I.A., Lu,Z., Han,D., Ma,H., Weng,X., Chen,K., Shi,H. 

and He,C. (2015) N6-methyladenosine modulates messenger RNA translation 

efficiency. Cell, 161. 

9. Frye,M., Harada,B.T., Behm,M. and He,C. (2018) RNA modifications modulate gene 

expression during development. Science, 361, 1346–1349. 

10. Gerstberger,S., Hafner,M. and Tuschl,T. (2014) A census of human RNA-binding 

proteins. Nat. Rev. Genet., 15, 829–845. 

11. Zhang,Z. and Xing,Y. (2017) CLIP-seq analysis of multi-mapped reads discovers 

novel functional RNA regulatory sites in the human transcriptome. Nucleic Acids 

Res., 45, 172–177. 

12. Zhang,Z., Pan,Z., Ying,Y., Xie,Z., Adhikari,S., Phillips,J., Carstens,R.P., Black,D.L., 

Wu,Y. and Xing,Y. (2019) Deep-learning augmented RNA-seq analysis of transcript 

splicing. Nat. Methods 2019 164, 16, 307. 

 



7 
 

Chapter 2  CLIP-seq Analysis of Multi-mapped reads 

 

2.1 Introduction 

Mammalian genomes encode over a thousand RNA binding proteins (RBPs) that play 

important roles in RNA processing and metabolism (1,2). RBPs interact with their cognate 

sequences and/or structural elements within the RNA to impact diverse aspects of post-

transcriptional regulation, including splicing, polyadenylation, transport, stability and 

translational control, as well as RNA base modifications (3). For example, many RBPs 

function as splicing factors through interactions with cis splicing regulatory elements 

within the pre-mRNA (4). In recent years, there have been intense efforts to identify and 

characterize RBPs using high-throughput methods. For example, technologies such as 

SELEX-seq (5), RNAcompete (1), and RNA Bind-n-Seq (6) have been developed to 

define the in vitro binding motifs of numerous RBPs. 

A powerful strategy for transcriptome-wide mapping of RBP-RNA interactions and 

RNA regulatory elements is immunoprecipitation followed by high-throughput sequencing 

(7). Two popular approaches are CLIP-seq (crosslinking with immunoprecipitation 

followed by sequencing) (8-10) and RIP-seq (RNA immunoprecipitation followed by 

sequencing) (11). The standard protocol of CLIP-seq involves crosslinking protein-RNA 

interactions by UV, immunoprecipitating the RBP-RNA complexes by antibody, then 

sequencing cDNA library to generate short reads typically ranging between 35bp to 50bp. 

Three versions of CLIP-seq (HITS-CLIP, PAR-CLIP and iCLIP) deliver datasets with 

distinct features due to their technical differences and biases (12). RIP-seq experiments 
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are performed in similar procedures, but RIP-seq does not include the UV-crosslinking 

step, resulting in reduced resolution of the binding sites and lower signal-to-noise ratios 

(13). Besides detecting RBP-RNA interaction sites, RIP-seq and CLIP-seq have also 

been utilized for detecting RNA base modifications, in particular N6-methyladenosine 

(m6A) (14), revealing the prevalence and dynamic landscape of reversible RNA base 

modifications in the human transcriptome (14,15). 

Despite the increasing popularity and widespread use of CLIP-seq and RIP-seq 

for mapping RBP-RNA interaction and RNA modification sites, existing computational 

approaches for analyzing these data still have important limitations.  As CLIP-seq and 

RIP-seq reads are short (usually <50bp), in a conventional data analysis workflow, reads 

are mapped to the genome and transcriptome, uniquely mapped reads are retained, and 

RBP binding sites are identified by appropriate statistical models for peak calling (12) 

(Figure 2.1A). However, by restricting the analysis to uniquely mapped reads and 

removing reads mapped to multiple genomic loci, a potentially large catalog of regulatory 

sites residing in duplicated and repetitive regions of the transcriptome will be under-

detected or inaccessible. Given that approximately half of the human genome is 

comprised of transposable elements (16), and a variety of RBPs such as hnRNPC, 

ADAR1, and STAU1 have binding sites derived from highly repetitive transposable 

elements (17-20), the restriction to uniquely mapped reads represents a significant source 

of false negatives in site identification from CLIP-seq and RIP-seq datasets.  

Here, we present CLAM (CLIP-seq Analysis of Multi-mapped reads), a new 

computational method for CLIP/RIP-seq data analysis and peak calling utilizing multi-

mapped reads. We applied CLAM to published CLIP-seq data of 18 RBPs, as well as 



9 
 

RIP-seq data of the m6A RNA modifications. In all datasets, CLAM recovered a large 

number of novel RNA regulatory sites inaccessible by conventional analyses of uniquely 

mapped reads. We further demonstrated the physical and functional relevance of the 

identified CLAM sites based on consensus motif patterns as well as correlation with 

relevant RNA regulatory features. Altogether, CLAM provides a useful and widely 

applicable computational tool to discover novel functional protein-RNA interaction sites 

and RNA modification events from CLIP-seq and RIP-seq data, and reveals the significant 

contribution of repetitive elements to the RNA regulatory landscape of the human 

transcriptome. 

 

2.2 Results 

2.2.1 CLAM statistical model for multi-mapped reads in CLIP-seq and RIP-seq 

data 

To utilize multi-mapped reads in CLIP-seq and RIP-seq data and improve peak calling in 

highly repetitive regions, we developed CLAM, which assigns multi-mapped reads using 

an Expectation-Maximization (EM) framework, followed by peak calling with a 

permutation-based procedure commonly used for CLIP-seq and RIP-seq data (Methods). 

The statistical model of CLAM was inspired by previous work on resolving multi-mapped 

reads in RNA-seq (24,41,42) and ChIP-seq data (43,44), while features specific for CLIP-

seq and RIP-seq data were incorporated in the model. Below we briefly illustrate the 

CLAM algorithm, using one read mapped to two genomic regions as the example (Figure 

2.1B). CLAM first collapses reads into genomic regions. The two genomic regions in 

Figure 2.1B have 6 and 2 uniquely mapped reads respectively, while sharing one multi-
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mapped read which will be resolved by CLAM. As certain RBPs (e.g. AGO2) could have 

long footprints on mRNA transcripts due to multiple overlapping binding sites (45), we 

designed the EM algorithm in CLAM to assign a multi-mapped read based on the mapping 

status of other reads (uniquely + multi-mapped) within a defined local window surrounding 

the read of interest (Methods). The algorithm iterates between inferring the expected true 

origins of multi-mapped reads and deriving the Maximum Likelihood Estimates (MLE) for 

the probabilities of reads derived from specific regions, until it reaches convergence. In 

the hypothetical example in Figure 2.1B, for the multi-mapped read CLAM will assign 

0.75 and 0.25 read to the left and right regions respectively to achieve the maximum 

likelihood. Once multi-mapped reads are re-assigned, a permutation test will be 

performed for peak calling combining uniquely-mapped reads and CLAM assignment of 

multi-mapped reads (Materials and Methods). 

To systematically evaluate the behavior of the CLAM EM framework for re-

assigning multi-mapped CLIP-seq reads, we generated a benchmark dataset by 

truncating the hnRNPC iCLIP (19) reads by 10bp from the 3’ end then remapping the 

truncated reads to the genome. This strategy enabled us to assess the algorithm 

performance on “gold-standard” reads that were uniquely mapped in the full-length 

dataset but became multi-mapped in the truncated dataset. For comparison, we 

implemented and evaluated two alternative models: 1) assigning multi-mapped reads 

uniformly with equal weights for all mapped regions (“uniform” model); 2) assigning multi-

mapped reads weighted by local counts of uniquely mapped reads, which corresponds to 

the first iteration of EM (“one-iter” model). Then we assessed the accuracy of re-assigning 

these reads to the known originating loci (positive loci) over the rest of multi-mapped loci 
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(negative loci) by AUROC (Area Under Receiver Operating Characteristic curve), AUPR 

(Area Under Precision-Recall curve), and the median/mean weight for positive vs 

negative loci. As illustrated in Table 2.1, uniform assignment of multi-mapped reads 

resulted in the poorest performance. Although the CLAM model and the one-iter model 

achieved comparable AUROC and AUPR values, detailed analyses indicated that the 

CLAM model as compared to the one-iter model assigned higher weights to positive loci 

(0.62 vs 0.50) and lower weights to the negative loci (0.02 vs 0.13), demonstrating its 

superior performance.  

In sum, CLAM is a two-stage algorithm that first re-assigns the multi-mapped reads 

using a statistical model (i.e. EM), followed by peak calling using the information of both 

uniquely-mapped reads and multi-mapped reads. Compared to conventional CLIP-

seq/RIP-seq peak calling procedures of using only uniquely-mapped reads, CLAM can 

discover a large number of novel sites inaccessible by conventional methods, as 

demonstrated by our systematic assessments using multiple datasets below. It should 

also be noted that while EM and permutation test could be slow, we used computational 

techniques to boost the speed of CLAM. For EM-based probabilistic read assignment, we 

implemented Binary Indexed Tree (BIT) for faster reading and updating of weights. For 

permutation test based peak calling, we implemented a multi-threading framework for 

parallel peak-calling on a gene-by-gene basis. As a result, CLAM has reasonable running 

time that scales well to the total library size. 
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2.2.2 CLAM rescues multi-mapped reads and discovers novel sites in CLIP-seq 

and RIP-seq data 

To assess the utility of CLAM, we first applied it to three published datasets on hnRNPC, 

AGO2, and m6A (Table 2.2). We chose these three datasets because they were 

associated with distinct RNA regulatory processes (alternative splicing, microRNA 

targeting, and m6A methylation respectively), and included both CLIP-seq (hnRNPC, 

AGO2) and RIP-seq (m6A) data. Each dataset had two biological replicates. After 

preprocessing and adapter trimming, the average read lengths were 40, 44, and 50 for 

the three datasets respectively.  We then calculated the percentage of multi-mapped 

reads among all mapped reads. As shown in Figure 2.2A, approximately 10% to 18% of 

reads were multi-mapped across the six samples. Using CLAM, we were able to rescue 

the vast majority (83% to 92%) of multi-mapped reads, representing a significant gain in 

read coverage especially in repetitive regions of the transcriptome (see below). A small 

proportion (~10%) of multi-mapped reads were not analyzed by CLAM because they did 

not cluster to genomic regions (i.e. singleton reads with no other reads in vicinity), or were 

mapped to too many (≥100) regions and therefore discarded (see details in Methods). 

The rescued multi-mapped reads were significantly enriched in repetitive regions. 

We obtained the annotation of repetitive elements in the human genome from the UCSC 

RepeatMasker track then calculated the percentage of uniquely-mapped and multi-

mapped reads within different classes of repeats as well as non-repeat regions 

(Supplementary Figure 2.7). In all three datasets, the percentage of multi-mapped reads 

was much higher in repetitive regions as compared to non-repeat regions, thus creating 

a challenge for peak calling within repetitive regions. For example, in the hnRNPC dataset, 
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37% of reads mapped to antisense Alu elements were multi-mapped, as compared to 

only 3% for reads mapped to non-repeat regions. Overall, only 8% of multi-mapped reads 

in the hnRNPC dataset were mapped to non-repeat regions, while 60% of multi-mapped 

reads were mapped to antisense Alu elements (Supplementary Figure 2.7) , consistent 

with a previous report on widespread hnRNPC binding within antisense Alu elements (19). 

When we ranked the repeat family by their total number of multi-mapped reads, Alu, L1 

and simple repeat were consistently among the top families with the highest number of 

multi-mapped reads across the three datasets (Supplementary Figure 2.7). 

We next assessed CLIP-seq/RIP-seq peak calling by CLAM. We adopted a 

commonly used permutation procedure for CLIP-seq or RIP-seq peak calling (19,26,27), 

and defined genomic loci with gene-specific FDR < 0.001 as peaks. We performed peak 

calling using: a) uniquely mapped reads only; and b) uniquely mapped reads plus CLAM 

assignments of multi-mapped reads. We classified peaks called from the above 

procedures into three distinct categories: “common peaks” that were called in both 

procedures, “rescued peaks” that were called only with multi-mapped reads incorporated, 

and “lost peaks” that were called using uniquely-mapped reads but not with multi-mapped 

reads incorporated.   

Compared to a naïve read mapping and peak calling procedure using only uniquely 

mapped reads, a substantial number of rescued peaks were identified from all three 

datasets by CLAM (Table 2.3). While a certain number of peaks called by the naïve peak 

calling procedure were lost in the CLAM results, these lost peaks were much smaller in 

number as compared to rescued peaks called with incorporating multi-mapped reads 

(Table 2.3). For example, in the hnRNPC dataset, we had 26,594 rescued peaks on 
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average in the two samples, as compared to 6,898 lost peaks on average. Moreover, the 

majority of these lost peaks can be recovered from the CLAM results of multi-mapped 

reads simply by using a relaxed (higher) FDR cutoff (Figure 2.2B), suggesting that these 

peaks were lost due to random statistical fluctuations. For example, by relaxing the gene-

specific FDR cutoff from 0.001 to 0.005 in the hnRNPC dataset, we were able to recover 

94% of lost peaks. The reverse was not true – only 25% of rescued peaks could be 

identified using only uniquely mapped reads at this higher FDR cutoff, demonstrating the 

importance of modeling multi-mapped reads in CLAM. We observed the similar trend in 

the AGO2 and m6A datasets, in which we could recover a much higher percentage of lost 

peaks by relaxing the FDR cutoff, but much less so on rescued peaks if using only 

uniquely mapped reads (Figure 2.2B). We also noted that in the AGO2 and m6A datasets, 

a number of “lost peaks” were the only visible peaks in their respective genes when only 

uniquely mapped reads were considered, but could not pass the gene-specific FDR cutoff 

when multi-mapped reads in these genes were rescued by CLAM.  

As expected, the rescued peaks were strongly enriched in repetitive elements as 

compared to common peaks across all three datasets (Figure 2.2C). For example, 

rescued peaks for hnRNPC were strongly enriched in antisense Alu elements, consistent 

with previous findings about hnRNPC binding sites within antisense Alu (19). We noted 

that 76% of rescued peaks for hnRNPC were located in antisense Alu elements, as 

compared to only 36% for common peaks. Similarly, Alu elements also showed a 

significant enrichment in rescued peaks for AGO2 and m6A.  
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2.2.3 Rescued peaks for hnRNPC were associated with alternative splicing 

Next, we assessed the functional relevance of rescued CLAM peaks, by correlating these 

peaks with relevant RNA regulatory features. We first analyzed the rescued CLAM peaks 

for hnRNPC, a splicing factor known to bind to poly-U tracts within the pre-mRNA to 

regulate alternative splicing. Using the Zagros de novo motif finder (32) for CLIP-seq data, 

we found a significantly enriched poly-U motif within both common peaks and rescued 

peaks (Figure 2.3A), suggesting that the rescued peaks have the same binding 

properties with hnRNPC as the common peaks. We then evaluated the potential functions 

of these rescued peaks, by investigating whether they were in the vicinity of alternative 

exons regulated by hnRNPC. To identify hnRNPC-dependent exons, we re-analyzed the 

RNA-seq data of hnRNPC knockdown in the same cell type (19) using rMATS (34), and 

ranked all exon-skipping cassette exons with sufficient RNA-seq coverage for differential 

splicing by their rMATS ∆𝜓 values (i.e. the difference of exon inclusion level between 

hnRNPC control and knockdown; see Materials and Methods). We defined an alternative 

exon as being associated with a CLIP-seq peak, if the peak was located within the exon 

body or in intronic regions within 250bp of the exon. We hypothesized that if rescued 

CLAM peaks indeed represented functional protein-RNA interaction sites, we would 

observe an enrichment of exons associated with rescued peaks among hnRNPC-

dependent alternative exons identified by RNA-seq. Specifically, as hnRNPC is known to 

repress exon inclusion (19), its direct target exons should have higher splicing levels upon 

hnRNPC knockdown. To test this hypothesis, we performed a Kolmogorov–Smirnov 

statistical test similar to the gene set enrichment analysis (GSEA) algorithm (35), by 

comparing the rankings of exons with or without hnRNPC peaks within the ∆𝜓 ranked list 
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of hnRNPC-dependent exons. Indeed, exons with rescued peaks were strongly enriched 

towards the left side (∆𝜓 < 0) of the list (p-value<2.2e-16, Figure 2.3B, top panel), with 

the enrichment score peaked around RNA-seq ∆𝜓 of 0 then decreased gradually. We 

observed an almost identical trend for exons associated with common peaks (Figure 

2.3B, bottom panel). Two representative examples of hnRNPC-dependent exons 

associated with rescued peaks were shown in Figure 2.3C-D. In Figure 2.3C (DDIAS), 

RNA-seq data revealed an exon with significantly elevated splicing upon hnRNPC 

knockdown, but no peak was observed in the vicinity of this exon using uniquely mapped 

CLIP-seq reads. However, this exon had a number of multi-mapped reads. These reads 

mapped to distinct sets of other genomic loci, while all of them mapped to this DDIAS 

exon. Therefore, CLAM rescued and assigned these multi-mapped reads to this exon, 

resulting in the identification of a strong hnRNPC peak. Another example was provided 

for SNHG17, in which CLAM discovered a strong hnRNPC peak within an hnRNPC-

dependent alternative exon, while the coverage by uniquely mapped CLIP-seq reads was 

low and no peak can be identified within the exon (Figure 2.3D). Of note, in both genes 

the rescued peaks were located within a primate-specific Alu retrotransposon, indicating 

the creation of species-specific splicing regulatory sequences from repetitive elements.  

 

2.2.4 Rescued peaks for AGO2 were associated with microRNA-mediated mRNA 

repression 

Next we used CLAM to analyze a CLIP-seq dataset of AGO2 in the GM12878 

lymphoblastoid cell line (LCL) (30). AGO2 belongs to the Argonaute (AGO) protein family 

and plays a critical role in RNA silencing including microRNA-mediated mRNA repression 
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(46). CLIP-seq analysis of AGO2 allows transcriptome-wide identification of microRNA 

binding sites (47). CLAM rescued >2,000 peaks from the AGO2 CLIP-seq data (Table 

2.2), with over half of these rescued peaks located within repetitive elements (Figure 

2.2C).  

To assess if these rescued peaks represented functional microRNA target sites, 

we ran TargetScan (36) to predict the microRNA target sites within each CLIP-seq peak. 

We then selected two microRNAs (miR-21 and miR-107) for detailed analyses of the 

predicted TargetScan microRNA target sites. These two microRNAs were selected 

because they both were abundantly expressed in the GM12878 LCL cell line according 

to small RNA sequencing data, and global microarray data of mRNA expression following 

ectopic expression or inhibition of the microRNA were available in the published literature 

(see Methods for details). For each microRNA, we obtained three categories of genes: 

genes with common peaks containing microRNA target sites; genes with rescued peaks 

containing microRNA target sites; and background genes with no AGO2 CLIP-seq peaks. 

We then calculated the fold change of gene expression level upon ectopic expression or 

inhibition of the microRNA, then plotted the cumulative density function of the log2 fold 

change values for the three categories of genes (Figure 2.4). For miR-21, genes with 

commons peaks and rescued peaks both had a significant increase in expression levels 

as compared to background genes following microRNA inhibition (p-value<2.2e-16 and 

p-value<2.2e-16 respectively, Kolmogorov–Smirnov test), consistent with de-repression 

of target mRNA levels (Figure 2.4A). By contrast, for miR-107, genes with common peaks 

and rescued peaks both had a significant decrease in expression levels as compared to 

background genes following microRNA overexpression (p-value=4.8e-7 and p-
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value<2.2e-16 respectively, Kolmogorov–Smirnov test), consistent with repression of 

target mRNA levels (Figure 2.4B). These data are characteristic of microRNA’s effects 

on target genes (48), suggesting that the rescued AGO2 peaks provide functional target 

sites for microRNA-mediated mRNA repression.  

 

2.2.5 Rescued peaks for m6A were associated with mRNA stability control 

To test CLAM on RIP-seq data, we applied it to our published RIP-seq data of N6-

methyladenosine (m6A) in the H1 human embryonic stem cells (ESCs) (31). The m6A 

modification involving the addition of a methyl group to the N6 position of adenosine is a 

widespread reversible RNA modification in mammalian cells. RNA immunoprecipitation 

by m6A specific antibody followed by sequencing is a popular strategy to identify m6A 

sites across the transcriptome (49). CLAM rescued >3,500 peaks from the m6A RIP-seq 

data. Following an established procedure to identify the consensus m6A motif from m6A 

RIP-seq data (31), we ranked common or rescued m6A peaks by the ratio of normalized 

read counts in the m6A RIP-seq data versus the RNA-seq data of the input control, then 

performed de novo motif discovery using HOMER (33) in the top 1000 common or 

rescued peaks. We identified a significant GGACU motif that matched the known 

consensus m6A motif (Figure 2.5A). Consistent with the observation that Alu elements 

were enriched in the rescued m6A peaks (Figure 2.2C), we identified the consensus 

RRACU m6A motif in the antisense and sense sequences of Alu subfamilies (Figure 

2.5B-C). To test if these rescued CLAM peaks contained functional m6A sites, we 

correlated the CLAM sites of human ESCs to published data of mRNA half-life in human 

induced pluripotent stem cells (iPSCs) (38). As m6A has a well-established role in 
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regulating mRNA degradation and stability (50), we previously observed that genes with 

functional m6A sites had reduced m6A half-life (31). We classified genes into three 

categories: genes with common m6A peaks; genes with rescued m6A peaks; and 

background genes without m6A peaks. Genes with common or rescued m6A peaks both 

had significantly lower mRNA half-life as compared to background genes (p-value<2.2e-

16 and p-value=1.3e-12 respectively, Kolmogorov–Smirnov test; see Figure 2.5D and 

Supplementary Figure 2.8), suggesting that the rescued peaks contained functional m6A 

sites. Furthermore, we observed significant enrichment of both common and rescued m6A 

sites near the stop codon (Figure 2.5E-F), demonstrating the similar topological feature 

of common and rescued m6A sites that matched the previously reported pattern (49). An 

example of a rescued m6A site was shown in the 3’-UTR of NME6, in which a strong RIP-

seq peak derived from an Alu retrotransposon was identified by CLAM combining 

uniquely-mapped and multi-mapped reads (Figure 2.5G).  

 

2.2.6 CLAM analysis of ENCODE CLIP-seq data of 17 splicing factors 

To demonstrate the broad applicability of CLAM, we analyzed 17 splicing factors 

(Supplementary Table 2.4) with matching eCLIP (enhanced CLIP) data and shRNA 

knockdown followed by RNA-seq data on the HepG2 cell line from the ENCODE 

consortium (Figure 2.6). The ENCODE investigators have systematically performed 

eCLIP experiments on a large number of RBPs in the HepG2 cell line (39), along with 

RNA-seq analysis following shRNA knockdown of individual RBPs. For each of the 17 

splicing factors, CLAM rescued thousands to tens of thousands of peaks 

(Supplementary Table 2.4). 12 of the 17 splicing factors had known consensus motifs 
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defined previously using the RNAcompete technology (1). For these splicing factors, we 

calculated the enrichment p-values of known consensus motifs within common or rescued 

peaks using a t-statistic procedure (Methods). The rescued and common peaks exhibited 

highly similar patterns of consensus motif enrichment in general for all 12 splicing factors 

(Figure 2.6A), despite that the p-value calculation could sometimes be skewed for 

rescued peaks due to their high content of repetitive elements and biased sequence 

compositions (Figure 2.2C).  

To assess the functional relevance of rescued CLAM sites for these 17 splicing 

factors, we intersected the common and rescued eCLIP peaks with splicing factor 

dependent alternatively spliced cassette exons, identified from RNA-seq data of the 

HepG2 cell line following shRNA knockdown of the splicing factor.  For each exon, we 

defined three non-overlapping regions as the 250bp upstream intronic region, the exon 

body, and the 250bp downstream intronic region. We then tested if exons containing 

eCLIP peaks (common or rescued) in these regions were significantly enriched towards 

the top or bottom of the ∆𝜓 ranked list of splicing factor dependent exons using the GSEA 

algorithm (see Materials and Methods). As the number of common peaks was generally 

substantially larger than the number of rescued peaks across all splicing factors 

(Supplementary Table 2.4), in order to control for the difference in statistical power in 

calculating the enrichment p-value, we used a down-sampling strategy to randomly 

sample a subset of common peaks for the enrichment analysis. Our data show that across 

the 17 splicing factors, splicing factor dependent alternative exons generally had similar 

patterns of enrichment for rescued and common peaks, and the –log10 p-value of 

rescued peaks in approximately half of the tested regions was within the mean ± standard 
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deviation of that of common peaks generated by 20 rounds of down-sampling (marked 

with an asterisk next to the bar, see Figure 2.6B), suggesting that rescued and common 

peaks had similar functional effects on regulating alternative splicing. Two detailed 

examples were provided for hnRNPC and U2AF2 (Figure 2.6C-D). For hnRNPC, we 

observed significant enrichment of common and rescued peaks around hnRNPC-

repressed exons in the ENCODE HepG2 cells (Figure 2.6C), consistent with the pattern 

observed in the HeLa cells (Figure 2.3B). For U2AF2, we observed significant enrichment 

of common and rescued peaks around U2AF2-enhanced exons (Figure 2.6D), consistent 

with the well-established role of U2AF2 as a positive regulator of exon splicing (51).  

 

2.3 Discussion 

We report CLAM, a new computational method and software program for CLIP-seq/RIP-

seq peak calling incorporating multi-mapped reads. Multi-mapped reads constitute an 

appreciable fraction of reads in CLIP-seq/RIP-seq experiments (Figure 2.2A), but 

conventional analytic tools for CLIP-seq/RIP-seq data do not properly handle multi-

mapped reads. In contrast to naïve approaches of discarding multi-mapped reads or 

distributing fractional counts of multi-mapped reads equally to all mapped loci (20), CLAM 

utilizes an EM framework to assign reads based on the local information of all mapped 

reads in the vicinity of multi-mapped reads. Our evaluation using a synthetic benchmark 

dataset demonstrates that the CLAM EM model outperforms alternative models (Table 

2.1). It should be noted that while the EM algorithm is widely used for resolving multi-

mapped RNA-seq reads (24,41,42), existing RNA-seq-based tools are not suitable for 

CLIP/RIP-seq data. Specifically, RNA-seq-based tools only consider reads mapped to 
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annotated transcript regions and ignore reads in intronic regions, where a large number 

of CLIP/RIP-seq peaks reside. By contrast, CLAM is designed to account for unique 

features of CLIP/RIP-seq data. For example, CLAM assigns multi-mapped reads and 

calls peaks in local windows that match the size of RBP footprints. Collectively, CLAM 

provides a comprehensive and rigorous computational solution for CLIP/RIP-seq peak 

calling utilizing multi-mapped reads, and its performance is supported by comprehensive 

analyses of diverse datasets. 

To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-

seq/RIP-seq datasets involving splicing factors, microRNAs, and m6A RNA methylation. 

Consistently across all datasets, CLAM rescued the vast majority of multi-mapped reads 

in CLIP-seq/RIP-seq libraries, and identified a large number of novel peaks that would 

otherwise be missed using only uniquely mapped reads. These rescued peaks show 

expected patterns of consensus motif enrichment. Moreover, analyses of RNA regulatory 

features suggest that these rescued CLAM peaks are functional, as evidenced by 

association with alternative splicing (hnRNPC and other splicing factors in ENCODE), 

steady-state transcript abundance (AGO2), and mRNA half-life (m6A).  

An important application of CLAM is to comprehensively discover novel RNA 

regulatory sites originating from transposable elements in the genome. Extensive 

research in the past few decades have demonstrated that transposable elements, initially 

considered as “genomic parasites” or “junk DNAs”, play important roles in essentially all 

aspects of gene regulation from transcription to RNA processing to  protein synthesis (52). 

At the RNA level, transposable elements can contribute functional elements for post-

transcriptional gene regulation (53). The CLIP-seq/RIP-seq technologies in principle 
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should enable large-scale discoveries of RNA regulatory sites derived from transposable 

elements, but the repetitive nature of these sequences combined with the short length of 

CLIP-seq/RIP-seq reads create computational challenges for peak identification. CLAM 

provides a statistically rigorous approach to identify CLIP-seq/RIP-seq peaks in repetitive 

regions of the transcriptome. Across multiple datasets, a significantly higher fraction of 

“rescued peaks” identified by CLAM are derived from transposable elements, as 

compared to “common peaks” that are readily identifiable using only uniquely mapped 

reads (Figure 2.2C). Of note, we identified numerous protein-RNA interaction events and 

RNA modification sites derived from Alu elements. As Alu elements are primate-specific 

retrotransposons (54), these Alu derived RNA regulatory sites have the potential to re-

wire lineage-specific post-transcriptional regulatory networks, thus contributing to 

transcriptome diversification during primate and human evolution. For example, m6A RNA 

methylation has recently emerged as a key player in RNA metabolism (49). While our 

previous m6A RIP-seq analysis of human and mouse embryonic stem cells indicated 

significant conservation of m6A patterns, we also discovered species-specific m6A sites 

in over a thousand genes (31). However, the molecular mechanism and evolutionary 

source for these species-specific m6A sites were unknown. In this work, using CLAM we 

identified 3,218 Alu-derived m6A sites in human genes, revealing the significant 

contribution of Alu elements to human-specific m6A sites and potentially m6A-associated 

regulatory effects. 

A potentially highly valuable feature of CLIP-seq data is the presence of diagnostic 

signals in CLIP-seq reads (e.g. read truncations and base substitutions) that may allow 

single-nucleotide-resolution mapping of protein-RNA interaction and RNA modification 
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sites (10,23,55). For example, iCLIP was designed to have single nucleotide resolution 

through read truncation at the cross-linking sites (10).  However, recent literature (56-58) 

as well as our analysis of the ENCODE data suggest that the robustness of the truncation 

signals in iCLIP/eCLIP data varies among datasets as well as among individual sites in a 

single experiment, and could depend on various experimental, technical, and biological 

factors. One important future direction for CLAM is to model CLIP-seq diagnostic signals 

in a rigorous data-driven, probabilistic framework to further improve read re-assignment 

and site identification for CLIP-seq data. 

In summary, by modeling and analyzing multi-mapped reads, CLAM provides a 

more comprehensive solution for CLIP-seq/RIP-seq peak identification beyond commonly 

used existing methods that focus on uniquely mapped reads. The CLAM software and 

user manual can be downloaded from https://github.com/Xinglab/CLAM. With the 

widespread application of CLIP-seq/RIP-seq technologies as well as the rapid 

accumulation of datasets in the public domain (7), we expect CLAM will be of broad 

interest to biomedical researchers studying post-transcriptional gene regulation in diverse 

biological and disease processes. 

 

 

2.4 Methods 

2.4.1 CLIP-seq/RIP-seq read preprocessing and mapping 

A typical CLIP-seq library contains 3’ adaptors due to the short length of RBP-protected 

fragments; and 5’ random barcodes to discriminate PCR duplicates. The 3’ adaptors were 

first removed by fastx_clipper from fastx toolbox (21), available at 

https://github.com/Xinglab/CLAM
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http://hannonlab.cshl.edu/fastx_toolkit/. Low quality reads were discarded by requiring 

the minimum quality threshold of 30 and at least 50% of bases in a read above this quality 

threshold. Next, PCR duplicates were removed by collapsing the reads with the same 

random barcodes and identical sequences. After removal of PCR duplicates, barcodes 

were removed and the reads were aligned by Novoalign (available at 

http://www.novocraft.com/) to the human genome and transcriptome, using the hg19 

version of the human genome as the genomic index and Gencode V19 

(http://www.gencodegenes.org/releases/19.html) as the transcriptome annotations (22). 

The set of optimized Novoalign parameters for CLIP-seq data (23) was used. Specifically, 

the alignment cost score ‘–t 85’ controls the mismatches as: two substitutions, two 

consecutive deletions, or one substitution plus one deletion. The option ‘-l 25’ requires at 

least 25 high-quality matches. For multi-mapped reads, reads that map to <100 genomic 

loci were retained for downstream analyses. 

All mapped reads (uniquely + multi-mapped) were then merged into genomic 

regions. Two reads were merged if the distance between them was smaller than a 

threshold 𝑑. By default, we set 𝑑 = 50 for CLIP-seq and 𝑑 = 100 for RIP-seq to match the 

size of RBP footprint or RNA fragment. 

 

2.4.2 Expectation-Maximization analysis of multi-mapped reads 

Distinct genomic regions were connected through multi-mapped reads as a graph. The 

connected subgraphs (i.e. regions sharing multi-mapped reads) were extracted and 

subsequently converted to a compatibility matrix Y representing the mapping 

relationships between reads and genomic regions. Each genomic region corresponded 

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.novocraft.com/
http://www.gencodegenes.org/releases/19.html
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to a column and each read corresponded to a row of the compatibility matrix Y. For read 

i uniquely mapped to genomic region k, 𝑦𝑖,∙ = 0 except for 𝑦𝑖,𝑘 = 1. For read i mapped to 

multiple genomic regions {𝑘𝑝, . . . , 𝑘𝑞 }, 𝑦𝑖,𝑘 = 1, for 𝑘 ∈ {𝑘𝑝, . . . , 𝑘𝑞 } and 0 otherwise. Our 

goal was to resolve the rows with multiple 1’s in the matrix Y using an Expectation-

Maximization framework (24). 

In other words, our goal is to infer another indicator matrix Z to represent the true 

origins of mapped reads. As certain RBPs (e.g. AGO2) could have long footprints on 

mRNA transcripts due to multiple overlapping binding sites, the statistical model of CLAM 

considers that for a potential binding site, the probability that a multi-mapped read 

originates from this region depends on the reads mapped to a defined local window 

surrounding the binding site. Hence given the vector Θ̂  representing the relative 

abundance of multiple mapped genomic regions among RBP-bound RNAs and the 

compatibility matrix Y, the latent variable 𝑧̂𝑖,𝑘 that represents the true origin of read i from 

region k, is computed by taking the expectation at (t+1)-th iteration as the E-step: 

𝑧̂𝑖,𝑘
(𝑡+1)

= 𝐸[𝑧𝑖,𝑘|𝑌, Θ̂(𝑡), 𝑐] = 𝑃𝑟(𝑧𝑖,𝑘 = 1 |𝑌, Θ̂(𝑡), 𝑐) =
𝑦𝑖,𝑘 ⋅ 𝜃𝑘,𝑐𝑖,𝑘

(𝑡)

∑ 𝑦𝑖,𝑘 ⋅ 𝜃𝑘,𝑐𝑖,𝑘

(𝑡)
𝑘

 

where 𝑐𝑖,𝑘 is the center position of read i on region k,  𝜃𝑘,𝑐𝑖,𝑘

(𝑡)
 is the relative abundance of 

multiple mapped genomic regions estimated at the locus 𝑐𝑖,𝑘  on region k in the previous 

iteration. For the starting condition t=0, the EM model converges to the optimal point 

regardless of its initial values, since the objective function to be maximized is concave 

(25).  For simplicity, Θ̂ was initialized uniformly for all regions.  
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Next in the (t+1)-th iteration of the M-step, for any particular column 𝑦𝑘  in Y 

corresponding to a specific genomic region, we estimate its relative abundance 𝜃𝑘,𝑗
(𝑡+1)

 

locally at each position j among multiple mapped regions using the true origin 𝑍̂(𝑡+1) within 

the (2w+1) window: 

𝜃𝑘,𝑗
(𝑡+1)

=
∑ 𝑧̂𝑖,𝑘

(𝑡+1)
⋅ 𝟏(𝑗 − 𝑤 ≤ 𝑐𝑖,𝑘 ≤ 𝑗 + 𝑤)𝑖

𝑁
 

where N is the total number of reads in these regions sharing multi-mapped reads, w is 

the window size defining the local window, 𝑐𝑖,𝑘 is the center position for read i on region 

k, 𝑧̂𝑖,𝑘
(𝑡+1)

 is the estimated true origin of read i from region k, and 𝟏(⋅) is the indicator 

function. By default, we set w=50 for CLIP-seq data and w=100 for RIP-seq data to match 

the size of RBP footprint or RNA fragment. 

The E-step and M-step are iterated until convergence.  

 

2.4.3 Peak calling 

Peak calling was performed on a gene-by-gene basis, in order to control for the 

expression variability among genes as in previous work (19,26,27). Briefly, CLAM was 

applied to genes with multi-mapped reads. For a given gene, the mapped reads could be 

divided into two sets: uniquely mapped reads with probability of origin 𝑝 = 1,  and multi-

mapped reads with 𝑝 ∈ [0,1).  We used a random permutation procedure to obtain the 

background read count distribution. Specifically, uniquely mapped reads were randomly 

assigned a location along the gene for 1000 times. For multi-mapped reads, a uniform 

random variable 𝑢 ∈ [0,1] was first drawn; if 𝑢 ≤ 𝑝, this multi-mapped read was randomly 
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assigned a location in the same manner as uniquely mapped reads; otherwise this read 

was discarded in the current permutation. For position j with height hj>0, p-value=

∑ 𝟏(𝑘≥ℎ𝑗)⋅𝑛𝑘𝑘

∑ 𝑛𝑘𝑘
, where 𝑛𝑘  is the number of positions with peak height 𝑘 ∈ (1,2, … ) in 

permutation derived null distribution, and 𝟏(⋅) is the indicator function. For each gene, 

multiple testing was corrected by the Benjamini-Hochberg FDR procedure (28). Positions 

with gene-specific FDR<0.001 were called as significant loci, and peaks were called as 

the most significant loci within 50bp windows. If a peak was less than 50bp, the peak was 

extended symmetrically to 50bp. For downstream analyses, the common or rescued 

peaks in individual replicates were then merged by taking the union respectively. 

 

2.4.4 Analysis of m6A RIP-seq data 

We employed a slightly different processing pipeline as well as parameters for the m6A 

data, given the differences between RIP-seq (for m6A) and CLIP-seq. We first mapped 

the human m6A RIP-seq reads using STAR (29) v2.4.2 to the hg19 genome with the 

Gencode v19 transcript annotations (22), retaining reads mapped to <100 loci. Then we 

ran CLAM with parameters: maximum distance for collapsing reads d=100; local window 

size w=100; p-value correction using the more stringent Bonferroni correction given the 

lower signal-to-noise ratio of RIP-seq; and peaks were called as the most significant loci 

within 500bp windows and extended to 100bp symmetrically.  
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2.4.5 Analysis of RNA motif and regulatory features 

We applied CLAM to publicly available CLIP-seq/RIP-seq datasets listed in Table 1. We 

analyzed two iCLIP datasets, hnRNPC iCLIP on the HeLa cell line from Zarnack et al. 

(19), and AGO2 iCLIP on the GM12878 lymphoblastoid cell lines (LCL) from Wan et al. 

(30). We also analyzed one m6A RIP-seq dataset on the H1 human embryonic stem cell 

line from Batista et al. (31). For each dataset, we analyzed RNA motif and regulatory 

features based on the known properties of the RBP or RNA modification. Annotations of 

repetitive elements for the hg19 human genome were downloaded from the UCSC 

RepeatMasker track, available at the UCSC table browser. 

Motif finding for hnRNPC peaks was performed using Zagros (32), a specialized 

de novo motif finder for CLIP-seq data. For m6A sites, motif finding was performed using 

HOMER (33) as in our previous m6A work (31) on the top 1,000 peaks ranked by 

enrichment ratio over input control. 

To assess the functional impact of hnRNPC CLAM sites on hnRNPC-dependent 

alternative splicing, hnRNPC shRNA knockdown followed by RNA-seq dataset in the 

same HeLa cell line (19) was analyzed by rMATS (34) (version 3.2.5) to detect differential 

alternative splicing events. The alternative exons were filtered by read counts (inclusion 

counts + skipping counts≥20) and then ranked by ∆𝜓 values (control – knockdown) from 

the most hnRNPC repressed exons (∆𝜓=−1) to the most hnRNPC enhanced exons 

(∆𝜓 = 1). Each exon was extended symmetrically by 250bp on both sides to include the 

proximal intron regions. We applied a GSEA (Gene Set Enrichment Analysis)-like 

analysis (35) to test if exons with CLAM sites overlapping with the extended exon regions 

were enriched towards the top or the bottom of the ∆𝜓  ranked hnRNPC-dependent 
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differential alternative splicing events. Specifically, Enrichment Score (ES) was calculated 

as described previously (35) on the exons with CLIP-seq peaks as hits in this ranked exon 

list, and Kolmogorov–Smirnov test (K-S test) was performed to test for statistical 

significance.  

To assess the effect of AGO2 CLAM sites on microRNA-mediated mRNA 

repression, microarray gene expression data of human cell lines upon ectopic expression 

or inhibition of two microRNAs were downloaded from GEO with accession number: 

GSE37213 (miR-21, T-lymphocytes) and GSE42823 (miR-107, H4 glioneuronal cells).  

We selected these two microRNAs because they were both abundantly expressed in the 

GM12878 cell line profiled by AGO2 iCLIP, based on small RNA-seq profiling data of 

microRNA abundance in the original study by Wan et al. (30). For each AGO2 peak, we 

predicted the targets of these two microRNAs using TargetScan (36) 

(http://www.targetscan.org/vert_71/). AGO2 target genes were then separated into two 

categories based on whether they had common or rescued peaks. Background genes 

were chosen as genes without any AGO2 peaks. Affymetrix microarray probesets were 

matched to corresponding transcripts using BiomaRt (37). 

To assess the influence of m6A modification on mRNA half-life, we used transcript 

half-life time measured in iPS cells as in our previous m6A work (38). Genes were 

classified similarly as in the AGO2 analysis. We performed a meta-gene analysis to obtain 

the m6A peak distributions in 5’-UTR, CDS, and 3’-UTR by binning the corresponding 

transcript region into 10 equal-sized bins then counting in each bin the frequency of top 

1,000 common or rescued m6A peaks respectively. 
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2.4.6 Analyses of ENCODE CLIP-seq and RNA-seq data on 17 splicing factors 

We applied CLAM to 17 splicing factors with matching CLIP-seq (eCLIP) and shRNA 

knockdown followed by RNA-seq datasets in the HepG2 cell line from the ENCODE 

project. We followed the ENCODE SOP pipeline to remove adapters. We developed an 

in-house script for collapsing PCR duplicates based on the ENCODE SOP but preserved 

multi-mapped reads. Since eCLIP employed paired-end sequencing, only the second 

mate was extracted and fed into CLAM after mapping, following the same strategy 

adopted by the ENCODE consortium (39). CLAM was run using the same parameter set 

as in our analyses of the hnRNPC and AGO2 iCLIP data.  

The CLAM sites for each splicing factor were validated in two aspects: enrichment 

of consensus motif (if available) and enrichment of splicing factor-dependent alternative 

exons upon shRNA knockdown of the splicing factor. Known consensus motifs of 12 

splicing factors were retrieved from the RNAcompete database (1). Motif enrichment 

analysis was performed using a Z-score method as described previously (40), with minor 

modifications. Specifically, given a motif regular expression and a set of n CLIP-seq peaks, 

we first computed the number of peaks (sequences), denoted by X, containing the motif. 

Then we estimated the background frequency p of the given motif in a large collection of 

random genomic sequences of the same length as CLIP-seq peaks. The expected motif 

occurrence in the CLIP-seq peaks was hence 𝑛 ⋅ 𝑝, with the variance being 𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝). 

We applied the Z-transformation as 𝑍 =
𝑋−𝑛𝑝

√𝑛𝑝(1−𝑝)
. To account for the over-dispersion in 

the above Z-score, we computed the Z-scores for an additional m=1000 randomers of the 

same length as the given motif, and estimated the sample standard deviation s of the 
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randomer Z-scores. Hence the final t-statistic is 𝑡 =
𝑍

𝑠
 with degree of freedom m-1, and p-

value was given by Student’s t-distribution.  

RNA-seq data of splicing factor knockdown was publicly available in the ENCODE 

data portal and we used our rMATS pipeline (34) (version 3.2.5) to quantify the exon 

inclusion level (𝜓) of cassette exon skipping events. We applied a read count filter to 

remove exon skipping events with < 20 combined (inclusion plus skipping) reads. As there 

were many more common peaks than rescued peaks, to account for the difference in 

statistical power in calculating the GSEA-like (35) K-S enrichment statistics, for each 

splicing factor we down-sampled the common peaks to the same number of rescued 

peaks and repeated the down-sampling procedure 20 times. For each exon, three non-

overlapping regions were considered: upstream 250bp flanking intron, exon body, and 

downstream 250bp flanking intron. The rescued peaks and each set of down-sampled 

common peaks were tested for enrichment in each of these three regions separately, 

based on a ranked list of splicing factor dependent exons ranked by difference in exon 

inclusion levels (∆𝜓) between control and knockdown, following the same procedure for 

calculating the K-S statistic as described above for the hnRNPC iCLIP data. 

 

2.4.7 Code availability 

The CLAM software and user manual can be downloaded from 

https://github.com/Xinglab/CLAM. All datasets used in this paper are publicly available in 

public repositories, i.e. SRA and ArrayExpress, with accession numbers listed in Table 

2.2. 

https://github.com/Xinglab/CLAM
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2.6 Figures 

 

Figure 2.1 Motivation and schematic overview of CLAM.  

(a) In immunoprecipitation based techniques for analyzing RBP-RNA interactions (CLIP-

seq, RIP-seq), RNA associated with the target RBP is subject to RNase lysis and 

fragmentation after the RBP-RNA complex is immunoprecipitated by specific antibody, 

followed by high-throughput sequencing to generate short reads typically ranging 

between 35bp to 50bp. An appreciable fraction of reads, such as those originated from 

repetitive element derived RBP-RNA interaction sites, are mapped to multiple genomic 

regions and subsequently discarded by conventional data analysis pipelines. Shown here 

is a read mapped to two genomic copies of a repetitive element (orange boxes), which 

have identical sequences where the read is aligned but have mutations elsewhere 
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between these two copies (green vertical lines). (b) CLAM identifies a set of genomic 

regions sharing multi-mapped reads. It then uses an Expectation-Maximization algorithm 

to rescue multi-mapped reads and assign them to specific genomic regions, followed by 

a permutation-based procedure for peak calling with gene-specific FDR control. The 

rescued peaks are then assessed via downstream analyses of RNA regulatory features, 

including enrichment of consensus motifs and evaluations of RBP-specific regulatory 

features.  
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Figure 2.2 Summary statistics of CLAM results on three CLIP-seq/RIP-seq 

datasets.  

(a) Percentage of multi-mapped reads (blue) and percentage of multi-mapped reads 

rescued by CLAM (orange) among all mapped reads in analyzed datasets. (b) 

Sensitivity analysis at various FDR thresholds. The majority of lost peaks can be 

recovered using the combination of uniquely and multi-mapped reads at higher (more 

relaxed) FDR thresholds (bar graphs on the left), while a significantly smaller fraction of 

rescued peaks can be identified using only uniquely mapped reads at higher FDR 

thresholds (bar graphs on the right). (c) Fraction of rescued and common peaks derived 

from various types of repetitive elements. A significantly higher fraction of rescued 

peaks are derived from repetitive elements across all three datasets.  
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Figure 2.3 Functional evaluation of CLAM on the hnRNPC CLIP-seq data.  

(a) Identification of the known consensus hnRNPC motif by de novo motif discovery in 

rescued and common hnRNPC peaks. (b) Enrichment analysis of hnRNPC dependent 

alternative exons for rescued and common hnRNPC peaks. X-axis represents alternative 

exons ranked by rMATS ∆ψ values (the difference in exon inclusion levels between 

control and knockdown). Y-axis is the Enrichment Score (ES) calculated via the 

Kolmogorov-Smirnov statistic. Both rescued and common hnRNPC peaks are strongly 

enriched for hnRNPC-repressed alternative exons. (c) Example of a rescued hnRNPC 

peak in DDIAS. (d) Example of a rescued hnRNPC peak in SNHG17.  
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Figure 2.4 Functional evaluation of CLAM on the AGO2 CLIP-seq data.  

For each microRNA, three classes of genes are compiled: genes with common peaks 

containing microRNA target sites (Common, blue); genes with rescued peaks containing 

microRNA target sites (Rescued, red); and background genes without AGO2 CLIP-seq 

peaks (Background, black). Cumulative density function is plotted for the log2 gene 

expression fold change upon (a) inhibition of miR-21 or (b) ectopic expression of miR-

107. For both microRNAs, rescued and common target genes show the same significant 

shift in cumulative density function as compared to background genes. 
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Figure 2.5 Functional evaluation of CLAM on the m6A RIP-seq data.  

(a) Identification of the known consensus m6A motif by de novo motif discovery in rescued 

and common m6A peaks. The conserved m6A RRACU motif in (b) anti-sense and (c) 

sense sequences of major Alu subfamilies. (d) Cumulative density function of mRNA half-

life in iPSCs. Both genes with common and rescued m6A peaks have significantly lower 

mRNA half-life as compared to background genes without m6A peaks. Topological 
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distribution of (e) rescued and (f) common m6A peaks across the 5’-UTR, CDS, and 3’-

UTR of protein-coding genes. (g) Example of a rescued Alu-derived m6A peak in the 3’-

UTR of NME6.  
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Figure 2.6 CLAM analysis of 17 splicing factors with ENCODE eCLIP data and 

matching RNA-seq data following splicing factor knockdown in the HepG2 cell 

line.  

In visualizing the -log10(p-value), we added a pseudo-count of 1e-3 to all p-values to 

truncate the –log10(p-value) at an upper limit of 3, while the same pattern was observed 
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for pseudo-count of 1e-4 and 1e-5. (a) Negative log10 enrichment p-values of known 

splicing factor motifs within common (blue) and rescued (red) peaks. The frequency of 

motif occurrences were compared to randomly sampled genomic sequences and 

Student’s t-distribution was fitted to measure the statistical significance of enrichment. (b) 

Barplots of negative log10 p-values of GSEA test on the enrichment of splicing factor 

dependent alternative exons for common or rescued peaks within the upstream 250bp 

intronic region (blue), the exon body (red), and the downstream 250bp intronic region 

(orange). For common peaks, the -log10 p-value of enrichment was calculated as the 

average from 5 random iterations of down-sampling to the same number of rescued 

peaks. (c) Enrichment analysis of hnRNPC dependent exons for common and rescued 

hnRNPC exon-overlapping peaks in the ENCODE HepG2 data. Both common and 

rescued hnRNPC peaks are strongly enriched for hnRNPC-repressed exons. (d) 

Enrichment analysis of U2AF2 dependent exons for common and rescued U2AF2 exon-

overlapping peaks. Both common and rescued peaks are strongly enriched for U2AF2-

enhanced exons in the ENCODE HepG2 data. 
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Supplementary Figure 2.7 Multi-mapped reads are enriched in repetitive elements. 

 Displayed are the most abundant repetitive element families with reads in: (a) hnRNPC; 

(b) AGO2; (c) m6A dataset. Compared to non-repeat background regions, all of these 

repetitive element families are enriched for multi-mapped reads. “Percentage over all 

multi-mapped reads” indicates the percentage of multi-mapped reads derived from 

specific repetitive element families or non-repeat regions among all multi-mapped reads 

in the library.  
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Supplementary Figure 2.8 Cumulative density function of mRNA half-life in iPSCs 

for different groups of genes.  

Both genes with common but no rescued m6A peaks (“common-only”, blue), and genes 

with rescued but no common m6A peaks (“rescued-only”, red) have significantly lower 

mRNA half-life as compared to background genes without m6A peaks. 
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Supplementary Figure 2.9 Benchmarking the performance of different CLAM run 

modes and a baseline method. 

CLAM and Piranha were run on the eCLIP data of RBFOX2 in HEK293T cell line 

(accession ID: GSE77629). The peaks were ranked by significance reported by peak-

callers, then the proportions of peaks with GCATG motif were plotted. 
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Supplementary Figure 2.10 Examples of CLAM peaks called by modelling multiple 

replicates. 

Two examples of RBFOX2 eCLIP peaks called by modelling multiple replicates were 

shown (a) in RERE and (b) UBE2J2 genes. Dashed boxes highlighted the peaks called 

by aggregating weak signals from two replicates. 
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2.7 Tables 

Table 2.1 Performance of CLAM and two alternative models on a synthetic 

benchmark dataset. 

Model AUROC AUPR 

Positive loci 

weight (median, 

mean) 

Negative loci 

weight (median, 

mean) 

CLAM 0.88 0.79 0.62, 0.65 0.02, 0.15 

One-

iter 
0.88 0.78 0.50, 0.54 0.13, 0.20 

Uniform 0.75 0.48 0.50, 0.42 0.20, 0.25 
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Table 2.2 Three representative datasets analyzed by CLAM.  

Dataset  
Predominant 
binding 
region 

Motif Technology 
Cell 
line 

Accession 
ID 

hnRNPC intronic poly-U iCLIP HeLa 
E-MTAB-
1371 

AGO2 3'-UTR 
microRNA 
seeds 

iCLIP LCL GSE50676 

m6A 3'-UTR RRACU RIP 
H1-
ESC 

GSE52600 
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Table 2.3 Summary of CLAM peak calling on the hnRNPC, AGO2 and m6A 

datasets. 

Dataset Replicate Rescued Common Lost 

hnRNPC 
1 24,976 99,890 6,027 

2 28,211 133,708 7,769 

AGO2 
1 2,169 32,494 546 

2 2,243 29,774 536 

m6A 
1 3,598 36,000 1,790 

2 3,702 39,153 2,151 
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Supplementary Table 2.4 Summary of CLAM peak calling and motif scores on 

ENCODE eCLIP data of 17 splicing factors in the HepG2 cell line. 

RBP Motif 

Rescued peaks Common peaks 

No. of 
peaks 

Motif t-
statistic 

Motif       
p-value 

No. of 
peaks 

Motif t-
statistic 

Motif       
p-value 

HNRNPA1 [AGT]TAGGG[AT] 14,106 5.09 0.000 135,877 10.10 0.000 

HNRNPC [ACT]TTTTT[GT] 55,924 0.72 0.236 291,065 3.25 0.001 

HNRNPK CCA[AT][AC]CC 8,457 9.78 0.000 77,416 10.64 0.000 

HNRNPM NA 23,599 NA NA 142,135 NA NA 

HNRNPU NA 9,836 NA NA 72,094 NA NA 

HNRNPUL1 NA 6,866 NA NA 38,257 NA NA 

PCBP2 CC[CT][CT]CC[ACT] 7,769 15.66 0.000 79,038 20.96 0.000 

QKI ACTAAC[ACG] 5,715 18.49 0.000 66,022 48.17 0.000 

RBFOX2 TGCATG 7,139 10.27 0.000 79,327 12.77 0.000 

SFPQ [GT]T[AG][AG]T[GT][GT] 4,794 5.57 0.000 42,723 9.83 0.000 

SRSF1 GG[AG]GGA[ACG] 10,575 7.38 0.000 131,502 8.45 0.000 

SRSF7 ACGACG 4,889 1.04 0.150 29,124 1.30 0.097 

SRSF9 A[GT]GA[ACG][AC][AG] 8,112 2.30 0.011 64,304 2.25 0.012 

TIA1 [AT]TTTTT[CGT] 9,504 2.55 0.005 83,158 5.80 0.000 

TRA2A NA 2,618 NA NA 14,951 NA NA 

U2AF1 NA 10,455 NA NA 107,983 NA NA 

U2AF2 TTTTT[CT]C 8,602 3.49 0.000 107,890 12.79 0.000 
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2.8 Appendix 

2.8.1 Methodology updates since the publication 

There have been a few major updates to the model and processing modules in the CLAM 

software since its initial release of v1.0. These changes are detailed below. 

In release v1.1, we first introduced a preprocessing module to CLAM. The 

preprocessing module is designed to prepare the raw inputs (e.g. BAM or fastq reads) for 

the downstream CLAM realigning, peak-calling analyses and visualizations. A core 

function in the preprocessing steps is a read tagging function to account for the different 

technology biases from CLIP experiment variants. The read tagging function returns a 

single genomic locus to represent the crosslinking sites for a given CLIP/RIP-seq read. 

For iCLIP/eCLIP reads, we implemented the read starting site to represent the truncation 

events. For MeRIP-seq reads, users could choose between the median site of the read 

or extend certain base pairs from the read start site to account for fragmentation lengths. 

Similarly, for HITS-CLIP and PAR-CLIP where the crosslinking signatures are mutations 

embedded in the reads, we will implement a read tagging function by searching specific 

mutational types as compared to the reference genome. In sum, the preprocessing 

module provides an easy and extensible way for parsing raw inputs to CLAM analyses. 

Moreover, as demonstrated in the eCLIP technology, it is now evident that the 

incorporation of a properly matched control experiment is crucial for peak detection. In 

the case of eCLIP, the control experiment is Size-Matched Input; in MeRIP-seq 

experiments, the control experiment can be a regular RNA-seq without any 

immunoprecipitation. To consider these control experiments in a generic statistical 
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framework for peak calling, we implemented a negative binomial model-based peak caller 

to supplement the permutation-based peak caller in the original publication.  

Specifically, to test for significantly enriched IP signal over Input control, we first 

divided each gene into n-bp non-overlapping bins. We then used a negative binomial 

model to model the observed counts in IP and Input sample and test the effect of IP in a 

given bin while controlling for the gene-specific expression levels. Specifically, for the i-

th bin, we modeled the observed read counts in each bin as: 

𝐾𝑖𝑗𝑙 ∼  𝑁𝐵(𝜆𝑖𝑗𝑙, 𝛼𝑖𝑗) 

𝑙𝑜𝑔(𝜆𝑖0𝑙)  = 𝜇𝑖0  +  𝑙 ∗ 𝛽 

𝑙𝑜𝑔(𝜆𝑖1𝑙)  = 𝜇𝑖1  +  𝑙 ∗ 𝛽 +  𝑙 ∗ 𝛿 

Where 𝐾𝑖𝑗𝑙 is the observed read counts for the test bin (l=1) or other bins (l=0) in IP 

sample (j=1) or in Input sample (j=0), which effectively constructs a 2x2 contingency 

table. 𝛽 denotes the bin-specific effect, and 𝛿 is the effect-size of immunoprecipitation. 

We first estimated gene-level over-dispersion parameters 𝛼𝑗 from each sample by 

steepest damping, then used likelihood ratio test to compare the likelihoods between 

the constrained model 𝐻0: 𝛿 = 0 versus the unconstrained model 𝐻1: 𝛿 ≠  0 to determine 

the significance level for the enrichment of observed read counts. The bins with gene-

level corrected FDR <0.05 were called as peaks. By default, we set n=100 bp for 

MeRIP-seq and n=50 bp for CLIP-seq experiments. 

 While the above model formulation is for one IP vs one Input comparison, it is 

straightforward to extend the model to consider multiple replicates. In fact, it is 

increasingly prevalent that multiple replicated IP and/or control experiments are 

performed for more robust detection of protein-DNA/RNA interaction signals. When 
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modelling multiple replicates, we let each replicate have replicate-specific baseline 

parameters 𝜇⋅ , while the bin-specific parameter 𝛽  and effect-size 𝛿  parameters are 

shared among all replicates for any given bin i.  

In the release of CLAM v1.2, we further added an alternative approach for the 

background bin count 𝐾𝑖0𝑙. Instead of the summing over the read counts across the same 

gene as the background bin count, we fed the total library read count to 𝐾𝑖0𝑙 . This 

approach is complementary to the gene-based background bin count, and proves useful 

when the input signal is very sparse and the gene-based count is unstable. As Python 2 

is near the end of its maintenance, the CLAM package is also migrated for Python 3 

compatibility as of release v1.2.  

We systematically benchmarked the performance of CLAM using different run 

modes, and subsequently compared it to other popular peak-calling tools, as detailed in 

the next section. 

2.8.2 Benchmarking CLAM and other peak callers 

To evaluate the peak calling performance, the RBFOX2 dataset published in the original 

eCLIP paper (accession ID: GSE77629; Van Nostrand et al., 2016) was re-analyzed with 

CLAM and another popular CLIP-seq peak-caller software Piranha (version 1.2.1; Uren 

et al., 2012). The preprocessing steps were performed following the ENCODE eCLIP 

SOP. CLAM was run to call peaks using uniquely-mapped reads only on two individual 

replicates, as well as both replicates in a replicate statistical model, with bin size=50bp 

and FDR<0.05. Piranha was run on two individual replicates, with covariate logarithm 

transformed, bin size=50bp and FDR<0.05. The detailed pipeline implementation is 
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deposited as a Snakemake workflow in https://github.com/zj-

zhang/CLAM_ENCODE_Snakemake.  

 We leveraged the conserved RBFOX2 motif GCAUG to benchmark the peak 

calling efficiency. Specifically, we ranked the peaks by the significance reported by each 

peak caller, then computed the proportion of peaks with the RBFOX2 motif at varying 

significance thresholds (Supplementary Fig. 2.9). As expected, the enrichment of motif 

was highest for the most stringent thresholds and decreased gradually for all peak callers. 

CLAM consistently performs better than Piranha as demonstrated by higher motif 

enrichment. Moreover, by comparing the motif enrichment for replicate 1 versus replicate 

2, we observed that the performances of both CLAM and Piranha in replicate 2 were 

better than those of replicate 1. The data/replicate quality variability plays an important 

role in peak calling regardless of computational methods used.  

 To reduce such experimental variabilities and model the between-replicate 

variances in a principled statistical framework, we ran CLAM using multi-replicates mode 

on the two replicates of RBFOX2 eCLIP and two replicates of RBFOX2 SM-Input data. 

Indeed, multi-replicates mode CLAM achieved best specificity and sensitivity in peak 

calling (Supplementary Fig. 2.9). The multi-replicates CLAM called ~1.5 fold more peaks 

at the same FDR<0.05 threshold with a significantly better motif enrichment, compared 

to the single-replicate CLAM. Overall, the motif enrichment for all called peaks from multi-

replicates CLAM was 41.4%, comparable to single-replicate CLAM on replicate 1 (42.2%) 

and replicate 2 (42.3%), demonstrating validity of FDR control in CLAM. 

 Two examples to demonstrate the benefit of considering multi-replicates were 

shown in Supplementary Fig. 2.10. In both cases, the CLAM multi-replicate statistical 

https://github.com/zj-zhang/CLAM_ENCODE_Snakemake
https://github.com/zj-zhang/CLAM_ENCODE_Snakemake
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model aggregated the relatively weak and noisy signals from individual replicates to call 

statistically enriched genomic bins as peaks. These peaks were putative RBFOX2 binding 

sites as they were embedded with RBFOX2 motifs, and would not be called by using 

simple intersections with the peaks called from individual replicates.  Strong peaks called 

in both replicates were preserved in the multi-replicates results (rightmost peak in RERE 

gene in Supplementary Fig. 2.10A), while bogus peaks caused by random statistical 

and experimental fluctuations called in one replicate were down-weighed by considering 

additional replicates in the multi-replicates output (data not shown).  

In sum, the statistical model to consider multiple replicates in CLAM provides a 

more robust and sensitive peak caller for replicated CLIP-seq data. The multi-replicates 

CLAM implementation can be found in v1.2 release.  
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Chapter 3 Deep-learning Augmented RNA-seq analysis of 

Transcript Splicing 

 

3.1 Introduction 

The rapid accumulation of RNA-seq data across diverse cell types and conditions 

provides an unprecedented resource for characterizing transcriptome complexity. 

However, the use of these large-scale data in routine RNA-seq studies to detect patterns 

of expression and thereby discover new regulatory events has been limited. Here we 

report DARTS, Deep-learning Augmented RNA-seq analysis of Transcript Splicing, a 

computational framework that integrates deep learning-based predictions with empirical 

evidence in specific RNA-seq datasets to infer differential alternative splicing between 

conditions. A core component of DARTS is a deep neural network (DNN) that predicts 

differential alternative splicing using cis RNA sequence features and trans RNA binding 

protein levels. DARTS DNN trained on public RNA-seq datasets (ENCODE, Roadmap 

Epigenomics) displays a high prediction accuracy and generalizability. Incorporating 

DARTS DNN prediction as an informative prior significantly improves the inference of 

differential alternative splicing, especially from low-coverage RNA-seq datasets. In 

cellular models of the epithelial-mesenchymal transition, DARTS reliably predicted 

alternative splicing changes in lowly expressed genes, that were inaccessible by a 

conventional RNA-seq analysis even at a high sequencing depth. Thus, DARTS 

capitalizes on large-scale public RNA-seq resources to discover differential alternative 

splicing across diverse transcriptomes.  
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Alternative splicing is a major mechanism for generating regulatory complexity (1) 

as well as linking genotypes to phenotypes in eukaryotes (2). RNA sequencing (RNA-seq) 

is a widely used technology for transcriptome-wide profiling of alternative splicing. The 

general workflow of RNA-seq alternative splicing analysis involves counting RNA-seq 

reads mapped to exons and splice junctions; estimating relative abundances of splice 

isoforms; and detecting differential alternative splicing events between biological 

conditions using appropriate statistical models (3,4). An inherent limitation of this 

approach is that it solely relies on empirical evidence in RNA-seq data, and thus is 

restricted by sequencing depth and cost. Moreover, even at a high sequencing depth the 

detection of splicing changes is biased against lowly or moderately expressed genes (5).  

The availability of large-scale RNA-seq data in public repositories has enabled 

quantitative measurement of alternative splicing across diverse biological states. For 

example, the Roadmap Epigenomics consortium has generated deep RNA-seq data 

across over 100 human tissues and cell types (6), while the ENCODE consortium has 

systematically performed RNA-seq of two human cell lines upon knockdown of over 250 

RNA binding proteins (RBPs) (7). Motivated by the recent success in using machine 

learning techniques to predict exon inclusion/skipping levels in bulk tissues or single cells 

(8-11),  we hypothesized that large-scale public RNA-seq resources can be utilized to 

construct a deep learning model of differential alternative splicing. This deep learning 

model could in turn generate a predictive prior to augment alternative splicing analysis of 

a specific RNA-seq dataset. 

To test this hypothesis, we developed DARTS (Deep-learning Augmented RNA-

seq analysis of Transcript Splicing), a Bayesian computational framework for statistical 
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inference of differential alternative splicing. The DARTS framework consists of two core 

components (Figure 3.1): a Deep Neural Network (DNN) model that predicts differential 

alternative splicing between two biological conditions based on exon-specific sequence 

features and sample-specific regulatory features; and a Bayesian Hypothesis Testing 

(BHT) statistical model that infers differential alternative splicing by integrating empirical 

evidence in a specific RNA-seq dataset (as likelihood) with prior probability of differential 

alternative splicing, which can be either uninformative or informative (see below). During 

the training process (green), large-scale RNA-seq data (e.g. ENCODE, Roadmap 

Epigenomics) are analyzed by the DARTS BHT with an uninformative prior (i.e. DARTS 

BHT(flat), with only RNA-seq data used for the inference) to generate training labels of 

high-confidence differential or unchanged splicing events between biological conditions, 

which are then used to train the DARTS DNN. In the application process (pink), our goal 

is to leverage the deep learning prediction to analyze user-specific RNA-seq data. 

Therefore the trained DARTS DNN is used to predict differential alternative splicing in a 

user-specific dataset based on exon-specific sequence features and sample-specific 

regulatory features. This prediction is incorporated as an informative prior with the 

observed RNA-seq read counts by the DARTS BHT (i.e. DARTS BHT(info)) to perform 

deep learning augmented splicing analysis.  

 

3.2 Results 

3.2.1 DARTS deep neural network accurately predicts differential splicing 
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A core component of DARTS is a deep neural network (DARTS DNN) that uses predictive 

features to generate a probability of differential alternative splicing between two biological 

conditions. Unlike existing methods that use only cis sequence features to predict exon 

splicing patterns in specific samples (8-11), the DARTS DNN incorporates both cis 

sequence features and the mRNA levels of trans RNA binding proteins (RBPs) in two 

biological conditions (Figure 3.2a). This design allows the DARTS DNN to consider how 

altered expression of RBPs, including well-annotated splicing factors, affects alternative 

splicing in response to perturbations or stimuli. As a starting point, we initially focused on 

exon skipping, the most frequent type of alternative splicing events in mammalian cells 

(5). Specifically, we compiled a list of 2,926 cis sequence features  including evolutionary 

conservation, splice site strength, regulatory motif composition, and RNA secondary 

structure, and a list of 1,498 annotated RBPs (12), whose mRNA levels were treated as 

RBP features. We designed the DARTS DNN to have 4 hidden layers and 7,923,402 

parameters. This DARTS DNN can be trained using high-confidence differentially spliced 

and unchanged exons in a large compendium of pairwise RNA-seq comparisons between 

distinct biological states. A schematic diagram of the DARTS DNN is shown in 

Supplementary Figure 3.5.  

To train the DARTS DNN, we utilized RNA-seq data from a large collection of RBP-

depletion experiments in two human cell lines (K562 and HepG2) generated by the 

ENCODE consortium (13) (Figure 3.2b). Specifically, we used RNA-seq data 

corresponding to 196 RBPs that were depleted by at least one shRNA in both the K562 

and HepG2 cell lines, corresponding to a total of 408 shRNA knockdown vs. control 

pairwise comparisons (Figure 3.2b). The remaining ENCODE data, corresponding to 58 
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RBPs that were depleted in only one cell line, were excluded from training and used as 

leave-out data to independently evaluate the DARTS DNN (Figure 3.2b; see below). Note 

that throughout this work, we used such independent leave-out datasets that had never 

been seen during training, to avoid issues of overfitting in benchmarking the performance 

of the DARTS DNN. To generate training labels for differentially spliced vs. unchanged 

exons in each pairwise comparison, we applied DARTS BHT(flat) to calculate the 

probability of an exon being differentially spliced or unchanged between two conditions. 

The performance of DARTS BHT(flat) was benchmarked using simulation datasets, and 

compared favorably to two of the state-of-the-art statistical models for differential splicing 

inference MISO and rMATS (Supplementary Figure 3.6 and 3.7). We should also note 

that a unique feature of DARTS BHT(flat) is that it quantifies the statistical evidence for 

both differentially spliced (positive) and unchanged (negative) exons. By contrast, 

conventional methods only test the statistical significance of differential splicing (positive) 

but the “insignificant” events contain a mixture of events that are truly unchanged 

(negative), and events that are called insignificant due to lack of RNA-seq coverage and 

power (inconclusive), hence are not suitable for generating training labels. From the high-

confidence differentially spliced vs. unchanged exons called by DARTS BHT(flat) on the 

training RNA-seq data, we used 90% of the labeled events for training and 5-fold cross 

validation of the DARTS DNN, and the remaining 10% of events for testing the trained 

DARTS DNN (Methods). The performance of the DARTS DNN increased as the training 

progressed, reaching a maximum Area Under the Receiver Operating Characteristic 

curve (AUROC) of 0.97 during cross-validation and 0.86 during testing (Figure 3.2c).  
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To test the performance and general applicability of the DARTS DNN using 

independent datasets, we used the trained DARTS DNN to predict differentially spliced 

vs. unchanged exons from the leave-out data, which included 58 RBPs that were 

knocked-down in only one of the two cell lines and had not been used for training the 

DARTS DNN (Figure 3.2b). These leave-out data were derived from cell lines depleted 

for a different set of RBPs, therefore the performance of the DARTS DNN on the leave-

out data would indicate model generalizability. The trained DARTS DNN model showed 

a high accuracy (average AUROC=0.87) on the leave-out data. We also used the leave-

out data to compare the DARTS DNN to three alternative baseline methods: the identical 

DNN structure trained on individual leave-out datasets (DNN), logistic regression with L2 

penalty (Logistic), and Random Forest (Figure 3.2d). We trained the baseline methods 

using 5-fold cross-validation in each leave-out dataset and plotted the average AUROC 

for each method (Figure 3.2d). Additionally, we implemented another alternative baseline 

method, by predicting sample-specific exon inclusion levels (11) then taking the absolute 

difference of the predicted exon inclusion levels (PSI values) between the two conditions 

as the metric for differential splicing (|𝜓̂𝐾𝐷 − 𝜓̂𝐶𝑇𝑅𝐿|; Figure 3.2d). We found that the 

DARTS DNN trained on the large-scale ENCODE data outperformed baseline methods 

by a large margin in 57/58 experiments, with the sole exception being AQR knockdown 

in K562. The best performance of AUROC=0.95 by the DARTS DNN was achieved for 

RPL23A knockdown in HepG2. We note that the DARTS DNN model trained on individual 

leave-out datasets was the worst performer, illustrating the importance of training the 

DARTS DNN on large-scale data comprising diverse perturbation experiments. 
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Collectively, these results indicate that the DARTS DNN can predict differential splicing 

upon RBP depletion in the two ENCODE cell lines.  

 

3.2.2 DARTS Bayesian hypothesis testing model incorporates informative prior 

with empirical RNA-seq data to improve inference efficiency 

Having demonstrated the performance of the DARTS DNN model, we set out to evaluate 

the ability of the DARTS framework to infer differential splicing from a specific RNA-seq 

dataset, by incorporating the DARTS DNN prediction score as the informative prior and 

observed RNA-seq read counts as the likelihood (see Methods). Specifically, the posterior 

ratio of differential splicing consists of two components: the prior ratio, generated by the 

DARTS DNN model based on cis sequence features and trans RBP expression levels; 

and the likelihood ratio, determined by modelling the biological variation and estimation 

uncertainty of splice isoform ratio based on observed RNA-seq read counts (Figure 3.3a). 

We performed simulation studies with varying strengths of informative prior and observed 

RNA-seq read counts (see Methods). These studies demonstrated that the informative 

prior improves the inference when the observed data is limited, for instance due to low 

gene expression levels or limited RNA-seq depth, but does not overwhelm the evidence 

in the observed RNA-seq read counts (Supplementary Figure 3.8). Specifically, for true 

differential splicing events in the simulation, a considerable number of true positives in 

the low RNA-seq coverage regions can be rescued via a strong informative prior, whereas 

the effect of the prior was diminished when the observed RNA-seq read counts were large 

(Supplementary Figure 3.8). We refer to this method as DARTS BHT(info), and 

compared it to DARTS BHT(flat) that uses the same BHT statistical model but only 
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considers the RNA-seq data without incorporating the DARTS DNN prediction as the 

informative prior (i.e. flat prior). 

To investigate the utility of incorporating the DARTS DNN prediction as the 

informative prior on a real dataset, we used DARTS BHT(info) and DARTS BHT(flat) to 

infer cell-type-specific differential splicing events between two ENCODE cell lines (HepG2 

and K562). ENCODE generated paired-end RNA-seq data on 24 and 28 biological 

replicates of HepG2 and K562 respectively, with on average 66 million read pairs per 

replicate. We confirmed by cluster analysis of gene expression levels that these 24 and 

28 biological replicates clustered into two distinct groups that matched their cell type 

labels (Supplementary Figure 3.9). To obtain high-confidence differential and 

unchanged splicing events between the two cell types, we aggregated all replicates of 

HepG2 or K562 and applied DARTS BHT(flat) to this ultra-deep RNA-seq dataset. Next, 

we applied DARTS BHT(info) and DARTS BHT(flat) to all possible (24x28) pairwise 

comparisons between individual replicates of HepG2 and K562. We computed the Area 

Under Precision Recall Curve (AUPR) for the two methods to evaluate their performance 

in detecting cell-type specific alternative splicing. DARTS BHT(info) outperformed 

DARTS BHT(flat) in all pairwise comparisons, and the gain in inference accuracy had a 

significant negative correlation with the RNA-seq depth of individual replicates 

(Spearman’s rho=-0.69, p-value<2.2e-16), with the largest gain coming from pairwise 

comparisons involving low-coverage RNA-seq samples (Figure 3.3b). We should also 

note that by using DARTS BHT(flat) to obtain the lists of high-confidence differential and 

unchanged exons between the two cell types from the ultra-deep RNA-seq data, the 

comparison at the low sequencing depth was inherently biased towards DARTS BHT(flat) 
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and against DARTS BHT(info). Therefore, the consistently superior performance of 

DARTS BHT(info) demonstrates the advantage of incorporating the DNN prediction as 

prior information when analyzing low-coverage RNA-seq data. 

 

3.2.3 Expanding DARTS to diverse types of splicing events and cellular 

conditions 

Next, we determined whether the DARTS DNN model can be extended to additional 

tissues and cell types, and whether and how the choice of training datasets influences 

the performance of the DARTS DNN on other datasets. For this analysis we utilized deep 

RNA-seq data from diverse cell types and tissues generated by the Roadmap 

Epigenomics consortium (6). We performed 253 pairwise comparisons of Roadmap 

samples by DARTS BHT(flat) to generate training data for the DARTS DNN, following the 

same procedure as for the ENCODE data. We held-out all pairwise comparisons involving 

the thymus tissue in Roadmap (22 comparisons) so we could use these later for model 

testing. We used three DARTS DNN models, trained on ENCODE data only, Roadmap 

data only, or both, to evaluate model performance with the held-out data from ENCODE 

or Roadmap (Figure 3.3c,d). We found that DARTS DNN trained on ENCODE data 

exhibited high predictive power for differential splicing in held-out ENCODE data and 

modest predictive power for differential splicing in held-out Roadmap data (Figure 3.3c). 

Conversely, DARTS DNN trained on Roadmap data had high predictive power for held-

out Roadmap data and modest predictive power for held-out ENCODE data (Figure 3d). 

Finally, the best model performance was achieved with DARTS DNN trained on the 

combination of ENCODE and Roadmap data (Figure 3c,d).  
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Having demonstrated the performance of the DARTS DNN on predicting 

differential exon skipping events, we extended the DNN model to different classes of 

alternative splicing patterns. Specifically, we compiled 2,973, 2,971, and 1,748 cis 

sequence features and trained three DNN models for predicting differential alternative 5’ 

splice sites (A5SS), alternative 3’ splice sites (A3SS), and retained intron (RI) events, 

respectively. The training behavior of these DNN models was similar to the DNN model 

trained for exon skipping events (Supplementary Figure 3.10). Trained by ENCODE and 

Roadmap data, these DNN models also exhibited a high prediction accuracy and 

generalizability in the independent leave-out datasets and outperformed baseline 

methods by a large margin (Supplementary Figure 3.10). These data extend the utility 

of the DARTS DNN beyond exon skipping to diverse types of alternative splicing patterns.  

 

3.2.4 DARTS analysis of Epithelial-Mesenchymal Transition 

As a further proof-of-principle study, we applied DARTS DNN trained on ENCODE and 

Roadmap datasets to uncover alternative splicing during the epithelial-mesenchymal 

transition (EMT), a key cellular process in embryonic development and cancer metastasis 

(14).  We previously published RNA-seq data of an H358 lung cancer cell line that 

underwent EMT through a 7-day time course via inducible expression of the 

mesenchymal EMT driver ZEB1 (15). We re-analyzed this RNA-seq dataset and used 

DARTS BHT(flat) to compare the splicing profiles of each day to Day 0. We then assessed 

the ability of the DARTS DNN model to predict high-confidence differential vs. unchanged 

splicing events during the EMT time course. As EMT progressed, the number of 

differential splicing events called by DARTS BHT(flat) increased (Figure 3.4a). We found 
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that the DARTS DNN trained on ENCODE+Roadmap data displayed the best model 

performance, followed closely by the DARTS DNN trained on Roadmap data, whereas 

the DARTS DNN trained on ENCODE data performed least well (Figure 3.4a). These 

findings were not unexpected, given that the Roadmap RNA-seq data cover diverse 

tissues and cell types including various epithelial and mesenchymal cell types, whereas 

the ENCODE data are restricted to HepG2 and K562 cell lines. The best prediction 

accuracy of AUC=0.82 was achieved by the DARTS DNN trained on ENCODE+Roadmap 

for the Day 6 versus Day 0 comparison.  

To further investigate the validity of the DARTS predictions, we compiled a set of 

449 “DARTS DNN rescued” events from the Day 6 vs. Day 0 comparison. These are 

splicing events that displayed a high DARTS DNN score of differential splicing (FPR<5%) 

and a non-trivial splicing change (over 10% difference in exon inclusion level), but did not 

pass the significance threshold by DARTS BHT(flat) using observed RNA-seq read 

counts alone. We uncovered a subset of “DARTS DNN rescued” events with significantly 

reduced exon inclusion during EMT, and found that the intronic regions downstream of 

these exons were enriched for the previously defined consensus motif of the splicing 

factors ESRP1 and ESRP2 (16) (Figure 3.4b). A similar pattern of ESRP motif 

enrichment was observed for differential splicing events called by DARTS BHT(flat) using 

RNA-seq data alone (Figure 3.4b). By contrast, we also found 123 events that were 

called significant by DARTS BHT(flat) but fell below the significance threshold (posterior 

probability<0.9) after incorporating the informative prior; these events were not enriched 

for the ESRP motif (Supplementary Figure 3.11). ESRPs are epithelial-specific splicing 

factors whose downregulation is a major driver of alternative splicing during EMT (15). 
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The pattern of ESRP motif enrichment in the subset of “DARTS DNN rescued” events 

with reduced exon inclusion during EMT is consistent with previous findings that ESRP 

binding downstream of alternative exons enhances exon inclusion (14). These motif data 

provide transcriptome-wide regulatory evidence for the validity of the DARTS DNN 

prediction. As a specific example, DARTS DNN predicted the EMT-associated alternative 

splicing change in the PLEKHA1 gene (Figure 3.4c). The DARTS DNN score for this 

exon is 0.94 in Day 5 versus Day 0, increasing the posterior probability of differential 

splicing to 0.73 over 0.42 when using RNA-seq data alone. The differential splicing 

pattern of this exon was apparent throughout the time course and was validated by RT-

PCR (15). 

To extend our observations on DARTS analysis of EMT-associated alternative 

splicing in the H358 lung cancer cell line, we compared other epithelial and mesenchymal 

cell lines. We performed paired-end RNA-seq of the PC3E and GS689 prostate cancer 

cell lines, which we previously showed have contrasting epithelial vs. mesenchymal 

characteristics respectively (4,17). We generated a deep RNA-seq dataset with on 

average 125 million read pairs per replicate for three biological replicates per cell type. 

We found that several EMT-relevant splicing factors (ESRP1, ESRP2, RBM47) were 

differentially expressed in both the GS689-PC3E “EMT system” and during EMT of H358; 

a few other RBPs were differentially expressed in only one of the two comparisons 

(Figure 3.4d). The DARTS DNN scores of these two EMT systems were highly correlated 

(Spearman’s rho=0.87, p-value<2.2e-16; Figure 3.4e). This correlation was higher than 

the correlation of the GS689-PC3E scores with the DARTS DNN scores for any ENCODE 

RBP-depletion experiment (median=0.69, interquartile range IQR=[0.67, 0.73]). These 



76 
 

data suggest that there is a core differential alternative splicing signature between 

epithelial and mesenchymal cells, and that the DARTS DNN model can capture this 

signature. 

Finally, to assess if DARTS can uncover bona fide differential splicing events from 

moderately or lowly expressed genes, we performed RASL-seq on the same PC3E and 

GS689 RNA samples to generate high-confidence measurements of exon inclusion levels 

(PSI values) for these two cell types. RASL-seq is a sequencing method for targeted 

amplification and quantitative profiling of alternative splicing events (18) (Methods). The 

absolute difference of PSI values between the two cell types (denoted as RASL-ΔPSI) 

was computed for each alternative splicing event (n=1,058) passing the RASL-seq read 

coverage filter (see Methods). From the RNA-seq data and DARTS DNN prediction, we 

compiled four groups of alternative splicing events and compared their distributions of 

RASL-ΔPSI values (Figure 3.4f). For this analysis, we restricted to events with RASL-

ΔPSI value <0.3. As expected, alternative splicing events called as differential or 

unchanged using RNA-seq data alone (by DARTS BHT(flat)) displayed the highest or 

lowest RASL-ΔPSI values, respectively. For the remaining alternative splicing events 

called as inconclusive by DARTS BHT(flat) using RNA-seq data alone, we compiled two 

additional groups: DARTS DNN-predicted differential events, with high DARTS DNN 

scores (FPR<5%); and DARTS DNN-predicted unchanged events, with low DARTS DNN 

scores (FPR>80%). The RASL-ΔPSI values of the DARTS DNN-predicted differential 

events were significantly larger than those of the DARTS DNN-predicted unchanged 

events (p-value=0.035, one-sided Wilcoxon test), with the DARTS DNN-predicted 

differential events similar to the RNA-seq differential events and the DARTS DNN-
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predicted unchanged events similar to the RNA-seq unchanged events (Figure 3.4f). 

These events were in genes with significantly lower gene expression levels (p-

value=0.001, Wilcoxon test) and had significantly lower RNA-seq coverage (p-

value=2.1e-7, Wilcoxon test) compared to differential events called by DARTS BHT(flat) 

(Supplementary Figure 3.12a,b), and were similarly called as insignificant by rMATS (4) 

when using RNA-seq data alone. Collectively, among the events analyzed by RASL-seq, 

DARTS DNN predicted 52 additional differential splicing events, beyond the 77 events 

called using RNA-seq data alone (Figure 3.4f). Importantly, alternative splicing events in 

moderately or lowly expressed genes with high DARTS DNN prediction scores had a 

comparable shift in RASL-seq PSI values as the differential splicing events called from 

RNA-seq data alone in highly expressed genes. Additionally, on this set of RNA-seq 

inconclusive events with high or low DARTS DNN scores, we used the RASL-seq data to 

define the ground truth with RASL-|ΔPSI|>5% as differential and RASL-|ΔPSI|<1% as 

unchanged events respectively. We then benchmarked the performance of DARTS 

BHT(info), DARTS BHT(flat), DARTS DNN, as well as two existing methods rMATS (4) 

and SUPPA2 (19). We chose rMATS and SUPPA2 because they represented two distinct 

strategies (alignment-based vs alignment-free) for quantifying alternative splicing using 

RNA-seq data. As shown in Supplementary Figure 3.12c, DARTS BHT(info) 

consistently outperformed baseline methods that use RNA-seq data alone to call 

differential splicing: AUC of 0.76 for DARTS BHT(info), versus 0.68, 0.63, and 0.61 for 

DARTS BHT(flat), rMATS, and SUPPA2 respectively. We also observed a consistent gain 

by DARTS BHT(info) over baseline methods at different FPR thresholds for DARTS DNN-

predicted differential events, with the maximum gain observed for the most confidently 
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predicted events of FPR=1% (Supplementary Figure 3.12d). Together, these data 

suggest that DARTS can reliably predict and uncover differential splicing events from 

moderately or lowly expressed genes and expand the findings beyond a conventional 

RNA-seq splicing analysis, even on a deep RNA-seq dataset.  

 

3.3 Discussion 

In summary, we present DARTS, a deep-learning augmented statistical framework for 

RNA-seq analysis of differential alternative splicing. DARTS leverages massive RNA-seq 

datasets across diverse cell types and perturbation conditions to predict differential 

alternative splicing using exon-specific cis sequence features and sample-specific trans 

RBP expression levels. We extend the DARTS deep learning model beyond exon 

skipping and show that it can reliably predict differential alternative splicing involving 

diverse types of alternative splicing patterns. We demonstrate that DARTS can improve 

differential splicing analysis from user-specific RNA-seq data and predict alternative 

splicing changes in lowly expressed genes that are inaccessible by a conventional RNA-

seq analysis. This addresses a fundamental limitation in RNA-seq studies of alternative 

splicing in their overly reliance on high sequencing coverage (20). Conceptually, the 

DARTS framework transforms existing RNA-seq big data into a knowledge base of 

splicing regulation via deep learning, which can in turn help individual investigators better 

characterize alternative splicing profiles in their specific RNA-seq studies (Figure 3.1). 

The DARTS software as well as the associated training data and predictive features are 

available at https://github.com/Xinglab/DARTS.  

  

https://github.com/zj-zhang/DARTS
https://github.com/Xinglab/DARTS
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3.4 Methods 

3.4.1 DARTS Bayesian hypothesis testing (BHT) framework 

We developed DARTS BHT, a Bayesian statistical framework to determine the statistical 

significance of differential splicing events or unchanged splicing events between RNA-

seq data of two biological conditions. The DARTS BHT framework was designed to 

integrate deep learning-based prediction as prior and empirical evidence in a specific 

RNA-seq dataset as likelihood. We start by modelling the simplest case, i.e. testing the 

difference in exon inclusion levels (PSI values) between two conditions without replicates, 

i.e. one sample per condition (for model with replicates, see Appendix): 

𝐼𝑖𝑗  | 𝜓𝑖𝑗 ∼  Binomial(𝑛 = 𝐼𝑖𝑗 + 𝑆𝑖𝑗, 𝑝 = 𝑓𝑖(𝜓𝑖𝑗)) 

𝜓𝑖1 = 𝜇𝑖 

𝜓𝑖2 = 𝜇𝑖 + 𝛿𝑖 

𝜇𝑖 ∼ Unif(0,1) 

𝛿𝑖 ∼ 𝑁(0, 𝜏2) 

Where 𝐼𝑖𝑗, 𝑆𝑖𝑗 and 𝜓𝑖𝑗 are the exon inclusion read count, the exon skipping read count, 

and the exon inclusion level for exon i in sample group 𝑗 ∈ (1,2), respectively; 𝑓𝑖 is the 

length normalization function for exon i that accounts for the effective lengths of the exon 

inclusion and skipping isoforms (4); 𝜇𝑖 is the baseline inclusion level for exon i, and 𝛿𝑖 is 

the expected difference of the exon inclusion levels between the two conditions. The goal 

of the differential splicing analysis is to test whether the difference in exon inclusion levels 

between the two conditions 𝛿𝑖  exceeds a user-defined threshold c (e.g. 5%) with a high 

probability, i.e. 

𝑃(|𝛿𝑖|> 𝑐|𝐼𝑖𝑗 , 𝑆𝑖𝑗) ≈ 1 
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In Bayesian statistics, this test can be approached by assuming a “spike-and-slab” prior 

for the parameter of interest 𝛿. The spike-and-slab prior is a two-component mixture prior 

distribution, with the “spike” component depicting the probability of the model parameter 

𝛿  being constrained around zero, and the “slab” component depicting the unconstrained 

distribution of the model parameter 𝛿 .  

In the DARTS BHT statistical framework, we impose a spike prior 𝐻0 with a small 

variance 𝜏 = 𝜏0 , such that the probability of 𝛿  concentrates around 0, to account for 

random biological or technical fluctuations in PSI values between two biological 

conditions for unchanged splicing events. We impose a slab prior 𝐻1 with a much larger 

variance 𝜏 = 𝜏1  to model the difference in PSI values between two conditions for 

differential splicing events. We set 𝜏0 = 0.03, corresponding to 90% density constrained 

within 𝛿 ∈ [−0.05,0.05], and 𝜏1 = 0.3; we note that the final inference is robust to choice 

of 𝜏  values (for more details, see Appendix and Supplementary Figure 3.13). The 

posterior probability of a splicing event being generated by the two models can be written 

as: 

𝑃(𝐻1|𝐼𝑖𝑗 , 𝑆𝑖𝑗) =
1

𝑍
𝑃(𝐻1) ⋅ 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝐻1) 

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻1) = ∫ ∫ 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝜇𝑖 , 𝛿𝑖) ⋅ 𝑃(𝜇𝑖, 𝛿𝑖|𝐻1)𝑑𝜇𝑖𝑑𝛿𝑖
𝜇𝛿

 

𝑃(𝐻0|𝐼𝑖𝑗, 𝑆𝑖𝑗) =
1

𝑍
𝑃(𝐻0) ⋅ 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝐻0) 

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻0) = ∫ ∫ 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝜇𝑖 , 𝛿𝑖) ⋅ 𝑃(𝜇𝑖, 𝛿𝑖|𝐻0)𝑑𝜇𝑖𝑑𝛿𝑖
𝜇𝛿

 

 



81 
 

Where 𝑃(𝐻1) is the prior probability of exon i being differentially spliced, determined by 

exon-specific cis features and sample-specific trans RBP expression levels in the two 

biological conditions, which is independent of the observed RNA-seq read counts. 

𝑃(𝐻0) = 1 − 𝑃(𝐻1) is the prior probability of exon i being unchanged. 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝐻1) and 

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻0)  represent the likelihoods under the model of differential splicing or 

unchanged splicing respectively. Z is a normalizing constant.  

Since we are comparing only two models, we can further re-write the above 

equation as a factorization of the ratios between prior and likelihood: 

𝑃(𝐻1|𝐼𝑖𝑗, 𝑆𝑖𝑗)

𝑃(𝐻0|𝐼𝑖𝑗, 𝑆𝑖𝑗)
=

𝑃(𝐻1)

𝑃(𝐻0)
⋅

𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝐻1)

𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝐻0)
 

Note that when the prior distribution is flat, i.e. 𝑃(𝐻0) = 𝑃(𝐻1) = 0.5, the above 

equation is equivalent to a likelihood ratio test, which we refer to as DARTS BHT(flat). 

When 𝑃(𝐻0) and 𝑃(𝐻1) incorporate an informative prior based on exon- and sample-

specific predictive features, we refer to this DARTS BHT model as DARTS BHT(info).  

Finally, using the equation above, we can derive the marginal posterior probability 

𝑃(𝛿𝑖|𝐼𝑖𝑗 , 𝑆𝑖𝑗) for the parameter of interest 𝛿𝑖 as a mixture of the posterior conditioned on 

the two models: 

𝑃(𝛿𝑖|𝐼𝑖𝑗 , 𝑆𝑖𝑗) = 𝑃(𝛿𝑖|𝐻1, 𝐼𝑖𝑗 , 𝑆𝑖𝑗) ⋅ 𝑃(𝐻1|𝐼𝑖𝑗 , 𝑆𝑖𝑗) + 𝑃(𝛿𝑖|𝐻0, 𝐼𝑖𝑗 , 𝑆𝑖𝑗) ⋅ 𝑃(𝐻0|𝐼𝑖𝑗, 𝑆𝑖𝑗) 

Hence, the final inference is performed on the probability 𝑃(|𝛿𝑖| > 𝑐|𝐼𝑖𝑗, 𝑆𝑖𝑗). In our 

analysis, we set c=0.05 (i.e. a 5% change in exon inclusion level) and call events with 

𝑃(|𝛿𝑖| > 0.05 |𝐼𝑖𝑗, 𝑆𝑖𝑗) > 0.9  as significant differential splicing events and 𝑃(|𝛿𝑖| >

0.05 |𝐼𝑖𝑗, 𝑆𝑖𝑗) < 0.1 as significant unchanged splicing events. Events with 0.1 ≤ 𝑃(|𝛿𝑖| >
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0.05|𝐼𝑖𝑗, 𝑆𝑖𝑗) ≤ 0.9 are deemed as inconclusive. In the following text, we omit the 

subscripts and use 𝑃(|𝛿𝑖| > 𝑐 |𝐼𝑖𝑗, 𝑆𝑖𝑗) and 𝑃(|∆𝜓| > 𝑐) interchangeably. 

 

3.4.2 DARTS deep neural network (DNN) model for predicting differential 

alternative splicing 

A core component of the DARTS BHT framework is a deep neural network (DNN) model 

that generates a probability of differential splicing between two biological conditions using 

exon- and sample-specific predictive features. We designed the DARTS DNN to predict 

differential splicing of a given exon based on exon-specific cis sequence features and 

sample-specific trans RBP expression levels in two biological conditions. 

As noted above, a useful feature of the DARTS BHT framework is its capability to 

determine the statistical significance of both differential splicing events and unchanged 

splicing events. Specifically, for a splicing event i in the comparison k between RNA-seq 

datasets from two distinct biological conditions ( 𝑗 ∈ (1,2)), let 𝑌𝑖𝑘 = 1  if this event is 

differentially spliced (i.e. 𝐻1 is true); and 𝑌𝑖𝑘 = 0 if 𝐻0 is true as labels for differential or 

unchanged splicing events respectively. The task of predicting differential splicing can be 

formulated as: 

𝑃(𝑌𝑖𝑘 = 1) = 𝐹(𝑌𝑖𝑘; 𝐸𝑖 , 𝐺𝑘) 

 Where 𝑌𝑖𝑘 is the label for event i in the comparison k; 𝐸𝑖 is a vector of 2,926 cis sequence 

features for exon i, including evolutionary conservation, splice site strength, regulatory 

motif composition, and RNA secondary structure. 𝐺𝑘  is a vector of 2,996 (=1,498x2) 

normalized gene expression levels of 1,498 RBPs in the two conditions. The prediction 



83 
 

of 𝑃(𝑌𝑖𝑘 = 1) based on the features from any specific RNA-seq dataset can then be 

incorporated as an informative prior for 𝑃(𝐻1) in the DARTS BHT framework. 

We implemented a deep learning model (DARTS DNN) to learn the unknown 

function F that maps the predictive features to splicing profiles (differential vs. unchanged). 

We designed the DARTS DNN with 4 hidden layers and 7,923,402 parameters. The 

configuration of the DNN was: an input layer with 5922(=2926+1498*2) variables; 4 fully-

connected hidden layers with 1200, 500, 300, 200 variables and the ReLU activation 

function; and an output layer with 2 variables and the Softmax activation function. We 

implemented the DARTS DNN using Keras (https://github.com/keras-team/keras) with 

the Theano backend. 

To mitigate potential overfitting of the DARTS DNN, we added a drop-out 

probability (21) for connections between hidden layers. Specifically, the variables in the 

four hidden layers were randomly turned off during the training process with probability 

0.6, 0.5, 0.3, and 0.1, respectively. We also added batch-normalization layers (22) for all 

hidden layers to help the model converge and generalize. Finally, we used the RMSprop 

optimizer to adaptively adjust for the magnitudes of the components of the gradient in this 

deep architecture and chose 1000 labeled alternative splicing events as one mini-batch 

to obtain a more stable gradient. In each mini-batch we balanced the composition of 

positive and negative labels by adding more positive events in the mini-batch such that 

positive : negative = 1:3 in the mini-batch. Since there were significantly more negative 

(unchanged) events compared to positive (differential) events, such a balanced 

composition will provide a gradient for learning the positive events in different mini-

batches. 

https://github.com/keras-team/keras
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To monitor the training loss and validation loss, we computed the loss every 10 

mini-batches and saved the current model parameters if the validation loss was lower 

than the previous best model. We trained the DARTS DNN on Tesla K40m. 

 

3.4.3 Processing of ENCODE RNA-seq data and training of the DARTS DNN model 

We used a comprehensive RNA-seq dataset from the ENCODE consortium to train the 

DARTS DNN. The ENCODE investigators have performed systematic shRNA knockdown 

of over 250 RBPs in two human cell lines HepG2 and K562. We downloaded all available 

(as of May 2017) RNA-seq alignments (ENCODE processing pipeline on the human 

genome version hg19) for shRNA knockdown and control samples from the ENCODE 

data portal (https://www.encodeproject.org/).  

We processed the RNA-seq alignments (bam files) using rMATS (4) (v4.0.1). 

Given RNA-seq alignment files, rMATS constructs splicing graphs, detects annotated and 

novel alternative splicing events, and counts the number of RNA-seq reads for each exon 

and splice junction. Given the modest depth of the ENCODE RNA-seq data (32 million 

read pairs per replicate on average), the read counts from the two replicates were pooled 

together for downstream analyses. 

We processed the raw RNA-seq reads with Kallisto (23) (v0.43.0) to quantify gene 

expression levels using Gencode (24) (v19) protein coding transcripts as the index. For 

each of the two biological conditions in a given comparison (i.e. shRNA knockdown vs. 

control), we extracted the Kallisto derived gene-level TPM values of 1,498 known RBPs 

(12). The TPM value of each RBP was normalized by dividing by its maximum observed 
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TPM value of all comparisons, then used as RBP expression features by the DARTS 

DNN. 

To generate training labels for the DARTS DNN, DARTS BHT(flat) was applied to 

the ENCODE RNA-seq data. Events with posterior probability P(|∆𝜓|>0.05)>0.9 were 

called positive (Y=1). Events with posterior probability P(|∆𝜓 |>0.05)<0.1 were called 

negative (Y=0). We defined these significant differential splicing events and significant 

unchanged splicing events as labelled events and used them to train the DARTS DNN. 

The vast majority of the RBPs (n=196) in the ENCODE data were knocked-down 

by at least one shRNA in both HepG2 and K562 cell lines, corresponding to a total of 408 

comparisons between knockdown and control. We set aside 10% of the labelled positive 

events and the same number of labeled negative events in each comparison as the 

testing data for estimating the generalization error of the trained DNN model. For the 

remaining 90% of the labelled events, we further split them into 5-fold cross-validation 

subsets for the purposes of training, monitoring overfitting, and early-stopping. We also 

collected ENCODE RBP knockdown experiments performed in only one cell line (either 

HepG2 or K562, n=58) as leave-out datasets. All labelled events in these leave-out 

datasets were only utilized for evaluating the trained DARTS DNN and were never used 

during training.  

We randomly drew 4 RBPs without replacement for a training batch, and iterated 

through all 196 RBPs as an epoch. The performance of the DARTS DNN was measured 

by Area Under the Receiver Operating Characteristics curve (AUROC).  The model with 

the best performance during training and cross-validation was selected, and subsequently 

benchmarked using the testing data and leave-out data. 
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3.4.4 Rank-transformation of the DARTS informative prior 

In a typical RNA-seq study, the number of unchanged splicing events can be orders of 

magnitude larger than differential splicing events, and machine learning algorithms may 

be biased to the majority class. To mitigate this potential bias, we used an unsupervised 

rank-transformation to rescale DARTS DNN scores to derive the informative prior for the 

DARTS BHT framework. Specifically, we first fit a two-component Gaussian mixture 

model for all the DARTS DNN scores to derive the mean and variance of the two mixed 

Gaussian components as well as the posterior probability 𝜆 of each DARTS DNN score 

belonging to a specific component. Setting the new mean and variance of the two 

Gaussian components to 𝜇0  and 𝜇1, 𝜎0 and 𝜎1, respectively, each DARTS DNN score 

was rank-transformed to the new Gaussian components and then averaged by the weight 

parameter 𝜆. Finally, to maintain a valid prior probability, the transformed DARTS DNN 

scores were rescaled to [𝛼, 1 − 𝛼], where 𝛼 ∈ [0,0.5) sets the desired prior strength for 

the DARTS BHT framework and a smaller 𝛼 value corresponds to a stronger strength of 

the informative prior. Using this rescaling scheme, the entire ranks of the DARTS DNN 

scores are preserved while the potential bias for negative over positive events is reduced. 

In practice, we set 𝜇0 = 0.05, 𝜇1 = 0.95, 𝜎0 = 𝜎1 = 0.1, and 𝛼 = 0.05. 

 

3.4.5 Generalization of the DARTS framework to diverse tissues and cell types 

We generalized the DARTS framework to incorporate diverse tissues and cell types by 

utilizing RNA-seq resources from the Roadmap Epigenomics project (6). The Roadmap 

data was processed following the same protocol as for the ENCODE data. We took all 
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Roadmap data with 101bp x 2 or 100bp x 2 paired-end RNA-seq, and truncated reads 

from the 101bp x 2 datasets to 100bp for rMATS. In total, this represented 23 distinct 

tissues or cell types. All possible pairwise comparisons (n=253) between these 23 RNA-

seq samples were performed. Comparisons involving thymus were held out as Roadmap 

leave-out data, and all remaining comparisons were used as training datasets.     

We trained three DARTS DNN models using different training datasets: i) 

ENCODE data only, ii) Roadmap data only, and iii) the combination of 

ENCODE+Roadmap data. The performances of the three models were subsequently 

benchmarked by using ENCODE or Roadmap leave-out datasets. 

 

3.4.6 DARTS splicing analyses of EMT-associated RNA-seq datasets 

We applied the trained DARTS model to study EMT-associated alternative splicing events 

in two distinct human cell culture systems: H358 lung cancer cell line induced to undergo 

EMT through a 7-day time course (15), and PC3E/GS689 prostate cell lines that had 

contrasting epithelial versus mesenchymal characteristics (4,17).  

For the H358 time-course RNA-seq data (GSE75492), we used DARTS BHT(flat) 

to compare RNA-seq data from Day 1 to Day 7 against Day 0. Motif analysis was 

performed by calculating the average percentage of nucleotides covered by any of the 

top 12 ESRP SELEX-seq hexamer motifs (16) in a 45bp sliding window. Background 

sequences were significant unchanged events by DARTS BHT(flat).  For the PC3E and 

GS689 cell lines, we conducted RASL-seq (18) and RNA-seq experiments on the same 

batch of RNA samples, each with 3 replicates and on average 125 million read pairs per 

replicate (raw data deposited as GSE112037). RASL-seq reads were aligned to the pool 
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of target splice junctions in the RASL-seq library using Blat (25). RASL-PSI values were 

calculated as  
𝐼

𝐼+𝑆
, where I is the number of exon inclusion splice junction reads and S is 

the number of exon skipping splice junction reads. Alternative splicing events with total 

RASL-seq read counts larger than 5 in every replicate were used for downstream 

analyses. Gene expression levels of RBPs in the two datasets were quantified using 

Kallisto v0.43.0. 

 

3.4.7 RASL-seq library preparation and sequencing 

RASL-seq was performed as described (26) with some modifications. Total RNA from 

PC3E and GS689 cell lines were extracted with Trizol (Thermo Fisher Scientific). RASL-

seq oligonucleotides (a gift from Xiang-Dong Fu, UCSD) were annealed to 1 μg of total 

RNA, followed by selection by oligo-dT beads. Paired probes templated by polyA+ RNA 

were ligated and then eluted. 5 μl of the eluted ligated oligos were used for 8 cycles of 

PCR amplification using primers F1: 5’-

CCGAGATCTACACTCTTTCCCTACACGACGGCGACCACCGAGAT-3’ and R1: 5’-

GTGACTGGAGTTCAGACGTGTGCGCTGATGCTACGACCACAGG-3’. One third of the 

resulting PCR products were used in the second round of PCR amplification (9 cycles) 

using primers F2: 5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG-3’ and R2: 5’-

CAAGCAGAAGACGGCATACGAGAT[index]GTGACTGGAGTTCAGACGTGTGC-3’; 

indexes used in this study were Illumina indexes D701-D706. The indexed PCR products 

were pooled and sequenced on a Miseq with a custom sequencing primer 5’-
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ACACTCTTTCCCTACACGACGGCGACCACCGAGAT-3’ and a custom index 

sequencing primer 5’-TAGCATCAGCGCACACGTCTGAACTCCAGTCAC-3’.  

 

3.4.8 Data Availability 

The RNA-seq data that support the findings of the deep learning models are available 

from the ENCODE project (https://www.encodeproject.org/) and the Roadmap 

Epigenomics project (http://www.roadmapepigenomics.org/). The H358 time-series RNA-

seq data were downloaded from GEO with accession ID GSE75492. The PC3E-GS689 

RNA-seq data and RASL-seq data can be accessed from GEO with accession ID 

GSE112037. 

 

3.4.9 Code Availability 

The DARTS program, trained model parameters, and predictive features are provided at 

GitHub (https://github.com/Xinglab/DARTS). 

 

Acknowledgements 

I would like to thank my collaborators and co-authors on the publication of this work, they 

are: Zhicheng Pan, Yi Ying, Zhijie Xie, Samir Adhikari, John Phillips, Russ P. Carstens, 

Douglas L. Black, Yingnian Wu, and Yi Xing. 

This study is supported by National Institutes of Health grants (R01GM088342 and 

R01GM117624 to Y.X.). Z.Z. is partially supported by a UCLA Dissertation Year 

Fellowship. 

 

https://www.encodeproject.org/
http://www.roadmapepigenomics.org/
https://github.com/Xinglab/DARTS


90 
 

3.5 References 

1. Nilsen, T.W. & Graveley, B.R. Expansion of the eukaryotic proteome by alternative 

splicing. Nature 463, 457-463 (2010). 

2. Manning, K.S. & Cooper, T.A. The roles of RNA processing in translating genotype 

to phenotype. Nature reviews. Molecular cell biology 18, 102-114 (2017). 

3. Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA 

sequencing experiments for identifying isoform regulation. Nature methods 7, 1009-1015 

(2010). 

4. Shen, S. et al. rMATS: robust and flexible detection of differential alternative 

splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciences 

of the United States of America 111, E5593-5601 (2014). 

5. Park, E., Pan, Z., Zhang, Z., Lin, L. & Xing, Y. The Expanding Landscape of 

Alternative Splicing Variation in Human Populations. American journal of human genetics 

102, 11-26 (2018). 

6. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human 

epigenomes. Nature 518, 317-330 (2015). 

7. Consortium, E.P. An integrated encyclopedia of DNA elements in the human 

genome. Nature 489, 57-74 (2012). 

8. Xiong, H.Y. et al. RNA splicing. The human splicing code reveals new insights into 

the genetic determinants of disease. Science 347, 1254806 (2015). 

9. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53-59 (2010). 



91 
 

10. Leung, M.K., Xiong, H.Y., Lee, L.J. & Frey, B.J. Deep learning of the tissue-

regulated splicing code. Bioinformatics 30, i121-129 (2014). 

11. Huang, Y. & Sanguinetti, G. BRIE: transcriptome-wide splicing quantification in 

single cells. Genome biology 18, 123 (2017). 

12. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. 

Nature reviews. Genetics 15, 829-845 (2014). 

13. Van Nostrand, E.L. et al. A large-scale binding and functional map of human RNA 

binding proteins. bioRxiv, 179648 (2017). 

14. Warzecha, C.C. et al. An ESRP-regulated splicing programme is abrogated during 

the epithelial-mesenchymal transition. The EMBO journal 29, 3286-3300 (2010). 

15. Yang, Y. et al. Determination of a Comprehensive Alternative Splicing Regulatory 

Network and Combinatorial Regulation by Key Factors during the Epithelial-to-

Mesenchymal Transition. Molecular and cellular biology 36, 1704-1719 (2016). 

16. Dittmar, K.A. et al. Genome-wide determination of a broad ESRP-regulated 

posttranscriptional network by high-throughput sequencing. Molecular and cellular 

biology 32, 1468-1482 (2012). 

17. Lu, Z.X. et al. Transcriptome-wide landscape of pre-mRNA alternative splicing 

associated with metastatic colonization. Molecular cancer research : MCR 13, 305-318 

(2015). 



92 
 

18. Li, H., Qiu, J. & Fu, X.D. RASL-seq for massively parallel and quantitative analysis 

of gene expression. Current protocols in molecular biology Chapter 4, Unit 4 13 11-19 

(2012). 

19. Trincado, J.L. et al. SUPPA2: fast, accurate, and uncertainty-aware differential 

splicing analysis across multiple conditions. Genome Biol 19, 40 (2018). 

20. Cieslik, M. & Chinnaiyan, A.M. Cancer transcriptome profiling at the juncture of 

clinical translation. Nature reviews. Genetics 19, 93-109 (2018). 

21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. 

Dropout: A simple way to prevent neural networks from overfitting. The Journal of 

Machine Learning Research 15, 1929-1958 (2014). 

22. Ioffe, S. & Szegedy, C. in International conference on machine learning 448-456 

(2015). 

23. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-

seq quantification. Nature biotechnology 34, 525-527 (2016). 

24. Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE. 

Genome Biol 7 Suppl 1, S4 1-9 (2006). 

25. Kent, W.J. BLAT--the BLAST-like alignment tool. Genome research 12, 656-664 

(2002). 

26. Ying, Y. et al. Splicing Activation by Rbfox Requires Self-Aggregation through Its 

Tyrosine-Rich Domain. Cell 170, 312-323 e310 (2017). 

   



93 
 

3.6 Figures 

 

Figure 3.1 Overall workflow of the DARTS computational framework.  

During the training process (green), large-scale RNA-seq data (e.g. ENCODE, Roadmap) 

are analyzed by DARTS BHT(flat), then used to train the DARTS DNN using exon-specific 

sequence features and sample-specific regulatory features (i.e. gene expression levels 

of RNA binding proteins) in the training datasets. In the application process (pink) to a 

user-specific dataset, the trained DARTS DNN is used to generate an informative prior of 

differential alternative splicing based on exon-specific sequence features and sample-

specific regulatory features in the user-specific dataset. The informative prior is 

subsequently incorporated with the observed RNA-seq read counts by DARTS BHT (info) 

to perform deep learning-augmented splicing analysis.  
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Figure 3.2 The DARTS Deep Neural Network (DNN) model of differential 

alternative splicing.  

(a) Schematic illustration of the DARTS features, including cis sequence features and 

trans RBP features. (b) Overview of training/testing and leave-out RBPs, and the number 

of significant differential splicing events called by DARTS BHT(flat) on the ENCODE data 

(illustrated by bar charts above the outer and middle circles). 196 RBPs knocked-down in 

both the K562 and HepG2 cell lines are used for training and testing (orange), while the 
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remaining 58 RBPs are leave-out data (light orange) (illustrated in the inner circle). (c) 

AUROC values of validation and testing data increase as the training progresses. (d) 

Comparison of DARTS DNN with baseline methods in leave-out datasets. DARTS DNN 

outperforms baseline methods trained on individual leave-out datasets by a large margin. 

The identical deep neural network (DNN) trained on individual leave-out datasets 

performs poorly due to severe overfitting without being trained on big data. 
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Figure 3.3 The schematic illustration and performance evaluation of the DARTS 

Bayesian Hypothesis Testing (BHT) framework.  

(a) DARTS BHT infers differential alternative splicing by combining the likelihood of the 

observed RNA-seq read counts and the prior probability determined by the DARTS DNN 

using exon-specific cis sequence features and sample-specific trans RBP features. (b) 

DARTS BHT(info) consistently outperforms DARTS BHT(flat) in the cell-type-specific 

differential splicing analysis of HepG2 and K562. The gain in accuracy by DARTS 

BHT(info) was more prominent in pairwise comparisons of low-coverage replicates (inset). 
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(c) DARTS DNN trained on ENCODE+Roadmap data outperforms DARTS DNN trained 

on ENCODE data only when applied to Roadmap leave-out data. Plotted are the AUROC 

values. (d) DARTS DNN trained on ENCODE+Roadmap data outperforms DARTS DNN 

trained on Roadmap data only when applied to ENCODE leave-out data. Plotted are the 

AUROC values. 
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Figure 3.4 DARTS splicing analysis of EMT-associated RNA-seq data.  

(a) The performance of the DARTS DNN on the H358 lung cancer cell line time-series 

EMT data. The numbers of differential splicing events called by DARTS BHT(flat) were 

shown as bar plots at the bottom. (b) Meta-exon motif analysis of the known ESRP motif 

for RNA-seq differential events and DARTS DNN rescued events in the Day 6 vs. Day 0 

comparison. In both exon sets, an enrichment of the ESRP motif was observed in the 

downstream intronic region for exons with low splicing levels in Day 6 as compared to 

Day 0. (c) An example of the DARTS prediction for the PLEKHA1 gene. (d) Differential 

RBP expression signatures in GS689 vs. PC3E prostate cancer cell lines and in H358 

Day 6 vs. Day 0. Repressed or enhanced genes have lower or higher gene expression 

levels in the mesenchymal state, respectively. (e) DARTS predictions in the H358 EMT 
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time-series (Day 6 vs. Day 0) and in GS689 vs. PC3E are highly correlated. Plotted are 

the ranks of predicted DARTS DNN scores. (f) RASL-seq validation of RNA-seq called 

events and DARTS DNN predicted events. The RNA-seq inconclusive events with high 

DARTS DNN scores (FPR<5%) had a large change in RASL-PSI values (orange line) 

compared to RNA-seq inconclusive events with low DARTS DNN scores (FPR>80%) 

(green line). 
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Supplementary Figure 3.5 Schematic overview of the DARTS DNN model.  

The DARTS DNN model consists of 4 hidden layers and 7,923,402 parameters. Batch 

normalization and drop-out of hidden variables are implemented during training to 

mitigate overfitting. 
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Supplementary Figure 3.6 Performance comparison of DARTS BHT(flat), MISO, 

and MATS using simulated RNA-seq data generated by Flux simulator. 

 We derived the transcriptome profiles from a real RNA-seq dataset with widespread 

splicing changes (E-MTAB-1147; knockdown of splicing factor HNRNPC in the HeLa cell 

line), and plugged into Flux simulator as ground-truth to simulate RNA-seq reads. Then 

(a) AUROC and (b) AUPR were computed for each statistical method by labelling the 

exon skipping events with ground-truth |Δψ|>0.05 as positive and |Δψ|≤0.05 as negative 

(for details, see Supplementary Notes). DARTS BHT(flat) performs favorably to MISO 

and MATS. 
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Supplementary Figure 3.7 Performance comparison of DARTS BHT(flat) with 

replicates versus DARTS BHT(flat) on pooled data and rMATS with replicates.  

We fixed the total RNA-seq read counts (coverage per replicate x number of replicates) 

while varying the number of replicates (K), within group variance (sigma), and whether 

there is one outlier sample. The replicate DARTS model (rDARTS) outperforms DARTS 

on pooled data when there exists outlier samples (b,e) or when the within-group variance 

is large (c,f). 
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Supplementary Figure 3.8 Relationship of DARTS posterior, prior, and the amount 

of observed RNA-seq read counts.  

For a fixed absolute PSI difference between the two conditions, i.e. the effect size 

(denoted as delta), posterior probability P(|δ|>0.05|I,S) was computed from simulated 

data by varying the prior probability and the amount of read counts.  The prior’s effect on 

DARTS posterior diminished when the observed read counts were large (>100) and/or 

with large effect size (delta=0.3). For events with moderate or low read counts, a strong 

informative prior improves the inference accuracy. 
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Supplementary Figure 3.9 Cluster analysis of top 3,000 genes with the highest 

coefficient of variation (CoV) in gene expression in the ENCODE HepG2 and K562 

cell lines. 

The 24 and 28 biological replicates of HepG2 and K562 clustered into two distinct groups 

that matched their cell type labels. Plotted for each gene are the normalized Z-scores. 

 



105 
 

 

Supplementary Figure 3.10 Application of the DARTS DNN to different classes of 

alternative splicing patterns.  

(a, c, e) The performance of the DARTS DNN on validation and testing data as training 

progresses for alternative 5’ splice sites (A5SS), alternative 3’ splice sites (A3SS), and 

retained introns (RI) as measured by AUROC. (b, d, f) Comparison of the DARTS DNN 
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with baseline methods in independent leave-out datasets. DARTS DNN outperforms 

baseline methods trained on individual leave-out datasets by a large margin. Note that in 

these analyses the DARTS DNN is trained using combined ENCODE + Roadmap RNA-

seq datasets, with certain pairwise comparisons held-out for benchmarking as 

independent leave-out datasets.  
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Supplementary Figure 3.11 Additional ESRP motif analysis of DARTS BHT events. 

Motif scores are shown for a) all DARTS BHT(flat) significant events and b) DARTS 

BHT(flat) significant events that become insignificant in DARTS BHT(info). The latter set 

of events does not have enrichment of the ESRP motif. 
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Supplementary Figure 3.12 Characteristics of the DARTS DNN predicted events.  

The cumulative density function of a) gene expression levels (TPM values) and b) RNA-

seq read coverage for DARTS DNN predicted differential events and RNA-seq differential 

events. The DARTS DNN predicted differential events are from genes with significantly 

lower expression levels and have significantly lower RNA-seq read coverage compared 

to RNA-seq differential events. c) DARTS BHT(info) outperforms  baseline methods that 

use RNA-seq data alone to call differential splicing (DARTS BHT(flat), rMATS, and 

SUPPA2), as benchmarked using ground truth defined by RASL-seq. d) DARTS BHT(info) 

outperforms baseline methods at different FPR thresholds for DARTS DNN-predicted 

differential events. 
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Supplementary Figure 3.13 Ranking by DARTS BHT on simulated data when 

using different t_1, t_2 values.  

The results of DARTS BHT are robust to different choices of parameters, especially for 

the inference of differential alternative splicing events (upper right corner in each panel). 
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Supplementary Figure 3.14 Testing data performance comparison of DARTS DNN 

and logistic regression using all ENCODE data.  

Inner set is a zoom-in of the performance of logistic regression before it early-stopped. 
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3.7 Appendix 

3.7.1 DARTS BHT statistical modeling 

Benchmarking DARTS BHT on simulated data 

Generation of benchmark dataset 

In order to better represent the variability inherent in real experimental datasets, while 

knowing the ground-truth, we employed the flux-simulator (1) software (v1.2.1) to simulate 

RNA-seq reads. Flux-simulator is a specialized simulation software program that models 

RNA-seq experiments using a set of modules for different experimental procedures, 

including RNA fragmentation, library preparation and high-throughput sequencing. The 

major advantage of simulating data using flux-simulator as opposed to directly drawing 

reads from a statistical distribution is that the former approach takes the variances/noises 

at different stages into consideration, whereas the latter assumes all reads are generated 

by a simple stochastic process and are counted correctly; hence, our approach better 

captures the real-world variances compared to a naïve simulator.  

Flux-simulator simulates RNA-seq reads based on a given molecular profile that 

contains “number of molecules” for each transcript. We derived the molecular profile from 

a previously published dataset, E-MTAB-1147 from ArrayExpress, which is an RNA-seq 

experiment of HeLa cell line upon hnRNPC knockdown (2). We chose this dataset 

because our previous analysis had demonstrated that it contained abundant splicing 

changes (3), and that its sequencing depth was sufficiently deep to ensure robust 

estimation of the transcript expression. We used Kallisto (4) (v 0.43.0) to estimate the 

transcript TPM from the raw reads using Gencode (5) V19 as reference GTF. The 
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transcript TPM was subsequently converted to number of molecules by fixing the total 

number of molecules at 5,000,000 (default setting in flux-simulator) and rounding 

fractional molecules to the nearest integer. 

Taking the customized molecular profile, we ran Flux-simulator using: the fragment 

distribution derived from the above experiment, sequencing read length equal to 72bp 

with 100 million paired-end reads, and leaving other parameters at their default settings. 

Next, we ran STAR (v 2.5.2a) to map the reads to the hg19 version of genome with 

Gencode v19 as gene annotation file. The resulting outputs were two alignment bam files 

corresponding to the profiles derived from Control and hnRNPC knockdown.  

Evaluation of DARTS BHT, MISO and MATS 

We processed the alignment files with rMATS (6) (v4.0.1) to count the junction-spanning 

reads with Gencode v19 as reference annotation. The inclusion junction counts and 

skipping junction counts for all detected events were then fed into the DARTS BHT model 

with a flat prior as input. We ran DARTS BHT with 𝜏1 = 0.3, 𝜏0 = 0.03 and testing for 

C=0.05. The output of DARTS BHT was subsequently benchmarked using the true delta-

PSI values between two conditions. 

Note that we only considered simple skipping events in the simulation study, 

because the complex events are often combinations of multiple alternative splicing events 

and the true PSI values are often ambiguous to define and hence hard to compute. We 

define the simple events as events with a unique one-to-one mapping for the 5’- and 3’- 

splice sites of the middle skipping exon, upstream exon 5’- to middle exon 3’- splice site, 
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and middle exon 5’- to downstream 3’- splice site. After filtering for simple events, we had 

7,678 simple exon-skipping events out of 16,676 exons detected by rMATS. 

As a comparison, we also ran MISO (7) (v0.5.3) and MATS (v4.0.1) on the 

simulated datasets. To run MISO exon-centric analysis, we downloaded the Human 

genome (hg19) annotation file v1.0 from the MISO website 

(https://miso.readthedocs.io/en/fastmiso/annotation.html) and built the index for MISO 

using the Skipping Events (SE) in the annotated folder by “index_gff”. Next, we ran MISO 

to quantify the splicing level under each condition then used “compare_miso” to compute 

the Bayes Factor for the skipping events in MISO annotation files. We ran the MATS 

statistical model with setting C=0.05 on the read counts generated by rMATS. 

Since MISO analyzes its own internal skipping events annotation which is different 

from the simple events definition in DARTS and MATS, we took the intersection of the 

events from these software programs. There were 3,407 common events between the 

two software programs, with 1,344 events’ absolute delta-PSI larger than 5% which we 

labeled as positive. We measured the accuracy of DARTS BHT, MISO and MATS by 

AUROC and AUPR. As shown in Supplementary Figure 3.6, DARTS compares 

favorably to MISO and MATS, demonstrating its superior inference power to the state-of-

the-art splicing inference tools when using only empirical RNA-seq data. 

DARTS BHT statistical model for unpaired or paired replicates 

Illustration of replicate DARTS BHT statistical model 

Thanks to the rapid development of sequencing technology, it has become practical and 

common for transcriptomic studies to carry out RNA-seq experiments with multiple 
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replicates to quantify biological variances and improve reproducibility. Previously we had 

demonstrated that pooling the reads from different replicates is not recommended (6). 

Motivated by the replicate analysis, we sought to develop the replicate DARTS model that 

considers replicates in its likelihood function while still being capable of taking the 

informative prior into account. 

Following the notations in the DARTS main text, we extend the DARTS BHT model 

to include read counts from different replicates into the following hierarchical model (we 

are abusing the subscripts k here to index replicate; whereas k was used to index different 

experimental conditions in the main text): 

𝐼𝑖𝑗𝑘 | 𝜓𝑖𝑗𝑘 ∼  Binomial(𝑛 = 𝐼𝑖𝑗𝑘 + 𝑆𝑖𝑗𝑘, 𝑝 = 𝑓𝑖(𝜓𝑖𝑗𝑘 )) 

𝜓𝑖𝑗𝑘  = 𝜇𝑖  +  1(𝑗 = 2) ⋅ 𝛿𝑖 + 𝜖𝑖𝑘, 𝜖𝑖𝑘 ∼ 𝑁(0, 𝜎2) 

𝜇𝑖𝑘 = 𝜇𝑖 + 𝜖𝑖𝑘, 𝜇𝑖𝑘 ∼ 𝑁(𝜇𝑖, 𝜎2) 

𝜇𝑖 ∼  Unif(0,1) 

𝛿𝑖 ∼  𝑁(0, 𝜏2) 

[S1] 

𝐼𝑖𝑗𝑘, 𝑆𝑖𝑗𝑘 and 𝜓𝑖𝑗𝑘 are the inclusion read counts, the skipping read counts and the 

exon inclusion level for exon i, sample group j=1,2, in replicate k; 𝑓𝑖  is the length 

normalization function for exon i; 𝜇𝑖 is the baseline inclusion level for exon i, and 𝛿𝑖 is the 

difference of the exon inclusion levels between the two conditions. Without loss of 

generality, we let 𝜓𝑖1k   = 𝜇𝑖 +  𝜖𝑖𝑘, 𝜓𝑖2k  = 𝜇𝑖  + 𝛿𝑖 + 𝜖𝑖𝑘; that is, we assume that the effect 
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size 𝛿𝑖 is the same across different replicates; and that 𝜓𝑖𝑗𝑘 values in each replicate k 

have a random replicate-specific deviation from the group mean 𝜇𝑖 by 𝜖𝑖𝑘. The term 𝜖𝑖𝑘 

captures the within group variance of PSI values in different replicates and has an 

expectation of 0. 

It is worthwhile to point out that the above replicate DARTS framework is applicable 

for both paired replicates and unpaired replicates. The subscript k indexes for the samples 

from different/same origins. For paired replicates, the two paired observations under the 

two corresponding conditions are indexed with the same k, and should therefore share 

the same starting point/baseline level of 𝜇𝑖𝑘 = 𝜇𝑖  + 𝜖𝑖𝑘, while only differing by the amount 

𝛿𝑖  caused by the treatment. For unpaired replicates, each sample is indexed with a 

different k, hence the baseline level 𝜇𝑖𝑘  was drawn independently from 𝑁(𝜇𝑖, 𝜎2) and 

there is no covariance between samples in the two groups.  

Simulated read counts and evaluation 

Next, we simulated read counts by drawing reads from binomial distributions as in Eq. S1. 

We did not use flux-simulator for this analysis because it is non-trivial to define the within-

group variances at the “number of molecules” level; instead, we imposed a normal 

distribution to the simulated group mean PSI value, then drew read counts from this 

hierarchical generating process.  

We performed extensive simulation studies using different combinations of 

parameters. Specifically, we set the model parameters equal to the following values: 𝜎 ∈

 {0.05, 0.35}, the within group variance, smaller values of 𝜎 indicated more consistent 

patterns across replicates; 𝐾 ∈  {6,10}, the number of replicates, more replicates would 
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help better capture the within group variance; 𝑛 ∈ {30, 50}, the coverage of each replicate, 

deeper coverage would help estimation of sample-wise PSI; presence of outlier, outlier 

PSI value was draw randomly from [0,1] to represent one unrelated sample out of the all 

replicates. We benchmarked the performances of pooled DARTS, replicate DARTS 

(rDARTS), and rMATS, using the AUROC and AUPR. To obtain a reliable performance 

estimate, we randomly sampled n=3,000 events under each simulation configuration, with 

the expected differentially spliced events (positive cases) at 50%. 

As shown in Supplementary Figure 3.7, replicate DARTS showed a consistent 

gain in power under two specific situations, regardless of the number of replicates: i) when 

the within-group variance 𝜎  is large, and ii) when there is an outlier sample. This is 

consistent with our previous observation in the rMATS paper (6). Notably, in all 

simulations, we fixed the total coverage at 300, i.e. when K=6, each sample has 50 read 

counts per event; when K=10, each sample has 30 read counts per event. Such 

configurations emulate a fixed sample-size budget, where researchers hope to get the 

best scientific outcomes using the optimal experimental design. It is not surprising that 

increasing the number of 6 replicates by 4 would significantly reduce the loss of power 

caused by introducing 1 outlier sample. The same effect was true for larger within-group 

variances, demonstrating the better group variance estimation captured by more 

replicates with less coverage per replicate. In all comparisons, the replicates DARTS 

model outperforms the pooled DARTS model under certain conditions, while inflicting no 

loss of power under regular conditions. Hence, we recommend using the replicate DARTS 

model whenever possible, and advise against pooling reads from replicates. 
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Technical notes on statistical model optimization 

Laplacian approximation 

The optimization of the DARTS model involves two major steps: i) calculating the Bayes 

Factor of two competing models/hypotheses, ii) sampling the posterior distribution given 

the non-conjugate priors. In this part we will first deal with the calculation of the Bayes 

Factor, where we utilized Laplace’s method to approximate the intractable integrals. 

Following the notation in the Method section, the essence of DARTS BHT with flat 

prior is the ratio of the integrated likelihood function, also known as the Bayes Factor. In 

the DARTS model, the integrated likelihood function takes the form of 

𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗 |𝐻𝑛) = ∬ 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗 |𝜇𝑖, 𝛿𝑖 ) ⋅ 𝑃(𝜇𝑖, 𝛿𝑖|𝐻𝑛)
Θ𝑛

𝑑𝜇𝑖𝑑𝛿𝑖   

∝ ∫ ∫ 𝑓𝑖(𝜓𝑖1)𝐼𝑖1 ⋅ (1 − 𝑓𝑖(𝜓𝑖1))
𝑆𝑖1

⋅ 𝑓𝑖(𝜓𝑖2)𝐼𝑖2 ⋅ (1 − 𝑓𝑖(𝜓𝑖2))
𝑆𝑖2

1

0

+∞

−∞

⋅ 𝟏(|2 ⋅ (𝜇𝑖 + 𝛿𝑖 − 0.5)| < 1) ⋅ 𝑒−𝛿2/𝜏𝑛
2

𝑑𝜇𝑖 𝑑𝛿𝑖 

= ∬ 𝑔(𝜇𝑖, 𝛿𝑖; 𝐼𝑖𝑗 , 𝑆𝑖𝑗)𝑑𝜇𝑖𝑑𝛿𝑖
Θ𝑛

 

= ∬ exp ( 𝑔1(𝜇𝑖, 𝛿𝑖; 𝐼𝑖𝑗 , 𝑆𝑖𝑗) )𝑑𝜇𝑖𝑑𝛿𝑖
Θ𝑛

 

[S2] 

The above integral cannot be solved in closed form. Instead, we employ Laplace’s 

method to approximate the integral. Let 𝑔1 = log 𝑔 be the log posterior density function, 
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the Laplacian approximation can be viewed as the Gaussian approximation to any 

(posterior) distribution that is smooth and well-peaked around its maximal point. To 

implement Laplacian approximation for DARTS BHT, we compute both the maximal point 

of the posterior probability as well as the local curvature/Hessian matrix around the 

maximal point using the “optim” function in R by feeding its objective function and the 

gradient function. Then the approximation for the integral, denoted by 𝑍𝑛, is 

𝑍𝑛 = log (𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗 |𝐻𝑛)) ≈ 𝑔1(𝜇̂𝑖, 𝛿𝑖; 𝐼𝑖𝑗 , 𝑆𝑖𝑗) − 0.5 × log(|(H(𝜇̂𝑖, 𝛿𝑖)|) +
𝑑

2
⋅ log (2𝜋) 

[S3] 

𝜇̂𝑖, 𝛿𝑖 are the parameter values that maximize posterior probability; 𝑔1(𝜇̂𝑖, 𝛿𝑖; 𝐼𝑖𝑗 , 𝑆𝑖𝑗) 

is the log posterior probability function evaluated at maximal point; H(𝜇̂𝑖, 𝛿𝑖) is the Hessian 

matrix of 𝑔1 evaluated at the maximal point; and 𝑑 is the total number of parameters in 

𝑔1(⋅). Then, the Bayes Factor (BF) is  

BF =
𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗 |𝐻1)

𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗 | 𝐻0)
= exp (𝑍1 − 𝑍0) 

[S4] 

MCMC sampling 

Next we seek to sample from the posterior distribution of the parameters given the 

data/observations under a specific hypothesis. Since we do not have the conjugate prior 

for the likelihood, we employ an MCMC random walk to draw samples from the posterior 

distribution. Specifically, we designed the transition probability q as a normal distribution 



119 
 

with mean equal to the current state and a small variance corresponding to a small step 

size. For each proposed state, we accept the proposal by a Metropolis-Hasting 

acceptance probability: 

𝛼(𝜃𝑡, 𝜃𝑡+1) = min (1,
𝑞(𝜃𝑡|𝜃𝑡+1) ⋅ 𝑔(𝜃𝑡+1; 𝐼𝑖𝑗, 𝑆𝑖𝑗)

𝑞(𝜃𝑡+1|𝜃𝑡) ⋅ 𝑔(𝜃𝑡; 𝐼𝑖𝑗 , 𝑆𝑖𝑗)
) 

[S5] 

𝑔(𝜃𝑡+1; 𝐼𝑖𝑗, 𝑆𝑖𝑗) = 𝑔(𝜇𝑖, 𝛿𝑖; 𝐼𝑖𝑗 , 𝑆𝑖𝑗) is the posterior probability function defined in subsection 

1.3.1, and 𝑞(𝑥|𝑦) is the transition probability from state y to state x. Note that to maintain 

the domain of 𝜓𝑖𝑗 ∈  [0,1], out of domain parameter values were truncated by setting the 

likelihood function to zero. 

In order to shorten the burn-in period, we initialize the Markov Chain at 𝜃, i.e. the 

optimal point obtained from the previous step while computing the Bayes Factor. 

Moreover, such an initialization ensures that the starting state is close to where the target 

probability density is concentrated, especially when there are multiple replicates and the 

target probability density is in high-dimensional space. The initialization scheme can 

greatly shorten the burn-in period. 

Under the above configurations, we noticed that in practice, drawing 1500 samples 

with a burn-in period of 100 and 10 thinning achieved good balance between estimation 

accuracy and running time. 

Justification on different values of 𝜏 parameter 
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In DARTS BHT, the choice of the parameter 𝜏 specifies the two competing hypotheses: 

differential splicing and unchanged splicing between two biological conditions. Here we 

show that since the final inference is performed on the probability of 𝑃(|Δ𝜓| > 𝑐) 

marginalizing over the hypotheses, DARTS BHT is robust to different choices of 𝜏𝑘. We 

started with an example by comparing the inference results on a set of simulated splicing 

events (n=1000) when setting 𝜏1 = 0.3, 𝜏2 = 0.03 (default setting in our paper) with 𝜏1 =

0.4, 𝜏2 = 0.02 (alternative setting here). We observed the ranks of the final inference 

𝑃(|Δ𝜓| > 𝑐)  under these two settings were highly consistent (Spearman’s rho=0.99), 

demonstrating the robustness of DARTS BHT to difference choices of 𝜏. Additionally, 

comparing the actually posterior probability of these two settings, we observed the values 

were highly similar for 𝑃(|Δ𝜓| > 𝑐) ≈ 1, where is the major region of interest for inference 

of differential splicing. The alternative setting has a negative bias (more conservative) 

around 𝑃(|Δ𝜓| > 𝑐) ≈ 0 due to stronger regularization effect from a smaller 𝜏2 = 0.02. 

This will allow users to reflect their beliefs on data quality through the choices of 𝜏 as 

regularization strength. For example, when data is noisy, users would preferably specify 

the alternative setting over our default setting. To further understand the impact of the 

parameter τ, we examined another four alternative settings of 𝜏  using various 

combinations of different τ values. Indeed, the inference results are robust in different 

scenarios, especially for the ranking/inference of differential alternative splicing events 

(upper right corner of each panel in Supplementary Figure 3.13). The model of DARTS 

BHT is designed to be robust to different specifications as well as flexible enough to 

account for different dataset-specific requirements. 

Running time analysis 
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The computation of the DARTS BHT model is demanding because of the random 

sampling of the non-conjugate posterior. Compared to conventional inference methods 

that only estimate point estimates for the parameters of interest, the DARTS BHT model 

needs to derive the whole posterior probability distribution using an MCMC sampling. 

Hence, we re-wrote the MCMC sampler in Rcpp (8). The source code was compiled 

during the installation of the DARTS R package and the resulting speed gain was around 

10 fold. We also tuned the MCMC sampling (see subsection above) to shorten the burn-

in period. 

In general, the optimized optimization procedure runs in a reasonable amount of 

time. For the DARTS BHT without replicate mode, an individual event takes 0.23s wall-

clock time on average to finish the optimization on an Intel i7-4790 3.60GHz CPU. For 

the DARTS BHT with replicate, the running time scales linearly with the number of 

replicates for an individual event. In our benchmarking, an event with 6 replicates takes 

around 1.38s and an event with 10 replicates takes 2.07s on average. 

3.7.2 DARTS DNN machine learning 

Sequence feature extraction and normalization 

The DARTS DNN cis sequence features are built upon a previous report (9) that curated 

1,393 RNA features. Furthermore, we expanded the feature set by including 1,533 

additional features on RBP binding motifs and conservation scores. We compiled cis 

sequence features for four different types of alternative splicing events, i.e. exon skipping, 

alternative 5’ splice sites, alternative 3’ splice sites, and retained introns. Below we briefly 

describe all the feature annotations of exon skipping events as an example; the full lists 
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of all cis sequence features for the four types of alternative splicing events can be found 

in the GitHub repository.  

For each exon skipping events, let C1, A, and C2 be the upstream exon, skipping exon 

and downstream exon respectively. I1 denotes the intron region between C1 and A, and 

I2 denotes the intron region between A and C2. The DARTS DNN cis features are 

grouped by the following generic categories: 

1) Exon length and ratio of length of exons and introns.  

2) Nucleosome occupancy scores are computed using NuPoP (10) for the skipping exon 

and flanking introns. The features are defined as predicting the nucleosome positioning 

in the first 100 nucleotides of each intron and in the first and last 50 nucleotides of skipping 

exons.  

3) The definition of translatability is whether a sequence can be translated without stop 

codons under three different reading frames. We are evaluating translatability of C1, C1-

C2, C1-A, C1-A-C2. 

4) We include 111 curated RBP-binding motifs and count motifs in each of the 7 intronic 

and exonic regions. In addition to the counting procedure, we also download the RBP 

binding PSSM matrix from RBPmap (11) and calculate the PSSM scores of each RBP-

binding profile.  

5) We run two different tools, one from Itoh et al. (12), and maxent (13), to estimate the 

splicing strength between the three exon-exon junctions: C1-C2, C1-A and A-C2. 
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6) Conservation scores are computed as average conservation score of the first and last 

100 nucleotides of intron I1 and intron I2. The conservation scores are downloaded from 

UCSC phastCons46way.  

7) The secondary structure score is predicted by the maximum availability of intron 

regions using RNAfold (14).  

8) Short motifs are integrated from Xiong et al. (9).  

9) Alu repeats annotation is downloaded from UCSC genome browser. Features are 

defined as counts of Alu repeats on the plus and minus strand of two intronic regions. 

10) ESE (exon splicing enhancer), and ESS (exon splicing silencer) are from Burge’s and 

Chasin’s work (15,16). ISS (intron splicing silencer) and ISE (intron splicing enhancer) are 

from Wainberg’s work (17).  

In total, the number of RNA features was 2,926. 

Although certain classifiers (e.g. tree-based models) are robust to the feature 

scaling, it is important to scale the features for neural networks. We followed the feature 

scaling method described previously (9) and divided each feature by its maximum 

absolute value across all training sets. This rescaled the features to [-1,1] while preserving 

the zero values, which has specific biological indications. 

ENCODE data processing 

Extraction of junction counts and detection of novel events 
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Following the descriptions in the Method section, we had downloaded all the alignment 

files from the ENCODE data portal (18) and processed the bam files with rMATS.  Aside 

from the annotated events in the reference GTF Gencode v19, rMATS detected novel 

splicing events where edges not annotated in the GTF splicing graph connect two 

annotated exons. These novel events consist of a large proportion of our training dataset 

and are crucial for learning the regulatory code between RBP perturbations and 

alternative splicing. Note that our definition of novel events are novel edges or junction 

reads that are not present in GTF; we do not detect novel splice sites or novel exons. 

RBP expression estimation 

The robust performance of DARTS DNN is dependent on the robust estimation of RBP 

expression levels, given that all sequence features are static. A previous report has 

demonstrated that 10 million reads per sample was a good depth for differential gene 

expression analysis (19), hence we reasoned that the gene expression estimates are 

fairly robust to reduction in sequencing depth, unlike the exon inclusion level estimates 

that depends on junction-spanning read counts. In practice we re-analyzed gene 

expression using Kallisto (v.0.43.0) from raw fastq reads downloaded from the ENCODE 

data portal. We extracted the TPM of all RBPs from the annotated list. The estimated 

TPM was subsequently divided by the maximum value across all datasets to rescale it 

range to [0,1]. 

Implementation of other machine learning strategies and comparison to DARTS 

DNN 

Logistic regression and Random Forest using individual leave-out datasets 
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To benchmark the performance of our trained DARTS DNN model to other machine 

learning strategies, we implemented two baseline methods, Logistic regression with L2 

penalty and Random Forest. Because these baseline methods were unable to scale up 

to big data (see below), they were trained and benchmarked on individual ENCODE 

leave-out datasets by cross-validation. The identical events with their corresponding 

labels and features were fed into the baseline classifiers through 5-fold cross-validation 

and we recorded the performance measured by AUROC in each of the validation sets. 

We implemented the two methods using scikit-learn in python. For the logistic 

regression, we need to tune one parameter, i.e. the penalty strength, or the inverse of the 

penalty strength C. This parameter controls the complexity of the classifier and hence the 

severity of overfitting. We chose C=0.1 for our implementation of logistic regression 

because in practice such a penalty achieves good reasonable generalization over 

different datasets. Although logistic regression is easy to interpret and a good baseline 

method for most classification tasks, it cannot effectively detect high-order interaction 

terms, diminishing its predictive power for such complex tasks. 

Another more powerful and robust machine learning strategy we employed as a 

baseline method was Random Forest. Random Forest is an ensemble learning method 

where each base classifier is a decision tree that over-fits a set of bootstrapped training 

samples with a subset of features. The Random Forest classifier has several desirable 

properties, including being robust to feature scaling and irrelevant features, and being 

capable of dividing the feature space more flexibly than more conventional partitioning 

based classification methods. We tuned the hyper-parameter of Random Forest, i.e. the 

number of trees in the forest. Typically, the more trees in a random forest, the better 
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predictive power it renders to the ensemble classifier. We noticed that for our datasets, 

500 trees achieved the best testing accuracy while increasing the number of trees further 

did not grant much more gain.  

As shown in Figure 3.1d, Random Forest almost always outperformed Logistic 

regression given the same training datasets. We can also observe a positive correlation 

between the performance of Random Forest and Logistic regression, indicating the 

internal structure of the training data plays an important role in the learning efficiency, 

despite the fact that the two learning algorithms are based on dramatically different 

underlying structures. Nevertheless, DARTS DNN showed superior performance 

compared to the baseline methods, even though these knock-down datasets have never 

been trained in DARTS DNN. Furthermore, the performance of DARTS DNN does not 

show strong correlations with the base learners, indicating its generalization over the 

single datasets to a more generic regulatory code. 

Logistic regression using all perturbation data 

In the original publication of the DARTS work, we compared DARTS DNN to baseline 

methods only trained on individual leave-out datasets using cross-validation. The 

comparison was inherently biased against DARTS DNN because the leave-out datasets 

were never trained by DARTS but were cross-validated in the baseline methods. In the 

meanwhile, there has been questions about how a simpler model (as compared to 

DARTS DNN) will perform when trained on the entire data, and the contribution of non-

additive interactions between the features representing cis-elements and trans-acting 

factors. As a primer to evaluate the non-linear interactions in the task of differential 
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splicing prediction, a logistic regression model was fit using the entire ENCODE shRNA 

knockdown data, with the identical training-validation-testing split as in DARTS DNN. 

Note that the logistic regression model can be viewed as a special form of neural network 

with no hidden layers, hence the model is so simple that it is unable to capture the feature-

feature interactions. The testing performance of DARTS DNN and logistic regression is 

shown in Supplementary Figure 3.14. The simple logistic regression model’s learning 

power was saturated in less than 500 training batches, and its predictive power was 

significantly worse than the DARTS DNN model, which has complex non-linear 

interactions and also requires significant amount of training. Pinpointing the interaction is 

non-trivial, because the feature interactions are easily entangled and disentangling 

requires sophisticated modeling and neural architecture searching. Therefore, the 

interaction detection in differential splicing prediction remains an important future direction. 

Technical notes on DNN training 

Below we briefly describe some technical details in training the DARTS DNN model using 

the ENCODE data. DARTS DNN was implemented in Keras with Theano backend. The 

DNN model was a 4-hidden layer fully-connected neural network with drop-out (with 

probability 0.6, 0.5, 0.3 and 0.1, respectively) and batch-normalization layers, and each 

neuron had ReLU (rectifier linear unit) activation function that maps the input vector x to 

a non-linear output: 

ReLU(𝑥)  =  max (0, 𝑤𝑇𝑥 + 𝑏) 
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The weight parameter w and bias b are learned through training on labelled 

samples and minimizing the loss function, which is the binary cross-entropy between the 

observed labels Y and predictions 𝑌̂:  

L(𝑌̂; 𝑌) = −
1

N
∑[𝑦𝑖 ⋅ log(𝑦̂𝑖) + (1 − 𝑦𝑖) ⋅ log (1 − 𝑦̂𝑖)]

𝑁

𝑖=1

 

We optimized the model parameters using the RMSprop optimizer. RMSprop is a 

variant of the stochastic gradient descent algorithm, which accounts for the recent 

momentums of the gradient and adaptively adjusts the learning rate. In our experiments, 

RMSprop works better than other optimizers for most network architectures. 

Because the training dataset was huge and took too much memory (>100G) to be 

loaded at once, we divided the training samples into different data batches by the knock-

down experiments. In each data batch, we randomly picked two different RBP knockdown 

experiments; due to the way the training datasets were constructed, every RBP selected 

must have been knocked down in both HepG2 and K562 cell lines. Hence in each data 

batch, we had at least 4 different datasets, sometimes more if this RBP was knocked-

down by more than one shRNA in a certain cell line. The pairing of the same RBP in two 

different cell lines ensured that there was sufficient variance in the RBP expression 

features, hence facilitating the classifier to learn from the trans-acting factors.   

Next, we mixed the training skipping-exon events from the data batch and held-

out 20% of these events as validation set, and the remaining 80% as training set. The 

training set was then split into positive and negative stacks of cases, and we aimed to 

construct mini-batches of size 400 to feed into training the model sequentially. Because 
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the training set was very imbalanced, and the number of negative cases outweighed the 

number of positive cases, we balanced the composition of each mini-batch by first 

extracting 100 (25%) positive cases from the positive stack, then compensating 300 (75%) 

negative cases from the negative stack. Such biased composition of mini-batches will 

generate the back-propagation of errors from positive cases and reduce strong negative 

bias caused by the imbalanced data. 

To monitor potential overfitting, we computed the validation loss and the prediction 

AUROC of the current model every 10 mini-batches of training. Due to the imbalanced 

composition of the datasets, we noticed that using AUROC as the monitoring criteria 

performed better than the loss function because the loss function could be stuck in a local 

optimum where all cases were classified as negative. We only saved the parameter 

values of the best performing models on the validation data; by the end of the training for 

each data batch, we re-loaded the saved model parameter values. The goal of such a 

configuration was to avoid overfitting to any particular individual data batch while 

exploring for the global optimal point(s) in the model energy landscape. 
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Chapter 4 Concluding Remarks 

 

The past decade has witnessed the fast developments of genomics and biotechnology. 

High-throughput sequencing methods of DNA and RNA provide global profiling of the 

molecular landscape and facilitate the discoveries of regulatory basis of molecular and 

phenotypical variations. Functional genomics assays have characterized and annotated 

numerous gene and protein functions. Consortia efforts have systematically performed 

the cellular profiles across diverse perturbations and conditions. Altogether, the end-

products of these experimental efforts are massive data of diverse forms. 

The ever-growing mountains of data provide unprecedented opportunities for 

researchers to study the mechanisms of cellular and transcriptional regulation, while also 

poses significant challenges for making sense of the big data and extract useful 

knowledge and principles from it. This dissertation has been focused on uncovering novel 

biological insights from the rapid-accumulating biological data, with a focus particularly 

on the post-transcriptional regulation and RNA splicing. RNA splicing is an essential 

biological process that greatly expands the transcriptome diversity. It is regulated by an 

extensive protein-RNA interaction network involving cis elements within the pre-mRNA 

and trans-acting factors that bind to these cis elements. Towards understanding the 

functional and evolutionary impacts of RNA post-transcriptional regulation, computational 

tools were developed to utilize the big human transcriptomic data as well as answer 

essential biological questions, with the following two major components.  
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In Chapter 2, repetitive elements-derived RNA-protein interaction sites and RNA 

modification sites were studied, shedding new lights in the evolutionary re-wiring of the 

transcriptional regulatory networks. We developed the first repeat-aware peak caller for 

CLIP/RIP-seq data called CLIP-seq Analysis of Multimapped reads (CLAM). CLAM uses 

an expectation-maximization algorithm to assign multi-mapped CLIP-seq reads and calls 

peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, 

we applied it on hnRNPC iCLIP and m6A RIP-seq datasets and showed that CLAM is 

capable of uncovering novel RNA regulatory sites that are inaccessible by existing 

methods. 

Since the initial publication and release of the CLAM software, we have closely kept 

the maintenance and update of CLAM. The probabilistic re-aligning module was updated 

with a read-tagging function to better capture the cross-linking sites in different CLIP 

experiments (e.g. the base transition events in HITS-CLIP vs truncation events in iCLIP). 

The peak calling module in the initial development is based on a permutation test, which 

is unable to account for uncertainties from the paired control experiments. As reported in 

the eCLIP benchmarks, the inclusion of the Size-Matched Input control experiment can 

significantly improve the false positives in peak detection. Hence, we developed a new 

negative binomial model-based peak calling module in CLAM for better analyzing eCLIP 

and RIP-seq data. We showed that the CLAM peak caller is both sensitive and robust, 

especially when running the multi-replicate mode to aggregate replicate information. The 

benchmarking results of the new modules can be found in the appendix of Chapter 2. 

In Chapter 3, we aimed to improve the quantification and analysis accuracy for RNA 

splicing and relieve its over-reliance on ample RNA-seq coverage, a major limitation of 
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existing tools encountered during the development of CLAM. Hence, we developed a 

Deep-learning Augmented RNA-seq analysis of Transcript Splicing (DARTS) framework 

by leveraging big data in the public domain, and demonstrated its superior performance, 

especially when the observed data is limited or biologically the gene of interest is lowly 

expressed. DARTS uses big-data powered deep learning to augment any user-specific 

RNA splicing analysis, representing a major advance over existing computational tools.  

The conceptual innovation in DARTS is arguably more profound than the analyses. 

Prior to DARTS, the majority of deep learning applications in genomics are based on 

genomic sequences. For example, hand-made features based on exonic and proximal 

intronic sequence were used to predict exon inclusion levels (Xiong et al. 2015). More 

recently, raw genomic sequences were fed as inputs in convolutional neural networks to 

predict transcription factor binding, chromatin states (Zhou and Troyanskaya 2015) as 

well as cryptic splice sites (Jaganathan et al. 2019). In addition to genomic sequence 

features, DARTS used the molecular experimental measurements, i.e. gene expression 

estimates of the RBP genes, from the same RNA-seq data as features. This design scales 

up with massive data, and is readily extendable from transcriptomic to multi-omics 

analyses.  

Furthermore, a natural extension for DARTS is to study the interactions between the 

genomic sequence motifs and RBP gene expression levels. In a broad sense, DARTS 

modelling of the cis- genomic sequences and trans- gene expression is similar to the 

genetic-environment interaction modelling. By definition these interactions are highly non-

linear and cannot be fit by simple linear models. To understand the contribution of these 

non-linearity in DARTS model, a simple logistic regression without any hidden layers was 
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fit using all exon-skipping events and we observed it could not perform nearly as well as 

DARTS DNN. These results are in the appendix of Chapter 3. Hence, a somewhat missed 

opportunity in DARTS development is that we were not able to pinpoint the interactions 

between cis- and trans- features. This of course is non-trivial and will be a future direction. 

Moving forward, a unified and interpretable cellular model will connect multi-omics 

functional data in bulk tissues and single cells, and ultimately provide guidance in clinical 

applications and therapeutics developments. With the development of technologies in the 

next decade, pure predictive modeling will be less urgent in demand, as most 

measurements can be easily performed at affordable costs; instead, the knowledge we 

learned from the mountains of data, and the data-driven principles provided by that 

knowledge to help individual studies, will only be more prevailing.  

Deep learning provides an ideal workhorse in this realm, given its scalability to 

massive data, as well as its flexibility to diverse data types. Harnessing the power of 

massive functional data with quantitative modeling, we can explain and predict complex 

biological traits better than ever before. Computational biologists should rethink how to 

design models stemmed from biological regulatory mechanisms, fully utilized the 

functional assays and the power of technologies we already process, and shed new lights 

on biological knowledge discoveries as well as new experimental designs. 
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