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Mechanisms for storing and accessing event representations in episodic memory,
and their expression in language: a neural network model

Martin Takac (takac@cs.otago.ac.nz)1,2, Alistair Knott (alik@cs.otago.ac.nz)1

Dept of Computer Science, University of Otago, New Zealand1, Centre for Cognitive Science, Comenius University, Bratislava2

Abstract

We present a neural network model of how events are stored
in and retrieved from episodic long-term memory (LTM). The
model is novel in giving an explicit account of the working
memory (WM) medium mediating access to episodic mem-
ory: it makes a specific proposal about how representations of
events and situations in WM interface with representations of
events and situations in episodic memory. It also provides the
framework for an account of how operations accessing tempo-
rally remote situations are reported in language.
Keywords: episodic memory; working memory; discourse
models, neural networks

Introduction
In this paper, we present a new neural network model of
episodic long-term memory (LTM). Like all computational
models in cognitive science, its purpose is to make sense of
a large body of experimental data, to provide a framework
within which some of the questions raised by this data can be
resolved. The influential network models of episodic mem-
ory have all done this in different ways. Moll and Miikku-
lainen (1997) clarified how episodic memories can be stored
as pointers to first-order sensorimotor (SM) representations;
Howard and Kahana (2002) showed how a recurrent network
can account for the sequential structure of episodic memo-
ries; Norman and O’Reilly (2003) gave insights into the dis-
tinct roles of the hippocampus and cortex in storage and con-
solidation of episodic memories; Rolls and colleagues (e.g.
Kesner and Rolls, 2015) hypothesised roles for specific cir-
cuits within the hippocampus and cortex. Our model, which
builds on these earlier models, is intended to address two re-
cent questions in the experimental literature.

One question concerns the relationship between episodic
LTM and working memory (WM). There is good evidence
that material to be stored in episodic memory is first main-
tained in WM (see e.g. Baddeley, 2000), as are queries to
episodic memory, and the responses they retrieve (Fletcher
and Henson, 2001). But there is debate as to whether ma-
terial in WM occupies a dedicated neural medium (Badde-
ley, 2000; Shivde and Anderson, 2011), or whether the con-
tents of WM are simply those components of the LTM sys-
tem that are currently activated or attended to (Cowan, 1999;
D’Esposito, 2007). There is strong experimental evidence for
both positions; a model is needed to reconcile the two com-
peting conceptions of WM.

The other question concerns the relationship between
episodic memory and language. Episodic memory does not
depend on language, but language is by far the most common
medium for expressing its contents (Suddendorf and Corbal-
lis, 2007). For many recent theorists (e.g. Zwaan, 2008),

the semantics of linguistic expressions should ultimately be
given in terms of a model of episodic memory, as components
of, or contributions to, episodic memory structures. Formal
accounts of discourse structure have many striking similar-
ities with models of episodic memory (van Lambalgen and
Hamm, 2005): in particular they employ the notion of dis-
course contexts, that obtain at reference times. The context
and reference time can be updated incrementally, or set to an
arbitrary point in the past or future, by temporal adverbials
(e.g. in the afternoon) or temporal subordinators (e.g. when
John arrrived). However, there is no neural network model
of episodic memory that provides a platform for investigating
these similarities. What is needed is a model of how episodic
memory interfaces with linguistic mechanisms, and in partic-
ular with linguistic devices for manipulating the context and
reference time, so we can ask whether episodic memory pro-
vides a substrate for any components of the linguistic system.

Our model focusses on the storage of events in episodic
memory. An event is a sentence-sized semantic unit centred
around an action and its participants: we allow for an AGENT
and optionally a PATIENT. Events can be represented from
several different perspectives, which are conveyed linguisti-
cally by different aspectual types: for instance progressive
(John is arriving) or perfective (John has arrived). We focus
on the storage of events observed as wholes, which take time
to occur and have a determinate endpoint (e.g. John arrived).
We call these events episodes.

The main novelties of our model are in the way the LTM
system interfaces with WM representations and with lan-
guage. In the next section we describe the architecture of
the model, considering these two issues in turn.

Architecture of the model
The WM system and its interface with LTM Our model
of episode representations in LTM extends a model of episode
representations in WM that is described in a companion paper
(Takac and Knott, this volume). The WM model makes two
important assumptions about how episodes in the world are
perceived. The first of these is that experiencing an episode
in the world involves a well-defined sequence of discrete SM
operations: first attention to the agent, then attention to the
patient (if there is one), then activation of a motor schema.
Evidence for this is summarised in Knott (2012). Given this
assumption, we propose that episodes are represented in WM
as prepared sequences of SM operations. On this proposal,
the WM representation of an episode is an executable struc-
ture, that allows the experience of an episode to be relived, or
replayed. Our second assumption is that each individual par-
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Figure 1: Architecture of the model of LTM and its interface with WM and language

ticipant in an episode is also perceived in a discrete sequence
of SM operations: (i) attention to a spatial location, (ii) estab-
lishment of a cardinality (singular or plural), and (iii) identi-
fication of the object’s type and intrinsic properties (Walles et
al., 2014). In our model, individuals are also represented in
WM as prepared, replayable sequences of SM operations.

The architecture of our network is shown in Figure 1. We
first focus on representations of individuals in WM and LTM.
The prepared SM sequence associated with an individual is
stored as a sustained pattern of activity in WM media hold-
ing location, number and type/properties (see the bottom left
of the figure). LTM representations of token individuals are
held in a separate medium, using a convergence-zone scheme
(Moll and Miikkulainen, 1997). A LTM individual is repre-
sented as a sparse distributed assembly of units holding asso-
ciations between location, number and type/properties, stored
in long-term synaptic weights.

We now consider how episode representations make refer-
ence to individuals. Crucially, this reference must link indi-
viduals to roles such as AGENT and PATIENT. In our system,
this role-binding is done in a WM buffer holding episode rep-
resentations: the WM episode buffer (see the bottom right of
Figure 1). Within this buffer, we posit separate fields for each
role: the AGENT and PATIENT fields of a WM episode each
hold a rich system of pointers back to the memory media rep-
resenting an individual.1 During experience of an episode,
these pointers are initialised at different times: the AGENT
representation is created when the agent is attended to, and
later, the PATIENT representation is created when the patient
is attended to. A complete WM episode representation is also
an executable structure, that can be replayed. This replay pro-
cess can provide top-down expectations for the different se-
quential stages of episode perception (see Takac and Knott,
this volume). It is also involved in the interface to language,
as we describe later.

Importantly, the AGENT and PATIENT fields of a WM
episode point to a mixture of WM and LTM representations.
When an individual is attended to, it is encoded by a pattern of
activity across both WM and LTM media: the WM medium

1The AGENT and PATIENT fields are isomorphic with their WM
counterparts, with 69 units each. The WM episode also has 33 units
representing the action. For details see Takac and Knott (2016).

represents it as a type, and the LTM medium represents it as
a token. We call this composite pattern a WM individual.
The AGENT and PATIENT fields, which occupy a dedicated
WM medium, each hold, and can recreate, a pattern in this
composite WM/LTM area. Note this method of represent-
ing episode participants thoroughly blends the two competing
conceptions of WM representations (as active LTM represen-
tations and as patterns in a dedicated WM medium): we see
them as complementary, rather than as alternatives.

The three fields of the WM episode medium provide in-
put to a LTM medium representing episodes, the candidate
episodes (c-ep) medium. This is a self-organising map or
SOM, whose units hold localist representations of particular
episodes or episode types. When trained on a set of episodes,
the SOM adapts its weights to represent the most frequently
encountered episodes or episode types. If capacity is limited,
it learns generalisations over episodes: for instance, if dogs
often chase cats, it will learn to represent the generic episode
‘a dog chases a cat’, abstracting away from token dogs and
cats. This learning happens gradually, through incremental
alterations of the SOM’s long-term synaptic weights, which
is what makes it part of the LTM system rather than the WM
system. At the same time, it is useful to think of the current
pattern of activity in the SOM as a WM representation, using
the activity-based conception of WM.

The WM episode also provides input to the other main
component of the LTM system: a medium representing the
current situation. The pattern of activity in this medium can
also be thought of as being held in WM: during experience,
it encodes something like the agent’s ‘cognitive set’, creating
expectation and/or readiness for some episodes over others.
At the same time, the network that generates these expecta-
tions is the product of long-term learning: situations are com-
plex, high-level representations, integrating information from
many learning episodes. How to learn situation representa-
tions is a matter of considerable debate. Our network imple-
ments a novel method, made possible by the use of localist
representations of episodes in the c-ep SOM. Since individ-
ual units in this SOM represent whole episodes, it is able to
represent a large probability distribution over episodes, in a
pattern of activity over all its units. In our model, the medium
encoding the ‘current situation’ is the hidden layer of a net-
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work that is trained to predict the next episode, after the com-
pletion of each episode. This layer takes inputs from the WM
episode medium (holding the completed episode), and from
a copy of its previous state (see the blue arcs in Figure 1).
It is implemented as a recurrent SOM, specifically a ‘merge
SOM’ (Strickert and Hammer, 2005).2 When trained on a
sequence of episodes, its units come to encode localist repre-
sentations of commonly-occurring sequences of episodes or
episode types: these serve as representations of situations in
our model. A separate layer of perceptrons is trained to pre-
dict the next episode in the c-ep SOM from activity in the
situation SOM. After training, the combined networks gener-
ate a distribution of possible next episodes in the c-ep SOM.
During experience, this distribution can be used to reconstruct
patterns of activity in the WM episode medium (and sub-
sequently in the WM individual medium), which guide the
agent in her experience of the next event. This mechanism
is discussed in Takac and Knott (this volume). In the present
paper, our focus is on how the situation SOM can play a role
in episodic LTM and its interface with language.

Episodic LTM model As shown in Figure 1, the current sit-
uation SOM also takes input from media representing times.
There are two of these, holding representations of token
times and time types. Token times are representations of
unique times. Each token time is a sparse distributed code
of 10 neurons (in a field of 20 neurons); a new token time
is selected after each episode. Time types are localist repre-
sentations of times of day (morning, afternoon and evening):
they update more slowly, once every 20 episodes, in a cyclical
fashion. In our model these updates happen using an internal
timer, but in a full model, perception would also obviously
play a role; we thus envisage the type-token relation for times
is somewhat similar to that for physical individuals, hence
their parallel representation in Figure 1.

Because the situation SOM takes the current token
time/time type as input in addition to the current episode
and previous situation, it does not only learn to make pre-
dictions which inform SM processing: it also creates mem-
ories about episodes in the past. Most concretely, it can
learn associations between specific episodes and specific to-
ken times. Since these associations provide recurrent input
to the SOM, its memories of specific episodes in the past are
naturally organised into sequences. This sequential organisa-
tion is characteristic of episodic memory, and has frequently
been modelled using recurrent networks; see e.g. Howard
and Kahana (2002). Using a recurrent SOM has two par-
ticular benefits. First, it learns localist representations that
support very flexible queries: the trained SOM can be pre-
sented with any partially-specified pattern of inputs, and the
pattern of activity over SOM units can be used to reconstruct
a complete pattern. Second, it can learn generalisations over

2The c-ep and situation SOMs each have 400 units. These sizes
were chosen in proportion to the number of object and action types
used in the model. Full details are given in Takac and Knott (2016).

token times. Just as the c-ep SOM can learn generalisations
over episodes, the situation SOM can learn generalisations
about the types of episode that occur at particular time types,
and about the types of episode that typically follow one an-
other. In fact, while these generalisations can be thought of
as summary statements about past experiences, they are also
the basis on which the agent makes predictions about forth-
coming episodes, to inform SM experience: it is by general-
ising over token episodes that the agent can use knowledge of
the past to make predictions about the present. In our model,
therefore, the circuits responsible for establishing cognitive
set during SM experience are identical to the circuits respon-
sible for storing sequentially structured episodic memories.

This is a point of difference with most existing models.
Cognitive set and episodic memory are normally seen as sep-
arate neural mechanisms, the former involving prefrontal cor-
tex (PFC) (Miller and Cohen, 2001), the latter involving hip-
pocampus and associated cortex (Kesner and Rolls, 2015).
But there is recent evidence that hippocampal assemblies also
hold stimuli during the delay period of WM tasks (e.g. Olsen
et al., 2012), and that PFC and hippocampal activity is tightly
coupled when material is maintained in WM, in a manner pre-
dictive of retention success (Battaglia et al., 2011). Similarly,
while episodic memory is often distinguished from ‘semantic
memory’, defined to include memory for generic episodes,
recent evidence suggests the hippocampal region encodes
generic episodes as well as specific ones (St-Laurent et al.,
2009; Ryan et al., 2008). We envisage that the WM/LTM
media in our model are all implemented in circuits jointly re-
cruiting PFC and the hippocampal region.3 Both regions en-
code stimuli using sparse distributed representations (Wixted
et al., 2014), which are similar to those evoked in our SOM
media and WM media (see below). And there are monosy-
naptic connections linking PFC and hippocampus, allowing
the formation of neural ensembles spanning the two regions
(Dégenètais et al., 2003).

Retrieval from episodic LTM A key property of episodic
LTM is its support of ‘mental time travel’: a process whereby
the agent re-establishes a cognitive state that was active at
some time in the past, and relives episodes experienced at that
time. This involves suspending SM experience, and entering
a special ‘retrieval mode’ (Buckner and Wheeler, 2001). Our
model has a very natural implementation of retrieval mode:
an active representation in the situation SOM can be used to
activate semantic material without engaging SM processes.
Most directly, we can use a pattern of activity in the situation
SOM to reconstruct material in the SOM’s input media. We
can reconstruct the episode that led to the situation in the WM
episode buffer, and we can reconstruct an associated time
in the token time/time type media. (We will call the recon-
structed episode the antecedent, and the reconstructed time

3The perirhinal cortex perhaps has a particular role in represent-
ing LTM individuals (Kesner and Rolls, 2015), and PFC has a recog-
nised role in post-retrieval processes (Ranganath and Knight, 2003),
which we will discuss below.
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the temporal reference.) We can also retrieve the episode
that happened ‘in’ the situation (which we will term the con-
sequent). This is reconstructed from the probability distribu-
tion generated by the retrieved situation in the c-ep SOM.

In our model, the process of entering retrieval mode be-
gins with a representation of the ‘current situation’ in the sit-
uation SOM. This is a pattern of activity over many local-
ist SOM units, encoding a mixture of token situations and
generic situations that are similar to the present situation (in
that a similar sequence of episodes preceded them), with ac-
tivity proportional to similarity. The next episode is predicted
from the distribution of activity over all these units. But each
individual unit represents a specific past situation or situa-
tion type, which is associated with specific episodes from the
agent’s past. We assume each situation SOM unit is associ-
ated with an emotional valence (not shown in Figure 1), as
suggested by Labar and Cabeza (2006). In our model, if the
summed valences of the active situation SOM units exceed a
threshold, retrieval mode is established, and the situation unit
with highest aggregate similarity/emotional valence is acti-
vated by itself. From this situation unit, we can reconstruct
an antecedent unit, or a temporal reference, or a consequent
unit, as described above.

In this model, the process of remembering what happened
in a retrieved situation is formally identical to the process of
predicting what will happen in the current situation, in line
with a constructivist account of LTM recall (Schacter, 1998).
Note that what is retrieved in the c-ep SOM is in fact a distri-
bution of possible episodes. The agent can use this distribu-
tion to reconstruct as best as possible the episode that actually
happened in the remembered situation. But interestingly, she
can also use it to simulate what ‘might’ have happened. In
either case, she can use the recurrent circuitry of the situation
SOM to play forward the real or imagined episode, and re-
trieve/imagine an arbitrary sequence of subsequent episodes.4

The network’s interfaces to language The links between
WM/LTM media and language are shown with blue lines in
Figure 1. The key structures are the WM episode and the
WM individual. Recall these WM media both encode pre-
pared SM sequences, that can be actively replayed. In a
model we developed earlier (Takac et al., 2012; Takac and
Knott, 2016) generating a clause involves replaying a WM
episode and generating a NP involves replaying a WM indi-
vidual, in a special mode where active SM/WM/LTM repre-
sentations can trigger output phonology. In this model, NPs
and clauses denote rehearsed cognitive routines rather than
static mental representations. Our existing model focusses
on generation of a single clause, from a single WM episode.

4Of course it is important to distinguish between remembered
and imagined situations. In our model, we take actual memories
to be those with strong links to a token time, and which predict an
episode distribution with low entropy (i.e. high confidence). These
measures stand in for the ‘feeling of familiarity’ that accompanies
actual memories in people. The measures are not fully reliable—but
(notoriously) neither is the feeling of familiarity in people.

The LTM/WM network presented in the current paper allows
us to extend this model in several ways. Firstly, it allows us
to model a multi-sentence discourse, reporting a sequence of
episodes. In a standard model of discourse structure, sen-
tences in a discourse add material to a temporally structured
database of event representations, indexed by representations
of discourse context and reference time, and each sentence
updates the context and reference time (see e.g. van Lam-
balgen and Hamm, 2005). There are natural analogues of
all these structures in our network: the situation SOM rep-
resents discourse contexts, the weights of its incoming and
outgoing links hold the database of episodes, and the token
time/time type media hold the reference times that index the
database. Secondly, the network allows us to model sentences
that query a database of episodes, or that respond to queries
(i.e. questions and answers), as well as assertive sentences.
This is because the medium holding sentence meanings, the
WM episode, can also hold queries to the situation SOM, and
responses to these queries (as we will show below).

Finally, the network lets us model linguistic devices that
reset the reference time to some arbitrary point, such as those
mentioned earlier, in the afternoon and when John arrived.
It is easiest to approach these first from the perspective of
sentence generation. Consider an agent who has just been re-
minded of a past situation, and wishes to convey this process
in language. Recall the agent can retrieve the time associ-
ated with this situation (the temporal reference) or the episode
which led to it (the antecedent). To communicate the retrieved
situation, the agent can choose to retrieve either piece of in-
formation and then express the retrieved information in lan-
guage, generating either a temporal referring expression or an
antecedent clause. These are distinct communicative strate-
gies, that initiate different LTM queries, and enable different
linguistic interfaces. We suggest that the operations execut-
ing these strategies can trigger linguistic side-effects in their
own right: specifically, the word in for the temporal refer-
ence strategy and the word when for the antecedent strategy.
These words then naturally combine with words expressing
a time, or an antecedent episode, to create a phrase like in
the afternoon or when John arrived.5 The hearer of such a
phrase can use the strategy-signalling word to initiate a con-
trol process of his own, to enable an appropriate interface and
build a representation in the relevant query medium, and then
use this representation to retrieve a situation. The speaker
can then produce a clause asserting (or querying) the conse-
quent episode, that happened ‘in’ the retrieved situation, and
the hearer can assert this episode in the retrieved situation, or
execute a query about it, as appropriate. Note the speaker can
generate the antecedent and consequent clauses in either or-
der from a retrieved situation, since neither operation alters
the situation representation: so our network naturally sup-
ports both preposed and postposed antecedent clauses.

5On this account, temporal reference phrases like in the after-
noon / when John arrived result from the execution of sequentially
structured cognitive routines, so fit well with our general model of
semantic representations as dynamic entities rather than static ones.
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Figure 2: (a) Distribution of type times for the query [Bird
sings]. (b) Distribution of gender for the query [Person jogs]
in the morning, afternoon, and evening.

Training and testing
To test the system’s ability to answer questions and retrieve
remote reference times, we exposed it to a stream of episodes
with the following regularities. In the morning, 4 episode
types were generated with equal probability: [Bird sings],
[Man jogs], [Person sleeps], [Default]. [Person sleeps] was
always followed by [(the same) Person sneezes]. [Default]
episodes were of two types. One type featured a random
combination of agent (Person/Dog/Cat/Bird), action (10 tran-
sitive, 6 intransitive, 4 causative), and patient (if appropriate:
Person/Dog/Cat/Bird/Cup/Chair/Ball). The other type was
the episode [Person kicks dog], followed by [(the same) Dog
bites (the same) Person], or the episode [Person pats Dog],
followed by [(the same) Dog licks (the same) Person]. In the
afternoon, only [Default] episodes were generated. In the
evening, 4 episode types were generated with equal probabil-
ity: [Person lies-down], [Woman jogs], [Person sleeps], [De-
fault]. [Person sleeps] was always followed by [(the same)
Person snores]. Properties of episode participants not speci-
fied above (Number, Location, Colour, Gender) were gener-
ated stochastically as described in Takac and Knott (2016).
The system was trained on a continuous stream of 20000
episodes, divided into 40 epochs of 500 episodes each. Then
the situation SOM was presented with queries in its input me-
dia, encoding the semantics of questions, according to the
scheme described above. A response was retrieved by prop-
agating the query to the SOM (ignoring its recurrent input)
to generate a pattern of activity in the SOM, then propagating
this activity back into the input media as an activity-weighted
linear combination of the weight vectors of all SOM units.
Again see Takac and Knott (2016) for details.

When do birds sing? For this question, we presented the
situation SOM with a partial query [AG=bird, PAT=empty,
ACT=sing] and an unspecified time. After retrieval, we
inspected the distribution of activities in the ‘time type’
medium. As shown in Figure 2a, the system correctly re-
sponds that birds sing in the morning.

Who jogs in the morning/evening? For this question, we
presented the situation SOM with a partial query [AG=Person
(unspecified for gender), ACT=jog], with the time-type set to
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Figure 3: Distribution of agents and patients (left) and actions
(right) for morning (top) and evening (bottom) episodes.
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Figure 4: Change of distribution of patients (left) and actions
(right) for progressively refined queries.

either Morning, Afternoon or Evening. After retrieval, we in-
spected the distribution of activities in the gender part of the
agent. The system correctly responds that morning joggers
are men, and evening joggers are women (Figure 2b). Inter-
estingly, it remains agnostic about the gender of joggers in
the afternoon, when no-one jogged.

What happens in the morning/evening? For this ques-
tion, we specified only a time type (morning or evening)
and left the whole WM episode unspecified. The distribu-
tions retrieved in the WM episode are clearly distinct for
the two times (see Figure 3). But in each case they are
too broad to retrieve specific episodes, featuring particu-
lar combinations of agent, patient and action. However,
given that episodes are experienced sequentially in our model
(agent→patient→action), there is a natural way for a query to
be progressively refined, by first selecting an agent from the
agent distribution, then issuing another query featuring this
agent, then iterating this process on the patient and action
fields. (This kind of query refinement is exactly the kind of
‘post-retrieval process’ envisaged by Ranganath and Knight,
2003.) Figure 4 shows how patient and action distributions
change when the query is progressively refined in this way:
there are no binding errors in the episode eventually returned
([Dog licks/bites Person]), and this episode is indeed a com-
mon occurrence in the morning/evening.

When P kicks a dog, what happens next? This question
targets the next episode prediction system. Recall that when
a person kicks a dog, the dog always bites that person. For
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Figure 5: Distribution of agents and patients (left) and actions
(right) in the episode predicted following [Person kicks dog].

this question, we presented the situation SOM with the (fully
specified) episode [Person kicks dog], and computed the pre-
dicted distribution for the next episode in the c-ep SOM, from
which we reconstucted distributions in the WM episode. As
shown in Figure 5, these are correctly weighted towards [Dog
bites Person]. As an extension of this, we asked a final ques-
tion: When P sleeps in the morning/evening, what happens
next? The system correctly answered [Person sneeze] for
the morning query and [Person snore] for the evening query
(along with other actions associated with morning/evening, at
lower probabilities).

Summary and discussion
In this paper we presented a model of episodic LTM with
two novel features. One regards the interface between LTM
and WM. Our model reconciles the idea of a dedicated buffer
for WM representations with the conception of WM repre-
sentations as active LTM representations. The other regards
the interface between LTM/WM and language. The model
allows several elements of a linguistic theory of discourse
structure (discourse contexts, reference times and temporally
structured semantic representations) to be identified directly
with components of the episodic LTM system. And it ex-
plains how sentences can query this LTM system, and use it
to reactivate memories of temporally remote situations.

There are many issues to discuss about the design of the
model—most importantly, its space requirements. The c-ep
and situation SOMs must hold localist representations of a
very large set of possible episodes and situations. At the
same time, their ability to self-organise means they only need
to represent those episodes/situations that occur, which are a
very small subset of those that are possible. And their abil-
ity to learn generalisations over episodes/situations makes
them efficient encoders. We provide an extended discussion
of space requirements in Takac and Knott (2016).
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