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Significance

New severe acute respiratory 
syndrome-coronavirus-2 
(SARS-CoV-2) variants continue to 
emerge with differing effects on 
the lung, yet there is a lack of 
readily available, biologically 
relevant in vitro models for 
studying their impact on lung 
epithelial cells. We have 
harnessed our patient-specific, 
induced pluripotent stem 
cell–derived, multicell lung 
organoid model to investigate 
critical aspects of COVID-19, 
including viral tropism and 
routes of entry, lung-specific 
immune response, and a role for 
surfactant protein B in innate 
immunity, viral surveillance, cell 
survival, and inflammation. These 
findings can potentially 
revolutionize our understanding 
of the lung’s intrinsic response to 
viral infections, leading to 
innovative therapies.
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CELL BIOLOGY

A therapy for suppressing canonical and noncanonical 
SARS-CoV-2 viral entry and an intrinsic intrapulmonary 
inflammatory response
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The prevalence of “long COVID” is just one of the conundrums highlighting how little we 
know about the lung’s response to viral infection, particularly to syndromecoronavirus-2 
(SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human 
lung system to enable a prospective, unbiased, sequential single-cell level analysis of 
pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with 
human induced pluripotent stem cells and emulating lung organogenesis, we generated 
and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and 
gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than 
previously believed: Many lung cell types are infectable, if not through a canonical 
receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via 
a noncanonical “backdoor” route (via macropinocytosis, a form of endocytosis). Food 
and Drug Administration (FDA)-approved endocytosis blockers can abrogate such 
entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus trig-
gers a lung-autonomous, pulmonary epithelial cell–intrinsic, innate immune response 
involving interferons and cytokine/chemokine production in the absence of hemato-
poietic derivatives. The virus can spread rapidly throughout human LOs resulting in 
mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cyto-
pathic response to the virus may help explain persistent inflammatory signatures in a 
dysfunctional pulmonary environment of long COVID. The host response to the virus 
is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays 
an unanticipated role in signal transduction, viral resistance, dampening of systemic 
inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, 
in fact, can be broadly therapeutic.

COVID-19 | surfactant | lung organoids | inflammation | macropinocytosis

Our understanding of pulmonary COVID-19 caused by infection with severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) remains incomplete and ever-shifting 
not only because of the emergence of new viral variants but also based on our growing 
appreciation of the long-term persistence of symptomatology, often pulmonary (1, 2). 
This occurs despite what should have been adequate blockade of viral entry via canonical 
routes and effective pharmacologic suppression of a systemic inflammatory response 
(3–5). To better explore the dynamics of acute viral infection using single-cell multiomic 
analysis of the sequential downstream events that transpire immediately postinfection in 
epithelial and mesenchymal lung constituents, we used a unique in vitro system that 
reproduces the development, the three-dimensional (3D) cytoarchitecture, and the func-
tion of many pulmonary cell types. Starting from normal human induced pluripotent 
stem cells (hiPSCs), we derived 3D lung organoids (LOs) representing different cells of 
the lung (6–9). Because the LOs are generated from “primary” patient-derived hiPSCs, 
LOs could be generated from patients congenitally missing key protective factors (e.g., 
surfactant), as well as men and women from a number of racial and ethnic backgrounds. 
Furthermore, because our in vitro system allows endoderm-derived “mini-lungs” to be 
generated without potentially confounding contributions or influences from other organs 
or lineages, we could identify processes and responses that were “lung-autonomous.”

We studied the response of these LOs to acute infection with multiple variants of 
SARS-CoV-2. This system enabled us to appreciate a number of unrecognized and 
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surprising aspects of viral infection which might not only lend 
insight into viral entry, the persistence of postinfection inflamma-
tory cascades, and the lung’s intrinsic response to viral pathogens 
but may also suggest clinic-ready therapeutic strategies, based on 
the repurposing of at least two FDA-approved drugs.

Such unexpected findings included broader viral tropism; an 
intrapulmonary innate immune system generated by bystander lung 
cells, and a protective function against inflammation and infection 
by surfactant protein B (SP-B), playing an important role in signal 
transduction. We show that many lung cell types are infectable 
(10–13), not solely those bearing ACE2 and TMPRSS2, or other 
viral receptors. We observed a “noncanonical” (i.e., non-receptor- 
mediated) route of viral entry via a form of endocytosis called mac-
ropinocytosis, which can be abrogated by endocytosis blockers, 
including the FDA-approved drug apilimod.

We demonstrate the existence of an intrinsic, autonomously 
acting, intrapulmonary innate immune “first response” system 
initiated by the pulmonary epithelia themselves upon acute viral 
incursion. This system, we show, “attempts” to restore lung home-
ostasis by inhibiting intercellular viral dissemination, averting 
apoptosis, and dampening inflammatory cascades. SP-B, best 
known as the pivotal component of the pulmonary protein–lipid 
complex surfactant which decreases alveolar surface tension, helps 
mediate this defense mechanism by playing a critical signaling role 
in innate immunity, viral surveillance, and inflammation. SP-B is 
also secreted by airway epithelial cells, where its function had 
previously been poorly defined.

These roles become apparent by examining and manipulating LOs 
derived from hiPSCs from patients congenitally lacking SP-B, a 
unique capability of the experimental model we describe here. 
Because the absence or consumption of SP-B increases viral infectivity 
and dissemination, worsens cell death, and alters the endogenous 
inflammatory/innate immune response of pulmonary epithelial cells, 
we explored the therapeutic potential of administeringFDA-approved 
exogenous surfactant. Furthermore, we suggest that because this 
intrinsic antiviral defense system generates signals that beckon infil-
tration by more classical hematopoietic inflammatory mediators in 
a feedback loop fashion, optimizing this system’s initial efficacy might 
offer a way to preempt the postinflammatory, postapoptotic fibrosis 
which likely potentiates “pulmonary long COVID” (1, 2).

Results

hiPSC-Derived LOs Are Infectable with Multiple SARS-CoV-2 
Strains, Validated in Primary Human Lung Cells. Previous 
studies of SARS-CoV-2 have relied primarily on postmortem 
material (14–17), neoplastic cell lines (18, 19), and on cultures 
of selected lung constituents (13). We employed a system that 
enabled us to map, prospectively and in an unbiased manner, the 
full downstream transcriptional and functional response of human 
pulmonary epithelial and mesenchymal cells of the normal lung 
upon first exposure to SARS-CoV-2. This system of epithelial 
and mesenchymal lung components in a 3D configuration is 
schematized in Fig.  1A and detailed in SI  Appendix (Methods 
and SI Appendix, Fig. S1) (6, 8, 9). Briefly, LOs were generated 
from hiPSCs by exposing them to a sequence of inductive factors 
which emulates normal lung organogenesis, yielding three types 
of LOs: those primarily composed of lung cells located in the 
upper airway/proximal lung (PLO), those in the alveolus/distal 
lung (DLO), and whole LOs (WLO) which contain cell types from 
the entire lung, including pulmonary neuroendocrine cells. We 
induced the WLOs from lung progenitor cells (LPCs) by inhibiting 
GSK3ß with CHIR99021 in combination with FGF7, FGF10, 
EGF, RA, VEGF/PGF, and finally “DCI” (“dexamethasone, 

cAMP, and isobutylxanthine”) (6, 7). Exposure to DCI yielded 
the final step in maturation of the WLOs within 24 h of exposure, 
with visible “ballooning” in response to this developmentally 
appropriate induction combination (SI Appendix, Fig. S1B and 
Movie S1). These structures contained AT2 cells (pro-SPC+) that 
produced surfactant, both anatomically and by protein expression 
(7), as well as alveolar type 1 (AT1) cells (HT1-56+), club, and 
basal cells (SI Appendix, Fig. S1C). Mesenchymal cells, including 
smooth muscle, were present which, in some LOs, conferred 
respiratory contraction-like motion (SI Appendix, Fig. S1C and 
Movie S3). By altering growth factor exposure to the LPCs, 
including FGF2, high dose FGF10, and DCI, we generated PLOs 
which contained basal (p63+), club (SCGB3A2+), and goblet 
(MUC5AC+) cells (9) (SI Appendix, Fig. S1 B and D). Passaging 
PLOs into an air–liquid interphase (ALI) produced functional 
ciliated cells (Movie S2). DLOs, derived by exposure of the LPCs 
to CHIR99021, SB431542, FGF7, RA, and DCI (8), had the 
largest number of alveolar cells (SI Appendix, Fig. S1 B and D).

Single-cell RNA sequencing (scRNAseq) profiling confirmed 
the expression of lung epithelial and mesenchymal cell markers in 
each of the LO types (SI Appendix, Fig. S2 A and B), as determined 
by correlating the signature genes to scRNAseq data in published 
datasets from fetal and adult human lung cells (20–27) and the 
gene annotation and analysis resource, Metascape (28). We used 
generated LOs from a variety of hiPSCs from men and women of 
different racial and ethnic backgrounds (e.g., African American, 
Caucasian, Hispanic) (SI Appendix, Table S1).

In all organoids, the presence and distribution of pulmonary cell 
types—as represented by the size, composition, location, proportion, 
and identity of Uniform Manifold Approximation and Projection 
(UMAP) cell clusters—were always similar from organoid-to-organoid. 
Such consistency and reproducibility supported the generalizability 
and validity of our observations. To determine the acute and primary 
tropism of the SARS-CoV-2 spike protein in the lung without killing 
the cell or permitting intercellular spread, we first infected the LOs 
with a replication-incompetent vesicular stomatitis virus pseudo-
typed with the SARS-CoV-2 spike protein conjugated to GFP 
(pseudovirus-GFP) (29) (SI Appendix, Fig. S3A). To confirm the 
cell types infected, we performed immunofluorescence staining of 
3D LOs and acutely dissociated LOs in monolayer (to enhance 
visualization of individual cells and avoid confounding superim-
position) 24 hours postinfection (hpi). We detected colocalization 
of pseudovirus-GFP with MUC5AC+ in the intact 3D LOs 
(SI Appendix, Fig. S3B). There was also colocalization of 
pseudovirus-GFP with cells expressing SCGB3A2 (secretory cells), 
and MUC5AC (goblet cells) but not with cells expressing p63 (basal 
cells) (SI Appendix, Fig. S3C).

Next, we infected the 3D PLOs with authentic replication-competent 
SARS-CoV-2 virus, variant WA1. We confirmed infection by fluo-
rescent focus unit (FFU) titers (SI Appendix, Fig. S4A), flow cytom-
etry using antibodies specific for the viral NC protein and spike 
protein (S) (Fig. 1B) and immunofluorescence against NC (Fig. 1C). 
Infected cells (NC+) were quantified with a custom-scripted Image 
J code (Fig. 1D). To determine tropism after acute infection, we 
stained intact and dissociated LOs for specific lung markers, as well 
as the viral NC. In the 3D WLOs, MUC5AC+ (goblet) and SOX9+ 
(progenitor) cells were infected (Fig. 1E), and, in the dissociated PLOs 
and DLOs, SCGB3A2+ (secretory), MUC5AC+ (goblet), and 
pro-SPC+ (AT2) cells were infected, but not HOPX+ (AT1) cells 
(Fig. 1F). Many of these cell types secrete surfactant proteins in the 
alveolus and the airway (e.g., secretory and AT2 cells—discussed in 
greater detail below). The tropism of the virus for these cell types in 
the LOs was validated in primary human bronchial epithelial cell 
(HBEC)-derived ALI cultures. In HBEC-derived airway epithelial 
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cells, SARS-CoV-2 similarly infected SCGB3A2+ (secretory), 
AcTub+ (ciliated), and MUC5AC+ (goblet) cells (Fig. 1G).

To explore the differing pathology of SARS-CoV-2 variants, 
we infected PLOs and DLOs with the Delta and Omicron variants 
and examined cellular targets and viral dissemination. As found 
above for WA1, these variants infected a similar spectrum of pul-
monary cells (Fig. 1H). Delta disseminated in culture more effi-
ciently in 24 h than Omicron (58% vs. 6% cells infected). Delta 
infected more SPC+ and SPB+ AT2 cells in the DLOs than 
Omicron, suggesting that the tropism of the Omicron variant may 
not be primarily in alveolar cells. This observation is consistent 
with clinical evidence that Delta causes a more alveolar lung 
pathology (acute respiratory distress syndrome, ARDS) whereas 
Omicron causes more upper airway inflammation.

SARS-CoV-2 Infects Many Lung Cell Types, Independent of ACE2, 
by Exploiting a Noncanonical Endocytosis Route of Entry. To 
determine the response of pulmonary cells to infection at different 
timepoints after infection, we performed unbiased genome-wide 
transcriptome profiling on PLOs at 0 (mock), 3, and 24 hpi. We 
identified 637 differentially expressed genes (DEGs) between 0 to 
3 hpi, and 1,302 DEGs between 0 to 24 hpi. Principal component 
analysis (PCA) showed that PLOs at 24 hpi occupied a distinct 
transcriptional space compared to mock-infected PLOs (Fig. 2A). 
Volcano plots of the mock-infected vs. 24 hpi PLOs demonstrated 
induction of multiple chemokine and cytokine transcripts including 
CCL22, CXCL-1, -2, -3, -5, and -6, IFNE, and CSF3 [the latter 
being the most up-regulated in infected HBECs postinfection (30)] 
(Fig. 2B). Interestingly, HOPX, a gene associated with alveolar type 
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Fig. 1.   hiPSC-derived LOs are susceptible to infection with multiple strains of SARS-CoV-2, validated in primary human lung epithelia. (A) Schematic of steps by which 
hiPSCs are “instructed” to become 3D LOs that resembles a lung in situ and subsequently infected with SARS-CoV-2. See SI Appendix, Fig. S1, for details. Photomicrographs 
of actual WLOs are magnified in the Inset [*] in the Lower Right of the montage. (B) Representative flow cytometry of infected 3D PLOs expressing viral proteins Spike 
and NC confirms that ~62% of the pulmonary epithelial cells were infected. (C) Immunostaining of infected dissociated PLOs 24 hpi for viral NC (cyan) confirms the 
cytometric findings of viral infection. In all photomicrographs in this figure, a DAPI nuclear stain (blue) is used to visualize all cells in the field. (D) Immunostaining of 
infected dissociated PLOs overlayed with carboxymethylcellulose to enhance visualization and permit quantification. Cells were fixed, permeabilized, and costained with 
NC-AF594 antibody (red). A representative well is shown. Images were quantified with a custom-scripted Image J code. Measurements of NC+ nuclei/cluster, cluster size 
and perimeter, and cluster intensity confirm robust infection. (E) Immunostaining of intact 3D WLOs 36 hpi for coexpression of viral NC (cyan) (indicative of infection) 
in multiple pulmonary epithelial cell types as identified by cell type-specific immunomarkers (green). Two representative cell types are shown: goblet cells (MUC5AC) 
and LPCs (SOX9). Note that triple-labeled cells (NC [cyan] plus cell type marker [green] plus DAPI [blue]) typically appear white (an example of which is indicated by an 
arrow in this and the other Panels). (F) Immunostaining of dissociated 3D PLOs and DLOs with viral NC and cell-type lung epithelial markers: goblet cells (MUC5AC), 
club cells (SCGB3A2), alveolar type 2 cells (proSPC), and AT1 cells (HOPX). The arrow indicates representative triple-labeled cells. (G) To validate the range of cell types 
infected in LOs, primary human bronchial epithelial cell (HBEC) ALI cultures were also infected and immunostained 24 hpi. Shown in the coexpression of viral NC 
(evidence of infection) in a range of the same representative pulmonary epithelial cells shown above: goblet cells, club cells, and ciliated cells (AcTub). Insets are 2.5× 
original images. (H) Immunostaining of dissociated PLOs and DLOs 24 hpi, comparing SARS-CoV-2 variants Omicron vs. Delta. (Arrows indicate infected cells). The data 
are representative of at least three independent experiments. All scale bar, 100 µm unless otherwise specified.
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1 (AT1) cells (31, 32), was down-regulated despite AT1 cells not 
being primarily infected (Fig. 1F). TXNRD1, an enzyme important 
in protecting cells against oxidative stress (33), was also decreased. 
Collagen genes, including COL3A1 and COL27A1, were increased, 
suggesting an early fibrotic phenotype.

Gene set enrichment analysis (GSEA), using Kyoto Encyclopedia 
of Genes and Genomes (KEGG), of the mock vs. 3 hpi PLOs, 
revealed enrichment of pathways associated with pyrimidine 
metabolism and extracellular matrix (ECM) receptor interaction 
(Fig. 2C), pathways previously associated with pulmonary infec-
tion (34, 35). Mock vs. 24 hpi PLOs revealed enrichment path-
ways associated with oxidative phosphorylation (36–38) and 
steroid biosynthesis. Ingenuity pathway analysis (IPA) revealed 
associations with IL-17 signaling, pulmonary fibrosis idiopathic 
signaling, and IL-8 signaling (SI Appendix, Fig. S4B).

These data emphasize that normal lung epithelial cells, without 
the intercession of hematopoietic-derived cells or a circulatory sys-
tem, can initiate innate immune responses to SARS-CoV-2 infec-
tion, impact gene expression related to stress resistance, and influence 
epithelial to mesenchymal transitioning at this mucosal barrier 
(39–41).

To determine the response of individual pulmonary cells to 
SARS-CoV-2, we performed scRNAseq 16 hpi in 3D PLOs 
(Fig. 2D). First, we identified infected cell clusters based on expres-
sion of viral gene transcripts (SI Appendix, Figs. S2G and S4C). 
As shown in Fig. 2G, the SARS-CoV-2 nucleocapsid (NC) tran-
script (N), was detected in most clusters at various expression 
levels. Cluster 14 had the highest expression of all the viral genes 
but was not representative of a specific cell type or function 
(Fig. 2E). This cluster may have represented a mix of infected cells 
in the process of dying, with similar gene expression profiles. 
Cluster 7 (ECM) had the next highest expression of the viral genes, 
and clusters 9 (club cells) and 16 (alveolar-like cells) had the third 
highest (Fig. 2E). As noted above, some of these cells are surfactant 
secreting, a point that will be of interest below.

In infected clusters, we next correlated the expression of the 
above-mentioned viral genes with genes encoding the primary medi-
ators of SARS-CoV-2 entry, ACE2 and TMPRSS2 (42) (Fig. 2F). 
As might be expected, the virus’ NC transcript was coexpressed in 
cells that also contained an ACE2 transcript (cross-reference Fig. 2G 
with Fig. 2F) (e.g., Cluster 15). However, the NC transcript was also 
found in pulmonary cell types that do not to bear ACE2 (e.g., Cluster 
12). (SI Appendix, Fig. S4C shows that viral genes in addition to 
N—further indicative of infection—are present in every cluster).

Interestingly, ECM, alveolar-like cells, and the infected cluster 
showed the highest expression of viral genes but the lowest expres-
sion of ACE2 and TMPRSS2. We then interrogated other potential 
viral entry genes (43), dividing them into “canonical” genes (which, 
in addition to ACE2 and TMPRSS2, may include receptors such 
as FURIN, HAVCR1, AXL, NRP1, SLC6A19, and BSG [CD147]), 
and noncanonical entry routes (such as the genes for the cathepsin 
proteins CTSB, CTSL, and CTSS) (Fig. 2F). CTSB and CTSL 
encode proteins pivotal for endocytosis (44–46). BSG is a consti-
tutively expressed surface glycoprotein receptor in epithelial cells 
(47), but has a unique relationship with the spike protein. We 
found BSG expressed in 16 of the 18 clusters and CTSB expressed 
in 11 of the 18 clusters. Serous and mucous-like cells expressed 
the anticipated viral entry genes, ACE2 and TMPRSS2, as well as 
CTSB and CTSL. Primordial lung progenitor, pregoblet, club, 
and ionocytes expressed only BSG.

We verified the scRNAseq findings regarding SARS-CoV-2 
tropism using immunofluorescence. Acutely dissociated LOs and 
HBEC-ALI were examined 24 hpi with pseudovirus-GFP. Infected 
cells coexpressed ACE2 and GFP from the pseudovirus (4.1 ± 

1%), yet there were also cells that expressed only pseudovirus-GFP 
(0.72 ± 0.2%) (Fig. 2H). Dissociated LOs infected with the 
replication-competent live Delta and Omicron showed similar 
tropism, with some cells coexpressing ACE2 and viral NC, but 
others expressing only NC (Fig. 2I).

Guided by our gene and protein expression data, we suspected that 
the non-ACE2-mediated infection we were observing was via a non-
canonical route, such as an endocytic mechanism that can function 
independently of ACE2. One such mechanism is macropinocytosis, 
an uptake pathway that is nonselective and functions in bulk 
fluid-phase endocytosis. To interrogate the feasibility of such a non-
canonical route mediating SARS-CoV-2 entry into lung cells (Fig. 2 
J–N), we used compounds known to block macropinocytosis. 
Macropinocytotic uptake is regulated by PI3K signaling (which plays 
a critical role in macropinosome closure and fission from the plasma 
membrane). Therefore, we used the PI3K inhibitor LY294002, as 
well as Ehop-016, an inhibitor of Rac1 that perturbs actin cytoskel-
eton dynamics. Phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) 
functions to distribute endocytic cargo and has been shown to sup-
press macropinosome maturation (48). We hypothesized that block-
ing PIKfyve activity could be particularly selective in this context for 
also blocking the early stages of macropinocytosis that facilitate cargo 
capturing from the extracellular space. Therefore, we also used apili-
mod, an FDA-approved PIKfyve inhibitor, to block macropinocyto-
sis, and determine whether this has an effect on infection (49). 
Apilimod blocked the uptake of high molecular weight FITC-Dextran, 
a marker of macropinosomes, in A549 and SK-LU-1 lung cells as 
efficiently as LY294002 and Ehop-016 (Fig. 2 H and M). ACE2 
expression in A549 lung cells did not affect the extent of macropino-
cytosis (Fig. 2 K and L) nor macropinocytosis blockade by apilimod, 
LY294002, or Ehop-016 (Fig. 2M). Having validated apilimod as a 
tool for inhibiting macropinocytosis, the drug was then applied to 
A549 cells, engineered with a lentivirus transducing ACE2, and 
exposed to pseudovirus-eGFP. All cells were infectable and all 
endocytosis-inhibiting compounds significantly reduced the number 
of infected (eGFP+) cells including apilimod (Fig. 2N). The efficiency 
with which apilimod blocked infection suggests that SARS-CoV-2 
does enter pulmonary epithelial cells by noncanonical endocytotic as 
well as canonical receptor-mediated routes. Contemporaneous with 
our findings in lung cells, Rac1-dependent macropinocytosis was 
shown to enable SARS-CoV-2 entry also into kidney cells (50).

We compared the efficiency of reducing viral infection (in 
hiPSC-derived PLOs from diverse donors) using a macropinocytosis- 
blocking agent (apilimod) vs. a cathepsin-blocking agent 
(ONO5334) (51) [with a viral replication-blocker, remdesivir 
(52), as a positive control]. At 24 hpi, apilimod reduced SARS- 
CoV-2 infection more than ONO5334, but less than remdesivir 
(SI Appendix, Fig. S5 A and B).

These data suggest that repurposing the FDA-approved drug apil-
imod may be a synergistic therapeutic option early in SARS-CoV-2 
infection to block alternative routes of entry by the virus when it 
circumvents ACE2/TMPRSS2-mediated routes. The failure of the 
cathepsin inhibitor ONO5334 to block infection suggests that the 
cathepsins may not be an ideal therapeutic target.

Acute Infection with SARS-CoV-2 Induces an Autonomous 
Intrapulmonary Inflammatory Cascade. To determine the 
relationship between viral infection and the intrinsic epithelial cell 
response to such, we analyzed the scRNAseq data after infecting a mix 
of all the LO types (PLO, DLO, and WLO) (SI Appendix, Fig. S6 
A and B). We scored the clusters based on the expression of the 
viral genes N, M, and ORF10. Clusters 5 (alveolar progenitor cells) 
and 9 (infected, “nonspecified pulmonary” cells) showed the highest 
infection score (Fig. 3A). When looked at separately, the viral gene 

http://www.pnas.org/lookup/doi/10.1073/pnas.2408109121#supplementary-materials
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N was highly expressed throughout all the clusters, followed by M, 
ORF8, and ORF7a (Fig. 3B). We then assessed the expression of 
type I interferon-inducible genes using an open-access interferome 
database generated from gene expression profiles of cells treated with 
type I or II interferon (52, 53). We generated an interferome score for 
each cluster, with significant elevations of interferome scores in all 

clusters (Fig. 3 C and D). Analysis showed that absolute levels of viral 
transcript did not directly correlate with abundance of interferome 
gene transcripts. We then looked at specific examples of interferome 
gene expression profiles and found increased expression in IFI27, IFI6,  
IFIH1, IFIT-1, -2, and -3, and IFITM1 (SI Appendix, Figs. S7 A and B).  
Chemokines were also highly expressed in most clusters except for 
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Fig. 2.   Transcriptional changes and tropism in hiPSC-LOs infected with SARS-CoV-2; many cell types can be infected, independent of ACE2. (A) PCA plot of the WT PLOs 
comparing samples that were uninfected (mock), 3 hpi, and 24 hpi. Note that PLOs infected for 24 h segregate from those infected for only 3 h or mock-infected. (B) 
Volcano plot analysis of differential expression of SARS-CoV-2 infected PLOs vs. mock infection. Note a heavy upregulation (red dots) of inflammatory cytokine. (C) Gene 
overrepresentation analysis using the KEGG pathway database of SARS-CoV-2 3 hpi vs. mock infected LOs. (D) UMAP of scRNAseq of 3D PLOs, 24 hpi with the alpha 
variant. Clusters were generated via Harmony Integration of three independent samples. The cell-type identity of each numbered, color-coded cluster is indicated 
in the list to the right of the UMAP. That same numbering scheme (Clusters 0 to 17) applies, as well, to Panels E–G. (E) Characteristic genes-per-cluster for the PLO 
scRNAseq data. The key to the heat map (degree of expression) and size of the circles (percent expression) is indicated toward the Right of the panel. (F) Violin plots of 
SARS-CoV-2 entry genes (including ACE2) present in each cluster in the PLOs. (Cluster identification as per E). (G) Violin plot of the SARS-CoV-2 NC transcript in the same 
clusters shown in Panel F. In cross-referencing between the two panels, note that N is present in some cells that contain the ACE2 transcript (e.g., Cluster 15), but also, 
significantly, in clusters that do not (e.g., Cluster 12). Viral genes in addition to N (further indicative of infection) are shown in these same clusters (and in every cluster) 
in SI Appendix, Fig. S4C. (H) Immunofluorescence images of both primary HBECs (Left) and acutely dissociated PLOs (Right) infected with SARS-CoV-2 pseudovirus show 
the pseudovirus in cells with and without ACE2, 4.1 ± 1% of the former and 0.72 ± 0.2% of the latter (I) Immunofluorescence images of dissociated hiPSC-PLOs infected 
with Delta and Omicron. Show viral NC in cells with and without the ACE2 receptor. (J–N) Proof that SARS-CoV-2 employs macropinocytosis (an endocytotic process 
quantified by FITC-Dextran [green] uptake) to enter lung cells, independent of ACE2, but which apilimod can block. (J) Prior to infection, SK-LU-1 lung cells were treated 
with 25 µM LY294002 (PI3K inhibitor) and A549 lung cells were treated with 100 µM LY294002, both used to block macropinocytotic mechanisms. Apilimod’s effects 
were then compared against these treatments. Macropinocytosis (green fluorescence) was inhibited by all drugs comparably; DMSO served as the negative control; 
**P<0.01 and ***P<0.001. (J) To show that ACE2 does not affect the extent of macropinocytosis, A549 cells were engineered to express ACE2 or just luciferase (Luc). 
Actin served as a loading control in the western blot. (L) FITC-Dextran uptake (macropinocytosis) was similar in A549 WT, A549Luc, and A549ACE2 cells (ns = not significant). 
(M) A549ACE2 cells were treated with LY294002, Ehop-016 (another endocytosis inhibitor via its suppression of Rac1 which perturbs actin cytoskeleton dynamics, and 
hence another positive control), apilimod, or DMSO (control). Macropinocytosis was still inhibited by all compounds, ***P < 0.001. (N) All the macropinocytosis inhibitors 
in L blocked SARS-CoV-2 infection of A549 cells as quantified by a large reduction in pseudovirus-eGFP-positivity (green) in those pretreated cells, compared to DMSO 
pretreatment. At least 15,000 cells/condition were analyzed for n = 3 replicates. *P < 0.05 and **P < 0.01.
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the highly infected cluster 5 which constitutively expressed CXCL1, 
CXCL2, CXCL3, and CCL20 at high levels (SI Appendix, Fig. 7C). 
The distribution of chemokine expression did not correlate with 
either interferome gene expression or viral gene expression. Finally, we 
performed a canonical pathway analysis and interrogated the disease 
and biological functions and upstream regulators using IPA (54). The 
Coronavirus Pathogenesis pathway had positive activation z-scores in 
most of the clusters, while EIF2 signaling had negative activation z-
scores (55) (SI Appendix, Fig. S7D). Genes important in apoptosis and 
necrosis were increased (SI Appendix, Fig. S7E), as were the upstream 
regulators of these canonical pathways IFNL1, IFNA2, NONO, IRF7, 
and interferon alpha (SI Appendix, Fig. S7F). The correlation of viral 
gene expression with these inflammatory mediators again showed 
nonoverlapping profiles.

Taken together, these data suggest that specialized lung cells are 
equipped to respond to infection with different innate immune 
mechanisms. These data further suggest a threshold for viral 
expression that triggers differential expression of the interferome 
and chemokines in human lung cells without the intercession, or 
even presence, of hematopoietic derivatives or a vascular 
compartment.

The Unexpected Role of Pulmonary Surfactant in the Intrinsic 
Intrapulmonary Inflammatory Defense and Cell Death. Having 
demonstrated the surprisingly broad susceptibility of human lung 
cells to SARS-CoV-2 through both canonical and noncanonical 
viral entry routes, and the intrinsic ability of normal pulmonary 
epithelia themselves to promote innate immune responses, we next 
turned to the molecular mediators of these downstream events—
after viral entry, by whatever mechanism. A hint in this regard came, 
surprisingly, from the actual clinical presentation of pulmonary 
COVID-19, offering clues as to what unique intrapulmonary 
mechanisms might be involved. The ARDS caused by this virus 
can be atypical (56). Based on autopsy material from patients who 
have succumbed to COVID-19-related ARDS, there is a reduction 
in SP gene expression in the lung (14, 15). There are four types 
of SPs: A, B, C, and D. SP-B is the most critical component of 
pulmonary surfactant, a proteolipid complex secreted primarily 
by alveolar type 2 (AT2) cells to reduce surface tension in the 
alveoli, thereby facilitating gas exchange. Club cells make different 
isoforms of SP-B for different functions. SP-C also contributes to 
lowering surface tension, SP-A and SP-D collaborate with SP-B 
to maintain the airway epithelial lining fluid, and SP-A and SP-D 
perform innate immune functions (57, 58).

During human fetal development, SP-B is gestationally regulated 
(59, 60). A developmental deficiency of surfactant is the most com-
mon cause of neonatal RDS in preterm newborns (61), character-
ized by poor pulmonary compliance and refractory hypoxemia (62, 
63). ARDS associated with COVID-19 is clinically similar in some 
instances (64, 65). We were prompted, therefore, to focus next on 
the role of surfactants during viral infection.

To understand the effect of surfactant on the susceptibility of 
a cell to SARS-CoV-2 infection, we first used immunofluorescence 
to probe for the four SPs 24 hpi in the WLOs and DLOs. We 
detected coexpression of viral NC in SP-A+, SP-B+, SP-C+, and 
SP-D+ cells (Fig. 4A). Intriguingly, only infected cells expressed 
SP-C and SP-D while both infected and uninfected bystander 
cells expressed SP-A and SP-B. SP-B drew our greatest attention, 
because its presence (complexed with the lipid DPPC), is imper-
ative for pulmonary surfactant function. It is required for normal 
lamellar body biogenesis (66–68) and regulates SP-C posttrans-
lational modification (69). The RDS seen in preterm newborns 
can be temporarily improved by administering exogenous sur-
factant until the baby’s own synthesis ensues. In rare cases, 

mutations in the SP-B gene preclude SP-B ever being produced, 
precipitating a lethal respiratory failure reversed only by lung 
transplantation (70). hiPSCs generated from such neonates pro-
vided us with ideal LOs for rigorously testing SP-B’s role in viral 
infection.

As noted above, SP-B is produced in response to infection. On 
western blots of PLOs 24 hpi, we detected the 2 isoforms of SP-B 
secreted by club cells, 42 kDa and 25 kDa (60) (Fig. 4B). AT2 
cells produced the 8kDa SP-B isoform used in vivo to reduce 
surface tension (71). The induction of SP-B postinfection in pul-
monary cells, including those that do not produce surfactants 
in vivo to facilitate ventilation, suggested that SP-B may here be 
playing an antiviral, homeostatic, and/or anti-inflammatory role, 
at least in the upper airway (72–74).

To explore SP-B’s roles most rigorously, we not only included 
normal hiPSC-derived LOs but also LOs generated from hiPSCs 
from a patient with the above-described lethal mutation in the gene 
encoding SP-B, SFTPB p.Pro133GlnfsTer95 (PRO133) (75, 76). 
This mutation is a homozygous, loss-of-function mutation that 
results in a frameshift leading to an early stop codon. The transcript 
is unstable and thus does not translate a protein product (7). We 
also generated LOs from these same hiPSCs in which this mutation 
was corrected via CRISPR-mediated genome editing (77). PLOs 
and WLOs generated from both lines were infected and NC immu-
noreactivity was quantified (Fig. 4C). SP-B-mutant LOs (PRO133) 
had higher numbers of infected (NC+) cells compared to the 
isogenic CRISPR-corrected cells (Fig. 4D). These data suggested 
that SP-B reduces SARS-CoV-2 infection.

To investigate how SP-B may be impacting viral entry and 
subsequent dissemination to neighboring cells, we compared 
SP-B-mutant PLOs to normal PLOs by bulk RNA-sequencing at 
0, 3, and 24 hpi with SARS-CoV-2. Strikingly, PCA demonstrated 
that SP-B-mutant PLOs at 24 hpi occupied a distinct transcrip-
tional space from all the wild type (WT) samples as well as the 
mock and 3 hpi SP-B mutant samples (Fig. 4E). We determined 
the proportion of cells infected by examining the viral reads 24 
hpi and found that 16-20% of the SP-B mutant PLOs were 
infected compared with <1% of normal PLOs (SI Appendix, 
Table S2). Although gene expression was strikingly different 
between the SP-B mutant and WT LOs, characterization of the 
cell types using scRNAseq showed a similar ratio of clusters in all 
PLOs (SI Appendix, Fig. S8A).

Infected SP-B-mutant PLOs were characterized by increased 
chemokine transcripts (CCL20, CXCL-1, -2, -3, -5, and -6), inter-
leukin transcripts (IL1A, IL1B, IL19, and IL23A), interferon- 
inducible genes, and other cytokines including CSF3 (Fig. 4F). The 
surfactant-associated genes SFTPA2, and NKX2-1 were also signif-
icantly induced, in contrast to the normal PLOs. GSEA, using 
KEGG, of the mock vs. 24 hpi SP-B-mutant PLOs showed activa-
tion of pathways associated with Cytokine Receptors, Chemokine 
Signaling, NOD-like receptor signaling, Interferon signaling, and 
MAPK Signaling (Fig. 4G). IPA was consistent with the WT PLO 
data except that the average expression of the canonical pathways 
(SI Appendix, Fig. S4B) and upstream regulators was greater in the 
SP-B mutant PLOs. Even the IFNome 90 enrichment scores were 
higher in the SP-B mutant PLOs compared to the WT PLOs 
(SI Appendix, Fig. S4D).

Although the uninfected SP-B-mutant PLOs had increased 
expression of some interferon-inducible genes, we found significant 
differences in the basal levels of the key protective interferon-inducible 
genes IFI44L and IF127, which were higher in the normal PLOs 
compared to the SP-B mutant PLOs (Fig. 4H). This finding rein-
forced our speculation that SP-B plays a homeostatic role in main-
taining lung function by modulating inflammatory gene expression 
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at steady state and not simply as a physical–chemical barrier. Also, 
mediators that correlate with severity of SARS-CoV-2 infection - 
IL1A, IL1B, CCL2, CXCL8, CXCL10, and CSF3 - were induced 
in SP-B mutant PLOs 24 hpi (78).

To investigate further the role of SP-B in gene regulation, we 
measured the expression of SP genes and their transcription factor 
NKX2-1. The normal PLOs had higher expression of all the sur-
factant protein genes and NKX2-1 pre- and postinfection com-
pared to the SP-B-mutant PLOs, except for SFTPA2, which had 
the highest expression 24 hpi in SP-B-mutant PLOs (Fig. 4I).

To determine viral tropism in the SP-B mutant PLOs, we per-
formed scRNAseq 16 hpi (SI Appendix, Fig. S8). The cell cluster types 
were comparable to the WT PLOs (SI Appendix, Fig. S8A). 
SARS-CoV-2 transcripts were detected in most clusters at various 
expression levels, notably cluster 14, which had the highest expression 
of all the viral genes but was not representative of a specific cell type 
or function, consistent with findings in the infected WT PLOs 
(SI Appendix, Fig. S8B). In the SP-B mutant dataset, alveolar cells 
had even more viral transcripts compared to the WT PLOs. The viral 
entry receptors differed between the WT and SP-B mutant data: 
ACE2 and TMPRSS2 were limited to 1 to 2 clusters in the infected 
WT PLOs (Fig. 2F), but, in SP-B mutant cells, they were highly 
expressed in lung progenitors, AT2 cells, club cells, and ionocytes. 
The other viral entry genes were consistent between the WT and 
SP-B mutant PLOs except with club cells expressing more transcripts 
of CTSS, CTSL, and CTSB (SI Appendix, Fig. S8C).

Taken together, these data suggest that the absence of SP-B abets 
greater viral infection, suppresses baseline antiviral defense mecha-
nisms, and enables a more inimical postviral inflammatory response.

Surfactant Reduces SARS-CoV-2 Infection and Prevents 
Apoptotic Death. To evaluate whether altered viral gene expression 
in SP-B mutant PLOs also affected cell viability, we tracked cell 
death over 90 h and found that the SP-B-deficient PLOs showed 
higher rates of cell death after 36 h, compared to WT PLOs 
(Fig. 4J).

We then evaluated the type of cell death that SP-B was amelio-
rating. We have previously shown that SARS-CoV-2 infection 
induced endoplasmic reticulum stress and an unfolded protein 
response, triggering caspase-mediated apoptosis (79). This process 
has been reported in postmortem lung tissue from COVID-19 
patients and in SARS-CoV-2-infected Vero E6 cells. To understand 
the role of virus-triggered apoptosis in human lung cells, we infected 
PLOs with SARS-CoV-2 and then tracked the changes in viability 
in cells treated with caspase inhibitors, Bcl-2 inhibitors, and BH3 
mimetics(Figs. 5 A and B and SI Appendix, S9). Caspase inhibition 
with Q-VD-OPh blocked SARS-CoV-2-induced death of human 
lung cells, consistent with a role for apoptotic caspases in their death 
(Fig. 5B). Inhibition of prosurvival Bcl2 family proteins Bcl-2, Bcl-xL 
(“BCL-2–like 1”), and Bcl-w with ABT-737 or, importantly, Bcl-xL 
alone (with A-1331852) (Fig. 5C) induced apoptosis of lung cells, 
which was enhanced by viral infection, consistent with a role for 
Bcl-2 family proteins in regulating cell viability during SARS-CoV-2 
infection. Inhibition of Bcl-2 selectively with ABT-199 or of Mcl-1 
selectively with S63845 caused minimal changes in cell viability. 
Taken together, these data confirmed a vital role for Bcl-2 family 
proteins (particularly Bcl-xL) in controlling the kinetics of human 
lung cell apoptosis triggered by SARS-CoV-2.

The death of a virus-infected cell serves as an endpoint for virus 
replication within that cell, but it is not known whether apoptosis 
prevents viral dissemination to surrounding cells. Virus infection 
results in transcriptional changes in cell death regulators of human 
lung cells, including Bcl-2 family proteins, suggesting that regulated 
cell death may serve to restrict viral dissemination. We hypothesized 
that rapid induction of apoptosis using BH3 mimetics would restrict 
virus dissemination by selectively targeting infected cells primed for 
apoptotic death. We developed a quantitative FFU assay to record 
the size of foci and the number of infected cells within each focus. 
Using a custom-scripted Image J code for automated image analysis, 
and a custom R Shiny tool called FFUTrackR for data visualization 
of the analysis output, we assessed characteristics of fluorescent foci 
in virus-infected cultures (Fig. 1D).
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Treatment of virus-infected cultures with the Bcl-xL antagonist 
A-1331852 resulted in a reduction in size of foci of infection as 
assessed by the number of infected nuclei per cluster, the FFU cluster 
area, the FFU cluster perimeter, and the FFU cluster convex hull. 
Inhibition of Bcl-xL did not change the number of foci or viral NC 
levels within the FFU cluster as assessed by the average fluorescence 
intensity of intracellular SARS-CoV-2 NC (SI Appendix, Fig. S9B). 
These data suggested that rapid induction of apoptosis of virus-infected 
cells can occur at an early phase of the viral life cycle that interferes 

with virus replication and dissemination. In contrast, treatment with 
Q-VD-OPh did not alter virus dissemination, suggesting that apop-
totic caspases do not inactivate virus, nor are they required for virus 
dissemination (SI Appendix, Fig. S9B). These data indicated that 
induction of apoptosis fails to prevent virus dissemination and releases 
preformed virions. Indeed, the spread of viruses from dying cells to 
neighboring cells is the basis for the plaque assay. These data indicated 
that apoptosis could restrict viral dissemination, but only if it is 
engaged before significant viral replication occurs in the cell. In other 
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http://www.pnas.org/lookup/doi/10.1073/pnas.2408109121#supplementary-materials
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words, these data suggest that rapid induction of apoptosis within 
infected lung cells at an early phase of the viral life cycle induces the 
lung cells inherently to interfere with further virus replication and 
dissemination, an intrinsic self-defense mechanism.

SP-B Mutant Gene Correction, Recombinant SP-B (rSP-B), and 
Exogenous Surfactant All Reduce SARS-CoV-2 Infection. We have 
shown that LOs lacking SP-B, exhibit increased rates of SARS-CoV-2 
infection and apoptotic cell death, presumably because surfactant 
not only provides a barrier to infection but also mediates a first-line 
acute intrapulmonary inflammatory host defense that combats virus 
survival and dissemination. This speculation was supported by our 
observation that CRISPR-mediated correction of a mutation in the 
gene encoding SP-B reversed these processes.

We next explored the clinically relevant implications of these 
observations. We tested whether an exogenous whole surfactant 
preparation, which is presently in clinical practice for newborns, 
could inhibit or reverse the pathogenic actions of SARS-CoV-2 
(Fig. 6A). First, we performed dose-finding and timing studies by 
applying porcine-derived surfactant, poractant alfa (Curosurf ) 
(80) (SI Appendix, Table S3) to Vero E6 cells 30 min prior to 
infection with the SARS-CoV-2 variants WA1, Alpha, Beta, 
Gamma, and D614 (Fig. 6A). Based on assessments of NC immu-
nopositivity 24 hpi, there was a significant reduction in the num-
ber of SARS-CoV-2-infected cells in poractant alfa-treated cells 
compared to untreated (Fig. 6 B–D), with greater reductions in 
response to increasing surfactant concentrations (Fig. 6E). We 
then pretreated infected WT (Fig. 6F) and SP-B mutant DLOs 
(Fig. 6G) with poractant alfa and, similarly, found a significant 
reduction in the number of infected cells. To confirm that the 
underlying mechanism of therapeutic action of this practical clin-
ical intervention pivoted on the expression of SP-B, we showed 
that adding rSP-B alone to SP-B-mutant DLOs similarly reduced 
infection and cell death at 36 and 54 hpi (Fig. 6 H and I).

Discussion

The continued wide prevalence of COVID-19 and the persistence 
of symptoms in multiple organs (“long COVID”) remind us of 
how much remains unknown about the pathogenesis of, and host 
response to, SARS-CoV-2 and to viral infection broadly. Such 
understanding should enable better or adjunctive therapeutics to 
emerge. Here, we employed a unique human lung model system 
capable of determining, in a prospective and unbiased single-cell 
manner, the downstream transcriptional and functional responses 
of various pulmonary epithelial and mesenchymal cells upon ini-
tial exposure to multiple SARS-CoV-2 variants. Importantly, these 
assessments were conducted in a way that eliminated confounding 
factors from nonpulmonary organs or cell lineages, which could 
interfere if the lung were studied in situ. Hence, we could identify 
processes and responses that were lung-autonomous. Studying 
primary human lung cells in parallel to validate our findings, we 
were able to challenge prevailing views about COVID-19, as well 
as provide unique mechanistic insight into the lung’s response to 
viral incursion more generally. Importantly, such findings suggest 
at least two immediately actionable therapeutic strategies.

The initial striking finding was SARS-CoV-2's broader tropism 
for pulmonary cells than previously reported. Our scRNAseq data 
revealed viral entry and persistence that were independent of ACE2, 
TMPRSS2, and FURIN, but dependent on other entry routes medi-
ated by cathepsin B/L/S and CD147/BSG. This transcriptomic 
picture was supported by immunocytochemical evidence of infected 
cells that lacked ACE2. While there have been reports of SARS-CoV-2 
using receptors other than ACE2 to enter the cell (“receptor-mediated” 
or canonical), here we describe a noncanonical route: an endocytotic 
mechanism (macropinocytosis) employed by SARS-CoV-2 to enter 
a cell. The confirmed “back door” route, as shown in our apilimod 
assay (Fig. 2M), might potentially explain the infection of lung cells 
lacking ACE2 expression. This may also elucidate the persistent vir-
ulence of some SARS-CoV-2 variants despite effective abrogation 
of spike protein-mediated entry by vaccines or drugs. Our pharma-
cological identification and dissection of this unique macropinocy-
totic mechanism suggest an adjunctive therapy that might be used 
synergistically with others: apilimod, an FDA-approved drug that 
can be repurposed for clinical use to block this noncanonical entry 
route. While, in these experiments, we pretreated the cells with apil-
imod prior to infection (in part, as a tool for confirming the presence 
of macropinocytosis), suggesting its efficacy as a prophylactic agent, 
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Fig. 5.   Human lung cell viability in LOs following SARS-CoV-2 infection 
is reduced by BH3 mimetics but increased by caspase antagonists. See 
SI  Appendix, Fig.  S8 for live cell phase contrast imaging of LOs showing 
morphological changes triggered by viral vs. mock infection (showing daily 
progressive dissolution of integrity of the LOs. The FFU assay is also illustrated 
there. (A–D) SARS-CoV-2 infection of human lung cells reduces their viability. 
Cell death was tracked using PI uptake. Cells were infected with SARS-CoV-2 
and then treated with ABT-737 (an inhibitor of prosurvival Bcl-2 family proteins 
Bcl-2, Bcl-xL, and Bcl-w), ABT-199 (which modestly activates proapoptotic Bcl-
2 family proteins), S63845 (an antagonist of Mcl-1), or Q-VD-OPh (a caspase 
inhibitor). Viability was monitored every 6 h. Data from three independent 
experiments are shown. (B) Q-VD-OPh blocked virus-induced death, consistent 
with a role for apoptotic caspases. (C and D) ABT-7 and ABT-199 accelerated 
cell death (the former more than the latter), consistent with a role for Bcl-2 
family proteins in regulating the dynamics of cell viability during infection.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408109121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408109121#supplementary-materials
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we thought that its ability to block noncanonical viral entry after 
infection may also constitute a treatment by limiting intercellular 
viral spread and viral load in COVID-19 patients, hence 
“short-circuiting” the disease. Although, theoretically, there might 
be concerns that apilimod’s mechanism of action could cause 
off-target blockade of some desirable immune responses or act del-
eteriously on PIKfyve elsewhere, no such manifestations have been 
observed following its use in >700 patients with non-Hodgkin’s 
lymphoma, autoimmune conditions, and even healthy volunteers, 
in whom the pharmacokinetic and safety profiles are FDA-acceptable.

While there is a rich literature describing lung inflammation fol-
lowing viral infection, such responses have involved the contribution 
of innate and adaptive immune cells. Infection of our lung epithelia, 
in the absence of hematopoietic derivatives or a blood supply, leads 
to immune-specific changes, activation of proinflammatory signaling, 
and the production of proinflammatory cytokines and chemokines. 
In other words, what we observed was an intrinsic, lung-autonomous, 
intrapulmonary, inflammatory response that provides the lung with 
baseline protective surveillance, but then, upon viral attack, is an acute 
“first responder” prior to the recruitment of hematopoietic derivatives. 
These data suggest that in response to SARS-CoV-2 infection, lung 
epithelial cells themselves can serve as initiators of innate immunity 
and impact gene expression related to oxidative stress tolerance, bar-
rier cell maintenance, suppression of viral infection and dissemina-
tion, and support of cell survival. These epithelial-derived molecules 
attract both innate and adaptive immune cells from the systemic 
circulation, which, in some circumstances, might worsen the inflam-
matory milieu via a positive feedback loop. Armed with this greater 
mechanistic insight into the acute effects of SARS-CoV-2 on human 
lung cells, we might contemplate earlier ways of preempting or min-
imizing the fibrosis and smoldering inflammation that contributes 
to pulmonary long COVID. The key will be to optimize the efficacy 
of this intrapulmonary surveillance system for neutralizing an inciting 
virus, hence minimizing inflammatory feedback. Accomplishing such 
optimization requires knowing the key regulator of this inherent 
intrapulmonary host-pathogen defense mechanism, which highlights 

the third unexpected observation to emerge from using this LO sys-
tem, described in the next paragraph.

This intrinsic, immediate intrapulmonary antiviral host defense 
system is orchestratedby SP-B, a molecule primarily known for its 
role in reducing alveolar surface tension, and now identified as having 
signaling and anti-inflammatory capabilities. Strikingly, we found 
that the expression of SP genes in LOs was dynamically altered by 
SARS-CoV-2 infection. Infectivity was greatest in SP-B-deficient 
LOs. Restoration of SP-B function and surfactant production in these 
LOs, via CRISPR-Cas9-mediated correction of the mutation, by 
prophylactic administration of rSP-B or exogenous surfactant, 
restored the LO’s ability to evince its inflammatory/innate immune/
viral surveillance cascade, suppress viral entry and intercellular dis-
semination, and prevent viral-induced apoptosis. One could imagine 
that, in an actual patient, persistent viral infection could lead to sur-
factant depletion if consumption outstrips production, or if too many 
AT2 and club cells have died (which we had shown were targets for 
infection in our single-cell RNA seq data), enabling viral spread and 
inflammatory modes of cell death. Although our experiments were 
designed (as most antiviral drug studies are) to test the efficacy of 
surfactant to block acute infection, we believe that surfactant treat-
ment could also be given after infection because it will dampen viral 
load and disease severity (reducing the risk of ARDS) while also help-
ing to inhibit intercellular spread, hence truncating the viral life-cycle 
and preempting disease progression.

The actual mechanism by which surfactant reduces cellular infec-
tion is unclear. It may be due to its barrier function to viral entry, or 
to the creation of micelles that entrap viral particles. But our data 
suggest that its role is greater than these physical chemical actions, 
but rather significantly attributable to its modulatory effects on 
inflammatory mediators upstream of this intrapulmonary viral sur-
veillance and defense system (73, 81–85). Indeed, in SP-B-deficient 
LOs, even baseline levels of immune surveillance cytokines are abnor-
mally low.SP-B is controlled by multiple upstream regulators, includ-
ing inflammatory mediators IL-1, IL-6, TGFβ and the transcription 
factors NKX2-1, JAK1 and STAT3 (SI Appendix, Fig. S10). 
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Fig. 6.   Natural surfactant and rSP-B reduce SARS-CoV-2 infection and cell death. (A) Immunofluorescence (via whole well scan) of Vero E6 cells 24 hpi with different 
variants of SARS-CoV-2 with or without the addition of poractant alfa. Wells were stained for intracellular viral NC to quantify degree of infection and quantified (FFU). 
(B) Quantification of data from (A) (all variants taken together). Surfactant dramatically diminishes infection. (C and D) Quantification of degree of infection of Vero E6 
cells based on specific SARS-CoV-2 variant, with or without the addition of poractant alfa; (C) shows the results from variants Beta, Alpha, Gamma, WA1, and D614G; (D) 
shows the results from Delta. (E) Total infected Vero E6 cells 24 hpi after increasing dosages of poractant alfa; its antiviral actions increase with dose. (F–I) The addition 
of surfactant or rSP-B to SP-B-deficient PLOs and DLOs can rescue them from their otherwise higher susceptibility to infection and death. (F) Reiteration of the normal 
inhibition of infection of WT PLO cells with the addition of surfactant. The pivotal role of SP-B in this “rescue” is reinforced by showing that the otherwise higher rate of 
infection of SP-B-deficient DLO cells is diminished by the addition of surfactant (G) or rSP-B (H). Similarly, cell death (quantified using PI) of infected SP-B-deficient PLOs 
is reduced at 52 h by the addition of rSP-B (I). Significance calculated using two-way ANOVA: *P < 0.05, **P < 0.01, and ****P < 0.0001.
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Therefore, the absence of SP-B might be anticipated to exacerbate 
the deleterious components of the post-infection inflammatory 
response leading to increased pulmonary cell death and apoptosis.

The translational question is whether aggressive and timely sur-
factant repletion and/or SP-B replacement, might be therapeutic 
clinically following SARS-CoV-2 by inhibiting viral dissemination 
in the upper airway, modulating local immune responses and inflam-
matory cascades, preventing chronic inflammation, and reducing cell 
death, as we demonstrated in the LOs using surfactant-based thera-
peutics. Intratracheal administration of exogenous surfactant has been 
in clinical practice for decades in newborns, and exploratory trials are 
contemplated (86–88) or ongoing (NCT04375735) to test the effi-
cacy of such preparations in mitigating COVID-19 ARDS. Having 
identified the critical role of surfactant in antiviral defense in the 
alveoli and airways, we now propose the use of aerosolized surfactants, 
which could prove lifesaving against acute COVID-19 (and other 
respiratory viruses) and potentially preempt aspects of long pulmo-
nary COVID.

To elaborate on that last point, our observation that SPs play 
such an unanticipated but prominent role in the lung’s first 
response to viral infection may have implications beyond solely 
SARS-CoV-2. For example, we found that regardless of how the 
virus enters a cell—whether via the canonical receptor-mediated 
route or the noncanonical endocytotic route—the lung’s auton-
omous, intrinsic viral defense mechanism as mediated via SP sig-
naling was evoked. It is plausible that enhancing these SP-associated 
actions downstream of viral entry may be an adjunctive strategy 
for bolstering the lung’s defense to a broad range of viral invaders, 
particularly in vulnerable patients.

COVID-19 hits deprived socioeconomic populations and certain 
racial groups with increased incidence and severity (89). Other than 
noting the greater prevalence in those groups of morbidities that 
predispose to COVID-19, most preclinical models and clinical trials 
to date have not offered much mechanistic insight into the causes of 
this disparity (90) nor how to approach it therapeutically. Our exper-
imental platform is unique in that we can differentiate hiPSCs from 
men and women of various racial and ethnic backgrounds into LOs 
to determine differences in response to infection and/or therapeutic 
compounds in a patient-specific manner. While such a detailed explo-
ration is beyond the scope of this study, our preliminary work-to-date 
using such diverse LOs has already offered observations that should 
be pursued using experimental systems like ours (SI Appendix, 
Fig. S5).

In summary, we have shown that acute infection of human LOs 
induces rapid changes in the innate immune responses via interferon 
signaling, oxidative stress, and hypoxia-inducible factor signaling. The 
influence of age, inflammation, and SP availability (79, 91) on canon-
ical and noncanonical viral entry and intrapulmonary immunological/

inflammatory cascades as unveiled in this study requires further investi-
gation and suggests some potential interventions.

Methods

LOs were generated from a diverse set of hiPSCs and infected with different vari-
ants of SARS-CoV-2 as intact 3D LOs or acutely dissociated monolayers. Infection 
was confirmed with transcriptional- and protein-based assays. Inflammation was 
determined via bulk and scRNA sequencing. Cell death was determined using 
BH3 mimetics. SP-B-deficient and CRISPR-corrected isogenic SP-B-deficient LOs 
were pretreated with exogenous surfactant and rSP-B before infection. Detailed 
Experimental Procedures are provided in SI Appendix.

Data, Materials, and Software Availability. scRNA-seq data are available from 
the GEO repository database: GSE214762, GSE214752, and GSE214770 (92–94). 
RNA-seq data are available from the GEO repository database: GSE214482 (95). The 
custom-scripted macro used for automated image analysis of FFU imaging data is 
available at https://figshare.com/s/13587b74c09c251b3345 (96). (DOI for when we 
publish it live will be 10.26180/14073236 (97)). The following reagent was deposited 
by the Centers for Disease Control and Prevention and obtained through BEI Resources, 
NIAID, NIH: SARS-Related Coronavirus 2, Isolate USA-WA1/2020, NR-52281.
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